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Estimating Kinetic Parameter Maps From Dynamic
Contrast-Enhanced MRI Using Spatial

Prior Knowledge
Bernd Michael Kelm*, Member, IEEE, Bjoern H. Menze, Oliver Nix, Christian M. Zechmann, and

Fred A. Hamprecht

Abstract—Dynamic contrast-enhanced magnetic resonance
(DCE-MR) imaging can be used to study microvascular structure
in vivo by monitoring the abundance of an injected diffusible
contrast agent over time. The resulting spatially resolved in-
tensity-time curves are usually interpreted in terms of kinetic
parameters obtained by fitting a pharmacokinetic model to the
observed data. Least squares estimates of the highly nonlinear
model parameters, however, can exhibit high variance and can
be severely biased. As a remedy, we bring to bear spatial prior
knowledge by means of a generalized Gaussian Markov random
field (GGMRF). By using information from neighboring voxels
and computing the maximum a posteriori solution for entire
parameter maps at once, both bias and variance of the parameter
estimates can be reduced thus leading to smaller root mean square
error (RMSE). Since the number of variables gets very big for
common image resolutions, sparse solvers have to be employed.
To this end, we propose a generalized iterated conditional modes
(ICM) algorithm operating on blocks instead of sites which is
shown to converge considerably faster than the conventional ICM
algorithm. Results on simulated DCE-MR images show a clear
reduction of RMSE and variance as well as, in some cases, reduced
estimation bias. The mean residual bias (MRB) is reduced on the
simulated data as well as for all 37 patients of a prostate DCE-MRI
dataset. Using the proposed algorithm, average computation times
only increase by a factor of 1.18 (871 ms per voxel) for a Gaussian
prior and 1.51 (1.12 s per voxel) for an edge-preserving prior
compared to the single voxel approach (740 ms per voxel).

Index Terms—Block iterated conditional modes, dynamic con-
trast-enhanced imaging, kinetic parameter maps, Markov random
field, nonlinear least squares.

I. INTRODUCTION

D YNAMIC contrast-enhanced MR imaging is used to track
the diffusion of a paramagnetic contrast medium such as

gadopentate dimeglumine (Gd-DTPA) and to study tissue per-
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fusion and vascular permeability in vivo [1]–[3]. By recording
a sequence of T1-weighted MR images at intervals of a few
seconds the uptake and washout of the administered contrast
medium (CM) can be observed in the imaged tissue, leading
to characteristic intensity-time curves. Since perfusion and per-
meability are usually changed in tumors, dynamic contrast-en-
hanced MR imaging (DCE-MRI) can be a valuable tool for clin-
ical diagnostics [1], [4]–[8].

A variety of postprocessing strategies for DCE-MRI have
been proposed, ranging from simple descriptive statistics [9]
over unsupervised and supervised learning approaches [10],
[11] to methods using physiologic and pharmacokinetic models
which describe the expected signal enhancement dynamics
[12]–[17]. The latter require the estimation of model param-
eters which is usually done using a nonlinear least squares
(NLS) approach. Because of signal noise and the small number
of sampling points, these parameter estimates may exhibit large
variance as well as considerable bias [18]–[21]. Furthermore,
since the NLS objective is not convex and can have multiple
local optima, an iterative NLS solver may converge to erro-
neous solutions or fail to converge altogether [18]–[21].

In [21], Ahearn et al. show by means of a systematic
Monte-Carlo study using an instance of the generalized kinetic
model (GKM) [14] that certain areas in parameter space tend to
generate poor fits and propose to use a multiple-starting-points
strategy. Schmid et al. [20] propose to use Bayesian prior
knowledge and obtain parameter estimates by means of sam-
pling methods. They show that Bayesian prior knowledge
can help reduce problems due to local optima and reduce the
variance of the parameter estimates. Improvements are also
achieved by appropriate parameter constraints, which can be
regarded as Bayesian priors [18] and help to exclude areas of
the parameter space that might contain local optima. Orton et al.
[18] also observe severe estimation bias which they attribute to
the existence of multiple local and biased global optima in the
common approach. As a remedy, they propose to marginalize
the onset time (lag time ) which they identify as a critical
parameter in their model.

In all approaches mentioned so far, intensity-time curves have
been processed voxel by voxel. Thus, arbitrarily exchanging
voxels would not change the evaluation results. Only recently,
the application of spatial prior knowledge in DCE-MRI has
been proposed [19], [22]. In addition to a pharmacokinetic
model it is assumed that the characteristics of the tissue within
homogeneous regions only vary gradually from voxel-to-voxel
and, hence, that the parameter maps that best describe the
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physiologic properties of the tissue should exhibit some spatial
smoothness.

In the present paper the approach from [22] is refined and
studied in more detail. Kinetic parameter maps are modeled as a
generalized Gaussian random field (GGMRF) and the recorded
DCE-MRI data are regarded as noisy observations of a nonlinear
transformation of the hidden parameter maps. Hence, the pa-
rameter estimates at each voxel are supported by the DCE-MR
data of a local neighborhood which reduces estimation error and
which helps to alleviate problems due to local optima of the NLS
objective. Furthermore, we present a block variant of the iterated
conditional modes algorithm (Block-ICM) that can be used to
tackle the huge but sparse optimization problem and which con-
verges considerably faster than the conventional ICM algorithm.

Our approach is different from previous approaches such as
[18], [20], [21] which perform estimation of pharmacokinetic
parameters for each voxel individually. Such single-voxel ap-
proaches can only employ single-voxel prior knowledge, i.e.,
prior knowledge that concerns parameters at a single voxel only.
To the best of our knowledge, apart from our previous work [22],
only Schmid et al. [19] have examined using spatial prior knowl-
edge for the processing of DCE-MRI before. However, Schmid
et al. have chosen a fully Bayesian approach which requires
the specification of prior distributions for all unknown param-
eters as well as additional hyper-parameters. Also, [19] relies
on Markov chain Monte Carlo (MCMC) simulations for param-
eter estimation. As compared to that, our approach makes fewer
assumptions on the underlying distributions and, like the con-
ventional NLS approach, uses an iterative optimization method.
In the present work, we also provide a detailed bias-variance
analysis which was missing in both, [22] and [19].

The paper is organized as follows. In Section II we briefly
describe the employed pharmacokinetic model. Section III re-
views the conventional approach to parameter estimation and
associated problems and introduces the GGMRF prior followed
by a description of the Block-ICM algorithm. Data simulation
and acquisition parameters as well as algorithmic hyperparam-
eters for the conducted experimental evaluation are described
in Section IV. We then present results for simulated DCE-MRI
data as well as patient DCE-MRI data from a prostate study in
Section V. After a general discussion in Section VI we conclude
with a summary in Section VII.

II. DYNAMIC ENHANCEMENT MODEL

Various dynamic enhancement (DE) models that attempt to
capture the pharmacokinetic behavior of the imaged tissue in
DCE-MRI have been proposed, e.g., [12], [13], [15], [16]. The
Generalized Kinetic Model (GKM) described by Tofts et al. [14]
is a standard two-compartment model that unifies many of the
previously defined pharmacokinetic models. By using a partic-
ular arterial input function (AIF), e.g., biexponential [17], [23],
sum of Gaussians [24] or model-free [12], various model func-
tions for the intensity-time curves can be derived from the GKM.

One major objective in pharmacokinetic modeling is the
absolute quantification of physiological parameters in order to
make results comparable across patients and institutions. With
recent models such as [12], [13], and [24] this goal is achieved
increasingly well, however, at the cost of increased complexity.

More complex models are also more demanding and require,
for example, higher temporal resolution (e.g., [12], [24]) or the
estimation of more parameters (e.g., [13]). Furthermore, the
accuracy of any model is ultimately limited by the complexity
and variation of the underlying pathophysiology [1], [14]. For
clinical purposes, the choice of the “right” model is still a topic
of debate. Simple descriptive statistics, for example, have been
found to yield competitive performance in the characterization
of prostate cancer [5], [9]. The present work does not attempt
to address the question of which model best describes the
physiological processes. Instead we propose an approach that
helps reduce problems with parameter estimation using any
such DE model by exploiting spatial information.

For the present work the two-compartment model by Brix et
al. [16] has been used, an instance of the GKM [14]. Unlike the
improved model presented in [12], this model allows for a lower
temporal resolution and hence it allows to acquire
DCE-MRI at a higher spatial resolution. This is particularly im-
portant for prostate screening where the whole organ is to be
mapped [1], [4], [5]. Note that, although the proposed approach
could be applied to any other parametric DE model as well, its
benefits would have to be assessed anew. For convenience, we
briefly review the model derived in [16] using the standardized
notation of [14]. According to the GKM, the Gd-DTPA con-
centration in the tissue responds as a first-order dynamic
system to concentration changes in the arterial blood plasma

(the arterial input function). Hence

(1)

where is the volume transfer constant between plasma
and extravascular extracellular space (EES),
is the rate constant between EES and plasma and the fractional
EES volume is defined as the ratio between total
EES volume and tissue volume [3], [14].

For the model by Brix et al. [16] a particular AIF is
used. It is assumed that the CM is administered at a constant
rate over a time-span and is eliminated from the plasma
compartment with first-order dynamics (elimination rate ):

(2)

where is the volume of the plasma compartment and
the Heaviside step function. Using the AIF in (2), an explicit
expression for the tissue Gd-DTPA concentration can be derived
(cf. Appendix). In particular,

(3)

with

(4)

where for and for . Furthermore,
an affine relationship between tissue Gd-DTPA concentration

and enhanced signal can be assumed under suitable
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Fig. 1. Three examples for the employed pharmacokinetic model from [16]
fitted to measured T1 intensity-time curves from a prostate data set. After a few
baseline scans the contrast medium is administered and starts to accumulate
in the tissue. The accumulation rate, the amplitude, and the washout behavior
characterize the microvascular structure of the imaged tissue.

MR sequence parameters [16]. Thus the model for the T1-inten-
sity-time curves is

(5)

where is the signal intensity obtained without CM and is
the the lag time of the CM (also arrival or onset time). The con-
stant depends on several tissue properties and sequence pa-
rameters [16]. Since the factors and from (3)
cannot be distinguished based on the measured intensity-time
curves only, these are summarized in the enhancement ampli-
tude

(6)

In summary, five parameters of the described enhancement
model have to be estimated given an observed intensity-time
curve. For convenience these are summarized in the parameter
vector in the following. The duration

of the CM injection is known and fixed to 30 s. Both and
describe intensity values without unit. If not indicated oth-

erwise, the unit for time is one frame which
means that the values for and have to be multiplied by
whereas the exchange rates and have to be divided by

in order to obtain entities with units. Some examples of the
model function fitted to patient data are shown in Fig. 1.

III. PARAMETER ESTIMATION

A. Nonlinear Least Squares

Given the observed signal intensities for a cer-
tain voxel at discrete time points the standard nonlinear
regression model is

(7)

where are independent, identically distributed normal random
variables with mean 0 and variance . The vector summa-
rizes the unknown parameters with true value .

Then, the -vector describes a -dimen-
sional surface in the sample space which is called

the solution locus [25]. Its tangent space is spanned by the
columns of the Jacobian matrix with elements

. Under this geometrical interpretation, the
maximum likelihood estimate parametrizes the point on the
solution locus closest to the observation . It is obtained
as solution to a nonlinear least squares (NLS) problem, i.e., by
minimizing the sum of squares of residuals

(8)

For large the maximum likelihood estimate is consistent
(unbiased), efficient (minimum variance) and it is normally dis-
tributed with covariance [26]. The usual es-
timator of is

(9)

B. Problems in NLS Fitting of DE Models

It is known that the maximum likelihood estimator can yield
biased parameter estimates for small [27], [28]. An approxi-
mate expression for the parameter bias, the expected difference
between estimated and true parameter, can be derived as

(10)

with the -vector
where the are Hessian matrices with elements

[27], [28]. The bias not only vanishes
for large and for linear models for which , but also
if is orthogonal to the tangent space . In a more detailed
analysis, Bates and Watts [25], distinguish the orthogonal in-
trinsic curvature and the tangential parameter-effects curvature
of the solution locus [26, Ch.4]. They show that the parameter
bias only depends on the parameter-effects curvature which
can, in principle, be annihilated by a suitable reparametrization

of the model function. Unfortunately, finding such a
reparametrization is usually difficult [25], [29], [30].

In nonlinear least squares also the residuals can be biased in
the sense that the expectation of the residuals is nonzero [27],
in particular

(11)

Unlike the parameter bias, the residual bias only depends on
the intrinsic curvature and can therefore not be reduced by
reparametrization [26].

Apart from the parameter bias, determining the minimizer
of the possibly non-convex objective function can also
be difficult [18], [21]. Since for the employed pharmacokinetic
model, in fact exhibits multiple local optima and long,
narrow and curved valleys, an iterative optimization routine may
stop before reaching the real minimum. The existence of such
valleys is an indication that for some configurations at least two
of the parameters have a similar effect on the objective function
(ill-conditioning). More details on these general problems can
be found in [26, Ch. 3].

In order to give some insight into the non-convexity
of the NLS objective function for the DE model used
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Fig. 2. Left: projected NLS objective ���� � � � ��� ������ for an example from the prostate data set. When initialized with ��� �
�� ��� � � � � � � �������		� �	�� ��� � 
 ��� � � ���� the iterative optimization routine converges to the point marked with a square
(“Change in the residual smaller than the specified tolerance”, TolFun) and when initialized with ��� � �
����		��	�� ��� � � ��� � � ���� it
converges to the point marked with a circle (“Change in X smaller than the specified tolerance”, TolX). The cross marks the point of the true minimum
���� � �
	����	�
��	���� ��� � �	��� ��� ��	��
 ����. Right: original data along with the three model fits that correspond to the points marked in
the left figure.

Fig. 3. Left: projected NLS objective ��� � � � � ��� ������ s.t. � 
 � and � 
 � for another example from the prostate data set. Right: the
corresponding data fits reveal that the two optima (cross and star) yield the same model curve which reflects that the employed model is not identifiable.

in the present work, Fig. 2 shows a contour plot of
which visualizes the smallest

attainable objective function for a certain amplitude and lag
time .

Depending on the initialization, the iterative optimizer con-
verges to different points on the energy landscape, both different
from the actual optimum which is only reached using a very
close initial guess. Certainly, prior knowledge tells that negative
lag times are impossible which should be considered by using
the parametric constraint .

Different kinds of problems are demonstrated with the
projection in Fig. 3. In this
example two local optima exist for and which are
connected through a steep curved valley (ill-conditioning). The
model functions in this valley all look very alike. For example,
the model functions in the right part of Fig. 3 that correspond to
the points marked with circle and star in the left part are hardly
different which makes parameter estimation difficult. Even
worse, the two optima marked by a cross and a star seem to

yield identical curves. In fact, an analysis of (3) [or (25)] shows
that the two parameters and can always be exchanged,
yielding an identifiability problem. The latter can be avoided
by assuming that the elimination rate is always smaller than
the exchange rate , however, the ill-conditioning problem
remains.

In summary, the encountered statistical problems are as
follows.

• Estimation variance: ill-conditioning and identifiability.
• Estimation bias: high parameter-effects curvature along

with small sample sizes.
• Existence of nonglobal optima.
All these problems depend on the model as well as on the

sampling points . Choosing both optimally is the aim of ex-
perimental design [26]. But even if a model was derived in the
optimal way, some problems may persist.

Although we have demonstrated problems only for the par-
ticular DE model proposed in [16], they are not unusual for
this class of models. Using the model by Tofts et al. [15], for
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example, Orton et al. [18] encounter similar problems in their
work and present an example with two local optima. Further
evidence is provided by Ahearn et al. [21] as well as Schmid
et al. [19]. Finally, more complex (multicompartment) models
with higher-order dynamics cannot be expected to lead to more
well-behaved objective functions since models with exponen-
tially decaying signal components are know to be problematic
(cf. [26, Ch. 8]). Simply increasing temporal resolution does
not always help, either. An identifiability problem, for example,
could not be resolved by increasing the number of sampling
points (cf. example in Fig. 3).

A complementary approach is needed. As seen above, prior
knowledge is very valuable and should be used to avoid prob-
lematic regions of the parameter space. In addition to this single-
voxel prior knowledge, which can be applied for every voxel in-
dependently, we propose to incorporate spatial prior knowledge
by using a spatial smoothness prior in a form of a generalized
Gaussian Markov random field (GGMRF) [31]. Then, the model
fit in each voxel is additionally supported by data from its local
neighborhood.

C. GGMRF: A Generalized Gaussian Markov Random Field
Prior

The generalized Gaussian Markov random field [31] is a
Markov random field [32], [33] with particular compatibility
functions (the logarithms of which are known as potentials).
Every voxel in the region of interest is represented by a site

which is associated with the vector-valued random
variable . Like in the single-voxel case, the observation
likelihood is Gaussian. Imposing the spatial GGMRF prior on
the parameter maps yields a joint distribution over and in
the form of the Gibbs distribution

(12)

where and are vector variables obtained by stacking the site
vector variables and . is the global normalizer (partition
function) and denotes pairs of neighboring sites according
to the employed neighborhood system. The compatibility func-
tions and are defined by the potentials

(13)

(14)

with the spatial coupling factor and the -norm
[31]. Note that is excluded since the L1-norm

is not differentiable at the origin. is a diagonal weighting
matrix which accounts for the different scales and variability
of the parameters in and which can be used to adjust the
smoothness of individual parameter maps.

The application of a GGMRF allows to vary continuously
between a smoothing Gaussian MRF prior and an
edge-preserving MRF with properties comparable to a
weighted median filter [31]. Furthermore, the GGMRF potential
defined by (14) is convex and, as opposed to robust alternatives
such as the Huber potential [34], [35], it does not have an extra

threshold parameter. Connections between robust statistics and
edge-preservation of different priors have been explored in [36].

D. Block Iterated Conditional Modes

Given an observed DCE-MRI sequence , the max-
imum a posteriori (MAP) estimate is then found by mini-
mizing

(15)

When comparing this objective function to (8) it becomes evi-
dent that a trade-off between the data term (first sum) and the
prior term (second sum) is sought this way.

Minimizing (15) is a challenging optimization problem since,
for example, a DCE-MR image of 100 100 voxels would al-
ready yield a parameter vector with entries and thus
an optimization problem in a 50 000-dimensional space. How-
ever, the problem is sparse in the sense that most of the are
not directly coupled. The MRF framework provides special al-
gorithms that can exploit this sparsity such as the ICM (iterated
conditional modes) algorithm [32].

Here, we use a generalized ICM algorithm which will be
shown to converge faster than the standard ICM approach. As
the algorithm considers collections of sites instead of single
sites at each step, we call this approach Block-ICM. Given
an arbitrary subset of sites , it follows from the Ham-
mersley–Clifford theorem [33] that the posterior distribution

can be factored as

(16)

where is the border
of . Increasing the first factor with respect to

certainly cannot decrease since the second factor
does not depend on any of the variables in .

Hence, the MAP problem (15) can be solved iteratively by
solving a series of smaller MAP problems over subsets of sites

(17)

The Block-ICM algorithm can also be viewed as an itera-
tive coordinate descent approach in which the potentially inter-
secting subsets redefine generalized coordinates for

every descent step. Also, it suffices to find a realization
which decreases the objective (17) instead of finding the exact
minimum in every descent step. The proposed procedure still
converges to a local minimum.

Shape, size, and update sequence of the subsets are design
parameters of the Block-ICM algorithm and should be chosen so
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as to trade off the problem size in each step against the number
of sweeps required for convergence. If, for example, each of the
subsets contains only one site , the standard ICM algo-
rithm is recovered [32] which is known to often converge rather
slowly. If, on the other hand, only one (sub)set is chosen,
the entire MAP problem (15) is obtained. Hence, small subsets
of sites should be chosen depending on the size of the local
neighborhood and the strength of the mutual influence. Because
of the locality of this influence, the size of the subsets does not
have to be increased with growing lattices, yielding an algo-
rithm which is linear in the number of sites. The Block-ICM
approach is very similar to domain decomposition methods [37]
which are often used in combination with multigrid methods for
solving partial differential equations or associated variational
problems [38].

IV. EXPERIMENTAL SETUP

A. Data Sets

1) Patient Data: Patient data from an ongoing prostate study
have been collected at the German Cancer Research Center
(Heidelberg, Germany). The data were acquired on a clinical
1.5 T scanner (Magnetom Symphony; Siemens Healthcare,
Erlangen, Germany) with a disposable endorectal coil (MRIn-
nervu; Medrad Inc., Indianola, PA).

For the DCE-MR data, 10 transverse slices have been defined
(FOV 200 mm 125 mm, slice thickness 3 mm, 1 mm gap)
from which 25 dynamic image data sets were measured with a
temporal resolution of using an optimized 2-D
FLASH sequence ( , flip angle 90 ,
matrix size 128 60, sample percentage 75%). Subsequent in-
terpolation finally yielded image slices with 256 160 voxels.
After 33.75 s a total dose of 0.1 mmol Gadolinium-DTPA per
kg body weight was administered intravenously by constant rate
infusion within . From the 37 patients which have
been available for the present study, regions of about 100
100 voxels have been selected in slices that contained suspi-
cious tissue as determined from T1-MRI and MR spectroscopic
imaging.

2) Simulation Studies: A Monte-Carlo study has been con-
ducted using two sets of simulated DCE-MR images allowing
for a detailed analysis of estimation errors and the influence of
hyper parameters.

In analogy to the “wedding cake” example used in
[36], ground truth maps with 60 60 voxels based
on three sets of parameters have been created for the
first set of simulations (cf. Fig. 5). For the innermost
square , for the middle
part and for the border

has been used. Sequences of
DCE-MR images at intervals of have

been generated based on the model function in (5). rep-
etitions of the data have been stored after adding independent
Gaussian noise with mean zero and standard deviation
which reflects an upper noise level encountered in the patient
data.

In order to obtain a more realistic spatial distribution, a
second set of data has been simulated based on a detail from a
real prostate DCE-MR image with particularly low noise (“real

Fig. 4. Scheme of blocks and update schedule used for the Block-ICM algo-
rithm. In every odd sweep, square blocks (6 � 6 sites in the figure) are visited
following the pattern indicated by the numbering. The even sweeps are per-
formed in the same way but shifted by half a block (dashed squares).

detail,” cf. Fig. 7). The single voxel fit to the original data
has been used as “ground truth” and repetitions of
simulated data have been generated by adding Gaussian noise
with standard deviation .

B. Optimization Details

Parameter estimates have been calculated with the single
voxel as well as two versions of the GGMRF approach, the
GGMRF-L2 with an L2-norm and the GGMRF-L1
with . All calculations have been performed on a
dual core 2.4 GHz Intel PC with 2 GB of main memory. The
algorithms have been implemented with Matlab R2006b using
interior trust region methods from the Matlab optimization
toolbox [39].

In all approaches, box constraints have been enforced:
, , , and . The same ini-

tialization scheme has been used for all experiments and voxels.
The mean of the first three DCE-MR images has been used as the
starting value for the unenhanced T1-intensity . The other pa-
rameters have been initialized with , ,

, and , respectively.
For the single voxel approach the Matlab function “lsqnonlin”

with analytically derived Jacobian has been used. A maximum
number of 500 iterations per voxel was allowed for (“MaxIter”)
and the termination tolerances on the function value (“TolFun”)
as well as on the parameters (“TolX”) were set to . Usually,
the optimizer converged within less than 100 iterations.

The GGMRF approaches have been used based on a 2-D reg-
ular lattice with first-order neighborhood system (four nearest
neighbors) [40]. For the Block-ICM algorithm, the whole lat-
tice was subdivided into two sets of square blocks such that the
second set had a horizontal and vertical displacement of three
voxels (the dashed squares in Fig. 4). In every odd sweep, the
blocks in the first set were visited in a doubly-quincunx pattern
as indicated by the numbering in Fig. 4. In every even sweep,
the same procedure was performed on the second, shifted set
of blocks. A total of 14 sweeps were performed. Each block
was optimized using the “lsqnonlin” function with Jacobian for
the GGMRF-L2 and the “fmincon” function with supplied gra-
dient for the GGMRF-L1 prior. Since the subproblems in the
Block-ICM approach still exhibit some sparsity, the sparse arith-
metic capabilities of Matlab and the optimization toolbox have
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Fig. 5. Comparison of � ���� � estimates on the simulated “wedding cake” data. In some parts, the single voxel approach produces very noisy and speckled
parameter maps. Using a GGMRF prior with L2 (� � �, � � �) or L1 norm (� � ��	�, � � �) improves the results considerably.

been exploited in addition. To prevent premature convergence
to a local minimum, the maximum number of allowed optimiza-
tion iteration has been confined in the first few sweeps. In par-
ticular, the schedule (5, 5, 10, 10, 30, 30, 100, 100, 100, 100,
500, 500, 500, 500) has been used. The termination tolerances
were again set to .

C. Hyperparameters

The GGMRF model defines three hyperparameters. The stan-
dard deviation of the signal noise, the parameter weighting
matrix and the spatial coupling factor . All these parame-
ters have been determined once for the prostate and the simu-
lated data respectively and have subsequently been used for all
examples.

Equation (15) reveals that the signal noise and the spatial
coupling factor could in fact be summarized in a common
factor which again could be absorbed into . Nevertheless, it
is convenient to distinguish the three hyperparameters since all
of them have a different meaning.

For the prostate data, has been determined from the single
voxel solution of a representative example using (9). For the
simulated data, the true standard deviation of the simulated
Gaussian noise has been used.

The diagonal of the parameter weighting matrix has been
determined based on the normalizing assumption that equal
weight is given to each parameter, i.e.,

(18)

where the expectation is taken with respect to the posterior pa-
rameter distribution. Assuming that this expectation is the same
for all pairs and and can be replaced by a spatial average
(stationarity and ergodicity, [41]), can be estimated from the
posterior parameter map obtained with the single voxel ap-
proach.

In particular, we analyzed robust mean values of the squared
parameter differences from a single voxel solution.
Based on this analysis, we have chosen , ,

, , and for the prostate data as
well as for the simulated data.

The influence of the spatial coupling factor has been ex-
amined on the simulated data. Based on these results and some
preliminary experiments with patient data, a suitable value for
has been chosen for the prostate data set. The respective values
of employed for each of the experiments are specified in the
following.

V. RESULTS

A. Simulation Studies

The exchange rate is an important parameter for the iden-
tification of tumor tissue and has therefore been preferred for the
evaluation. In Fig. 5, three estimates for an example of the simu-
lated “wedding cake” data along with the ground truth -map
are shown. The single voxel estimate exhibits many voxels for
which a poor solution was found. The -map appears rather
noisy and speckled, in particular in the middle ring. The corre-
sponding estimates using a GGMRF-L2 prior with and
a GGMRF-L1 prior with show visible improvements.
Slight tendencies for edge blurring, i.e., oversmoothing, can be
observed when using the GGMRF-L2 prior. The GGMRF-L1
solution yields the best reconstruction of the ground
truth.

The influence of the spatial coupling factor on the abso-
lute bias, the standard deviation and the root mean square error
(RMSE) is depicted in Fig. 6. These have been calculated, in
steps of , from the middle part of the estimated

-maps according to

(19)

(20)

(21)

The expectations are taken with respect to the empirical distri-
bution such that where is the number
of examples used for the estimate. Note that bias and standard
deviation provide a decomposition of the RMSE in the sense
that . In addition, the mean residual
bias has been estimated as

(22)

with as defined in (8). Fig. 6 shows , i.e.,
the mean residual bias of the GGMRF approaches relative to the
SV approach.

In Fig. 6, the standard deviation improves more and more with
increasing for both GGMRF priors. The bias initially reduces
but then, beyond a certain value of , reascends again. For the
GGMRF-L2 this critical value is about while for the
GGMRF-L1 it is about . Limit values for are
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Fig. 6. Root mean square error (RMSE), absolute bias and standard deviation of the � estimates for the “wedding cake” data (Fig. 5) and absolute MRB using
GGMRF-L2 (left) and GGMRF-L1 (right). As compared to the single voxel approach (coupling factor � � �) both spatial priors can reduce bias as well as
standard deviation of the fit to the data. While the standard deviation keeps decreasing with increasing �, the bias reascends after an initial reduction, reflecting
oversmoothing at the sharp edges. The MRB behaves very similar to the bias and is minimum for about the same value of �. In the limit ��� the bias, stdev,
and RMSE are 154.32%, 1.85%, and 154.33%, respectively. Thus, the RMSE reascends to a value similar to the single voxel solution but trading standard deviation
against bias.

Fig. 7. Comparison of � ���� � estimates on the simulated “real detail” data. Again, the single voxel approach produces noticeable speckles. Although, using
a GGMRF prior with L2 or L1 norm clearly underestimates the � values in the dark elongated enhancement area, it reveals the original structure of the �
ground truth map which is obscured in the single voxel solution.

obtained from the optimum constant parameter maps and are a
bias of 154.32%, a standard deviation of 1.85% and a RMSE of
154.33%.

Fig. 7 shows the ground truth -map and three estimates
for an example of the simulated “real detail” data. In the single
voxel estimate the original spatial structure is hard to recognize
while it is clearly revealed in the GGMRF solutions. However,
the values in the elongated enhancement area are all under-
estimated using the spatial priors. The bias-variance decompo-
sition presented in Fig. 8 also shows the increased bias for the
GGMRF approaches while low and homogeneous standard de-
viations are observed in all areas of the estimated -maps. For
the single voxel estimates, huge bias as well as standard devi-
ation is obtained in the elongated enhancement area (first row
Fig. 8). The histograms of estimates from a voxel within this
area in Fig. 9 reveal that this is caused by severe outliers. Unlike
the GGMRF estimates which are symmetrically Gaussian-like
distributed, the single voxel estimates are heavily skewed. Ig-
noring outliers, the single voxel estimates are less biased than
the GGMRF estimates but still tend to underestimate the ground
truth value of .

B. Patient Data

In Fig. 10, -maps from several patients are shown.
They allow for a qualitative comparison of the voxel-wise
(left column) and the GGMRF approaches (middle and right
column). The depicted range of values for was set to the

Fig. 8. Absolute bias, standard deviation (stdev) and root mean square error
(RMSE) of � estimates obtained from � � ��� repetitions of the simulated
“real detail” data. While both spatial priors cause considerable bias in the elon-
gated enhancement area, the single voxel approach exhibits bias and standard
deviation that exceed the displayed range by far. For one of these voxels, Fig. 9
shows a histogram of the � estimates allowing for a more detailed analysis.

interval between (white) and 29.3 (black)
for all images. Furthermore, the outline of the prostate gland
is indicated by the red contour. For all patients the noise is
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Fig. 9. Histograms of � -estimates for a voxel from the elongated enhance-
ment area of the simulated “real detail” data (cf. Fig. 8) with ground truth value
� � ���� ��� (vertical line). From the single voxel histogram 22 outliers
with � � �� ��� have been excluded. Ignoring outliers, the single voxel
estimates are less biased than the GGMRF estimates albeit a tendency for sys-
tematic underestimation is observed.

Fig. 10. Comparison of � -maps estimated with the single voxel, the
GGMRF-L1 	� � 
� and the GGMRF-L2 	� � �� approaches. The pa-
rameter estimates obtained with the single voxel approach appear, like in the
simulation study, very noisy and speckled. Both GGMRF approaches (L1 and
L2) can reduce estimation noise and allow for an easier interpretation of the
� -map. Structures that are present in the single voxel solution are preserved
without blurring by both of the GGMRF priors.

visibly reduced in the bright areas (low ) when using a
spatial prior. Although no radical changes in the -maps are
observed, using a spatial prior gives a much clearer picture.
In the upper left corner of patient P30, for example, the SV
solution shows an area which could easily be mistaken for an
area of increased values, an indication for tumor. Using a
spatial prior resolves this issue. Several similar but less extreme
examples can be found in the other patients in Fig. 10.

TABLE I
MRB AND COMPUTATION TIMES FOR SINGLE-VOXEL

AND GGMRF ESTIMATES BASED ON 37 PATIENTS

Average mean residual biases (MRB) for the the SV and
GGMRF approaches as well as standard deviations are listed in
Table I. Only voxels within the prostate gland have been consid-
ered. For each of the 37 patients, the GGMRF approaches yielded
a significantly smaller (absolute) MRB than the SV approach.

Also, computation times have been recorded for the SV ap-
proach as well as the GGMRF approaches . The
SV approach took about 740 ms per voxel on average; total com-
putation times varied between 0.61 h and 2.81 h (1.79 h 0.49 h
on average). The GGMRF approach with L2 prior took about
871 ms per voxel which is only a factor of about 1.18 slower than
the SV approach. In total, computations took between 0.76 h
and 3.41 h (2.08h 0.57 h). Notably, the GGMRF-L2 approach
ran faster than the SV approach in 5 cases. The factor
ranged between 0.65 (P7) and 1.44 (P19) which means that com-
putations took at most 1.44 times longer than with the SV ap-
proach. Using the GGMRF-L1 prior, an average computation
time of about 1.12 s per voxel was obtained, a factor of about
1.51. Total computation times ranged from 0.82 to 5.13 h (2.76 h

1.07 h). In several cases computations took more than twice
(up to 2.62 times) as long as with the SV approach. An expla-
nation for this behavior is deferred to the later discussion.

A more detailed analysis of the resulting model fits was per-
formed based on patient P1. Fig. 11 shows all but the pa-
rameter map of this patient for the three compared approaches.
The maps have been omitted since no differences between
the three versions could be observed. The -maps for patient
P1 show the same improvements as those of the other patients
shown in Fig. 10. Also, the SV parameter maps for , , and
exhibit a lot of noise which is removed using the spatial priors.
Apart from that, an interaction between the parameter maps is
visible in the SV solution, meaning that speckles or groups of
speckles are visible in multiple maps, for example in the and

maps.
Fig. 12 shows the intensity-time curves from the four adja-

cent voxels marked with a square in Fig. 11 together with the
parameter estimates and the corresponding model curves. Four
voxels have been chosen that are located at an edge of the
and parameter maps and thus show curve fits in different
regions of the parameter space. The results obtained with the
GGMRF approaches are virtually identical in terms of the fitted
curve as well as in the estimated parameters. The SV solutions
look reasonable and only appear suboptimal when contrasted
with the GGMRF solutions which seem to have less correlated
residuals. This is particularly true for the upper left voxel where
the parameter estimates for the amplitude and the exchange
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Fig. 11. Comparison of parameter maps from patient P1 obtained with the single voxel approach (last row) and using a GGMRF-L2/L1 prior (first/second row).
Like for the simulations, results improve visibly when using the GGMRF priors.

Fig. 12. Model fits using the single voxel, the GGMRF-L1 and the GGMRF-L2 approaches for the voxels within the red square in Fig. 11. The GGMRF approaches
yield indistinguishable curves in all voxels. Reasonable but different results are obtained using the single voxel approach. Except for the lower left voxel, the
parameter estimates for � , � and also � differ significantly between the single voxel and the GGMRF solutions. In the upper left voxel, both amplitude � and
exchange rate � even differ by a factor of two. The upper right voxel demonstrates that clearly different parametrizations may yield very similar curves (very
much like for the examples shown in Figs. 2 and 3).

rate differ by a factor of about two between the SV and the
GGMRF solutions. Also the estimates for the lag time are
clearly different. In the lower right voxel, the SV curve is hardly
different from the GGMRF curves and also the parameter esti-
mates are quite similar for all three solutions. Thus, the four
adjacent voxels lying in different areas of the parameters space
are not equally difficult to fit.

Finally, Fig. 13 provides convergence results that show
the influence of using different block sizes in the proposed
Block-ICM algorithm. The special case of 1 1 blocks results
in the conventional single-site ICM algorithm which clearly
converges much slower than Block-ICM using bigger blocks.
Hardly any difference in convergence speed is observed be-
tween the block sizes of 4 4, 6 6, and 9 9.
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Fig. 13. Convergence behavior of ICM (1 � 1) and Block-ICM for different
choices of block sizes. Block-ICM clearly outperforms the common ICM algo-
rithm (1 � 1). Very similar performance is obtained for the block sizes 4 � 4,
6 � 6, and 9 � 9.

VI. DISCUSSION

A. Variance, Bias and Multiple Optima

Three problems in the estimation of DE model parameters
have been pointed out in Section III-B: high estimation variance,
bias, and the problem of multiple optima. Using a spatial prior
has a different effect on each of these problems.

1) Variance: The results depicted in Fig. 6 show that the
standard deviation of the estimates continuously reduces
with increasing spatial coupling. This reduction is reflected
in parameter maps with less noise which can be observed
when using spatial prior knowledge on the prostate data,
for example in Fig. 11. One way of explaining the reduc-
tion of estimation variance when using a spatial prior is
the usage of an increased amount of data for the estimation
at each voxel. Another way of explaining the gain is by
noting that ill-conditioning, which usually leads to high
estimation variance, only occurs in particular regions of
the parameter space. Therefore, ill-conditioning is ad-
dressed best if the true parameters of neighboring voxels
differ slightly.

2) Bias: The results on the simulated “real detail” data showed
that considerable bias can occur when using a spatial prior
on very noisy data (cf. Fig. 8). Surprisingly, the simulation
studies also showed that in certain regions of the parameter
space and for small values of the coupling factor , the pa-
rameter bias can actually be reduced (Fig. 8 and Fig. 6).
This is explained by observing that the parameter bias [cf.
(10)] reduces with an increasing number of samples. In an
extreme form of spatial smoothness , two neigh-
boring parameters and would have to be equal. Then,
the measurement at voxel could be regarded as a repe-
tition of the measurement at voxel . Using (10) and (11)
it is not difficult to show that this would halve the param-
eter bias as well as the mean residual bias. In the GGMRF
approach, not only the direct neighbors but a whole local
neighborhood around every voxel supports the local fit.

The size of the influencing neighborhood can continuously
be increased using the spatial coupling factor .

3) Multiple Optima: Despite the convexity of the GGMRF
priors, the problem of multiple (local) optima is not ad-
dressed in a principled way using the proposed approach.
Even for very large spatial coupling factors the objec-
tive function (15) is not guaranteed to be convex. This
can be seen by noting that for an equivalent
problem is obtained by omitting the spatial terms in (15)
and introducing the constraint of all being equal. The
resulting sum of nonconvex functions does not yield a
convex function in general. Empirically, however, the
problem of multiple optima is alleviated when using the
spatial prior. The GGMRF-L2 prior, for example, yields
the same results with and without the constraint
whereas the SV solution arbitrarily exchanges and
values which leads to notable speckles in the parameter
maps [22]. This is also an example where the spatial prior
can replace single-voxel prior knowledge. Furthermore,
we noticed that the GGMRF-L1 prior is less effective in
resolving such ambiguities since it is designed to allow
for sudden spatial parameter changes, i.e., edges. Cer-
tainly, using a spatial prior together with the Block-ICM
algorithm yields a different trajectory through parameter
space as compared to optimizing the SV objective. Thus,
running into a different optimum is not surprising.

B. Spatial Smoothness

The basic assumption in using the GGMRF prior is the spa-
tial smoothness of the true parameter maps. While this is cer-
tainly valid within homogeneous tissue regions, the assumption
is violated at tissue borders where sudden changes may occur.
An edge-preserving smoothness prior such as the GGMRF-L1 is
designed to handle this by limiting the influence of voxels across
edges [36]. Still, cases are conceivable in which an individual
voxel is erroneously smoothed away with the GGMRF-L1 prior.
Hence, using a spatial prior commonly leads to a loss in reso-
lution on the one hand. On the other hand, signals with lower
SNR can be processed which allows for acquiring MR data at
higher physical resolutions. Clearly, there is a trade-off to con-
sider among MR imaging parameters and the strength of the
spatial smoothness prior (i.e., ). A detailed experimental anal-
ysis of this trade-off, however, is beyond the scope of the present
paper.

Based on the results presented above, we recommend using
a spatial prior with small in any case. The obtained estimates
are usually improved for the following four reasons.

First, since a weak spatial prior is applied it can only exert
influence if the single-voxel evidence is weak. As an example,
consider unenhancing tissue surrounding the prostate which
yields a pure noise signal. For a small amplitude , such a
signal admits any value for , , and and a spatial prior
would therefore not impose constraints on these parameters in
the neighboring voxels. The other way round, if the single-voxel
evidence for a particular parameter set is strong, i.e., its likeli-
hood is much higher than that of any other, a weak spatial prior
would hardly change this estimate.
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Second, as compared to linear least squares, for which similar
spatial priors have been studied [35], [36], nonlinear regression
potentially profits much more. Due to the existence of local op-
tima in the latter case, the parameter estimate is not neces-
sarily a continuous function of . Therefore, only slight shifts in
the likelihood of the parameter configurations, as induced by a
weak spatial prior (small ), may yield very different solutions.
This explains why the GGMRF prior helps remove speckles as
shown in Figs. 10, 7, and 11.

Third, the simulation studies show that even parameter bias
can be reduced for small coupling factors. This is true until the
bias produced at edges outweighs the gain obtained in homoge-
neous regions. Interestingly, the MRB, which can be calculated
without access to ground truth information, reascends at approx-
imately the same value of as the parameter bias does.

Fourth, the reduction of the MRB for all patients in the
prostate data set (cf. Table I) indicates that the same effects are
obtained as in the simulation study.

The question remains as to which -norm should be chosen
for the GGMRF prior. On the simulated “wedding cake” data,
best results were obtained with . However, since the
edge-preserving L1 prior is particularly suitable for data with
sharp edges it is not clear whether the GGMRF-L1 prior is also
best on natural data. For smooth ground truth images one would
expect the GGMRF-L2 prior to perform better. On the patient
data (Fig. 11, Fig. 10) as well as the simulated “real detail” data
(Fig. 7) hardly any difference between the L1 and L2 norms is
observed. However, considering that the GGMRF-L2 approach
can be calculated more efficiently, preferences might be given
to the L2 norm.

C. Block-ICM

Despite its favorable properties, using the GGMRF prior
certainly makes parameter estimation computationally more
demanding. Without a specialized optimization strategy such
as ICM which can exploit the inherent sparseness of the
MAP problem, the GGMRF prior would not be applicable.
Block-ICM can speed up convergence significantly and does
not seem to be very sensitive to the choice of block size (as
long as it does not reduce to conventional ICM).

Overall, the computational cost of using the GGMRF prior
is only moderately higher than computing the SV solution as
shown in Table I. This can be explained by two aspects. First,
using a spatial prior changes the energy landscape in a way
that allows the optimizer to converge more rapidly. The demon-
strated reduction in standard deviation of the parameter esti-
mates indicates that the Hessian at the optimum becomes more
positive definite1 which again has a positive influence on the
speed of convergence. Second, using a small coupling factor

, the effort of minimizing the data term dominates the spatial
compensation.

For large we have observed much slower convergence and
sometimes block-shaped artefacts in the estimated parameter
maps. Thus, the Block-ICM approach is not recommended

1With respect to the usual partial ordering: � � � � � � � is positive
definite.

if the spatial smoothing term dominates. In that case, one
should better resort to more complex, related methods based
on domain decomposition and multigrid [38]. For small as
we recommend for the estimation of kinetic parameter maps,
however, the proposed Block-ICM algorithm provides a simple
approach to tackle the high-dimensional optimization problem
efficiently.

VII. CONCLUSION

The application of spatial prior knowledge in the form of a
generalized Gaussian Markov random field prior has been pro-
posed to improve the estimation of kinetic parameter maps from
DCE-MRI. The nonlinear regression problem that needs to be
solved to determine pharmacokinetic parameters exhibits severe
difficulties. Parameter bias, estimation variance and the exis-
tence of non-global optima have been exemplified using an in-
stance of the generalized kinetic model. It was shown that using
a GGMRF prior, either with L2 or L1 norm, can help reduce
parameter bias as well as the variance and alleviate problems
due to local optima. When using only a weak spatial prior, im-
proved parameter estimates can be obtained without blurring the
resulting parameter maps. The proposed Block-ICM procedure
provides means to tackle the resulting, very high-dimensional
optimization problem efficiently. Using the GGMRF prior only
resulted in a moderate increase in computation time. Future
work should investigate ways of estimating the hyperparame-
ters , , and automatically from the examined DCE-MRI
data. Also the question of which -norm to use requires further
consideration.

APPENDIX

ANALYTICAL GKM SOLUTION FOR THE FIRST-ORDER

ELIMINATION MODEL

Using the Generalized Kinetic Model from (1) and the arte-
rial input function from (2) an explicit solution to the system
of ordinary linear differential equations is conveniently derived
using Laplace transforms [42]. In the frequency domain, (1) and
(2) read

(23)

(24)

where is the complex frequency and the
Laplace transform of the function . Thus, the solution in
the frequency domain is

(25)

Using the partial fraction expansion

(26)
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where and , and the
time shift theorem of the Laplace transform [42]

(27)

the inverse transform of (25) and sought solution becomes

for
for

(28)

where and
which is equal

to (3).
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