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We study the dynamics of the Taylor-Couette flow of shear banding wormlike micelles. We focus on the
high shear rate branch of the flow curve and show that for sufficiently high Weissenberg numbers, this
branch becomes unstable. This instability is strongly subcritical and is associated with a shear stress jump.
We find that this increase of the flow resistance is related to the nucleation of turbulence. The flow pattern
shows similarities with the elastic turbulence, so far only observed for polymer solutions. The unstable
character of this branch led us to propose a scenario that could account for the recent observations of
Taylor-like vortices during the shear banding flow of wormlike micelles.
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Wormlike micelles are elongated, polymerlike struc-
tures resulting from the self-assembly of amphiphilic
molecules in aqueous solution [1,2]. In contrast to regular
polymers, they continuously break and fuse, providing an
additional relaxation mechanism. In the fast breaking re-
gime, Cates’ reptation-reaction model [3] predicts that
wormlike micelles solutions relax monoexponentially
with a single time 7, ~ ,/7,7,, where 7, and 7, are the
breaking and reptation times.

In addition to their structural analogy, polymers and
wormlike micellar solutions can exhibit flow instabili-
ties when submitted to even moderate shear rates. In par-
ticular, many wormlike micelles solutions have been ob-
served to undergo a shear banding transition. Under simple
shear, the base scenario is the following [1,4]: below a
critical shear rate y; ~ 1/7p, the flow is homogeneous.
Above 7y, the system becomes mechanically unstable. A
phase of lower viscosity nucleates, inducing a banded state
in which the initial viscous phase and the fluid phase
coexist at constant stress. Increasing the imposed shear
rate only affects the relative proportions of each of the
bands, up to a second critical value vy, where the high
shear rate phase entirely fills the flow geometry. Beyond
V1, the homogeneity of the flow is recovered. Albeit ex-
tremely well documented, the shear banding instability is
still not fully understood [5-7]. In particular, it has been
shown recently in cylindrical Couette geometry that con-
trary to the usual view, the shear banding flow may not be
purely one dimensional, but instead is organized into
Taylor-like vortices stacked along the vorticity direction.
These cellular structures are mainly localized in the high
shear rate band and exhibit a complex dynamics depending
on the applied shear rate [8].

Recent theoretical developments have tried to ration-
alize the 3D flow, by involving an interfacial mechanism
driven by a jump in normal stresses across the interface
between bands [6,9]. Besides, complex 3D flow structures
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are also well known to develop at low Reynolds number Re
in polymer solutions [10-12]. The underlying instabilities
are a consequence of the non-Newtonian stress field that is
created in the flow due to elasticity. The importance of the
elastic nonlinearity is expressed by the Weissenberg num-
ber, defined as Wi = y7z = N,/o, where N, is the first
normal stress difference and o is the shear stress. To a good
extent, those two definitions are equivalent (see supple-
mentary figure [13]). Thereafter we only use Wi = y75.
Wi acts as a control parameter analogous to Re in
Newtonian fluids. When increasing Wi, a viscoelastic fluid
is likely to undergo a transition from 1D flow to various
coherent 3D flows, which would eventually lead to turbu-
lence [14-16]. For polymer solutions flowing in curved
geometries, elastic instabilities are triggered above a
threshold that follows a general criterion established by
Pakdel and McKinley and corresponding to values of Wi
ranging typically between 1 and 10 [10,17]. In wormlike
micelles, the onset of the shear banding regime is charac-
terized by Wi =1 [1]. Hence, on the stress plateau and
above, the Pakdel-McKinley condition is satisfied, sug-
gesting that the elastic instability could be responsible
for the 3D shear banding flow [8]. In this Letter, we
investigate the flow behavior of the high shear rate branch
(Wi > Wi, = y,7p) of a shear banding wormlike micelles
system in Taylor-Couette geometry. We show that once the
induced phase fills the whole sample (Wi = Wi,,), the
vortex structure is destroyed and the 1D structure of the
flow is recovered. Nevertheless, above a critical threshold
Wi,., we observe the growth of another instability leading
to a random flow state, that presents all the features of the
elastic turbulence. This indicates that the induced phase in
shear banding wormlike systems can indeed be subject to
elastic instability. From this observation, we propose a
scenario that points to a bulk elastic instability as the
underlying mechanism for the vortex flow in the banding
regime.
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The sample we consider is made of cetyltrimethylam-
monium bromide (CTAB) at 0.3 M with sodium nitrate
(NaNO;) at 0.405 M. The temperature is fixed at 7 =
28 °C. This system is Maxwellian in the linear regime,
with a single relaxation time 7, = 0.23 = 0.02 s and a
plateau modulus Gy = 238 = 5 Pa while, under simple
shear flow, it is well known to exhibit shear banding
associated with an instability of the interface and Taylor-
like vortices [8,18,19]. Our experiments are performed in a
cylindrical Couette device with inner rotating cylinder
(height H = 40 mm, inner radius R; = 13.33 mm, gap
e = 1.13 mm) [8] adapted to a stress-controlled rheometer
(Physica MCR301) used in strain-controlled mode.

Figure 1 displays the overall rheological behavior of the
sample for Wi between 0 and 34 together with simulta-
neous observations in the velocity gradient-vorticity (r, z)
plane summarizing the main flow states along the flow
curve (inset). For Wi < Wi;, the gap of the Couette cell
appears homogeneous [inset (a)] and the corresponding
branch of the flow curve is slightly shear thinning.
Between Wi; = 1.0 £ 0.1 and Wi, = 26 £ 1, the shear
stress presents a plateau and the sample splits into two
shear bands of differing optical properties separated by an
interface undulating along the vorticity direction. The flow
is organized in Taylor-like vortices, mainly localized in the
high shear rate band [inset (b)] [8]. Note that the value of
Wi, is given from the crossover in the flow curve between
the stress plateau and the high shear branch and is in good
agreement with the Weissenberg number for which the
high shear rate band fills the whole gap. The standard
deviation is computed from statistical measurements (see
Ref. [19] for more details). Let us now focus on the high
shear rate branch of the flow curve (Wi > Wi,,), where the
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FIG. 1 (color online). Normalized shear stress /G, as a
function of the Weissenberg number Wi = y75. The data are
gathered for increasing Weissenberg numbers from 0 to 34. Inset:
views of the velocity gradient-vorticity plane for different Wi.
The inner and outer cylinders are, respectively, on the left and
right sides of the pictures. (a) Wi < Wi;: homogeneous flow of
the low shear rate phase. (b) Wi; < Wi < Wi,: banded state. The
interface between bands presents oscillations that scale with the
size of the high shear rate band, in which vortices stacked in the
vorticity direction develop. (¢c) Wi, < Wi < Wi,: homogeneous
flow of the high shear rate phase. (d) Wi > Wi_.: turbulent flow of
the high shear rate phase.

induced high shear rate phase fills the entire gap. Two
different regimes can be distinguished. (1) For Wi between
Wi, and a critical value noted Wi. = 30 % 0.5, the flow
curve is strongly shear thinning and vortices seem to dis-
appear [inset (c)]. All the methods used in Ref. [8] to
identify vortices in the banding regime have failed. The
flow in this regime seems purely 1D. This behavior is
compatible with the observations of Salmon and co-
workers, who demonstrated using velocity measurements
on a similar system that the induced structures were highly
non-Newtonian. (2) For Wi > Wi, the flow curve presents
a drastic change of variation corresponding to an apparent
shear-thickening behavior. This increase of the flow resist-
ance is due to the new structure of the flow [14], and differs
from the nucleation of a new structure in the material itself
[20]. Indeed, as seen in Fig. 1 [inset (d)] and in the
supplemental movie [13], in this regime, the flow appears
very disorganized in space and time. This behavior is
strongly reminiscent of the state of elastic turbulence high-
lighted by Groisman et al. in dilute polymer solutions
flowing in different flow geometries [14]. According to
Ref. [14], the main features of the elastic turbulence are
the following: fluid motion excited in a broad range of
spatial and temporal scales, and significant increase of the
flow resistance and rate of mixing. Furthermore, the tran-
sition to the turbulent regime is found to be hysteretic and
strongly subcritical. Using mechanical measurements and
direct visualizations of the sample in the (r, z) plane, we
carefully analyze the irregular flow we observe.

Figure 2(a) shows the rheological behavior of the high
shear rate branch of the flow curve during increasing and
decreasing shear rate sweeps. When the shear rate is
changed quickly, the transition exhibits a pronounced hys-
teresis. Slower shear rate sweep leads to a reduced hys-
teresis loop, as expected for subcritical transitions [21].
Another strong indication of the subcritical character of the
transition is given in Fig. 2(b) where, for imposed
Weissenberg numbers in the transition range, the system
exhibits bistability. As observed for polymer solutions, the
transition towards the apparent disordered state is charac-
terized by a sudden stress jump. The visual impression of
spatiotemporal disorder in Fig. 1, inset (d), is confirmed by
a more careful analysis. Figure 3(a) shows average Fourier
spectra of the intensity profiles along the vorticity direc-
tion, which exhibit power law decay over two decades in
the wave vector domain. The power spectrum in wave vec-
tor seems to follow a power law up to k; ~ 100 mm™!.
This suggests that for lengths below 10 pm, the dissipation
process is different, leading to a faster relaxation of the
fluctuations. In the case of elastic turbulence, k,; is ex-
pected to be linked to the stress diffusion coefficient D by

k;l ~ /D7y [22]. When constitutive models are used to
describe the dynamics of surfactant solutions, D is typi-
cally the coefficient of nonlocal diffusive terms [6]. Hence
from the value of k; we observe here in the turbulent
regime, we can compute a stress correlation length of the
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FIG. 2. (a) Close-up on the high shear rate branch of the flow
curve (Wi > Wi,,) obtained for increasing (circles) and decreas-
ing (squares) shear rate, for two different sampling times:
2 s/point (close symbols) and 1 min/point (open symbols).
o, and o, are the apparent up and down boundaries of the
stress jump at Wi.. (b) Shear stress evolution on long time
(between 1 min and 1 h), for different Wi. From top to bottom:
Wi = 32.8 (fully turbulent), Wi = 31.2 (bistable), Wi = 30.1
(fully laminar).

order of 10 um. This estimation agrees with the stress
correlation length (4 to 8 um) obtained from completely
different experiments in Refs. [19,23,24]. Similarly, the
intensity reflected by the sample at one point over time
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FIG. 3. Average Fourier spectra of the intensity reflected by
the sample in the velocity gradient-vorticity plane for two Wi
larger than Wi.. Circles: Wi = 31.5. Squares: Wi = 33.
(a) Spectrum obtained on the wave vector domain by computing
Fourier transforms of the intensity reflected along the vertical
direction at a middle point in the gap and then by averaging for
different times. The dashed line is a k=2 fit. (b) Spectrum
obtained on the frequency domain by computing Fourier trans-
forms of the intensity reflected overtime at single points in the
gap and then by averaging for different points. A fast camera
(Phantom V9) has been used to reach the frequency range
between 10 and 700 Hz. The dashed line is a f~ 1 fit.

gives us some information about temporal disorder in the
system. Figure 3(b) shows average Fourier spectra of the
intensity at different points in the gap over time. The
spectra exhibit power law decay over two decades in the
frequency domain. Furthermore, in order to get informa-
tion on the fluctuations at the global scale, we have studied
the time series of the macroscopic shear rate measured by
the rheometer when imposing constant stresses. The inset
of Fig. 4 gives the evolution of the amplitude of the shear
rate fluctuations as a function of the shear stress. Below the
transition to turbulence, fluctuations are small (AWi = 1),
less than 3% of the average value. In the transition range
fluctuations are very high (AWi = 11), up to 30% of the
average value. In the fully turbulent regime, i.e., /G, >
1, fluctuations are as high as 15% of the average value
(AWi = 5). Average Fourier spectra of the fluctuations in
this regime exhibit power law decay over almost two
decades in the frequency domain, with an exponent 8 of
—3.5. This value of the exponent satisfies the criterion
derived by Fouxon ef al. (8 < —3) who have rationalized
the spectra of turbulence in polymer solutions [22].

Hence, all the features highlighted for Wi > Wi, indi-
cate that the dynamics in this regime are likely due to the
same mechanisms driving the elastic turbulence in polymer
solutions. Note, however, that the transitional pathway
between the (1D) laminar and the turbulent regime in
polymer solutions appears different. In particular, when de-
creasing Wi, we do not observe solitary vortex pairs [25],
the relaxation of turbulence being homogeneous.
Differences might arise from the existence, for micelles,
of two distinct relaxation mechanisms underneath 75 (7,
and 7).
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FIG. 4. Average Fourier spectra of the macroscopic shear rate
obtained by imposing three constant stresses in the turbulent
regime. The total duration of each time series is 5000 s and the
sampling time is 0.1 s. Triangles: /G, = 1. Circles: o/G, =
1.03. Squares: /G, = 1.05. The dashed line is a f~3 fit.
(inset) Average amplitude of the fluctuations of shear rate (i.e.,
Wi) for different imposed stresses before, “during,” and after the
transition to turbulence. Stress is measured in unit of the stress
jump in the flow curve at Wi... For stresses between o, and o,
(e, 0< ﬁ < 1), the system is bistable and exhibits large

fluctuations. Spectra are computed in the fully turbulent range,
for stresses larger than o,.
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Let us summarize the complete scenario we observe: in
the shear banding regime, the flow is unstable with respect
to perturbations along the vorticity direction and Taylor-
like vortices develop in the high shear rate band. The
stability of the flow seems to be recovered for Wi, < Wi <
Wi,, namely, when the high shear rate phase fully fills the
gap, up to a critical Weissenberg number Wi, above which
the system undergoes a transition towards a turbulent state.
Taking into account the classical succession of instabilities
expected with increasing Wi [15,16], from a purely 1D
flow to a nontrivial coherent flow and finally to a turbulent
flow, the stability of the high shear rate phase in the range
Wi, < Wi < Wi, is intriguing. One explanation could be
linked with the fact that instability thresholds strongly
depend on boundary conditions. From the point of view
of the high shear rate phase, the boundary conditions
change with increasing Wi. Indeed, during the shear band-
ing regime, the high shear rate phase is confined between a
rigid wall (the inner rotating cylinder) and the viscous band
that acts as a “‘soft boundary.” In contrast, for Wi = Wi,
the high shear rate phase is in direct contact with the two
rigid walls of the Couette cell. In the same manner as many
other instability examples, we can expect the instability
threshold to be lower for soft boundaries than for rigid
boundaries [26]. A more precise picture following this
trend could be given by an analysis focused on the high
shear rate phase and considering the viscous phase as an
elastic boundary [27]. Strictly, the intermediate stable re-
gime may also suggest that instability in the plateau regime
is due to the interfacial mechanism, and that the bulk
instability of the high shear rate branch for Wi > Wi, is
a classical elastic turbulence. The stability analyses that
uncovered the interfacial mechanism have been performed
in planar geometries. Very recently Fielding extended her
original calculation to Taylor-Couette flow to test the effect
of curvature on the interfacial mechanism [28]. Using a
unique framework, she suggests that both interfacial and
bulk elastic mechanisms could be observed for different
values of streamlines curvature and normal stresses. This
first theoretical work dealing with shear banding and elas-
tic instabilities together predicts that in a curved geometry
similar to ours, the interfacial mechanism is less favorable.
In conclusion, our findings establish clearly that elastic
instabilities and shear banding are a lot more intertwined
than presupposed. These findings, together with the most
recent theoretical studies, now rationalize 3D disturbances
during shear banding in flows with curved streamlines as
being driven by elastic instability.
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