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The next generation of weak lensing surveys will trace the growth of large scale perturbations through a

sequence of epochs, offering an opportunity to test general relativity on cosmological scales. We review in

detail the parametrization used in MGCAMB to describe the modified growth expected in alternative

theories of gravity and generalized dark energy models. We highlight its advantages and examine several

theoretical aspects. In particular, we show that the same set of equations can be consistently used on

superhorizon and subhorizon linear scales. We also emphasize the sensitivity of data to scale-dependent

features in the growth pattern, and propose using principal component analysis to converge on a practical

set of parameters which is most likely to detect departures from general relativity. The connection with

other parametrizations is also discussed.

DOI: 10.1103/PhysRevD.81.104023 PACS numbers: 04.25.Nx, 04.50.�h, 98.80.�k

I. INTRODUCTION

Future weak lensing surveys, like the Dark Energy
Survey (DES) [1], Large Synoptic Survey Telescope
(LSST) [2], and Euclid [3] will measure lensing shear
and galaxy counts at a sequence of redshifts, effectively
mapping the evolution of the matter and metric perturba-
tions. Much like the table top and solar system tests of
general relativity (GR) [4], this will offer an opportunity to
verify Einstein’s equations that specify the way in which
the matter, the gravitational potential and the space curva-
ture are related to each other, and thus test the validity of
GR on cosmological scales [5,6].

Several parametrizations of modified growth have been
proposed in the literature [7–15] and they can be separated
into two types. The first type [7,8,10,14], which can be
called ‘‘trigger’’ parameters, are directly derived from
observations with no need to evolve growth equations of
motion. They are designed to detect a breakdown of the
standard model, but their values do not necessarily have a
physical meaning in any theory. The second type [9,11–
13,15,16] can be called ‘‘model’’ parameters. They have
physical meanings and unique values in specific modified
gravity theories and can be used to define a consistent set of
equations with which to compare theoretical predictions to
observations. Theoretical predictions for these parameters
in modified gravity and general dark energy models are
studied in [17].

Eventually, it will be possible to simultaneously fit a
given parametrization to a combination of all data that
probe the growth: CMB, weak lensing, galaxy counts,
and peculiar velocities. One then needs a system of equa-
tions that is meaningful across a wide range of scales and
redshifts. Since trigger parameters are constructed out of
specific types of observables, they can lead to unnecessary

complications and inconsistencies if used as model pa-
rameters for calculating predictions for other types of
data. Also, the evolution of perturbations on superhorizon
scales is governed by a set of consistency conditions which
are separate from the subhorizon dynamics. Namely, as
shown in [18,19], in the absence of entropy perturbations,
the space curvature defined on hyper-surfaces on uniform
matter density, � , must be conserved on scales outside the
horizon in order to be consistent with the overall expansion
of the universe. Hence, a consistent system of equations
should decouple the super- and subhorizon regimes. This
separation of scales is made explicit in the parametrized
post-Friedmann (PPF) framework of [12], where a differ-
ent systems of equations are used on superhorizon and
subhorizion scales. The advantage of the method advo-
cated in this paper and used in MGCAMB [15,20] is that it
employs a single system of equations across all linear
scales, without sacrificing any of the important consistency
conditions. The superhorizon and subhorizon evolution
decouple naturally, without having to be explicitly
separated.
In principle, any modification of gravity can be formally

described in terms of an effective dark energy fluid. We
show that, by construction, our system of equations auto-
matically conserves the energy-momentum of this fluid.
Furthermore, the same condition that insures conservation
of � outside the horizon implies adiabaticity of the effec-
tive fluid perturbations.
Aside from the consistency of the modified growth

parametrization, an equally desired property is its simplic-
ity. Onewants to strike a balance between working with the
fewest number of parameters possible, yet still having
enough flexibility in the model to capture most of the
significant information contained in the data. We show
how one can determine the optimal number of parameters
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based on a principal component analysis (PCA), such as
one performed in [21].

The rest of the paper is organized as follows. In Sec. II
we present a system of equations to evolve linear pertur-
bations in a general theory of gravity, demonstrate their
consistency across all linear scales, and discuss their inter-
pretation in terms of an effective dark energy. Section III
discusses a strategy for finding an optimal number of
parameters. In Sec. IV we discuss the connection of our
method to other parametrizations in the literature. We
summarize in Sec. V.

II. PARAMETERIZED EVOLUTION OF LINEAR
PERTURBATIONS IN A GENERAL THEORY OF

GRAVITY

In order to test gravity against the growth of cosmologi-
cal perturbations in a model-independent way, one needs a
set of equations to evolve linear perturbations without
assuming GR. The concept of the universe being described
by a Friedmann-Robertson-Walker (FRW) background
metric with small perturbations on large scales, and with
the matter content that is covariantly conserved, is more
general than GR and we adopt it as our starting point. We
consider scalar metric perturbations about a FRW back-
ground in conformal Newtonian gauge, for which the line
element reads

ds2 ¼ �a2ð�Þ½ð1þ 2�Þd�2 � ð1� 2�Þd~x2�; (1)

where � and � are functions of time and space. We will
work in Fourier space and, for simplicity, only consider
cold dark matter (CDM) in our equations. Our discussion
can be generalized to include baryonic and radiation ef-
fects, which would be important at sufficiently early times.
We assume adiabatic initial conditions and covariant con-
servation of the energy-momentum tensor of matter. At
linear order, the conservation equations in Newtonian
gauge are

�0 þ k

aH
v� 3�0 ¼ 0; (2)

v0 þ v� k

aH
� ¼ 0; (3)

where � is the energy density contrast, v the irrotational
component of the peculiar velocity, and primes indicate
derivatives with respect to lna. In what follows we will
work with the gauge-invariant comoving density contrast

� � �þ 3
aH

k
v; (4)

which is particularly convenient on superhorizon scales to
avoid gauge artifacts.

In order to solve for the evolution of the four scalar
perturbations f�; v;�;�g we need two additional equa-
tions, normally provided by a theory of gravity (such as

GR) which specifies how the metric perturbations relate to
each other, and how they are sourced by perturbations in
the energy-momentum tensor. One can parametrize these
relations as

�

�
¼ �ða; kÞ; (5)

k2� ¼ � a2

2M2
P

�ða; kÞ��; (6)

where M2
P � 1=8�G, and �ða; kÞ1 and �ða; kÞ are generic

functions of time and scale; they will assume an explicit
form once a theory is specified. For instance, equations for
the growth of perturbations have been derived for
Chameleon type scalar-tensor models [22] (such as fðRÞ
[23,24] theories) in [25–30], and for the Dvali-Gabadadze-
Porrati model (DGP) [31] and its higher-dimensional ex-
tensions [32] in [33–37]. Given the linear perturbation
equations for a specific model, it is straightforward to the
determine functions � and � [13,15,37]. In principle, one
could also use the functions � and � to represent dark
energy perturbations [38–41] or cosmological effects of
massive neutrinos [42].
It should be noted that in a general theory of gravity the

superposition principle may not hold. Hence the dynamics
of large scale density fluctuations that one derives by
perturbing the background solution at linear order need
not be the same as the result of averaging over small scale
fluctuations. N-body simulations in scalar-tensor theories
of chameleon type [43–45], such as f(R), and in higher-
dimensional extensions of DGP [46–48] demonstrated that
in those models on large scales one recovers the predic-
tions of linear perturbation theory. However, this need not
hold in all modified gravity model. With this in mind, one
can view � as a purely phenomenological function which
relates � and � and which could be nonlinear in a par-
ticular modified gravity theory. In other words, in a non-
linear theory � may itself be a function of �.
Together, Eqs. (2)–(6) provide a complete system for the

variables f�; v;�;�g. They can be combined into a closed
system for the variables � and v. It is instructive to write
this system of equations in terms of dimensionless quanti-
ties; specifically, we will use � ¼ 3M2

PH
2
0�Ma

�3 and in-

troduce the new variables:

p � k

aH
u � pv Em ¼ �M

a3
E ¼ H2

H2
0

: (7)

Now, combining Eqs. (2)–(6) and substituting the dimen-
sionless variables (7) we obtain the following system of
equations:

1Note that we are now using � instead of � for the ratio of the
potentials in order to avoid confusion with the growth index
parameter � [7,8], and to be consistent with other literature
[11,17].
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�0 ¼ � 9Em

2E ��½1��
� þ ð��Þ0

�� ��þ ½3 H0
H � p2�u

p2 þ 9Em

2E ��
(8)

u0 ¼ �
�
2þH0

H

�
u� 3

2

Em

E
��: (9)

Given the functions � and �, Eqs. (8) and (9) can be
integrated numerically to find � and u. The potentials �
and � can then be determined from (5) and (6).

Equations (8) and (9) hold for any k, and can be used to
evolve cosmological perturbations from superhorizon to
subhorizon linear scales if �ða; kÞ and �ða; kÞ are pro-
vided. As we will show, these equations automatically
ensure that the evolution of perturbations outside the hori-
zon is independent of� up toOðp2=�	Þ terms, as required
by the consistency with the FRW background (15).

A. The �CDM limit

In the �CDM model, � ¼ 1 ¼ �, and Eqs. (8) and (9)
simplify to

�0 ¼ 3H0
H � p2

p2 þ 9Em

2E

u (10)

u0 ¼ �
�
2þH0

H

�
u� 3

2

Em

E
�: (11)

At epochs when the radiation component can be ignored,
3ðH0=HÞ ¼ �9Em=ð2EÞ and Eq. (10) becomes

�0 ¼ �u: (12)

Combined with (11), this gives the usual second order
equation

�00 þ
�
2þH0

H

�
�0 � 3

2

Em

E
� ¼ 0 (13)

which is scale-independent. In a modified gravity, how-
ever, the time evolution of � will be scale dependent for a
general � and �. In particular, it will be scale dependent
even if� and � depend only on time, as long as�0 � 0, as
can be noticed from (8).

B. Superhorizon evolution

The consistency of the long wavelength perturbations
with the FRW background requires that

� 0 � ð�� 3�Þ0 ¼ Oðp2Þ; (14)

on superhorizon scales (p ¼ k=ðaHÞ � 1) for adiabatic
perturbations [18,19], where � is the curvature perturbation
on hypersurfaces of uniform density [49]. As pointed out in
[18], Eq. (14) follows directly from matter conservation
[Eq. (2)], as long as the kv=ðaHÞ term is Oðp2Þ (which is
the case in GR and in all viable gravity models considered
in the literature). The superhorizon conservation of � im-

plies a second order differential equation for the metric
potentials [19,50]:

�00 þ�0 �H00

H0 �
0 þ

�
H0

H
�H00

H0

�
� ¼ Oðp2Þ: (15)

Therefore, once a relation between the two potentials is
specified, i.e. once � is given, Eq. (15) is sufficient to solve
for the evolution of superhorizon scale metric perturba-
tions. Then Eq. (14) and the superhorizon limit of Eq. (3)
can be used to infer � and v.
In a multifluid system, the curvature perturbation on the

uniform-total-density hypersurface, � , remains constant on
superhorizon scales if the uniform-density hypersurfaces
for the different fluids coincide on superhorizon scales, i.e.
if we have adiabatic initial conditions for the multifluid
system. Since we are mostly interested in structure forma-
tion during matter domination and later, we take � ¼ �m,
and analyze the SH behavior of � in our framework (2)–(6).
It is straightforward however to generalize the following
discussion to the multifluid case.
It is easy to see that Eq. (15) follows from the set of

Eqs. (8) and (9) as long p2=ð��Þ ! 0 in the small p limit.
Ideed, for p � 1, Eqs. (8) and (9) become

�0 ¼ ��

�
1� �

�
þ ð��Þ0

��

�
þ 2

3

H0H
��Em

u (16)

u0 ¼ �
�
2þH0

H

�
u� 3

2

Em

E
��: (17)

Combining them into a second order equation for �, and
using Eq. (6), we obtain

�00 þ
�
2
�0

�
�H00

H0 þ
1

�

�
�0

þ
�
�00

�
�H00

H0
�0

�
þ

�
H0

H
�H00

H0

�
1

�

�
� ¼ O

�
p2

��

�
: (18)

This equation is equivalent to Eq. (15), after Eq. (5) is used
to express � in terms of �, as long as �� does not
approach 0 faster than p2. This requirement is likely to
be satisfied in any reasonable model, given that � ¼ � ¼
1 in GR, and radical deviations from GR are typically
discouraged by the data. Equations (2)–(6) are imple-
mented in MGCAMB in synchronous gauge, and their super-
horizon consistency was demonstrated in [15].
Equation (18) shows that in our framework the super-

horizon evolution of � and � is independent of �.
Equation (14) implies that this is also the case for the
evolution of � in the Newtonian gauge. On the other
hand, � and �0 appear explicitly in Eqs. (16) and (17),
and it may seem that � could affect the evolution of
superhorizon sized perturbations. For instance, Eq. (16)
implies that if one sets � ¼ 1 and �0 > 0, the growth of
� will be suppressed. One way to see that this does not
amount to an inconsistency with Eqs. (15) and (18) is to
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observe that � itself is Oðp2Þ on superhorizon scales.2

Hence, whatever impact � has on the superhorizon evolu-
tion of � can only be of order Oðp2Þ and, therefore, is
unobservable—it is completely hidden by cosmic variance.
We demonstrate this with an explicit example in a separate
subsection.

C. Subhorizon evolution

For p � 1 Eqs. (8) and (9) become

�0 ¼ �u (19)

u0 ¼ �
�
2þH0

H

�
u� 3

2

Em

E
��: (20)

They can be combined into a second order equation:

�00 þ
�
2þH0

H

�
�0 � 3

2

Em

E
�� ¼ 0; (21)

which has the same form as (13) except for the rescaling of
the Newton’s constant by�. Therefore, the growth of � on
subhorizon scales is directly affected by �ða; kÞ, and is
independent of �.

D. An example

Let us consider a toy example to illustrate the theoretical
arguments made in the previous subsections. We choose
� ¼ 1 and a scale-independent form of �:

�ðzÞ ¼
�
1þ�0

2

�
þ

�
1��0

2

�
tanh

�
z� zs
�z

�
; (22)

which describes a transition from � ¼ 1 at z > zs to � ¼
�0 at z < zs, with a width set by �z. We set�0 ¼ 2, zs ¼ 1
and �z ¼ 0:1. Note that the transition in � occurs on all
scales, including those outside the horizon. If we interpret
� as a rescaling of Newton’s constant, such a superhorizon
variation is technically inconsistent with the Friedmann
equation which sets the relation between the background
metric and the background density. We choose this un-
physical example on purpose, to demonstrate that, because
Eqs. (2)–(6) are by design consistent with the background
expansion on SH scales, the superhorizon variation in � is
undetectable (as expected from the arguments in the pre-
vious subsections). On subhorizon scales, however, in-
creasing the value of � should result in enhanced
clustering.

In Fig. 1 we plot the gauge-invariant growth factor

Gðk; aÞ � �ðk; aÞ=a
�ðk; aiÞ=ai ; (23)

where ai is the scale-factor at some initial time. We con-
sider four values of k, ranging from 0.1 to 10�4 h=Mpc.
The �CDM solution is scale-independent, as expected
from Eqs. (11) and (12), and is shown in the red solid
line. However, the evolution becomes scale dependent for
�ðzÞ � 1, and the dashed and dotted blue lines show the
solution for the four different scales in the case of � given
by (22). One can notice an almost scale-independent en-
hancement of growth for subhorizon modes (k ¼ 0:1 and
0:01 h=Mpc) at z < zs as expected from Eq. (21). On other
hand, the modes that were fully (k ¼ 10�4 h=Mpc) or
partially (k ¼ 10�3 h=Mpc) outside the horizon when �
began growing, experience a suppression, as expected from
(16) for�0 > 0. This suppression is not observable because
� is Oðp2Þ for small p and is completely dominated by
cosmic variance. This is demonstrated explicitly in Fig. 2,
where we plot the gauge-invariant matter power spectrum
PðkÞ / �2, along with the associated cosmic variance.
On superhorizon scales, the metric perturbations � and

� determine observables such as the CMB temperature
fluctuations. Figure 3 shows the evolution of
�ðk; aÞ=�ðk; aiÞ for the model (22) studied in this sub-
section. The red solid line is the scale-independent�CDM
solution. The effect of the transition in � is profound on
subhorizon scales, but becomes smaller on larger scales,
and eventually disappears for superhorizon scales. The
independence of the SH evolution of the potentials on �
is physically expected; the Poisson equation indeed should
not play a role on SH scales, where the evolution of� and
� is uniquely determined as a function of � (15).

FIG. 1 (color online). The growth factor, ð�ðk; aÞ=aÞ=
ð�ðk; aiÞ=aiÞ, for the wave numbers: k ¼ 0:1 (dotted line),
0.01 (long-dashed line), 10�3 (short-dashed line), and 10�4

(dot-dashed line) h/Mpc as a function of a for �ðzÞ given by
(22). The red solid line is the �CDM solution, identical for each
k. Note the approximately scale-independent enhancement for
subhorizon modes (k ¼ 0:1 and 0:01 h=Mpc) at z < 1 due to a
rescaling of Newton’s constant by �. The long wavelength
modes (k ¼ 10�3 and k ¼ 10�4 h=Mpc) experience a suppres-
sion as expected from (16) for �0 > 0. However, because � is
Oðp2Þ for small k, this suppression is concealed by cosmic
variance as illustrated in Fig. 2.

2It is well-known that in synchronous gauge � is Oðp2Þ on
large scales [51]. There the remaining gauge freedom is used to
set v ¼ 0 for CDM, so the synchronous gauge � is the same as
�.
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E. The effective dark fluid interpretation

In an alternative gravity model, the Einstein equation
can in general be written in terms of a functional of the
metric, i.e. E½g�	� ¼ 8�GT�	. In the GR case E½g�	�
corresponds to the Einstein tensor G�	. One can always

interpret the additional terms in E½g�	� as contributions

from the energy-momentum tensor of an effective dark
fluid. That is, formally we can always write

E½g�	� ¼ G�	 � 8�GTeff
�	 ¼ 8�GT�	: (24)

In general, such a fluid will be imperfect, and its scalar
perturbations will be characterized by a density contrast,
velocity potential, pressure and a shear stress. Since the
Bianchi identity is a geometrical property of the Riemann
tensor, the contracted Bianchi identity

D�G�	 ¼ D�ðR�	 � 1
2g�	RÞ ¼ 0 (25)

holds independently of the form of the gravitational action
at all orders in perturbation theory. It is common to asso-
ciate the contracted Bianchi identity with the diffeomor-
phism invariance of the action and with the conservation of
energy-momentum of matter fields. Indeed, applying the
contracted Bianchi identity to the Einstein equations in
GR, one automatically obtains the covariant conservation
of the energy-momentum tensor. Namely,G�	 ¼ 8�GT�	

together with (25) implies D�T�	 ¼ 0. Similarly, if we

assume D�T�	 ¼ 0,3 as we did earlier, then the effective

fluid will also be covariantly conserved at all orders in
perturbation theory.
With two equations provided by the conservation of Teff

�	,

at the linear level in scalar perturbations we have two
remaining degrees of freedom required to specify the
evolution of the dark fluid. These can be interpreted as
the shear stress and the sound speed, which in our parame-
trized formalism of Eqs. (2)–(6) can be determined once
the functions �ða; kÞ and �ða; kÞ are specified. By con-
struction, Teff

�	 will be conserved for any choice of � and �

and the evolution of perturbations in the effective fluid will
be completely determined.
While the conservation of Teff

�	 does not impose any

conditions on � and �, we next show that there will be a
constraint if we further require perturbations of the effec-
tive fluid to be adiabatic. Using the version of (24) linear in
scalar perturbations, the effective energy density and pres-
sure perturbations can be written as

�eff�eff ¼ ���� 2M2
Pk

2

a2
�� 6M2

PH
2ð�0 þ�Þ; (26)

�Peff ¼ ��Pþ 2M2
PH

2

�
�00 þ

�
H0

H
þ 3

�
�0 þ�0

þ
�
2
H0

H
þ 3

�
�þ k2

3
ð���Þ

�
; (27)

where �� and �P are, respectively, the density and pres-
sure perturbation of matter fields. Using Eqs. (5) and (6) we
could further express these effective quantities in terms of
the matter variables, � and�, and their evolution would be
fully specified for given � and �.

FIG. 2 (color online). The matter power spectrum at z ¼ 0 for
�CDM (black solid curve) along with the associated cosmic
variance (blue shaded region), and for the modified gravity (MG)
example of Sec. II D (red dashed curve). Note the potentially
observable enhancement on subhorizon scales, while the sup-
pression due to the superhorizon variation of � is completely
hidden in cosmic variance.

FIG. 3 (color online). The evolution of �ðk; aÞ=�ðk; aiÞ for
the wave numbers: k ¼ 0:1 (dotted line), 0.01 (long-dashed line),
10�3 (short-dashed line), and 10�4 (dot-dashed line) h/Mpc as a
function of a for �ðzÞ given by (22), (as in Fig. 1). The red solid
line is the �CDM solution, which is scale-independent.
Modifying � affects only the modes that cross the horizon.
The superhorizon gravitational potential, as expected, does not
depend on the Poisson equation and, hence, the choice of �.

3This assumption in part follows from our choice to work in
the so-called Jordan frame, in which matter fields follow the
geodesics of the metric. In other words, it amounts to the
assumption that it is possible to write an action in which the
matter Lagrangian is minimally coupled to the metric.
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Taking the superhorizon limit (p � 1) we find

�Peff ¼ c2aðeffÞ��eff þ 2M2
PH

2

�
�00 þ�0 �H00

H0 �
0

þ
�
H0

H
�H00

H0

�
�

�
; (28)

where c2aðeffÞ is the adiabatic speed of sound of the effective
fluid, i.e.

c2aðeffÞ � weff � w0
eff

3ð1þ weffÞ ; (29)

and where we have assumed that matter and the effective
fluid have adiabatic modes on long wavelengths, i.e. that
they share a uniform-density hypersurface.

From Eq. (28) we see that in order for the effective fluid
to have adiabatic pressure perturbations, i.e. �Peff !
c2aðeffÞ��eff on superhorizon scales, one must have

�00 þ�0 �H00

H0 �
0 þ

�
H0

H
�H00

H0

�
� ¼ Oðp2Þ; (30)

which is equivalent to the consistency condition (15),
derived from the conservation of the curvature perturbation
� in absence of entropy perturbations. In the previous
subsection we have demonstrated that Eqs. (2)–(6) satisfy
the superhorizon conservation of � as long as p2=ð��Þ
goes to zero in the p ! 0 limit.

III. HOW MANY PARAMETERS TO FIT?

In the previous section we showed how two functions,�
and �, can be used in a consistent way to parametrize the
linear growth of perturbations in a general modification of
gravity. We have not, however, discussed the actual pa-
rametrization of the functions themselves. This is not an
issue when testing a particular theory, where � and � have
a specific time- and scale-dependence and can be specified
with just a few parameters, e.g. via a direct use of Eqs. (35)
or their equivalent [13,15]. However, one may want to
measure� and � from the data without necessarily assum-
ing a particular class of models. The question then is how
to strike a balance between simplicity, i.e. working with as
few parameters as possible, and allowing for enough flexi-
bility in these functions to capture all of the information
contained in the data.4

For example, one can discretize �ðk; zÞ and �ðk; zÞ on a
grid in ðk; zÞ space and treat the values of the functions at
each grid point, which we will call pixel, as independent
parameters. In some of the earlier literature, � and � (or a

related set of parameters) were taken to be constants, or
have two very wide pixels parameterizing a transition form
GR at early times, to different values today [52]. Scale-
dependent variations have typically not been considered.
This was motivated primarily by simplicity. Namely, the
idea is to start with the simplest possible model and com-
plicate it only if the fitted values of this simple model
parameters shows hints of departure from �CDM.
However, this logic may not always be appropriate in
modified gravity studies and might lead to missing on
important information contained in the data.
Indeed, as was clearly shown in [21], the growth data is

much more sensitive to the shape of the functions �ðk; zÞ
and �ðk; zÞ, especially to their k-dependence, than to their
overall amplitude (or time-dependence). In [21], a princi-
pal component analysis (PCA) was performed to find the
best constrained uncorrelated linear combinations of the
�ðk; zÞ and �ðk; zÞ pixels—the so-called eigenmodes—for
several surveys. For example, the three eigenmodes of �
best constrained by the DES [1] are shown in Fig. 4. Note
that the best constrained mode has a node along the
k-direction, i.e. it is definitely not well approximated by
a constant function of scale. More generally, in [21] the
authors have found that the well-constrained modes of �
and� for several surveys display a non trivial pattern in the
k direction, with no eigenmodes that have no nodes.
It is instructive to compare this with the findings of a

PCA analysis on the dark energy equation of state wðzÞ
[53,54]. In general,w is a time-dependent function, and the
simplest parametrization is that of a constant w. As it was
found in [53,54], almost every best constrained mode of w
forecasted for different surveys has no nodes in z, as shown
in Fig. 5. This means that observables are indeed most
sensitive to an average value of w and one can expect the
tightest constraints on wðzÞ when fitting a constant w, with
constraints on variations in w being weaker.
This is not the case for the functions �ðk; zÞ and �ðk; zÞ,

especially in regard to their scale-dependence. Because of
degeneracies with other parameters such as the�m, w, and

8, the growth observables are rather insensitive to the
average values of�ðk; zÞ and�ðk; zÞ over scale, and not too
sensitive to their time-dependence. On the contrary, data is
rather sensitive to their scale-dependence, as shown clearly
by the modes of Fig. 4. This is not surprising—for ex-

FIG. 4 (color online). The three best constrained eigenmodes
of � for DES, adapted from Ref. [21].

4The discussion of this section is specific to model parameters
and does not apply to triggers, which will be considered in
Sec. IV. Triggers are reconstructed directly from data, so there
is no control on their form. However, depending on their defi-
nition they might capture or not some important features in the
data.
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ample, redshift surveys primarily constrain the shape of the
power spectrum PðkÞ, with the amplitude being degenerate
with other parameters.

The above arguments prove that when fitting�ðk; zÞ and
�ðk; zÞ to data, it is important for their parametrization to
be flexible enough to allow for some scale-dependence.
Otherwise, we would not be exploiting the true discovery
potential of the data, and might risk to miss on detecting
departures from �CDM.

Still, while allowing for scale dependence, one needs to
choose an optimal pixelization, and the PCA method can
be of help once again. Indeed, it allows to determine the
optimal number of pixels necessary to extract most of the
information from the data. Having too many pixels makes
the fitting to data numerically difficult, while having too
few may lead to misleading results. A reasonable way to
arrive at the optimal number, would be to perform a Fisher
matrix forecast using the specifics of the particular survey,
such as DES and LSST, and then perform a PCA on the
Fisher matrix. The best constrained eigenmodes can then
suggest the minimal number of pixels needed to describe
them. For example, the eigenmodes shown in Fig. 4 sug-
gest that one should allow for the pixelization of � to have
at least two k-intervals, so that it can describe a potential
variation at �0:1 h�1 Mpc. They also suggest that data
cannot constrain sharp transition in time, and one can
have a single redshift pixel, with the transition at z� 1:5.

IV. CONNECTION WITH OTHER
PARAMETRIZATIONS

Several alternative parametrizations of modified linear
growth have been proposed in the literature and they can be
divided into two types. The first type consist in parameters
that can be called triggers [7,8,10,14]. They can be derived
directly from observations, with no need to evolve growth
equation. Any disagreement between the observed trigger
parameter and its value in the �CDM model would in-
dicate some sort of a modification of growth. The second
type consists of parameters and/or functions which can be
called model parameters and are introduced to play a role

similar to our functions � and �. Namely, they are used to
build a system of equations for the evolution of metric and
density perturbations. Unlike the trigger types, which are
directly calculated from the observables, the model pa-
rameters are measured by fitting the model that they define
to data. Both types of parameters have their purpose.
Working with functions like� and� gives one a consistent
set of equations with which to compare theoretical predic-
tions to observations. A measurement of a particular form
of scale- or time-dependence of these functions could
directly rule out, or point to a theory. The trigger parame-
ters, on the other hand, are designed to detect a breakdown
of the standard model, but their value does not necessarily
have a physical meaning in any theory.
For example, the commonly used trigger parameter �

[7,8] is defined via

f � d

d lna

�
ln
�ðk; aÞ
�ðk; aiÞ

�
¼ �mðaÞ�; (31)

where�mðaÞ ¼ Em=E. As shown in [7], � ¼ 6=11 � 0:55
provides a solution to Eq. (13) if one neglects terms
O½ð1� fÞ2� (or O½1��mðaÞ�2). Since most of the infor-
mation on linear clustering is expected to come from
epochs before the matter-� equality, the approximation
involved in this parametrization is not unreasonable. In
principle, f can be extracted by observing clustering at
several redshifts, while �mðaÞ can be measured from
background expansion probes, like CMB and supernovae.
Then a significant deviation of the observed � from its
predicted value of 0.55 would indicate a breakdown of
�CDM.
The trigger parameters, such as � can in principle be

used also as model parameters. For example, given �, one
can integrate Eq. (31) to find �. To find the gravitational
potentials � and �, their relation to each other and to �
must be specified additionally. In other words, one needs to
provide a total of three functions instead of two (e.g.� and
� introduced earlier), or assume that one or more of the
Einstein equations are valid. By working with �, one
essentially no longer assumes conservation of matter
energy-momentum. Alternatively, one can use Eqs. (21)
(since � is only meant to be used to characterize the growth
on subhorizon scales) and (31) to express � in terms of �:

� ¼ 2

3
���1

m ðaÞ
�
��

mðaÞ þ 2þH0

H
� 3�þ �0 lnð�Þ

�
:

(32)

Then, for a given �, and with an additional specification of
�, one can use (32) in Eqs. (2)–(6) to find consistent
solutions for the linear perturbations. Note that with � ¼
6=11 substituted into (32),� is not a constant, but a slowly
varying function evolving from� ¼ 1 during matter domi-
nation to � � 1:04 today (for standard �CDM parame-
ters) due to the O½ð1� fÞ2� corrections.

FIG. 5 (color online). The best measured eigenmodes of w
from SNe (black solid line), CMB (red dash line), galaxy counts
(green dash-dot line), weak lensing (blue dash-dot-dot line) and
combined (magenta short dash line). This forecast result is
adapted from Ref. [54].
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Given that trigger parameters are designed in terms of a
specific observable and for a limited purpose, they can lead
to unnecessary complications and inconsistencies if used
as model parameters for calculating predictions for other
types of data. When performing a global fit to all available
data, one needs a consistent system of equations for cal-
culating predictions for all of the observables: CMB, weak
lensing, galaxy counts, and peculiar velocities.

As discussed above, in addition to the conservation of
energy-momentum one needs to specify two functions
relating � to the potentials, and the two potentials to
each other. The actual choice of the two relations that
define such two functions is no unique. However, working
with � (5) and � (6) has certain advantages. One is that on
superhorizon scales only � affects the perturbations, while
� naturally becomes irrelevant. Also, on subhorizon
scales, only � affects the growth of matter over-densities.
The physics determining the evolution of perturbations on
superhorizon scales is not necessarily related to their sub-
horizon dynamics. This distinction is made explicit in the
parameterized post-Friedmann (PPF) framework of [12],
where different systems of equations are used on
superhorizon and subhorizon scales. On superhorizon
scales one must provide only g ¼ ð1� �Þ=ð1þ �Þ, while
on subhorizon scales one needs g and fG � �1�
a2��=ðM2

Pk
2ð�þ�ÞÞ. A transition between the two re-

gimes needs to be additionally specified in a way that is
consistent with the conservation of energy-momentum.
The advantage of the PPF is that it does not need even
weak assumptions on g and fG in order to satisfy the
consistency conditions, while our � and � technically
must obey p2=ð��Þ ! 0 for small p. The latter, however,
is an extremely mild assumption, that is likely to be sat-
isfied in any reasonable modified gravity theory. In turn,
the benefit of our approach is that one evolves the same
system of equations on all linear scales, with no need for an
additional transition function.

Sometimes, it is convenient to define the function
�ðk; aÞ

�ða; kÞ � � k2M2
Pð�þ�Þ
�a2�

¼ ð1þ �Þ
2

�; (33)

which is directly related to the lensing potential �þ�
(much like fG in PPF). As such, weak lensing (WL)
measurements are sensitive to � as well as the integrated
Sachs-Wolfe effect (ISW), which is determined by the time
variation of the lensing potential. Thus � is more directly
constrained by these observations than � or �. Another
advantage of this function is that in the popular scalar-
tensor/chameleon theories, as well as in higher-
dimensional theories, such as DGP [31], this function
assumes a simple expression and is effectively 1 on small
scales [17]. Specifically, in chameleon-type theories in
which the scalar field � couples to CDM with a coupling
�ð�Þ one has

�ða; kÞ ¼ m2a2 þ ð1þ 1
2�

2
�Þk2

m2a2 þ k2
e��ð�Þ=MP (34)

�ða; kÞ ¼ m2a2 þ ð1� 1
2�

2
�Þk2

m2a2 þ ð1þ 1
2�

2
�Þk2

; (35)

where �� � d�=d� and m is a time-dependent effective

mass scale. Note that both � and � are functions of time
and scale. On the other hand, � is only a function of time:

�ða; kÞ ¼ e��ð�Þ=MP: (36)

In the DGP model and its higher dimensional generaliza-
tions we have [37]

�ða; kÞ ¼ 1

1þ ða=krcÞ2ð1��Þ (37)

where rc is a characteristic length scale of the model, while
� ¼ 1=2 for DGP and 0 for two or more extra-dimensions.
Since on superhorizon scales one function is sufficient to
fully describe the evolution of perturbations, it is best to
use � in pair with �, and not with �. This way, it will
automatically becomes negligible on superhorizon scales
and � will be the only important function.
In Caldwell et al. [9] the authors introduced what they

called the gravitational slip, i.e. a function $ parametriz-
ing the difference between the gravitational potentials as

$ � �

�
� 1 ¼ 1� �

�
: (38)

It should be used in combination with another function
parametrizing the relation of metric potentials to matter
density contrast, e.g. �. Also, generally one should allow
for it to be scale dependent.
Amendola et al. [11] use a function equivalent to$ (38)

in combination with either � (33) or Q, defined as

Q � � k2M2
P�

�a2�
¼ �� ¼ 2��

1þ �
: (39)

As for �, an appropriate pair to describe modified growth
would be ðQ;�Þ.
Different observables will probe different combinations

of the density contrast and metric potentials corresponding
to one or more of the parametrizing functions. For example
clustering, i.e. the growth of�, responds to the potential�,
and therefore to the function�. However, it is also affected
by the magnification bias, i.e. the lensing of the clustering
pattern of the background sources by the intervening gravi-
tational potentials. Hence, any realistic observation of
clustering will be sensitive also to � (and hence �) as
well as �. Weak lensing and the ISW effect probe the sum
of the potentials (�þ�) and, therefore, are directly re-
lated to the function�; of course they also constrain� and
�, with stringent constraints on� as shown in [21]. Finally,
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peculiar velocities respond directly to the potential �,
therefore to the function �.

In summary, given that two functions are necessary to
parametrize departures from LCDM in the growth pattern,
one needs to decide which pair among the several functions
described above, is best suited for a given analysis and for
presenting the corresponding results. Our choice of the pair
ð�;�Þ has been guided by the fact that on superhorizon
scales � naturally becomes irrelevant and we are left with
only one function, �, as expected on those scales. Notice
also the importance of� being defined through the Poisson
equation involving � and not �; this allows for � to be
defined consistently on all scales and to go exactly to unity
on all scales for LCDM. From ð�;�Þ, we can derive other
parameters which may be more suitable for interpreting
observational constraints. For example, we can choose to
describe departures from GR in terms of ð�; �Þ because
WL measurements and the ISW effect are sensitive to �,
and � can be determined from peculiar velocity measure-
ments, while � is not probed directly by any observable
and would be highly degenerate with � or �.

V. SUMMARY

As of today, the cosmological concordance model,
�CDM, provides a good fit to all available observations.
However, upcoming and future weak lensing surveys will
bring a significant improvement in cosmological data sets
and will offer an unprecedented opportunity to test GR on
cosmological scales. As demonstrated in [21], the currently
available clustering information pales in comparison to
what we will learn from a survey like LSST. A number
of alternative gravity theories that are currently indistin-
guishable from �CDM will be tested, potentially provid-
ing clues about the physics causing cosmic acceleration.
Even if no hints of new physics are observed, at the very
least we can directly confirm the validity of GR at epochs
and scales on which it has not been tested before.

This paper is a step towards building an optimal frame-
work for testing GR. We showed how a single system of
equations can be used consistently to evolve perturbations
across all linear scales. These equations are implemented
in MGCAMB [15,20], a publicly available modification of
CAMB [55], which can be used to evaluate CMB, weak

lensing, number counts, and peculiar velocities spectra for
a choice of functions � and �. We have also argued, based
on the scale- and redshift-dependent patterns of the best
constrained eigenmodes, that future surveys will primarily
probe the scale-dependence, and not so much the overall
normalization or the time-dependence of these functions.
Hence, in order to fully exploit the discovery potential of
data, parametrized modifications of gravity must allow for
scale-dependence.
While we have not addressed it in this paper, the galaxy

counts only trace the underlying density field up to a bias
factor. As explained in [56], any scale-dependence in the
linear growth, will result in a scale-dependence of the
linear bias. The latter however, is directly related to the
scale-dependence of �ðk; zÞ and therefore can be deter-
mined once �ðk; zÞ is specified.
Most of the clustering information comes, and will

continue to come, from scales that have crossed into the
nonlinear regime, not described by the linear parametriza-
tion of Sec. II. One could test gravity on nonlinear scales
by designing trigger parameters that would indicate a
breakdown of GR. Alternatively, N-body simulations and
higher order perturbative expansions [57] can be used to
constrain particular types of modified gravity theories [58].
The precise accuracy of the tests will strongly depend on

the ability to control the systematic effects, and their extent
will not be fully known until experiments begin operating.
Some preliminary estimates of the effect of systematics on
cosmological test of GR have been reported in [21] and a
more comprehensive analysis will be presented in [59].
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