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We test general relativity (GR) using current cosmological data: the CMB from WMAP5 [E. Komatsu

et al. (WMAP Collaboration), Astrophys. J. Suppl. Ser. 180, 330 (2009)], the integrated Sachs-Wolfe

(ISW) effect from the cross correlation of the CMB with six galaxy catalogs [T. Giannantonio et al., Phys.

Rev. D 77, 123520 (2008)], a compilation of supernovae (SNe) type Ia including the latest Sloan Digital

Sky Survey SNe [R. Kessler et al., Astrophys. J. Suppl. Ser. 185, 32 (2009).], and part of the weak lensing

(WL) data from the Canada-Franco-Hawaii Telescope Legacy Survey [L. Fu et al., Astron. Astrophys.

479, 9 (2008); M. Kilbinger et al., Astron. Astrophys. 497, 677 (2009).] that probe linear and mildly

nonlinear scales. We first test a model in which the effective Newtonian constant� and the ratio of the two

gravitational potentials, �, transit from the GR value to another constant at late times; in this case, we find

that GR is fully consistent with the combined data. The strongest constraint comes from the ISW effect

which would arise from this gravitational transition; the observed ISW signal imposes a tight constraint on

a combination of � and � that characterizes the lensing potential. Next, we consider four pixels in time

and space for each function � and �, and perform a principal component analysis, finding that seven of

the resulting eight eigenmodes are consistent with GR within the errors. Only one eigenmode shows a 2�

deviation from the GR prediction, which is likely to be due to a systematic effect. However, the detection

of such a deviation demonstrates the power of our time- and scale-dependent principal component analysis

methodology when combining observations of structure formation and expansion history to test GR.

DOI: 10.1103/PhysRevD.81.103510 PACS numbers: 98.80.Es, 04.80.Cc

I. INTRODUCTION

As cosmological observations improve, new possibil-
ities arise for testing the physics that governs the evolution
of our Universe. Precise all-sky measurements of the CMB
by the Wilkinson Microwave Anisotropy Probe (WMAP)
satellite [1] have established that cosmic structure devel-
oped from a nearly scale-invariant initial spectrum of
adiabatic fluctuations [2]. Baryon acoustic oscillations
from the Sloan Digital Sky Survey (SDSS) [3] and growing
catalogs of supernovae (SNe) [4], in combination with the
CMB, have tightened the constraints on the background
expansion history, indicating a strong preference for the
cosmological concordance model, �CDM. Correlating the
CMB anisotropies from WMAP with wide-sky catalogs of
galaxy counts has made it possible to detect the integrated
Sachs-Wolfe (ISW) effect [5,6], obtaining independent
evidence for the accelerating expansion of the Universe
[7,8]. Weak lensing (WL) measurements by surveys such
as COSMOS [9,10] and the Canada-Franco-Hawaii
Telescope Legacy Survey (CFHTLS) [11,12] have af-
forded the use of shear correlation functions and power
spectra in order to test cosmology.

In parallel, the problem of cosmic acceleration has
motivated explorations of new theoretical ideas, including

the possibility that general relativity (GR) may be modified
on large scales. Anticipating the substantial improvement
in cosmological data sets that is expected with surveys
such as the Dark Energy Survey [13], Pan-STARRS [14],
the Large Synoptic Survey Telescope [15], and Euclid [16],
model-independent frameworks for testing GR against ob-
servations of the growth of cosmic structures have been
developed [17–26]. Recently, there has been progress to-
wards a consensus on what properties such a framework
should have [21,25,26]. First, it should be general; i.e. it
should be able to describe a wide range of modified gravity
models. Second, it should not violate the consistency of
superhorizon-sized perturbations with the background ex-
pansion. Third, it should involve as few parameters as
possible, while still being flexible enough to capture
most of the significant information contained in the data.
A good pragmatic starting point is to look for evidence

of departures in the fundamental relationships among the
perturbative fields familiar in cosmology: matter-density
and velocity perturbations, and the metric perturbations
[19,27–29]. It is commonly agreed that one needs two
general functions of scale and time, in addition to the
conservation of energy-momentum, to specify the evolu-
tion of the linear perturbations. For example, one can
introduce �, relating the gravitational potential to the
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density contrast, and �, which relates the gravitational
potential to the spatial curvature. Given these functions,
it is possible to calculate the cosmological perturbations
and all the observables with a full Boltzmann integration
code, such as MGCAMB [25,26].

The actual parametrization of the functions has not yet
been researched as fully. The goal is to strike a balance
between simplicity, i.e. working with as few parameters as
possible, and allowing for enough flexibility in these func-
tions to capture all of the information contained in the data.
For example, one can discretize �ðk; zÞ and �ðk; zÞ on a
grid in ðk; zÞ space and treat their values at each grid point,
which we will call pixels, as independent parameters [30].
Motivated by simplicity, one might wish to start with the
simplest possible model, such as constant values of � and
�, and add complexity only if the fitted parameter values of
this simple model show hints of departure from �CDM.
However, this logic may not work in modified gravity
studies and might lead to missing important information
contained in the data. As the principal component analysis
(PCA) in [30] shows, the shapes of the well-constrained
eigenmodes suggest a higher sensitivity to scale-dependent
features in � and �, compared to their average values or
the time dependence.

In this work, we first use a Fisher forecast-based PCA to
determine the minimum number of pixels necessary to
describe the shape of the best constrained eigenmodes of
� and �. We then use a Monte Carlo Markov Chain
(MCMC) algorithm to fit these parameters to a combina-
tion of the available data, including CMB, ISW, SNe and
WL, and find constraints on their decorrelated combina-
tions. Throughout the paper we assume that the back-
ground expansion is given by the flat �CDM model,
which is strongly favored by the current constraints on
the expansion history, and look for deviations from its
predictions for the density perturbations. From a theoreti-
cal perspective, flatness is motivated by the inflationary
origin of the Universe, and the viable models of modified
gravity studied in the literature tend to be indistinguishable
from �CDM at the background level.

Other tests of GR have been performed, in which differ-
ent choices were made for the functions � and � (or a
related set of parameters). In [31,32] they were taken to
have a specific form of time dependence, while in [33] they
have a specific form of time and scale dependence; finally,
[32] allowed them to vary in three redshift bins. The results
of these studies show a good consistency with �CDM. To
compare with the results of some of these studies, we
consider a single-transition-in-redshift model in addition
to our scale-dependent PCA method, generally finding a
good agreement with GR. In addition to allowing for scale
dependence, other important differences between our study
and the treatment in [32] include using the ISW cross-
correlation data, using the CFHTLS WL data coming only
from linear and mildly nonlinear scales, and simulta-

neously varying two functions � and �, while [32] varied
them one at a time when working with a three-bin model.
The key conceptual difference from [33] is that we do not
use WL data from a deeply nonlinear regime, and we do
not assume a specific scale and time dependence of the
functions � and �, but rather perform a PCA of their
values on a gird in ðk; zÞ.
We find that the agreement with �CDM is statistically

more significant when no scale dependence is allowed.
After performing a PCA, we find that seven of the eight
eigenmodes are consistent with GR within the errors. One
eigenmode shows a 2� deviation from the GR prediction,
but can be directly traced to a feature in the WL aperture-
mass dispersion spectrum at 120 arcmin, which is most
likely caused by a systematic [34]. However, the detection
of this effect shows the benefits of adopting a more flexible
scale-dependent pixelation of � and �, and demonstrates
that using scale-independent methods could potentially
hinder the detection of new physics, or, as in this case,
simply the better understanding of the data.
The paper is organized as follows. Section II reviews the

data sets used in this work. After describing our parame-
trization in Sec. III, we present the constraints on depar-
tures from GR in Sec. IV, and finally draw conclusions in
Sec. V.

II. OBSERVABLES AND DATA

In this section, we summarize the observables that will
be used to constrain deviations from GR, and explain the
data sets for these observables.

A. Integrated Sachs-Wolfe effect

The ISWeffect [5] is a secondary anisotropy of the CMB
which is created whenever the gravitational potentials are
evolving in time. This is due to the net energy gain that the
CMB photons acquire when traveling through varying
potential wells, and it is therefore a direct probe of the
derivatives of the potentials �, �. In more detail, this
effect generates additional CMB temperature anisotropies
in any direction n̂ given by

�ISWðn̂Þ � �TISW

TISW

ðn̂Þ ¼ �
Z
ð _�þ _�Þ½�; n̂ð�0 � �Þ�d�;

(1)

where � is the conformal time, the dot represents a con-
formal time derivative, and the integral is calculated along
the line of sight of the photon.
A direct measurement of this effect is difficult, due to the

overlap with the primary CMB anisotropies, whose ampli-
tude is at least 10 times bigger. An additional problem is
that the ISW signal is biggest on the largest angular scales,
which are most affected by cosmic variance. It is never-
theless possible to detect this signal by cross correlating the
full CMB with some tracers of the large-scale structure
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(LSS) of the Universe [6]: the primary CMB signal, gen-
erated at early times, is expected to have null correlation
with the LSS, while the ISW anisotropies, produced at low
redshift, correlate with the LSS distributions since they
trace the fluctuations in the potentials.

We can then use a galaxy survey with visibility function
dN=dzðzÞ as a tracer of the LSS, and we can write the
galaxy density fluctuation in a direction n̂1 as

�gðn̂1Þ ¼
Z

bgðzÞdNdz ðzÞ�mðn̂1; zÞdz; (2)

where bg is the galaxy bias and �m the matter-density

perturbation. On the other hand, the ISW temperature
anisotropy in a direction n̂2 is given by

�ISWðn̂2Þ ¼ �
Z

e��ðzÞ d
dz

ð�þ�Þðn̂2; zÞdz; (3)

where e��ðzÞ is the photons’ visibility function and � the
optical depth. After choosing a particular data set for the
CMB and the LSS, we can then define the autocorrelation
and cross-correlation functions as

cTgð#Þ � h�ðn̂1Þ�gðn̂2Þi; (4)

cggð#Þ � h�gðn̂1Þ�gðn̂2Þi; (5)

where � is the full CMB temperature anisotropy and the
averages are calculated over all pairs at an angular sepa-
ration # ¼ jn̂1 � n̂2j. Alternatively, the above calculation
can be written in harmonic space, and the auto- and cross-
power spectra are then derived.

We use the ISW data from [7], which were obtained by
cross-correlating multiple galaxy catalogs with the CMB
maps from WMAP. The data used trace the distribution of
the LSS in various bands of the electromagnetic spectrum,
with median redshifts 0:1< �z < 1:5, and consist of six
catalogs (infrared 2MASS, visible SDSS main galaxies,
luminous red galaxies and quasars, radio NVSS, and x-ray
HEAO1). This is an approximation of a true tomographic
study of the ISW signal.

All maps were pixelated on the sphere, with a pixel size
of 0.9 deg. The measurements were done in real space,
calculating the angular cross-correlation functions (CCFs)
between the maps. These were linearly binned in steps of
1 deg for angles 0 deg � # � 12 deg ; so the data set

consists of 78 points ðcTgi Þobs.
A well-known property of the correlation functions is

that their data points are highly correlated; in this case, in
particular, the high degree of correlation is present also
between data points belonging to different catalogs, due to
the partial overlaps in redshift and in sky coverage of the
sources. For this reason, the full covariance matrix between

all data points Cij is a very important piece of information,

and it was estimated in [7] using several Monte Carlo and
jackknife methods. Here we use the matrix produced with
the most complete technique, a full Monte Carlo method
where both galaxies and CMB maps were simulated and
then correlated to measure the expected noise and
covariance.
The calculation of the likelihood of a particular model

given the ISW data is done as follows. First, the theoretical

CCFs ðcTgi Þtheo and autocorrelation functions (ACFs) are
calculated with a full Boltzmann integration within
MGCAMB, based on the redshift distributions of the sources.

The galaxy bias parameters are assumed to be independent
and constant for each catalog, and are rescaled for each
model imposing that the ACFs on small angular scales
match the observations. Finally, the theoretical CCFs are
multiplied by this rescaled bias to calculate the �2

ISW

distribution, given by

�2
ISW ¼ X

ij

½ðcTgi Þobs � ðcTgi Þtheo�½C�1�ij

� ½ðcTgj Þobs � ðcTgj Þtheo�: (6)

B. Supernovae and cosmic microwave background

For the SNe data, we use the sample combination
labeled (e) shown in Table 4 of [4], which is a compilation
of the SDSS-II SNe sample plus Nearby SNe, ESSENCE,
Supernovae Legacy Survey, and Hubble Space Telescope
(HST). To calculate the SNe likelihood, we use values from
the MLCS2K2 light curve fitter, and marginalize over the
nuisance parameter, which is the calibration uncertainty in
measuring the supernova intrinsic magnitude. Note that [4]
found a discrepancy of the constraints on the FwCDM
model (standard cold dark matter model in a flat
Universe plus a dark energy component with a constant
w) using the two SNe fitters MLCS2K2 and SALT-II.
However, the discrepancy is much smaller (within 1�)
for a flat �CDM model as shown in Tables 13 and 17 in
[4], namely,

�m ¼ 0:312� 0:022ðstatÞ � 0:001ðsystÞ ðMLCS2K2Þ;
�m ¼ 0:279� 0:019ðstatÞ � 0:017ðsystÞ ðSALT-IIÞ:
Since we will assume the background evolution is the same
as that in the flat�CDMmodel, the choice of the SNe fitter
does not affect our final results significantly, but we should
bear in mind that systematic errors are now comparable to
statistical errors in SNe observations.
For the cosmic microwave background data in our

analysis, we use the WMAP five-year data including the
temperature and polarization power spectra [35,36], and
calculate the likelihood using the routine supplied by the
WMAP team.2

1NVSS and HEAO are short for National Radio Astronomy
Observatory Very Large Array Sky Survey and High Energy
Astronomical Observatory, respectively. 2http://lambda.gsfc.nasa.gov/.
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C. Weak lensing

We use the cosmic shear observations from the
CFHTLS-Wide third year data release T0003 [11,37], in
which about 2� 106 galaxies with iAB magnitudes be-
tween 21.5 and 24.5 were imaged on 57 sq deg
(35 sq deg effective area). We use the aperture-mass dis-
persion Map [38] following [11,12]. As in those studies,

one can obtain the relevant �2 by fitting the theory-
predicted aperture-mass dispersion hM2

apitheo given by a

model parameter vector p to hM2
apiobs measured at angular

scales �i,

�2
MapðpÞ ¼

X
ij

ðhM2
apð�iÞiobs � hM2

apð�i;pÞitheoÞ

� ½C�1�ijðhM2
apð�jÞiobs � hM2

apð�j;pÞitheoÞ: (7)

Note that the data covariance matrix C is the one used in
[11,12]; it contains shape noise, (non-Gaussian) cosmic
variance, and residual B modes [34]. Since it is difficult
to model the weak lensing nonlinearity in modified gravity
in a model-independent way [39], we only use the
aperture-mass dispersion data measured between 30 and
230 arcmin, to remove the strongly nonlinear region from
the data. For angles smaller than 300, the difference be-
tween linear and nonlinear predictions becomes greater
than a factor of 2, and we do not wish to suppose that
nonlinear corrections are reliable on smaller scales.

Theoretically, the aperture-mass dispersion is related to
the weak lensing power spectrum via [38]

hM2
apið�Þ ¼

Z d‘‘

2	
P�ð‘Þ

�
24J4ð�‘Þ
ð�‘Þ2

�
2
; (8)

for the choice of filter in [11]; here, the lensing power
spectrum P� is a projection of the 3D matter-density power
spectrum P�, weighted by the source galaxy redshift dis-
tribution and geometric factors, and J
ðxÞ is the Bessel
function of the first kind. To model the redshift distribution
of the galaxies, we follow [11] and use the parametrization

nðzÞ / za þ zab

zb þ c
;

Z zmax

0
nðzÞdz ¼ 1; (9)

where N � fa; b; cg is a set of nuisance parameters to be
marginalized over, and we have imposed Gaussian priors
on them following [11]: a ¼ 0:612� 0:043, b ¼ 8:125�
0:871, c ¼ 0:620� 0:065. The distribution is normalized
by setting zmax ¼ 6. Then we can calculate the �2 for the
redshift uncertainty as

�2
z ¼

X
i

½ni � nðziÞ�2
�2

i

; (10)

where ni is the normalized number of galaxies in the ith
redshift bin and nðziÞ the fitting function, evaluated at the
center of the redshift bin. As described in [11], the uncer-
tainty �i of ni contains Poisson noise, photo-z error, and
cosmic variance, and we neglect the cross correlation

between different bins. Then we obtain the �2 for weak
lensing in the same way as [11],

�2
WL ¼ �2

Map þ �2
z : (11)

D. Further priors

Finally, we impose 1� Gaussian priors on the Hubble
parameter and baryon density of h ¼ 0:742� 0:036 and
�bh

2 ¼ 0:022� 0:002 from the measurements of the HST
[40] and big bang nucleosynthesis (BBN) [41], respec-
tively, and a top hat prior on the cosmic age of 10 Gyr<
t0 < 20 Gyr. The total likelihood is taken to be the product
of the separate likelihoodsL of each data set we used; thus
the total �2 is the sum of separate �2 from individual
observations plus that from the priors if we define �2 �
�2 logL.

III. THE PARAMETRIZATION OF MODIFIED
GROWTH

In order to test gravity against the growth of cosmologi-
cal perturbations in a model-independent way, one needs a
generalized set of equations to evolve linear perturbations
without assuming GR. We work within the framework of
the Boltzmann integrator MGCAMB [25],3 which is a variant
of CAMB [42].4 This is based on a system of equations that
allows for a general modification of gravity at linear order
in the perturbations, while respecting the consistency of the
dynamics of long-wavelength perturbations with the back-
ground expansion [43,44]. An interested reader can find a
detailed discussion of the equations used in MGCAMB and
their comparison with other methods in the literature in
[26].
We consider scalar metric perturbations about a

Friedmann-Robertson-Walker background for which the
line element in the conformal Newtonian gauge reads

ds2 ¼ �a2ð�Þ½ð1þ 2�Þd�2 � ð1� 2�Þd~x2�; (12)

where � and � are functions of time and space. We
assume adiabatic initial conditions and covariant conser-
vation of the energy-momentum tensor of matter. The
matter conservation at linear order provides two equations
which in Fourier space can be written as

�0 þ k

aH
v� 3�0 ¼ 0; (13)

v0 þ v� k

aH
� ¼ 0; (14)

where � is the energy density contrast, v the irrotational
component of the peculiar velocity, and primes indicate
derivatives with respect to lna. In order to solve for the

3http://userweb.port.ac.uk/~zhaog/MGCAMB.html.
4http://camb.info/.
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evolution of the four scalar perturbations f�; v;�;�g, we
need two additional equations, provided by a theory of
gravity (such as GR), which specify how the metric per-
turbations relate to each other, and how they are sourced by
the perturbations of the energy-momentum tensor. One can
parametrize these relations as

�

�
¼ �ða; kÞ; (15)

k2� ¼ �4	Ga2�ða; kÞ��; (16)

where � is the gauge-invariant comoving density contrast
defined as

� � �þ 3
aH

k
v; (17)

�ða; kÞ ¼ �ða; kÞ ¼ 1 in GR, while in an alternative
model � and � can, in general, be functions of both time
and scale [24,25,45].

Defining � and � in this particular way makes
Eqs. (13)–(16) consistent on all linear scales. As shown
in [26], on superhorizon scales � naturally becomes irrele-
vant and we are left with only one function, �, as expected
from the superhorizon consistency conditions [43,44].
Also, having � defined through the Poisson equation in-
volving �, as opposed to �, allows for � to be equal to
unity on all scales for GR.

From f�;�g, we can derive other parameters which may
be more suitable for interpreting observational constraints.
For example, since we are using WL and ISWobservations
in this paper, we will be essentially measuring the power
spectra of the lensing potential (�þ�) and its time
derivative. On the other hand, � is not probed directly by
any observable and would be highly degenerate with �, as
also pointed out by [32]. For that reason, in addition to
f�;�g, we also present our results in terms of another
function, �, defined as

�ða; kÞ � � k2ð�þ�Þ
8	G�a2�

¼ �ð1þ �Þ
2

: (18)

Note that specifying� and� is equivalent to working with
� and �. We use both parametrizations to discuss the
physics and to interpret our final results.

Since we are interested in testing GR at late times, we
assume �ða; kÞ ¼ �ða; kÞ ¼ 1 at early times, namely, for
z > zs where zs denotes the threshold redshift. This is
natural in the existing models of modified gravity that
aim to explain the late-time acceleration, where departures
from GR occur at around the present-day horizon scale.
Also, the success in explaining the BBN and CMB physics
relies on GR being valid at high redshifts.

One could assume a functional parametrization for �
and �, either motivated by a modified growth (MG) theory
or by simplicity, and fit the parameters to the data
[25,32,46]. We adopt a different approach, and pixelize

�ða; kÞ and �ða; kÞ on a grid in time and scale, fitting their
values in each grid point to the data. We then solve the
eigenvalue problem for the covariance of the pixels (i.e.
perform a PCA) to find their independent linear combina-
tions that can be compared with their prediction in GR
[30]. As we will elaborate later, the PCA method has
several advantages, such as being model independent and
degeneracy-free, although it is much more computationally
expensive. In this work, we will utilize both functional fit
and PCA strategies in order to search for any imprint of
modified gravity.
To begin with, we parametrize our Universe using

P � ð!b;!c;�s; �; ns; As;N ;XÞ; (19)

where!b � �bh
2 and!c � �ch

2 are the physical baryon
and cold dark matter densities relative to the critical den-
sity, respectively, �s is the ratio (multiplied by 100) of the
sound horizon to the angular diameter distance at decou-
pling, � denotes the optical depth to reionization, and ns,
As are the primordial power spectrum index and amplitude,
respectively. We also vary and marginalize over several
nuisance parameters denoted by N when performing the
likelihood analysis for weak lensing and SNe, as we will
elaborate later. The modification of gravity is encoded in
X, and we consider two different kinds of MG parametri-
zations, XI and XII, as described in the following sub-
sections. Finally, we assume a flat Universe and an
effective dark energy equation of statew ¼ �1 throughout
the expansion history.

A. A single high redshift transition in � and �:
XI ¼ f�0; �0;�zg

There is no physical reason to assume that departures
from GR ought to be scale independent, and a PCA fore-
cast analysis [30] actually showed that the scale depen-
dence of � and � is better constrained than their average
values or the time dependence. Nevertheless, we shall first
consider the case in which � and � are taken to be scale
independent and transit from their GR values to another
constant value below a threshold redshift zs. Aside from
simplicity, this will allow an insightful comparison with
the results of the scale-dependent analysis later.
To model the time evolution of � and � we use the

hyperbolic tangent function to describe the transition from
unity to the constants �0 and �0 as

�ðzÞ ¼ 1��0

2

�
1þ tanh

z� zs
�z

�
þ�0;

�ðzÞ ¼ 1� �0

2

�
1þ tanh

z� zs
�z

�
þ �0:

(20)

For a given zs, the above parametrization has three free
parameters: �0, �0, and �z. In Figs. 1 and 2, we show the
imprints of MG on the weak lensing aperture-mass disper-
sion (see details in Sec. II C) and CMB TT power spectra
for different values of the MG parameters, respectively.
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To be more physically transparent, we will also present
our results in terms of the f�;�g parametrization [see
Eq. (18)].

We find that both WL and CMB observables are more
sensitive to the variation of �0 than to that of �0 for both
the zs ¼ 1 and the zs ¼ 2 case. This is expected since WL
and CMB (via the ISW effect) measure, respectively, the
power spectra of ð�þ�Þ and their time derivative, and

are primarily controlled by �0. However, at late times on
subhorizon scales, �0 only affects ð�þ�Þ indirectly by
altering the growth rate of � via

€�þH _�� 4	G�a2�0� ¼ 0; (21)

where the over-dot represents differentiation with respect
to the conformal time, and H � _a=a is the conformal
Hubble parameter. Therefore changing ð�þ�Þ by vary-
ing �0 is much less efficient than tuning the multiplier �0.
This can be seen in panels ðC1;C2Þ, where we plot the
relative difference of the evolution of� with respect to GR
for different values of �0. One can read from the plot that,
for example, in the case zs ¼ 2, if one fixes �0 ¼ 1 and
increases �0 by 50%, � is enhanced by 15% at z ¼ 0.
From this, it follows from Eq. (18) that ð�þ�Þ is also
enhanced by 15% at z ¼ 0. Finally M1=2

ap should be en-

hanced by roughly the same amount according to Eq. (8),
and this is what we see in panel (B2) (navy dashed-dotted
line). On the other hand, if �0 is fixed to unity and �0 is
enhanced by 50%, then Eq. (18) clearly shows that ð�þ
�Þ andM1=2

ap should be enhanced by 50% as well, as shown
in panel ðB2Þ (magenta short-dashed line). Therefore we
can conclude that our observables are more sensitive to �0

than�0 for both cases of the transition redshift, zs ¼ 1 and
zs ¼ 2.
When varying the growth rate controller �0, the earlier

the redshift at which it is turned on, the more total change
in growth and gravitational potential will be accumulated
by the present day, as shown in panels ðC1;C2Þ. Thus our
observables are more sensitive to the same amount of

FIG. 2 (color online). Imprints of modified gravity parame-
trized by XI on the CMB TT power spectra for different
threshold redshift zs and different transition width �z.
Different models are distinguished by different line styles and
colors, as shown in panel ðA1Þ of Fig. 1. The data points with
error bars are taken from the WMAP 5-year survey.

( ) ( )

FIG. 1 (color online). Imprints of modified gravity parametrized by XI on the weak lensing aperture-mass dispersion [panels

ðA1;A2Þ], relative difference in M1=2
ap with respect to GR ðB1;B2Þ, and relative difference in � with respect to GR ðC1;C2Þ. The model

parameters are shown in the legend of panel ðA1Þ. The shaded regions in panels ðA1;A2;B1;B2Þ are excluded from our analysis. The
data with error bars over-plotted in panels ðA1;A2Þ are taken from the CFHTLS survey.
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variation in the MG parameters in the case of zs ¼ 2
compared to zs ¼ 1 due to this ‘‘accumulation effect.’’

In Fig. 2, we see that the CMB angular spectrum will
strongly disfavor a sharp transition in �. This is obvious
from Eq. (18)—a sharp transition in � triggers a sudden

change in ð�þ�Þ, making ð _�þ _�Þ diverge around the
transition region, and this is what we see in panels ðA1;B1Þ.
Note that if the transition width �z is small enough, the
ISW signal in the CMB spectrum converges because the
details of the transition become irrelevant in the �z ! 0
limit; then the ISW signal is determined solely by the
change of ð�þ�Þ and the window function at the tran-
sition. We find that the choice �z ¼ 0:05 is narrow enough
to approximate well to this�z ! 0 limit. We also show the
results for a milder transition, namely, �z ¼ 0:5 in panels
ðA2;B2Þ of Fig. 2. We see that the �0 curves are largely
unchanged, implying that the effect of varying �0 is not
sensitive to �z. However, the ‘‘bumps’’ on the �0 curves
become less pronounced for smoother transitions, as ex-
pected. In the following analysis, we will show results
corresponding to the parametrization XI for both fixed
�z ¼ 0:05 and a floating �z, which will then be treated
as a nuisance parameter and marginalized over.

B. Pixelationþ PCA: XII ¼ f�i;�i; ði ¼ 1; . . . ; 4Þg
Even though the parametrization XI has the advantage

of simplicity, it is not theoretically well motivated. Models
of modified gravity commonly introduce a scale into the
theory, and correspondingly � and � always have some
scale dependence. Moreover, this parametrization is not
phenomenologically efficient to capture a deviation from
GR. As shown in [30], the growth observables are much
more sensitive to the scale dependence of the two functions
than to their time dependence.

In order to be more general, one can pixelize � and � in
the ðk; zÞ plane and treat their values on each grid point as
free parameters. These parameters are, in general, corre-
lated with each other, and this blurs the interpretation if one
attempts to constrain them directly. Instead, one can con-
struct new variables that are uncorrelated linear combina-
tions of the original parameters and use them to test GR.
This can be achieved by diagonalizing the covariance
matrix of the original pixels and using the decorrelation
matrix to map the original pixels onto the uncorrelated
variables. Such decorrelation, or PCA, has been used to
study constraints on the evolution of the dark energy
equation of state wðzÞ [47–49]. Here we employ a two-
dimensional PCA in the ðk; zÞ plane since � and � are
functions of time and scale.

The model dependence disappears in the limit of a very
fine tessellation of the two functions into pixels. In reality,
computing costs limit the number of pixels one can afford
to fit. To determine the optimal number of pixels, we
performed a Fisher matrix PCA forecast, analogous to
the one in [30], finding that in order to capture the ðk; zÞ

dependence of the best constrained combined eigenmodes
one needs at least 2� 2 pixels for � and � in the range of
k 2 ½0; 0:2�, z 2 ½0; 2�, as illustrated in panel (A) of Fig. 7
(see below). Note that here we choose to work with the
f�;�g parametrization because the ISWand WL constrain
� more directly than �. We have checked that our results
do not change if we pixelize f�;�g instead. To properly set
the transition width between the neighboring pixels, we
start from a wide transition width (�z ¼ 0:5), and reduce it
until the final results converge. As in the case of parame-
trization XI, we found convergent results when �z &
0:05; therefore we chose �z ¼ 0:05 for the transition
width.
Thus, in model XII, we start by fitting eight pixels,

f�i;�i; ði ¼ 1; . . . ; 4Þg, along with the non-MG parame-
ters, to obtain the covariance matrix of all parameters. We
then diagonalize the 8� 8 block of the covariance matrix,
Cð�;�Þ corresponding to � and �:

Cð�;�Þ ¼ W��1WT: (22)

The rows of the decorrelation matrix W are the principal
components [50], or eigenmodes, while the diagonal ele-
ments of �, i.e. the eigenvalues, are the inverses of the
variances on the uncorrelated linear combinations of the
original pixels. Namely, we use W to rotate the original
parameters, denoted by the vector p, into new uncorrelated
parameters q defined as

qi ¼ �1þX
j

Wijpj

�X
j

Wij: (23)

In GR one has q ¼ 0, since p ¼ 1; therefore we can test
GR by performing a null test on q. By construction, the
eigenvectors are orthogonal and the q’s have uncorrelated
errors given by the inverses of the eigenvalues.

IV. RESULTS

Given the set of cosmological parameters P in Eq. (19),
we calculate the observables, which include the CMB
temperature and polarization spectra, the CMB/galaxy
cross correlation (which we often refer to as ISW), the
luminosity distance for SNe, and the WL aperture-mass
dispersion Map, using MGCAMB. We then fit the available

CMB, ISW, SNe, and WL to observations using a modified
version of the MCMC package COSMOMC

5 [51], based on
Bayesian statistics. Our main results are summarized in
Figs. 3–10 and Tables I, II, III, and IV.

A. Parametrization XI

Let us start with the single-transition parametrizationXI

of theMG parameters. In Fig. 3, we show the 68% and 95%
C.L. contours of f�0; �0g and f�0;�0g for the cases of zs ¼
1 (upper panels) and zs ¼ 2 (lower panels) for different

5http://cosmologist.info/cosmomc/.
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data combinations. Here the transition width is fixed to
�z ¼ 0:05. We show contours derived from the CFHTLS
data combined with the CMB shift parameters ‘A and R
given in [35], CFHTLS plus full WMAP5 and CFHTLSþ
WMAP5þ ISW. In Fig. 4, we also show contours derived
from full WMAP5 andWMAP5þ ISW. All cases include
the SNe data, and the cosmic age, BBN, and HST priors.

One thing that can be noticed from Figs. 3 and 4 is that
the zs ¼ 2 models, shown in the lower panels, are, in
general, better constrained than the zs ¼ 1 ones, shown
in the upper panels. This is due to the ‘‘accumulation
effect’’ explained in Sec. III A.

In Fig. 3, the largest cyan contours show that the
CFHTLS WL data combined with CMB shift parameters
are able to constrain �0 at �20% level, but only weakly

constrain �0 and �0, since WL observables are directly
sensitive to the variation in �0 as explained in Sec. III A.
For the same reason, one sees little degeneracy in the
f�0; �0g plane. However, in the f�0; �0g plane, the con-
tours show a banana shape, which indicates that �0

strongly anticorrelates with �0. This is understandable—
one can increase �0 to enhance growth and thus �, but
then �0 can be lowered to decrease �, leaving �þ�
unchanged. Also, as discussed in Sec. III A, the sensitivity
of the observables to �0 is comparable to their sensitivity
to �0, although the former is slightly larger than the latter.
This is the reason why the degeneracy is visible. From
Table I, we see that CFHTLS combined with CMB shift
parameters favor slightly lower values of �0 and �0 than
unity, but GR is still within the 1� level.

FIG. 3 (color online). The 68% and 95% C.L. contour plots for
f�0; �0g and f�0;�0g for two different threshold redshifts: zs ¼
1 (upper panels) and zs ¼ 2 (lower panels). In both cases the
transition width is fixed to �z ¼ 0:05. From outside in, the
shaded regions in cyan, yellow, and blue illustrate the contours
derived from the data of CFHTLSþ CMB shift parameters,
CFHTLSþWMAP5, and CFHTLSþWMAP5þ ISW, respec-
tively. For the contours shaded in the same color, the light and
dark regions show the 68% and 95% C.L. contours, respectively.
In all cases, the SNe data are combined, and the priors of cosmic
age, BBN, and HST are applied. The star denotes the GR values.

FIG. 4 (color online). The 68% and 95% C.L. contour plots for
f�0; �0g and f�0;�0g for two different threshold redshifts: zs ¼
1 (upper panels) and zs ¼ 2 (lower panels). In both cases the
transition width is fixed to �z ¼ 0:05. From outside in, the
shaded regions in yellow and blue illustrate the contours derived
from the data of WMAP5 andWMAP5þ ISW, respectively. For
the contours shaded in the same color, the light and dark regions
show the 68% and 95% C.L. contours, respectively. In all cases,
the SNe data are combined, and the priors of cosmic age, BBN,
and HST are applied. The star denotes the GR values.

TABLE I. The mean values of �0, �0, and �0 with 68% and 95% C.L. error bars for different models and for different data
combinations. Note that ‘‘‘A, R,’’ ‘‘CMB,’’ ‘‘ISW,’’ and ‘‘WL’’ are shorthand for WMAP5 shift parameters, full WMAP5 data, ISW
data, and CFHTLS data explained in the text, respectively.

zs ¼ 1 zs ¼ 2
�0 �0 �0 �0 �0 �0

�z fixed CMB 1:0þ0:11þ0:40
�0:13�0:34 1:1þ0:51þ1:0

�0:48�0:74 1:0� 0:03� 0:06 1:1þ0:16þ0:37
�0:17�0:31 0:96þ0:11þ0:62

�0:18�0:47 1:0� 0:025� 0:05

CMBþ ISW 0:97þ0:09þ0:37
�0:13�0:29 1:2� 0:50þ0:94

�0:77 1:1� 0:028� 0:055 1:0þ0:15þ0:35
�0:16�0:28 0:98þ0:10þ0:55

�0:17�0:45 1:0� 0:024� 0:05

WLþ ‘A, R 0:63þ0:65þ1:36
�0:45�0:57 1:7þ3:2þ6:2

�1:6�2:3 0:86� 0:39� 0:74 0:58þ0:92þ1:17
�0:38�0:55 2:1þ3:0þ5:7

�1:5�2:2 0:89� 0:19� 0:33

WLþ CMB 0:95� 0:24þ0:54
�0:34 1:2� 0:60þ1:1�0:91 1:0� 0:033þ0:07

�0:06 0:87� 0:15þ0:33
�0:25 1:4� 0:44þ0:91

�0:76 1:0� 0:03� 0:05

WLþ CMBþ ISW 0:90� 0:21þ0:42
�0:29 1:3� 0:56þ0:98

�0:84 1:0� 0:027� 0:05 0:84� 0:13þ0:27
�0:21 1:4� 0:39þ0:81

�0:69 1:0� 0:025� 0:05

�z float WLþ CMBþ ISW 1:1þ0:62þ0:80
�0:34�0:45 0:98þ0:73þ1:2

�1:0�1:4 0:94þ0:08þ0:12
�0:14�0:32 0:87� 0:12þ0:24

�0:19 1:3� 0:35þ0:65
�0:60 1:0� 0:03� 0:06
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The constraints become much tighter if one includes the
full WMAP5 data, as shown in the yellow contours in
Figs. 3 and 4. This is mainly because the WMAP5 ISW-
ISWACFs strongly penalize abrupt changes in �0, as we
show in Fig. 2. The constraints get even tighter when the
ISW-gal CCFs data are added, as illustrated in the inner-
most blue contours. From Fig. 3 and Table I we see that for
the case of zs ¼ 1GR is fully consistent with the combined

data. For the zs ¼ 2 case, GR is also consistent, but is on
the 1� edge, indicating that a model with a lower�0 would
be slightly favored when WL data are included. GR is
always closer to the best-fit model when WL data are not
used, as we can see in Fig. 4.
If the transition width �z is allowed to vary in the range

of [0.05, 0.5] one could expect a dilution of the constraints.
We observe the result in Figs. 5 and 6, which show the
contours and 1D posterior distributions for MG parameters
for the cases of sharp transitions and floating transitions for
all the data combined. As we can see, marginalizing over a
floating �z degrades the constraints on �0, �0, and �0 by
roughly 150%, 50%, and 300%, respectively, for the zs ¼
1 case, but there is little degradation for the zs ¼ 2 case.
Again, we see that GR is a perfect fit in the zs ¼ 1 case,
while a model with a lower �0 is slightly favored in the
zs ¼ 2 case when all data are combined.
This can be understood as follows. As shown in panels

ðA1;B1Þ in Fig. 2, for the zs ¼ 1 case, a sharp transition in
� produces a huge bump on the CMB TT spectrum at ‘ &
70, where the cosmic variance dominates the error budget.
If the transition is mild, the bump structure becomes less
pronounced, as shown in panel ðA2Þ; thus there is less
tension with the CMB data, which in turn loosens the
constraints on the MG parameters. However, for the zs ¼
2 case, the bump appears at ‘ & 150 on the CMB spec-
trum, where WMAP5 has precise measurements. It is true
that relaxing �z reduces the bump feature somewhat, as
illustrated in panel ðB2Þ; however, the constraints on the
MG parameters cannot be diluted to a large extent due to
the high quality CMB data at 70 & ‘ & 150.
Note that the constraint on � from the ISW effect is

much tighter than the current WL constraints, due to the
sensitivity of the ISW to the gravitational transition. This

FIG. 6 (color online). The 1D posterior distributions of �0, �0, and �0 derived from the joint analysis of ISW, WMAP5, and
CFHTLS data. The black solid lines show the cases of sharp transition, i.e., �z ¼ 0:05, while the red dashed lines illustrated the cases
where �z varies and is marginalized over. The upper and lower panels are for the zs ¼ 1 and zs ¼ 2 cases, respectively. The vertical
dashed lines illustrate �0 ¼ �0 ¼ �0 ¼ 1 to guide the eye.

FIG. 5 (color online). The 68% (dark shaded) and 95% C.L.
(light shaded) contour plots for f�0;�0g and f�0; �0g for two
different threshold redshifts: zs ¼ 1 (upper panels) and zs ¼ 2
(lower panels). All the constraints are from the combined data of
ISW, WMAP5, and CFHTLS. To obtain the green contours in the
foreground, the transition width is fixed to �z ¼ 0:05, while the
blue contours on the back layers show the case of a floating �z,
which is marginalized over. The dashed curves show the covered
contour edges. The star illustrates the GR values.
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means that the ISW data provide valuable information on
the time evolution of modified gravity parameters.

B. Parametrization XII

We present results for the second parametrization XII

with and without the inclusion of WL data, as summarized
in Figs. 7 and 10 and Tables II and IV, respectively. Starting
from the analysis based on the full data set, in panel (A) of
Fig. 7 we show our� and� pixelation, and in panel (B) we
show the 1D posterior distributions of the eight � and �
pixels. As we found for the parametrization XI, the �
pixels are, in general, better constrained than the � pixels.

We find that the constraints on all the pixels are consistent
with the GR prediction except for that of �3, which is
�3 ¼ 0:80� 0:12� 0:22 (mean value with 68% and 95%
C.L. errors). This means that �3 deviates from the GR
prediction at an almost 2� level. However, the correlation
among all of the eight pixels blurs the naı̈ve interpretation
of the seemingly 2� signal. Thus, we follow the PCA
prescription explained in Sec. III B and obtain the linearly
uncorrelated parameters, q’s, using Eq. (23).
The three best constrained eigenmodes are shown in

panel (C) of Fig. 7 and are fairly well localized. One can
clearly see that they primarily depend on the � pixels,
which are expected to be better measured by the ISW and
WL. In particular, the eigenmode corresponding to qi (i �
3) received the largest contribution from �i (i � 3). From
the eigenmodes we can deduce the following relations
between the q’s and the original pixels:

q1 	 �1þ 0:85�1 � 0:52�2

0:85� 0:52
¼ 0:0� 0:02� 0:04;

q2 	 �1þ 0:52�1 þ 0:85�2

0:52þ 0:85
¼ 0:0� 0:05� 0:10;

q3 	 �1þ�3 ¼ �0:17� 0:06þ0:13
�0:11: (24)

Namely, �1 is strongly degenerate with �2, while �3 is
largely independent of �1 or �2.

FIG. 7 (color online). Panel (A): the �, � pixelation used in this work. Panels (B) and (D): the 1D posterior distributions of p and q,
which denote the original pixels of � and �, and the uncorrelated linear combinations of the original pixels, respectively. The
likelihood distributions are normalized so that the area of each distribution is unity. Panel (C): the first three eigenfunctions, i.e. values
of W relating p and q via Eq. (23). These are derived from the joint analysis of ISW, WMAP5, and CFHTLS data.

TABLE II. Mean values, and 68% and 95% C.L. constraints of
the original pixels (left panel) and the uncorrelated linear com-
binations of the pixels (right panel). All data sets are used.

�1 1:0� 0:02� 0:04 q1 0:0� 0:02� 0:04
�2 1:0� 0:04� 0:07 q2 0:0� 0:05� 0:10
�3 0:80� 0:12� 0:22 q3 �0:17� 0:06þ0:13

�0:11

�4 0:83þ0:63þ1:4
�0:60�0:83 q4 �0:05� 0:17þ0:37

�0:28

�1 0:96� 0:20þ0:46
�0:32 q5 �0:10� 0:52þ1:1�0:81

�2 0:94� 0:18þ0:40
�0:29 q6 �0:17� 0:79þ1:7

�1:2

�3 0:94þ0:64þ1:3
�0:52�0:70 q7 �0:02þ1:1þ2:1�1:0�2:0

�4 0:86þ0:69þ1:6
�0:62�0:81 q8 �0:25� 3:2þ6:0

�5:2
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One can understand this by realizing that the current
ISW data can put stronger constraints on the MG parame-
ters than the current WL data, due to the sensitivity of the
ISW to any modification of growth at z & 2. Future WL
surveys (including the upcoming final results from the full
CFHTLS survey) will feature higher signal-to-noise and
will provide tighter limits on MG parameters [30]; how-
ever, at present, the ISW component dominates in our data
combination, making the linear combinations of the �
pixels on large scales (k & 0:1 h=Mpc), �1 and �2, best
measured.

The constraints on the q’s are summarized in the right
panel of Table II, and the 1D posterior distributions are
shown in panel (D) of Fig. 7. We find that all the q’s are
consistent with zero as predicted by GR, except for q3,
which deviates from the GR prediction at more than 95%
confidence level. This means that our measurement of �
and/or � deviates from unity at the level of at least 95%
C.L. at some point in ðk; zÞ.

To spot the source of this signal, we fix all the pixels to
unity except for �3, which we allow to vary. Interestingly,
we find that the goodness of fit of this one-pixel model is
almost identical to that of the eight-pixel model. To be
explicit, we list the �2 for each data set separately for both
models, and also show the constraints on �m and �8 for
these models in Table III. For comparison, we also do the
same for the models parametrized usingXI. Comparing to
�CDM, we find that allowing �3 to vary can reduce the
WL �2 by 2.2, while also reducing the SNe �2 by roughly
12. This �3CDM model has a best-fit �m of 0.3, which is
much larger than 0.24 for�CDM. The allowance for a high
�m is the reason for the significant SNe data preference for
this one-pixel model, since �m ¼ 0:3 is the best-fit value
for the SNe sample we use [4]. Note that in�CDM,�m ¼
0:3 is strongly disfavored byWL data, as we show in Fig. 8
(navy dashed-dotted-dotted line), since there increasing
�m shifts the best-fitted Map (blue dashed-dotted line) on

all scales, which is in serious disagreement with the data,
especially on scales � < 60 arcmin.

The cause of the apparent 2� hint of departure from GR
can be easily identified. There is a clear ‘‘bump’’ feature in
the CFHTLS data (e.g. Fig. 8) at � ’ 120 arcmin, which
can be attributed to a systematic effect [34]: according to

the CFHTLS team, this is a known issue, due to residual
field-to-field variations in shear estimation on the scale of
the camera field of view. As an informative exercise, we
study how we could improve the fit assuming a cosmologi-
cal source for the feature. One could shift the curve at � 

60 arcmin to follow the bump more closely. Such a scale-
dependent tweak of Map cannot be realized by tuning the

MG parameters in the parametrizationXI. However, in the
parametrization XII, one can achieve this by first increas-
ing�m, then lowering the growth rate on small scales (� <
60 arcmin), which can be effectively done by lowering �3.
The resultant fit is shown in Fig. 8 as a red dashed line,
which is almost identical to the best-fit eight-pixel model.
To see this point more clearly, in Fig. 9 we show the

contour plots between �m and �3, and �m and �0 of XI

for the combined data. As we can see, in the one-pixel (�3)
model one can obtain a high �m as favored by the SNe
data, while in parametrization XI, �0 is tightly con-
strained, so that a high �m is definitely not allowed.

( )

FIG. 8 (color online). Best-fit aperture-mass power spectra
hM2

api for different MG parametrizations shown in different

colors and line styles. Black solid: parametrization XII with
all the pixels varying; red dashed: parametrization XII with only
�3 varying; blue dashed-dotted: GR; navy dashed-dotted-dotted:
GR with a fixed�m ¼ 0:3. The data points with error bars show
the CFHTLS data; the shaded region is excluded from our
analysis.

TABLE III. The relative improvement on �2 with respect to the �CDM model for different models. The ��2 is shown for different
data separately. The mean values with 68% and 95% C.L. error bars of constraints on �m and �8 are also shown.

��2
WL ��2

CMB ��2
ISW ��2

SN ��2
ToT �m �8

�CDM 0 0 0 0 0 0:244� 0:004 0:765� 0:006
X ¼ XI, zs ¼ 1, �z ¼ 0:05 �0:65 þ0:11 �0:10 �0:17 �0:81 0:252� 0:008 0:74� 0:02
X ¼ XI, zs ¼ 1, �z float �0:63 þ0:01 �0:18 �0:50 �1:3 0:251� 0:008 0:74� 0:02
X ¼ XI, zs ¼ 2, �z ¼ 0:05 �0:73 þ2:0 �0:45 �2:4 �1:6 0:247� 0:006 0:76� 0:02
X ¼ XI, zs ¼ 2, �z float �1:4 þ1:8 �0:44 �2:6 �2:6 0:255� 0:019 0:79� 0:06
X ¼ XII, all pixels float �2:3 þ4:1 þ1:4 �12:3 �9:1 0:30� 0:024 0:80� 0:069
X ¼ XII, only �3 float �2:2 þ5:3 þ0:48 �12:2 �8:6 0:30� 0:022 0:82� 0:021
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Notice that the CMB and ISW data disfavor a high �m, as
we see in Table III, but the preference from the WL and
SNe data outweighs this penalty, making a lower �3 and
higher �m strongly favored by the combined data. Also,
the one-pixel model would be strongly favored by the data
from the model-selection point of view, since one can
reduce the total �2 by 8.6 by introducing one more pa-
rameter (�3) over �CDM, even though this model was
constructed a posteriori.

As stated above, it is likely that the bump, which is
responsible for this 2� deviation, is due to a systematic
effect [34], which according to the CFHTLS team is due to
residual field-to-field variations in shear estimation on the
scale of the camera field of view; this explains the scale of
the bump. On these grounds, we stress again that it is
premature to make any statements about the validity of
�CDM based on this feature, even though technically we
cannot rule out the new physics at this point.

In order to be conservative about this issue, we also
perform the XII analysis without including the WL data
from CFHTLS. The results are summarized in Fig. 10 and
Table IV. The relationship between the uncorrelated pa-

rameters q’s and the original pixels, and the 68% and 95%
C.L. constraints on the q’s are now given by

q1 	 �1þ 0:90�1 � 0:44�2

0:90� 0:44
¼ 0:0� 0:02� 0:04;

q2 	 �1þ 0:44�1 þ 0:90�2

0:44þ 0:90
¼ 0:0� 0:04� 0:07;

q3 	 �1þ 0:52�1 � 0:85�2

0:52� 0:85
¼ �0:07� 0:17þ0:36

�0:31:

(25)

As expected, the first two best constrained modes are
almost unchanged even if we remove the CFHTLS data,
confirming that these modes are mostly constrained by the
ISW effect. On the other hand, the bound on �3 becomes
very weak, demonstrating that the CFHTLS data are re-
sponsible for the constraint on this parameter. In the cur-
rent case we find that all eight uncorrelated parameters are
consistent with GR with 95% C.L.

V. CONCLUSION AND DISCUSSION

We have tested GR with current cosmological data,
using a framework in which the departures from GR are
encoded as modifications of the anisotropy and Poisson
equations; these equations specify, respectively, how the
metric perturbations relate to each other, and how they are
sourced by perturbations in the energy-momentum tensor
of matter. The modifications were parametrized with two
functions f�;�g (or alternatively f�; �g) that reduce to
unity in GR. We have then explored the constraints on
these functions in twoways. First, we have allowed them to
evolve from unity at high redshifts to a different value
today in a scale-independent way. Second, we have pix-
elized them in both scale and redshift and performed a
PCA, following the ideas of [26,30]—a first general study
of this kind. Specifically, we have used a 2� 2 pixelation
for each function, thus having eight modified gravity pa-
rameters. In order to remove the covariance between the
bins, and to analyze which modes are best constrained, we
have then performed a 2D PCA of the results, obtaining
constraints on the eight derived decorrelated parameters.

FIG. 10 (color online). Panels (A) and (B): the 1D posterior
distributions of p and q, which denote the original pixels of �
and �, and the uncorrelated linear combinations of the original
pixels, respectively. The likelihood distributions are normalized
so that the area of each distribution is unity. These are derived
from the joint analysis of ISW and WMAP5 data, without the
CFHTLS WL data.

FIG. 9 (color online). The 68 and 95% C.L. contour plots of
f�m;�3g (left panel) for parametrization XII, and f�m;�0g
(middle and right panels) for parametrization XI. See text for
details.

TABLE IV. Mean values, and 68% and 95% C.L. constraints
of the original pixels (left panel) and the uncorrelated linear
combinations of the pixels (right panel). Results are without the
CFHTLS WL data.

�1 1:0� 0:02� 0:04 q1 0:0� 0:02� 0:04
�2 1:0� 0:04� 0:07 q2 0:0� 0:04� 0:07
�3 1:2þ1:0þ2:1

�0:90�1:2 q3 �0:07� 0:17þ0:36
�0:31

�4 0:84þ0:62þ1:3
�0:60�0:83 q4 �0:06� 0:43þ0:90

�0:69

�1 0:93� 0:17þ0:38
�0:28 q5 �0:12� 0:62þ1:2

�1:0

�2 0:93� 0:20þ0:44
�0:34 q6 0:30þ1:3þ2:7

�1:3�1:9

�3 0:95þ0:85þ1:8
�0:71�0:91 q7 �0:17þ1:5þ3:4

�1:1�1:8

�4 0:89þ0:76þ1:7
�0:66�0:84 q8 �0:31þ1:9þ4:1

�1:7�4:0

GONG-BO ZHAO et al. PHYSICAL REVIEW D 81, 103510 (2010)

103510-12



We have used currently available data constraining both
the background expansion history and the evolution of
scalar perturbations in the Universe. In particular, we
have used a combined measurement of the ISW effect
through correlation of galaxies with CMB, the latest avail-
able supernovae type Ia data including those from the
SDSS, the CMB temperature, and polarization spectra
from WMAP5, and weak lensing data from the CFHTLS
shear catalog. We have kept the analysis conservative by
excluding small-scale data in the strongly nonlinear re-
gime, and we have checked and excluded possible tensions
between the data sets by analyzing them individually be-
fore combining them.

Throughout the paper, we have assumed a flat �CDM
background and tried to constrain deviations from GR in
the evolution of matter and metric perturbations. In the
simplest case, where the MG functions f�;�g were al-
lowed a single transition in redshift, we have found no
evidence for a departure from GR, in agreement with other
works. We find that the ISW effect, probed through the
CMB autocorrelation and the cross correlation with galaxy
maps, currently gives the strongest constraint on� because
it is sensitive to the change of the lensing potential,�þ�,
at the transition.

In the pixelated case, we have found that one of the PCA
eigenmodes shows a 2� deviation from GR. However, this
anomalous mode is due to the bump feature in the CFHTLS
lensing data, which is most likely due to a systematic effect
[34], combined with a preference for higher�m by the SNe
data. A separate analysis which does not include WL data
shows indeed good agreement with GR. A better under-
standing of systematic effects in both WL and SNe data
sets needs to be achieved before any such discrepancy is
viewed as a deviation from GR.

Even though this is most likely due to a known system-
atic effect, we emphasize that wewould not have found this
deviation if�were taken to be scale independent. In such a
case, the change in�would be significantly constrained by
the ISWeffect. The PCA analysis using two bins in k for �
could successfully isolate the strong constraint from the
ISWeffect and pick up a feature in WL. This demonstrates
that the same data can lead to a higher level of detection of
deviations from an expected model if more flexibility is
allowed in the parametrization. Thus, when fitting �ðk; zÞ
and�ðk; zÞ to data, it is important that their parametrization
allows for some scale dependence. Otherwise, one might
risk missing a systematic effect or a real departure from
GR, and thus would not be exploiting the true discovery
potential of the data.

Finally, we comment on other recent studies that re-
ported constraints on deviations from GR using current

cosmological observations. In [33], the COSMOS weak
lensing tomography data [9] were used together with SNe,
CMB, baryon acoustic oscillations, and the ISW-galaxy
cross correlation. Reference [32] found that the constraints
from CMBþ SNeþ CFHTLS without COSMOS were
indistinguishable from those including COSMOS, and
they did not find any deviations from GR. They argued
that the sky coverage of CFHTLS is more important than
the redshift depth of COSMOS. Also it should be noted
that weak lensing measurements in COSMOS are made on
strongly nonlinear scales and there is an ambiguity in
modeling the nonlinear power spectrum.
In [32], a set of data similar to that described here was

used to constrain two functions that are combinations of �
and �. The differences between our study and that of [32]
include the following: (1) we used the ISW cross-
correlation data; (2) we excluded small-scale modes in
the CFHTLS data to avoid the strongly nonlinear regime;
(3) we simultaneously constrained two functions � and �
while [32] varied only one of the parameters when they
used three bins in z; (4) scale dependence was allowed in
our paper; and (5) we used the Fisher matrix based PCA
approach to make a decision on how many pixels to use.
Their results are qualitatively consistent with the result of
our first parametrization.
Further improvements of this technique will be possible

with a new generation of LSS data (e.g. the Dark Energy
Survey, Pan-STARRS, the Large Synoptic Survey
Telescope, Euclid), which will dramatically increase the
number of modes with sufficient signal-to-noise. Finally,
peculiar velocity data will provide an additional valuable
probe for our approach, since they can constrain� directly
[52], thus breaking the �-� degeneracy.
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