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ABSTRACT

Injections of medicine into the body are commonplace, whether they be intravenous or
capsules. The benefit of using a macroneedle for injecting cargo into the circulatory
system is its simplicity. However, introduction of the needle intravenously can also
include foreign matter if the needle is unsterile. Due to macroneedles ability to pierce
skin and veins for effortless insertion, it can also damage unintentional areas if a patient
resists the needle, or if it is poorly inserted. Thus the body can be subjected to
undesirable materials beyond the intension medicine cargo.

Current research reevaluates methods of introducing cargo medicine into the body.
Popular models consider polymer substrates with different surface designs and
medicine release. Thin polymer substrates allow flexible construction for adhering to
tissue while specfic polymers with high Young's modulus create strength for rigidity.
Cargo can be placed within or on top of the substrate itself for release to the epidermis
or dermis in stages, which is difficult for both oral medicine and macroneedles.

A spectic substrate system with microneedles can prevent irflammation or tear of the
epidermis but still puncture for cargo release. Depending on the substrate contact
surface area, a larger microneedle array can be utilized, for a higher success rate of
release beyond individual microneedles.

Microneedles can carry and release medicine either internally or externally through the
epidermis. In the latter, Langerhans cells can be utilized for activating the immune
system by releasing antigenes.

Aims of this thesis show the effects of polymer microneedle substrates with methods for
constructing the substrate arrays that are flexible adherent to the epidermis, rigid
enough for puncturing the stratum corneum, but not weak enough to buckle or be brittle.

Thesis Supervisor: Darrell Irvine
Title: Professor of Material Science Engineering, & Biological Engineering
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INTRODUCTION 1.0

1.1 Introducing Medicine Into the Body

There are a wide array of methods for introducing medicine into the body. Typical

ways of releasing medicine are via oral delivery and intravenous macroneedles.

Patients prefer medicine in capsule forms rather than needles for many reasons.

Simplistic and individual administration makes oral medicine ideal. Despite these

advantages, medicine in oral form takes more time to be activated internally as it

navigates within the digestive system. More importantly, some drugs or proteins simply

cannot be delivered orally in capsules because they are degraded in the digestive

system or poorly transported across the gut epithelium into the tissues. Macroneedles

are ideal for introducing medicine to specfic areas of the body or for quick release.

Benefits arise from the possibility of piercing through skin tissue directly into veins in the

circulatory system; thus the medicine can be an adjunct to the body's immune system.

But there are limitations to using macroneedles intravenously. If the patient is afraid, or

if the injection itself is poorly administered [2], then the benefits of administering the

medicine through intravenous needles cannot be achieved.

Due to the limitations of macroneedles and oral capsules, engineers are

interested in other methods of introducing medication into the body. One alternative is

through individual patches being combined with microneedles. Microneedles possess

some of the advantages of both macroneedles and oral capsals. In addition,

microneedles are able to relay vaccines, proteins, or medicine cargos to specific areas,

such as the mucosal immunity in the epidermis or dermis directly to pathogens.
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rigure 1 I A -LLMA microneeaie array unaer;
the work of J.H. Park and M.R. Prausnitz [9]

The interest in microneedles stems from their ability to combine the benefits of

both capsules and macroneedles. Microneedles are able to pierce the epidermis and

introduce medicine directly to target areas, just like their macroneedle kin. Specfic

microneedles can prevent piercing through the hypodermis, or only the epidermis. The

ejective of the microneedles is to deliver its cargo to a specific area of the body. Instead,

microneedles deliver their cargo to the Langerhans cells, which are a type of dendritic

cells, in the stratum spinosum layer of the epidermis. These dendritic cells are not to be

confused with the same name in neuron cells. "Dendritic" simply refers to the ability of

the cell to grow additional appendages. When foreign material invades the epidermis,

Langerhans cells capture antigens as antigen-processing cells, or APC's. APC

Langerhans cells travel through the lymphatic system and deliver the antigens to T-cells

for the remaining immune system. Once the entire immune system becomes activated,

it then eradicates the foreign matter. Thus microneedle insertion of medicine into the

body is as simple as a shot for preventing the flu.

------ --
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Furthermore, microneedle substrates can be easily administered individually like

capsules and reduce opportunities for failure by either the patient or the injection. Since

microneedles do not pierce below the epidermis, patients do not see blood and the

microneedles themselves are difficult to see with the naked eye. Different microneedle

arrays consist of different release and removal techniques, from ease of pealing,

dissolving the microneedle substrate or a combination of both, with the substrate

ejecting dissolvable microneedles onto the epidermis. Along these lines, one way

consists of dissolving the substrate after certain durations of time, while another could

eject the microneedles from the substrate, then dissolved instantaneously.

Regardless of the methods, the design goals for the substrates are simplicity,

extended release, high rate of success, and patient comfort. To achieve these aims,

engineers construct polymer solid state film substrates over most other materials, such

as steel and silicon, even though they have higher moduli and extensive research

support in the growing computer industry [10]. Polymer substrates incorporate both

flexible and rigid structures for puncturing the stratum corneum and allowing delicate

removal. Other considerations are water solubility and multi-composed polymers for the

microneedles. Both qualities can control the intake of medicine, but the former controls

the release of medicine through the body pH levels while the latter can dissolve in

speclic release. Multi-composite polymers can pierce the epidermis to release the

cargo medicine. By combining the polymer substrate with a liquid solution, its viscosity

can allow a release of the medicine in stages, while a porous polymer would quickly

release the medicine without being hindered. Either cases allow multiple medicine

degrees or types of medicine than a single release like macroneedle syringes. The

microneedle substrate array is determined by the mold it is cast in. Current mold

materials have a range of elastic moduli and range from rubber-based polymers to

aluminum. Within the molds themselves, the impressions of the microneedles can be
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formed in a range of techniques, common methods are nanoindention, UV lithography

[2] or laser stenciling. After the molds are prepared, the substrates can be formed. Once

the resin for the substrate is placed into the mold, the substrate solidfies into the ideal

substrate-microneedle structure.

1.2 Previous Microneedle Substrate Work

Microneedle substrates have been applied since the 1980's with metal and

silicon during the growing computer industry [10]. M.R. Prausnitz showed the idea of

constructing a substrate of microneedles in the 1990's on micro level dimensions with

polymers instead of metals and silicon. 3M's research currently creates polymer

substrates with the circumference of a pencil eraser [3]. Depending on the microneedle

array, the medication can be released into the body based in variable dosages. With a

single substrate, multiple types of medicine could activate in separate time increments

from one to four minutes. Cargoes the size of 20-40 kDa with proteins, peptides, or

molecular salts have been released into swine and humans.

Polymer substrates have been available in the past for some medicine release

into the body, such as patches with nicotine [9]. Many of these previous substrates only

introduce the vehicle in an ointment or cream form rather than a liquid form. One of the

benefits of polymer substrates is slow release over a long period of time, just like the

extended release of medicine from intravenous needles. The ointment-based drug

delivery is limited by the absorption past the stratum corneum of the epidermis, while

the use of microneedles would allow the medication to enter the body with ease.

Polymers that are used for microstructure substrates are designed by two novel

methods: one is by physical restraints of the polymer while the other is the chemical

structure of the substrate itself. An ideal substrate cannot be constructed without either

of these parameters. J.W. Lee revealed the difference of both a conical versus
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pyramidical and CMC/BSA (carboxy-methylcellulose/bovine serum albumin) mixtures in

PLA (polylactic acid) amylopectin [6].

This thesis examines the polymers for, and chemical methods of, constructing

proper substrates with microneedles to introduce cargo into the body. There are several

physical restraints on the polymer being cast into the mold. An ideal substrate needs to

have a suitable modulus to be flexible for adhering to skin, but to contain microneedles

for piercing the stratum corneum. If a substrate's microneedles were too resistant, the

needles could break before introduction or be lodged in the skin against intension.

Microneedles can also be damaged by either removal from the mold, or transportation

into the skin. One of these limitations for the microneedles is the mold itself, as it could

be formed incorrectly and prevent or reduce the effects of releasing the cargo into the

body.
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MATERIALS & METHODOLOGY 2.0

2. 1. 1 Polymer Substrates & Microneedles

Polyglycolic acid (PLGA) with a lactide:gycolide 50:50 ratio, polyglutamic acid

(PGA), poly(methyl methacrlate) (PMMA) at a 15,000 molecular weight (Mw), and

polystyrene (PS) were polymers chosen to be substrates and microneedles due to their

biocompatibility, ease of use, and high modulus strength. All methods were tested with

PLGA, in addition, PLGA was also tested with 0.1 pm silica solutions and microparticles,

while PGA, PMMA and PS were exclusively tested in the vacuum oven 2.2.2 only. The

polymers were heated to their glass and melting temperatures then cooled back to room

temperature at different rates. When PGA was used under the vacuum oven, it was

mixed with chloroform or trichlorform (TCM) at a 0.10g/100pl ratio before the heating

process. Glass and melting temperatures of the polymers are displayed in Table 1.

PGA [7] 402C 2309C 7.0 Polyscience

PS [12] 959C 2409C 3.5-3.9 Polyscience
Table 1 Modulus, glass and melting temperatures of the
polymers used for the micorneedle substrates

In the PLGA case, the silica was chosen to aid strength of the microneedles

during the vacuum oven process. The silica solution, with 10pm particle, was compined

with a 50:50 water and ethanol ratio. Both the silicon solution and the water ethanol

ratio were then placed into the molds. When combined, the silicon water-ethanol

mixture produced 100-150ml for each mold. Once in the molds, the solution was

prepared at room temperature for 1-2 hours before applying the PLGA particles. Then



2009/05/08

the PLGA-silica was processed for use.

For use of PLGA smaller than a millimeter, a different approach was provided.

Microparticles of PLGA with 50 calcein were prepared in a 15ml of phosphate buffered

saline (PBS) and heated in a 379C water bath. Once the particles of the calcein

suspended in the PBS solution, the suspension was gathered by a 0.2pm syringe filter.

The solution was then kept in a 42C environment with no light outside of use. This

calcein solution would be used in the first emulsion for the microparticle PLGA solution.

Original granules of 30mg PLGA were dissolved in dichloromethane (DCM) for

10-15 minutes for a first emulsion, then 200pm calcein was added during one minute of

sonication at 7W. A second emulsion was then prepared by inserting the first emulsion

into 6ml of 2% polyvinyl alcohol (PVA) at 12W for 5 minutes. After the samples were

sonicated, they were placed in a LabLine shaker of a frequency at three for 5-12 hours

to dissolve the remaining DCM. All the liquid samples were measured with glass pipets

to prevent corrosion into the sample. Both sample emulsions during sonication were

placed within a beaker with ice.

Once the DCM was removed from the PLGA-PVA, the samples were filtered

again through a [cell strainer] then 1.5ml of the sample was placed into three 2ml

eppendorf tubes for centrifuging at 1800g for 10 minutes. The supernatant was then

discarded and replaced with 1.5ml of water and centrifuged again; this process was

repeated by removing the previous water supernatant and placing a new dosage of

water at 1.5ml. Both water emulsions would centrifuged again at the same frequencies

and time. After the second water rinse, the PLGA pellets were suspended in 0.2ml of

water per eppendorf tube and all three tubes were combined together and stored in a

4-C environment with no light. The samples were then transferred in liquid nitrogen to a

lyophilizer at 500kP for 48 hours. To filter the water and PVA from the PLGA, 2-3 layers

of Kimwipes covered the eppendorf tube ends.
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2.1.2 Molds & Cavity Designs

Originally, aluminum, silicon and polydimethylsiloxane (PDMS) were chosen due

to the work of Prausnitz [9]. Vax Design, the company that produced the molds,

suggested silicone as it is similar to PDMS, and it has a higher elastic modulus than

PDMS alone, thus preventing imperfections or tears on the substrate or mold. For all of

the aluminum, silicone, and PDMS arrays, there were five rows and eight columns

spaced at 600pm apart horizontally and vertically. All of the microneedle cavities had

100pm radii with either 400pm, 600pm, or 800pm lengths. Laser etching made one to

two 5-10pm offset passes for the microneedle impressions with a frequency at 80-

110mW. A second PDMS mold consisted of four arrays: two conical and two pyramidal

designs. Height, spacing and numbering of the secondary PDMS microneedles were

the same specifications as in the first molds. Both of the conical second mold arrays

had higher surface areas than the first mold arrays with different hypotenuses.

2.2. 1 Melt Press Fabrication of Microneedle Arrays

One of the techniques that Prausnitz suggested was to use a melt press on an

aluminum mold. The solid polymer is placed within a gasket barrier to direct it during

formation of the melt press process in the microneedle cavities. Various gaskets were

used: generic rubber, silicone from GRAPE Biolabs, Telon, and generic steel. When the

aluminum sample was set on the metal plates between the stainless steel plates, these

plates exerted a force for 60 minutes at the polymer melting temperature. Then the

sample temperature was dropped back to 0-40-C with a water cooling system for 5-10

minutes. Once the temperature was returned to room temperature, the force was then

reduced to allow removal of the sample. PLGA was the only polymer substrate used in

this method.
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All experiments of PLGA samples were consistent with a 25-50N force from a

0.30m2 stainless steel plate for 5-10 minutes, then held at the maximum force for 30-60

minutes at 1802C. After this duration, the force was relaxed for 5-10 minutes, then the

cooling system was applied. The PLGA was then left at room temperature before it was

removed from the aluminum mold and gaskets.

2.2.2 Vacuum Oven Fabrication of Microneedle Arrays

PDMS was the exclusive mold used in the vacuum oven method for all of the

polymers substrates. PLGA, PMMA, and PGA were the tested polymer substrates.

There were three variations of forming the microneedles in the molds: extending the

time process, the point at activating the vacuum, and the rate of the temperature cooling

process. Times were held in the vacuum oven from 1-24 hours. There were two points

of activating the vacuum. One was starting the vacuum before the polymer samples

were heated, while the other was activating the temperature in tangent with the vacuum

itself. Cooling temperatures were either through the vacuum oven at [52C per minute],

while the other was turning off the vacuum oven at the melting temperature and

naturally letting the temperature return to the room environment. Maximum

temperatures for the polymers were based off of Table 1. Constants of the vacuum oven

process were a vacuum of -15-25kPa and the melting temperature of each polymer.

Once all polymers were removed from the vacuum oven, they were immediately placed

into a -209C environment for 1-24 hours, then returned to room temperature.

When prepared for the vacuum oven, the molds were cleaned with DCM,

ethanol, and water bath for 3 minutes per bath. If previous samples remained on the

molds, the molds were sonicated in the previous baths for 1-2 minutes. One mold

contained 100-200pg of a polymer aside from the microparticle-sized polymers, which

was mixed with a 80:20 water ratio. Parts of PLGA were processed for microparticles,
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some was applied directly, while the rest was prepared with silica solvent at 0.10mg with

50:50 ratio of water-ethanol at 100-150p1l. Both polymer sets had silicone gasket to

contain the polymer on the mold.

For use with PGA in the vacuum oven, 100-150pl TCM was placed into the mold

cavities before the PGA was applied. There were two methods of implementing the TCM

into the molds. One was adding the TCM before the PGA was applied, and allow it to

dissolve by 30-60 minutes. The second method was applying the TCM in tangent with

the PGA, and allowing the TCM to dissolve over the same 30-60 minutes. The final step

placed the PGA substrate into the vacuum oven.

2.2.3 Imaging

Two different methods of visually inspecting the polymer substrate microneedle

designs were used. One was a visual wavelength Olympus BX50 microscope with

lenses from 2-20x zoom with a DXM1200 Nikon digital camera using the ACT-1

software for the visual spectrum. The other images were taken by the Phillips XL30

Scanning Electrical Microscope (SEM) for higher quality resolutions.

For SEM images, the samples were held at a 67-133kP environment of nitrogen

with no Pressure Limited Apparatus (PLA) on a 10001pm area. There were two electron

resolutions from the microscope, one was with the Gaseous Secondary Electron (GSE),

while the other using the full Everhard-Thornley high vacuum secondary electron (SE).

Samples were calibrated in the nitrogen environment using a chamber camera detector

(CCD). All of the polymers substrates that were imaged with the SE detector were

prepared beforehand with a 20nm surface of gold. Electron beams were held at 3-5kV

for the GSE detector and 12-15kV frequency for the SE detector. The software used

with the SEM was from EMLab P&K.
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2.2.4 Skin Insertion

The most ideal microneedle substrates were tested on the skin of mice ears. The

ears of the mice were removed and prepared with a 30 mL PVA solution to prevent

degradation of the skin. After 30-60 minutes and having the PVA solution removed by

Kimwipes, a proper substrate was selected for applying to the skin. The substrate was

held firmly by the hand for 5 minutes and then the force from the hand was slowly

relaxed. The substrate was then removed to allow 30pl of a blue dye onto the ear that

was punctured by the substrate area. Another 5 minutes were allowed for the dye to

seep into the skin, and then the dye was wiped off with Kimwipes, then cleaned with

water and dried again. After this process, the skin and substrate were inspected in the

optical microscope described in method 2.2.3. If the sample was kept for further study, it

was placed in a no light 5°C environment with water applied on the ear.
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RESULTS 3.0

3.1 Mold Applications

Originally, the aluminum plate had two molds for forming different substrates.

Initially, both molds were used in the melt press, but the force exerted on the sheets

caused the rubber and Teflon gaskets to warp and allowed the PLGA to move beyond

the mold design itself. Since the second mold was at one of the corners of the aluminum

plate, part of the substrate would flow out of the mold and gasket. This test was

repeated with gaskets of Teflon and steel to prevent any movement outside of the mold,

and the same results occurred.

In the case of the PDMS molds with the silicone gaskets, the smaller plates,

which had little surface area for the gasket, caused some of the PLGA to spill off the

PDMS in the vacuum oven. After the initial PDMS substrates were constructed, most of

the samples were damaged by removal from the molds. It did not matter whether the

PLGA was removed from the PDMS molds, which also happened to the silicone molds,

preventing them from being used. The largest results of damage were either from

tearing the substrate off the mold and leaving the microneedles embedded in the mold

or from tearing pieces of the PDMS off the mold itself. PLGA and PGA were prone to

cause this effect on the PDMS molds. All molds were held in a vacuum at -50kPa. J.H.

Park had similar results, and suggested a vacuum at -70kPa [9]. After the vacuum oven

process, only DCM and VWR tape were able to clean the molds for further use. After

several uses of a particular mold, the PDMS molds would become brittle and break,

requiring delicate removal of the substrates from the molds.

PLGA and PGA were the most prolific substrate arrays that were created on the

PDMS molds. Conical dimensions for microneedles at 400pm and 600pm prevented

damage from either the mold or the substrate. Nevertheless, there were some PLGA or
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PGA microneedles that were unable to be removed from the molds, or the substrates

were unsuccessful in completing the microneedle cavities in the molds. Instead, when

these samples were removed from the molds, they revealed mounds of resin over the

array impressions. A third case of the PLGA or PGA substrates tore off pieces of the

mold during removal.

substrate

....................
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3.2 Substrates

For all of the polymers that were tested with the vacuum oven in 2.2.1 was the

most successful method that was able to produce consistent uniform substrates.

However, depending on the vacuum status that was held for the formation of the

substrates, some of the polymer formed void pockets during the heating process, which

was removing the remaining air in the vacuum oven. These pockets tended to be within

the substrate, or within the cavities, which prevented formation of the microneedles.

Figure 4 shows the dimensions of the pockets that formed within the substrates.

. ... ..... .. .. ... .......
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PLGA was the only polymer that went through all of the methods explained in 2.2.

With the PLGA substrates formed from the melt press, no tool could remove the PLGA

from the aluminum mold. When a tool was used, the entire PLGA substrate become

damaged. Various techniques were applied on the aluminum-PLGA substrate for

removal: sonication at 30C for 20-30 minutes, cleaning the aluminum-PLGA substrate

with Si soap 1g/100ml concentration in water during sonication, placement under a

vacuum oven to the glass transition temperature, and then freezing at -20'C for 1-24

hours. None of these attempts separated the substrate from the mold more than using

the original PLGA made right after the melt press. All of the PLGA microparticles that

were fabricated in method 2.1.3 produced flakes. Applying the microparticles to the

PDMS molds with a gasket was difficult regardless of the apparatus being used. The

microparticles did not fill the cavities in the mold or up to the layer of the gasket.

However, the second batch of PLGA microparticles, made with an 80:20 ratio with water



2009/05/08

during the filtering process, could easily being added onto the molds. This concentration

allowed the PLGA to flow into the cavities, but the concentration was not enough to fill

an entire mold.

PGA with TCM allowed the polymer to form directly into the mold cavities as

opposed to PGA alone. PGA alone tended to leave the microneedles within the mold,

rather than keeping them on the substrate itself. The time duration of applying the DCM

with the PGA did not prevent the formation of the microneedles, but instead produced

consistent arrays. Under Figure 14, the PGA was uniform, aside from the perimeter

ends.

Both PMMA and PS were not successful in making microneedles consistently.

While PMMA with the PDMS mold formed microneedles in the vacuum oven process

2.2.1, the array was more brittle than the PLGA and PGA substrates at the same

constraints of method. PMMA could not be removed from the molds without damaging

the microneedles. In addition, the PMMA sample was damaged under the imaging

process, despite it being operated as delicate as the other substrate microneedle

arrays. PS under the vacuum oven method 2.2.1 was unable to fill the microneedle

cavities of the PDMS molds and could not make a stable substrate; rather the PS

samples clearly were not melted uniformly into the molds, even though the PS was

melted to its melting temperature and held there at an extended period of time, which

made no difference.

3.3 Microneedles

With the PLGA, PMMA and PGA substrates testing in a vacuum oven, the

microneedles were either embedded within the mold cavities, or parts of microneedles

were sheered off at the end from their intended height of 400-600pm. In the case of the

microneedles formed in the PDMS molds, PLGA, PMMA and PGA all had some
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examples of separation of the microneedles from the substrates during removal. DCM,

ethanol, acetone, and water were used for used for removal of the residual microneedle

fragments from the PDMS mold, but were not effective even after 24 hours of

dissolving. These substrates which did not have their microneedles instead had only

mound shaped surfaces on the same array area. However, if the molds were used

again under a vacuum oven trial with their previous polymer substrate, the existing

microneedles were able to adhere to the new substrate. In addition, VWR tape to

removed the microneedles from the cavities with ease.

With the substrates that maintained their microneedles aside from those which

were sheered, there were no remaining polymers within the mold cavities. Furthermore,

there was no uniform length of the microneedles which were damaged within the same

substrate. Instead, the damaged microneedles broke in varied lengths as illustrated in

Figure 5.

rigure o I rM microneeuies unuer
formed and sheered microneedles.

. .... .. .... .
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The optical microscope displayed the pure PLGA and PLGA-silica

microneeedles in Figure 6,, Figure 11 and Figure 12. PLGA microneedles created by

the silica appeared in different colors in Figure 8. Two PLGA-silica samples were

created under the vacuum oven process, and both created needles in different color

bands. One sample contained bands of brown and orange uniformly across the

substrate array while the second set had a light silver blue color in addition to the same

brown band as illustrated in Figure 9. Despite the different color bands, both PLGA silica

microneedles were created with the sample amount of silica; the only difference was in

their time durations. In spite of the silica particles in the PLGA, the microneeldes were

still able to bend as pure PLGA microneedles, aside from buckling at 400pm for the

600pm microneedles in Figure 12.

20UM
Figure 6 I PLGA microneedle at
conical PDMS mold

1 point after removal from the first

........ -'!!! - - - M - - -- St - . - - -



2009/05/08

rigure I r Lun IrrIIIurle u I In iIUUla tiLhy aILtr rtiIuvtu IrurI
mold with nonuniform bending at the apexes

Figure 8 L wit 0.10pm si ica. The entire array consisted of
repeating bands starting along the microneedles

...............
................................. ..
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The SEM revealed finer details of the microneedles after they completed the

vacuum oven process. With the PLGA, the microneedles were around the same 500pm

height. Shorter needles were around the edges of the arrays. PGA microneedles tended

to be truncated around 500-550pm for the 600pm needles with the tips being around a

15-25pm radius. Parts of the PGA surface area were not completed as mentioned in

Figure 4. With the substrates that were produced in a vacuum oven leaving void

pockets, the areas of the pockets were 50-75pm radii. Neither PGA and PLGA forms

formed precise conical dimensions; the largest volume area of the microneedle tended

to be at a 400pm height, where the apex area had different dimensions. This was the

cause with PLGA as well, illustrated with Figure 10. This figure shows a diameter of the

PGA at 89.1 pm at approximate 200pm height for a 400pm needle.
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microneedles after removal from a PDMS mold

The PLGA-silica microneedles had characteristics of both the pure PLGA and the

PGA microneedles. In Figure 12, the microneedles tended to be bent, truncated, or a

combination of both; while in the case of the non-silica PLGA, microneedles tended to

be uniformly bent as illustrated in Figure 7.

PGA microneeldes formed from the PDMS molds in the vacuum oven of 2.2.2

were consistent of formation, regardless of the mold dimensions. However, PGA was

prone to void pockets and sheered needles like PLGA microneedles. The difference was

that PGA never contained any bent microneedles.

Nw___
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Figure 14 1 PiA array under
processed in a vacuum oven

PLGA and PGA were the only substrate microneedle arrays used for skin

insertion. For the PLGA needles that were unable to pierce the skin, the needles either

_ ____ ___



2009/05/08

retained original dimensions or became bent. One PLGA microneedle array could not

puncture more than 1-6 holes on the skin, with the same finger-hand force as PGA,

even though the array had a total of 48 microneedles. Granted, not all of these 48

microneedles were complete, as some were unformed, torn, or bent as revealed by

SEM imaging, but there were more microneedles which were in the proper dimensions

to puncture the skin. In the case of the PGA, some of the needles would be imbedded

within the skin, seen in Figure 15 and Figure 16. When the substrate array was

removed from the skin, truncated needles around 400pm in length were left, illustrated

in Figure 17. Further, Figure 16 shows that the dye is around the truncated microneedle

end and around holes in other areas.

rigure I a I iviuusbeu v uii

PGA array and dyed

. ...................................................
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Figure 16 Mouse ear under 4x resol
microneedles had remained in the ear
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CONCLUSIONS & DISCUSSION 4.0

4. 1 Conclusions

PDMS was the most successful mold, being able to produce the most amount of

substrate arrays, in addition to the most type of polymer use. One of the benefits of the

PDMS mold was its ability to allow the mold to be bent or torqued at a light enough

force to maintain the mold's form, but aid in removal of the substrate from the mold.

Aluminum nor any other metal could only require larger forces which could destroy the

substrate before removal. This was also one of the positive qualities of the silicone

gaskets as well for similar force removal. However, over use caused the same mold to

eventually degrade, causing the mold to become brittle, which either broke the mold

itself or the polymer substrate.

Microneedles made through the PDMS molds were more consistent in formation

of substrate arrays, producing PLGA, PMMA, and PGA microneedles. Both PLGA and

PMMA were able to form microneedles on PDMS molds. However, when PLGA

substrates were removed off the PDMS molds, bent needles ensued. In the case of

PMMA, the microneedles sheered off at the end to a 25pm radius. Regardless of the

mold material, it seemed that an ideal force was needed for removal of the PLGA and

PMMA for maintaining the microneedle surface on the substrate itself. With the PLGA

on PDMS, it did not matter what type of force was applied on the substrate; the

microneedles would still be torn off the substrate. While the silica solution that was

applied to PLGA did increase the resilience of the PLGA, it became too brittle in parts,

and the modulus was not high enough to pierce skin. The bands of the PLGA-silica

seem to illustrate two types of bands: a pure PLGA, in addition to the PLGA-silica

composite. Which describes why the PLGA-silica microneedles would become bent and

truncated.
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Aluminum was not entirely able to produce substrate arrays with microneedles,

even though it had the same dimensions as the PDMS molds produced by Vax Design.

Several methods of encouraging the PLGA substrates to be removed off the aluminum

mold did not warrant enough use, compared to the PDMS molds. Since none of the

removal techniques did not allow ease of the melt press process required. A different

approach needed to be used. If a direct force from the melt press was exerted on only

the mold array, the melt press would have produced similar results as the work from

Prausnitz [2]. As the PLGA was only removable brittle shards, less pressure or

temperature would produce similar arrays like the PDMS molds. The melt press

stainless steel sheets had a larger surface area, 0.30m2, than the aluminum mold,

0.0026m2. This prevented all of the force from the melt press being exerted onto the

mold. All of the PLGA samples formed on aluminum mold consistently produced solid

state substrates above the glass transition temperature that flowed beyond the mold

itself. Aluminum as a mold for PLGA would not be suitable for use. If aluminum was to

be a candidate of a mold for microneedles, then it would need an easier removal

technique for the substrates. For the use of melt pressing for microneedle substrate

creation, a force would need to be on the surface area of the mold or substrate itself.

Even if the force would be exerted on the substrate, enough of the substrate material

above the mold needs to be accessible for removal, if polymer substrates were to be

used in a mass production.

4.2 Discussion

In respect to the microparticle PLGA, an additional semicrystalline could aid the

physical structure of the needles with a higher modulus. While silica was able to due

such a process, it was not able to completely mix with the PLGA, causing the bands of

the microneedles. A revision of the PLGA a network of a amorphous state could
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maintain microneedles strength, but also still have flexibility to prevent the needles

being brittle. Only a 0.10pm microparticle batch of silica was applied on the PLGA.

Other monocular sizes of the silica would aid the PLGA. With the PLGA that remained in

PDMS cavities after removal, a second vacuum oven process would be ideal, as it

creates a multi-structured substrate to microneedle ratio. This process could then be

attempted for cargo ejection off the substrate and past the epidermis similar as the

examples of the PGA microneedles being applied on the skin. Since the microneedles

are biodegradable, less effort of the patient would still be a possibility.

In the end, the PLGA substrates were consistent with their microneedles bending

before being removed; while the PGA substrates were steady in the formation of the

microneedles with different PDMS molds by heights and radii. Both polymers still

produced nonuniform hypotenuses, suggesting that the vacuum oven process was

preventing the polymers to fill the PDMS mold cavities. Even though various parameters

of time and temperature were applied on the vacuum oven process, the PLGA and PGA

microneedles still were not able to complete the intended cavities. This also describes

the sheering of the microneedles with radii less than 30pm, as they were produced in a

different way than the truncated microneedles around 50-100 pm for the 400pm needles,

and 100-150pm for the 600pm needles. Thus a uniform process with the vacuum oven

would help forming uniform microneedles, as the substrate microneedle voids are

sporadic.
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