
RARE-EARTH DISTRIBUTIONS

IN SOME ROCKS AND ASSOCIATED MINERALS

OF THE BATHOLITH OF SOUTHERN CALIFORNIA

by

DAVID GARRETT TOWELL

B.S., The Pennsylvania State University

(1959)

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF DOCTOR OF

PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF

TECHNOLOGY

Ss. - cE

NIN
LINDGREN

September, 1963

Signature of Author......0,,...'.. 0.-. ..,VWr'Ee

Department of Geology and Geophysics, August 9, 1963

Certified by..
Thesis Supervisor

Certified by..r. .. wer.-., .....................

Thesis Supervisor

Accepted by......4..........*.. .......
Chairman, Departmental Committee

on Graduate Students

Ii



RARE-EARTH DISTRIBUTIONS
IN SOME ROCKS AND ASSOCIATED MINERALS

OF THE BATHOLITH OF SOUTHERN CALIFORNIA

by

David G. Towell

Submitted to the Department of Geology and Geophysics
on August 9, 1963, in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

ABSTRACT

The rare-earth and yttrium abundances in four whole-
rock samples and eight associated mineral fractions from the
batholith of Southern California have been determined by means
of neutron activation and partition chromatography. It is
shown that, on a whole-rock basis, an increase in total rare-
earth content in the sequence gabbro-tonalite-granodiorite-
quartz monzonite is paralleled by an increase in relative frac-
tionation favoring the lighter rare earths. In the same se-
quence, there is an apparently systematic increased relative
removal of Eu which is attributed to the existence of Eu(II).
Analyses of feldspar, pyroxene, amphibole, mica, and apatite
mineral fractions also indicate that divalent Eu was an impor-
tant constituent during the evolution of the rocks studied.
The feldspar mineral fractions were invariably enriched in Eu
relative to the adjacent rare earths, whereas the ferromag-
nesian minerals were relatively depleted.

A procedure for determination of the rare-earth ele-
ments and yttrium, applicable over a wide range in concentra-
tions and to silicates as well as other rocks and minerals,
has been developed. The procedure utilizes chromatographic
separation of neutron induced, low-level radioactivities.
Two analysts working jointly can analyze up to three samples
per week which is faster than methods commonly used. Self-
shielding errors are eliminated by irradiating all samples
and standards in aqueous solution. After dissolution of the
sample by classical methods, the rare earths were separated
from the ammonia-soluble elements by two ammonia precipita-
tions. The rare earths were then isolated by ion exchange.



The pure rare-earth fraction was iradiated in thermal neu-
tron flux of approximately 8 x 102 neutrons/cm"-sec for a
period of time (1-20 hours) proportional to the amount of rare
earths expected. The irradiated solution was chromatographed
by gradient elution with hydrochloric acid on a column of re-
fined diatomaceous silica coated with di-(2-ethylhexyl)ortho-
phosphoric acid. Precision and accuracy were approximately
+107.. They were determined by comparison of a series of du-
plicate runs on different samples, comparison of results with
those of other analysts on the same samples, and a spiking
test made on a silicate sampleo & majorig9 of the chemical
yields were 97% (monitored by Y8 and Ce carrier-free
tracers). Gadolinium and erbium were not determined.

As an additional study, the rare-earth contents (ex-
clusive of Gd and Er) of the standard granite G-1 and stan-
dard diabase W-1 have been determined0 The results are, for
the most part in rather close agreement with the data of
Haskin and Gehl (1963). The most significant discrepancy is
between the Eu values in G-1. The abundance of this ana-
lytically-sensitive element was found to be approximately
207. higher in this study0

Thesis Supervisor: John W. Winchester
Title: Associate Professor of Geochemistry

Thesis Supervisor: Dayton E. Carritt
Title: Professor of Chemical Oceanography
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RARE-EARTH DISTRIBUTIONS

IN SOME ROCKS AND ASSOCIATED MINERALS

OF THE BATHOLITH OF SOUTHERN CALIFORNIA

by

David G. Towell, John W. Winchester, and Regina Volfovsky

Department of Geology and Geophysics

Massachusetts Institute of Technology, Cambridge

ABSTRACT

The rare-earth and yttrium abundances in four whole-

rock samples and eight associated mineral fractions from the

batholith of Southern California have been determined by

means of neutron activation and partition chromatography.

It is shown that, on a whole-rock basis, an increase in total

rare-earth content in the sequence gabbro-tonalite-granodiorite-

quartz monzonite is paralleled by an increase in relative frac-

tionation favoring the lighter rare earths. In the same se-

quence, there is an apparently systematic, increased relative

removal of Eu which is attributed to the existence of Eu(II).

Analyses of feldspar, pyroxene, amphibole, mica, and apatite

mineral fractions also indicate that divalent Eu was an im-

portant constituent during the evolution of the rocks studied.

The feldspar mineral fractions were invariably enriched in

Eu relative to the adjacent rare earths, whereas the ferro-

magnesian minerals were relatively depleted.



INTRODUCTION

The rare-earth eleients hav attracted the interest

of geochemists for many years. Their very similar chemical-

properties, which nevertheless vary quite smoothly with atomic

number, prompted Goldschmidt (1954) to suggest that the rare

earths behave as a geochemical "entity." The most notable

exceptions to the common trivalency of the rare earths (and

the non-lanthanide but chemically very similar element yttrium)

are the presence of divalent Eu and tetravalent Ce. Dif-

ferences in relative distributions of the rare-earth elements

and yttrium in rocks and minerals should serve as indicators

of differences in the physico-chemico conditions of forma-

tion of those rocks and minerals.

By far, most rare-earth analyses have been carried

out on rare-earth minerals and rars-earth-concentrating

accessory minerals found in pegmatites, granophyres, and

alkaline igneous rocks. Some of the more recent of these

investigations are those of Vainshtein et al. (1956), Butler

(1957a, 1957b), Butler (1958), Seminov and Barinskii (1958),

VAinshtein et al. (1958), Murata et al. (1959), Borodin and

Barinskii (1960, 1961), Balashov and Turanskaya (1961),

Zhirov et al. (1961), and Lyakhovich (1962).

Whole-rock analyses of rare earths in igneous rocks

have been much more limited in nuber. These include, among

others, the works of Sahama (1945) on Finnish granites and

gabbros; Schmitt (1963), and Schmitt and Smith (1961, 1962,

1963) on two basalts, two eclogites, and a peridotite; and

I:
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Balashov (1962) on differentiated alkaline rocks. Haskin

and Gehl (1963) have published complete rare-earth data on the

standard granite G-1 and standard diabase W-1.

To the authors' knowledge, at this time the only com-

plete rare-earth study of coexisting rock-forming minerals

in igneous rocks classified compositionally between gabbro

and granite is the work of Gavrilova and Turanskaya (1958)

on some Russian granites. Since there is very little data

available on the behavior of the rare earths during the evo-

lution of the most common igneous rocks, a study has been

made of the rare-earth distributions in a suite of genetically-

related igneous rocks ranging from gabbroic to granitic in

composition. In addition to whole-rock analyses, selected

coexisting mineral fractions have been studied. Samples

were chosen from the batholith of Southern California be-

cause such large plutonic bodies represent quantitatively-

significant portions of the earth's crust. A study of the

rare-earth abundances in various members of one of these

batholiths should yield information regarding the evolution

of these bodies since changing rare-earth distributions

should reflect changing geochemical conditions.

The batholith of Southern California has been quite

extensively studied. Larsen (1948) believed that these Cre-

taceous rocks were the result of magmatic differentiation of

gabbroic magma at depth, followed by successive intrusions

by means of magmatic stoping (rather than forceful injection).

As evidence of magmatic differentiation, he cited the smooth
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variation curves obtained from the chemical analyses and the

systematic changes in mineral percentages found in the series

from the gabbros to granites. Most contacts between the in-

trusive bodies were found to be sharp.

Taylor and Epstein (1962a, 1962b) have made an oxy-

gen isotopic study of four rocks and their associated minerals

from this batholith: the San Marcos gabbro, Bonsall tonalite,

Woodson Mountain granodiorite, and Rubidoux Mountain leuco-

granite (quartz monzonite). The same samples have been used

for this rare-earth study. For sample descriptions, inclu-

ding modal analyses and petrographic descriptions, the reader

is referred to the papers by Taylor and Epstein.

The above authors emphasize that obvious caution is

required when trying to relate the results on four specimens

to the genesis of a body of batholithic size. Nevertheless,

they found that the systematic changes in the 018/016 ratios

of these four samples were consistent with the origin by

magmatic differentiation advanced by Larsen (1948). The

reader, however, must be cautious in using the results of

this study since they represent but a small sampling of a

large plutonic body whose petrology is by no means completely

understood. It is hoped that the rare-earth data will shed

some light on this problem.
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EXPERIME12TAL PROCEDURE

The analytical procedure used for this study em-

ployed group isolation of the rare earths and yttrium

followed by neutron activation and partition chromatography.

Gadolinium and erbium were not determined. Accuracy and

precision were approximately +10%. The details of this pro-

cedure will appear elsewhere (Volfovsky et al., 1963).

Samples weighing up to 0.500 g were dissolved using

a mixture of perchloric and hydrofluoric acids. Following

precipitation by ammonia, the rare earths were isolated as

a group by ion exchange. Chemical yields were measured at

this stage using Ce139 and 88 carrier-free tracers. Two

aliquots of each sample and two solutions of rare earths in

known concentrations were irradiated by pile neutrons at

thermal neutron fluxes of approximately 8 x 1012 n/cm 2-sec.

The irradiated sample and standard solutions were chromato-

graphed by gradient elution with hydrochloric acid on columns

of refined diatomaceous silica coated with di-(2-ethylhexyl)

orthophosphoric acid.

Induced gamma radioactivities were counted by means

of a 400-channel pulse height analyzer and a well-type,

1-3/4 inch by 2-inch NaI(T1) scintillation crystal. Betas

were counted as thin sources on 2-inch watch glasses with a

standard end-window flow-proportional counting system.
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RESULTS AND DISCUSSION

Analytical Results

The analytical results are presented in Table I-1

and Table 1-2. The precision for each concentration was cal-

culated from the precision observed in a series of duplicate

runs on other samples; precision and accuracy were found to

be comparable (Volfovsky et al., 1963).

Whole-rock rare-earth abundances in the San Marcos

gabbro, Bonsall tonalite, Woogison Mountain granodiorite, and

Rubidoux Mountain leucogranite (quartz monzonite) are given

in Table I-1. Also given are the average rare-earth abun-

dances in a series of 12 chondritic meteorites analyzed by

Schmitt and Smith (1962). The chondrite data will be used

for geochemical interpretation of the rare-earth abundance

patterns in the manner of Coryell et al. (1963).

Mineral fractions were analyzed from three of the

rocks, and the results are tabulated in Table 1-2. These in-

clude plagioclase feldspar (An55), augite, hornblende, and

apatite from the San Marcos gabbro; plagioclase feldspar (An20),

K-feldspar, and biotite from the Rubidoux Mountain leuco-

granite; and apatite from the Bonsall tonalite. Since there

were limited amounts of most mineral fractions and some of

these had relatively low rare-earth contents, there are some

missing values for those rare earths with poorer sensitivities.

No results are given for gadolinium and erbium since neither



Table I-1
Rare-Earth Abundances in the Batholith of

Southern
*California and in Chondritic Meteorites

San MarcosElement gabbro
Bonsall Woodson Mountain Rubidoux Mountain
tonalite granodiorite leucogranite

Average in
12 chondrites

4.011 ±
14.5 +
2.15 +
7.68 +
2.17 +
1.05 +

0.478 +
2.79 +

0.569 +

0.248 +
1.70 +
0.256 +

15.5 +

0.160
2.3
0024

0077

0.02

0.04

0.043
0011

0.023
-

0.017
0.14
0.015
1.9

13.4 +
22.5 +
5.66 +

17.2 +
3.65 +
1.06 +

La
Ce
Pr
Nd

Sm
Eu
Gd
Th
Dy
Ho
Er
Tm
Yb

Lu
Y

0.7
4.0
0.62
1.72
0.04
0,04

0.076
0010

0.030

0.027
0.16

0.018
2.6

25.3 +
34.2 +
6.96 +

22.3 +
3.96 +
0.795 +

0.826 +
2.99 +
0.898 +

0.373
2.93
0.385

24.6

1.0

5.5
0.77
2.2
0.04
0.032

0.074
0.12
0.036

0.026
0023

0.023
3.0

24.5
87.6
5.64

23.5

3078

00629

+ 1.0
+14.0
+
+

+

+

0.633 +
3.08 +
0.742 +

0.263 +
1.30 +
0.198 +

0062

2.4
0,04

0.025

0.057
0012

0.030

0.018
0.110
0.012

17.3 + 2.1

Total 53 92 127 169

* Values are given in parts per million + analytical precision.

** Schmitt and Smith (1962).

0.839
2060

0.752

00386

2.00

00298

21.5

0.32
0.90
0013

0.57
0.21

0.074
0.31
0.051
0030

0.074
0021

0.032
0018

0.032
1.9.

0001

0.08
0001

0.04
0001

00003

0002

0.002
0002

0.003
0.01
0.002
0.01

00002
0.11

5.3

*



Table 1-2
Rare-Earth Abundances in Selected Mineral Fractions

plagioclase feldspar
(An55)

San Marcos gabbro
hornblende

2.28 + 0.09
3057 + 0.57

-a -s -s

0.264
0.808

00173

0.048

La
Ce

Pr
Nd
Sm

Eu
Gd
Th

Dy
Ho

Er
Tm
Yb
Lu

0.026
0.032

2.38 + 0.10
-- -

8.97 +
2.11 ±A

0.90
0084

- - -

+ 0.007
+ 0.002
-= -o

0.002
0.012
0.001

1.77 +
13.1 +
2.48 ±

- -

1.20 +
7.74 +

1.07 +

0.16
0.5
0.10

0.08

0.62
0.06

0.409 +
- -M

4039

0.92

1.32

7084

1.52

2 +

2t

- -
+W

0.687 +
4.01 +.
0.741 +

0.016

0.44
00037

0.12
0.31

0.06

0.048
0.32
0.044

392 +

172 +
534 +
97.4 +
17.3 +

12.5 +
66.5 +
13.5 +

3.25 +
19.9 +
3.10 +

16
-

19
53

9.7
0.7

1.1

2.7
0.5

0.23
1.6

0.19

+ 3944.4 + 5.3

Element -augite apatite

0.022 +
00150 +

0.023 +

- -C--= - -

-M -* -s

32773.1 + 8.81.08 + 0.13



Table 1-2 (continued)

Rubidoux Mountain leucogranite Bonsall tonalite

plagioclase feldspar K-feldspar

10.7 + 004

1.68 +
0.965 +

1.72 +
0.452 +

La
Ce
Pr
Nd
Sm
Eu
Gd
Th
Dy
Ho
Er
Tm
Yb

Lu
Y

0.17
0.039

0.07
0.018

0.072
0.008
1.01

9068 + 0.39

1.07 + 0.11
0.938 + 0.038

- - -

- - -

0.743 + 0.030
0.166 + 0.004

0.078 + 0.005
0.510 + 0.041
0.068 + 0.004
4.72 + 0.57

225 +

68.2 +
222 +
48.0 +

0.359 +

7.29 +
43.1 +
9.58 +

3023
2203
2.69

226

171

7.5
22
4.8
0.014

0.66
1.7
0.38

0.23
1.8
0.16

27

+

110 +
603 +
157 +
19.5 +

23.6 +
140 +
31.0 +t

9.27 +
59.3 +

9.23 +
878 +

* Values are given in parts per million + analytical precision0

Element biotite apatite

0.898 +
0.129 +
8.45 +

7

12
60
16
0.8

2.1
6

1.2

0.65
4.7
0.55

105

-o -O-

-* - -=
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was determined in the analytical method as developed for this

study. Nevertheless, because no fewer than eight rare earths

(including yttrium) have been determined for any sample, it

is felt that the rare-earth distributions of all samples have

been well-established. Data is presented for all rare earths

except Gd and Er in the four rocks. Inspection of Table I-1

reveals that the total rare-earth content (including yttrium)

found in the rocks from the batholith increases progressively

from a minimum value in the gabbro (53 ppm) to intermediate

values in the tonalite (92 ppm) and granodiorite (127 ppm)

to a maximum value in the leucogranite (169 ppm).

Data Presentation

Coryell et al. (1963) and Masuda (1962) have inde-

pendently proposed very similar methods for the geochemical

interpretation of terrestrial rare-earth abundance patterns.

They observed increased regularity when the absolute rare-

earth abundances in terrestrial samples were divided by the

corresponding abundances in chondritic meteorites. The

normalized values were then plotted as a function of atomic

number. This normalization technique removes most of the

natural irregularities in absolute abundances arising from

the original cosmo-chemical production of the elements. In

this way, the relatively small differences between adjacent

rare earths produced by geochemical processes are readily

apparent. In addition, evidence has been given by Taylot (1962)
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and Masuda and Matsui (1963) to suggest that the mean rela-

tive rare-earth abundances of the- chendrites are representa-

tive of the relative rare-earth abundances in the earth as

a wholeo The essential uniformity in the rare-earth abun-

dances in chondrites has been well-established (Schmitt and

Smith, 1962; Schmitt, 1963). As of this writing, 17 dif-

ferent chondrites have been analyzed by Schmitt and his co-

workers. In this study, their data on 12 chondrites (Schmitt

and Smith, 1962) have been used. The authors believe that

the chondrite rare-earth abundances represent the best presently-

available reference for normalization of terrestrial rare-

earth data.

Several modifications and extensions of the chondrite-

normalization technique have been made by different authors.

These include an additional normalization of all data to

La = 1.00 or Yb = 1.00 . Some authors have preferred to use

ionic radius rather than atomic number as the abscissa of the

normalization plot. The authors of this paper, however, prefer

to use atomic number since there are some major discrepancies

between different sets of published rare-earth ionic radii.

In addition, it seems to be somewhat risky to use published

radii based upon a combination of measurements in simple

crystal structures, theoretical calculations, and rough

interpolations. Effective radii in complex silicate struc-

tures may be quite different from the simple ionic radii re-

ported in the literature. The use of atomic number expresses

the true qualitative nature of the normalization method, and
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at the same time may somewhat better facilitate rapid in-

spection of the data. The authors also prefer to plot the

normalized abundances on a logarithmic scale since relative

differences will show up equally well at all absolute values.

When a linear scale is used, the relative differences at

small absolute values tend to be obscurred.

The absolute rare-earth abundances given in Table

I-1 and Table [-2 have been used to compile Table 1-3 and

Table 1-4. The latter two tables consist of the chondrite-

normalized abundances (both absolute ratios and ratios with

La = 1.00) of the whole rocks and mineral fractions, respec-

tively, from the batholith.

The absolute, chondrite-normalized ratios for each

rock along with the corresponding mineral fractions have

been plotted in Figures I-1 through I-4. The curves have

been drawn by a visual best-fit. The convention of Coryell

et al. (1963) has been used, except that the yttrium ratios

have been plotted at atomic number 68 (corresponding to Er).

This has been done because in the partition chromatography

employed in this study, Y and Er showed essentially identi-

cal behavior. The published ionic radii indicate values for

Y as large as the radius of Dy and as small as that of Lu.

Therefore, an intermediate value corresponding to Er, al-

though somewhat arbitrary, may be a satisfactory choice.

In plotting the data on the mineral fractions, each

distribution has been weighted by its modal abundance in the

corresponding whole-rock sample. The modal analyses of these



Table I-3

Normalized Rare-Earth Abundances in the Batholith of Southern California

San Marcos
gabbro

12.5
16.1
16.5
13.5
1003

14.2

La
Ce
Pr
Nd
Sm
Eu
Gd
Th
Dy
Ho
Er
Tm
Yb
Lu

Y

1.00
1029

1.32
1008
0.824
1.14

0.750
0.744
00615

0.620
0.755
00640
0.653

41.9
250

43.5
3002

17.4
14.3

16o5
8067

10,2

12.0
11.1
9.31

1103

Bonsall
tonalite

1.00
0.597
1.04
0.721
0.415
0.341

0.394
0.207
00243

00286
0.265
0.222
0.270

Woodson Mountain
granodiorite

79.1
38.0
53,5
39.1
18.9
10M7

16.2
9.97

12.1

1107

1603

12.0
12.9

1.00
0.480
0.676
0.494

0.239

0.135

0,205
0.126
0.153

0.148
0.206
0.152
00163

Rubidoux Mountain
leucogranite

7606

9703

43.4
41.2

18.0
8.50

12.4
10.3

10.0

8022
7.22
6.19
9011

1000
1027
0.566
0.538
0.235
00111

0.162
0.131
0.134

0.107
0.094
0.081
0.119

a. Absolute abundance divided by average chondrite abundance (from Table I-1)0

b. Chondrite-normalized abundance (column a) re-normalized to La = 1.00 .

Element

9.37
9.30
7.69

7.75
9.44

8.00
8.16



Table I-4
Normalized Rare-Earth Abundances in Selected Mineral Fractions

San Marcos gabbro

Element plagioclase feldspar

a (M55) b

La
Ce
Pr
Nd

Sm
Eu
Gd
Th
Dy

Ho
Er

Tm
Yb

Lu
y

7013

3097

1.26
10.9

0.577
0.654

0.681
0.833
0.706
0.568

1.00
0.557

0.177
1053

0.860

0.092

0.096
0.117
0.099
0.080

hornblende
a b

7.44

42.7

28.5

34.7
4307

3305

3705

43.0

3304

38.5

1000

5074

3483

4066

5,87
4.50

5.04
5.78
4049

5*17

augite
b

1.28

2009

12.5

26.0
26.1
20.5

21.5

2203

23.2
23.4

1000

16.3

9077

20.,3

20.4
16.0

16.8

1704

18.1
18.3

apatite
b

1230

1346
937
464
234

245
222
182

102
111
96.9

172

1.00

1.09

0.762
0.411
0.190

0.199
0.180
0.148

0.083
0.090
0.079
0.140

-



Table I-4 (continued)

Rubidoux Mountain leucogranite Bonsall tonalite

Element plagioclase feldspar

a b

La
Ce
Pr
Nd
Sm,
Eu
Gd

Tb
Dy

Ho
Er
Tm
Yb

Lu
Y

- 33.4

8.00
13.0

5.73
6.11

4.99

4.03
4.45.

1.00

0.240
0.389

0.172
0.183

0.149
0.121
0,133

K-feldspar

30o3

5.10
12.7

2o48
2.24

2.43
2.83
2.11
2.48

1000

0.168
0.419

0.082
0.074

0.080
0.093
0.070
0.082

biotite

703

525
389
229

4.85

143
144
129

101
124

84.1
119

apatite
t b

1000

0,747
0.553
0,326
0.007

0*

0,203
0.205
0.183

0.144
0.176
0.120
0.169

534

846
1060

748
264

463
467
419

290
329
288
462

1.00

1058

1099

1.40
0.494

0.867
0.875
0.785

0.543
0.616
0,539
0.865

(from Table I-1),

b. Chondrite-normalized abundance (column a) re-normalized to La = 1.00 .

a. Absolute abundance divided by average chondrite abundance

-
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Fig. I-1. Chondrite-normalized rare-earth abundances

in the San Marcos gabbro plotted on a loga-

ritbmic scale as a function of atomic number.



100

San Marcos Gabbro
e Whole Rock
+ Hornblende

A Apatite
o Plagioclase Feldspar (An 5 5 )
o Augite

o 10 0

o+ + +-+-00

+ +
0

0 01

4-I0-
ao

XO

0O

0.l

0 .11 1

La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
57 Atomic Number (Y) 71



- 31 -

Fig. I-2. Chondrite-normalized rare-earth abundances
in the Rubidoux Mountain leucogranite
plotted on a logarithmic scale as a func-
tion of atomic number.
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Fig. I-3. Chondrite-normalized rare-earth abundances
in the Bonsall tonalite plotted on a loga-
rithmic scale as a function of atomic number.
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Fig. 1-4. Chondrite-normalized rare-earth abundances

in the Woodson Mbuntain granodiorite

plotted on a logarithmic scale as a func-

tion of atomic number.
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samples have been given by Taylor and Epstein (1962a).

Ideally, if all minerals were analyzed from a rock, their

sums would approximate the whole-rock distribution. How-

ever, all fractions were not analyzed from each rock, and

the presence of trace amounts of rare-earth-concentrating

accessory minerals cannot be ruled out. Therefore, a mass

balance of the rare earths could not be made.

Whole-Rock Distributions

Caution again must be emphasized when interpreting

the rare-earth abundances in but four hand specimens. Tay-

lor and Epstein (1962a) indicate that the samples of tona-

lite, granodiorite, and leucogranite are adequate repre-

sentatives of their respective units. The gabbro, however,

is variable in composition and texture throughout its out-

crop area. The sample analyzed in this study is a noritic

hornblende gabbro.

Figures I-1 through 1-4 show that in the sequence

gabbro-tonalite-granodiorite-leucogranite, there is an in-

crease in absolute rare-earth' content paralleled by an in-

crease in fractionation favoring the lighter rare earths.

The San Marcos gabbro is only very mildly fractionated ver-

sus the chondrites and actually shows an apparent maximn

at Ce-Pr. It is observed that Eu is high compared to the

abundance predicted by its near-neighbors and the overall

distribution of the gabbro in the Eu region. The ratio of
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the observed Eu abundance to the predicted Eu abundance is

approximately 1.6 . This ratio will be defined as Eu/Eu*.

Inspection of the Bonsall tonalite distribution in-

dicates that Eu apparently is "normal" compared to its neigh-
*

bors, and therefore Eu/Eu for this rock is approximately 1.0

Both of the granitic rocks have apparent Eu deficiencies.

The Eu anomaly is somewhat more apparent in the Rubidoux

Mountain leucogranite. Inspection of Figures 1-2 and 1-4

yields values for Eu/Eu of about 0.5 in the Rubidoux Moun-

tain leucogranite and 0.7 in the Woodson Muntain grano-

diorite.

Cerium may be somewhat high in the leucogranite and

low in the tonalite, but no estimate has been made because

the accuracy and precision of the analytical method is poorest

for this element.

Figure 1-5 is a superposition of the whole-rock, chon-

drite-normalized distributions which have been re-normalized

to La = 1,00 . It clearly reveals the relative changes in

the rare earths independent of absolute abundances. Relative

fractionation of the rare earths heavier than Th is essen-

tially absent in all rocks except the Rubidoux Mountain leuco-

granite. The leucogranite (quartz monzonite) and granodiorite

have essentially-identical relative distributions from La

through Gd or Th. The chemical compositions of these two

rocks are quite similar. However, Taylor and Epstein (1962b)

note that the granodiorite falls within the field of primary
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Fig. 1-5. Chondrite-normalized rare-earth abundances

in the four principal rock types from the

batholith of Southern California. The
abundances are re-normalized to La = 1.00

and plotted on a logarithmic scale as a

function of atomic number.
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quartz crystallization in the system NaAlSi308-KAlSi308-
SiO2-H2 0 (Tuttle and Bowen, 1958, p 56). The oxygen iso-

topic measurements indicate that, indeed, quartz began to

crystallize early in the granodiorite. They also indicate

that simple fractional crystallization of Woodson Mbun-

tain granodiorite magma would have yielded progressively

lighter (isotopically) melts. A resulting melt having the

composition of the Rubidoux Mountain leucogranite would

have been significantly lighter than the isotopic composi-

tion found in the leucogranite sample. Therefore, Taylor

and Epstein conclude that it is unlikely that the leuco-

granite could have originated by simple fractional crystal-

lization of a Woodson Mountain granodiorite magma. They

suggest that it is conceivable that both the granodiorite

and leucogranite were derived by direct differentiation of

a Bonsall tonalite magma.

It would seem that the differences in behavior of

the heavy rare earths between the granodiorite and leuco-

granite could be related to the preceding discussion. These

two rocks may represent two different trends in magmatic

differentiation. Taylor and Epstein (1962b) also cite evi-

dence which suggests that the Rubidoux Mountain leucogranite

may have formed from a magma which was quite "dry" relative

to those for the other three rocks. Relative mobilities of

the rare earths may very well be related to the PH20 in a

silicate melt.
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It is worth taking a closer look at the Eu distribu-
*

tions in these rocks. In Figure I-6, the Eu/Eu ratios are

plotted in a variation diagram as a function of weight percent

1/3 SiO2 + K20 - CaO - MgO - FeO. The latter are taken di-

rectly from a variation diagram given by Taylor and Epstein

(1962b, p. 684). It can be seen that the deviation of Eu

from its predicted behavior bedrs an approximately linear re-

lationship with the chemical composition of the rocks expressed

in this manner. Although the distribution curves were drawn

by means of a visual best-fit, and consequently the values of

Eu/Eu are only approximate, Figure I-6 suggests an important

observation. If the four rocks studied have been derived by

magmatic differentiation of gabbroic magma, then Eu was con-

tinually depleted in the successive residual melts.

Anomalous behavior of Eu suggests that it has been

divalent at some stage during the evolution of these rocks.

The ionic radius of Eu approximates that of Sr+20 Con

quently, if present, Eu would be expected to geochemically

follow Sr. Strontium is known to be associated with the

feldspars in igneous rockt. If the magmatic sources at depth

postulated by Larsen (1948) indeed existed, they may have
+3

had sufficiently-reducing redox potentials to reduce Eu to

Eu+2 Europium would then tend to follow Sr with the early-

forming feldspars, whereas the remaining trivalent rare

earths would follow their usual trend of being concentrated

in the residual melts.
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Fig. 1-6. Variation diagram showing the relation-

ship between chemical composition and
*

Eu/Eu ratios in the four principal rock

types from the batholith of Southern

California.
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Before discussing the rare-earth distributions asso-

ciated with the mineral fractions, it should be pointed out
+3

that the highly-reducing conditions required to convert Eu

to the simple Eu+ divalent state may not actually be neces-

sary. The observed Eu anomalies may possibly be the result

of a mechanism proposed by Coryell and Chase (1961)o These

authors observed that in a highly-simplified aqueous system,

available thermodynamic data indicates that Eu reduction

could be greatly enhanced in the presence of sufficient sul-

fate to yield a precipitate. If the solubility product of
+3

SrSO& or BaSO4 should be exceeded, Eu could be rather easily

reduced and incorporated into a mixed (Sr,Ba)SO4 precipitate

as Eu(II), In other words, in this simplified system, the

presence of a sulfate precipitate will greatly reduce the

range of stability of Eu in solution. It is worthwhile to

note that Ricke (1960) reports that significant amounts of

sulfate are present in most igneous rocks. The proportion

of sulfate to total sulfur was observed to generally increase

from basic to acid igneous rocks. Ricke also found that in

a study of three granites and one basalt, sulfate was preferen-

tially associated with the feldspars,

Distributions in Mineral Fractions

In discussing the rare-earth distributions found in

the mineral fractions, it must be pointed out that no conclu-

sive judgment can be made from this study regarding the
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crystal chemistry of the rare earths, Although the purity

of the mineral fractions was checked by microscopic obser-

vation, small amounts of accessory minerals which might con-

centrate relatively large amounts of rare earths could be

present. Likewise, the rare earths might also be present

in significant proportions over the mineral grain boundaries

in addition to their incorporation within the crystal lattices

of the rock-forming and accessory minerals. Nevertheless,

the rare-earth abundances in mineral fractions should yield

significant information regarding the behavior of the rare

earths during the formation of a given rock.

Because of the time-consuming and financially-expen-

sive nature of the analytical method, only eight mineral frac-

tions were studied. Except for an analysis of the apatite

fraction in the tonalite, all mineral analyses were restric-

ted to the gabbro and leucogranite.

Figure I-1 reveals that although the San Marcos gabbro

as a unit is very mildly fractionated versus the chondrites

when compared to fractionation in most other rocks, there are

some markedly-different distributions in the analyzed mineral

fractions. By far, the highest absolute rare-earth abun-

dances were found in the apatite fraction which, in turn,

has the lowest modal abundance.

The lighter rare-earths in the gabbro are favored in

both the plagioclase feldspar (labradorite) and apatite frac-

tions. The augite and hornblende, on the other hand, are

markedly depleted at the La end of the rare-earth series0
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Unfortunately, abundances are not available for Ce, Pr, and

Nd in the latter two fractions. However, the La abundances

anchor the light end of the series. The sample of San Marcos

gabbro contains hypersthene, but only the clinopyroxene was

analyzed. Taylor and Epstein (1962a) state that the two

pyroxenes are both in obvious reaction relationship with the

hornblende which encloses them. It is interesting to note

that both the hornblende and augite fractions show identical

relative distributions with apparent absence of fractionation

of the heavier rare earths.

The most striking observation is that Eu is very high
*

in the feldspar fraction of the gabbro. The value of Eu/Eu

is approximately 10. This is in sharp contrast to the cor-

responding values of about 0.6 in the augite, 0.7 in the horn-

blende, and 0.6 in the apatite. The latter fractions, there-

fore, are somewhat depleted in Eu. The association of posi-

tive Eu anomalies with the feldspar fraction was predicted by

the earlier discussion of these anomalies in the whole-rock

distributions.

A check of Figure I-3 reveals that the apatite frac-

tion from the Bonsall tonalite has a different distribution

than the corresponding fraction from the gabbro. In the

tonalite, the apatite is much less strongly fractionated

favoring the lighter- rare earths, especially when compared

to the whole-rock distribution. Europium is somewhat lower

in the tonalite apatite than in the apatite from the gabbro.
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Figure 1-2 indicates that all three analyzed mineral

fractions from the Rubidoux Mountain leucogranite show roughly

the same overall relative rare-earth distribution as the

whole rock. The K-feldspar fraction exhibits a somewhat

greater degree of fractionation favoring the lighter rare

earths than the plagioclase (oligoclase) fraction. This is

perhaps attributable to the fact that the K-feldspar proba-

bly began crystallizing slightly later than the plagioclase.

At later stages it is to be expected that the residual melt

would be somewhat more strongly fractionated favoring the

lighter rare earths. Crystallization of biotite, in fact,

might tend to bring this about since the biotite fraction is

observed to be slightly fractionated favoring the heavy rare

earths when compared to the whole-rock distribution.

Anomalous behavior of Eu is indicated in all three

mineral fractions from the leucogranite. Again, as in the

gabbro, the feldspars have significantly high relative Eu
*

abundances0 The K-feldspar fraction yields a Eu/Eu value

of about 3, and the plagioclase is enriched in Eu by approxi-

mately a factor of 2. The biotite fraction, on the other
*

hand, exhibits an astonishing Eu depletion. Its Eu/Eu

ratio is only about 0.03,

Europium anomalies in mica and feldspar mineral

concentrates from three granites have been indicated by

Chase et al. (1963), Although their estimates are based

entirely upon La, Eu, and Dy abundances , their observations

are quite similar to those made in this study on the
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Rubidoux Mountain leucogranite. They found that invariably

the feldspars were enriched in Eu relative to the micas and

suggested that divalent Eu might possibly be stabilized in

granites by the presence of sulfate.

In summary, this study indicates thaton a whole-

rock basis, the four samples analyzed from the batholith of

Southern California show progressively increased relative

fractionation favoring the lighter rare earths in the se-

quence of gabbro, tonalite, and granodiorite-quartz monzonite.

Paralleling this overall rare-earth fractionation, Eu seems

to have suffered a systematic relative removal which increases

in the same sequence. Further, the existence of significant

Eu anomalies in mineral fractions from the San Marcos gabbro,

Rubidoux Mountain leucogranite, and Bonsall tonalite suggests

that divalent Eu was an important constituent during the

evolution of all of the rocks studied.

It is hoped that a study will soon be made of the

rare earths in a differentiated sill or some other igneous

body of apparent magmatic origin in which a material balance

can be attempted. In this case, a more quantitative study

of rare-earth behavior would be possible, It also would be

highly desirable to look at the rare earths in selected

minerals from a suite of volcanic rocks. Schmitt (1963) in-

dicates that a Kilauea basalt and Columbia Plateau basalt

show very similar rare-earth fractionation and apparent nor-

mal behavior of Eu. Chase et al. (1963) suggest similar uni-

formity in fractionation and normal behavior of Eu in three
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oceanic basalts. It should, therefore, be informative

to look at rare-earth distributions in a series of compo-

sitionally-different but genetically-related volcanics.

The present study suggests that systematic differences in

overall rare-earth fractionation as well as anomalous be-

havior of Eu in the associated mineral fractions may exist

in such a suite of samples. Future study of Eu distribu-

tions may eventually be useful in making estimates of redox

potentials.
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DETERMINATION OF THE RARE-EARTH ELEMENTS AND YtTRIUM
USING GROUP ISOILATION FOLLOWED BY

NEUTRON ACTIVATION AND PARTIT ION CHROMATOGRAPHY

Regina Volfovsky, David G. Towell, and John W. Winchester
Department of Geology and Geophysics
Massachusetts Institute of Technology
Cambridge, Massachusetts

ABSTRACT

A procedure for determination of the rare-earth ele-
ments and yttrium, applicable over a wide range in concen-

trations and to silicates as well as other rocks and minerals,
has been developed. The procedure utilizes chromatographic
separation of neutron induced, low-level radioactivities.

Two analysts work;Lg jointly can analyze up to three samples
per week which is faster than methods commonly used. Self-

shielding errors are eliminated by irradiating all samples

and standards in aqueous solution.

After dissolution of the sample by classical methods,

the rare earths were separated from the ammonia-soluble ele-

ments by two ammonia precipitations. The rare earths were
then isolated by ion exchange. The pure rare-earth fraction
was irradiated in a thermal neutron flux of approximately

8 X 1012 neutrons/m 2 -sec for a period of time (1-20 hours)
proportional to the amount of rare earths expected. The ir-

radiated solution was chromatographed by gradient elution
with hydrochloric acid on a colum of refined diatomaceous

silica coated with di-(2-ethylhexyl)orthophosphoric acid.

Precision and accuracy were approximately +10%. A

majority of the chemical yields were >97% (monitored by y8
and Ce139 carrier-free tracers). Gadolinium and erbium were
not determined.
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INTRODUCTION

A procedure for the determination of the rare-earth

elements (hereafter referred to as the RE) has been developed

which offers several advantages over other methods. After

dissolution of samples (e.g. silicates), the rare earths were

isolated by hydroxide precipitation and ion exchange. Aqueous

solutions containing essentially only the RE were irradiated

in the pneumatic tube of a nuclear reactor in thermal neutron

fluxes of approximately 8 x 101 2 neutrons /cm2 .sec, Sub-

sequently, the individual RE were separated by reversed-

phase partition chromatography with di-(2-ethylhexyl)ortho-

phosphoric acid (hereafter referred to as DEP) as described

by Winchester (7). The induced radioactivities of the RE

were then counted along with those of a simultaneously-

irradiated and chromatographed standard rare-earth mixture.

Neutron activation and rare-earth chromatography

have been employed by other investigators (2,3) in methods

which are both accurate and highly sensitive and applicable

to the parts per million to fractional parts per billion

concentration range. In these procedures, samples are irra-

diated prior to any chemical processing to avoid reagent con-

tamination. In the procedure herein described, it was found

that for most geological materials, the reagent contamination

was negligible, and therefore, pre-irradiation isolation of
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the RE was possible. This obviated the necessity of using

remote manipulation and the heavy shielding required in han-

dling the extremely radioactive materials resulting when many

samples (e.g. silicates) are irradiated directly. An addi-

tional important advantage is that all samples were irradia-

ted in homogeneous solutions. In many solids, the RE may be

irregularly dispersed throughout the sample and self-shielding

problems may arise, particularly since many RE have high ther-

mal neutron cross sections.

In this investigation it has been assumed that the

relative isotopic abundances of each RE are identical in all

samples and standards. This isotopic constancy was confirmed

by Mosen et al. (3) who measured six different isotopic ra-

tios in a series of terrestrial and meteoritic samples.

EXPERIMENTAL

REAGENTS AND APPARATUS

In the pre-irradiation rare-earth group separation,

all chemicals used were reagent grade, and all distilled water

was obtained from a tin-lined Barnstead No. ELO-1 1/2 still0

Dowex 50W-X8 (200-400 mesh or 100-200 mesh) and Dowex 1-X8

(50-100 mesh) cation and anion exchange resins, respectively,

were employed for group separations . Chemical yields were

monitored by carrier-free 140-day Ce139 and 108-day y8 tracers

furnished by Nuclear Science and Engineering Corporation.
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Post-irradiation partition chromatography was carried

out using columns of Johns-Manville Celite, rendered hydro-

phobic by prior treatment with vapors of dimethyldichloro-

silane and coated with high purity di-(2-ethylhexyl)ortho-

phosphoric acid (DEP). A weight ratio of DEP to Celite of

about 15 was employed (7). The lower ends of the inner

tubes of micro Liebig condensers (with water jackets approxi-

mately 8 cm in length) were drawn to capillary tips (1.5 cm

from end of jacket to tip) and packed with about 2 cm3 of the

DEP-Celite preparation (column length 6 cm, diameter 6 mm).

The water jackets were connected to circulating, constant-

temperature water baths.

Individual stock solutions of rare earths in 3N HNO3
were prepared using high purity (99.9%) rare-earth oxides

purchased from the Lindsay Chemical Division, American Potash

and Chemical Corporation and stored in polyethylene bottles.

Concentrations of the standard stock solutions ranged

from approximately 0.75 mg/ml to 15 mg/ml. These concentra-

tions were chosen such that small aliquots of each solution

could be combined and accurately diluted to yield a rare-earth

mixture roughly approximating the rare-earth distributions

of the samples to be analyzed. The exact concentrations of

the rare-earth stock solutions were determined by EDTA titra-

tion with Alizarin Red S as indicator, according to a pro-

cedure by Bril et al. (1), modified by using a visual end

point. The precision obtained was 0.27 or better. A mix-

ture with concentrations 10 times greater than required was
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made from the stock solutions every one-two months. From

this solution, a 10-fold dilution was made prior to each

irradiation. The amounts of the RE in the final irradiated

solution which serves as a standard are given (in pjg/l00X) in

column S="known" of Table II-3.

Chemical yield determinations and post-irradiation

gamma-ray scintillation spectrometry were performed with a

Technical Measurement Corporation system. This included a

TMC 400-Channel Pulse Height Analyzer Model 402, TMC Resolver-

Integrator Model 522, TMC Paper Tape Printer Model 500, TMC

SG-3A Scaler, and a Harshaw Chemical Company 1-3/4 in, by

2-in. thallium-activated sodium iodide well-type scintilla-

tion crystal and photomultiplier tube (integral line assem-

bly) housed in a lead shield. Beta counting was done with

a standard flow-proportional counting system manufactured by

Baird-Atomic, Inc.

PROCEDURE

Rare-Earth Group Isolation

Io Dissolution of Sample and Isolation of
Ammonia Group

a. Silicates.

Up to 500 mg of powdered sample were placed in a

platinum dish and known amounts of 108d y8 and 140d Ce1 3 9

tracers, about 50,000 cpm each, were added, Exactly the same

amounts of each tracer were mixed with 2N acid (to prevent
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adsorption on the walls) in 1-mi volumetric tubes to serve

as references for determination of chemical yields. For

500-mg samples, 25 ml of 48% HF and 5 ml of 70% HC104 were

added and heated strongly with occasional stirring on a hot

plate until a clear solution was obtained (two-three hours).

Up to 15 ml of HF were added gradually, if necessary, to

complete the dissolution. The solution was taken to dry-

ness and most of the HC104 fumes were driven off, taking

care not to convert the perchlorates to oxides (one hour).

The residue was dissolved in 10 ml of 2N HCl, adding occa-

sionally 5-10 ml of H20 to aid in dissolving the salts (up

to one hour).

The solution was transferred to a 50-mi centrifuge

tube and precipitated twice with 1:1 ammonia, heating each

time for 20 minutes or more to complete coagulation. The

supernatants were discarded after checking for unprecipita-

ted activity (it was usually negligible). The precipitate

was dissolved in a minimum amount of 6N HCI, added dropwise

with heating, to obtain a solution not exceeding 5 ml in

volume and less than 1N in acid concentration. The solution

was then loaded on a cation exchange column.

b. Other Non-Refractory Solids.

Samples largely soluble in HC (marine shells,a car-

bonatite, a manganese nodule) were dissolved; then, after addi-

tion of the tracers, the insoluble fraction was centrifuged

out and, if siliceous, was treated as in (a). Organic material
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was wet-washed with HNO3 * When the insoluble fraction was

not of interest, it was filtered out on filter paper in-

stead of centrifuged, and washed with acid until no activity

remained on the paper.

To samples containing leas than milligram amounts

of Fe, Al, or both, 3-5 mg of spectrographically-pure Fe

in HC solution were added to serve as a carrier for the RE.

Further processing was the same as in (a).

c. Refractory Minerals.

For samples containing minerals which are not dem

composed by the HF + HC104 treatment, a fusion with NaOR was

employed. It should be used only after making sure that pro-

cedure (a) 'is unsatisfactory for a given sample (see DIS-

CUSSION),

NaOH and the finely-powdered sample were placed in

a 5:1 weight ratio in a nickel crucible and tracer solutions

were added. The liquid was evaporated with a low Bunsen

flame, avoiding spattering upon the crucible lid. The sample

was then fused in a muffle furnace at 5000C (red heat) for

15 minutes. After cooling, the solid was loosened by mois-

tening with 5 ml of H20, acidified with 6N HC1 and trans-

ferred to a 600-ml beaker. After adding 10-ml portions of

1N HC to the crucible, they were heated until hydrogen was evol-

ved, and then added to the rest of the sample. This was re-

peated until the crucible was inactive, or its activity re-

mained constant. The sample solution was precipitated with
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1:1 amnonia, coagulated, and filtered through Whatman No. 41

filter paper to remove the large excess of NaCl. The pre-

cipitate was washed with 2! EC1 into a platinum dish, evapo-

rated to 2-3 ml, and treated with HF + HC10 4 , etc. as in (a).

II. Ion Exchange

Columns of 200-400 mesh Dowex 50W-X8 cation exchange

resin were used for 0.5-g silicate samples and were about

37 cm long (in 2! HC) and 13 mm in diameter. Elutions

were run under applied air pressure to obtain flow rates of

about 1 ml per minute and total elution times of about nine

hours. For samples containing distinctly less Al + Fe,

smaller columns (8 mm in diameter and 18 to 25 cm in length)

of 100-200 mesh resin were used and pressure was not applied.

In these cases, a complete slution took about 12 hours.

Coarser resin or shorter coltumns gave insufficient separa-

tion of Al from Lu.

Before packing a column, the resin was soaked in

61 EC1 for at least half an hour. After settling in the

column, the resin was washed with 6! EC1 until the effluent

was colorless, and then conditioned with 0.51-HCI. Columns

operated under pressure were loosened with a glass rod after

each run.

All cations held less strongly by the resin than the

RE (this includes all but Ba, Zr, and Th) are eluted with

2! EC1. TheRE were eluted with 8! HC1, coming off the column

in the order of Lu to La+Ce. The amounts of eluents to be



- 63 -

used were determined individually for each column. A solu-

tion containing Y8 and Cel39 tracers and the maximum amounts

of Al, Fe, and RE expected in the samples to be used on a

given column was loaded on the column and eluted with 2N HCl.

Fractions of 5 or 10 ml were collected and tested colori-

metrically for Al with ; alternatively, Ca45

tracer was added to the test solution to find the end of

the Al (the distribution constants of Al and Ca are essen-

tially equal in 2N HC1 according to Strelow (6) ).

Elution with 21 HCl was continued until y appeared

in the effluent. Columns were considered satisfactory when

there were at least 50 ml of 2N HCl between the last posi-

tive aluminum test and the first appearance of Y8 tracer,

A total volume of 2N HCl, 10-15 ml in excess of that required

to bring off all the Al from a given column was used with

successive samples on that calumn. Similarly, the amount

of 8N HCl required to bring off all the Ce139 activity was

determined. Reproducibility of column performance was main-

tained over a 6-month period of repeated use. The large

columns required about 250 ml of 2N HCl and 200 ml of 8N HCl;

the small columns required about 155 ml of 2N HC1 and 65 ml

of 6N HCl. Separation of Lu from Al on the large columns

exceeded 100 ml.

Samples were loaded on columns conditioned with

0,5N HC1. Loading under pressure at roughly one-half the

elution flow rate gave a satisfactory initial band. Checks

for absence of Y8 in the last few milliliters of 2N HCl and
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8N HC1 insured complete collection of all the RE. The large

columns were reconditioned with 100 ml of 0.51 HC1.

The effluent containing the RE was evaporated to

about 5 ml using a stream of air (filtered through glass

wool) to speed up the evaporation, and passed through a

Dowex 1-X8, 50-100 mesh, 7 cm x 5 mm anion exchange column,

previously conditioned with 6N HCl. This removed any Fe

re-introduced in the large volume of HC1 eluent, and filtered

out a very thin, inactive suspension usually present at this

stage (consisting presumably, of silica, resin material pre-

viously dissolved but coagulated during the evaporation, or

both). In this step, 5-7 free-column volumes of 6N HC

(7-10 inl) were sufficient to recover all the activity. This

effluent was collected in a 50-mi Pyrex centtifuge tube.

The column was washed with 0.01N HC1 and reconditioned with

61 HC before re-use.

Reduction of Sample to 1.0 ml in Chloride-Free lH HNO3

The centrifuge tube was placed in a sand bath and

the solution evaporated to less -than 0.5 ml in a stream of

air (to prevent bumping). The chlorides were driven off by

evaporation with two 5-ml portions of concentrated HNO3,

which also destroyed dissolved resin material. The first

portion was evaporated to a few drops, the second to 0.2-

0.5 ml. Then 1-2 ml of 0.05N HNO3 were added and complete



G 65 -

transfer was made to a 10-ml test tube, checking that no

significant activity remained in the large tube. The solu-

tion was evaporated to almost dryness, and baking was avoided.

Following this, 4-5 drops of 0.05N HNO3 were added with

heating to dissolve the residue. The solution was centri-

fuged and the supernatant transferred to a 1-ml volumetric

tube. This was repeated several times to transfer all activity.

The tube was then filled to the 1.00-ml mark with 0.05N HNO3 *

The solution was mixed thoroughly with a small teflon rod to

obtain a homogeneous solution prior to determination of chemi-

cal yields.

Chemical Yield Determination and Irradiation

Chemical yields were determined for cerium and yttrium

by selective gamma-counting of the Ce139 and Y8 tracer

radioactivity. The sample and the two reference tracer solu-

tions were counted in 1-ml volumetric tubes to maintain re-

producible geometry. The two energy ranges of 0.75 Mev to

2,00 M4ev and 0.10 Mev to 0.22 Mev were counted separately with

the aid of the pulse height analyzer. The high range in-

cluded the y88 YUs = 0.90 Mev and 1.83 Mev; the low range in-

cluded the 00139 y m 0.166 Nev. The Ce139 contribution in

the high range is negligible, and therefore the chemical yield

of yttrium was the ratio of the high-energy range gamma activity

of the sample to that of the reference Y88 tracer. Similarly,

the cerium yield was determined from the low-energy range
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counting data, except that the Y8 contribution had to be

subtracted from the sample count (the number to be subtracted

was calculated by multiplying the measured yttrium yield of

the sample by the observed activity of the y88 reference solu-

tion in the low energy range). The two yields were almost

invariably greater than 90% (frequently 98-99%, and the dif-

ference between the cerium and yttrium yields was usually

less than 3% (never exceeded 67.). Therefore, the cerium and

yttrium chemical yields were assumed to represent those of

all rare-earth elements of the cerium- and yttriva-earth

groups, respectively. Approximately one half of each pro-

cessed sample was packaged in polyethylene tubing for irra-

diation. An aliquot of a standard mixture of rare earths in

roughly similar proportions to the sample rare-earth contents and

prepared- by dilution of the standard rare-earth stock solu-

tions was also packaged. A maximum of three samples and one

standard were then packaged together in a 4-dram polyethylene

vial and irradiated in a thermal neutron flux of approxi-

mately 8 x 1012 neutrons/cm2-sec. Samples were irradiated

for one hour or five hours (except a sea water sample and a

reagent blank which had very low total rare-earth contents

and were irradiated approximately twenty hours each),

ChromatogrMphic Separation of the Rare Earths

After irradiation, aliquots of each sample and the

standard mixture were chromatographed on the columns of
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DEP-Celite described under REAGENTS AND APPARATUS. In

loading a sample on a column, an approximately equal volume

of 2M HSO solution was included to adjust the final mix-

ture to a pH = 2 and reduce any tetravalent cerium to the

cerrous state, The columns were previously conditioned

with 10-15 ml of 6N HCl followed by the same volume of

0.01HC1 prior to sample loading. Elutions were carried

out under applied nitrogen pressures up to 8 lbs/in2 so as

to maintain flow rates of approximately 3 seconds per drop.

Column operating temperatures were maintained at 60-650C by

connecting the outside jacket of the micro Liebig condenser

to an external constant-temperature water bath. Pressure

was applied in loading samples only after they had been

heated sufficiently to drive off dissolved air. A stepwise

gradient elution with hot, outgassed hydrochloric acid,

ranging in concentration from 0. 05 to 6 , was carried out

with each sample and the standard. The concentration and

volume of each acid used are listed in Table II-1. Figure

II-1 is a plot of radioactivity versus fraction number. As

can be seen, the sequence of elution is from La to Lu. Acid

concentrations were such that each acid would bring one rare

earth off the DEP-Celite column in two free-column volumes

(70% of the geometrical volume) (7).

Two fraction collectors and drop counters were used

simultaneously and a total of four elutions (three samples

and the standard mixture) could be made by two people in an

8-10 hour day. Approximately 150 fractions of 0.5 ml each
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Table II-1

Concentrations and Volumes of HC1 Used for Chromatography
of the Rare Earths

Rare earth
eluted

-- w

La

Ce

Pr

Nd

(Pm)

Sm

Eu

Gd

Th

Dy

Ho

Er

Tm

Yb

Lu

Acid
concentration,
moles /liter

0.05

0.141

00194

0.247

0.340

0.450

0.590

00760

1005

1.41

1.77

2.15

2.53

3.00

3.45

3.80

Column
reconditioning

Volume,
ml

4.5

6.0

0.01

12

12
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Fig. II-1. Typical elution of a rare-earth mixture

irradiated for one hour in a thermal neutron

flux of 8 x 1012 n/ 2 -sec.
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were collected in 1-dram glass vials during each elution.

The first 100-110 vials were half-filled with 2N HCl to pro-

vide better geometry for gamma counting. The remaining

fractions were later transferred directly to 2-in. watch

glasses, evaporated to dryness by an infra-red lamp and hot-

plate combination, and saved for subsequent beta counting.

After the first two elutions were completed and all activity

removed from the columns, the latter were reconditioned with

about 10 ml of 0.01N HCl, loaded with the remaining two sam-

ples, and the final two elutions performed.

The following manipulative details required special

attention. Aliquots of samples and the standard RE mixture

were taken from the irradiated solutions and loaded on the

DEP-Celite columns (volumes, in general, were between 100

and 500 microliters and were accurately measured by X-pipets).

Prior to sample loading, a small volume of the 2M HSO3 buffer

was added above the column. The irradiated solution was

added immediately, and following this, an equal volume of

the buffer was rapidly added so as to thoroughly mix with

the sample and the buffer below the sample. In order to pre-

vent dissolved gases from being forced into the columns, the

sample-buffer mixture was allowed to soak at least partially

into the column while being heated by the external water

jacket. When caution was not exercised in sample loading,

channeling appeared in the columns during the subsequent elu-

tion, and poor results were obtained.
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In raising the temperature of columns from room

temperature to the operating temperature (60-650C), it was

found necessary to pass hot outgassed 0.01N HCl through the

columns while the latter were still at room temperature, and

to continue adding hot acid as the columns were being gradually

heated. Failure to do this usually resulted in the appearance

of channeling in the columns. Approximately 20 minutes were

required to bring a DEP-Celite column to the operating tem-

perature.

Counting of Radioactivity

The pulse height analyzer was calibrated to accept

gammas ranging in energy between 0.06 Mev and 2.0 Mev. The

scaler was modified to accept only those pulses accepted by

the analyzer. Therefore, scaler readings on a given vial cor-

responded to the total integrated activity recorded in the

memory of the analyzer for that count (i.e. from 0.06 Mev to

2.0 Mev).

All gamma counts were for 0.4 live-minutes (the analy-

zer timer measures live-time rather than elapsed-time, thereby

eliminating dead-time corrections for high-activity fractions).

For some fractions, selective integration with the integrator-

resolver (starting at energies above 0.06 Mev) was used to

resolve adjacent RE which might be present in the same fraction.

The four corresponding fractions of the three sample elutions

and one standard elution were counted before proceeding to the
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next four fractions, thereby eliminating the necessity of

making decay corrections in sample-standard comparisons. The

gamma spectrum of each fraction was inspected for positive

identification of the radionuclide being counted.

In Table 11-2 are the important rare-earth radio-

nuclides produced by irradiation with thermal neutrons at

a flux equal to 8 x 1012 neutrons/cm2 -sec. The elution

curve in Figure II-1 is for the standard rare-earth mixture

(one-hour irradiation). The elution curves of samples were

the same except that the Ce and Y fractions were also selec-

tively counted to distinguish between the reactor-induced

activities and the Ce139 and y88 tracer activities used to

measure chemical yields. With the pulse height analyzer,

resolver-integrator, and scaler it was possible to simul-

taneously determine both the "total activity" (0.06 - 2.0 Mev)

and the integrated activities of selected ranges. The latter

were stored in a portion of the analyzer memory not used for

accumulation of activity and were later printed out on paper

tape. The fractions containing Ce were integrated from 0.25-

2.0 ev (to eliminate the 0.166 Mev y of tracer Ce139). The

Ce and Pr fractions were integrated from 0.8 Mev to 2.0 Mev

to eliminate all Ce and Nd activity. This method of measuring

Pr activity also provided an accurate method for detection of

any Pr contamination in the Ce fractions.

The activity used to calculate the Nd concentration

was the sum of the Pm149 and Pm 15 activities (daughter

activities from parent Nd149 and Ndl51). This is possible
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Table 11-2

Princival Induced Rare-Earth Radionuclides

Parent element

La

Radionuclide

Lal40

Half -life

40.2 h

Ce Cel 4 l 33.1 d

Cel43  33 h

Pr Pr142  19.2 h

Nd Nd147  11.1 d

Ndl49  1.8 h

PM149 50 h

Nd151 12 m

PM151 27.5 h

Sm Sm1 5 3  47.1 h

Eu Eu'52m 9.2 h

Gd Gdl 59  18,0 h

Gd 1 6 1 3.7 m

Tb1 61 7.0 d

Tb Tb1 60  72.3 d

Dy Dy1 6 5  2.3 h

Ho Hol 6 6 27.2 h

Er Er169

Er'll

9.4 d

7.5 h
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Table 11-2 (continued)

Parent element

Tm

Radionuclide

TMi170

Half-life

129 d

Yb69 32 d

Yb175 4.2 d

Y 177 1.9 h

Lu Lul76  3.7 h

Lu177  6.8 d

y Y90 64.2 h
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because there are no stable isotopes of Pm (and, consequently,

no primary Pm activity).

The Eu fractions were integrated from 0.75 -.2;0 Mev

to eliminate both Sm and Gd. This also provided a method of

measuring any Eu contamination of Sm fractions. The induced

Gd activity was very low compared to the Eu activity, and

since the two elements could not be separated by the chromato-

graphic procedure, Gd was not determined.

Since Dy165 has a 2.3-hour half-life (and is the only

induced Dy activity) it was counted on the day of the irradia-

tion. It generally was the most active rare-earth nuclide

at the end of each elution and its location (range of fractions)

could quickly be found and the fractions counted. A day

later the Dy165 had decayed sufficiently to determine 27'.2-

hour Ho166 without interference from the Dy activity (see

Figure II-1). The later determination of Ho could be used

to estimate the Ho contamination of the earlier Dy count.

The Y fractions were gamma counted from 0.75 - 2.0 Mev. This

was used both as a check on the post-irradiation chemical

yields of y88 tracer (the induced 64.2-hour Y90 decays 99.98%

of the time by pure beta emission), and for later subtraction

from the beta count.

All fractions past Ho were evaporated on 2-in. watch

glasses and counted for one minute each by the flow-propor-

tional beta counter. Since Y and Er could not be separated

by the chromatographic procedure, it was decided not. to deter-

mine the latter. The Y content of samples generally was about
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t6n times greater than the Er content, and at the time

these fractions were counted (50-75 hours after the irradia-

tion) the Erl7 beta activity was less than 17. of the Y90

beta activity. It was determined that 0.08% of the y88 tra-

cer gamma activity was recorded by the beta counter, and

consequently this was subtracted from the gross Y-9 beta

count.

The Dy fractions were counted immediately after

finishing the elutions (i.e. on the day of the irradiation).

The remainder of the gamma counting was completed on the

following day. Beta counting was done a day or two later.

In later runs, the 127-day TMl70 and 73-day Th160 were not

counted until a week or two after irradiations. In this

way, resolution between their adjacent rare -earths was im-

proved, and background activities were markedly reduced.

Calculations

The total activity of a given rare earth in a sam-

ple (or standard) was determined by integration of the coun-

ting data over the corresponding fractions (as determined

from the elution diagram, e.g. Figure II-1). The individual

rare-earth concentrations of a sample were calculated from

the summed sample and standard activities, the known rare-

earth concentrations in the standard mixture, the chemical

yields, and the known proportion of the, original sample

which was chromatographed, Decay corrections were generally
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unnecessary because corresponding fractions from the four

elutions were counted at essentially identical times .

RESULTS

Precision Test with a Pure Rare-Earth Mixture

A freshly-diluted portion of the standard mixed-

RE solution also containing the usual y8 and Ce139 yield

monitors was loaded on the cation exchange column and pro-

cessed further using the previously-described procedure.

The chemical yields (determined directly before irradiation)

were 188 = 98% and Ce139 = 967.. This solution was irradia-

ted with an identical amount of unprocessed standard solu-

tion. The two solutions were chromatographed simultaneously

on two DEP-Celite columns and counted as usual.

The net summed activity of each rare earth in the

two solutions is recorded in Table II-3o The amounts of

RE found in the processed solution (SP) were calculated by

the usual procedure, which assumes that the activity of each

fraction in the unprocessed reference solution (S) represents

a known amount of that RE (previously determined by titration

of the individual stock solutions). This, of course, is

correct only within the limit of error introduced by the

chromatography and counting statistics. The values of the

ratios RE(SP)/RE(S) which appear in the last column of

Table II-3 would be unity if the reproducibility were 100%.



Table 11-3
Precision Test on Processed (SP) and Unprocessed (S) Pure Rare-Earth Mixtures

Activity, epm
SPElement

La

Ce

Pr

Nd
(Pm)
Sm

Eu

Tb

Dy

Ho

Tm

Yb+Lu

Y

Rare-earth cont

SM"known"

0.4%

6.0%

7.5%

7.5%

0.4%

0.6%

3.0%

0.2%

2.2%

3.6%

1.01%

1.5%

2.778

6.408

0.736

2*760

:ent (RE), pg

SPbs P

2,694

5.639

0.765

2.843

0.751

0.268

0.312

1.575

0.156

0.157

0.303

1.479

78,129 +

630 +

315 +

564 +

799760 +

31,685 +

2,182 +

183,717 +

3,799 +

1,594 +

14,690 +

5,012 +

SP R E found
R E taken

0.97 + 0.5%

0.88 + 7.5%

1.04 + 10.5%

1.03 + 10.5%

83,985

743

315

572

82,380

31,316

2,148

184,826

3,845

1,599

15,669

5,262

0.3%

4.5%

7.5%

7.2%

0.3%

0067

3.0%

0.2%

201%

3.0%

100%

1.5%

00744

0.255

0.303

1.560

0.155

0.154

0.316

1.525

1.01 +

1.05 +

1.03 +

1.01 +

1.01 +

1.02 +

0.96 +

0.97 +

0.5%

0.9%

4.5%

0.3%

208%

4.7%

1.5%

2,0%



- 80 -

Their departures from unity represent the combined effect

of the errors introduced in chromatographing the solutions

and the statistical errors inherent in measuring the induced

radioactivities. The separation of Yb from Lu in the SP

(processed) sample was unsatisfactory, so that only Yb +

Lu values are reported.

It is seen that, except for Ce, the deviations of these

ratios from unity do not exceed 0.05, and they are randomly

positive and negative. This indicates that no systematic

errors are introduced, either by comparing a processed RE

mixture to an unprocessed one, or by chromatographing them

on different columns. It also shows that the chemical pro-

cessing does not effect the completeness of recovery from

the DEP-Celite columns.

The percentage error recorded with each activity in

Table 11-3 is the statistical counting error (67% confidence

level) and is a function of the total-to-background ratio.

The value of the percentage error in the last column was

obtained by combining the corresponding preceding errors

according to the usual statistical procedure. It is seen

that in 5 cases the deviation from unity can be accounted

for by the counting statistics alone. Where the counting

statistics are appreciably better than the observed precision

(e.g. in the cases of La, Eu, and Yb + Lu), this precision

is a direct measure of the reproducibility of the chromato-

graphic separation of. these elements, and is believed to

represent the overall quality of the separation attainable



- 81 -

using the DEP columns. The precision of the Ce values is

regarded as +15%.

Precision Test on Duplicate Runs Taken from the Same

Sample Solutions

Two aliquots of each of 4 sample solutions were

irradiated and analyzed. The results are given in Table

II-4. In the case of a quartz-feldspar mixture, both ali-

quots came from one batch of irradiated solution. They were

chromatographed on different DEP-Celite columns and assayed

with reference to the standard solution irradiated along

with them. This test measures the effect of using different

columns, everything else being kept identical.

The duplicates of the other 3 samples were irradiated

on different days and assayed with reference to different

standards; i.e. each was compared to the standard irradiated

with it. This tests the precision of the overall procedure.

The RE content of the quartz-feldspar sample turned

out to be too low for the one-hour irradiation used, and it

was possible to determine only the elements for which the

procedure is most sensitive (La, Sm, Eu, and Dy). Thei observed

precision spread in this ,case was better than for the runs of

different irradiations with different standards, but to a

rather insignificant degree.

The simple arithmetic deviations of each 2 deter-

minations from their mean are expressed in percentages of



Table II-4

Duplicate Runs Taken from the Same Sample Solutions

Sample La

Rare-earth concentration, 4g/g

Ce Pr Nd
(ppm)

Sm Eu Th

San Marcos A 4.10 16.9 1.91 7.28 2.14 0.99 0.507
b2r3 8.08 2382 111 0.449

gabbro B 39.# 12,1 -- -

mean 4.01 14.5 2.15 7.68 2.17 1.05 0.478
+27. +16% +11% +5% +1% +.5% +6%

Standard A 9.90 15. 3.51 16.7 3.40 1.32 0.851
diabase B 8.72 23.7 3.52 1.26 0.763

W-1 mean 9.3 20.2 3.46 1.29 0.807
+6% +17% +2% +27 +6%

Standard A 95.5 150 12.9 53.4 8.14 1.41 0.726

granite B 89*3- 57. 8.36 1*31 0.548

G-1 mean 92.4 55*2 8.25 1.36 0.637
+.3% +3% +1% +47 +147

Quartz- A 0.304 0.120 000122
feldspar B 0.302 0.118 0.0129
mixture mean 0.303 0.119 0.0126

+0.3% +1% +.3%

Root-mean-square-
deviation

(t167) (11%) +107 +1% +9%+4% ,



Table 11-4 (continued)

Sample Dy Ho Tm Yb Lu

San Marcos A 2088 0.560 0.240 1*92 0.274 17.2
gabbro B 2c70 0.578 0.256 1A8 0.238

mean 2.79 0.569 0.248 17 0 0.256 15*5
+3% +. +3% +13% +7% +11%

Standard A 4.07 0.878 -- 2.29 0.336 27.4
diabase B 4.69 0.832 0.332 2.17 0.360 28*6
WA mean 4.38 0.855 2.23 0.348 28*0

+7% +3% +3% +3% +3%

Standard A 2,44 0.387 0.169 0.978 .,130 15.7
granite B 2.60 0.429 0.143 0*896 0*116 10.9
G-1 mean 2.52 0.40 0.156 0.937 0.123 13.3

+3% +5% +9% +4% +6% +18%

Quartz- A 00119
feldspar B 0.126
mixture mean 0.123

+3%

Root-mean-square"
deviation +4% +8 +6% +12%+4%o +8%
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the mean value. The root-mean-square of these percentages

is listed as the root-mean-square deviation for each element.

These compare well with the larger of the two deviations

listed for each element in the last column of Table 11-4.

The precision is seen to be within +12% for all elements

except Ce.

Separately-Processed Duplicates

In Table 11-5 are listed the results of repeated

analyses of whole-rock samples, each analysis made on a

separately-weighed out amount of material taken from the

same vial. The Kilauea Iki-22 sample ias ground to <'100-

mesh; the 3'others were' ground to < 200-mesh.

Values are given for La, Sm, Eu, and Dy, for which

analytical precision of +47 or better has been shown in the

preceding section. Here the spread of results is much lar-

ger, indicating that it reflects actual inhomogeneities in

the sample powders. This should be remembered when comparing

data of different authors on assumedly-identical silicate

samples.

Spiking Test

This experiment consisted of an addition of known

amounts of RE to a silicate sample. Two 0.500-g samples of

Kilauea Iki basalt (powdered to < 100-mesh) were taken from

the same vial. To one of them were added 100 X of freshly-
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Table 11-5

Separately-Processed Duplicates

Rare-earth concentration, 4g/g (ppm)

Sample La Sm Eu Dy

Rubi doux A 24.4 4.00 0*71 4 3.83
Mountain B 296 0.834 4.44

leacogranite C 2704 4.17 0.748
D 24*5 3.78 0.629 3008

mean 26*5 3,98 0,73 1 3.8

range 20% 10% 28% 36%

San Marcos A 4.72 1.14
gabbro

B 4.0 .05

mean 4.37 1.10

range 16% 8%

Bonsall A 16.7 4.00 1.18
tonalite

B 13.4 3.65 1.06

mean 15.1 3.83 1.12

range 22% 9% 11%

Kilauea Iki-22 A 13*2 4047 1'50
basalt B 1103 4*32 1*43 3.55

Schmitt et al. 10*5 420 1.34 3o0O
(1962) -

mean 11.7 4.33 1.42 3028

range 23% 6% 11% 17%
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diluted, mixed-RE solution (the same as used for standards).

The amounts of RE added are listed in Table 11-6. The addi-

tions varied widely in absolute amounts of the various RE

(from 0.08 to 3.20 pg) and constituted varying percentages

of the RE in the sample (18% to 140%). This one experiment

thus simulated 11 experiments with different additions of

one element. The sample without addition was labelled "K",

that with the additien was "L". Samples K and L were pro-

cessed simultaneously, keeping all conditions identical.

The yields of Ce139 and y88, measured just before irradiation,

were 99% and 98%, respectively, in L and 99% of both tracers

in K. Both samples were irradiated and chromatographed simul-

taneously, along with a standard to which their activities

were later compared.

The results obtained are listed in columns (K) and

(L) in Table II-6. Listed errors are based on counting sta-

tistics. They are functions of the total activities and the

ratios of total to background activities.

If the RE content of the two powdered samples were

identical and the recoveries of all RE were complete, the

equality L = K + A should hold. Values of + are listed in

Table II-6 and are seen to be less than unity (with the single

exception of Ce); their mean is 0.96 This can be due to

either incoplete recovery of the RE, or due to a smaller RE

content in the powder taken for the "L" sample. To see which

of the two possibilities was more likely, values of -

(which measure the recovery of the addition, assuming the



Table II-6
*

Spiking Test

Element
pg measured
no addition

(K)

2.81 + 0.0

7.42 + 0.2

0.950 + 0.0

4.83 + 0.2

1.080 + 0.0

0.358 + 0.0

0.157 + 0.0

0.887 + 0.0

0,167 + 0.0

0.055 + 0.0

La

Ce

Pr

Nd

Sm

Eu

Tb

Dy

Ho

Tm

Yb

Lu

y

pg added
(A)

1.39

3020

0.368

1038

0.372

0128

0.152

0.780

0.078

0.077

0.080

0.079

0.760

( -10 2 )

L

3

36

04

01

08

02

03

02

gg measured
with addition

(L)

3.75 + 0.01

10.77 + 0.30

1.228 + 0.04

6.03 + 0.24

1.380 + 0.00

0.465 + 0.00

0.283 + 0.01

1.603 + 0.00

0.233 + 0.00

0.131 + 0.00

0.517 + 0.01

0.122 + 0.00

5.00 + 0.07

L
( Agg

49%

43%

39%

29%

34%

367a

97%

88%

47%

1407o

18 7

187o

5

1

0

2

3

4

0

1

0.89

1.01

0.93

0.97

0.95

0,96

0.92

0.96

0.95

0.99

0.99

mean: 0.96
+0.03

4.29 + 0.05



Table 11-6 (continued)

Addition Sample
recovery comparison

Element Difference L-K (L-A)
(L-K) )

La 0.94 + 0001 0.68 + 0001 2.36 + 0.01 '0.84 + 0003

Ce 3.35 + 0.38 1,05 + 0.12 7.57 + 0,30 1.02 + 0.04

Pr 0.278 + 0.057 0.76 + 0.15 0.860 + 0.044 0.91 + 0.05

Nd 1.20 + 0.31 0.87 + 0.22 4.65 + 0.24 0.96 + 0.05

Sm 0.300 + 0.006 0.806 + 0,016 1,008 + 0,005 0.94 + 0.01

Eu 0.107 + 0.001 0.836 + 0,008 0.337 + 0.001 0.94 + 0.004

Th 0.126 + 0.013 0.83 + 0.09 0,131 + 0.010 0.83 + 0.05

Dy 0.716 + 0.003 06918 + 0.004 0.823 + 0.002 0.93 + 0.002

Ho 0.066 + 0.004 0,85 + 0.05 0.155 + 0.003 0093 + 0.02

Tm 0.076 + 0.005 0.99 + 0.06 0.054 + 0.004 0.98 + 0.05

Yb --- --- 0.437 + 0.010

Lu 0.043 + 0.001 ---

Y 0.71 + 0.09 0.93 + 0.12 4.24 + 0.07 0.99 + 0.02

mean, 11 elements: 0.93 + 0.11
mean, La, Sm, Eu, Dy : 0.91 + 0.01

* Estimates of errors are calculated from the radioactivity counting statistics,
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powders were identical) and values of 7- (which compare

the RE contents of the two powdered samples, assuming com-

plete revovery) are also listed in Table 11-6.

Because of the chemical similarity of the RE, both

incomplete recovery and a difference in sample content should

ekhibit similar, or smoothly-varying effects over the lantha-

nide series. The LA( values are seen to be much more scattered

than the L values, even in cases where the addition roughly

equalled or exceeded the initial amount (i.e. Tb, Dy, and Tm);

this, along with the inhomogeneities observed in other pow-

dered samples in the previous section, indicates that a real

difference in the RE content of the powder rather than incom-

plete recovery of the RE is responsible for the discrepancies.

An additional indication in favor of the assumption

that the powder in L really contained only about 0.93 times

as much RE as K can be shown. The elements Sm, Eu, and Dy,

which have the smallest counting uncertainties, were found in

the previously-described experiments to give the best pre-

cision. They agree very closely in their values of 0.93-

0.94, whereas their values vary from 0.81 to 0,92 . Hol-

mium, with the next best counting statistics (La will be

dealt with separately) also has the 0.93 value. The largest

deviations from the mean of 0.93 occur in the elements with

the largest counting errors, precision uncertainties, or

both (Ce, Y, and Tb), and their deviations are therefore

less significant in discerning sample inhomogeneities. The
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values of K and those of L-A are larger and smaller, respec-

tively, than those found by Schmitt and Smith (4) on a sam-

ple taken from the same vial. This again suggests that inhomo-

geneities were present.

An exception is La, whose precision is usually good,

and which is conspicuously low in sample L. A slight deple-

tion of La in this sample is still possible, but without

additional evidence on special La vaiiability, a selective

loss of La in processing sample L must be suspected.

The scatter of the values of about 0.93 is

within the +10% precision claimed for this analytical method.

Reagent Blanks

The reagents used in chemical processing were ana-

lyzed for their combined RE content. The blank correspon-

ding to procedure (a) for silicates, included the yield-

monitor tracers, HF, HC1O4 , HC1, H20, and the NH3 employed

in the double precipitation (in the amounts used for 0.500-g

silicate samples). This solution was evaporated to dryness

and the large excess of ammorxum chloride was sublimed (the

rare-earth chlorides and perchlorates are not appreciably

volatile). The residue was dissolved in water and subsequently

processed in the usual manner (i.e. loaded on the large cation

exchange dolumn, etc.).

One blank (RB1) was irradiated for 18 hours, to

obtain detectible activities from the largest possible number



- 91 -

of RE. A second, separately-prepared blank (RB2) was irra-

diated for 5 hours, since this was the longest time actually

used for irradiation of silicate samples. The eight ele-

ments which were not detected in the shorter irradiation were

assigned blank values of zero. For the five elements which

were detected in both runs (i.e. La, Sm, Eu, Dy, and Y), the

two blank values agree well in order of magnitude, even

though the blanks were prepared on different days, and irra-

diated for different periods of time. The results are shown

in Table 11-7.

The blank values of the five detectible RE in RB2

do not exceed 3% of their respective amounts founds in

basalts, which are relatively low in RE. Hence, contamination

of the samples by processing them before (rather than after)

the irradiation, is seen to be negligible for eight elements

and small, but reproducibly determinable for the other five

elements.

The NaOH-fusion blank was prepared by dissolving and

acidifying the NaOH, adding 5 mg of spectrographically-pure

iron chloride (in solution), precipitating with ammonia, pro-

ceeding as in procedure (a), and irradiating for 1 hour.

The amount of La found was similar to that in the combined

acids, but all the heavier RE are about an order of magni-

tude higher, with Dy 60-times higher than in the acid dissolu-

tion. In natural samples, the content of the heavier RE are

usually the lowest. For this reason, their relatively high

content in NaOH makes the fusion procedure acceptable only
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Table II-7

Reagent Blanks, tg / 0.500-g

Acid

RB1 *

0.13

0.05

0.03

0.23

0.0045

0.0007

0.003

0.0031

0.0008

n.d.

nodo

nod.

0.020

dissolution

RB2# Mean

0.10

nodo

nodo

nd.

0.0024

0.0008

nod.

0.0047

n.d.

nod.

nod.

nod.

0.005

NaOH Fusion'

0.115

0.0035

0.00075

0.0039

00

0.013

0.11

n.d.

nod.

n.d.

0.022

0.035

0.07

0.18

0.06

0.01

0002

0.06

n.d.

Sea water"
blank

0.07

n.d.

n.d.

n.d.

0.005

0.002

n.d.

0.028

0.052

n.d.

n.d.

n.d.

n.d.

* irradiated 18 hours.

# irradiated 5 hours.

* irradiated 1 hour.

" with reagents used to process a 4-liter sample and
irradiated 1 hour,

nod. not detected.

sample

Element

La

Ce

Pr

Nd

Sm

Eu

Th

Dy

Ho

Tm

Yb

Lu

y
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when procedure (a) is impracticable.

The sea water blank included 30 mg of spectro-

graphically-pure iron (the amount that was added to the sea-

water samples to isolate the RE), as well as the acids and

ammonia. It was passed through one of the smaller cation

exchange columns, so that less HC1 was used in the elution.

It is seen to contain less La than the other blanks, but

much more Ho and Dy, presumably from the iron. The values

comprise up to 20% of the RE in 4-liter sea-water samples;

this amount will be reduced in future work. The iron will

be examined, and if found to be significantly contaminated,

the ammonia precipitation step may be replaced by using a

larger cation exchange columiA. Higher purity HC1 will be re-

quired in this case, since much larger volumes will -bi used.

DISCUSSION

Sample Size and Analytical Sensitivity

In determining the required sample size and irra-

diation period , the expected content of the less abundant RE

(i.e. Sm through Lu) should be considered. A total of at

least 3 pg of these elements was desirable for one-hour irra-

diations in a thermal neutron flux of 8 x 1012 n/cm2 -sec0

Most crustal rocks contain this amount of Sm through Lu in

0.250 g of sample. In strongly fractionated rocks (e.g. most

granites), this is associated with about 80 pg of total RE;
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in basalts and sedimentary rocks, this corresponds to about

40 pg of total RE. Samples of double this size were pro-

cessed, and 50% aliquots were irradiated, thus providing ma-

terial for duplicates if necessary.

For smaller amounts of RE or a lower neutron flux,

correspondingly longer irradiations should be used. Since

the material actually irradiated contains virtually only the

RE, increase of irradiation time does not produce highly in-

creased sample activities. This is an important advantage

over methods currently used, in which an unprocessed sample

is irradiated directly. Therefore, in practice, the limit of

detection depends for the most part upon the irradiation

facilities.

Fractionation Effects

The ammonia precipitation step was tested for frac-

tionation effects. In silicate samples, where only small

volumes of liquid are involved, the tracer activities of the

supernatants from well-coagulated ammonia precipitates were

invariably negligible, indicating complete precipitation of

all RE In sea water samples (4-liters each), the super-

natant was slightly active, and it was tested for frac-

tionation of Ce and Y by reacidifying, adding iron, and pre-

cipitating again. This precipitate was found to contain

0.5% of the initial y8 activity and 0.8% of the initial

Ce139 activity. This indicated that if fractionation does
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occur in the solid, it is proportionally very small, since

recovery is nearly complete (99.5% for Y versus 99.2% for Ce).

The fractionation was sufficiently small between these two

elements (or, alternatively, recoveries sufficiently com-

plete) to justify the assumption that no RE were lost during

the ammonia precipitation.

Sample Fusion with NaOH

Fusion with NaOH should be employed only if pro-

cedure (a) proves unsatisfactory. The main disadvantage of

the fusion is the relatively high, heavy-RE content (ppm

range) of the purest NaOH comnercially available (0.02%

material precipitable by ammonia is permitted by ACS speci-

fications for Reagent Grade NaOH). Using the lowest possible

ratio of NaOH to sample, 0.250 g of silicate require 1.25 g

of NaOH, which results in a blank as high as 107. of the RE

content in the sample. An additional problem is present with

Na2 0 which besides having the same impurity problem, also

reacts violently with the tracer solution added prior to the

fusion.

In the basic fusion, the RE (especially Ce) tend to

adhere tenaciously to the crucible walls. Repeated attack

with strong acid was necessary to recover 99% of the Y88 , and

the Ce139 recovery was always at least 5% lower.

Zirconium crucibles were used at first, but they were

found to introduce milligram quantities of Zr, which is not
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readily separable from the RE and interferes by its bulk.

The amounts of Zr commonly occurring in rocks are harmless.

Use of nickel crucibles is preferred, since the Ni intro-

duced is eliminated by the ammonia precipitation and also

by the cation exchange.

Cation Exchange

In principle, the RE could be isolated from nearly all

elements usually present in most samples by cation exchange

alone, omitting the ammonia precipitation. Barium would

remain with them, but it would be eliminated later on the

DEP column by the initial 0.05N HCl eluent. The same applies

to Sr which might be incompletely separated by cation ex-

change. The behavior of traces of Zr and Th was not inves-

tigated, since even if they remained with the RE, their radio-

activities would be negligible.

However, if the large amounts of Ca, Mg, K, and Na

commonly present in rocks were left in solution, much larger

exchange capacities and hence larger columns and correspon-

dingly larger amounts of HC1 eluent would be necessary. Ex-

cessive increase of the already large HCl volumes was avoided

in order to keep to a minimum the RE contamination introduced

by reagents. The double ammonia precipitation requires only

a small amount of reagent and removes practically all Na, K,

Ca, Mg, Sr, and Ba. The small amounts conceivably remaining

are removed in the cation exchange step, and if necessary,
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later by the 0.05N HCl eluent added initially in the post-

irradiation DEP chromatography. Essentially complete elimi-

nation of aluminum is the most critical function of the

cation exchange step, because Al resembles the RE in its

behavior on the DEP column, and it might overload it, since

the total exchange capacity of this column is rather small.

Of all elements that are precipitated with ammonia, Al is

closest to the RE in the sequence of elution from the cation

exchange column, and therefore the performance of these

columns is evaluated on the basis of their capability to

separate Al from the RE.

Removal of Chlorides

The M.I.T. Nuclear Reactor staff required removal of

chlorides before all irradiations in order to eliminate any

possibility of halogen spillage inside the pneumatic tube

facility. This possibility is remote when proper packaging

is employed.

Determination of Chemical Yields

Chemical yields were determined directly only for

Y and Ce. However, the yields of both were invariably above

907., and fractionation between these two elements (which

differ chemically more than any other rare-earth pair) was

usually about +3% and indicated no consistent trend. Dif-

ferences in yields of the other RE should therefore be even



- 98 -

smaller, and considering that the precision of the method

is approximately +10%, such differences are not significant.

Post-Irradiation Chromatography

The chromatographic columns were found to give

quantitative recovery of Cel39 and y88 added to a carrier

solution containing all of the RE. As an additional check,

the Ce and Y fractions from two irradiated sample solutions

were saved until the reactor-induced activities had decayed

completely. The fractions were then combined and reduced

to the 1-ml volumes of the reference tracer solations. The

yields were found to be 96+2%. When the possible losses in

combining these fractions were considered, it was decided

that the pre-irradiation chemical yields were a satisfactory

measure of the overall yields for the procedure. Deter-

mination of post-irradiation yields was more time-consuming.

The additional laboratory time required was undesirable

since fewer samples could be analyzed, and only a relatively

minor improvement would be obtained in the overall accuracy

and precision of the procedure.

Counting

It was a definite advantage to gamma count the lighter

RE and beta count the heavier ones. Selective gamma counting

with the pulse height analyzer markedly improved resolution of

some neighboring RE (e.g. Ce-Pr). In addition, spectra could
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be inspected for positive identification.

The much smaller amounts of induced activities of

the heavy lanthanides made beta counting desirable because

of the markedly lower backgrounds (particularly important

for Tm).

Precision and Accuracy

The precision of the method varied from about +47 to

+12% for the different RE as can be seen in Table 11-4. Two

independent sources contribute to the random error: the DEP-

Celite columns and the counting statistics. The reprodu-

cibility of the columns is +3-5% for all elements (except

Ce) as indicated by the precision test on identical elutions

of pure RE (Table 11-3, last column). The same test shows

that monitoring the chemical yields of only Ce and Y, rather

than that of each RE individually, is not a source of any

considerable error.

Since equal counting times were used regardless of

sample activity, the counting errors depended on the absolute

amount of each element, the abundances of its isotopes which

capture thermal neutrons as well as the corresponding cross

sections, and the half-lives of the resulting radionuclides.

Thus the counting errors ranged from 0.3% to greater than 10%.

They could be improved by taking longer counts, but this was

not necessary for the purposes of this study.

The overall errors are a combination of the chromato-

graphic separation errors and the counting errors; they can
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partly cancel or add up at random.

The estimate of precision is based entirely upon

duplicate analyses of identical sample solutions. The spread

of results on duplicates of powdered rocks was so much larger

than with the identical solutions, that it was evident that

these "duplicates" were actually not identical. The RE can

be distributed very unevenly among the minerals in a rock

(particularly among the accessory minerals), and therefore a

lack of complete homogeneity, even in < 200-mesh powder, is

quite plausible. When the general relative distribution

pattern of all the RE in a sample is of greater interest than

their absolute concentrations, even +20-30% errors on in-

dividual RE are quite tolerable, and therefore no additional

effort was expended to grind the samples to complete homo-

geneity.

Comparison of the processed and unprocessed RE solu-

tions (Table 11-3) as well as the spiking test (Table 11-6),

and comparison of the results on the same samples analyzed

Schmitt (Kilauea Iki basalt, 4), Raskin (G-1 granite, 8), and

by the authors indicate that the accuracy of the method is

comparable to its precision.

Sensitivity and Aplicability

The sensitivity of the method is, for practical pur-

poses, determined largely by the available amounts of samples

and the reactor facilities. Prolonging the irradiation does
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not require working with excessive total activities, since

the solution which is irradiated contains essentially only

the RE (and blank impurities). The limits of detection for

a one-hour irradiation in the neutron fluxes used for this

study are given in Table II-8. From these data, the required

irradiation time in any flux and for any sample size can be

calculated. Activities 100 to 10,000 times the limits of

detection are convenient when 0.4-1.0 minute counting times

per fraction are used. This range gives satisfactory coun-

ting statistics at the lower limit, and its higher limit is

set by DEP column-overload considerations.

Practical considerations, such as the expenses involved

and the reactor facilities, will determine the limit of detec-

tion attainable in an individual case. Prolonged irradiations

are costly, and very large initial samples will require more

time for the chemical processing, as well as larger amounts of

reagents. The latter will result in higher reagent blanks.

The blanks are, therefore, the chemical limiting factors on

the lowest concentration of RE that can be determined. As can

be seen from Table 11-7, blanks in this work were quite low,

even though ordinary distilled water and commercial reagent

grade HC1 were used. Both could readily be purified further

and yield much lower blanks. Obtaining lower reagent blanks

became necessary in the present authors' work only with sea

water samples, where the RE concentrations were in the 10'10

to 10611 g/liter range, and the blank values approached 20%.

of the total RE.
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Table
Limits of Detection Using

Neutron Flux of 8

11-8
a 1-Hour Irradiation in a Thermal

x 1012 n/cm 2 sec

Element
Limit of

detection, ILgAtomic number

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

39

* Limit of detection is defined as net count = background.

0.005

0.8

0.06

0,6

0-00-

00001

0.0005

0.02

0.0005

0.006

0.01

0.01

0.003

0.03

La

Ce

Pr

Nd

Pm

Sm

Eu

Gd

Th

Dy

Ho

Er

Tm

Yb

Lu

y
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Thorium and zirconium are only partly separated

from the RE by this method, and a means of removing them

would be required when milligram quantities of either were

present in a sample.

The procedure is applicable to most materials, in-

cluding all kinds of rocks, organic matter, and natural

waters.

Advantages of the Method

1) Irradiation of samples and standards in aqueous
solutions

Since all solutions are homogeneous, there can be no

self-shielding errors introduced during the irradiation.

Such errors could be very serious -in samples in which the RE

(with many nuclides having high thermal cross sections) are

inhomogeneously distributed.

2) Overall speed
Concurrent chemical processing of three samples took

three days (about one third in actual working time). Post-

irradiation chromatography of three samples and one standard

required the full-time work of two analysts for 8-10 hours.

Preparation of beta sources and subsequent counting required

the work of two analysts for two days. Another 10-15 hours

were used to resolve the raw data. In practice, two analysts

working jointly could complete a maximum of three RE analyses

per week (apparently about half the time required by similar

methods currently in use). Counting the column effluent
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directly in flow by continuous recording (see below) could

reduce the working time appreciably.

3) Fast RE separation

A complete separation of the RE took 3-4 hours. Under

these conditions, even the 2.3-hour Dy165 was ready for coun-

ting when a considerable part of its activity remained0

Other methods of RE separation take much longer, and cor-

respondingly larger total Aiounts of RE must be used in order

to obtain sufficient Dy activity at the time when it can be

counted.

4) Chemical separation of the RE before irradiation

This gives the advantage of working with only low-

level radioactivities. It is also a basis for the extension

of the method to more varied sample types, since the post-

irradiation procedures will remain unchanged.

5) Positive identification of the individual RE and
checks for cross-contamination

These are rapidly made for all the elements which are

gamma counted with the pulse height analyzer.

Some Possible Improvements

1) Determination of Gd

The gadolinium content can be calculated from the

counting data. The ratio of the high-energy gamma activity

( > 0.75 Nev ) to total gamms of irradiated pure Eu should

be determined. Then the total gama activity contributed by
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the Eu in any sample can be calculated from the observed high-

energy gammas (emitted only by Eul52m ). This would be sub-

tracted from the total gamma activity actually recorded in

all fractions containing Eu and Gd. The difference is con-

tributed by Gd only, and it will be a rather small difference

between two large numbers. However, it should still give a

precision no worse than +30%. It was not done in this study

since the major application was in the establishment of over-

all group trends. The time saved was considered more impor-

tant than the additional information on one isolated rare-

earth element.

2) Determination of Er

Erbium, which is eluted with yttrium, could be de-

termined in a manner vety similar to Gd. Total beta

activity of Y and Er and the high-energy betas emitted only

by Y90 would be counted. The precision here would be poorer,

however, because the picture is complicated by the high-energy

gammas emitted by the Y88 tracer (about 17 of which are re-

corded as betas).

3) Improvement of precision

Better resolution in the DEP chromatography can be

obtained by increasing the volume of each acid used in the

elution; this will most probably improve the precision of

the chromatographic step. Fractions containing elements with

low specific activity can be counted longer to obtain better

counting statistics. These measures were not taken in the



- 106 -

present work since the precision actually obtained was

satisfactory for its purpose and additional time would

be required.

4) Reduction of working time

Elimination of much of the manual counting and cal-

culations can be attained. The eluent could be pumped into

the column by a precision pump delivering the liquid at an

accurately-controlled rate. The effluent could be passed into

a 1/32-in, teflon tube (thin enough to prevent mixing) coiled

in the well of a scintillation crystal. The tube would then

run from the crystal to the fraction collector. The radio-

activity could then be continuously counted by a precision

ratemeter and recorded on a chart recorder. The area of

each peak would be proportional to the amount of the corres-

ponding element. The fractions which were counted selectively

in this study could then be combined and counted as one frac-

tion; the same could be done with the beta-counted elements.

In this way, the manual summations will be eliminated. The

automation will cut the working time approximately in half

and remove the most tedious part of it. It will also give an

immediate check on column performance (i.e. while an elution

is in progress).
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CHAPTER III
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RARE-EARTH ABUNDANCES IN THE

STANDARD GRANITE G-1 AND STANDARD DIABASE W-l

Abstract. The rare-earth contents (exclusive of Gd and Er)

of the standard granite G-1 and standard diabase W-1 have

been determined by neutron activation and partition chroma-

tography. The results are, for the most part, in rather

close agreement with the data of Haskin and Gehl (1). The

most significant discrepancy is between the Eu values in

G-1. The abundance of this analytically-sensitive element

was found to be approximately 20% higher in this study.

The first essentially-complete determinations of

rare-earth abundances in the standard granite G-1 and stan-

dard diabase W-1 have been made recently by Haskin and

Gehl (1) who employed neutron activation analysis. Prior

to this, the published rare-earth abundances (2) in these

two standard rocks consisted primarily of optical spectro-

graphic determinations of La and Y. Chase et al. (3) deter-

mined La, Eu, and Dy by neutron activation analysis , and

Hamaguchi et al. (4) have reported values for La, Sm, and

Eu using a similar technique.

In this study, a quite different analytical pro-

cedure has been employed using group isolation of the rare

earths and yttrium, followed by neutron activation and par-

tition chromatography. Gadolinium and erbium were not de-

termined. Accuracy. and precision were approximately +107.

The details of this procedure will appear elsewhere (5).
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A 0.500-g sample of each rock was dissolved using

a mixture of perchloric and hydrofluoric acids. Following

ammonia precipitation, the rare earths were isolated as a

group by ion exchange. Chemical yields were measured at this

stage using Ce139 and Y88 carrier-free tracers. Two ali-

quots of each sample solution and two solutions of rare

earths in known concentrations were irradiated by pile neu-

trons in thermal fluxes of approximately 8 x 1012 n/cm -sec.

The irradiated sample and standard solutions were chromato-

graphed by gradient elution with hydrochloric acid on columns

of refined diatomaceous silica coated with di-(2-ethylhexyl)-

orthophosphoric acid. Induced gamma radioactivities were

counted by means of a 400-channel pulse height analyzer-and

a well-type, 1-3/4 inch by 2-inch NaI(Tl) scintillation crys-

tal. Betas were counted with a standard end-window flow-

proportional counter.

Rare-earth concentrations determined from duplicate

irradiations of aliquots of the G-1 and W-1 sample solutions

(corresponding to known proportions of the original 0.500-g

samples of each) are shown in Table III-1 and Table 111-2,

respectively. The analytical precision for each rare earth

has been calculated from the precision observed in a series

of duplicate runs on other samples; accuracy and precision

were found to be comparable (5). For comparison, the results

of Haskin and Gehl are also shown.

The agreement between this work and that of Haskin

and Gehl, who used a quite different analytical procedure,
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Table III-1
Rare-Earth Content (ppm) of Standard Granite G-1

This study Haskin and Gehl (1)

102

134

92.4 + 3.1

150 + 24

12.9 + 1.4

55.2 + 5.5

8.25 + 0.01

1.36 + 0.05

La

Ce

Pr

Nd

Sm

Eu

Gd

Th

Dy

Ho

Er

Tm

Yb

Lu

+ 7.7

+ 13

20,9 +

54.6 +

8.6 +

1.04 +

4.88 +

0.50 +0*057

0.10

0.408 + 0.016

0.156 + 0.011

0.937 + 0.075

0.123 + 0.007

13.3 + 1.6

0,50 +

1.40 +

0,20 +

0.625 +

0.17 +

0.32

1.5

0.56

0.11

0013

0.01

0.01

0.14

0.02

0.06

0.02

12.5 + 0.25

Element

0.637 +

2.52 +

- -a-

- - -=
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Table 111-2
Rare-Earth Content (ppm) of Standard Diabase W-1

This study

9031 + 0.37

15.1 + 2.4

3.51 + 0.39

20.2 + 2.0

3.46 + 0.03

1.29 + 0.05

La

Ce

Pr

Nd

Sm

Eu

Gd

Th

Dy

Ho

Er

TM

Yb

Lu

0.332 + 0.023

2.23 + 0.18

0.348 + 0.021

28.0 + 3.4

Haskin and Gehl (1)

11.7 + 1.21

24.3 + 0.24

3.68 + 0.19

15.1 + 1.4

3.79 + 0.32

1.09 + 0.12

4.2 + 0.35

0.75 + 0.075

1.35 + 0011

2.57 + 0.26

0.355 + 0,005

2.10 + 0.01

0.325 + 0.033

23.8 + 0.12

Element

0.807 + 0.073

4.38 + 0.18

0.855 + 0.034

- -c -c
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is quite remarkable when the wide differences between other

published results are considered. The results of this study

and those of Haskin and Gehl are statistically the same for

La, Ce, Nd, Sm, and Y in G-1 and likewise are essentially

identical for Pr, Sm, Th, Tm, Yb, and Lu in W-1. For most

other rare earths, the agreement is excellent. The only

really significant differences are with Pr, Eu, and Yb in

G-1 and with Ce and Ho in W-1. Although the absolute dis-

crepancy between the Ce values in W-1 may seem large, it

must be remembered that the Ce precision in this study was

worse than for any other rare earth.

The most notable discrepancy is between the Eu values

in G-1. Analytically, the Eu data should be among the most

accurate by both methods. Chase et al. (3) found La = 142 ppm

and Eu = 1.42 ppm in G-1 which yields the same La/Eu ratio

as obtained by Haskin and Gehl. The latter believe that Eu

is about 20% low versus the behavior predicted when the rare-

earth abundances are normalized to those in chondritic me-

teorites (6) or the assumed crustal average found in sedi-

ments (7). Since the Eu value of Haskin and Gehl is also

approximately 207. lower than the value obtained in this study

and the Sm values are identical, the authors conclude that

Eu is normal in the sample of G-1 analyzed.

Haskin and Gehl (1) have pointed out that the large

differences in the reported rare-earth contents of G-1 and

W-1 may indicate sample inhomogeneities with respect to the

rare earths. The authors believe that this, indeed, may be true.
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Consequently, the excellent agreement observed between the

rare-earth concentrations in these two studies may be some-

what fortuitous. The relative concentrations, however, may

be rather constant from sample to sample, provided sample

sizes are not too small. In such cases, an excess of a spe-

cific rare-earth-concentrating accessory mineral might pro-

duce a non-representative distribution. With this in mind,

it would be profitable to look at rare-earth distributions

(and distributions of other trace elements as well) of indi-

vidual minerals from G-1 and W-1 (8,9).
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APPENDIX A

A REVIEW OF PERTINENT LITERATURE
ON RARE-EARTH DISTRIBUTIONS

Introduction

The rare-earth eletaents have stimulated the in-

terest of geochemists for many years. In addition to the

lanthanides, La through Lu (atomic numbers 57 through 71),

yttrium (atomic number Z = 39) has also been studied with

the rare earths because of its close geochemical affinity

to the latter.

Outline of Previous Work

Outlines of rare-earth geochemistry have been pre-

sented by Goldschmidt (1954) and Rankama and Sahama (1950).

The first author assumed that the rare earths migrated as

a geochemical "entity" because of their very similar chemi-

cal properties.

Under most geological conditions, the rare earths are

trivalent, although under reducing conditions Eu may be diva-

lent and in highly oxidizing environments Ce may be tetra-

valent. The successive filling of the 4f electron shell re-

sults in a progressive decrease in ionic radius from La to

Lu which is commonly referred to as the "lanthanide contrac-

tion". The essential uniformity in oxidation state and the
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systematic change in ionic radii make rare-earth distri-

butions extremely useful as geochemical indicators.

Rare-earth geochemistry has actually been studied

from two aspects. By far, most work has been in the field

of rare-earth distributions in coexisting minerals, and more

specifically, in relatively rare, accessory minerals which

concentrate large amounts of rare earths. The reasons are

partly due to the early absence of analytical methods with

the necessary sensitivity to study common rock-forming and

accessory minerals, and partly economic; the rare, naturally-

occurring rare-earth minerals and other minerals which are

enriched in the rare earths are of high commercial value.

Studies of minerals which concentrate rare earths have been

made by numerous authors including Goldschmidt and Thomas-

sen (1924), Bj4rlykke (1935), Sahama and VAhitalo (1939a,

1939b), Vainshtein et al. (1956), Butler (1957a, 1957b),

Butler (1958), Seminov and Barinskii (1958), Vainshtein

et al. (1958), Murata et al. (1959), Borodin and Barinskii

(1960), Balashov and Turanskaya (1961), Borodin and

Barinskii (1961), Zhirov et al. (1961), and Lyakhovich (1962).

The study of rare earths in the normal rock-forming

minerals has been extremely limited. Apparently the first

complete rare-earth study of the coexisting rock-forming and

accessory minerals of granites was made by Gavrilova and

Turanskaya (1958). Also of interest are the results of Chase

et al. (1963), who determined La, Eu, and Dy distributions of

coexisting feldspars and micas from three northeastern North

American granites.
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The second and much less extensively studied aspect

of rare-earth geochemistry has been with respect to rocks

and meteorites. This was largely because of analytical prob-

lems. By far, the most important early works were those of

Noddack (1935) on composite mixtures of chondritic and achon-

dritic meteorites (12 parts chondrite to 1 part achondrite)

and Minami (1935) on Japanese and European shales. Both

authors used X-ray spectrographic methods of analysis. Com-

parison of their results indicates that the relative abun-

dances of the light rare earths compared to the heavy rare

earths are approximately six times greater in the shales than

in the meteoritic composite.

Twenty-five years later, Schmitt et al. (1960),

employing neutron activation analysis, found that the rela-

tive rare-earth abundances of two chondrites agreed with the

results of Noddack to within 30%, although the absolute values

of thebe-authors twere about six times smaller. Subsequently,

Schmitt (1963) and his co-workers have analyzed 17 chondrites

and a wide variety of other meteorites. The rare-earth con-

tents of the chondrites were found to vary within a relatively

small range on both an absolute scale (factor of 3) and a

relative scale (30%).

Haskin and Gehl (1962) determined the rare-earth

abundances in a series of sandstones, limestones, and shales

by a method very similar to that used by Schmitt et al0

Haskin's and Gehl's results were in essential agreement with

those of Minami (1935).
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Goldschmidt (1954) interpreted the results of Minami

to indicate that,,although fractionation of the rare earths

may occur during igneous processes, these elements are sub-

sequently homogenized by the processes of weathering, erosion,

and sedimentation. He believed that the average rare-earth

content of sediments was a true measure of their average rela-

tive crustal abundances. Goldschmidt observed, in fact, that

although europium was frequently low in pegmatitic environ-

ments (apparently due to reduction at some stage to the di-

valent state), it was not low (compared to its near-neighbor

rare earths) in Minami's shales.

Suess and Urey (1956) tabulated the solar abundances

of all the elements based to a large extent on chondritic

meteorites0 The latter are believed by many to represent

the best-available sources of the undifferentiated, non-

volatile material from which the solar system was formed.

Suess and Urey based their rare-earth abundances largely upon

the results of Minami, which were more generally accepted as

the true rare-earth distribution. Burbidge et al. (1957)

have studied the formation of the elements by different pro-

cesses in stars, and in addition discuss synthesis of the

rare earths in terms of the abundances given by Suess and

Urey0 Cameron (1959a), however, adopted the results of Nod-

dack on chondrites and published a revised set of rare-earth

abundances0  Taylor (1960, 1962) has discussed these dif

ferences between meteorites and terrestrial rare-earth abun-

dance patterns. Schmitt et al, (1960, 1962) experimentally
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confirmed that the relative rare-earth abundances of Nod-

dack were indeed the true chondritic abundances (although

the absolute abundances were reduced by factors of about 6 ).

Haskin and Gehl (1962) also demonstrated that if sediments

are a true average of crustal rare-earth distributions, then

the rare earths are nearly an order of magnitude more abun-

dant in the crust than in the chondritic meteorites, and at

the same time they are quite strongly fractionated (up to

a factor of 6 ) favoring the lighter rare earths when com-

pared to chondrites. Taylor (1962) has concluded that the

earth as a whole contains similar relative amounts of rare

earths to those found in chondrites, and that those of lower

atomic number have been selectively enriched in crustal rocks.

He paid particular attention to the data of Sahama (1945) on

calcic igneous rocks which showed relative rare-earth abun-

dance patterns similar to the chondritic patterns0

There are practically no available data on rare-

earth distributions in suites of genetically-related dif-

ferentiated igneous rocks. Sahama and VAhltalo (1939a)

studied the rare earths in acid dikes and pegmatoids in

the diabases of Sappi and Walamo, Finland. However, some

uncertainty in the quality of the analyses and in the geo-

logic field relationships makes interpretation of their re-

sults difficult. Some differentiated alkaline massifs of

the Soviet Union have been quite extensively studied in re-

cent years. The reader is referred to the studies of the

Lovozero alkalic massif of the Kola Peninsula by Balashov
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and Turanskaya (1961) and Balashov (1962). Zlobin and Balaw

shov (1961) have also investigated rare-earth distributions

in the five different rock types of the Sandyk alkalic massif

of northern Tien Shan.

In summary, the published rare-earth data show that

individual minerals may be extremely selective or non-selec-

tive-in their rare-earth assemblages, whereas the rare-earth

distributions found in rocks vary between much smaller limits.

The major bulk of the rare earths tend to be concentrated in

the final stages of magmatic differentiation. Consequently,

most rare-earth minerals and accessory minerals which con-

centrate large amounts of rare earths are found in pegmatites

or highly-alkaline rocks. Nearly all crustal rocks are frac-

tionated rather smoothly favoring the rare earths of lower

atomic number when compared to a chondritic rare-earth model

of the earth (or mantle). Basic rocks exhibit more-uniform

distributions and generally are least fractionated. Granites

are extremely variable and the light rare earths may be frac-

tionated by as much as two orders of magnitude compared to

chondrites, whereas basic rocks are generally fractionated by

factors of less than five0

Europium and cerium may be in some instances anoma-

lous when compared to adjoining rare earths. This may be

attributed to the presence of Eu+2 and Ce+ 4 as opposed to

the common trivalency of the rare earths. Europium is com-

monly low in pegmatites and in many granites. In such gra-

nites, the micas are relatively depleted in europium versus
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the feldspars. Diadochic replacement of Sr+2 by Eu+2 has

been noted in minerals high in strontium.

Interpretation of Rare-Earth Abundances

Most explanations of rare-earth abundances in rocks

and minerals have been based upon the essential constancy

of charge (trivalent, with possible exceptions being Eu+2

and Ce+4 ) and the quite smooth decrease in ionic radius with

increasing atomic number (lanthanide contraction). Several

authors have given ionic radii for the rare-earth elements

including Goldschmidt (1926), Ahrens (1952), Templeton and

Dauben (1954), and Pauling (1960). Pauling based his radii

directly upon those of Templeton and Dauben, btt there is

an unexplained systematic difference between these two sources.

There are also non-systematic differences between the ionic

radii of different authors. In Table A-1 are shown the rare-

earth radii of Templeton and Dauben (1954). The inverse

radii are also given. A plot of these reciprocal ionic radii

versus atomic number is given in Figure A-1 and is essentially

the same as given by Masuda (1963b). The plot is approxi-

mately linear and clearly demonstrates the effect of the lan-

thanide contraction. The radius of Eu+2 is essentially the

same as Laa+3 and Sr+2, while the radius of Ce+4 is about the

same as Eu+3,

There are, of course, many other considerations be-

sides ionic radius and charge. In fact, the concept of ionic
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Table A-1
Rare-Earth Ionic Radii and Reciprocal Ionic Radii

(after Templeton and Dauben, 1954)

Element Atomic number Ionic radius
Reciprocal

ionic radius (A4)

La

Ce

Pr

Nd

PM

Sm

Eu

Gd

Th

Dy

Ho

Er

Tm

Yb

57

58

59

60

61

62

63

64

65

66

67

68

69

70

Lu 71

1.061

1.034

1.013

0.995

0.979

0.964

0.950

0.938

0.923

0.908

0.894

0.881

0.869

0.858

0.848

0.943

0.967

0.987

1.005

1.021

1.037

1.053

1.067

10083

1.101

1.119

1.135

1.151

1.166

1.179
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Fig. A-1. Reciprocal ionic radii of the rare earths

plotted as a function of atomic number

(after Masuda, 1963b).
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radius tends to lose its meaning when dealing with highly-

polymerized melts which are so complex in nature. Certainly

many elements which can be simply ionic under ordinary

aqueous conditions may be bound in complexes when present

in silicate melts. Balashov (1962), in discussing the Lovo-

zero massif, pointed out that during differentiation of the

alkaline magma, the complexes of the heavier rare earths

(i.e. the "yttrium earths" ) became progressively more stable

in the melt. Consequently, the later phases are less-strongly

fractionated (in contrast to the observation made in Part I,

Chapter I, that fractionation increases during normal dif-

ferentiation of basaltic magma). The concept of the increased

role of complex formation of elements with higher valency in

alkaline magmas has been discussed by Ringwood (1955) on the

basis of electronegativities.

Rare-earth distributions in minerals will, of course,

also depend upon the coordination number of the rare earth

positions in the crystal structures. The polarizability of

the nearest-neighbor anion likewise will influence diadochic

substitution, as will the polarizing power of the cations.

In addition, it should be remembered that the nature of the

bonding will vary from one silicate structure to another.

Coryell and Chase (1961) have recently proposed an

intriguing mechanism capable of producing the observed anoma-

lous europium distributions found in many granites, most peg-

matites, and numerous minerals. Using a highly-simplified
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aqueous system, calculations from published thermodynamic

data showed that in a sulfate redox system, europium could

be removed as the divalent sulfate according to the fol-

lowing half-cell reaction:

EuSO4 (s) # Eu+3 + S04-2 + e- Eo = -0.04 volts (A-1)

(Latimer convention)

Also relevant is the half-cell reaction:

E+2 +3o
Eu A Eu + e E = 0.43 volts (A-2)

(Latimer convention)

It can be seen from the above expressions that in the pre-

sence of excess sulfate (i.e. the presence of a sulfate pre-

cipitate) Eu+3 will be reduced and removed as the divalent
+3sulfate much more easily than it can be reduced from Eu to

Eu+ This is equivalent to saying that in the sulfate sys-
+3tem, the stability field of Eu is markedly reducid, so

much so in fact, that it can be reduced under conditions which

might be considered geologically as being weakly oxidizing.

Coryell and Chase (1961) estimate that the solubility pro-

duct of EuSO4 is intermediate between the values of 10-61

for SrSO4 and 10-8o8 for BaSO4 . Should Eu(II) be in solid

solution in (SrBa)SO4 , the resulting E0 of the half-cell

corresponding to expression (A-1) will even be lowered

slightly more.

The above considerations begin to carry added sig-

nificance when it is realized that during magmatic processes
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barium tends to be concentrated in the later stages. Also,

it has been found by Ricke (1960) that significant amounts

of sulfate are present in most rocks. The proportion of sul-

fate to total sulfur generally increases in proceeding from

basic to acidic igneous rocks. Ricke also found that in a

study of three granites and one basalt, the feldspars were

the preferred hosts for sulfate sulfur.

Empirical Methods

Various authors have observed empirical relationships

in rare-earth distributions and have attempted to use them in

interpreting rare-earth behavior. Masuda (1957) formulated

an expression based upon the data of Vainshtein et al. (1956)

on cerium minerals. A recent modification of the expression

by Masuda (1962) yields the following empirical equation:

log (Ei/La) 4 log (Gd/La) + ci (A-3)

where Ei is the abundance of the i-th element from La in the

periodic table (e.g. E3 = Nd, E8 = Th) and ci is a constant

of integration, characteristic of E0 *

Matsui and Masuda (1963) have applied expression (A-3)

to some selected rocks and meteorites with reasonable success.

The data of Schmitt et al. (1961) on chondrites were used

along with the latter's results on Kilauea Iki-22 basalt,

Minami's (1935) abundances in shales, Gavrilova's and Turans-

kayags (1958) data on the Kirovograd granite, and the rare-earth
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abundances in Black Sea sediments (average) given by Ostrou-

mov (1953). Matsui and Masuda point out that their formula-

tion was applied only to the lighter rare earths, and that

extension to the yttrium earths is still a matter of conjec-

ture, It was tiheir observation (in accordance with those of

other authors) that crustal rare-earth distributions could

be derived from chondritic distributions by magmatic dif-

ferentiation, The amount of fractionation of the lighter

rare earths seemed to parallel increase in acidity.

Coryell et al. (1963) and Masuda (1962) have inde-

pendently proposed a very useful procedure for geochemical

interpretation of terrestrial rare-earth abundance patterns.

The systematic behavior of the rare earths is somewhat ob-

scurred when absolute abundances are considered. This is

because of the natural irregularities inherited from their

original cosmochemical production. The reader is referred

to papers by Burbidge et al. (1957), Cameron (1959b), Taylor

(1960), and Coryell (1961) for discussions of these irregu-

larities. Figure A-2 is taken directly from Coryell et al.

(1963). In the upper portion of this figure, the absolute

rare-earth abundances of Kilauea Iki-22 basalt (Schmitt and

Smith, 1961) and mean of two bronzitic choidrites (Schmitt et

al., 1960) are plotted on logarithmic scale versus atomic

number. The zig-zag pattern is quite apparent. However,

when the ratio of the basalt-to-chondrite abundanci for

each rare earth is plotted on the same scale, there is in-

creased order (there is no point for promethium siace this
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Fig. A-2. Abundances of the rare-earth elements in

the basalt Kilauea Iki-22 (broken line)
and mean of two chondrites (solid line)
plotted on a logarithmic scale as a func-

tion of atomic number. The lower curve

gives the ratios of the rare-earth abun-
dances in the basalt to the corresponding

abundances in chondrites (after Coryell

et al., 1963).
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element has no stable isotope). The smooth distribution,

thus obtained, was approximatedyby a straight line. In

making plots such as these, the relatively small enrich-

ments and depletions of individual rare earths can be

spotted much more readily (eg. Eu and Ce). The chondrites

serve as perhaps the best choice for normalization of ter-

restrial samples since (1) they are considered by many

authors to represent the best presently-available sources

of the undifferentiated, nonvolatile primary material of

the solar system; and (2) as of this writing, 17 different

chondrites have been analyzed for rare earths (see Schmitt,

1963), and their essential uniformity in relative rare-

earth abundances has been statistically well-established.

Coryell et al. (1963) applied this chondrite-norma-

lization technique to a large number of published analyses

of rare-earth minerals. They also applied this method of

analysis to the data of Gavrilova and Turanskaya (1958) on

the coexisting minerals in the Kirovograd granite of the

Ukraine. By adding the normalized rare-earth abundances of

all the various minerals (each mineral weighted according to

its modal abundance) the apparent whole-rock distribution of

the Kirovograd granite was obtained. This distribution ap-

proximated a straight line.

Assuming that approximately straight-line distribu-

tions (such as observed in Kilauea Iki-22 and the, Kirovograd

granite) were common in other igneous rocks, Chase et al.

(1963) plotted normalized La, Eu, and Dy abundances in the
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above manner for three oceanic basalts, one diabase, and four

granites. The authors used the La/Dy ratios as measures of

overall rare-earth fractionation. They estimated Eu anomalies

by the amounts which the Eu values deviated from arbitrary

straight lines between La and Dy. On this basis, it was con-

cluded that the oceanic basalts were substantially frac-

tionated by similar amounts favoring the lighter rare earths

versus the chondrites (e.g. La/Dy ppm ratios were observed

to be 7.2, 6.7, and 4.5). Europium appeared to be normal.

The implication was that the basalts were formed by similar

processes from source materials with similar rare-earth dis-

tributions.

The granites analyzed by Chase et al.(1963), however,

had widely-different La/Dy ratios, ranging from 1.3 to 63 .

The suggestion was that different processes are operative in

the origin of different granites (which is consistent with

geologic observation). Europium was found (using the straight-

line criterion) to be low in all four granites, suggesting

divalent behavior. In feldspar and mica concentrates from

the granites, it was found that Eu was invariably enriched in

the feldspars relative to the coexisting micas. Chase et al.

nevertheless pointed out that the apparent Eu anomalies in

the granites could be significantly reduced if the overall

rare-earth distribution exhibited a flattening-out over those

elements past Eu.

More-recent complete rare-earth analyses have shown,

indeed, that in many rocks, fractionation of the heavier
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rare earths versus chondrites is absent and sometimes even

shows a reversed trend. Thus the normalization curve may

bend smoothly through Eu, indicating that Eu is normal with

respect to the adjacent rare earths, even though it would

fall below an arbitrary straight line between La and Dy.

Haskin and Gehl (1963) have emphasized that caution must be

observed when deducing Eu or Ce anomalies without some know-

ledge of the overall shape of the distribution curve (i.e.

numerous rare earths must be determined, especially those

nearest to Eu and Ce).

Haskin and Gehl (1962, 1963), Schmitt and Smith (1962),

and Schmitt (1963) have preferred to plot the chondrite-

normalized data versus ionic radius rather than atomic num-

ber. Because of the discrepancies between the ionic (or

"crystal") radii of different authors, and because the actual

effective radii in silicates may be quite different, this

author has chosen to use atomic number as the abscissa. In

addition, it has been shown that atomic number and recipro-

cal ionic radius are approximately linear. The latter para-

meter is a measure of relative energy and perhaps for this

reason alone, bears greater significance than the ionic radius.

Two Recent Models of Rare-Earth Differentiation

Schmitt (1963) has adopted a shell model for a

single-parent meteoritic body based upon earlier models by

Fish et al. (1960) and Ringwood (1961). Schmitt and his
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co-workers have obtained complete rare-earth, yttrium, and

scandium abundances for a total of 32 meteorites (including

all major classes). All chondrites (except one class of car-

bonaceous chondrites) and Ca-rich achondrites showed the

same rare-earth distribution. Over 907. of observed falls

can be classified into these two categories. Each shell

was weighted according to the proportion of its members in

the total number of falls. The model consists of an inner

Fe-Ni core followed outward by a pallasitic layer (0.6%),

Ca-poor achondritic layer (2.5%), chondritic layer (86%),

Ca-rich achondritic layer (4.8%), and a carbonaceous chon-

dritic layer (2.5%) at the surface0 Scattered over the sur-

face are nakhlitic achondrites. The absolute rare-earth

abundances increase progressively outward from the core.

The iron meteorites (core) analyzed were found to contain

only about 10'4 as much of each rare earth compared to the

chondrites.

Below the chondritic shell, the lighter rare earths

were generally unfractionated or else progressively de-

pleted versus the chondrites. The heavier rare earths were

generally unfractionated or else progressively enriched ver-

sus the chondritic layer. The Ca-rich achondrites had rela-

tive rare-earth distributions indistinguishable from the

chondrites, but the absolute concentrations were approxi-

mately one order of magnitude greater. The nakhlites had

relative rare-earth distributions indistinguishable from two

terrestrial basalts, and were therefore considered to be of
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volcanic origin (petrographic observations also supported

this conclusion).

Masuda and Matsui (1963) have recently proposed

what they call a "geometrically progressional residual model

as the explanation of lanthanide pattern variation." This

model is conceived as applying to the development of a

"proto-crust" and mantle and is to be distinguished from

subordinate crustal differentiation. The authors assume

that: (1) the earth's lithosphere was molten at some period;

(2) the mantle and crust have been formed by successive solidi-

fication of the melt; (3) the partition coefficients for the

lanthanide series elements were constant during all of the

solidification stages (or if not constant, they must have

maintained an arithmetically-progressional relationship);

and (4) the initial terrestrial abundance ratios of the rare

earths are given by the chondrite abundances. The latter

two assumptions implicitly require that the chondrite-norma-

lized abundances maintain logarithmically-linear patterns

(e.g. Kilauea Iki-22). Using (1) Minami's (1935) abundance

for La = 18.3 ppm in shales as the average crustal abundance

of that element; (2) a "slope coefficient" = 1.17 (average

ratio of chondrite-normalized values between adjacent rare

earths in Minamils shales); and (3) a mass ratio of the

lithosphere to the crust of 82 (after Bullen), the authors

calculated the La content of the initial molten material to

be 0.38 ppm. The agreement between this value and the O.30tppm
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found by Schmitt (1963) from the average of 17 chondrites

is striking. Masuda and Matsui take this as strong evidence

that the initial terrestrial material was chondritic with

respect to its rare-earth distribution. However, they have

not (as of this writing) attempted to quantitatively apply

their model to the entire lanthanide series, apparently out

of uncertainty as to the true average rare-earth abundances

in the crust.
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APPENDIX B

RELATED GEOLOGY AND SAMPLE: DESCRIPTIONS

Geology of the Batholith of Southern California

The batholith of Southern California was chosen for

this study of rare-earth distributions in differentiated ig-

neous rocks for several reasons. First, it represents a

large, geologically important, suite of plutonic rocks which

has similar counterparts in other parts of the world. Prior

to this investigation, the only reported studies of complete

rare-earth distributions in differentiated igneous rocks were

those relating to highly alkaline plutons in the Soviet Union;

see, for example, the works of Zlobin and Balashov (1961)

and Balashov (1962). The early work by Sahama and VuhAtalo

(1939) on the acid dikes and pegmatoids of SAppi and Walamo,

Finland is suspect of analytical errors. All of the above

authors used X-ray spectrographic methods of analysis.

An additional reason for choosing the batholith of

Southern California is that it has been extensively studied.

The most frequently quoted description of its geology is given

in the classic work by Larsen (1948). The abstract of his

Geological Society of America Memoir 29 is given below as an

excellent summary of the general relationships.

The batholith of Southern and Lower Cali-
fornia is exposed continuously from near River-
side, California, southward for a distance of
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about 350 miles. In central Lower California
it is covered in part by younger rocks, but
discontinuous bodies extend to the southern
end of Lower California and hence the bathb-
lith is probably over 1600 miles long. Its
width is about 60 miles. A strip across the
northern part of the batholith about 70 miles
wide has been studied; the western half was
mapped in detail, and the eastern half was
covered in rapid reconnaissance.

In the area studied the batholith inv
trudes Triassic sediments and Jurassic(?)
volcanic rocks along its western border and
Paleozoic sediments along its eastern border.
Screens and roof pendants are common within
the batholith. The Triassic rocks are mildly
metamorphosed in the western part of the area
but become progressively more coarsely crys-
talline toward the east. The Paleozoic rocks
are rather coarsely crystalline. The meta-
morphism in large part preceded the intrusion
of the batholith and only locally was there
appreciable contact metamorphism. The batho-
lith and older rocks are overlain by Upper
Cretaceous and younger sediments. Small bodies
of andesite and basalt are associated with
the Tertiary sediments, and small bodies of
nepheline basalt of Quaternary age are present
in the area. The batholith was intruded in
early Upper Cretaceous time.

The batholith in the area studied was
emplaced by over 20 separate injections.
Most of the resulting rock types are found
in only one or a few small bodies which are
confined to a small area. In the area studied
in detail five types are present in many large,
widely separated bodies, making up about 88
percent of the area underlain by the batho-
lith. In the eastern half of the batholith
three more widespread types are present. In
the western half of the body the rocks range
from gabbro to granite, but in the eastern
half several tonalites constitute nearly the
whole of the mass. The gabbro is composed of
many related rocks. Some have hornblende,
some pyroxene; in some the plagioclase is
anorthite, in others it is as sodic as ande-
sine-labradorite. Some of the tonalites con-
tain abundant inclusions that have been al-
most completely reworked by the magma and
have been softened and stretched into thin
disks. These inclusions are well oriented
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and near the contacts',with older rocks they
parallel the contgcts, but elsewhere they
strike about N.30"W. and dip steeply to the
east. One tonalite, whose feldspar is ande-
sine, has scattered crystals with cores of
bytownite, and has well-crystallized horn-
blende with cores of pale uralitic horn-
blende and remnants of augite. Hornblende
and biotite are the predominant mafic minerals
of the tonalites and granodiorites. The iron
content of the mafic minerals of the gabbros
is moderate, and it increases as the rocks
become richer in silica. The norms and the
modes are shown on a variation diagram. The
chemical analyses of the rocks fall near
smooth variation curves.

The general strike of thg structures of
the area have been about N.30 W. from Paleo-
zoic to the present time. The Paleozoic and
Triassic sediments, the orientation of the
inclusions and other structures of the batho-
lith, the elongation of the batholith and the
mountain ranges, and the strike of the major
faults are in about the same direction. In
the batholith and the older sediments the dips
are steep to the east.

The batholith must have been emplaced
by stoping and not by forceful injection. Cal-
culations show that the cooling of a large
batholith is chiefly through the roof and not
through the walls. Crystallization to a depth
of 3 kilometers takes place in about half a
million years. The different rocks of the
batholith were formed from the intermediate
gabbro by crystal differentiation and assimi-
lation in depth.

In early Upper Cretaceous time diastro-
phism folded the older rocks and formed, in
depth, a strip of gabbroic magma about 1000
miles long. A small amount of this magma was
intruded nearly to the surface. The deep magma
differentiated quietly until its upper part
attained the composite of a tonalite. Earth
movements then occurred at least five times
in rapid succession and caused the injection
of the different tonalites. Some of these
carry abundant inclusions, indicating a wide-
spread shattering of the rock wall shortly
before final emplacement0 From time to time
local movements caused the injections of the
different granodiorites. When the deep-seated
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magma reached the composition of a light-
colored granodiorite, widespread diastro-
phism moved the main granodiorite upward.
Further local movement caused the emplace-
ment of the many local granodiorites and
granites.

Taylor and Epstein (1962a, 1962b) have recently

studied oxygen isotopic variations in the batholith. They

have furnished the majority of samples for this investi-

gation. L. T. Silver collected the actual hand specimens

and furnished both chemical and modal analyses for Taytor

and Epstein. Description of these samples are given later

in this- section.

Taylor and Epstein (1962b) emphasized that caution

was necessary when using their results to draw conclusions

regarding the genetic relationships among the rock types of

the batholith. Their data was based on but four hand speci-

mens. However, their results were quite consistent with

the geological observations and conclusions of Larsen (1948)

A plot of 018/016 ratios versus the chemical composition of

the four samples (using Larsen's variation index of weight

percent 1/3 SiO2 + K2 0 - CaO - MgO - FeO ) shows that the

ratios progressively increase with increasing silica con-

tent. One might legitimately suggest that the observations

are the results of temperature effects alons (the larger

ratios indicating lower final temperatures of formation);

however, the consistent sequence is also compatible with a

mode of origin by magmatic differentiation at depth as ad-

vanced by Larsen. Taylor and Epstein have shown that the



- 143 -

San Marcos gabbro magma became enriched in 018 as the early-

formed, o16-poor, mafic minerals settled from the melt.

This process would lead to successively higher 011/0 ratios

in the more acidic differentiates.

On the basis of 018/016 ratios, Taylor and Epstein

(1962b) suggested that both the Rubidoux Mountain leuco-

granite and Woodson Mountain granodiorite could represent

direct differentiates from the Bonsall tonalite. At the

same time, they emphasized that it is unlikely that the

leucogranite could have been derived by simple fractional

crystallization of Woodson Mountain granodiorite magma. This

conclusion was supported by their observation that the grano-

diorite melt became isotopically lighter as solidification

progressed. The melt which compositionally corresponded to

the leucogranite (quartz monzonite) would have been 1 per

mil or more lighter than observed in the Rubidoux Mountain

sample. The authors also noted that the most 018-rich rock

of the batholith was the Ramona pegmatite which intrudes the

Bonsall tonalite. However, it was significantly poorer in

018 than observed in pegmatites associated with granodiorites

and quartz monzonites from other areas. For this reason, it

was suggested that the Ramona pegmatite might conceivably

represent a direct differentiate of Bonsall tonalite magma.

One of the most important uses of oxygen isotopic

variations is in determining the order of crystallization of

minerals from a magma. Although the mode of origin of the

rocks studied may still be open to question, the isotopic
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data showed excellent agreement with the common geologic

criteria that indicate a mode of origin by magmatic dif-

ferentiation (fractional crystallization with incomplete

reaction).

In the San Marcos gabbro, the first minerals to crys-

tallize were calcic plagioclase, two pyroxenes and magnetite.

The pyroxenes were isotopically lighter than the plagioclase,

the latter having approximately the same isotopic composi-

tion as the magma (Taylor and Epstein, 1962b). The later

hornblende and tiny amounts of quartz were heavier relative

to the plagioclase than in the tonalite and quartz monzo-

nite. Since augite was observed to be 0.7 per mil lighter

than hypersthene, it was suggested that this was a clear in-

dication that clinopyroxene was the first to begin crys-

tallization. In a similar manner, it was shown that the apa-

tite in the San Marcos gabbro began crystallizig -at an ear-

lier stage than it did in the Bonsall tonalite.

In the Bonsall tonalite, Taylor and Epstein found

that the 018/016 ratios indicated that plagioclase, horn-

blende, and biotite were relatively early in forming, whereas

quartz began to crystallize later. This is in close agree-

ment with the probable sequence derived from textural cri-

teria.

The Woodson Mountain granodiorite showed very in-

teresting results. Taylor and Epstein noted that on the

basis of composition, this rock falls inside the field of
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primary crystallization of quartz in the system NaAlSi3 08
KAISi308 -SiO2H 20 (Tuttle and Bowen, 1958). Quartz and

plagioclase would most likely have begun to crystallize first.

Plagioclase contained an isotopic oxygen composition approxi-

mately that of the melt, while quartz was heavier. Conse-

quently, the melt would have become progressively depleted

in 018 in contrast to the usual trend of increasing 018/016

ratios in residual melts. Subsequent crystallization of

biotite and K-feldspar might then reduce this effect but

should at the Same time reflect it. The authors, in fact,

found that the 018/016 ratios of K-feldspar in the grano-

diorite were smaller than the associated plagioclase ratios,

as opposed to the reverse in all four quartz monzonites

studied (from different geographical areas). The oxygen

isotopic composition of the Rubidoux Mountain leucogranite

(quartz monzonite) indicated that oligoclase and quartz crys-

tallized early, whereas K-feldspar formed later. However,

all major phases apparently crystallized at nearly the same

time, and as a result, Taylor and-Epstein suggest that the

isotopic composition of this melt remained essentially

constant.
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Description of Samples

In the following descriptions, those for samples

from the batholith of Southern California are taken directly

from Taylor and Epstein (1962a).

San Marcos g_bbro Collected from Emil Johnson &
Son quarry 3 ies northeast of Pala, California, by L. T.
Silver, who provided the following mode for this rock:
quartz-0.24, plagioclase(An 5 5,)-59.4, biotite-0,21, horn-
blende-17.2, ypersthene-10.8, augite-6.9, apatite-0.29,
chlorite-0.03, opaques-5.0 . This is a noritic hornblende
gabbro, not representative of the San Marcos gabbro as a
unit, because that rock type is variable in composition and
texture. Medium-grained and equigranular, with zoned, sub-
hedral laths of plagioclase. 'The two pyroxenes occur both
as separate grains and together in finer-grained clusters,
invariably with abundant included magnetite grains. Horn-
blende is deep green and is in obvious reaction relation-
ship to the pyroxenes enclosed by it. Both pyroxenes are
replaced by hornblende, but augite preferentially so. Quartz
and biotite occur as rare, anhedral grains interstitial to
plagioclase. Apatite occurs in uniformly-distributed eu-
hedral grains, and more is probably present than is listed
in mode, on the basis of quantities obtained in mineral
separations (L. T. Silver, personal communication).

Bonsall tonalite. Collected 2 miles west of Val
Verde, California y . T. Silver, who provided a mode for
the rock as follows: quartz-25.2, plagioclase(An4 )-48.3,
orthoclase-0.5, biotite-14.2, hornblende-10.0, apatite-0.25,
opaques-0.14, accessories-0.78, epidote-0.65. Fairly repre-
sentative of the Bonsall tonalite as a unit, medium-, to
coarse-grained and inequigranular, with strongly zoned, sub-
hedral, well-twinned laths of plagioclase 0.5-5 mm in length.
Hornblende subhedral, commonly twinned, deep green, zoned.
Biotite averages 2 mm, as does hornblende, and occurs as in-
dependent grains with ragged borders. Although biotite and
hornblende locally occur clustered together, they are never
in reaction relationship. Quartz averages 2-3 mm, is an-
hedral, and is interstitial to plagioclase laths. Rare
K-feldspar interstitial to quartz and plagioclase.

Woodson Mountain granodiorite. Collected 3 miles
south of Temecula, CalifornIa, y L. T. Silver, who supplied
the following mode for this rock: quartz-36.8, plagioclase
(An25)-39.5, K-feldspar-15.2, myrmekite-l.8, biotite-5.8,
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hornblende-0.17, opaques-0.17, accessories-0.52, altera-
tion products-0.02. Fairly representative of Woodson
Mountain unit throughout its outcrop area. Moderately
coarse-grained, almost equigranular; contains subhedral
plagioclase grains that are zoned, well-twinned, and
average 3 mm. Microcline microperthite and quartz occur
as slightly smaller, anhedral grains. Rarely, K-feldspar
grains are larger than 6 mm. Much of the quartz occurs
in clusters of grains and in small amounts as myrmekitic
intergrowths. Biotite averages 3 mm in length and occurs
in irregular, ragged grains, some interstitial to plagio-
clase.

Rubidoux Mountain leucogranite. Collected from
Mount Rubidoux near Riversi e, California , by L. T. Silver,
who supplied a mode as follows: quartz-34.4 plagioclase
(An 0)-30.3, microperthite-27.9 , biotite-3.63, hornblende-
1.39, myrmekite-2.5, hypersthene-0.05, accessories-0.32,
opaques-0.10. Typical of the coarse-grained leucogranite,
pale greenish gray, with grains averaging about 8 mm. Micro-
perthite contains stringers of albite. Quartz grains large
and anhedral. Plagioclase unzoned and contains blebs of
quartz near grain borders. Minor biotite, dark-green horn-
blende , and iron-rich hypersthene are fine-grained and tend
to occur interstitially. This should properly be called a
leuco-quartz monzonite.

Ramona Dematite. Collected by D. R. Simpson from
a pegmatite body near ona, California. Besides quartz,
albite, and perthite, this pegmatite contains minor amounts
of tourmaline and spessartitic garnet (a quartz-feldspar
mixture from this pegmatite was processed and used in the
precision test on duplicate runs of sample solutions--see
Part I, Chapter II of this study).

Kilauea Iki-22. Hawaiian basalt from the November 18,
1959 eruption of Iilauea Iki. Collected by K. Murata and
donated by R. A. Schmitt.

Standard granite, G-10 Westerly,. Rhode Island.
Donated to the author by W~~. Pinson, Jr. This inter-
laboratory standard is discussed in U0 S. Geol. Su. Bulls.
980 and 1113.

Standard diabase, W-1. Centerville, Virginia.
Donated to t e author by W~II. Pinson, Jr. This inter-
laboratory standard is discussed in U. S. Geol. Sugv. Bulls.
980 and 1113.
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APPENDIX C

ADDITIONAL NOTES ON THE ANALYTICAL PROCEDURE

Introduction

Figure C-1 is an outline of the rare-earth

analytical procedure. Most aspects of the procedure

are extensively discussed in Part I, Chapter II. How-

ever, it is useful to add some additional notes here.

Determination of Chemical Yields

As an example, the calculation of the chemical

yields on sample AuSM (augite from the San Marcos

gabbro) is given below.

TMC Pulse Height Analyzer Model 402

Input No. 1

High voltage = 1100 volts

Amplifier gain = 1.16

Base line = 0.20

Upper level = 10.0

Accumulation : channels 1-199

On February 18, 1963, the above settings were

observed to place the y88 y Cs = 0.90 Mev and 1483 Xev

in channels 78 and 170, respectively. Channels 63-199
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Fig. C-1. Outline of the analytical method.



ACTIVATION ANALYSIS - CHROMATOGRAPHY PROCEDURE

FOR RARE EARTHS

I. Pre-irradiation Chemistry

A. Sample

Weigh Samples(100 to 500 mg)

Add Ce139  y88 Tracers (carrier free)

Dissolution with Alternative Fusion
HF+HC10 4  with NaOH

Repeated Hydroxide
Scavenge of the Rare Earths

Cation Exchange
1

Anion Exchange

Conversion to 11 HNO3 Solution

Determination of Chemical Yields

Package for Irradiation

B. Standard Mixture of Rare Earths Packaged

II. Irradiation by Pile Neutrons

III. Post-irradiation Chemistry

Samples and Standard
Loaded on DEP-Celite Columns

I
Gradient Elution with HCl

I
Collect Fractions

I
Count Induced Radioactivity

I
Calculations
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included both of these peaks, and channels 3-17 included

essentially all Ce139 activity (6- 0.166 Mev ). The sample

and two reference tracer solutions were each counted (in

1-mi volumetrics) for 0.4 live minutes. After accumula-

tion in channels 1-199, the analyzer memory was integrated

over channels 63-199 and channels 3-17 by the TMC Inte-

grator-Resolver Model 522 and the results printed out on

paper tape.

The chemical yields of Y and Ce were calculated as

follows:

Activity (counts per 0.4 minutes)

y88 Reference Ce139 Reference
AuSM Solution Solution

y88 range 7501 7777 13
(63-199)

Ce139range 14315 2,685 12p76
(3-17)

Yttrium yield in AuSM 75013 x 102 96

788 contribution in channels 3-17
for AuSM = 2685 x 0.96 - 2578

Cerium yield in AuSM == I15-27 8 x 102 = 97

Packaging for Irradiation

In general, three samples and one standard rare-

earth solution were packaged in separate polyethylene
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tubes for simultaneous irradiation in a 4-dram polyethylene

vial ("polyvial"). Approximately one-half of each proces-

sed solution was packaged (the remainder was saved in

case a duplicate was needed). Polyethylene tubing of

1/4-in., 5/16-in., and 3/8-in, outside diameter was used

as sample containers. The smallest tubing was always used

for the standard solution. The tubing was cut to approxi-

mately the length of the polyethylene vial. It was then

soaked in hot 1:1 HNO3 for about an hour, rinsed with

distilled water, dried, and stored for later use. In

packaging samples for irradiation, one end of a tube was

sealed by heating it over a bunsen burner until the end was

clear, and then closing it with a pair of tweezers. The

sample was added, and the other end closed in the same

manner. The ends were carefully fused to ensure that no

cracks were present which would lead to leakage during the

irradiation.

Standard Rare-Earth Solutions

Table C-1 provides the basic information for the

preparation of rare-earth standard solutions for irradia-

tion. The stock solutions were prepared by dissolving high-

purity rare earth oxides (Lindsay, 99.9%) in 3N HNO3 '

The nominal concentrations (calculated from the weights of
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Table C-i

Rare-Earth Standard Solutions

(1)

Nominal conc.
of stock solns.

mg/ml

La 6.00

(2)

This volume of
(1) taken
x(i0 bmi)

500

(3)
Conc. after
dilution to
10 ml
pg/100%

30.0

(4)
Conc. after
10-fold dilu-
tion
4g/100x

3.00

Ce 6.00

Pr 0.75

tEd 15.0

Sm 1.50

Eu 3.00

Th 3.00

Dy 15.0

Ho 1.50

Tm 1-.50

Yb 0.75

Lu 1.50

200 15.0

1000

1000

200

500

100

60.0

7.50

30.0

7.50

3.00

3.00

15.0

1.50

1.50

1.50

1.50

6.00

0.75

3.00

0.75

0.30

0.30

1.50

0.15

0.15

0,15

0.15

1.50

100

100

100

100

200

100

Y 7.50



- 154 -

each oxide used) are shown in column (1). These stock

solutions were stored in polyethylene bottles. In pre-

paring a working solution, volumes of each stock solution,

corresponding to the values listed in column (2) were

taken and combined. This mixture was then diluted to

10.00 ml with distilled water. The resulting con-

centrations of individual rare earths are shown in

column (3). This solution was approximately 1,N in HNO3 '

An aliquot of the latter was diluted exactly ten-fold

with water, and the resulting solution was packaged for

irradiation with samples. The nominal concentrations

in the final rare-earth standard mixture are shown in

column (4) of Table C-1. The final dilution was made

just prior to each irradiation. The solutions shown in

column (3) were used for a month or two before preparing

a new mixture from the individual stock solutions. The

actual concentration of each rare-earth stock solution

was accurately determined by titration with ethylenedi-

aminetetraacetic acid (commonly known as EDTA). The

method was essentially that of Bril, et al. (1959),

modified by a visual end point.

An EDTA solution, whose concentration had been

accurately determined by titration against dried CaCO3

(for use in calcium isotopic studies), was provided by

Dr. James T. Corless.
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For visual end-point determination, a solution was

prepared as follows: Into a 50-ml beaker were pipeted

5 ml of N HCl, 25 ml of H20, and 1 ml of a 1M sodium

acetate - IM acetic acid buffer solution0 To this were

added 12-15 ml of 0.5N NHROH, followed by dropwise ad-

dition to a pH 4o6O (measured by a Beckman Model G, pH

meter). Fifteen drops of a 0.05% solution of Alizarin

Red S indicator were then added. The resulting solution

was used for comparison with titrated aliquots of the

rare-earth stock solutions.

The titration results are shown in Table C-2.

Duplicate titrations were performed on each stock solution.

As can be seen, the end points were reproducible to better

than 17.0 From the 1:1 equivalence between the rare

earths and the EDTA, the true concentrations of the stock

solutions can be readily calculated as follows:

Truecon. (g/m) =Volume EDTA(ml)
True conc. (mg/ml) Volume stock solun(ml) x Cone. EDTA(M/L)

Nominal conc. (m1)
Nominal conc. ( )

e.g. the concentration of the holmium (Ho) stock solution is

equal to:

* x 1.045 x 10-2 M/L x 9 0 -z ML o 155 mg/ml
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Table C-2

Titration of Rare-Earth Stock Solutions

EDTA concentration: 1.045 x 102 (+0005 x 10-2) molar

Volume
titrated

ml

Nominal
conc.
x 10-2M

4.32

4.28

0.532

10.4

0.980

1.98

1.89

9.23

0.910

0.888

0,433

0.858

8.44

EDTA
_ml

3.83, 3.81

4.38,

5.00,

4,42,

4.64,

4.78,

5.44,

4.60,

4.52,

4.36,

4.39,

4.28,

4.11,

4.38

4.99

4.42

4.65

4.79

5.47

4.59

4.50

4.35

4.39

4.30

4.11

True
conc.
mg/mlElement

La

Ce

Pr

Nd

Sm

Eu

Th

Dy

Ho

Tm

Yb

Lu

y

Nominal
conc.
mg/ml

6.00

6.00

0.75

15.0

1.50

3.00

3.00

15.0

1.50

1.50

0.75

1.50

7.50

1.00

1.00

10.0

0.500

5.00

3.00

3.00

0.500

5.00

5.00

10.0

5.00

0.500

5,56

6.41

0.736

13.8

1.49

2.55

3.07

15.6

1.55

1.54

0.795

1.58

7.62
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In practice, the true concentrations of the stock

solutions were not determined until late in the investiga-

tion. Consequently, the nominal values were used in all

preliminary calculations, and then the results for each

rare earth were multiplied by the ratio of the true

concentration to the nominal concentration of each standard.

Neutron Activation

Radioactivation analysis is one of the most versatile

analytical methods developed in recent years. Of high

importance are the extremely high sensitivities which are

obtained for many elements. The most recent extensive

review of the basic considerations in activation analysis

is presented by Koch (1960). Winchester (1960) has dis-

cussed its application to inorganic geochemistry.

By far, the most commonly-used activation involves

neutron irradiation. The least-complicated case is the

irradiation of samples with slow (thermal) neutrons in

a nuclear reactor. The slow neutrons produce initial

(n,'y) reactions, thus giving rise to induced initial

activities solely in the parent element (subsequent decay,

however, may lead to daughter activities in adjacent elements

of the periodic table). In practice, however, pile-neutron

fluxes are a mixture of slow and fast neutrons. The

ratio can vary quite widely between different irradiation

facilities of the same reactor. Initial nuclear reactions
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from bombardment with fast neutrons are much more compli-

cated since a variety of initial reactions are possible,

e.g. (n,p), (n,2n), (n,o), etc. In this study, pneumatic

tubes were employed which had associated neutron fluxes

with high ratios of thermal neutrons to fast neutrons

(e.g. as high as 10:1). Side reactions produced by

fast neutrons were considered to be unimportant, since

even though they might be present to a small, but significant

extent, the close similarity between sample and standard

solutions would result in effective cancellation of any

influence on the analytical results.

Methods employing neutron activation of the rare

earths in silicates have been developed by several in-

vestigators including Mosen, et al. (1961) and Chase (1962),

The basic nuclear considerations in this study are essenti-

ally the same as those discussed in detail by Mosen et al.

(1961). However, this study represents a somewhat simpler

case, since the self-shielding effects investigated in

detail by Mosen et al. are eliminated by irradiating all

samples and standards in aqueous solutions.

The basic principle behind measurement of concen-

trations by the comparison method of neutron activation

analysis is quite simple. In the simplest case, the fol-

lowing relation holds true:
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A M4sa sa
Astd. Mstd

where

Asa - induced activity of the element in the sample

Astd = induced activity of the element in the standard

M sa mass of the element in the sample

Mstd = mass of the element in the standard

The implicit assumption is made that the relative isotopic

composition of a particular element under consideration

is identical in the sample and standard. Following ir-

radiation, this element is isolated by chemical means

from the other elements (and their radioactivities),

its radioactivity isolated by counting techniques, or both.

In this study, individual rare earths were isolated from

each other by partition chromatography. Where chromato-

graphic separation was not complete, selective counting

of the radioactivities was employed. From the induced

activities in the sample and standard, and the separately-

determined chemical yields, the actual concentrations

in the sample could be readily calculated. An example

of these calculations is given later in Appendix C.

In cases where the post-irradiation chromatographic

separation of certain rare earths in the standard solution
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was poor, it was an advantage to use the activities of

the standard from another irradiation. Caution, how-

ever, was necessary when comparing a sample and standard

irradiated at different times. In general, the induced

activities of the standard mixtures (corrected to the

same time after identical irradiations) were constant

to about +10% between different irradiationso A notable

exception was dysprosium, which exhibited a large reson-

ance effect (up to 50%). Apparently slight changes in

the energy distribution within the neutron beam produced

large differences in the effective cross section of Dy164.

Partition Chromatography

The post-irradiation chromatography with di-(2-ethyl-

hexyl)orthophosphoric acid (DEP) has been discussed in

detail by Winchester (1963). Prior to this, Peppard

et al. (1957) had found in solvent extraction studies

that the rare earths formed highly selective complexes

with DEP. The separation factors were observed to change

systematically by a factor of approximately 2o5 between

adjacent rare earths.

Chromatographic separation of rare earths was carried

out by Siekierski and Fidelis (1960, 1961) on columns of

refined diatomaceous silica coated with tributylphosphate.

The silica was rendered hydrophobic by treatment with
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vapors of dimethyldichlorosilane. Winchester (1963) used

the same technique to prepare DEP-Celite columns. Also

of interest is a recent paper by Cerrai and Testa (1962)

in which the paper-chromatographic separation of rare

earths by DEP is discussed.

The structural formula of the monobasic acid

di-(2-ethylhexyl)orthophosphoric acid is:.

C2H5

CH3  (CH2)3  C H - CH2O 0

P

CH3  (CR 2)3 - CH - CH20 OH

C2H5

Peppard et al. (1957) report the following equili-

brium, applicable to a system with a large excess of

DEP:

3DEP + M+3 M(DEP) 3 + 3H (1)

where DEP represents the free acid, M+3 the rare-earth

cation, M(DEP)3 the rare earth-DEP complex, and H the

hydrogen ion. The equilibrium constant for this reaction

is therefore

K = (M(DEP)3)(H+ 3 (2)

(DEP) 3(23)

The extraction coefficient is defined as
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0 (M (DEP) 3)
a

Consequently

(DEP) 3

Ea =K +((H )

The value of K increases by a factor of approximately

2.5 per unit increase in rare earth atomic number.

Peppard et al. (1957) found that at a (DEP) = 0.75M and

an (HCI) = 0.5M the values of E a ranged from 1.0 x 0-3

for lanthanum to 3.2 x 10+2 for lutetium -

In the stepwise gradient elution with HCl employed

by Winchester (1963) and also in this study, a series

of acids were used such that each acid would bring one

rare earth off the column in about two free-column

volumes, if that acid were used alone (the free-column

volumes of the DEP-Celite columns are approximately 70%

of their geometrical volumes). It can be seen from (4)

that higher hydrochloric acid concentrations decrease

the value of Ea and consequently will favor removal ofa

rare earths by the aqueous phase. The actual concentra-

tions of HCl used and the sequence of addition are shown

in Table II-1, Chapter II, Part I.

Details regarding preparation of column material

are given by Winchester (1963). The following paragraph

is taken directly from his paper:
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Column substrate material is Johns-
Manville Celite Analytical Filter Aid, used
directly as supplied by the manufacturer.
The surface is made hydrophobic by placing
several grams of Celite in a desiccator con-
taining an open bottle of dichlorodimethyl-
silane, allowing about two days of contact
time, and heating briefly and washing with
methanol to remove hydrogen chloride released
during the reaction0 The dried product is
slurred with an acetone solution of DEP such
that the weight ratio of DEP to Celite is
about 15. After a few minutes, the acetone
is evaporated with gentle heating until the
odor of acetone is gone. The dry-looking pro-
duct is then slurried with 0.01M HC1 containing
a wetting agent (0.1% of the polyester Tergitol
Nonionic NPX, manufactured by the Union Carbide
Co., Inc., is satisfactory) and held at 900C
for two days until all particles settle out
easily and no air bubbles remain. Removal of
air bubbles is critical for subsequent column
operation.

A small glass wool plug was inserted in the bottom

of the columns before packing them with the treated

DEP-Celite material. However, glass wool was not placed

above the top of the column beds. During sample loading

and the subsequent chromatographic elution, acids were

added carefully so as not to disturb the top bed.

The pH 2 buffer used in adjusting acid concentration

prior to sample loading was prepared by dissolving 9.5 g

of Na2S205 (sodium metabisulfite) in 50 ml of H20 The

resulting solution was 2M_ in NaHSO3 *

Calculation of Rare-Earth Concentrations in Samples

The determination of the concentration of each rare-

earth element was made from the following information:



(1) net activities of the rare-earth element in the

sample and standard at identical times after the irra-

diation; (2) amount of the rare earth in the standard;

(3) chemical yield of the sample; and (4) amount of the

sample chromatographed on the DEP-Celite column. In

addition, where necessary, the reagent blank contribution

was subtracted from the apparent rare-earth content of

the sample.

The calculation may be expressed in this form:

REcone(ppm) = Ax Estd - Reag(ppm) (5)

AREstd IREsa X Wsa(g)

REconc

AREsa

AREstd

REstd

YREsa

Wsa(g)

Reag(ppm)

= concentration of the rare earth in the
sample (ppm)

= net induced activity of the rare earth
in the sample

= net induced activity of the rare earth
in the standard

- micrograms of the rare earth in the
standard

w chemical yield of the rare earth in the
sample

= corresponding weight of the sample
chromatographed

= reagent contribution of the rare earth

As an actual example, the determination of La in sam-

ple W-1A is chosen. The following information is given

where
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(a) weight of sample processed'- 0.500 g

(b) chemical yield on Ce139 - 95%

(c) proportion of sample chromatographed with DEP - 50%
(50OX out of 1.00 ml)

(d) amount of standard solution chromatographed - 10OX

from Table C-1 and Table C-2 this is seen to cor-

respond to

3.00 sg 5.56 mg/ml
100% x x = 2.78 Pg La

100X 6.00 mg/ml

(e) for a 0.500-g sample, Reag(ppm) = 0.230 (a constant,
see Table 11-7, Chapter II, Part I)

(f) AREsa = 78,004 counts per 4/10 minute

AREstd= 89,794 counts per 4/10 minute

Therefore, using (5):

Conc. La in W-lA =

78,004 2.78 pg ,
-0.23 ppm

89,794 0.95(0.500 g x 0.500)

= 10.17 pg/g - 0.23 ppm

10.17 ppm - 0.23 ppm = 9.94 ppm

Table C-3 summarizes the pertinent information on

sample designations, weights, chemical yields, irradiation

periods, standards, etc.



Table C-3

Samples Processed and Irradiated

3 4
(Mg)

5
Ce (%)~Y(%)

6 7
(hrs) (')

Kit Kilauea Ik.-22 basalt whole rock* 100 77 85 1 60 100

K12 whole rock 500 98 97 1 30 100

K13 500 99 99 1 50 100
(K)

KI3A " whole rock plus 500 98 99 1 50 100
(L) 1OOX of standard

RM1 Rubidoux IMbuntain whole rock* 100 -- 60 1 40 200
leucogranite

RM2 "ir whole rock 100 92 91 1 40 200

RM3 100 53 56 1 90 200

RM4 500 97 97 1 50 100

RM5 500 97 99 1 40 100

San Marcos gabbro
"t "t "

", "I "

whole rock
" "t

"I "

8
(M)

SMI

SM2

SM3

100

500

500

93

95

95

95

97

97

90

40

45

200

100

50



6 7 8
(mg) Ce(%) Y(%) (hrs)(%) (X)

BT1 Bonsall tonalite whole rock 100 81 86 1 40 200

BT2 500 100 100 1 40 100

WM1 Woodson Mountain whole rock 500 93 95 1 40 100
granodiorite

San Marcos gabbro augite

labradorite

apatite

hornblende

142

318

60.5 1

255

97 97 5 50 25 3

94 99 5 50 50

00 99 5 30 25

97 97 5 50 50

BiRM Rubidoux Mountain biotite 51.9 98 94 5 50 25
leucogranite

PlRM oligoclase 36.2 97 98 5 50 25

MiRM microcline 125 98 99 5 50 50

AuSM

PIsM

ApSM

HoSM

i It

i "o

Table C-3 (continued)

99 5 10 25115 96Bonsall tonalite apatiteApBT



Table C-3 (continued) ~

4 5

(Mg) Ce(% Y(7.
6 7

(hrs) (%w)

RPI1 Ramona pegmatite quartz + feldspar 500 97 92 1 40 100
(random mixture)

RP2 " " 515 92 88 5 50 25
(proportions

different
from RP1)

G-1A Standard granite G-1 whole rock 500 99 98 1 10 100

GAB 500 99 98 5 55 50

W-1A Standard diabase W-1 whole rock 500 95 96 1 50 100

W-IB "" 500 95 96 5 29 50

B NaOH reagent blank NaOH 4000 87 85 1 40 100

RB1 HF + HC1O HFHC104,NH3,HC1 (1000) 88 90 18 50 10
acid treatment blank

RB2 ", n (500) 94 90 5 40 50

1 Sample designation.

2 Source of sample.

8



Table C-3 (continued)

3 Type of sample.

Weight of sample processed (mg),

5 Chemical yields on Ce139 and 88 (%).

6 Period of irradiation (hours),

7 Proportion of total sample solution (1.00 ml) chromatographed (
0

8 Volume of standard rare-earth mixture chromatographed (X).

* NaOH fusion (acid dissolution where unspecified),
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