
MIT Open Access Articles

Extensions to the method of multiplicities, 
with applications to Kakeya sets and mergers

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Dvir, Z. et al. “Extensions to the Method of Multiplicities, with Applications to Kakeya 
Sets and Mergers.” Foundations of Computer Science, 2009. FOCS '09. 50th Annual IEEE 
Symposium on. 2009. 181-190. © 2009, IEEE

As Published: http://dx.doi.org/10.1109/FOCS.2009.40

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/59284

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/59284


Extensions to the Method of Multiplicities, with applications to Kakeya Sets and
Mergers

Zeev Dvir∗ Swastik Kopparty† Shubhangi Saraf‡ Madhu Sudan§

Abstract— We extend the “method of multiplicities” to get the
following results, of interest in combinatorics and randomness
extraction.

1) We show that every Kakeya set (a set of points that contains
a line in every direction) in Fn

q must be of size at least
qn/2n. This bound is tight to within a 2 + o(1) factor for
every n as q →∞, compared to previous bounds that were
off by exponential factors in n.

2) We give an improved construction of “randomness mergers”.
Mergers are seeded functions that take as input Λ (possibly
correlated) random variables in {0, 1}N and a short random
seed, and output a single random variable in {0, 1}N that is
statistically close to having entropy (1− δ) ·N when one of
the Λ input variables is distributed uniformly. The seed we
require is only (1/δ) · log Λ-bits long, which significantly
improves upon previous construction of mergers.

3) We show how to construct randomness extractors that use
logarithmic length seeds while extracting 1−o(1) fraction of
the min-entropy of the source. Previous results could extract
only a constant fraction of the entropy while maintaining
logarithmic seed length.

The “method of multiplicities”, as used in prior work, analyzed
subsets of vector spaces over finite fields by constructing somewhat
low degree interpolating polynomials that vanish on every point in
the subset with high multiplicity. The typical use of this method
involved showing that the interpolating polynomial also vanished
on some points outside the subset, and then used simple bounds on
the number of zeroes to complete the analysis. Our augmentation
to this technique is that we prove, under appropriate conditions,
that the interpolating polynomial vanishes with high multiplicity
outside the set. This novelty leads to significantly tighter analyses.
To develop the extended method of multiplicities we provide a
number of basic technical results about multiplicity of zeroes of
polynomials that may be of general use. For instance, we strengthen
the Schwartz-Zippel lemma to show that the expected multiplicity
of zeroes of a non-zero degree d polynomial at a random point
in Sn, for any finite subset S of the underlying field, is at most
d/|S|.
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1. INTRODUCTION

The goal of this paper is to improve on an algebraic
method that has lately been applied, quite effectively, to
analyze combinatorial parameters of subsets of vector spaces
that satisfy some given algebraic/geometric conditions. This
technique, which we refer to as as the polynomial method (of
combinatorics), proceeds in three steps: Given the subset K
satisfying the algebraic conditions, one first constructs a non-
zero low-degree polynomial that vanishes on K. Next, one
uses the algebraic conditions on K to show that the polyno-
mial vanishes at other points outside K as well. Finally, one
uses the fact that the polynomial is zero too often to derive
bounds on the combinatorial parameters of interest. The
polynomial method has seen utility in the computer science
literature in works on “list-decoding” starting with Sudan
[Sud97] and subsequent works. Recently the method has
been applied to analyze “extractors” by Guruswami, Umans,
and Vadhan [GUV07]. Most relevant to this current paper are
its applications to lower bound the cardinality of “Kakeya
sets” by Dvir [Dvi08], and the subsequent constructions of
“mergers” and “extractors” by Dvir and Wigderson [DW08].
(We will elaborate on some of these results shortly.)

The method of multiplicities, as we term it, may be con-
sidered an extension of this method. In this extension one
constructs polynomials that vanish with high multiplicity
on the subset K. This requirement often forces one to use
polynomials of higher degree than in the polynomial method,
but it gains in the second step by using the high multiplicity
of zeroes to conclude “more easily” that the polynomial is
zero at other points. This typically leads to a tighter analysis
of the combinatorial parameters of interest. This method
has been applied widely in list-decoding starting with the
work of Guruswami and Sudan [GS99] and continuing
through many subsequent works, most significantly in the
works of Parvaresh and Vardy [PV05] and Guruswami and
Rudra [GR06] leading to rate-optimal list-decodable codes.
Very recently this method was also applied to improve the
lower bounds on the size of “Kakeya sets” by Saraf and
Sudan [SS08].

The main contribution of this paper is an extension to this
method, that we call the extended method of multiplicities,
which develops this method (hopefully) fully to derive even
tighter bounds on the combinatorial parameters. In our
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extension, we start as in the method of multiplicities to
construct a polynomial that vanishes with high multiplicity
on every point of K. But then we extend the second step
where we exploit the algebraic conditions to show that the
polynomial vanishes with high multiplicity on some points
outside K as well. Finally we extend the third step to show
that this gives better bounds on the combinatorial parameters
of interest.

By these extensions we derive nearly optimal lower bounds
on the size of Kakeya sets and qualitatively improved
analysis of mergers leading to new extractor constructions.
We also rederive algebraically a known bound on the list-
size in the list-decoding of Reed-Solomon codes. We de-
scribe these contributions in detail next, before going on to
describe some of the technical observations used to derive
the extended method of multiplicities (which we believe are
of independent interest).

1.1. Kakeya Sets over Finite Fields

Let Fq denote the finite field of cardinality q. A set K ⊆ Fnq
is said to be a Kakeya set if it “contains a line in every di-
rection”. In other words, for every “direction” b ∈ Fnq there
should exist an “offset” a ∈ Fnq such that the “line” through
a in direction b, i.e., the set {a+tb|t ∈ Fq}, is contained in
K. A question of interest in combinatorics/algebra/geometry,
posed originally by Wolff [Wol99], is: “What is the size of
the smallest Kakeya set, for a given choice of q and n?”

The trivial upper bound on the size of a Kakeya set is qn

and this can be improved to roughly 1
2n−1 q

n (precisely the
bound is 1

2n−1 q
n + O(qn−1), see [SS08] for a proof of

this bound due to Dvir, also discovered independently by
Thas [Tha09]). An almost trivial lower bound is qn/2 (every
Kakeya set “contains” at least qn lines, but there are at most
|K|2 lines that intersect K at least twice). Till recently even
the exponent of q was not known precisely (see [Dvi08] for
details of work prior to 2008). This changed with the result
of [Dvi08] (combined with an observation of Alon and Tao)
who showed that for every n, |K| ≥ cnqn, for some constant
cn depending only on n.

Subsequently the work [SS08] explored the growth of the
constant cn as a function of n. The result of [Dvi08] shows
that cn ≥ 1/n!, and [SS08] improve this bound to show that
cn ≥ 1/(2.6)n. This still leaves a gap between the upper
bound and the lower bound and we effectively close this
gap.

Theorem 1: If K is a Kakeya set in Fnq then |K| ≥ 1
2n q

n.

Note that our bound is tight to within a 2 + o(1) multiplica-
tive factor as long as q = ω(2n) and in particular when
n = O(1) and q →∞.

1.2. Randomness Mergers and Extractors

A general quest in the computational study of randomness is
the search for simple primitives that manipulate random vari-
ables to convert their randomness into more useful forms.
The exact notion of utility varies with applications. The most
common notion is that of “extractors” that produce an output
variable that is distributed statistically close to uniformly on
the range. Other notions of interest include “condensers”,
“dispersers” etc. One such object of study (partly because it
is useful to construct extractors) is a “randomness merger”.
A randomness merger takes as input Λ, possibly correlated,
random variables A1, . . . ,AΛ, along with a short uniformly
random seed B, which is independent of A1, . . . ,AΛ, and
“merges” the randomness of A1, . . . ,AΛ. Specifically the
output of the merger should be statistically close to a high-
entropy-rate source of randomness provided at least one of
the input variables A1, . . . ,AΛ is uniform.

Mergers were first introduced by Ta-Shma [TS96a] in the
context of explicit constructions of extractors. A general
framework was given in [TS96a] that reduces the problem of
constructing good extractors into that of constructing good
mergers. Subsequently, in [LRVW03], mergers were used
in a more complicated manner to create extractors which
were optimal to within constant factors. The mergers of
[LRVW03] had a very simple algebraic structure: the output
of the merger was a random linear combination of the blocks
over a finite vector space. The [LRVW03] merger analysis
was improved in [DS07] using the connection to the finite
field Kakeya problem and the (then) state of the art results
on Kakeya sets.

The new technique in [Dvi08] inspired Dvir and Wigderson
[DW08] to give a very simple, algebraic, construction of a
merger which can be viewed as a derandomized version of
the [LRVW03] merger. They associate the domain of each
random variable Ai with a vector space Fnq . With the Λ-
tuple of random variables A1, . . . ,AΛ, they associate a curve
C : Fq → Fnq of degree ≤ Λ which ‘passes’ through all the
points A1, . . . ,AΛ (that is, the image of C contains these
points). They then select a random point u ∈ Fq and output
C(u) as the “merged” output. They show that if q ≥ poly(Λ·
n) then the output of the merger is statistically close to a
distribution of entropy-rate arbitrarily close to 1 on Fnq .

While the polynomial (or at least linear) dependence of q
on Λ is essential to the construction above, the requirement
q ≥ poly(n) appears only in the analysis. In our work we
remove this restriction to show:

Informal Theorem [Merger]: For every Λ, q the output of
the Dvir-Wigderson merger is close to a source of entropy
rate 1− logq Λ. In particular there exists an explicit merger
for Λ sources (of arbitrary length) that outputs a source with
entropy rate 1− δ and has seed length (1/δ) · log(Λ/ε) for
any error ε.
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The above theorem (in its more formal form given in
Theorem 16) allows us to merge Λ sources using seed length
which is only logarithmic in the number of sources and does
not depend entirely on the length of each source. Earlier
constructions of mergers required the seed to depend either
linearly on the number of blocks [LRVW03], [Zuc07] or to
depend also on the length of each block [DW08]. 1

One consequence of our improved merger construction is
an improved construction of extractors. Recall that a (k, ε)-
extractor E : {0, 1}n×{0, 1}d → {0, 1}m is a deterministic
function that takes any random variable X with min-entropy
at least k over {0, 1}n and an independent uniformly dis-
tributed seed Y ∈ {0, 1}d and converts it to the random
variable E(X,Y) that is ε-close in statistical distance to a
uniformly distributed random variable over {0, 1}m. Such
an extractor is efficient if E is polynomial time computable.

A diverse collection of efficient extractors are known in
the literature (see the survey [Sha02] and the more recent
[GUV07], [DW08] for references) and many applications
have been found for explicit extractor is various research
areas spanning theoretical computer science. Yet all previous
constructions lost a linear fraction of the min-entropy of
the source (i.e., acheived m = (1 − ε)k for some constant
ε > 0) or used super-logarithmic seed length (d = ω(log n)).
We show that our merger construction yields, by combining
with several of the prior tools in the arsenal of extractor
constructions, an extractor which extracts a 1 − 1

polylog(n)
fraction of the minentropy of the source, while still using
O(log n)-length seeds. We now state our extractor result in
an informal way (see Theorem 20 for the formal statement).

Informal Theorem [Extractor]: There exists an explicit
(k, ε)-extractor for all min-entropies k with O(log n) seed,
entropy loss O(k/polylog(n)) and error ε = 1/polylog(n),
where the powers in the polylog(n) can be arbitrarily high
constants.

1.3. List-Decoding of Reed-Solomon Codes

The Reed-Solomon list-decoding problem is the following:
Given a sequence of points

(α1, β1), . . . , (αn, βn) ∈ Fq × Fq,

and parameters k and t, find the list of all polynomials
p1, . . . , pL of degree at most k that agree with the given
set of points on t locations, i.e., for every j ∈ {1, . . . , L}
the set {i|pj(αi) = βi} has at least t elements. (Strictly
speaking the problem requires αi’s to be distinct, but we
will consider the more general problem here.) The associated
combinatorial problem is: How large can the list size, L, be

1The result we refer to in [Zuc07, Theorem 5.1] is actually a condenser
(which is stronger than a merger).

for a given choice of k, t, n, q (when maximized over all
possible set of distinct input points)?

A somewhat nonstandard, yet reasonable, interpretation of
the list-decoding algorithms of [Sud97], [GS99] is that
they give algebraic proofs, by the polynomial method and
the method of multiplicities, of known combinatorial upper
bounds on the list size, when t >

√
kn. Their proofs happen

also to be algorithmic and so lead to algorithms to find a
list of all such polynomials.

However, the bound given on the list size in the above works
does not match the best known combinatorial bound. The
best known bound to date seems to be that of Cassuto and
Bruck [CB04] who show that, letting R = k/n and γ = t/n,
if γ2 > R, then the list size L is bounded by O( γ

γ2−R )
(in contrast, the Johnson bound and the analysis of [GS99]
gives a list size bound of O( 1

γ2−R ), which is asymptotically
worse for, say, γ = (1 + O(1))

√
R and R tending to 0).

In the full version of this paper [DKSS09, Theorem 34], we
we recover the bound of [CB04] using our extended method
of multiplicities.

1.4. Technique: Extended method of multiplicities

The common insight to all the above improvements is that
the extended method of multiplicities can be applied to each
problem to improve the parameters. Here we attempt to
describe the technical novelties in the development of the
extended method of multiplicities.

For concreteness, let us take the case of the Kakeya set
problem. Given a set K ⊆ Fnq , the method first finds a non-
zero polynomial P ∈ Fq[X1, . . . , Xn] that vanishes with
high multiplicity m on each point of K. The next step
is to prove that P vanishes with fairly high multiplicity
` at every point in Fnq as well. This step turns out to be
somewhat subtle (and is evidenced by the fact that the exact
relationship between m and ` is not simple). Our analysis
here crucially uses the fact that the (Hasse) derivatives of
the polynomial P , which are the central to the notion of
multiplicity of roots, are themselves polynomials, and also
vanish with high multiplicity at points in K. This fact does
not seem to have been needed/used in prior works and is
central to ours.

A second important technical novelty arises in the final
step of the method of multiplicities, where we need to
conclude that if the degree of P is “small”, then P must be
identically zero. Unfortunately in our application the degree
of P may be much larger than q (or nq, or even qn). To
prove that it is identically zero we need to use the fact that P
vanishes with high multiplicity at every point in Fnq , and this
requires some multiplicity-enhanced version of the standard
Schwartz-Zippel lemma. We prove such a strengthening,
showing that the expected multiplicity of zeroes of a degree
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d polynomial (even when d � q) at a random point in Fnq
is at most d/q (see Lemma 8). Using this lemma, we are
able to derive much better benefits from the “polynomial
method”. Indeed we feel that this allows us to fully utilize
the power of the polynomial ring Fq[X] and are not limited
by the power of the function space mapping Fnq to Fq .
Putting these ingredients together, the analysis of the Kakeya
sets follows easily. The analysis of the mergers follows a
similar path and may be viewed as a “statistical” extension
of the Kakeya set analysis to “curve” based sets, i.e., here we
consider sets S that have the property that for a noticeable
fraction points x ∈ Fnq there exists a low-degree curve
passing through x that has a noticeable fraction of its points
in S. We prove such sets must also be large and this leads
to the analysis of the Dvir-Wigderson merger.

Organization of this paper.: In Section 2 we define the
notion of the multiplicity of the roots of a polynomial, using
the notion of the Hasse derivative. We present some basic
facts about multiplicities and Hasse derivatives, and also
present the multiplicity based version of the Schwartz-Zippel
lemma. In Section 3 we present our lower bounds for Kakeya
sets. In Section 4 we extend this analysis for “curves” and
for “statistical” versions of the Kakeya property. This leads
to our analysis of the Dvir-Wigderson merger in Section 5.
We then show how to use our mergers to construct the novel
extractors in Section 6.

2. PRELIMINARIES

In this section we formally define the notion of “mutli-
plicity of zeroes” along with the companion notion of the
“Hasse derivative”. We also describe basic properties of
these notions, concluding with the “multiplicity-enhanced
version” of the Schwartz-Zippel lemma. Due to space lim-
itations proofs are omitted and may be found in the full
version [DKSS09].

2.1. Basic definitions

We start with some notation. We use [n] to denote the set
{1, . . . , n}. For a vector i = 〈i1, . . . , in〉 of non-negative
integers, its weight, denoted wt(i), equals

∑n
j=1 ij .

Let F be any field, and Fq denote the finite field of q
elements. For X = 〈X1, . . . , Xn〉, let F[X] be the ring of
polynomials in X1, . . . , Xn with coefficients in F. For a
polynomial P (X), we let HP (X) denote the homogeneous
part of P (X) of highest total degree.

For a vector of non-negative integers i = 〈i1, . . . , in〉, let
Xi denote the monomial

∏n
j=1X

ij
j ∈ F[X]. Note that the

(total) degree of this monomial equals wt(i). For n-tuples
of non-negative integers i and j, we use the notation(

i
j

)
=

n∏
k=1

(
ik
jk

)
.

Note that the coefficient of ZiWr−i in the expansion of
(Z + W)r equals

(
r
i

)
.

Definition 2 ((Hasse) Derivative): For P (X) ∈ F[X] and
non-negative vector i, the ith (Hasse) derivative of P ,
denoted P (i)(X), is the coefficient of Zi in the polynomial
P̃ (X,Z)def=P (X + Z) ∈ F[X,Z].

Thus,
P (X + Z) =

∑
i

P (i)(X)Zi. (1)

We are now ready to define the notion of the (zero-
)multiplicity of a polynomial at any given point.

Definition 3 (Multiplicity): For P (X) ∈ F[X] and a ∈ Fn,
the multiplicity of P at a ∈ Fn, denoted mult(P,a), is the
largest integer M such that for every non-negative vector i
with wt(i) < M , we have P (i)(a) = 0 (if M may be taken
arbitrarily large, we set mult(P,a) =∞).

Note that mult(P,a) ≥ 0 for every a. Also, P (a) = 0 if
and only if mult(P,a) ≥ 1.

The above notations and definitions also extend naturally to
a tuple P (X) = 〈P1(X), . . . , Pm(X)〉 of polynomials with
P (i) ∈ F[X]m denoting the vector 〈(P1)(i), . . . , (Pm)(i)〉. In
particular, we define mult(P,a) = minj∈[m]{mult(Pj ,a)}.

The definition of multiplicity above is similar to the standard
(analytic) definition of multiplicity with the difference that
the standard partial derivative has been replaced by the Hasse
derivative. The Hasse derivative is also a reasonably well-
studied quantity (see, for example, [HKT08, pages 144-155])
and seems to have first appeared in the CS literature (without
being explicitly referred to by this name) in the work of
Guruswami and Sudan [GS99]. It typically behaves like the
standard derivative, but with some key differences that make
it more useful/informative over finite fields. For complete-
ness we review basic properties of the Hasse derivative and
multiplicity in the following subsections.

2.2. Properties of Hasse Derivatives

The following proposition lists basic properties of the Hasse
derivatives. Parts (1)-(3) below are the same as for the
analytic derivative, while Part (4) is not! Part (4) considers
the derivatives of the derivatives of a polynomial and shows
a different relationship than is standard for the analytic
derivative. However crucial for our purposes is that it shows
that the jth derivative of the ith derivative is zero if (though
not necessarily only if) the (i + j)-th derivative is zero.

Proposition 4 (Basic Properties of Derivatives): Let
P (X), Q(X) ∈ F[X]m and let i, j be vectors of nonnegative
integers. Then:

1) P (i)(X) +Q(i)(X) = (P +Q)(i)(X).
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2) If P is homogeneous of degree d, then P (i) is homo-
geneous of degree d− wt(i).

3) (HP )(i)(X) = HP (i)(X)
4)
(
P (i)

)(j)
(X) =

(
i+j
i

)
P (i+j)(X).

We now translate some of the properties of the Hasse
derivative into properties of the multiplicities.

Lemma 5 (Basic Properties of multiplicities): If P (X) ∈
F[X] and a ∈ Fn are such that mult(P,a) = m, then
mult(P (i),a) ≥ m− wt(i).

We now discuss the behavior of multiplicities under com-
position of polynomial tuples. Let X = (X1, . . . , Xn)
and Y = (Y1, . . . , Y`) be formal variables. Let
P (X) = (P1(X), . . . , Pm(X)) ∈ F[X]m and Q(Y) =
(Q1(Y ), . . . , Qn(Y )) ∈ F[Y]n. We define the composition
polynomial P ◦ Q(Y) ∈ F[Y]m to be the polynomial
P (Q1(Y), . . . , Qn(Y)). In this situation we have the fol-
lowing proposition.

Proposition 6: Let P (X), Q(Y) be as above. Then for any
a ∈ F`,

mult(P ◦Q,a) ≥ mult(P,Q(a)) ·mult(Q−Q(a),a).

In particular, since mult(Q − Q(a),a) ≥ 1, we have
mult(P ◦Q,a) ≥ mult(P,Q(a)).

Applying the above to P (X) and Q(T ) = a+Tb ∈ F[T ]n.
we get the following corollary.

Corollary 7: Let P (X) ∈ F[X] where X = (X1, . . . , Xn).
Let a,b ∈ Fn. Let Pa,b(T ) be the polynomial P (a+T ·b) ∈
F[T ]. Then for any t ∈ F,

mult(Pa,b, t) ≥ mult(P,a + t · b).

2.3. Strengthening of the Schwartz-Zippel Lemma

We are now ready to state the strengthening of the Schwartz-
Zippel lemma. In the standard form this lemma states that
the probability that P (a) = 0 when a is drawn uniformly
at random from Sn is at most d/|S|, where P is a non-
zero degree d polynomial and S ⊆ F is a finite set.
Using min{1,mult(P,a)} as the indicator variable that is
1 if P (a) = 0, this lemma can be restated as saying∑

a∈Sn min{1,mult(P,a)} ≤ d·|S|n−1. Our version below
strengthens this lemma by replacing min{1,mult(P,a)}
with mult(P,a) in this inequality.

Lemma 8: Let P ∈ F[X] be a nonzero polynomial of total
degree at most d. Then for any finite S ⊆ F,∑

a∈Sn
mult(P,a) ≤ d · |S|n−1.

While we omit the proof, we mention briefly the
idea. As in the “standard” proof of the Schwartz-
Zippel lemma, we use induction on n. We write the

polynomial P (X) as a polynomial in xn with coeffi-
cients being polynomials in x1, . . . , xn−1. Let the de-
gree of this polynomial in xn be t and the coefficient
of xtn be Pt(x1, . . . , xn−1). For every a1, . . . , an−1 ∈
S, we show that

∑
an∈S mult(P, (a1, . . . , an)) ≤ t +

mult(Pt, (a1, . . . , an−1)) · |S|. (This replaces the step in the
standard proof that shows that the number of zeroes of P
with the first n − 1 coordinates set to a1, . . . , an−1 is at
most t if Pt(a1, . . . , an−1) is non-zero.) The lemma follows
easily, once we have this inequality.

The following corollary simply states the above lemma in
contrapositive form, with S = Fq .

Corollary 9: Let P ∈ Fq[X] be a polynomial of total degree
at most d. If

∑
a∈Fnq

mult(P,a) > d ·qn−1, then P (X) = 0.

3. A LOWER BOUND ON THE SIZE OF KAKEYA SETS

We now give a lower bound on the size of Kakeya sets in Fnq .
We implement the plan described in Section 1. Specifically,
in Proposition 10 we show that we can find a somewhat
low degree non-zero polynomial that vanishes with high
multiplicity on any given Kakeya set, where the degree
of the polynomial grows with the size of the set. Next,
in Claim 12 we show that the homogenous part of this
polynomial vanishes with fairly high multiplicity everywhere
in Fnq . Using the strengthened Schwartz-Zippel lemma, we
conclude that the homogenous polynomial is identically
zero if the Kakeya set is too small, leading to the desired
contradiction. The resulting lower bound (slightly stronger
than Theorem 1) is given in Theorem 11.

Proposition 10: Given a set K ⊆ Fn and non-negative
integers m, d such that

(
m+n−1

n

)
· |K| <

(
d+n
n

)
, there exists

a non-zero polynomial P = Pm,K ∈ F[X] of total degree
at most d such that mult(P,a) ≥ m for every a ∈ K.

The proof is by a simple counting argument and omitted
here.

Theorem 11: If K ⊆ Fnq is a Kakeya set, then |K| ≥(
q

2−1/q

)n
.

Proof: Let ` be a large multiple of q and let m =
2` − `/q and d = `q − 1. These three parameters (`,m
and d) will be used as follows: d will be the bound on the
degree of a polynomial P which vanishes on K, m will be
the multiplicity of the zeros of P on K and ` will be the
multiplicity of the zeros of the homogenous part of P which
we will deduce by restricting P to lines passing through K.

Note that by the choices above we have d < `q and (m −
`)q > d− `. We prove below that |K| ≥ (d+nn )

(m+n−1
n ) .

Assume for contradiction that |K| < (d+nn )
(m+n−1

n ) . Then, by

Proposition 10 there exists a non-zero polynomial P (X) ∈
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F[X] of total degree exactly d∗, where d∗ ≤ d, such that
mult(P,x) ≥ m for every x ∈ K. Note that d∗ ≥ ` since
d∗ ≥ m (since P is nonzero and vanishes to multiplicity
≥ m at some point), and m ≥ ` by choice of m. Let HP (X)
be the homogeneous part of P (X) of degree d∗. Note that
HP (X) is nonzero. The following claim shows that HP

vanishes to multiplicity ` at each point of Fnq .

Claim 12: For each b ∈ Fnq .

mult(HP ,b) ≥ `.

Proof: Fix i with wt(i) = w ≤ ` − 1. Let Q(X) =
P (i)(X). Let d′ be the degree of the polynomial Q(X), and
note that d′ ≤ d∗ − w.

Let a = a(b) be such that {a + tb|t ∈ Fq} ⊂ K. Then
for all t ∈ Fq , by Lemma 5, mult(Q,a + tb) ≥ m − w.
Since w ≤ ` − 1 and (m − `) · q > d∗ − `, we get that
(m− w) · q > d∗ − w.

Let Qa,b(T ) be the polynomial Q(a + Tb) ∈ Fq[T ]. Then
Qa,b(T ) is a univariate polynomial of degree at most d′,
and by Corollary 7, it vanishes at each point of Fq with
multiplicity m− w. Since

(m− w) · q > d∗ − w ≥ deg(Qa,b(T )),

we conclude that Qa,b(T ) = 0. Hence the coefficient of T d
′

in Qa,b(T ) is 0. Let HQ be the homogenous component of
Q of highest degree. Observe that the coefficient of T d

′
in

Qa,b(T ) is HQ(b). Hence HQ(b) = 0.

However HQ(X) = (HP )(i)(X) (by item 2 of Proposi-
tion 4). Hence (HP )(i)(b) = 0. Since this is true for all i of
weight at most ` − 1, we conclude that mult(HP ,b) ≥ `.

Applying Corollary 9, and noting that `qn > d∗qn−1, we
conclude that HP (X) = 0. This contradicts the fact that
P (X) is a nonzero polynomial.

Hence, |K| ≥ (d+nn )
(m+n−1

n ) . It is straightforward to show that

the bound above is at least (q/(2 − 1/q))n as we take the
limit when `→∞.

4. STATISTICAL KAKEYA FOR CURVES

Next we extend the results of the previous section to a
form conducive to analyze the mergers of Dvir and Wigder-
son [DW08]. The extension changes two aspects of the
consideration in Kakeya sets, that we refer to as “statistical”
and “curves”. We describe these terms below.

In the setting of Kakeya sets we were given a set K such
that for every direction, there was a line in that direction
such that every point on the line was contained in K. In
the statistical setting we replace both occurrences of the

“every” quantifier with a weaker “for many” quantifier. So
we consider sets that satisfy the condition that for many
directions, there exists a line in that direction intersecting
K in many points.

A second change we make is that we now consider curves
of higher degree and not just lines. We also do not con-
sider curves in various directions, but rather curves passing
through a given set of special points. We start with formal-
izing the terms “curves”, “degree” and “passing through a
given point”.

A curve of degree Λ in Fnq is a tuple of polynomi-
als C(X) = (C1(X), . . . , Cn(X)) ∈ Fq[X]n such that
maxi∈[n] deg(Ci(X)) = Λ. A curve C naturally defines a
map from Fq to Fnq . For x ∈ Fnq , we say that a curve C
passes through x if there is a t ∈ Fq such that C(t) = x.

We now state and prove our statistical version of the Kakeya
theorem for curves.

Theorem 13 (Statistical Kakeya for curves): Let
λ > 0, η > 0. Let Λ > 0 be an integer such that
ηq > Λ. Let S ⊆ Fnq be such that |S| = λqn. Let K ⊆ Fnq
be such that for each x ∈ S, there exists a curve Cx of
degree at most Λ that passes through x, and intersects K
in at least ηq points. Then,

|K| ≥

 λq

Λ
(
λq−1
ηq

)
+ 1

n

.

In particular, if λ ≥ η we get that |K| ≥
(

ηq
Λ+1

)n
.

The proof is similar to that of Theorem 11 and omitted from
this version.

5. IMPROVED MERGERS

In this section we state and prove our main result on
randomness mergers.

5.1. Definitions and Theorem Statement

We start by recalling some basic quantities associated with
random variables. The statistical distance between two
random variables X and Y taking values from a finite domain
Ω is defined as

max
S⊆Ω
|Pr[X ∈ S]−Pr[Y ∈ S]| .

We say that X is ε-close to Y if the statistical distance
between X and Y is at most ε, otherwise we say that X and
Y are ε-far. The min-entropy of a random variable X is
defined as

H∞(X) , min
x∈supp(X)

log2

(
1

Pr[X = x]

)
.
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We say that a random variable X is ε-close to having min-
entropy m if there exists a random variable Y of min-entropy
m such that X is ε-close to Y.

A “merger” of randomness takes a Λ-tuple of random
variables and “merges” their randomness to produce a
high-entropy random variable, provided the Λ-tuple is
“somewhere-random” as defined below.

Definition 14 (Somewhere-random source): For integers Λ
and N a simple (N,Λ)-somewhere-random source is a
random variable A = (A1, . . . ,AΛ) taking values in SΛ,
where S is some finite set of cardinality 2N , such that for
some i0 ∈ [Λ], the distribution of Ai0 is uniform over S. A
(N,Λ)-somewhere-random source is a convex combination
of simple (N,Λ)-somewhere-random sources. (When N and
Λ are clear from context we refer to the source as simply a
“somewhere-random source”.)

We are now ready to define a merger.

Definition 15 (Merger): For positive integer Λ and set S of
size 2N , a function f : SΛ×{0, 1}d → S is called an (m, ε)-
merger (of (N,Λ)-somewhere-random sources), if for every
(N,Λ) somewhere-random source A = (A1, . . . ,AΛ) taking
values in SΛ, and for B being uniformly distributed over
{0, 1}d, the distribution of f((A1, . . . ,AΛ),B) is ε-close to
having min-entropy m.

A merger thus has five parameters associated with it: N , Λ,
m, ε and d. The general goal is to give explicit constructions
of mergers of (N,Λ)-somewhere-random sources for every
choice of N and Λ, for as large an m as possible, and with
ε and d being as small as possible. Known mergers attain
m = (1−δ)·N for arbitrarily small δ and our goal will be to
achieve δ = o(1) as a function of N , while ε is an arbitrarily
small positive real number. Thus our main concern is the
growth of d as a function of N and Λ. Prior to this work,
the best known bounds required either d = Ω(logN+log Λ)
or d = Ω(Λ). We only require d = Ω(log Λ).

Theorem 16: For every ε, δ > 0 and integers N,Λ, there
exists a ((1−δ)·N, ε)-merger of (N,Λ)-somewhere-random
sources, computable in polynomial time, with seed length

d =
1
δ
· log2

(
2Λ
ε

)
.

5.2. The Curve Merger of [DW08] and its analysis

The merger that we consider is a very simple one proposed
by Dvir and Wigderson [DW08], and we improve their
analysis using our extended method of multiplicities. We
note that they used the polynomial method in their analysis;
and the basic method of multiplicities doesn’t seem to
improve their analysis.

The curve merger of [DW08], denoted fDW, is obtained
as follows. Let q ≥ Λ be a prime power, and let n

be any integer. Let γ1, . . . , γΛ ∈ Fq be distinct, and let
ci(T ) ∈ Fq[T ] be the unique degree Λ− 1 polynomial with
ci(γi) = 1 and for all j 6= i, ci(γj) = 0. Then for any
x = (x1, . . . ,xΛ) ∈ (Fnq )Λ and u ∈ Fq , the curve merger
fDW maps (Fnq )Λ × Fq to Fnq as follows:

fDW((x1, . . . ,xΛ), u) =
Λ∑
i=1

ci(u)xi.

In other words, fDW((x1, . . . ,xΛ), u) picks the (canonical)
curve passing through x1, . . . ,xΛ and outputs the uth point
on the curve..

Theorem 17: Let q ≥ Λ and A be somewhere-random
source taking values in (Fnq )Λ. Let B be distributed uni-
formly over Fq , with A,B independent. Let C = fDW(A,B).
Then for

q ≥
(

2Λ
ε

) 1
δ

,

C is ε-close to having min-entropy (1− δ) · n · log2 q.

Theorem 16 easily follows from the above. We note that
[DW08] proved a similar theorem assuming q ≥ poly(n,Λ),
forcing their seed length to grow logarithmically with n as
well.

Proof of Theorem 16: Let q = 2d, so that q ≥
(

2Λ
ε

) 1
δ ,

and let n = N/d. Then we may identify identify Fq with
{0, 1}d and Fnq with {0, 1}N . Take f to be the function fDW

given earlier. Clearly f is computable in the claimed time.
Theorem 17 shows that f has the required merger property.

We now prove Theorem 17.

Proof of Theorem 17: Without loss of generality, we may
assume that A is a simple somewhere-random source. Let
m = (1− δ) · n · log2 q. We wish to show that fDW(A,B)
is ε-close to having min-entropy m.

Suppose not. Then there is a set K ⊆ Fnq with |K| ≤ 2m =
q(1−δ)·n ≤

(
εq
2Λ

)n
such that

Pr
A,B

[f(A,B) ∈ K] ≥ ε.

Suppose Ai0 is uniformly distributed over Fnq . Let A−i0
denote the random variable

(A1, . . . ,Ai0−1,Ai0+1, . . . ,AΛ).

By an averaging argument, with probability at least λ = ε/2
over the choice of Ai0 , we have

Pr
A−i0 ,B

[f(A,B) ∈ K] ≥ η,
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where η = ε/2. Since Ai0 is uniformly distributed over Fnq ,
we conclude that there is a set S of cardinality at least λqn

such that for any x ∈ S,

Pr
A,B

[f(A,B) ∈ K | Ai0 = x] ≥ η.

Fixing the values of A−i0 , we conclude that for each x ∈ S,
there is a y = y(x) = (y1, . . . ,yΛ) with yi0 = x such
that PrB[f(y,B) ∈ K] ≥ η. Define the degree Λ− 1 curve
Cx(T ) = f(y(x), T ) =

∑Λ
j=1 yjcj(T ). Then Cx passes

through x, since Cx(γi0) =
∑Λ
j=1 yjcj(γi0) = yi0 = x,

and PrB∈Fq [Cx(B) ∈ K] ≥ η by definition of Cx.

Thus S and K satisfy the hypothesis of Theorem 13. We now

conclude that |K| ≥
(

λq

(Λ−1)(λq−1
ηq )+1

)n
>
(
εq
2Λ

)n
. This is

a contradiction, and the proof of the theorem is complete.

The Somewhere-High-Entropy case:: It is possible to ex-
tend the merger analysis given above also to the case of
somewhere-high-entropy sources. In this scenario the source
is comprised of blocks, one of which has min entropy at
least r. One can then prove an analog of Theorem 17 saying
that the output of fDW will be close to having min entropy
(1 − δ) · r under essentially the same conditions on q. The
proof is done by hashing the source using a random linear
function into a smaller dimensional space and then applying
Theorem 17 (in a black box manner). The reason why this
works is that the merger commutes with the linear map (for
details see [DW08]).

6. EXTRACTORS WITH SUB-LINEAR ENTROPY LOSS

In this section we use our improved analysis of the Curve
Merger to show the existence of an explicit extractor with
logarithmic seed and sub linear entropy loss.

We will call a random variable X distributed over {0, 1}n
with min-entropy k an (n, k)-source.

Definition 18 (Extractor): A function E : {0, 1}n ×
{0, 1}d 7→ {0, 1}m is a (k, ε)-extractor if for every (n, k)-
source X, the distribution of E(X,Ud) is ε-close to uniform,
where Ud is a random variable distributed uniformly over
{0, 1}d, and X,Ud are independent. An extractor is called
explicit if it can be computed in polynomial time.

It is common to refer to the quantity k − m in the above
definition as the entropy loss of the extractor. The next
theorem asserts the existence of an explicit extractor with
logarithmic seed and sub-linear entropy loss.

Theorem 19 (Basic extractor with sub-linear entropy loss):
For every c1 ≥ 1, for all positive integers k < n with
k ≥ log2(n), there exists an explicit (k, ε)-extractor
E : {0, 1}n × {0, 1}d 7→ {0, 1}m with d = O(c1 · log(n)),
k −m = O(k·log log(n)

log(n) ), and ε = O( 1
logc1 (n) ).

The extractor of this theorem is constructed by composing
several known explicit constructions of pseudorandom ob-
jects with the merger of Theorem 16. In Section 6.1 we
describe the construction of our basic extractor. The basic
extractor can be strengthen to extract even more randomness
by the ’repeated extraction’ technique of Wigderson and
Zuckerman [WZ99]. This yields an extractor with entropy
loss k − m = O(k/ logc n) as asserted in the following
theorem, whose proof may be found in the full version.

Theorem 20 (Final extractor with sub-linear entropy loss):
For every c1, c2 ≥ 1, for all positive integers
k < n, there exists an explicit (k, ε)-extractor
E : {0, 1}n×{0, 1}d 7→ {0, 1}m with d = O(c1c2 · log(n)),
k −m = O

(
k

logc2 (n)

)
, and ε = O

(
1

logc1 (n)

)
.

6.1. Proof of Theorem 19

Note that we may equivalently view an extractor E :
{0, 1}n × {0, 1}d → {0, 1}m as a randomized algorithm
E : {0, 1}n → {0, 1}m which is allowed to use d uniformly
random bits. We will present the extractor E as such an
algorithm which takes 5 major steps.

Before giving the formal proof we give a high level de-
scription of our extractor. Our first step is to apply the
lossless condenser of [GUV07] to output a string of length
2k with min entropy k (thus reducing our problem to the
case k = Ω(n)). The construction continues along the lines
of [DW08]. In the second step, we partition our source (now
of length n′ = 2k) into Λ = log(n) consecutive blocks
X1, . . . , XΛ ∈ {0, 1}n

′/Λ of equal length. We then consider
the Λ possible divisions of the source into a prefix of j
blocks and suffix of Λ − j blocks for j between 1 and Λ.
By a result of Ta-Shma [TS96b], after passing to a convex
combination, one of these divisions is a (k′, k2) block source
with k′ being at least k−O(k/Λ) and k2 being at least poly-
logarithmic in k. In the third step we use a block source
extractor (from [RSW00]) on each one of the possible Λ
divisions (using the same seed for each division) to obtain a
somewhere random source with block length k′. The fourth
step is to merge this somewhere random source into a single
block of length k′ and entropy k′ · (1 − δ) with δ sub-
constant. In view of our new merger parameters, and the
fact that Λ (the number of blocks) is small enough, we can
get away with choosing δ = log log(n)/ log(n) and keeping
the seed logarithmic and the error poly-logarithmic. To finish
the construction (the fifth step) we need to extract almost all
the entropy from a source of length k′ and entropy k′·(1−δ).
This can be done (using known techniques) with logarithmic
seed and an additional entropy loss of O(δ · k′).

We now formally prove Theorem 19. We begin by reducing
to the case where n = O(k) using the lossless condensers
of [GUV07].

188



Theorem 21 (Lossless condenser [GUV07]): For all inte-
gers positive k < n with k = ω(log(n)), there exists an
explicit function CGUV : {0, 1}n × {0, 1}d′ 7→ {0, 1}n′

with n′ = 2k, d′ = O(log(n)), such that for every (n, k)-
source X, C(X,Ud′) is (1/n)-close to an (n′, k)-source,
where Ud′ is distributed uniformly over {0, 1}d′ , and X,Ud′
are independent.

Step 1: Pick Ud′ uniformly from {0, 1}d′ .
Compute X′ = CGUV(X,Ud′).

By the above theorem, X′ is (1/n)-close to an (n′, k)-source,
where n′ = 2k. Our next goal is to produce a somewhere-
block source. We now define these formally.

Definition 22 (Block Source): Let X = (X1,X2) be a ran-
dom source over {0, 1}n1 × {0, 1}n2 . We say that X is
a (k1, k2)-block source if X1 is an (n1, k1)-source and
for each x1 ∈ {0, 1}n1 the conditional random variable
X2|X1 = x1 is an (n2, k2)-source.

Definition 23 (Somewhere-block source): Let
X = (X1, . . . ,XΛ) be a random variable such that
each Xi is distributed over {0, 1}ni,1 × {0, 1}ni,2 . We say
that X is a simple (k1, k2)-somewhere-block source if
there exists i ∈ [Λ] such that Xi is a (k1, k2)-block source.
We say that X is a somewhere-(k1, k2)-block source if
X is a convex combination of simple somewhere random
sources.

We now state a result of Ta-Shma [TS96b] which converts an
arbitrary source into a somewhere-block source. This is the
first step in the proof of Theorem 1 on Page 44 of [TS96b]
(Theorem 1 shows how convert any arbitrary source to a
somewhere-block source, and then does more by showing
how one could extract from such a source).

Let Λ be an integer and assume for simplicity of notation
that n′ is divisible by Λ. Let

X′ = (X′1, . . . ,X
′
Λ) ∈

(
{0, 1}n

′/Λ
)Λ

denote the partition of X′ into Λ blocks. For every 1 ≤ j < Λ
we denote Yj = (X′1, . . . ,X

′
j) and Zj = (X′j+1, . . . ,X

′
Λ).

Consider the function BΛ
TS : {0, 1}n′ → ({0, 1}n′)Λ, where

BΛ
TS(X ′) = ((Y1,Z1), (Y2,Z2), . . . , (YΛ,ZΛ)).

The next theorem shows that the source ((Yj ,Zj))j∈[Λ] is
close to a somewhere-block source.

Theorem 24 ([TS96b]): Let Λ be an integer. Let k = k1 +
k2 + s. Then the function BΛ

TS : {0, 1}n′ → ({0, 1}n′)Λ is
such that for any (n′, k)-source X′, letting X′′ = BΛ

TS(X′),
we have that X′′ is O(n · 2−s)-close to a somewhere-(k1 −
O(n′/Λ), k2)-block source.

Step 2: Set Λ = log(n).
Compute X ′′ = (X′′1 ,X

′′
2 , . . . ,X

′′
Λ) = BΛ

TS(X′).

Plugging k2 = O(log4(n′)) = O(log4(k)), s = O(log n)
and k1 = k−k2−s in the above theorem, we conclude that
X′′ is n−Ω(1)-close to a somewhere-(k′, k2)-block source,
where k′ = k − O(k/ log(n)), using the fact that k >
log2(n) and so both s and k2 are bounded by O(k/ log(n)).

We next use the block source extractor from [RSW00] to
convert the above somewhere-block source to a somewhere-
random source.

Theorem 25 ([RSW00]): Let n′ = n1 + n2 and let k′, k2

be such that k2 > log4(n1). Then there exists an explicit
function ERSW : {0, 1}n1×{0, 1}n2×{0, 1}d′′ 7→ {0, 1}m′′

with m′′ = k′, d′′ = O(log(n′)), such that for any (k′, k2)-
block source X, ERSW(X,Ud′′) is (n1)−Ω(1)-close to the
uniform distribution over {0, 1}m′′ , where Ud′′ is distributed
uniformly over {0, 1}d′′ , and X,Ud′′ are independent.

Set d′′ = O(log(n′)) as in Theorem 25.

Step 3: Pick Ud′′ uniformly from {0, 1}d′′ .
For each j ∈ [Λ], compute X′′′j = ERSW(X′′j , Ud′′).

By the above theorem, X′′′ is n′−Ω(1)-close to a somewhere-
random source. We are now ready to use the merger M
from Theorem 16. We invoke that theorem with entropy-loss
δ = log log(n)/ log(n) and error ε = 1

logc1 (n) , and hence M
has a seed length of

d′′′ = O(
1
δ

log
Λ
ε

) = O(c1 log(n)).

Step 4: Pick Ud′′′ uniformly from {0, 1}d′′′ .
Compute X′′′′ = M(X′′′,Ud′′′).

By Theorem 16, X′′′′ is O( 1
logc1 (n) )-close to a (k′, (1−δ)k′)-

source. Note that δ = o(1), and thus X′′′′ has nearly
full entropy. We now apply an extractor for sources with
extremely-high entropy rate, given by the following lemma.

Lemma 26: For any k′ and δ > 0, there exists an ex-
plicit (k′(1 − δ), k′−Ω(1))-extractor EHIGH : {0, 1}k′ ×
{0, 1}d′′′′ 7→ {0, 1}(1−3δ)k′ with d′′′′ = O(log(k′)).

The proof of this lemma follows easily from Theorem 25.
Roughly speaking, the input is partitioned into blocks of
length k′ − δk − log4 k′ and δk′ + log4 k′. It follows that
this partition is close to a (k′(1 − 2δ) − log4 k′, log4 k′)-
block source. This block source is then passed through the
block-source extractor of Theorem 25.

Step 5: Pick Ud′′′′ uniformly from {0, 1}d′′′′ .
Compute X′′′′′ = EHIGH(X′′′′,Ud′′′′).
Output X′′′′′.

This completes the description of the extractor E. It remains
to note that d, the total number of random bits used, is at
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most d′+ d′′+ d′′′+ d′′′′ = O(c1 log n), and that the output
X′′′′′ is O( 1

logc1 n )-close to uniformly distributed over

{0, 1}(1−3δ)k′ = {0, 1}k−O(k· log logn
logn ).

This completes the proof of Theorem 19.

We summarize the transformations in the following table:

(n, k)-source
CGUV ↓ O(log(n)) seed

(2k, k)-source
BΛ

TS ↓ O(log(n)) seed

somewhere-(k′def
= k − o(k), log4(k))-block

ERSW ↓ O(log(k)) seed

(k′, O(log(n)))-somewhere-random
Our Merger ↓ O(log(n)) seed

(k′, k′ − o(k))-source
EHIGH ↓ O(log(k)) seed

Uk′−o(k)
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