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ABSTRACT

Background: The commoditization of high-throughput gene expression sequencing and microarrays
has led to a proliferation in both the amount of genomic and clinical data that is available.
Descriptive textual information deposited with gene expression data in the Gene Expression
Omnibus (GEO) is an underutilized resource because the textual information is unstructured and
difficult to query. Rendering this information in a structuredformat utilizing standard medical terms
wouldfacilitate better searching and data reuse. Such a procedure would significantly increase the
clinical utility of biomedical data repositories. Methods: The thesis is divided into two sections. The
first section compares how wellfour medical terminologies were able to represent textual
information deposited in GEO. The second section implements free-text search andfaceted search
and evaluates how well they are able to answer clinical queries with varying levels of complexity.
Part I: 120 samples were randomly extractedfrom samples deposited in the GEO database from six
clinical domains-breast cancer, colon cancer, rheumatoid arthritis (RA), systemic lupus
erythematosus (SLE), type I diabetes mellitus (IDDM), and asthma. These samples were previously
annotated manually and structured textual information was obtained in a tag:value format. Data was
mapped to four different controlled terminologies: NCI Thesaurus, MeSH, SNOMED-CT, and ICD-
10. The samples were assigned a score on a three-point scale that was based on how well the
terminology was able to represent descriptive textual information. Part II: Faceted andfree-text
search tools were implemented, with 300 GEO samples includedfor querying. Eight natural
language search questions were selected randomly from scientific journals. Academic researchers
were recruited and asked to use the faceted andfree-text search tools to locate samples matching the
question criteria. Precision, recall, F-score, and search time were compared and analyzed for both
free-text and faceted search. Results: The results show that the NCI Thesaurus consistently ranked
as the most comprehensive terminology across all domains while ICD-10 consistently ranked as the
least comprehensive. Using NCI Thesaurus to augment the faceted search tool, each researcher was
able to reach 100% precision and recall (F-score 1.0) for each of the eight search questions. Using

free-text search, test users averaged 22.8% precision, 60.7% recall, and an F-score of 0.282. The
mean search time per question using faceted search and free-text search were 116.7 seconds, and
138.4 seconds, respectively. The difference between search time was not statistically significant
(p=0. 734). However, paired t-test analysis showed a statistically signficant difference between the
two search strategies with respect to precision (p=O.001), recall (p=O.042), and F-score (p<0. 001).
Conclusion: This work demonstrates that biomedical terms included in a gene expression database
can be adequately expressed using the NCI Thesaurus. It also shows that faceted searching using a
controlled terminology is superior to conventionalfree-text searching when answering queries of
varying levels of complexity.

Thesis Supervisor: Ronilda Lacson, MD, PhD
Title: Assistant Professor of Computer Science and Engineering & Health Sciences and
Technology
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Introduction

Several methods have been employed to better organize and extract relevant textual

information from vast databases on demand. These include natural language processing, manual

annotation, faceted categorization, and semantic web technologies. All of these information-

structuring and information-extraction techniques work together to accomplish the task of

improving accessibility to large amounts of data.

Recognizing that biological information will primarily be consumed and deposited

through the web and that finding relevant information will become more important than ever,

this paper evaluates existing biomedical terminologies' ability to express biomedical terms inside

gene expression repositories and identifies an optimal strategy to search through terminology-

compliant, annotated samples.

Specific Aims

This paper aims to accomplish three tasks:

1. To evaluate the ability of various established medical terminologies to express

and capture the clinical textual content deposited within a gene expression

database, the Gene Expression Omnibus (GEO).

2. To build web-based, faceted and free-text search tools for locating annotated

biological samples deposited within the Gene Expression Omnibus.

3. To compare faceted search to traditional free-text search in identifying annotated

biological samples.



Chapter 1: Comparative Analysis of Four Controlled

Medical Terminologies for Expressing Biomedical Data in a

Gene Expression Database

Background

1.1 Microarray Technology

The completion of the thirteen-year, $4.3 billion Human Genome Project in 2003 1,2 was

a seminal moment in biology. Knowing the base sequences that make up an entire human being

forms the foundation upon which all other genomic discoveries are based. However, raw

sequences can be rendered more informative, and subsequent areas of research are well

underway that build upon what the Human Genome Project made possible. Such research areas

include identifying gene function, investigating protein-protein interaction, and correlating single

nucleotide polymorphisms (SNP) with disease. 2 These research fields work towards fully

describing the steps in the pathway from nucleic acid sequences to physical characteristics that

we can observe clinically.

One of the key tools involved in illuminating the genotype to phenotype pathway are

microarrays, a technology that has revolutionized genomic research. In fact, the largest source of

genomic data currently comes from analyzing microarrays. 3 The now routine process of assaying

large numbers of genes simultaneously has reduced the time and cost that it takes to decipher



gene function. Concurrent with the growth in microarray adoption is the surge in the amount of

gene expression data that is available.

1.2 Gene Expression Databases

In the field of genomics, centralized, online gene expression databases have been created

in an effort to organize the vast amounts of data being generated. Further encouraging the

submission of expression data is the fact that most journals mandate that gene expression data be

submitted as a prerequisite for publication. The primary aim of these databases is to realize the

general benefits of aggregating data in a centralized place-increased visibility, data sharing, and

data mining.

Over seventy-five gene expression databases or tools for analyzing them are currently

available online.4 Selected examples include: ArrayExpress, Center for Information Biology

Gene Expression Database (CIBEX), Gene Expression Omnibus (GEO), A Database Of

Heterogenous Gene Expression Data Based on A Consistent Gene Nomenclature (CleanEx),

Database for Annotation, Visualization, and Integrated Discovery (DAVID), Database of Gene

Expression in Normal Adult Human Tissues (GeneNote), Gene Expression Database (GXA), the

Stanford Tissue Microarray Database (TMAD), OncoMine, and the Reference Database For

Human Gene Expression Analysis (RefExA).

Nevertheless, in practice the Microarray Gene Expression Data (MGED) Society

recommends the following three repositories for storing gene expression data: ArrayExpress,

CIBEX, and GEO. ArrayExpress was created by the European Bioinformatics Institute (EBI)

and went online in 2002. ArrayExpress has the following three core features: a web-based



interface for uploading gene expression data, a query tool for finding normalized and curated

gene expression data, and a data visualization and analysis tool.5 ArrayExpress allows users to

query the database by species, author, platform, gene attributes, gene names, gene function, gene

classification, and sample properties.5

CIBEX was developed in an effort to collect expression data from researchers in mainly

Asian countries. Like ArrayExpress, CIBEX is standards-compliant and allows researchers to

upload expression data as well as to query and visualize it. One can filter CIBEX samples

according to experimental and biological conditions, authors, gene names, and even according to

the hardware platform used. 6 A unique feature of CIBEX is its spot-based visual viewer. When

a user searches for an experimental or biological condition, matching spot images for the

condition are displayed. The user can then click on the spot for detailed information. 6

The largest gene expression database,'' 8 the Gene Expression Omnibus (GEO), is run by

the National Cancer and Blood Institute (NCBI) and serves as a "public repository that archives

and freely distributes microarray, next-generation sequencing, and other forms of high-

throughput functional genomic data submitted by the scientific community." 9 GEO has

undoubtedly been a valuable resource for bench researchers looking for gene expression data.

All the data inside GEO can be divided into two general categories: gene expression

measurements and the metadata about each biological sample. 8 The NCBI recognizes the value

of collecting as much metadata about GEO's biological samples as possible because such

information is needed in order to effectively search for and compare samples with each other.

As a result, the NCBI has organized GEO's samples into logical groups of varying

granularity called GEO Series (GSE) and GEO Datasets (GDS). GEO Series are "a set of related

Samples considered to be part of a study, and describes the overall study aim and design." GEO



Datasets are both automatically and manually curated. They are a "collection of consistently

processed, experimentally related Sample records, summarized and categorized according to

experimental variables." 10 Most of these experimental variables relate to gene expression

measurements or are characteristics of the experiment that was performed.

The next most-granular grouping of GEO samples that the NCBI provides is a unit called

a GEO Series. GEO Series refers to GEO samples that all come from one particular study. GEO

Series and GEO Samples (GSM) are the most suitable places to look for clinical metadata about

biological specimens. GEO Series, because they consist of samples taken from the same study,

typically contains descriptive information that applies to all samples. A specific GEO Series has

two fields of interest: the study title and the study summary. The study title is the title of the

journal article that the samples were used in. If the samples were not used in a study for

publication, then the title field's value is provided by the person who uploaded the samples to

GEO or assigned by NCBI staff. The study summary is typically the abstract from the published

study that referenced the samples. In some cases, however, the summary is not the abstract from

the published study but was likely written by someone associated with the original experiment

when uploading samples to GEO.

The final and most granular organizational unit in GEO is the individual GEO Sample

(GSM) itself. Samples consist of a "description of the biological material and the experimental

protocols to which it was subjected, and ... may hold very large volumes of text to allow

elaborate descriptions of the biological source..." 10 Since the sample is the lowest level view in

GEO, it follows that most descriptive information for a sample would be included here. This is

in fact only partly true. Browsing through the GEO database, one will notice that descriptive

information is not uniformly deposited. On the GEO website, in their instructions to researchers



who plan to upload samples, GEO advises that descriptive information about a particular sample

be deposited in a "characteristics" field, preferably in a tag: value format. However, this is not

required.

At present, when submitting experimental data to GEO, the only requirement is that

researchers adhere to the Minimum Information About A Microarray Experiment (MIAME)

standard. 3 As helpful as the MIAME standard has been in standardizing the representation of

technical and numeric data about microarray experiments, this standard was not designed to

accommodate the clinical features that are known about biological samples.

The end result is that for researchers who want to perform research based .on the clinical

characteristics of GEO's biological samples, locating relevant samples using clinical metadata is

problematic. Analyzing descriptive information deposited in GEO is not straightforward, and it

is not feasible to filter the samples based on clinical and demographic criteria. Examples of such

clinical metadata include what disease state a sample came from, disease severity, and what

treatment was performed. Demographic features include a sample donor's race, gender, and age.

However, no tools exist to effectively display these data. Currently, GEO Datasets offer two

summary views of the samples they contain-an experiment-centered view and a gene-centered

view.'0 No option exists to display samples based on clinical information at the sample level.

The three primary gene expression databases-ArrayExpress, CIBEX, and GEO-are all

well designed for locating and visualizing gene expression data. However, finding clinically-

oriented, textual information deposited in these repositories remains difficult. The following two

steps are key to addressing this problem and will be addressed in this thesis: 1) identifying a

suitable terminology that can express clinical terms used in gene expression experiments, and 2)



devising a way to efficiently and accurately search for descriptive terms in a large database like

GEO.

1.3 Linking Genomic Data to Clinical Data

Taking descriptive information used within a gene expression database such as GEO and

mapping them to existing medical terminologies is a key step towards being able to query the

data efficiently. Doing this would lay the groundwork for various kinds of search queries,

whether that be free-text, faceted searching, or semantic-based searching-all of which are

useful for doing translational research.

The Stanford Biomedical Informatics group used a controlled terminology to standardize

the expression of clinical terms within the Stanford Tissue Microarray Database (TMAD), and

serves as a model for mapping the clinical terms inside GEO to an existing medical terminology.

In the TMAD, the Stanford group had an annotated, cancer-specific tissue microarray

database. Along with the raw expression data, each tissue sample had a standard set of

histopathological and clinical criteria describing it. Each sample's annotations contained the

organ from which the tissue came from, the primary diagnosis, and up to four sub-diagnoses

(subdiagnoses 1-4). For example, one tissue specimen might be annotated with breast,

carcinoma ductal, and in situ. This pattern indicates that the organ is breast, primary diagnosis is

ductal carcinoma, and the subdiagnosis is in situ. 1 The problem with this arrangement was that

the terms "breast," "carcinoma ductal", and "in situ" were not standardized. Because of this, the

group realized that a common category of questions such as "find all tissue samples that have a

particular diagnosis" could not be answered because the words used to describe disease states



and diagnoses were heterogenous."I In addition, the lack of a backing ontology also hindered

integrating the TMAD with other genomic repositories.

The Stanford group solved these problems by parsing all of the histopathological and

clinical terms used in TMAD, generating all possible permutations, (over one million), and

running their own heuristics to lower the number of permutations to twenty-thousand. Each of

these terms was then mapped to the NCI Thesaurus with an 86% success rate."1

Because the tissue microarray database contains mostly samples derived from cancer

patients or animal models of cancer,"1 the NCI Thesaurus was a logical controlled terminology to

choose. The Gene Expression Omnibus, however, holds samples from the full spectrum of

biology. Identifying the most appropriate controlled terminology is not as straightforward. After

explaining differences between terminologies, thesauri, and ontologies, the relative strengths and

weaknesses of several well-known, controlled medical terminologies' ability to express

descriptive information inside microarray experiments will be discussed.



1.4 Terminologies versus Thesauri versus Ontologies

Although the terms "ontology," "thesaurus", "structured vocabulary", and "controlled

terminology" are often interchanged, they are separate entities. Clear-cut, universally accepted

definitions, however, are hard to find. As defined by Rosenfeld and Morville, a controlled

vocabulary is "any defined subset of natural language." 12 Also known as structured vocabulary,

controlled terminology or structured terminology, a controlled terminology is a standard group of

words, usually agreed upon by consensus that are to be used to describe a domain of knowledge.

A thesaurus encompasses the definition of a controlled terminology and is defined as "a

controlled vocabulary in which equivalence, hierarchical, and associative relationships are

defined for purposes of improved retrieval."12 Equivalence is the formal term for synonym

support that most people associate with thesauri. Hierarchical relationships in thesauri allow

terms to be grouped into categories and subcategories, and associative relationships allows

connections between terms that are not handled by equivalence and hierarchical relationships. 12

The most widely cited definition of an ontology is given by McGuiness and Noy: "a

formal explicit description of concepts in a domain of discourse." 13 The line between an

ontology and a thesaurus is less clear. An ontology subsumes the properties of a thesaurus, but in

addition to equivalence, hierarchies, and associative relationships, ontologies add more

relationships and also describe more comprehensive sets of attributes for each concept. Usually,

an ontology is expressed in machine-computable language such as the resource description

framework (RDF) or the web ontology language (OWL).14 Ontologies can also be differentiated

from thesauri by their broader range of applications: 1) to share common understanding of the



structure of information among people or software agents 2) to enable reuse of domain

knowledge 3) to make domain assumptions explicit 4) to separate domain knowledge from

operational knowledge 5) to analyze domain knowledge. 13 As one can see, terminologies,

thesauri, and ontologies represent a spectrum of knowledge sources that share overlapping

properties. Figure 1 helps to clarify the relationship of these three knowledge sources. 12, 15

Figure 1: Relationship of Terminologies, Thesauri, and Ontologies

Terminologies Thesauri Ontologies

Simpl Conept ReIationiships

Not machine-computable Machine-computable
Single purpose Multi-purpose

1.5 Controlled Medical Terminologies

The value of controlled terminologies, thesauri, and ontologies in biomedical research

and clinical medicine have been recognized for decades. 16 Controlled terminologies can serve as

the foundational layer underpinning a multitude of purposes, including capturing

clinical/biologic findings, natural language processing, indexing medical records, indexing

medical literature, and representing medical knowledge.' 7

Presently, over 100 controlled medical terminologies are in use,18 but far fewer are

widely used and established. Unfortunately, not all terminologies are created equal. Several

evaluation studies have established that although one might assume that most controlled



terminologies can be used for multiple purposes, this is not the case. 17 Therefore, picking the

right terminology for a given situation is a non-trivial task. Further complicating matters is the

fact that many controlled medical terminologies exhibit flaws in their logical consistency or

adherence to accepted design principles when examined under close scrutiny.19

In light of this heterogeneity, Cimino has synthesized a list of best practices to consider

when building and evaluating controlled terminologies. Quality controlled terminologies must

be multipurpose, capture the full discourse of its intended domain, be based on concepts that are

uniquely identifiable, display concept permanence, have a hierarchical arrangement, have formal

definitions, support viewing concepts at multiple granularities, and not recognize the terms "not

elsewhere classified" or "not otherwise specified."17 Creating one all-encompassing controlled

biomedical terminology still remains one of the grand challenges facing biomedical informatics

today, 16 years after Sitting first articulated it in 1994.0

Four of the most widespread medical terminologies are the NCI Thesaurus, SNOMED-

CT, MeSH, and ICD- 10. NCI Thesaurus is included for evaluation because of its stated goal of

unifying molecular and clinical information into a single biomedical informatics framework21 is

closest in line with the aims of this research. SNOMED-CT is under evaluation because it is the

largest clinical medical vocabulary currently in use. 2 MeSH is included because of its ubiquity

in biomedical research and because it is used by some of GEO's sample query tools. Last, ICD-

10 is under consideration because it is the oldest controlled terminology and arguably the most

popular.



NCI Thesaurus

The National Cancer Institute (NCI) Thesaurus is a controlled terminology that is

designed to cover "vocabulary for clinical care, translational and basic research, and public

information and administrative activities." Initiated in 1997, the thesaurus contains vocabulary

for over 10,000 cancers and 8,000 therapies for cancer 23 and over 60,000 concepts. 24 Its

designers list three primary goals for the thesaurus: 1) provide an up-to-date cancer terminology

based on science 2) use best practices to formally connect concepts to each other in ways that

support automated reasoning 3) include the newest concepts and relationships from clinical trials

and bench research.19

Despite its name, NCI Thesaurus functions essentially as an ontology, as well as a

controlled terminology and a thesaurus.19 Further, while the focus is on the cancer domain, the

ontology contains concepts for far more than just cancer. The ontology is composed of three

fundamental units: concepts, kinds, and roles. A kind in the NCI Thesaurus is a set of concepts

much like an abstract superclass. Examples of kinds are: Anatomy (4,320 concepts), Biological

Processes, Chemicals and Drugs (3,351 concepts), Genes, Findings and Disorders (10,000

concepts) Techniques, Anatomy, and Diagnostic and Prognostic Factors.is 25 Concepts are

atomic terms that express a discrete idea. Concepts can contain annotations such as synonyms, a

preferred name, references to external resources, and a standard definition.26 Roles signify the

relationship between concepts, such as isa and has a relationships. 25 The thesaurus contains

twenty kinds and fifty roles. NCI Thesaurus is written in OWL-Lite, which makes it amenable to

machine-computation and semantic web compliant.



SNOMED-CT

Like NCI Thesaurus, the Systematized Nomenclature of Medicine - Clinical Terms

(SNOMED-CT) is an ontology as well as a controlled terminology. It was created to capture the

language of clinical medicine, including laboratory result contents, procedures, anatomy, and

diagnosis. 27 SNOMED-CT is actually a product of two controlled terminologies, SNOMED-RT

and Clinical Terms V3, that were merged together beginning in 1999.28 SNOMED-RT's origin

can be traced back to the New York Academy of Medicine meeting in 1928 when it was agreed

that diagnosis would become multiaxial; diagnoses would henceforth consist of an anatomic site

and a pathologic process. For the 35 years prior to the merger with Clinical Terms, SNOMED

was maintained by the College of American Pathologists while Clinical Terms was maintained

by the United Kingdom's National Health Service (NHS).' 8

SNOMED-CT's core structure is like most ontologies, even if the names of the structures

go by different names. The base units of SNOMED-CT are concepts, descriptions, and

relationships. SNOMED-CT contains over 300,000 concepts, 450,000 descriptions 2 9 and exactly

four categories of relationships.

According to the official documentation, a concept is "a clinical meaning identified by a

unique numeric identifier (ConceptID) that never changes." A description is a term or name that

provides more information about a concept. Multiple terms or names can be assigned to each

concept. Relationships join concepts together, and the four types of relationships in SNOMED-

CT are defining, qualifying, historical, and additional relationships. 30 Most relationships in

SNOMED-CT are defining relationships, which includes the "is-a" superclass to subclass



hierarchy. Key base concepts in the root hierarchy are Clinical finding, Procedure, Observable

Entity, Body structure, Organism, Substance, Specimen, Physical object, and Event. 30

Like the NCI Thesaurus, SNOMED-CT supports and encourages compound term

composition in order to express more complex concepts. This capability has been shown to

make a significant difference in real-world situations. The Mayo Clinic found that SNOMED-

CT could represent their master index of common clinical conditions with only 51% sensitivity

without compound term composition but with 92% sensitivity using compound term

composition. 28

Compared to NCI Thesaurus, SNOMED-CT focuses more on the medical domain than

on the molecular domain. It aims to be a "comprehensive clinical terminology that provides

clinical content and expressivity for clinical documentation and reporting." 30 While SNOMED-

CT is written in a description logic, it technically machine-computable, the description logic is

non-standard for application to the semantic web. Nevertheless, SNOMED-CT is viewed

favorably by government agencies such as the National Committee for Vital and Health Statistics

(NCVHS). 18

MeSH

Medical Subject Headings (MeSH) is managed by the National Library of Medicine and

backs the popular MEDLINE/PubMed database. This year marks the 50th anniversary of this

landmark controlled terminology. It was created in 1960 to replace Index Medicus, which had

served as the major index for medical journals since 1879.31 At the time, MeSH was unlike any

other bibliographic resource because the NLM intended to make itself the "single subject



authority ... for both books and periodical articles ... We take the view that subject cataloging

and periodical indexing . .. identical processes." 32

The first edition of MeSH was strictly a controlled terminology. It was organized into

hierarchies and had 4,300 descriptors and 67 topical subheadings,33 but from its inception MeSH

was designed to accommodate new descriptors as a result of scientific discovery as well as to

rearrange its hierarchies according to the usage patterns of researchers.3 3 Over the last fifty years

as the field of ontologies evolved, MeSH has changed its fundamental structure as well from

being term-driven to being concept-driven.32 MeSH developers decided to make this change

because they realized MeSH had difficulty expressing relationships between terms and could not

attach multiple attributes (definitions) to terms. 34 This transition has resulted in confusion

because the same component names were used in the "modem" version of MeSH as in the earlier

versions, but with different meanings.

The term-centric version of MeSH only had two core components: descriptors and entry

terms. The MeSH descriptor is synonymous with the idea of concepts in the NCI Thesaurus and

SNOMED-CT. It is a discrete unit of meaning. For example, "Exercise" is an example of a

descriptor. MeSH entry terms are just synonyms of descriptors. They are alternate ways of

conveying the same meaning as the descriptor.

The concept-driven version of MeSH, created in 2000, introduced the entities MeSH

"concept" and MeSH "descriptor classes." A descriptor class is a group of related concepts, and

a concept is a group of related terms.34 A descriptor is no longer the base unit like it was in the

term-centric MeSH. This role is assumed by the concept, with descriptors being reserved for

more high-level roles. All of this reorganization was done to make MeSH less redundant, more



flexible, and maintainable. In all there are currently 25,186 descriptors and 160,000 entry terms

in the 2010 edition of MeSH.

To the average user, however, these changes are not paramount. MeSH users will

interact with two main parts of MeSH: the subject headings themselves and their subheadings

(qualifiers). Subject headings are similar to the idea of kinds in the NCI Thesaurus. Sixteen top-

level examples exist, and selected examples are Organisms, Diseases, Chemicals and Drugs, and

Phenomena and Processes. 35 For example, one MeSH subject heading is named "Kidney

Calculi." While this is the preferred term, it has three accepted synonyms (entry terms)-

"Kidney Stones," "Renal Calculi," and "Renal Calculus." Qualifiers modify subject headings

and provide more detailed information and context about a subject heading. For example,

Kidney Calculi is associated with qualifiers such as Diagnosis, Urine, and Microbiology.

ICD-10

The last controlled medical terminology, International Classification of Diseases 10, is

the oldest.18 Its origins date back to the 1850s when it was called the International List of Causes

of Death and used primarily to keep track of mortality statistics. It is also often used for

reimbursement purposes by governments and health insurance companies. The World Health

Organization took over stewardship of ICD in 1948, and the most current revision, the tenth, was

released in 1994. It is considered the "international standard diagnostic classification" for

epidemiological, health management sand clinical use.36



ICD-10 is made up of three volumes. Volume 1 contains the main classifications and is

the heart of ICD-10. Volume 2 assists users in coding for ICD, and Volume 3 is an alphabetical

index of classifications.

Volume 1 is divided into a series of twenty-one "Chapters," each of which is hierarchical.

The twenty-one chapters are grouped into five general categories that William Farr believed

should be used to classify diseases: epidemic diseases, constitutional or general diseases, local

diseases arranged by site, developmental diseases, and injuries. 37 Half of the chapters follow

major body systems such as Diseases of the circulatory system and Diseases of the digestive

system.

Within each chapter, ICD-10 reduces clinical conditions to three- and four-character

codes arranged by categories and subcategories. For instance, the three-character code "K70"

stands for alcoholic liver disease. These three-character classifications are called "core"

classifications, and the first character is always associated with a particular chapter. The four-

character code "K70.3" stands for alcoholic cirrhosis of the liver. The fourth digit is optional for

reporting to the WHO, but should be included if possible.

Compared to SNOMED-CT, ICD encodes medical concepts less granularly. 28 It also

does not allow compound term composition that SNOMED-CT, NCI Thesaurus, and MeSH do.

ICD- 10 prefers instead to explicitly enumerate each possible permutation of one disease. For

example, code 160 denotes subarachnoid haemorrhage. Codes 160.1 - 160.6, though, denote

subarachnoid haemorrhage in each of the possible arteries: subarachnoid haemorrhage from

carotid siphon and bifurcation, subarachnoid haemorrhage from middle cerebral artery,

subarachnoid haemorrhage from anterior communicating artery, and so forth. ICD-10 also does

not possess synonym support.
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Since 1900, the ICD has been updated about once a decade. Between the ninth and tenth

revisions, the WHO realized that ICD needed to begin thinking about revising its fundamental

structure to facilitate stable and flexible classification for the years ahead.38 Compared to ICD-9,

ICD-10 nearly doubles the number of categories from 4,000 to 8,000.39 Other changes to ICD-10

are that it uses alphanumeric codes instead of just numeric codes and increases the causes of

death list from 72 to 113.

Table 1 summarizes the similarities and differences between each of the four controlled

terminologies.



Table 1: Comparison of NCI Thesaurus, SNOMED-CT, MeSH, ICD-10

Feature

Controlled
Terminology?
Thesaurus?
Ontology?
Hierarchies?
Synonym support?
Concept relationships?
Compound Term
Composition?
Browsable web
interface?
Programmatic Access?
Primary Domain

Primary Purpose

Available Formats
Publisher
Year
Cost

N/ V,

A/ I/

A/
Cancer

Unifying
molecular and
clinical
terminology
and concepts of
cancer
OWL-Lite, DL
NCI
1997
Free

Clinical Medicine

Representing the
whole of clinical
medicine

DL
SNOMED@
1999
Free for academic
use

A/

Clinical
Medicine +
General
Biology
Bibliographic
retrieval

XML
NLM
1960
Free

Clinical
Medicine

Reimbursements
+ Mortality
Statistics

WHO
1850s
Free



Methods

In order to facilitate efficient and flexible searching of gene expression repositories, two

barriers need to be addressed; 1) Structured representation of descriptive information and 2)

Evaluation of the ability of existing medical terminology to map structured data to a standardized

terminology.

The first step was recently completed and is detailed in another paper.40 In that work, the

authors built DSGeo, a previously completed web-based annotation tool that pulls existing

samples out of GEO for annotation by a team of physician and student curators. 40,41 The

annotators read through free-text descriptions given about each GEO Sample, associated GEO

Series, and associated GEO Datasets to identify salient features of the samples. These features

were condensed into tag: value pairs. Annotator consistency, accuracy, and comprehensiveness

were compared, and the results demonstrated that manual annotation was consistent among

curators, accurately captures descriptive information, and is efficient enough to be performed on

a large scale.4 1 While the annotations agreed with each other, evaluating how well these

annotations map to a controlled terminology will be described in the next section.

1.6 Evaluating Four Controlled Medical Terminologies across Six Clinical Domains

The following process was used to assess the ability of medical terminologies to express

clinical terms within GEO. The four previously described medical terminologies were chosen

for evaluation: the National Cancer Institute Thesaurus, Medical Subject Headings, SNOMED-

CT, and ICD- 10. Next, a randomly obtained a subset of GEO samples was generated among six



representative clinical conditions. Third, a three-point scoring system was devised, and scores

were calculated for each sample using each medical terminology. Scores reflect how well each

terminology represented the clinical terms that describe a given sample. Last, these scores were

compared across clinical conditions and across terminologies.

The evaluation was limited to six common clinical domains since evaluating the entire

scope of clinical domains contained in GEO would be too broad. The six domains chosen were

the ones that had been previously annotated by a team of physicians and university biology

students: breast cancer, colon cancer, rheumatoid arthritis (RA), systemic lupus erythematosus

(SLE), type I diabetes mellitus (IDDM), and asthma.

Once the domains were chosen, the next step was to figure out the best way to structure

clinical terms and then try to match it into each of the four ontologies. As mentioned earlier,

clinical or phenotypic terms describing each GEO sample was structured in a tag:value format

(i.e., "Estrogen Receptor Positive: Yes"). Domain-specific tags were decided upon iteratively by

identifying frequently occurring clinical or phenotypic terms describing the samples and from

knowledge learned by consulting with domain experts. For example, breast cancer samples have

thirty-eight possible tags to be annotated from the descriptions accompanying each sample.

In order to map each tag and value to an appropriate concept or term in each of the four

medical terminologies, the corresponding web- based tools that each of these controlled

terminologies make available were utilized manually. These search interfaces allow for

searching and hierarchically browsing the ontology tree for the desired terms. In order to

evaluate how well a terminology could represent a given tag, a three-point scoring system was

devised. Tags that exactly matched each term received a point (example: "atopic"). Tags that

could be matched after combining two or more atomic concepts using compound term



composition received two points (example: "systemic steroid"). Tags that could not be matched

at all received three points (example: "time series").

Because of the structure of DSGeo, one must search for all the studies within a given

domain first (i.e., search for breast cancer studies) before searching at the sample level. Studies

were selected at random from the resulting studies using a random number generator. Once a

study was selected, one DSGeo sample was selected from that study at random, again using a

random number generator. Twenty samples were selected for each of the domains without

replacement. In all, 480 evaluations were performed across six clinical domains, comparing four

controlled terminologies.

The last step was to assign a raw score for each sample based on the actual tags and

values that were present. The scores were then normalized to take into account descriptive terms

that were actually present. This adjustment was necessary because a substantial amount of

clinical information was frequently omitted. For example, if a breast cancer sample contained

only five tag:value pairs (instead of the full thirty-eight that DSGeo considers to be a full

annotation); its score would be divided by five, for the five tags or values that were actually

present in the sample. Ultimately, each sample received a normalized score for tags and values.

Results

Overall, the NCI Thesaurus was the terminology that provided the most comprehensive

coverage of all clinical terms used in the evaluated samples. ICD-10 consistently provided the

least coverage, which is to be expected since the vocabulary is used primarily for billing



purposes rather than research purposes. Nevertheless, it was formally evaluated since it is in

such widespread use.

1.7 Aggregate Scores

The average actual tag scores (Table 2) and value scores (Table 3) across all six domains

for all of the samples are listed below:

Table 2
Mean Tag Scores, Combined Over All
Domains

Terminology Mean Score Ranking
NCI 1.29 1
MeSH 1.81 2
SNOMED-CT 1.87 3
ICD-10 2.96 4

Table 3
Mean Value Scores, Combined Over All
Domains

Terminology Mean Score Ranking-
NCI 1.18 1
MeSH 1.19 2
SNOMED-CT 1.21 3
ICD-10 1.98 4

Comparing the mean actual tag scores with the mean actual value scores, one can see that

they are uniformly lower, although the rankings remain the same. This is due to the fact that the

tag fields are often phrased to expect "yes" or "no" answers. For example, in the diabetes

annotation form one of the tags is "kidney affected?" as opposed to "extent of kidney disease."

Because of this propensity for the value fields to contain either "yes" or "no," a score of one was

assigned (a perfect match) for all such fields that expected binary answers.

As is almost always the case with large databases, many of the samples had a significant

number of unpopulated tags (and therefore values). Because of this, a total tag score was



calculated in addition to an actual tag score, which can be thought of as a reflection of the

medical terminology's ability to represent the full set of tags had all of the tags been present.

Table 4
Mean Total Tag Scores, Aggregated Across
All Domains

Terminology Mean Score Ranking

MeSH 1.88 3
SNOMED-CT 1.73 2
lCD- 1 2.92 4

1.8 Scores According To Clinical Domain

When separating the overall results by clinical domain, the relative rankings changed

slightly across clinical domains for both tags and values. For the tags (Tables 5 and 6),

Table 5
Mean Sample Actual Tag Scores by Clinical Domain

Domain NC Thesaurus MeSH SNOMED-CT ICD-10 Ranking
Breast Cancer 1.21 1.30 1.37 1.95 NCI, MeSH, SNOMED-CT, ICD-10
Colon Cancer 1.28 1.27 1.28 1.95 MeSH, NCI/SNOMED-CT, ICD-10
SLE 1.23 1.23 1.20 2.20 SNOMED-CT, NCI/MeSH, ICD-10
RA 1.17 1.15 1.26 2.21 MeSH, NCI, SNOMED-CT, ICD-10
IDDM 1.05 1.06 1.05 2.09 NCI/SNOMED-CT, MeSH, ICD-1
Asthma 1.11 1.12 1.11 1.49 NCI/SNOMED-CT, MeSH, ICD- 10



NCI Thesaurus still provided the most comprehensive coverage and ICD-10 the least

.coverage in all clinical domains. The second and third ranks changed from MeSH to SNOMED-

CT for rheumatoid arthritis. Otherwise, the relative ranks remained the same.

Table 6
Total Tag Scores by Clinical Domain

NNCIO1IED LCD
Domaiii Thesaurus MeSIICT 10 Ranking
Breast
Cancer 1.13 1.75 1.97 2.97 NCI MeSH SNOMED-CT, ICD-M
Colon
Cancer 1.28 1.84 1.89 2.81 NCI, MeSH, SNOMED-CT, ICD-1
SLE 1.44 2.02 2.11 3.00 NCI, MeSH, SNOMED-CT, ICD-1

SRA 1.29 1.72 1.64 3.00 NCI, SNOMED-CT,MeSH,ICDD--

IDDM 1.29 1.77 1.86 3.00 NCI, MeSH, SNOMED-CT, ICD-10
Asthma 1.30 1.75 1.75 3.00 NCI, SNOMED-CT/MeSH, ICD-10

For the values separated by clinical domain (Table 7), NCI Thesaurus was either the most

robust or tied for being the most robust, and ICD-10 was the least robust in all cases. It is worth

nothing that even though the NCI Thesaurus was designed as a cancer terminology, it still had

the best performance, even in non-cancer domains.



Table 7
Mean Sample Actual Value Scores by Clinical Domain

Breast
Cancer 45/38

Colon Cancer 41/32

SLE 51/32

RA 27/18
IDDM 29/21

Asthma 30/18

76/38 68/38 110/38

62/32 50/32 84/32

58/32 52/32 96/32

32/18 33/18 54/18

33/21 33/21 63/21

39/18 36/18 66/18

NCI, SNOMED-CT, MeSH, ICD-
10
NCI, SNOMED-CT, MeSH, ICD-
10
NCI, SNOMED-CT, MeSH, ICD-
10
NCI, MeSH, SNOMED-CT, ICD-
10
NCI, SNOMED-CT/MeSH, ICD-10

NCI, SNOMED-CT, MeSH, ICD-
10

1.9 Unrepresented Tags

Despite efforts to find a suitable mapping for each term in a given terminology, numerous

terms could not be represented in just one terminology. A selected sample is provided in Table

8.

Tags that could not be represented in one terminology could be represented using a

different terminology (usually the NCI Thesaurus.) Overall, 100% of the tags could be

represented if searching across all four of the terminologies was allowed.



Table 8
Selected Problematic Tags (Tags with a score of 3)

Tag Donahi Termninology
Breast MeSH, SNOMED-

Time series Cancer CT
Breast

IDisease state Cancer MeSH
Genetically Breast
Modified Cancer SNOMED-CT

Breast
Her2/Neu Cancer ICD-10
CD Class RA NCI
Diagnosis
Criteria RA SNOMED-CT
Treated Asthma MeSH
Atopic Asthma ICD- 10

Table 9 shows that the NCI Thesaurus had the least number of unrepresented tags (tags

that received a score of 3), and Table 10 shows the result of three pairwise Chi-Square Tests

comparing NCI Thesaurus with the other three terminologies with regards to the number of

unrepresented tags. From Tables 2 and 4, one can see that the NCI Thesaurus ranked first in both

actual and total tag scores. Because of this, pairwise comparisons using MeSH, SNOMED-CT,

and ICD- 10 as the primary comparator were not needed. Table 10 demonstrates that the number

of unrepresented tags is significantly less using the NCI Thesaurus compared to any of the other

terminologies evaluated.



Table 9
Comparison of Unique, Unrepresented Tags by
Terminology

Number of Unrepresented

'Tags
Terminology (87 Unique T ags)
NCI
Thesaurus 6
MeSH 30
SNOMED-
CT 17
ICD-10 81

Table 10
Pairwise Chi-Square Tests

Comparisons p-value
NCI Thesaurus versus MeSH <0.001
NCI Thesaurus versus SNOMED-CT 0.0138
NCI Thesaurus versus ICD-10 <0.0001

Discussion

The first part of this project evaluated four medical terminologies' ability to cover the

breadth of descriptive information used to describe GEO samples. The primary observation that

became clear when analyzing the results was that descriptive terms used by researchers vary

widely with regard to quality, organization, and comprehensiveness. At present, the contents of

descriptive fields deposited in GEO are entirely at the researchers' discretion. Because of this,



there was concern that evaluating samples containing incomplete information might influence

the performance of the terminologies being evaluated. Indeed, when comparing actual tag

scores, (which disregarded unused tags) with total tag scores, the rankings were slightly

different. NCI Thesaurus still had the best score, but MeSH and SNOMED-CT alternated

between second and third place.

NCI Thesaurus consistently provided more comprehensive coverage of descriptive

textual information. This was likely due to the NCI Thesaurus' higher concept granularity and

larger number of concepts terms compared to some of the other terminologies, especially ICD-

10. Because of this, NCI Thesaurus was more flexible and allowed for the creation of composite

concepts that were not expressible in other controlled terminologies, an idea called compound

term composition. An example of this was the term "other affected organs". This was a tag in

the type I diabetes annotation form, and the NCI Concept IDs C17649 + C64917 + C13018 could

have been combined to compose this term, while SNOMED-CT, MeSH, and ICD- 10 were

unable to represent it precisely. The primary advantage of compound term composition is that it

averts the need for a large, monolithic and strictly hierarchical taxonomy. Instead, large numbers

of valid concept or term indexes can be created with the added benefit of occupying minimal

storage space. 42

The fact that ICD-10 did not perform robustly can be attributed to this terminology's

designated purpose - ICD-10 was developed primarily for diagnostic and reimbursement

purposes. As a result, it summarizes a clinical encounter or condition in one atomic term, such

as "asthmatic bronchitis NOS." This works adequately for reimbursement, but can not provide

the level of detail that is often necessary in translational research. Nevertheless, ICD codes

remain commonly used in clinical research. ICD-9, the previous version of ICD-10, was found
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in one study to only have 37% coverage for clinical terms, whereas SNOMED-CT successfully

mapped 92% of terms in a different study. 2 This is likely because in addition to not supporting

compound term composition, ICD also does not support synonyms for common terms.

Even though it would have been possible to capture all descriptive terms by combining

the four terminologies being evaluated, no single terminology provided 100% coverage. One

way to achieve broader coverage would be to use the Unified Medical Language System

(UMLS), a composite of over 150 medical terminologies. This stands the best chance of

representing the most number of clinical terms. The UMLS Metathesaurus would have helped in

difficult cases because it is not only comprehensive, but it also maps synonymous concepts from

disparate terminologies into one UMLS identifier while still preserving each individual

terminology's meaning for the concept.1 8



Chapter 2: Comparative Effectiveness of Free-text Versus

Faceted Search for Retrieving Relevant Biological Samples

from a Gene Expression Database

A fundamental benefit of ontologies is that they provide a consensus standard

terminology for a domain. The results above indicate that the NCI Thesaurus may be the ideal

controlled medical terminology to use for expressing the clinical terms used inside GEO, at least

for the six domains sampled. However, confirming that the tag: value pairs created by the

human annotators can be successfully mapped to the NCI Thesaurus' standardized terminology,

does not yield any practical benefit unless these annotations are leveraged to enable the efficient

searching of samples.

Beyond standardizing terminology, ontologies provide two other concepts that depend on

this property: concept hierarchies and concept properties. Concept hierarchies specify an

atomic term's relationships in a parent-child or sibling-sibling fashion to other terms. This tree-

like structure enables terms to be searched with varying levels of granularity. Concept properties

describe the relationships between individual concepts. Together these two properties give

ontologies the potential to represent phrases and terms in combinations that may not have been

envisioned by the original designers. This way knowledge does not have to be exhaustively

enumerated in order for the ontology to be comprehensive.

Concept hierarchies and concept relationships lay the ground work for flexible and

standard knowledge representation, and these benefits will extend to descriptive textual



information inside gene expression databases as long as the descriptive textual information is

expressible using the ontology.

As GEO's size grows, researchers looking for samples with similar clinical

characteristics to their own will be more likely to find them and conduct studies without having

to collect samples anew. 11,40 This ability to reuse data carries the potential to greatly accelerate

the rate at which new discoveries are made.

However, once descriptive textual information inside GEO is expressed using controlled

terminology, a search strategy that leverages the metadata that has been condensed into tag:

value pairs is still needed. Two generally accepted search strategies are free-text search and

faceted search, and the benefits and drawbacks of each are described next.

Background

2.1 Free-text Search

Free-text search is the search method with which most computer users are familiar.

Google.com, the world's busiest website, 44 is the most well-known example of free-text search

today. In the biomedical domain, free-text search is a near-universal feature of all the major

online medical databases, including Ovid, Pubmed, Web of Science, and Google Scholar.

The basic idea is straightforward: a user simply types his/her question into an empty text

field and presses the <Enter> key. The primary advantage of free-text search is the lack of

constraints on the search parameters. Some users prefer this freedom since they can type any

text string using 'regular' English questions, which makes the interaction similar to having a



conversation with the computer. Moreover, free-text search also allows users to express their

queries using personally synthesized information. Users are able to interface with the computer

using their preferred terminology instead of being forced to examine long lists of select boxes

that contain a structured set of terms. The primary disadvantage of free-text search is that little

guidance is offered when searches return unsatisfactory results, 4 5 and users do not get a general

sense of usable information inside the search space. What typically happens as users gain

experience, though, is that they start reducing their natural language search queries to a series of

keywords when they realize that most free-text search engines do not understand English

grammar. Many free-text search engines actually provide advanced features that allow the user

to limit the search space and/or express terms in semi-structured ways. However, a study of over

60,000,000 search engine queries concluded that many users either do not know how to use these

advanced features or are not motivated to use them, resulting in an average query length of only

2.4 words.46

The largest online bibliographic resources have their own dedicated free-text search

interfaces and employ proprietary free-text search algorithms. However, numerous small- and

large-scale microarray-focused projects are powered by the MySQL database management

system. This list includes software such as the analysis and visualization tool BASE, the cDNA

database NOMAD, and the general gene expression databases maxdSQL and LIMas. ' 4 7' 48

Regardless of the backend used, free-text searches usually fall into four general categories, all of

which MySQL supports.

The four major types of free-text search available in MySQL are: string matching,

natural language, Boolean, and automatic query expansion. String matching is the most basic

free-text search capability, and it matches raw character sequences in the query to the character



sequences in the database. Natural language free-text search attempts to emulate human natural

language queries. 49 Natural language search works using a similarity algorithm between the

query and the target columns to be searched in the database. Unlike string matching, partial

matches are allowed, and matches are displayed in descending order by relevance score.

The relevance score is calculated by using a vector-space model that has as many

dimensions as there are unique words in the columns to search over the entire database. 49,50

Regarding GEO sample searches, the title, description, and abstract are the searchable columns.

Each unique word in these three searchable columns within each sample is assigned a weight that

together forms a vector. If there are 300 samples, then there are 300 sample vectors. The terms

in each query also form a vector. The sample vectors that are nearest in vector-space to the

query's vector are considered to be the most similar, and these are the samples that are returned.

Boolean search is the third major type of free-text search that the search tool implements.

In this type of search, the operators "+","-", "*", "~"', and "()" are available to give the user

finer-grained control than string matching. 5 The "+" means that the word must be present in the

sample, "-" means that it must not be present, and "~" means that the word is preferred not to be

present, but if it is, matching samples appear lower in the results. The parentheses enable

grouping the search terms using standard Boolean order of operations, and the "*" is a wildcard

which can be useful for matching multiple word stems.

The last type of free-text search available is automatic query expansion, also known as

automatic relevance feedback. Whereas natural language queries tend to work better on

relatively long queries, 49 automatic query expansion is useful for improving the number of

matches for short queries, which generally contain little information content.52 Automatic query

expansion was developed more than forty years ago and 5 assumes that the reason that the query



is so short is that the user is relying on implied knowledge. This search method tries to make

explicit this implied knowledge by making educated "guesses" and adding these terms to the

original query.

The algorithm consists of making two queries for every query. The first involves the

original query, with subsequent return of matching documents. The matching terms in the

retrieved documents are given more weight and a second query is enabled using the original

query plus the additional terms. This expanded search is expected to return more relevant

documents, based on the initial query.

2.2 Faceted Classification

At the most basic level, classification can be thought of as "the meaningful clustering of

experience." 54 Classification attempts to structure knowledge so that it is more accessible and

flexible. The underlying representations are usually that of a hierarchy, tree, or a faceted

system-and often a combination of all three.

Hierarchies attempt to put all members of a given domain in its proper place with respect

to each other and the world. Aristotle believed that all of nature functions as one unified whole,

and part of the reason that humans innately try to order the world around them is that only when

an entity is properly classified does one truly know it.54 In addition, for a classification scheme to

be considered a hierarchy, it should possess several properties. They are: inheritance, transitivity,

systematic and predictable rules for association and distinction, mutual exclusivity, and

necessary and sufficient criteria. Inheritance and transitivity refer to property of every subclass

and every subclass's subclass possessing at least the properties of its parent class. The requires



for hierarchies to possess systematic and predictable rules for association and distinction and

necessary and sufficient criteria means that there should be formal criteria for where to place

entities in a hierarchy and formal criteria for testing class membership. Last, mutual exclusivity

only applies to pure hierarchies. In a pure hierarchy, a given entity can only belong to one class,

and multiple hierarchies are not allowed. These formal properties confer several advantages to

storing knowledge in hierarchical form: comprehensiveness of information, economy of notation,

and inference. 54

Trees are quite similar to hierarchies, but theorists consider them distinct from hierarchies

because trees do not display the inheritance property. Like hierarchies, trees do progressively

subdivide its members as one goes deeper into the tree. However, a tree does not assume an "is-

a" relationship between members and submembers. The ordering of the members in a tree

structure is done to distribute members along one specific type of non-inherited relationship.5 4

Using GEO as an example, the primary navigation links on the homepage of the GEO repository

could be represented as a tree with one level. The relationship modeled would be a part-to-

whole relationship, and such a tree's structure would resemble a table of contents:

GEO

Home

Search

Site Map

GEO Publications

FAQ

MIAME

Email GEO



The terms "Home", "Search", "Site Map", etc. are not subclasses of GEO; they are more

accurately described as parts of GEO. Further, sibling terms such as "FAQ" and "MIAME" do

not share common traits with each other, as one would expect in a hierarchy. Yet the

relationship of each of these entities is that they are all individual features that GEO offers.

Despite their differences, in daily usage, however, the terms "hierarchy" and "trees" are often

used synonymously.

Faceted classification involves recording observations about an entity from a number of

different angles. Taken together, facets characterize information about items in a collection.5 5

Distilling the descriptive textual information inside GEO samples into tag: value pairs like the

human annotators did in the first section of this thesis is an example of faceted classification.

Some synonyms for facet are "perspective", "aspect", or "category." 56 55 The credit for

formalizing the notion of faceted classification is usually given to S.R. Ranganathan, who did so

in India in 1967.54

In its simplest form, faceted classification is quite different from hierarchies and trees

because each facet is regarded as completely independent from other facets.54 ' 7 This lack of

structure (relative to hierarchies) is regarded as one of faceted classification's strengths because

it enables a dataset to be viewed from multiple perspectives. 54 For example, viewing a biological

sample in GEO from different perspectives means that it can be understood in terms of the

different roles that the sample might play. One role would be the sample's role serving as a

control to an experimental sample. Such a facet might be "studygroup." Another way to view

the same sample might be for its role being run on a certain piece of hardware. Such a facet

might be named "platform." Yet another way to view the sample is as part of the group of

samples that were obtained within the last month. Such a facet could be named "date-obtained."



These facets (studygroup, platform, dateobtained) may or may not overlap or have an

identifiable relationship with each other, but in pure faceted classification the distinction is not

important.

The important point is that facets can be freely combined in myriad ways, depending on

the vantage point that a researcher wants to take. This mixing and matching of facets is formally

known as postcoordination. 4 Usually, faceted search interfaces allow users to combine multiple

facets to progressively refine a set of matches in a drill-down fashion. 46

Faceted classification was the chosen representation scheme for sample annotations

because of its flexibility and hospitality, as well as because faceted classification has previously

been shown to be effective and easy to comprehend. 4 6' 54 "Hospitality" in knowledge

representation refers to the ability of a classification method to accommodate new terms. 54 Since

no inherent relationship or order between facets exists, new facets can be added in the future

without the need to rearrange the previous structure. The notion of flexibility encompasses the

fact that faceted classification does not require any unified theory about a domain, nor does it

depend on having complete knowledge of a domain like hierarchies do. New facets may be

added as they are discovered since a facet is simple observation or fact about an entity without

any implied meaning from its position in the list of facets. 4

The properties of hospitality and flexibility make faceted classification well-suited for

representing the genomics domain because of the rapid pace at which new information is

discovered and because of the myriad combinations of criteria that researchers might use to

locate samples in GEO.



2.3 Prior Implementations of Free-text & Faceted Search Tools in GEO

The team responsible for GEOmetadb has produced the most comprehensive effort at

making the metadata inside GEO more easily accessible for ordinary biologists, statisticians, and

bioinformaticians.8 Their approach has been to create a powerful, web-based search tool that

combines elements of both free-text and faceted search.

GEOmetadb allows one to search at the GEO at multiple levels of detail, including the

GEO Dataset, GEO Series, and GEO Sample levels. At the sample level, one can search over

thirty different fields (facets) of metadata, including the sample "characteristics" field of the

MIAME specification. The query tools provided by GEO itself also feature the same basic

capabilities; the difference with GEOmetadb is that more fields can be searched with more

specificity. In addition, the tool also supports querying within results, creating lists, personalized

display options, and downloading results.8

The primary limitation of GEOmetadb for the purpose of identifying samples according

to clinical characteristics is that GEOmetadb only supports searching the characteristics fields

using free-text.

Because of the high-quality, detailed annotations contained in DSGeo and their

organization into tag: value pairs, 40'41 an opportunity exists to identify samples at an even more

granular level. In order to do that, however, a tool that takes advantage of the tag: value pair

structure needed to be built.



Methods

The methods in Chapter 1 were aimed at finding a terminology that could represent the

various clinical terms that were used to describe GEO samples. Identifying a suitable

terminology was necessary in order to make sure that the terms that the human annotators were

curating with came from a standard vocabulary.

Once all of the knowledge about the samples was condensed into tag: value form, the

next step was to devise a suitable scheme that would enable accurate and efficient retrieval of the

samples. Given the annotations' organization into tag: value pairs (e.g., disease state =

rheumatoid arthritis) there were two obvious search strategies to employ: faceted search and the

traditional free-text search.

2.4 Building Geosearch: A Faceted Search and Free-Text Search Comparison Tool

The two search strategies, faceted search and free-text search, were implemented with

five general features. These features are listed in Table 11. The first feature is the ability to add

and annotate samples, which was useful when adjustments to the samples such as adding

annotations or correcting errors were needed. The second feature is the ability to browse through

all of the samples in the database. This way, on one screen, the samples' clinical contents could

be displayed as they are in GEO alongside their annotated tag: value pairs.



Table 11: Faceted Search & Free-text Search Tool Requirements

General
Requirements
Sample Addition
and Annotation
Sample Browser
Faceted Search

Free-Text Search

Statistics

Provides
AND/OR
functionality
Can search
different sample
fields: title,
abstract,
description

Precision

Allows simple
linear, chained
queries
Can free-text
search multiple
different ways:
string-matching,
Boolean, natural
language,
automatic query
expansion
Recall

Allows for operator precedence,
i.e., simulates parentheses

F-score Search Time

Regarding the faceted search feature, the tool needed to provide basic Boolean operator

functionality so that simple clauses could be joined together with an "AND" or an "OR"

conjunction. A significant proportion of faceted searches are likely to be simple, requiring

nothing more than a series of atomic clauses joined together by "AND" / "OR." Simple clauses

are read left to right with any "ANDs" and "ORs" evaluated in the order that they come. An

example of such a query is the search question, "Identify all of the samples that came from

female SLE patients." This translates into searching for the following facet, (tag) : value pair

"gender = female" AND "disease state = systemic lupus erythematosus."

For more complex queries, however, the tool needed to support operator precedence (by

default, OR is always evaluated prior to AND). That is, the tool needed to support grouping



simple clauses by priority. I defined a complex query to be search criteria that required deviating

from the standard order of operations in which clauses are evaluated in order to express the

searcher's intended meaning. In other words, the tool needed to support "parentheses."

For example, consider the question, "Find samples that came from stage 4 breast cancer

patients who were treated with tamoxifen, as well as samples that came from metastatic colon

cancer patients." This translates into: ("stage = 4" AND "disease state = breast cancer" AND

"treated = tamoxifen") OR ("disease state = colon cancer" AND "metastatic = yes"). If this

query was processed strictly from left to right, the result set would be different. The matches

would answer the question "Locate samples from colon cancer patients or stage 4 breast cancer

patients who were treated with tamoxifen. Of those patients, find those who also had metastatic

disease."

The way that the tool simulates parenthetic grouping of clauses is by having the user

enter in simple clauses (clauses in which the correct meaning can be constructed by processing

tag: value pairs from left to right), saving each one as a subquery, and then joining the subqueries

together. The results of these joined subqueries can themselves be saved as another subquery,

etc., so that in theory an infinite number of nested queries can be computed.

Concerning the free-text search feature, the goal was to provide basic free-text search

functions. The first function needed is the ability to search either all fields or just selected fields.

In the case of GEO samples, the tool searches the title, abstract, and description fields or just the

description field itself.

As mentioned earlier, searching in various fields is relevant because descriptive textual

information in GEO is scattered across more than one field across GEO Samples and GEO

Series. In general, descriptive terms are most often found in GEO Series titles, GEO Series



summaries (identical to the abstract from the published study), and descriptions within GEO

samples. Searching all three fields (title, abstract, and description) is often necessary in order to

piece together enough clinical information, while for other samples, investigators followed

GEO's recommended protocol and deposited descriptive terms only in the sample description

field, thus making a search through all three fields unnecessary. To accommodate this

flexibility, the free-text search tool was programmed to provide the option of searching through

all relevant fields or just the sample description.

Giving the user four different free-text search choices (string matching, natural language,

Boolean, automatic query expansion) and two different columns in which to search (title-

abstract-description, description) was done to help ensure that any difference between faceted

search and free-text search performance would be more likely due to the inherent differences in

faceted versus free-text searching itself, rather than on any one specific implementation of free-

text searching.

The fifth software feature is the results module. This module saves the search history and

54faceted search. The statistics calculated are precision, recall, F-score, and search time for each

individual question. The average precision, recall, and F-score across all search questions were

also calculated.

Implementation

Django (version 1.1 http://www.djangoproject.com/), a model-view-controller toolkit

using Python, was chosen as the web development framework, and MySQL Community Server

5.1.46 (http://www.mvscl.com/downloads/mysql/) was chosen as the database server. Both



pieces of software are open source. An additional benefit of using Django to write the search

tool was that DSGeo was also written in Django. As a result, integrating the search tool with

DSGeo would be easier in the future.

2.4 Geosearch: Evaluation

Faceted search was evaluated and compared to free-text search. This evaluation was

performed utilizing a randomly selected subset of annotated samples, comparing each search

strategy's performance in regards to answering multiple questions of varying complexity.

First, 300 previously annotated samples were loaded into the search tool. Each sample

number's title, description, abstract, and annotations were all imported. Next, a list of search

questions was compiled (Table 12). Three types of questions were chosen: simple, compound,

and complex. They represented increasingly specific (and presumably harder to answer)

questions that a researcher might ask.

A simple question was defined as a question that only required one tag: value pair to

answer correctly using faceted search. The first question in Table 12 provides an example of a

simple question: "Locate the samples that were obtained from the condition breast cancer." A

compound question was defined as a search question that required sequentially chaining together

multiple tag: value pairs in order to correctly answer the question. Question 4 provides an

example of this type of search question.

A compound question that required multiple tag: value pairs chained together but

evaluated in a non-linear sequence, i.e., evaluation according to parentheses, was termed a

complex question. Question 7 is an example of this type of question. If this question was



answered by joining together tag: value pairs sequentially from left to right, the resulting

matches would be incorrect.

The last two questions were designed to illustrate one of the main benefits of faceted

search: guided navigation. Organizing data with facets allows the user to see an overview of the

data by categories. This is helpful when the user is interested in browsing to see what the

database contains and gives the user an idea of what types of questions that he/she could

realistically ask. Answering these types of questions would be almost impossible using free-text

search.

Table 12: List of Search Questions

Locate the samples that were obtained from the condition
breast cancer.
List samples that have a p53 mutation
Which samples came from African-Americans?
List the samples that came from breast cancer patients with a
positive family history
List the samples that came from either breast cancer or colon
cancer that were metastatic
Locate specimens that came from the mononuclear cells of 7-
year-old insulin dependent diabetics who have been treated
with insulin.
List samples that came from systemic lupus erythematosus
patients who were treated with po and iv steroids or that came
from RF negative rheumatoid arthritis patients
List samples that came from Duke Stage B or C patients who
are either female or Caucasian.
List the tissue types that the biological specimens came from

List all the available diseases represented in the database

Simple Query

Simple Query
Simple Query
Compound
Query
Compound
Query
Compound
Query

Complex Query

Complex Query

Not included in
statistical
analysis
Not included in
statistical
analysis



Once the question list was made, test users were gathered. The test subjects were all post-

doctoral fellows (MDs or PhDs) who are familiar with clinical terminology, but less so with

terms related to genomic research. Each volunteer was given a brief tutorial on the search tool.

They were instructed on the four types of free-text searching available as well as on the

capabilities of the faceted search tool to not only chain together tag: value pairs with Boolean

operators, but also to save partial result sets and chain those together in a recursive fashion.

Each test user was given the list of ten search questions and instructed to first answer each

question using the free-text search tool and then using faceted search.

Regarding free-text search, users were allowed to specify any combination of search

terms, free-text search method (string matching, natural language, Boolean, or automatic query

expansion), and search fields that they wished (Figure 2). They were allowed to iterate until they

believed that their result set was the best that they could obtain using free-text search. This final

result was recorded along with the time that it took to obtain this result set.



Figure 2: Geosearch Free-text Search Interface

Search By Full-Text
AutoatTc Querv Match Eqa
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Next, a similar process was used for faceted search (Figure 3). The user was asked to

locate relevant samples using faceted browsing. A query was a "list of facet-value pairs that

jointly specify the required properties of a matching document." 46 Geosearch users were

allowed to try as many combinations of tag: value pairs and inspect the result sets for accuracy

until they were satisfied. The matching samples were recorded along with the time that it took to

obtain these results. The user then proceeded to answer the next question in the list, and the

process was repeated until all questions had been answered. For each question, each user always

searched using free-text before being allowed to use the faceted search interface. Users were

given multiple tries to come up with the correct result sets because of the learning curve of using

All Mfe. Abutatt. DeScr-;mon) -6



a new interface. Moreover, in real world situations getting the right answer immediately is not

critical, while being able to retrieve relevant biological specimens is.

Figure 3: Geosearch Faceted Search Interface

Choose a disease state
breast cancer
oreast cancer
hyperolasla
non breast cancer
colon cancer
ion colon cancer

IDDM
Type 2 Diabetes
systemic lupus erythenatosus
rheumatoid arthritis
osteoarthritis
a'sthmaI

At that point, the user's results and statistics were displayed (Figure 4). For each

question, there was a set of "correct" matches. The correct answers were verified manually

beforehand. The software tabulates each user's free-text and faceted matches and could classify

each matched sample as a true positive, false positive, or false negative. (When describing

search performance, true negatives are not usually tallied because one is typically interested in

measuring performance based on the ability to find items that truly do match as opposed to items

that truly do not match.) From the true positive, false positive, and false negative values,

precision, recall, and F-scores could be calculated for each search question. In addition, the time

spent searching was also calculated. The overall average precision, recall, and F-score for each

person were also displayed. A visual representation of the testing process is shown in Figure 5.



Figure 4: Geosearch Results Module

Figure 5: Flowchart of Faceted vs. Free-text Testing Process

For Each Person:



Results

The two search strategies were compared using paired t-tests. Outcome measures

included precision, recall, and F-scores.

Precision is also known as positive predictive value, and can be represented as:

True Positives / (True Positives + False Positives)

In this project, the positive predictive value measures the likelihood that a returned matched

sample actually fits the query.

Recall is also known as sensitivity, and can be represented as:

True Positives / (True Positives + False Negatives)

In this project, recall refers to the ability of the tool to find all possible matches, even at the

expense of introducing some inaccurate matches.

The F-score is an information retrieval statistic that takes into account both the precision

and the recall. The F-score's range is 0 to 1, with 1 being the highest. It can be represented as:

2 * precision * recall / (precision + recall)

It is essentially a weighted average of the precision and recall, and it gives a better global view of

search performance. 58



2.6 Overall Performance of Faceted Search versus Free-text Search

The average precision, recall, F-score, and search time for the entire search question list

when using free-text search is shown in Table 13. One can immediately see that the performance

was not optimal.

Table 13: Average Performance for All Search Questions Using Free-Text Search

Person
1
2
3
Overall
Averages

Precision
0.257
0.233
0.194
0.228

Recall
0.481
0.576
0.763
0.607

F-score
0.287
0.303
0.256
0.282

In table 14, one can see that, given enough time, each search tool user was able to locate

matching samples with perfect precision, recall, and F-score. This was not always done on the

first try, especially for complex questions. This was in part due to the fact that there was a

learning curve for understanding how to navigate and join queries using the tool.

Table 14: Average Performance for All Search Questions Using Faceted Search

Person Precision Recall F-score
Overall 1 1 1
Averages



At first glance, the precision, recall, and F-scores may seem spuriously high, but the

nature of the faceted searching tends to result in matches that can quickly be seen as "all right" or

"all wrong". For example, consider a complex search task such as "List samples that came from

either Duke Stage B or C patients who are either female or Caucasian." Using faceted search, if

one chooses "Duke Stage = B", followed by "Duke Stage = C", and then decides to join these

two simple clauses together with "AND" the result set will immediately be empty. Some users

initially made this mistake because in everyday conversation, "and" has two meanings: set

addition ("Give me a red and a blue ball") as well as set intersection, "Give me the red- and blue-

colored shirt." In Boolean logic, however, "OR" denotes set union. The test users quickly

noticed mistakes and corrected themselves when their Boolean operations resulted in unintended

matches.

2.7 Overall Performance Grouped By Search Complexity

Table 15 and Figure 6 report the performance in numeric and graphical form,

respectively, of free-text search in answering three increasingly difficult question types. Free-

text search clearly performed best for simple questions in terms of precision and recall. As a

reminder, a simple question only returns samples identifiable with a single tag: value pair, e.g.

"Find diabetic patients." Once questions contained more criteria, however, free-text search's

precision and recall decreased sharply. For complex questions, precision was less than 15% and

recall was less than 27%. The F-scores mirrored precision and recall.



Table 15: Average Performance by Question Type Using Free-Text Search

Precision

0.380
0.151
0.138
0.434
0.143
0.160
0.378
0.023
0.116
0.397

0.106
0.138

0.652
0.700
0.258
0.467
0.633
0.276
0.667
0.833
0.800
0.595

0.722 0.161
0.444 0.191

Figure 6: Free-text Search Precision, Recall, F-Scores by Question Type

Simple Free- Compound Complex Overall Free- Overall
text Free-text Free-text text Faceted
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1

2

3

Overall
Averages
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0.467
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Table 16 and Figure 7 show the search times using each search strategy. It is not

surprising that as question complexity grew, the average time that it took to find matches

increased (Table 16). For simple questions that can be answered using only one tag: value pair,

faceted search was far faster than free-text search. For more complex questions, however, the

relationship is less clear. However, faceted search maintained better precision, recall, and F-

scores.

The overall search time using faceted search averaged 116.7 seconds, while using free-

text search averaged 138.4 seconds (Figure 7). While the search times were noted, two factors

make them poor candidates for rigorous analysis. The first factor is that how long each person

wanted to search before he/she was satisfied with the matches is subjective. The second factor is

that search times that differ on the order of a few minutes are rarely consequential in practice.

Table 16: Average Search Times Comparison by Question Type

2

3

Averages By
Type

Simple
Compound
Complex
Simple
Compound
Complex
Simple
Compound
Complex
Simple

Compound
Complex

Overall Averages

52.6
72.1
131.5
217.1
62.1
93.3
87.2
264.1
265.6
118.9

132.8
163.5
138.4

12.3
113.3
309.6
16.5
90.9
263.89
9.5
50.2
183.6
12.8

84.8
252.4
116.7
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Figure 7: Comparison of Overall Average Search Times

Overall Average Search Times (seconds)

140 - - -

120

0

8 0 ----- -- - -...

60

401

20f

0
Free-text search Faceted search

Finally, results were analyzed by performing paired t-tests for each performance metric.

The objective was to see if precision, recall, F-score, and search time were statistically different

using free-text compared to faceted search. Table 17 demonstrates that faceted search performed

significantly better than free-text search, producing better precision (p=0.001), recall (p=0.042),

and F-scores (p=0.0003). With regard to search time, faceted search was also faster. However,

paired t-test analysis does not indicate statistically significant time savings for either search

method.



Table 17: Paired T-test Results Free-text Versus Faceted Search Overall Performance

Performance Metric T-score p-value
Precision 42.050 0.001
Recall 4.748 0.042
F-score 52.044 0.0003
Search time 0.389 0.734

Discussion

Most information retrieval techniques fall along a continuum of free-text search on one

end and strictly controlled vocabularies on the other end. 59 The second part of this research

looked at both extremes and evaluated the hypothesis that the information needs of biomedical

researchers who use a large gene expression database are better filled using faceted browsing

than conventional free-text searching.

In classic information retrieval, the process is typically split into five parts: the search

space (documents), document representation, the search results (matches), the query, and the

original information need of the information seeker (Figure 8). 60

This search tool evaluated the robustness of the second component of the classic

information retrieval model, document representation. The results show that if one has the

resources to condense the biomedical information contained in disparate GEO sample fields into

tag: value pairs, then searching along those facets gives more accurate results than free-text

search.



Figure 8: Traditional Information Retrieval Model

(From Garcia E, MA S. User Interface Tactics In Ontology-based Information Seeking. PsychNology Journal

2003;1:242-55.)

One observation that the testers made concerned the length of the facet lists as more and

more facets are added. Deciding how many facets to present to users, where to present them

(such as off in a sidebar), and when to present them is a continual challenge facing faceted search

researchers. One project whose primary aim is to optimize the presentation of facets is UC

Berkeley's open source Flexible Information Access Using Metadata in Novel Combinations

(Flamenco) Project. Sponsored by the National Science Foundation, the project tries to help

"users move through large information spaces without feeling lost" by using faceted search.6'

Towards this end, project designers have tried displaying breadcrumbs, a "sequence of actions

that a user has done within the query session,"55 displaying a hand-selected group of facets that

they believe users will find the most helpful, displaying the most frequently selected facets, and

displaying facets in alphabetical order.4 6 Koren, et al., have devised yet another method of

getting the most relevant facets to each user by creating what they term "personalized interactive

faceted search." Their method involves using explicit user ratings of facets to deliver the most



probabilistically relevant facets to users.46 Geosearch displays facets in the chronological order

in which they were added to the database.

Limitations

A main limitation of this research can be attributed to the less than optimal quality of

descriptive information deposited within GEO. Without comprehensive information being

supplied by researchers who upload samples to GEO, it is more difficult to evaluate the

performance of search tools since poor results could be the result of simply not having enough

information.

A second limitation is that the GEO browser already interfaces with NLM's rich resource

of query tools, including MeSH. However, the GEO website's browser is not designed to find

information at the sample level like the search tool in this project.

A third limitation concerns the scalability and sustainability of the manual annotation

process as GEO continues to grow. If the accuracy that only human annotation can provide is

the overriding concern, then recruiting the biomedical informatics community at large to

annotate could be done. The benefits of this approach are the low cost and a perpetual pool of

annotators. The main drawback would be the reduced ability to guarantee quality annotations.

Requiring user registration, implementing a zero to five-star rating system for annotations, and

allowing users to flag problematic entries would enforce quality. Ultimately, offloading the

work to the biomedical informatics community would be an exercise in trust.

A fourth limitation concerns the.backgrounds of the test users. Most of them had

knowledge of informatics but did not use the GEO database regularly. Thus, finding users who



come from less technical backgrounds or are unfamiliar with Boolean operators could lessen the

performance advantage that faceted search has over free-text search, since answering more

complex questions using faceted search requires more training.

Future Directions

The next step after confirming that faceted searching is superior to free-text searching is

to incorporate terminologies into the search tool. How can terminologies help faceted search?

First, standard terms are needed when naming the facets themselves. Making sure that facet

names are from a controlled terminology is crucial for sharing data with other databases. The

second way that terminologies can enhance faceted search is through query expansion. 60 The

NCI thesaurus, in addition to providing a standard terminology, also has two properties that can

be used for this purpose: synonymy and class hierarchies. It has been established that using

synonyms of search terms improves search results. 62 Recognizing synonyms, however, is a first

step towards improving precision and recall, because augmenting search terms with synonyms

indicates that the system would then be beginning to search according to the meaning of the

query. Without synonyms, searching individual tags and values-even if they are

standardized-still amounts to string matching on the facets themselves. For example, without

synonyms, searching for male patients amounts to: "gender = male". With synonym support, a

user could use that same tag: value pair and receive matches for samples that have been

annotated with "sex = boy" as well as "gender = man." Synonym support is important because

the keywords used by indexers to describe facets do not match the keywords that users expect.



In general, "users do not understand an information space in terms of the same facets as the

indexers who designed it."45

The second way that some terminologies can enhance search is through their class

hierarchies, when available. This organization allows searching for terms with varying levels of

detail as well as for searching according to terms' relationship with each other. These properties

give terminologies the potential to represent phrases and terms in combinations that may not

have been envisioned by the original terminology designers.

For example, suppose that a researcher is interested in finding samples from humans with

a hormone receptor mutation, but that the available annotations are only: "gender = female" and

"progesterone receptor- mutation." In order to match samples without adding more facets such

as "species = human" and hormone receptor status = mutation," knowledge that "female" is a

subclass of "human" enables the appropriate inference that a female is also a human. So, the

search tool would be sure to include samples matching the tag: value pair "gender=female" when

returning matches even though the original query never mentioned the word "female."

These features have been implemented successfully with the Tissue Microarray Database

described earlier and with Amigo, an ontology-backed browsing interface for the Gene

Ontology. 1

Future versions of the free-text search component of the search tool could implement and

tune pre-packaged search solutions to work with biomedical data. Two prime examples in this

area are the Apache Software Foundation's Lucene, an open source, text search engine library, 57

63 and Google Custom Search.



Conclusion

This research addresses the increasingly important problem of information retrieval

within gene expression databases as high throughput methods continue to generate larger and

larger volumes of data. The clinical descriptive information that already exists within gene

expression repositories such as GEO is an untapped resource for translational research because it

is stored in neither a structured nor standardized format. Transforming the text into a computer-

interpretable format by using standard terminologies would lay the groundwork for future

insights into the relationship between genomic data and clinical data by facilitating data reuse.

Today clinical researchers who are interested in correlating genomic data with

phenotypic data would rely on a manual process. In GEO, one has to look in a GEO Sample's

characteristics field, a GEO Series' title, description, or summary field, in the abstract of the

published study itself, or in a GEO Dataset's description on a sample-by-sample basis.

The first part of this thesis confirmed that clinical descriptive information can be

effectively represented using current terminologies. The second part involved implementing

two search strategies, free-text and faceted search, and comparing these two search strategies'

performance in searching for samples using descriptive information.

Today the main barrier towards making this goal a reality lies at the point of data entry-

that is, researchers who upload data to GEO need incentives to include more comprehensive

clinical characteristics of their samples. This current research demonstrated that once descriptive

textual information is deposited in GEO, structured and standardized representation is possible

using existing medical terminologies.
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Once sample data is annotated into tag: value structure, using faceted search to locate

samples of interest is a feasible search strategy since it demonstrates high precision and recall

when compared to normal free-text searching. Identifying samples in this manner would

ultimately enhance the ability to correlate genomic data with clinical data.
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