
LONG NONLINEAR INTERNAL WAVES

AND

QUASI-STEADY LEE WAVES

by

CHI-YUAN LEE

B.S., Cheng Kung University
(1964)

H.S., National Central University
(1966)

SUBMITTED IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

and the

WOODS HOLE OCEANOGRAPHIC INSTITUTION

June 1972

Signature of Author.................vt.. ...- .......
Joint Program in Oceanography, Massachusetts
Institute of Technology - Woods Hole Oceanographic
Institution, and Department of Earth and.Planetary
Sciences, and Department of Meteorology,
Massachusetts Institute of Technology, June 1972

Certified by...............................-------- -------- --------
Thesis Super-isor

Accepted by.......
Chairman, Joint Oceanography Committee in the
Earth Sciences, Massachusetts Institute of
Technology - Woods Hole Oceanographic Institution



ABSTRACT

LONG NONLINEAR INTERNAL WAVES

AND QUASI-STEADY LEE WAVES

by

Chi-yuan Lee

Submitted to the Department of Meteorology, Massachusetts Institute
of Technology and Woods Hole Oceanographic Institution on May 5, 1972
in partial fulfillment of the requirements for the degree of Doctor
of Philosophy

Previous observation of large amplitude internal gravity waves
generated by tidal flow over a submarine ridge in Massachusetts Bay
have motivated us to consider the general problem of internal gravity
wave generation by time-dependent flow of a stratified, inviscid
fluid over topography. An internal .Korteweg & deVries type equation
for the stream function is derived using a three parameter expansion
method, where the three small parameters correspond to nonlinear,
dispersive, and non-Boussinesq effects. The nonlinear effect is
found to depend crucially on the curvature of the basic density
profile and vanishes for linear stratification, i.e., constant Brunt-
Vaisala frequency. Numerical solutions to this KdV type equation for,
variety of different conditions are then used to demonstrate the
importance of nonlinearity on the generation of large amplitude
internal waves in the breakdown of internal fronts. The numerical
results are also in reasonable agreement with laboratory experiments
in which a two-dimensional submarine ridge is moved to create
transient internal disturbandes. Additional numerical calculations
show that a nonlinear model accurately describes the principal
features observed in Massachusetts Bay.

Simple analytic models and laboratory experiments are also used
to examine mixing and the generation of quasi-steady lee waves. A
tall, rapidly oscillating ridge acts to mix the stratified fluid
near the ridge; the circulation set up by the collapse of the mixed
fluid is determined. In the second study, ray theory is used to
analyse lee waves generated behind a low ridge being slowly towed
periodically through a stratified fluid.

Thesis Supervisor: Robert C. Beardsley
Associate Professor of Oceanography
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1. Introduction 5.

A. General Motivation:

Temperature measurements made by Halpern (1970) at station T

located 9 km west of Stellwagen Bank in Massachusetts Bay show that

large amplitude internal wave trains with wave periods of 6 to 8

minutes and lasting for about 3 hours are generated by the semi-

diurnal tidal flow. A warm front, i.e., a sudden rise in the general

temperature level, accompanies the onset of these internal wave trains.

Both the amplitude of the front and the amplitude of the internal wave

itself are so large (almost 10 m) in comparison to the characteristic

depth that nonlinearity which is neglected in linear wave theory can

not be overlooked in a general analysis of the generating wave mecha-

nics for this case. We shall assume that large internal disturbance

(say, a blocking front) with a horizontal characteristic length f is

formed near Stellwagen Bank, and then use the smallness of the parame-

ter DIP.2
ter (D ), where D is the vertical characteristic length, to derive

a Korteweg & deVries-type governing equation (1895) for the internal

motion. This nonlinear KdV-type equation may then be used to analyse

the generation of internal waves from a long but otherwise arbitrary

initial internal disturbance. This is the general aim of this research;

we are not solely trying to explain the generation of these finite

amplitude waves in Massachusetts Bay.

In order to demonstrate the importance of the nonlinear effect,

two experimental records are shown in figure I and figure 2 . These

internal disturbances are measured using conductivity probes as shown
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8.
in figure 3. The initial disturbances are produced by towing a ridge

horizontally over one half period a sinusoidal path. When the ridge

is moved toward the probes, the initial disturbance is a mound of

heavier fluid, with the local isopycnal surfaces being elevated.

The initial disturbance corresponds to a depression of the isopycnal

surfaces, when the ridge is moved away from the probes. For the

basic stratification used in our laboratory experiments, we will find

(in chapter 3) that an initial elevation will have a negative non-

linear effect, while an depression will have a positive nonlinear

effect. Thus, for a depression, the mass, momentum, and energy of

the initial disturbance are held together like a "solitary wave",

since the nonlinear effect tends to balance the dispersive effects.

An initial elevation will disperse into several waves behind the

initial front, however, since the negative nonlinear effect will

reinforce the dispersive effect. Detailed numerical calculations

for these two measurements will be given in chapter 3.

We will give in the remainder-of this chapter a general discu-

ssion of the known nonlinear effects on surface and internal long

waves. In chapter 2 we try to model the wave phenomena observed in

Massachusetts Bay, develop a general classification of the internal

motion driven by a moving submarine ridge, and then describe the

experimental system and procedure used to illustrate our classifi-

cation scheme. In chapter 3, a three parameter expansion method

is used to derive a time dependent KdV equation for internal motion.

Both experimental data and numerical calculations are used to demon-

strate the importance of nonlinearity in the generation of long
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nonlinear internal waves, and the application to the large ampli-

tude internal waves in Massachusetts Bay is explained. The in-

fluence of basic shear is analysed. The second order terms, i.e.,

the deviation from the classical KdV equation, are also obtained.

In chapter 4, a ray theory and some experimental results are used

to discuss quasi-steady lee trains. In chapter 5, we analyse mix-

ing in a stratified fluid caused by rapid motion of the ridge.

B. Classical Long Surface Wave Theory:

We shall begin our analysis of long nonlinear internal waves

by recalling some aspects of the classical long wave theory. Airy

(1845) showed that when the pressure field is hydrostatic every-

where, the phase velocity of a progressive finite amplitude surface

wave is equal to (OH) everywhere where H is the local depth. It

followed that the wave would tend to steepen ahead of their peaks,

and the breaking of waves and consequent formation of "bores"

could not be avoided. However, the lack of experimental support

for Airy's theory led to the final discovery of solitary and cnoid

waves by Scott Russell (1837, 1844), Rayleigh (1876), Stokes (1847,

1880), and Korteweg and deVries (1895). They showed that the ten-

dency of a long surface wave to steepen ahead of its peak, which

is proportional to the amplitude a/H =<, may be balanced by an

opposite tendency, due to the nonhydrostatic pressure field, which

is proportional to the square of the wave number H-1e

where L is the wave length. Thus, an infinite sequence of perman-

ent wave profiles exist, each with a particular ratio of , the

II
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Ursell parameter, such that the two tendencies to change the wave

profile exactly cancel out. These waves are called "cnoidal" waves,

because their wave profiles are exactly the square of the Jacobian

elliptic function CN(x) with different moduli constant. The two

extreme limits are (1) the lower limit E 0 corresponding to a

linear sinusoidal wave, and (2) the upper limit of E /Ci44 co correspon-

ding to solitary wave. A cnoid wave train with extremely long wave

length can be approximately regarded as a sequence of solitary wave.

Following Lighthill (1967), a regime diagram with the amplitude a and

the characteristic wave length I as the two axes can be constructed

(see figure 4), which show that the solitary wave is a boundary which

separates the natural evolution of a long finite amplitude distur-

bance into two quite different regimes. Numerical calculation (to be

discussed in detail in chapter 3) shows that a point with a small

deviation above (below) the solitary wave curve will tend to move up

(down) and to the left (right) in figure 4, i.e., the nonequilbrium

wave tends to steepen (flatten).

It is well known that the general mathematical analysis of non-

linear wave motion divides into two distinct approaches:

(a) Stoke's expansion: development of a linear wave 'theory,

and its subsequent extensions to finite amplitude wave

using a regular perturbation expansion in the one small

parameter a/aO . Fourier analysis is used in this case.

(b) Shallow water theory: development of a time dependent

KdV-type equation based on the two small parameter C

= a/H, = (H/.,) . The second approach allows us to

WiLl
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analysis the natural evolution of an arbitrary long dis-

turbance in addition to the wave form solution in case (a).

(c) Since the Stoke's expansion and shallow water theory

are not completely reconciled, we will now compare the

two approaches and discuss their principal differences.

(1)(a) The Stoke's expansion (a) is derived on the small

parameter a/fO and the parameter (H/J) is assumed

to be not less than order unity.

(b) Shallow water theory (b) is based on two small para-

meters, E = a/H and S= (H/x2  . Note that a/. =

a/H-H/j - i4. If we take the limit H - 0 for

case (a), we do not obtain solitary or cnoid waves.

(2)(a) To order (a/i ), there is no phase velocity change,

due to finite amplitude effect.

(b) To order (-a/H, H /2), there is a change of phase

velocity.

(3)(a) To order (a/2 ), a sinusoidal wave will keep symme-

tric wave form.

(b) A sinusoidal wave tends to distort and break.

(4)(b) Can be easily used to treat an initial value problem

for an arbitrarily long disturbance whereas (a) cannot.

(5) Since higher harmonics are generated by nonlinearity

using the Stoke's expansion, it seems necessary to check

for the possibility of "self-interaction", i.e., the

interaction between a wave and its higher harmonics. If

the dispersion relation is W = W(k), we need
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w(2k) -W(k) =W(k) for interaction between a primary wave and its

first harmonic. This is generally impossible for internal and

surface wave (except for capillary-gravity surface waves which have

a special dispersion relation). However, the above resonance con-

dition is almost satisfied in long wave theory due to the fact that

for vanishing wave number, the dispersive curve approaches a straight

line. Mei(1971) has discussed this self interaction mechanics in

shallow water wave theory by means of an analogy with nonlinear

optics.

Since we are primarily interested in the initial value problem,

we will focus our attention on results obtained by the second

approach (b). Utilizing temporal equations of the KdV-type, we will

now examine the interaction between two surface solitary waves.

Zabusky (1967) and Madsen and Mei (1969) have shown using the KdV

equation that significant nonlinear interaction between two solitary

waves occur only near the intersection of the crests. Numerical cal-

culations show that when the solitary wave of large amplitude catch

up with the smaller one, the amplitude of the larger peak decreases as

the smaller one increases its amplitude and then exchange roles such

that the one previously identified as the large peak now becomes the

smaller and vise versa.

Nonlinear effects are understood in a really systematic manner

only for nondispersive waves, and are called amplitude dispersion by

Lighthill (1967). Although the study of the interaction of the fre-

quency dispersion and the amplitude dispersion is only in its begin-

ing stages, the study of nonlinear effects with the parameter
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(a/H)(H2/ff) ;> 1 is rather well advanced. Different value of the

amplitude in a "long wave" are propagated forward at different speeds.

As time goes on, regions of large amplitude, being propagated faster,

gradually catch up to regions of low amplitude. However, this catch-

ing up cannot proceed to where the higher amplitude actually overtakes

the lower, since the amplitude must remain a single valued function of

position. Immediately before this happens, a region with very large

gradients of pressure, velocity, etc.,. will be generated which prevent

further increase of wave amplitude by the frequency dispersive effects

which we neglected in this process. Numerical calculations by Pregrine

(1966) show that a wave train will be generated behind in the "front",

the bore remaining nonturbulent since it can lose the nacessary energy

by backward radiation through a finite amplitude wave train. However,

there is a maximum amplitude which is defined by the solitary waves.

Beyond this, progressive steepening of the wave front to the point of

turbulent "bore" formation is unavoidable, This analysis is only a

first order approximation, however, since all terms need to be retained

in order to obtain a final criterion for wave breaking.

The evolution of large scale variations on a finite amplitude perio-

dic wave has been studied by Whitham (1965). To zeroth order the wave

number, frequency, and amplitude satisfy a system of first order quasi-

linear differential equations. These equations may be hyperbolic or

elliptic. If elliptic, the characteristic velocity will have an imag-

inary part and instabilities will tend to destroy the coherence of the

wave train (such as in deep water wave theory). If hyperbolic, wave

properties will develop shocks (such as in shallow water wave theory).
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A situation similar to the classical shock problem in gas dynamics

arises in that more shock conditions exist that we actually need. The-

se jump conditions correspond to the conservation of waves, mass, momen-

tum, and energy. The conservation of waves corresponds to the conser-

vation of entropy, which is discarded in gas dynamics by considering

the real physical situation across the shock. However, the situation

seems quite different in water waves. Benjamin (1954, 1956, 1967)

chooses the conservation of waves as one of the shock conditions (al-

though he did not point it out explicity) to analyse a stationary

surface wave train of finite amplitude and permanent form, thus dropping

the conservation of momentum and energy. Real friction or dissipative

process make Benjamin's assumption more realistic in the natural pheno-

mena. However, we will use only the conservation of energy and momentum

in the analysts of wave generation.

C. Long Nonlinear Internal Wave Theory:

Our review of nonlinear wave motion has concerned up to now only

surface wave dynamics in a constant density fluid. It is well known

Benjamin (1966, 1967), Benney (1966) that long nonlinear internal

waves are possible in a density stratified fluid. In analogy to the

classical long wave theory, both Benjamin and Benney used a two para-

meter perturbation expansion method to find a governing equation simi-

lar to the KdV equation. However, Long (1965) pointed out that a.third

parameter, 6'= Af/f , is critically important in long nonlinear inter-

nal waves, where,;P is the variation of basic density stratification

over a vertical characteristic length D, fis the vertically averaged
density, and d is its fractional change over the vertical characteristic
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length. If CY is the same order or smaller than the nonlinear term

a/D or the dispersive term D2 /t 2 , the three parameter perturbation

expansion method should be used. The "inertial" effect due to d

= 0.1 will be of equal importance as the nonlinear effect due to a

finite amplitude a/D = 0.1; 6' of this order are frequently used in

laboratory experiments.

Long only examined stationary waves for the case of constant

Brunt-Vaisala frequency. We will in chapter 3 formally use a three

parameter perturbation expansion approach to find a time dependent

KdV equation for arbitrary stratification and basic shear. We will

then find that this additional term corresponding to C'N 0 tends to

decrease the phase velocity. The physical meaning of this result is

analogous to the frequency effect of the self-mass of a spring in a

simple mass-spring system. We will also find that the nonlinear

effect of internal wave motion is critically related to the basic

density stratification and structure. For typical thermoclines, i.e.,

the density variation of the upper part of the fluid is much greater

than that of the lower part, the nonlinear effect is to steepen

(flatten) an isopycnal depression (elevation). An obvious difference

from surface wave theBry is that both an initial elevation and depre-

ssion may become a solitary internal wave corresponding to different

basic density structure while only initial elevations develop ini.o

surface solitary waves. We shall also find that the nonlinear effect

vanishes for a constant Brunt-Vaisala frequency, and that no solitary

waves exist unless we take a second order term of ordere,' into con-

sideration. This conclusion agrees with Long's stationary wave analysis.
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2. Development of Model Problem

A. Discussion of Massachusetts Bay Observation:

In order to simplify the complicated situation in Massachusetts

Bay and make a reasonable model to represent the dominant features

which are closely related to the generation of the internal wave trains

observed in Massachusetts Bay, we begin by summarizing Halpern's data

and discuss some possible physical interpretations.

(a) The average time interval between the onset of 29 groups

of high frequency fluctuations observed at station T was

12.4 hours. This strongly suggests that the dominant

driving force is the semi-diurnal tidal flow.

(b) The crests of the surface bands, which are generated by

the internal waves, lie parallel to Stellwagen Bank and

exhibit the same curvature. Thus it seems that the bank

is a "wave source" or, at least, has a significant

influence on these internal wave trains.

(c) Speed measurements recorded at Stellwagen Bank (tempera-

ture measurements at the bank are missing) do not show

the groups of large amplitude high frequency fluctuations.

This means that these internal wave trains have to be

generated somewhere between the bank and station T loca-

ted 9 km west of the bank crest. This rules out a quasi-

steady lee wave mechanism as a wave source.

(d) The large abrupt rise in the mean level of these high fre-

qency temperature oscillations may be related to the fol-

lowing three reasons although, as we will see, only one is
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possible in Massachusetts Bay. (1) Nonlinear steepen-

ing of the long semi-diurnal tidal waves: Although the

basic density stratification in Massachusetts Bay will

produce a negative nonlinear effect (see chapter 3), and

will make the warm front steepen, the distance (9 km)

between Stellwagen Bank and station T is too short to

allow a symmetric wave to deform into such a front. (2)

Strong mixing near the bank: This is ruled out by the

fact that the temperature rises at all depths. (3)

Blocking effect-: When the tidal current becomes very

weak, the Froude number is very low. It is well known

from the work of Long (1955) that blocking phenomena

occur in a stratified flow for small Froude number.

Thus, shortly before high water, the velocity of tidal

flow decreases to this critical velocity and the lower

part of the water column is then suddenly blocked by

Stellwagen Bank, and only the upper part of the fluid

or warm water is allowed to flow across the bank to

form a sharp warm front. This warm front will be fur-

ther steepened by the negative nonlinear properties

associated to the specific density stratification in

Massachusetts Bay. Although a cold front is also form-

ed, its slope will be decreased by the nonlinear effect,

so that the slope of the cold front will be very small

at station T. The dispersive effect of the cold front

is also decreased, preventing the generation of inter-
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nal wave trains. Although we feel that the blocking

effect of Stellwagen Bank is the likely candidate for

creating the warm front, its effectiveness will be

greatly decreased by the three dimensional structure

of the bank. The width of the open end of Massachusetts

Bay is approximately 70 km, where the length of the bank

is ap.proximately 40 km. Thus we expect some cold water

may flow into Massachuset-ts Bay through these open parts

during the blocking time interval; this may be one of

the reasons why the length of the observed bands is

only 10 km where the length of the bank is almost 40 km.

We will now construct a simple model to simulate some of the most

important factors found in Massachusetts Bay. Our principle goal is

to find the possible wave generating mechanics and not go into details

of its modifications caused- by the very complicated situation in Massa-

chusetts Bay. We assume that a symmetric submarine ridge is towed

back and forth periodically in a density stratified fluid in a long

wave tank. The forcing and response are two-dimensional and the fluid

is considered to be essentially inviscid. The major differences

between this model and the tidal flow over Stellwagen Bank are:

(1) Basic velocity shear: It is well known that strong velo-

. city shears exist in tidal flow. According to Miles

(1961) and Howard (1961), a sufficient condition for

small amplitude stable motion in parallel stable stra-

tified, inviscid flow is that Richardson number Ri has

to bie everywhere greater than k'. Although Ri is
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always greater than 1/4 at Massachusetts Bay, Halpern re-

ports that Ri was less than unity and was as low as 0.3

just prior to the initiation of the short-period internal

waves. Since this Ri value is a ten-minute average, it

may drop to less 1/4 occasionally. Halpern's data indi-

cate that the mean shear is almost perpendicular to the

direction of propagation of the internal waves, so that

it is unlikely that shear instability plays a significant

role in the generation of these internal waves. While

the neglect of shear greatly simplifies our laboratory

experiments, we will include the influence of velocity

shear in the direction of propagation on the nonlinear

and dispersive effects in the theoretical analysis.

(2) Three dimensional effect: In our experiments, the ridge

occupies the whole width of the wave tank, while Stell-

wagen Bank obviously does not close the open end of Ma-

ssachusetts Bay. From Halpern's aerial photographs of

the surface bands, these internal waves seem to remain

two dimensional for a relatively long distance westward

of the"bank. However, as mentioned before, the three

dimensionality of the real topography reduces the block-

ing effect of the bank. One evidence is that the lengFh

of the observed bands is much smaller than the length of

the bank, and their ends were wrinkled and compressed

along their axes.

(3) Horizontal variation of mean current: We assume that the

"1mean current" (relative to the moving ridge) is uniform
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in space, while the actual east-west tidal flow in

Massachusetts Bay has to vanish at shore.

(4) The asymmetric shape of Stellwagen Bank: The slope of

the west side of the bank is approximately three times

the slope of the east side of the bank at the same

latitude as station T. The asymmetric slope may be one

of the reasons why the high frequency fluctuation was

absent in the speed measurements 11 km east of the bank.

Since the dispersive effects are proportional to f={O

the ratio of JC at east side to J' at west side is only

approximately 1/10. This crucially restricts the gene-

ration of internal wave trains.

(5) The change of total depth: We assume the total depth re-

mains constant while the actual tidal amplitude is appro-

ximately 1.5 m in Massachusetts Bay. The phase lag of

high or low water around Massachusetts Bay is approxima-

tely equal to (width of Massachusetts Bay)/(speed of long

wave) = X /' 20 min. This value is much
(. x fo)

smaller than the period of the tide.

(6) The body force: The horizontal acceleration for the tidal

flow is absent in the experiments, however, it is too

small to be considered.

While a more realistic model could be developed from observational

knowledge of the mean current structure in Massachusetts Bay, we feel

that our simple two-dimensional model should contain most of the fun-

damental physics of the internal wave generation appropriate to Massa-
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chusetts Bay. We will now consider the different general flow re-

gimes which are possible in our model problem.

B. General Classification of Flow Regimes:

The properties of fluid motion in an inviscid flow depend on

the scale and amplitude of the motion and on the physical parameters

which characterize the problem. In the previous discussion, we found

that for a given physical system, the ratio of scale'and amplitude are

crucially important in determining the fluid behavior. We will now

define several dimensionless numbers, which depend on the relevant

scales, which can be used to classify the flow into several quite

different regimes. Assume that a symmetric ridge is towed periodi-

cally back and forth in a density stratified, inviscid fluid layer

as shown schematically in figure 3 . The relevant dimensional scales

are:

L = the "excursion" of the oscillating ridge,

T = the period of the oscillating ridge,

A = the height of the ridge,

W = the streamwise width of the ridge,

H = the total depth of the layer,

N = the typical Brunt-Vaisala frequency of the fluid,

= the wave length,

U = the typical velocity of the moving ridge,

n = internal wave mode number.

In the experiments, the slope of the ridge A/W is almost kept

constant and small enough to avoid significant boundary layer sepa-

ration phenomena. As the ridge is moving, the fluid particles will
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be forced to move up and down for L/N, times in a time interval T

with a vertical amplitude --- A, thus the vertical velocity 1Wcan be

scaled as

r (/A ) (A/7)

Using the equation of continuity, the horizontal velocity of the

fluid can be scaled as

and the inverse of the square root of Richardson number, Ro , can be

defined as

R0  a/H

where f = 2./T is the frequency of the oscillating ridge.

It is well known from Miles (1960) that the flow may not keep

stable for RO>2, so that mixing phenomena are expected for large RO.

However, potential flow occurs if we keep A/W very small and U>

i.e., U exceeds the phase velocity an internal wave may have. In order

to analyse the blocking effect of the ridge, we have to change the re-

levant horizontal velocity scale from the perturbation velocity L4 to

the velocity of the ridge U. The internal Froude number Fi is defined

UL

where g' is the reduced gravity g . Blocking occurs at very low

Froude number. Since Fi is independent of A, the start of blocking

does not depend on A eventhough the volume of fluid being blocked is

proportional to A'U. In 'a three dimensional space with A/H, L/H, and
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f// as three orthogonal axes (see figure5 ), the wave regime is then

bounded by two critical surfaces which represent the critical Richard-

son number and critical Froude number which separate the blocking and

mixing regimes from the wave regime.

The wave regime can be further divided into three subregimes by

using a parameter R = L/}X (1) For RL) 1, quasi-steady lee waves

arise. This case occurs when the period T of the oscillating ridge is

much greater than the period of lee waves, and the acceleration of the

ridge can be neglected in the analysis. Note, however, that lee waves

A/H
do not exist if U > _ -14 , the largest phase velocity an internal wave

may have. (2) For RL< 1, the ridge is considered to be a classical

"wave maker"; the period of the wave is exactly the same as the period

of the oscillating ridge. However, the ridge will no longer generate

waves if f > N, i.e., the highest frequency an internal wave may have

(3) For RL---1, an intermediate case between (1) and (2) arises with

lee waves being superposed on long waves. These various regimes are

illustrated in figure 5 .

In chapter 3, we will analyse the generation of large amplitude

internal waves. This flow belongs in the blocking regime, since for

a high ridge blocking produces a very large internal initial distur-

bance with a sharp front which evolves into a long nonlinear internal

wave train.. In chapter 4, we will analyse "quasi-steady" lee waves.

By neglecting the acceleration of the ridge, we can consider the ridge

as a moving wave "source" which emits waves along the rays in a t-x

diagram. In chapter 5, the mixing regime will be analysed. Here. the

oscillating ridge is viewed as a "mixer", emitting mixed fluid along
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the neutral bouyancy level and causing the unmixed fluid to recir-

culate back to the ridge.

C. Description of Laboratory Experiment:

The two-dimensional inviscid model problem developed in the pre-

ceding section is directly applicable to a simple laboratory experi-

ment. We will now describe the experimental apparatus and procedures.

A rectangular wave tank is used to contain the stratified salt

water; it is 4.9 m long, 20.5 cm wide, and 38.4 cm deep. The tank is

filled using a procedure attributed to Oster (1965). This allowed any

arbitrary but stable basic stratification state to be made. Owing to

the corrosive properties of salt water and the convenience for obser-

vation, two 50 gallon Tygon barrels are used in the filling system.

The filling procedure is essentially the same as used by Cacchione

(1970).~ Several days before an experiment, the two 50 gallon Tygon

barrels were filled to a predetermined volume with hot water. A pre-

determined amount of salt was added to one barrel and mixed carefully.

After the tank had been cleaned, the ridge and wave absorbers put in

place, and driving system tested, the siphon connecting the two barrels

was primed and the stirrer in the fresh water barrel started. The tank

was then filled from the fresh water barrel. The filling process took

one day to complete. On the next day, vertical profiles of the index

of refraction were taken over several stations using an American optical

Company refractometer model 10402. These profiles were then converted

into specific gravity profiles using the manufacturer's calibration

curves.



28.

A two inch thick screen was placed with an inclination to the

side wall at each end of the wave tank (see Phillips et.al., 1968).

These screens were used to absorb the internal waves and separate the

disturbances caused by the driving wheels on the end walls.

The driving system of the experiment is designed to move the ridge

along the bottom of the wave tank. In order to produce "quasi-steady"

lee wave trains, the oscillating amplitude and period of the ridge must

be much greater than the wave length and period of the lee wave itself.

At the same time, we also wanted the motion of the ridge to be relative-

ly smooth, i.e., any occasional irregular motions of the ridge must have

time scales and amplitudes much smaller than the period and amplitude of

the lee waves. So the drive system has to meet the following primary

requirements of

(1) relatively large, variable "excursion",

(2) relatively long, variable period,

(3) reasonably smooth and precise motion.

Since the experiment was designed to get usable data at reasonable cost,

we employed wherever possible components left by former students

(Cacchione, et.al.) and standard instruments available at the laboratory.

In the resulting drive system, the ridge is moved by means of a wire/

pully arrangement connected to a precision variable speed gear box

assembly (see figure 6 and 7). A small amplitude rectilinear sinu-

soidal motion device was used to perturb the frequency of oscillator 1,

which drives the synchronous motor 1. Motor 2 is driven at constant

speed. Both motors are coupled through a differential gear to the



29.

small amplitude

Figure 6 . Drive system.
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drive wheel so that the speed of the latter is only proportional to

the perturbation frequency of oscillator 1. Thus "excursion" and

period of the oscillating ridge can be changed by varying the ampli-

tude and period of the frequency perturbation of oscillator 1.

The ridge is made by bending thin aluminium sheet into the sym-

metric shape desired and mounting on a smooth plexiglas plate. The

shape of ridge can be approximately expressed by the curve Abh/(x-+ b2)

as shown in figure 8 , where A is the maximum height of ridge, b is

a constant. In order to avoid significant friction between the side

wall and the ridge, two small wheels were put on each side of the

ridge to press against the side walls. The gap between the side and

the ridge may produce some unwanted minor disturbances, however, these

disturbances were found to die out quickly with distance and to have

little influence.

The variations of the properties of the internal disturbances

as they propagated away from- the ridge were measured with several AC

conductivity probes built by Cacchione (1970). The vertical density

gradient of the fluid was established using salinity stratification.

The temperature variations in the water were found to be small except

in thin boundary layer. Since salinity is approximately a linear

function of conductivity in the range of salinity values we used, the

change of salinity at a point can be approximately evaluated by the

change of conductivity. Just before the start of each experiment, the

conductivity probes were given static calibrations by raising and low-

ering them vertically by known increments while recording their output

at each level; this gave an updated sensitivity coefficient for each
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probe. The conductivity fluctuations of the fluid were recorded on

a fast 4-channel Sanborn strip chart recorder. Potassium permanganate

(KMnO4) was used to make vertical dye streaks to determine the verti-

cal profile of the horizontal velocity field and to make the mixed

region visible.
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3. Long Nonlinear Internal Waves, Theory and Experiment

A. Development of Theoretical Model:

(1) Basic Derivation of Long Nonlinear Internal Wave Equation.

In analogy to classical long surface wave theory, Benjamin (1954,

1966, 1967) did extensive work on stationary internal waves of finite

amplitude and permanent form. Benney (1966) extended Benjamin's work

to include the time-dependent properties by introducing a new two

parameter expansion method. However, for internal waves, the density

perturbation does not always equal the velocity perturbation. In order

to make Benney's expansion method suitable for all density stratifica-

tions (especially for when the Boussinesq approximation applies), we

include a third parameter O' in our analysis, where o' is the frac-

tional change in the basic density over the vertical characteristic

length D. In this section, we will use a three parameter expansion

method based on the assumption that e'<< 1; however, 0'may or may not b;

the same order of magnitude as the nonlinear parameter E = a/D and the

dispersive parameter rD 2/X? , where a is the amplitude of the inter-

nal motion and J is the horizontal characteristic length. Long (1964)

studied a stationary case with constant Brunt-Vaisala frequency and

found that solitary waves do not exist unless higher order terms are

retained in his analysis. Long's solutions will then be a special case

in the following analysis.

Assume a shallow water layer of incompressible, inviscid fluid

with density f. The basic density state is ( f,(/ (

where c'=) , af is the basic density change over the vertical
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characteristic length, and fis a constant. The two dimensional

equations of motion are

f'Gt +tUix twl ) ~$ , (3.1)

Wt l #?ifl6P = ~- f , (3.2)

x (3.3)

x0'ZE (3.p

where u is the horizontal velocity, 7.4 is the vertical velocity,

p is the pressure, g is gravity, and the subscripts x, z, and t

represent the derivatives to x, y, and t respectivity. By elimi-

nating the pressure term from equation (3.1) and (3.2), we get the

vorticity equation

tft X 3tu- *W : f 0 dAx+LfLf . (3.$)

Now we will scale equations (3.3), (,4), and (i) and make all

variables dimensionless. Denoting dimensionless variables by prime,

we have

Copo)'s

The horizontal characteristic length of the dominant structure of

the internal disturbance, .,is chosen as the length in which the
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deflection of a stream line changes from zero to its maximum value.

D is defined as D = H/nIL, where H is the total depth and n is the

mode number. The time scale - is the time interval fore to

pass a certain point. The vertical velocity scale i3 a/( .2)

. The horizontal velocity scale r( is obtained

from the equation of continuity. Experimental data showed that the

above scale provided quite good estimates of the magnitudes of the

various quantities. Introducing these dimensionless variables into

equations (.3), (3.#j), and (3,5) and droping primes, we have

where is a stream function defined by

Assume g , F, and C' are all small independent parameters, not neces-

sarily of the same order of magnitude. The boundary conditions are

= 0 , at j = 0 , (3.?)

Oj = 0ait E "- ?? . (9-/0)

Following a procedure similar to Benney's (1966) two parameter expan-

sion method, the stream function and the perturbation density f are

expanded using three parameters [ , , and e-as follows,
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The zeroth order solution (g, tgwill have a form,

At = cAx

where and C are eigenfunctions and eigenvalues of the follow-

ing boundary value problem:

0 (oo,o)
(010, o)

/~ Coo, o)
3. /~5

(60) 7 /7, ) = O .

( / X c ,)
In order to make the first order functions #' '( 3"'?'L)

y7OiI~o)

and b , o ) also separable, equation (3.1) must be modified to the

following form

At -cAx+ ErA Ax +SA Axxv +-

with

q(/ -, t,) X-"Z't)

£, t)

=Ag C/6 )

A xo)2x

A 1)

%, X

f (, t
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where the functions () , (d ), and ' g ) and the cons-

tants F , s, and q are obtained by solving the following boundary

value problems for r,

*0,0) ( ( , o))

ci~o~0) =0~ <.0

for s,

(of,0) 7z Co,1,o) .2S (oeo) <ao)

fat )(o,/, o) ( >/) = O ,

(3.21/)

and for q,

pr ~ z ot"On) oroo (70,) =
I- ), (3.22)

The eigenvalue problem (3./) yields an -infinite set of eigenfunctions

and eigenvalues Q . The constants r, s, and q must take

unique values if the boundary value problems(3,20),(3.2/), and(..U) are

to have solutions. Corresponding to each mode ( , Cn), it is

found by suitable integrations that

7(7,23)
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(o,0)

The sign and magnitude of the constants r, s, and q are very impor-

tant in the generating mechanics of long nonlinear internal waves.

It is obvious that r = 0, i.e., the nonlinear effect vanishes iden-

tically, if the density stratification is linear with z. However,

as long as the density stratification is stable .(f,>0), both s and

q keep-the same sign and non-zero value.

In general, data obtained in experimental work correspond di;-

rectly to the displacement of the stream line 77 rather than to the

stream function .It is thus useful to establish the relation

between the two functions. To first order approximation, the function

and are

,) (A1, (..2k)

(322f)
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where the function A(x, t) satisfies equation /

and can be related by using the vertical velocity ,

where i(z) is the basic velocity shear. Introducing 026), and 0.27)

into (28) and using a Taylor series expansion, we get

(0, , 0)

(i o o ) - (/,0 0,o) (o,o,o) 3 (0,09 oe, 000

' 2 C .2 3, 0.3)

If (z) = 0 (the influences of shear will be analysed later), the

zeroth order relation between and is simply

(a,,) (oo,o)

Introducing this relation into (323), .2f), and 0,2), we find. that we

need only to multiple the nonlinear coefficient r by a factor C

to change / /C'') directly to (, ')

Now the problem is how to determine the function A(x, t) from

experimental or field data of the form 7(x, z, t). From 0.2'), we

get
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where can be calculated by equation (3.15) from the basic

stratification, and the point z = zo is the depth at which the measure-

ments are made. Although -- and are both zeroth order terms
aat zx

in equation (3.16), the combination ( - + C )A is correct to
1i0t x

first order, thus the introduction of (3.33) into equation (3.16) will

only produce a second order error, which is allowed in our first order

analysis. It is convenient and causes no loss of generality to put

_(0,0o,0)

(z, ) = 1. We then have

For a wave solution of the form = x - CPt) where Cp is the phase

velocity, we have

11'Cp = C- Errj + s -2

Thus the nonlinear effect will increase (decrease) the phase speed if

the sign of the product term r - is negative (positive). This proper-

ty is very important in the determination of the steepening or flatten-

ing of an initial disturbance. For a typical seasonal thermocline in

the ocean in which the most temperature variation occurs in the upper

half of the water column, the coefficient of the nonlinear term r is

positive. Thus a warm front or a depression of the stream line will

be staepened, and vice versa. From (3.25), we find that the coefficient

q is always positive, thus the role of this inertial term is simply

to decrease the phase velocity. The constant s is always positive.

However, whether the phase speed is increased or decreased depends on

the sign of /j/. For a sinusoidal wave, the dispersive effect
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is always to decrease the phase speed.

Three conservative quantities which correspond to mass, momentum,

and energy can be derived from equation (3f;. These conservation equa-

tions can be written in the following form

0 ?=/2 3 (3-36)

where

As? X(-2~ 7  1-2

It is obvious that an infinite sequencea of conservation equations can

be obtained, however, the complexity of the derivation increases

rapidly with increasing m. These conservative quantities are very use-

ful in theoretical analsis or numerical calculation. For a disturbance

with and its derivatives vanishing at x = x, and x2 , or a periodic

disturbance with wave length ,\ = xx- X. , we have

-2

X dx - o

wd'x = 0 , x 3.3 rd

Wbk_
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7if~ (3 ~~dx

Equations (3.37) and (3.38) can be easily used to check the accuracy of

numerical predictions of the natural evolution of an localized or

periodic disturbance.

(2) Discussion of Boussinesq Approximation

Most studies o'f internal motion in a weakly stratified fluid use

the Boussinesq approximation which neglects density variations in the

inertial terms of the equations of motion. After careful scaling for

these variables, we find that the parameter g"appears only in the

inertial terms of the vorticity equation (3.7). Since ?is an inde-

pendent parameter, use of the Boussinesq approximation in a first order

expansion is equivalent to the assumption that d is a second order

parameter, and in a second order expansion that d is a third order para-

meter, and so on. By putting d = 0 in the first order expansion, our

results agree with Benjamin's (1966) analysis of stationary finite

amplitude internal waves in a Boussinesq fluid.

(3) Discussion of Modifications due to Inclusion of Basic Shear U(z).

In this section the influences of t.be basic shear on the nonlinear

and dispersive terms will be analysed. Assume there is no singular

point (ix(z) = C) and the Richardson number Ri is greater that 1/4

everywhere in the fluid layer. The order of magnitude of U(z) is

For simplicity, we will only consider the case for the Boussinesq

approximation, i.e., when 6= 0. Following a similar procedure,

equation (3.15), (3.20), and (3.21) are modif.ed to the following form
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Since r and s are very complicated functions of 'u(z), we will

compute several examples to illustrate the effects shear U(z) has .on

the nonlinear and dispersive term. The coefficients r, s, c, and

Z (where Z is the position of the maximum of the eigenfunction
max. max.

.$~ ) have been calculated and listed in table 1 for the several

typical velocity and density profiles shown in figure 9 . These ex-

amples indicate that profiles with the magnitude of speed increasing

upward gives a negative nonlinear coefficient and vice versa, whereas

u(z) which is symmetric in z about the mid-depth gives zero contri-

bution to r.

(4) Special Case of Two Layer Density Model

We now examine the modifications to the general theory caused

by a discontinuous two layer density field. Let 7 = P + ^ in

04 Zhl and f= fo in hl( Z,<hi + h2 =7L. The only possible inter-

nal long wave for a two layer system is the first mode which has a

maximum vertical displacement at the interface. Equation (3/f

becomes

(o., 6 , o )
21 2. 00.4

in each layer separately, and the solution satisfying the boundary

01, 0, ) Co(,o0'o)
condition do) = ( = 0 and continuity at the interface

z = hi is

/,, 7 9),
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Several typical velocity profiles u(z)(M=1 to 7)
and density profiles - (z)(K=l to 5) which are
used to calculate the coefficients r and S in table .
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u(z) f(z) CO (dgD) ZMax. r s
(M) (K)

1 1 1.16 0.80 -2.43 0.23
1 2 0.88 0.20 2.56 0.24
1 3 1.17 0.52 -0.17 0.53
1 4 1.35 0.64 -0.85 0.51
1 5 1.21 0.38 0.87 0.53

2 1 0.88 0.80 -2.56 0.24
2 2 1.16 0.20 2.43 0.23
2 3 1.17 0.48 0.17 0.53
2 4 1.21 0.62 -0.87 0.53
2 5 1.35 0.36 0.85 0.51

3 1 0.98 0.80 -2.75 0.14
3 2 0.98 0.20 2.75 0.14
3 3 1.21 0.50 0.00 0.35
3 4 1.32 0.64 -0.91 0.36
3 5 1.33 0.36 0.91 0.36

4 1 1.23 0.80 -2.53 0.18
4 2 0.93 0.20 2.76 0.17
4 3 1.27 0.54 -0.19 0.41
4 4 1.46 0.66 -0.88 0.41
4 5 1.30 0.36 0.95 0.42

5 1 1.17 0.80 -2.37 0.25
5 2 0.88 0.20 -2.53 0.27
5 3 1.17 0.54 -0.16 0.57
5 4 1.35 0.64 -0.80 0.54
5 5 1.20 0.38 0.84 0.57

6 1 1.14 0.78 -2.37 0.32
6 2 1.14 0.22 2.37 0.32
6 3 1.23 0.50 -0.00 0.68
6 4 1.35 0.64 -0.82 0.64
6 5 1.35 0.38 0.82 0.64

7 1 0.85 0.80 -2.54 0.21
7 2 0.85 0.20 2.54 0.21
7 3 1.00 0.50 0.00 0.50
7 4 1.12 0.64 -0.87 0.49
7 5 1.12 0.38 0.87 0.49

Table 1. Numerical calculations of the coefficients of r, S, C,
and Zmax. using several typical velocity profiles and
density profiles in figure ,.
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Since equation (3.44) is homogeneous, we can set 1 with no

loss of -generality.

The phase velocity C can be easily found by considering the two-

layer system as a continuously stratified fluid in the limit that

A --> 0 where A is the thickness of the interface over which the den-

sity variation occurs. Then we may take the limit of equation Q/)

at the interface

A->o /(-* 20

to get

_C 2  lot ~ d,2(.

Since f and '''"are finite functions, the integral term vanishes

as 6'* 0 This implies that the quantity >('4 f co ''') )

must be continuous across the interface (continuity of pressure). In-

troducing 9,3f and . into the above relation yields

Cb(6h2 ) . (37.

The constants r, s, and q can be calculated using 6.23), Q.2/), Q.2),

Q4f), and (44. After a little manipulation, we have
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From (3.48) it is obvious that r is positive if hl' h2 . This implies

that a depression will be steepened ahead of its peak if hi> h2, and

an elevation will be steepened ahead of its peak if hl< h2 . The non-

linear effect vanishes exactly if h1 = h2. Since q is always positive,

the internal effect of.6f tends to decrease the phase velocity. The

constant s is always positive: however, the phase velocity variation

due to the dispersive effect depends on the sign of / . For a

sinusoidal wave, the dispersive effect always decreases the phase

velocity.

(5) Derivation of a Second Order KdV Equation

The governing equation (3.16) derived earlier is a valid approxi--

mation correct to first order only. In order to increase the valid

time interval of prediction for an initial value problem, we need

to calculate the second order terms in this asymptotic expansion.



Equation (3./c is thus modified into the following form
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in the right side of equation (3.6) can be eliminated

from equation (3,62), and

F or ~ and
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B. Numerical Analysis and Comparison with Experiment;

(1) Generation of Long Nonlinear Internal Waves from a Front

We have already pointed out that the finite amplitude internal

wave trains observed in Massachusetts Bay may be generated from the

blocking front formed by the semidiurnal tidal flow near Stellwagen

Bank. From the experimental results shown in figure / and 2 , it is

obvious that the nonlinear effect plays a very important role in the

wave generating mechanism. However, we will now illustrate that dis-

persion rather than nonlinearity plays the major role, with the latter

just increasing or decreasing dispersion. In this section we will

solve equation 0./,0 numerically to explore influences of dispersion

and nonlinearity on wave generation.

In the classical theory of bores, the energy cannot be conserv-

ed across the bore front due to dissipation at the turbulent front.

Lemoine (1948) tried to use linear wave theory to test 'the possibility

that a stationary wave train behind a bore front could radiate the

necessary energy away from the front and thus avoid a turbulent front.

His results showed that the amplitude of the wave train needed to be

so large that the assumption of linear theory is violated. In their

theory of stationary wave trains on a bore, Benjamin and Lighthill

(1954) examined in detail the constraints for which a finite amplitude

long wave train is possible to exist behind a bore front. They 'showed

that the necessary condition for a stationary cnoid wave train on a

weak bore is that either the energy or the momentum or both of them

cannot be kept constant across the front. On the other hand, for
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nonstationary conditions, both energy and momentum can be conserved

across the front which seems more reasonable for a smooth nonturbu-

lent bore of inviscid fluid. In addition, we can even find out how

these waves are generated from a front by solving the suitable ini-

-tial value problem. The surface wave KdV equation ha,; been solved

numerically by many authors (Peregrine [1966], Zabusky and Kruskal

[1965], Mei, Madsen, and Savage [1970]). For internal waves, the

basic density stratification may change the sign of the coefficient

of the nonlinear term. Since the form of the governing internal

KdV equation remains indentical to the surface wave equation, we

will use the same general numerical method as Peregrine (1966).

In order to calculate the constants r, s, and q we have to

solve the following boundary value problem

t 4 f(C , 2 ) { = 0 (3.72)

with boundary conditions <6(o)= g (H)= 0,

where C is the eigenvalue, is the corresponding eigenfunction,

and f(c, z) is an arbitrary function. The solution was found using

the following second-order finite-difference approximation,

=f00 (3.73)
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where zi =A z(i-1), i = 1, ... , N, d z = H/(N-1), and S =9f(zi).

Equation (,72) is homogeneous so that we may assume that the

eigenfunction is known at one point between the two boundaries. The

method we used is to give an arbitrary value to 5 and an initial

value CT for the eigenvalue C. Then we can calculate. ..... ,

using (3.73) and (3.7). If 0 does not satisfy equation (3.7f), the

calculation is repeated with a new value of CTuntil convergence is

reached.

The accuracy of the eigenfunction is improved by decreasing and

reducing the convergence criteria on (= 0. Since here we are

primarily interested in the first mode, introducing the first mode

solutions into (3.23), (3.2), and (,.4) allows the constants r, s, and

q to be found numerically. However, higher modes do make minor

contributions in the initial disturbance and introduce some error to

this initial value problem.

The governing equation (3.3f) may be changed into several differ-

ent forms, since the higher order terms in (3.39) may be manipulated

using the following zeroth order relation

Such modifications introduce a second order error which can be neg-

lected in our first order approximation. We then change (3,21 into

the following form
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+ Co 1/ 77 7 Sx 7x = O,0.7

where Co = C -6'q, R = -Er~ and S = gS /C. The following second-

order finite-difference analog to .7/:) is used

44 x

- !) - 2 (, ,7 / )

where (i, j) = f([i-1]Ax, (j-1]At). Gaussian elimination is used

to calculate (i, j+l) using (i, j) and the boundary values

7(1, j+l) and f(N, j+l). The integrating range in space is chosen

large enough so that -the boundary values remain almost constant over

the period of integration. Furthermore, the integrating range trans-

lates with speed Co , thus, saving computing time. The above numeri-

cal procedure is mainly intended to be applied to initial value pro-

blems. For boundary value problems, equation (3. 76) can be changed to

the following form
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47 R S

This equation 6.8) has the same form as equation 7) with the inter-

change the independent variables x and t ; thus, our numerical proce-

dure used for initial value problems may also be used in boundary

value problems.

The accuracy of this numerical procedure can be checked by the

following ways:

(1) Conservation of 1 (this requirement is due to equation

(2) Conservation of 2 (this requirement is due to equation

(3) Special case (a solitary wave is an exact stationary

solution to equation G.,W , therefore, there will be no

change in if the initial condition is a solitary wave).

The numerical results were essentially independent of

any decrease in the time and space intervalsAt and 4K.

Since our governing KdV equation is based on an asymptotic ex-

pansion in several small parameters, we must check if the initial

conditions and time interval of prediction we chose are compatible

with this approximate equation. The following requirements are

necessary.

(1) The initial disturbance must propagate in the +x

direction only with positive phase velocity CO .
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(2) The dominant structure of the initial disturbance must

satisfy the long wave approximation.

(3) Since the magnitudes of the terms neglected in this

equation are of order e , E ,and 8 the accumu-

lated error may become a magnitude of order unity after

a time interval of 1/2 or 1/S- . However, there will

be no significant change in the initial disturbance

before a time interval 1/g . Thus the "usable" time

range of this equation is 1/F< t < 1/E2 . For inter-

nal waves in a continuously stratified fluid, the ini-

tial disturbance may consist of infinite modes. Although

the experimental data showed that the first mode is the

dominant one, the misrepresentation of the higher modes

may introduce some additional error into our prediction.

The only stationary solution of the KdV equation with no motion

at infinity is the solitary wave with its nonlinear term exactly

balancing the dispersive term such that the shape of wave remains

constant. The phase speed of the solitary wave is greater than the

long wave speed. The typical KdV equation is

C0, 3.77)

and the solitary wave solution (x - ct) is

S=R7/ seh f(R7y1as) (x-ct )],

Cz Co-tR7
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where R = 3/2, S = -1/6 for surface wave.

Now we will analyse the nonlinear and dispersive effects in the

generation of long nonlinear internal waves from an internal front.

The variations of the nonlinear and dispersive effects due to

different basic density and velocity profiles are represented by the

different combinations of R and S. The front structure consists of

two different levels connected by one half of a solitary wave profi-

le with R = S = 1 and O= 0.2.

(A) Varying R with S = 1: The numerical calculations (shown in fi-

gure /0) show that

(1) The phase speed of the crest of the leading wave is in-

creased as R is increased.

(2) The amplitude of the crest of the leading wave becomes

largerand its width becomes shorter and the slope of

the front increases as R is increased. .

(3) More wave crests are generated as R is increased.

Figure //. shows that trajectories of the leading wave crest for

different R, and figure /2 shows that growth rates of the leading wave

crest for different R. While the phase speed of the leading wave

crest increases with increasing R and keeps almost constant with time

except initially, the growth rate of the amplitude of the leading

wave cres+ increases with R and decreases with time.

(B) Varying S with R = 1: The numerical calculations (shown in

figure/3) show that

(1) 'The phase speed of the crest of the leading wave is
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decreased as S is increased.

(2) The amplitude of the crest of the leading wave becomes

large and its width becomes shorter as S is increased.

Waves are not observed when S = 0, thus corresponding

to Airy's theory.

(3) More wave crests are generated as S is increased.

Figure /4 shows the trajectories of the leading wave crest for diffe-

rent S, and figure/ shows the growth rates of the amplitude of the

leading wave crest for different S. Here the phase speed of the

leading wave crest decreases with increasing S and increases with time,

while the growth rate of the amplitude of the leading wave crest in-

creases with increasing S for small S and then keeps almost constant.

The wave length (defined by the distance between the leading two wave

crests) increases with time in both (A) and (B).

As an aside to this section, it is interesting to observe nume-

rically how the solitary wave adjusts itself if there is a small de-

viation from the exact solution. The purpose of this investigation

is to find whether the solitary wave is a boundary which separates

two different regions of evolution of an isolated long disturbance or

if the initial disturbdnce tends to evolve into a steady solitary wave

profile. Two cases are analysed.

In the first case, corresponding to a decreased nonlinear effect,

the wave amplitude decreases gradually and the wave length increases,

with some small waves being formed behind the main peak. In the second

case corresponding to an increased nonlinear terms, a reverse trend is

shown (figure 4 ). Thus, the solitary wave clearly plays an important
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role in the natural evolution of certain long disturbances.

(2) Comparison of numerical solution with laboratory results.

In the four laboratory experiments to be discussed here, the

appropriate physical dimensions as shown in figure 3 are: A = 6.5

cm, W = 17 cm, L = 10 cm, RA = 60 cm, AB = 51 cm, BC = 38 cm,

T = 36 sec, H = 13.5 cm, 6O'= 0.00274 for experiments 1 and 2, and

C = 0.00165 for experiments 3 and 4.

Experiment 1: moving the ridge toward the probes for one half

period of a sinusoidal path. The numerical calculations shown in

figure /6 correspond to the laboratory observations shown in figure .

Both illustrate the generation of a long nonlinear internal wave train

from an initial elevation of the isopycnal surfaces. In these figure-

and those which follow, we choose to compare the numerically predicted

isopycnal surface elevation with that infered from direct conductivity

measurements using the lowest order relationship,

where C* and dC*/dz are the average value and gradient of conductivity

at the the depth of the probe. In our laboratory experiment, the

conductivity of the saline fluid increase monotonically with depth.

In Massachusetts Bay, density in the seasonal thermocline is primarily

determined by the temperature field with the mean temperature decreas-

ing with depth. To facilitate direct comparison of our results with

Halpern's temperature observations, we plot our streamline elevation
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results with the positive + direction downwards. These plots are

then identical to temperature measurements if we had indeed used

temperature to stratify our laboratory system.

Experiment 2: moving the ridge away from the probes for one half

period of a sinusoidal path. Both the numerical prediction in figure

17 and the laboratory results in figure 2 show the generation of a

solitary type wave from an initial depression of the isopycnal surfaces.

Experiment 3: moving the ridge for one complete period of a

sinusoidal path. If we choose the maximum point of the streamline

elevation in the experimental results (see in figure 18) as the begin-

ing point of a "warm front", the "thermal" record looks similar to the

warm front observed in Massachusetts Bay. An internal wave train is

generated on this "warm front". Figure 19 illustrates the numerical

calculations corresponding to the experimental results, which show

the growth of the leading waves.

Experiment 4: moving the ridge for several periods. The experi-

mental results and numerical results (see figure 20 and 21 respectively)

show that several waves are generated on the initial periodic distur-

bance.

Comparison of the experimental and numerical results indicate

relatively good agreement between observed and predicted phase speed

and wave period (see table 2 for comparisons for experiments 3 and 4).

However, the data also shows a general drift due to the probes them-

selves in addition to some net mass transport which may change the

basic density structure.
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The experimental results show that the internal disturbances

are mainly first mode due to the following reasons. (1) The higher

modes have a phase speed much smaller than the velocity of the lead-

ing wave, and thus cannot catch up the frontal region in which we are

interested. (2) The horizontal particle position as determined by

dye streaks appeared to be quite asymmetric with depth. (3) Conduc-

tivity measurements are coherent at different depths, indicating that

the vertical velocity at different depth are in phase. (4) Good

agreement shown in table 2 between the experimental results and nume-

rical results (based on the assumption that the lowest mode is the

only energetic mode). Experiment I and 2 clearly demonstrate the

influence of nonlinearity on the generation of waves. An' additional

numerical example is shown in figure 22 to demonstrate the nonlinear

effect by constrasting predictions made from identical initial con-

ditions but with nonlinear coefficients of opposite sign.

Phase Velocity* Wave Period** Wave Length

Experiment 1 2.0 cm/sec. 11 sec. 22 cm.

Numerical Result 2.3 cm/sec. 12 sec. 27.6 cm.

Experiment 3 3.5 cm/sec. 10 sec. 35.0 cm.

Numerical Result 3.8 cm/sec. 10 sec. 38.0 cm.

Table 2.

* The propagating velocity of the leading wave peak.

** The time interval between the first and second wave peaks.
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The discrepancy in the phase speed between the experimental and

numerical results may be partially explained by the following reasons.

(1) The initial condition used in the numerical calculation is obtain-

ed by approximately matching several sinusoidal curve to the experi-

mental trace measured at probe A in a way that the first derivative

is continuous. The resulting error will influence the phase speed

through the dispersive effect. (2) Due to truncation error, f (see

equation $.37)) is not exactly conserved; the percentage error grows

with time, i.e., 5.1% at probe B, and 8.8% at probe C (experiment 1);

1.5% at probe B, and 2.7% at probe C (experiment 3). (3) Accurate

measurement of the density profile was quite difficult due to the

relative precision of the refractometer, the smallness of the vertical

density gradient, and the small depth of the fluid layer. The esti-

mated error in Cp could be at least ± 5%. (4) Although viscous forces

do not change the phase speed in linear wave theory, viscous damping

by decreasing the wave amplitude influences the phase speed through

the nonlinear effect. Since the wave amplitudes generated in the

laboratory experiments are typically small, i.e., a/D- 0.1, viscous

damping is probably negligible. (5) The neglect of higher order terms

in the governing equation.
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(3) Generation of wave trains in Massachusetts Bay.

The generation of a wave train from an initial front has already

been discussed. However, the situation in Massachusetts Bay is quite

different. First, the boundary conditions can not be considered cons-

tant as in the previous cases, thus periodic boundary conditions must

be used and periodic solutions sought. However, in order to save

computing time, we are going to calculate only the most interesting

region, i.e., the region around the front. Second, the amplitudes of

the front and waves are so large (almost 10 m), and the vertical

characteristic length D is only 15 m (almost all variation of basic

density occurs in the upper 15 m of the total depth in Massachusetts

/om 26
Bay), that the nonlinear parameters = -/ 0.33 The disper-

sive parameter S= (D/e f changes from 1/600 at Stellwagen Bank to

0.1 at station T while the characteristic horizontal lengthP_ changes

from 400 m to 50 m. This decrease in P is caused by the nonlinear

steepening of the front.

Since the nonlinear parameter E is so large, order ( ) terms

must be added to the governing KdV equation,

-* ETJ +[s7 + 2 = 0. (33)

The generation of wave trains in Massachusetts Bay can be mainly di-

vided into two stages (1) The nonlinear parameters f and c are in-

itially both much greater than the dispersive parameter , so that

during the initial period of nonlinear steepening of the blocking



83.

front, we may neglect dispersion and deal instead with the appro-

ximate balance

Equation (f4f implies that will keep constant following the

characteristic velocity < Thus the

dispersive parameter must increase quickly with time. (2) When the

dispersive parameter f becomes comparable to , new waves start

to form. Then (D/e)= & implies g~ 50 m and the length of the

front is approximately 100 m. At this stage (t = TO), we have to

solve the initial value problem numerically. The finite difference

analogy to equation (313?) is obtained by adding to equation (3 7f the

nonlinear term proportional to .

Since the cold front will be flattened by the nonlinear effect

and does not lead to wave generation, we will only analyse the region

around the warm front. For t = To + 42 min., waves have already been

formed behind the front (figure23). If permanent waves are formed

at the front, the only solution is a solitary wave. Assuming the waves

at Massachusetts Bay are solitary internal waves, the following table

shows the nonlinear effect on phase velocity.

Long Wave Dispersive Effect + Wave Speed
Speed Nonlinear Effect

Solitary Wave 0.41 m/sec. +0.12 m/sec. 0.53 m/sec.

Linear Wave -0.06. m/sec. 0.35 m/sec.
(Halpern's) 0.41 m/sec.

Observation 0.88 + 0.22
(Mass. Bay) - m/sec.
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For the wave length, linear wave theory gives 158 m corresponding

to Halpern's observation of 200 m. The numerical calculation for the

second stage shows that the "wave length" is 172 m (figure 23), however,

it is well known that these solitary waves will gradually separate

away from each other (Pregrine, 1966), so it is only a matter of time

(e\--/ 52 min.) for the "wave length" to become 200 m. This implies

that the distance between station T and the point (corresponding to

t = TO) is approximately (42 min. + 52 min.) x 60 sec/min x 0.53 m/sec

s 4 km. Another numerical result shown in figure 24 shows the gene-

ration of waves from a periodic disturbance similar in shape to that

observed in Massachusetts Bay.

The relevant parameters (see figure 5) in Massachusetts Bay are

A/H = 0.63, L/H = 106, f/N = 0.0073, and Fi = 0.26. The nonlinear

coefficient R = -2.1, the dispersive coefficient S = 0.72, and the

long wave speed C = 1.14. All calculations presented in this section

are based on the mean density structure observed in Massachusetts Bay

in July, 1966 by Halpern (1971). The observed density profile and its

(oO)
corresponding first mode zero order eigenfunction C ) are shown

in figure 25.
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4. Quasi-steady Lee Waves 88.

The essential assumption of the quasi-steady approximation is

that parameters characterizing the waves are slowly varying over a

characteristic wave period. If this variation is slow enough then

the waves must locally closely approximate periodic plane waves.

The basic range of appliability of the quasi-steady approximation

then depends on how accurately real waves systems correspond to

periodic plane waves locally.

We assume that a low, smooth ridge is towed horizontally with

a volocity U(t) in a density stratified fluid layer. The equations

of motion and continuity are when transformed into a coordinate sys-

tem moving with the ridge,

LJj 26/,-

0~ 420

The above system can also be transformed into the system (x', z', t)

which is fixed in relation to the mean current U(t), using the follow-

ing transformation



t
x=x- U(9) do

So that the governing equations become

the mean current,

in this system moving with

41_ tt

at _

~~LL- 'tJ - ~/ '0

'-' -

(4.7)

(4)

After this transformation, we see that the only difference intro-

duced by a non-steady mean current is the addition of the body force

1U)t) . Thus if 1LJ t is neglected by assumption of the quasi-

steady approximation, we can treat the time dependent current as lo-

cally steady at any instant. For convenience in the following ray

theory analysis, we will consider our coordinate system to be fixed

89.

-U(t)-
b 7t' bX

mw
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with respect to the mean current. However, we can and will easily

transform our results back into the system fixed with respect to the

ridge using transformation (45), since this latter coordinate system

more easily describes the field measurement in which the ridge is at

a fixed position.

It is well known from linearized wave theory that the wave

number k and frequency u) will change according to certain conserva-

tion relations. Assume W and k are derived from a phase function

by the following equations,

The wave parameters w and k must satisfy the dispersion relationship

6t) = ~ (i~ (x', D, 7C(2(, z~)) (4.1/)

where f (x, t) is a parameter involving the local properties of the

medium. The variation of 60 and k are then governed by the following

two equations,

dt x

where - C and C is the group velocity, defined

by

It is well known that the energy of a wave packet is affected by in-

teraction with a non-uniform mean flow. Guided by earlier work by
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Whitham (1965), Bretherton and Garrett (1967, 1968) have proved that

for a wave packet in'a moving and/or time dependent medium, the

quantity E/W/ satisfies the following conservation equation

where W = - kU is the frequency of the waves measured in a frame

of reference moving with the local mean velocity U of the medium.

The wave energy density E is also measured in this frame of referen-

ce.

For quasi-steady internal waves in a time-dependent mean current

U(t), the dispersion relation is simply

L- eL(e) 110 4()).

Introducing (/) into (///3), we have

where {4), {-;/). Equation (;/3) implies that k is constant

following the characteristic line - ,where W)

will change according to

t -

We now multiply (9/) by U(t) and substract from (;/() to get

(C 4 ) ()(,/17)

This result (/f./7) implies that the quantity ( 4d-&I/) rather than U)
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is conserved along the characteristic Li . Thus, along

the characteristic line -t + LJ , equation (4.15) and (4.17)

show that the energy density will remain the same as if there is no

mean current U(t), so if a energy density peak curve is formed in the

frame fixed with the mean current U(t), it will also occur in the frame

fixed with the ridge.

It is well known that a stationary internal wave train may be

generated on the lee side of a submarine ridge in a steady, density

stratified mean current (Long [1953, 1954, 1955], Yih [1966]). How-

ever, we do not know the evolution of the flow when the mean current

starts from rest. In this chapter we will analyse some simple time-

dependent phenomena of lee waves with the assumption that the time

derivative of the mean current is so small that the equivalent body

force term in equation (4.6), Ia/,tJ , can be -entirely neglected.

We then-consider the lee waves as "quasi-steady" and treat the mean

current as steady at any instant. The application of this "quasi-

steady" analysis may be useful in explaining the internal wave trains

generated by a low submarine ridge in a tidal flow, since the tidal

period is generally much longer than the lee wave period. We choose

to examine lee waves generated by a low ridge, since a high ridge

prevents lee waves from propagating over the ridge and may cause

waves to break.

Since the acceleration of the mean current is neglected in our

analysis, ray theory can be used to interpretate these quasi-steady

lee waves. Linear theory predicts that the wave energy propagates

with the group velocity. In the experiments we find that the number
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of lee waves gradually increases as the ridge starts to move, indi-

cating that energy gradually propagates away from the ridge by means

of these quasi-stationary waves. Since the phase velocity of the lee

waves is identical to the velocity of the ridge, we conclude that the

lee wave group velocity must be smaller than the phase velocity.

However, we will now show that this is a general property of internal

waves. In a x - t diagram, the moving ridge can be treated as a wave

source which emits energy, with the energy propagating away from the

ridge along rays whose slope equals the lee wave group velocity. The

variation of the distance between two adjacent rays is proportional

to the inverse of the energy density in space; thus, the formation of

an energy density peak is quite possible as the lee wave group

velocity decreases in time.

The dispersion relationship for lii arized internal waves in a

linearily stratified fluid. contained he': een two horizontal rigid

boundaries is

2?27

where N is the constant Brunt-Vaisala frequency, H is the total depth,

n is the vertical mode number, and O0 and k are the wave frequency

and wave number. The phase velocity is

A / A- (.)
.1 /2'

and group velocity is
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buA) _ __V H_ /
- ( /

Since 0 is always smaller than N for internal waves, the maximum

magnitude of Cp and C is NHI/ITL (corresponding to the longest wave).

From (/) and ( we have

This relationship means that the group velocity of an internal mode

is always smaller than the phase velocity, the equal sign applying

only in the limit of infinite wave length.

For lee waves, we have an additional relationship

k)=- LI, 6.22)

where U is the velocity of the moving ridge. From (W4/) and (1 .),

we can solve for the two unknowns, k and C , finding that

121)

ZH -

where the (-) sign is for negative U and (+) sign is for positive U.

Thus, both the period and the wave length increase as the velocity

U increases. The maximum U, however, has to be smaller than NH/?7[

in order to keep both k and &&) real, since no wave may propagate in

phase with a ridge moving faster than the maximum internal wave phase
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speed. Introducing ( ,.79) into (jo) then yields

/vH

Equation (6a4) implies that the wave energy propagates in space with

a velocity proportional to the cubic of U, and that the wave energy

propagates away from the ridge with the velocity CE ,

C E = 0 for extremely long waves, and the energy begins to accumulate

around the ridge. However, this is also where lee wave theory breaks

down.

The wave energy propagates in x - t space along the characte-

ristic lines

JO UO) doa-t

where to is the time at which the wave is generated at the wave

source (the moving ridge). In our reference frame fixed with the

mean current, these characteristic lines are simple straight lines.

For stmplicity, we write (f4W) in the following form

X S XsC ) -t C (t ' (t-t), < '2v
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where xs = /J(L9)o9 is the position of the moving ridge. Differen-

tiating (;) with respect to to we have

_-_|- -C (X--

Here we treat t as a dependent variable and x, and to as independent

variables. Note that U = .5 0 . The energy density E is defin-

ed as

. 'o-

where EO-Axs is the total energy emitted by the wave s6urce as it

moves a distance AXs . Equation (,3o) is a simple relationship of

energy conservation. Since the energy travels along the rays, we may

assume that E is the energy contained between two adjacent rays sepa-

rated by a distance aX. Since

x /3y

conservation of energy requires

Li(to) __(3)

In the limit as .6- 0, we may use {{.,7) to obtain

E- =JL (t - O * /.3t' o " C (.) - C (t,)L(t) -X
d ,-0 * .D
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The curve of the energy density peak is obtained by setting the de-

nominator of (433) at zero. If xp and tp denote the x - t position

of the energy density peak, then

c~ Li

Using (j;//), we have

C -0

By eliminating to from (34) and (f3f), we may arrive at a single

equation for xpand tp , but in general the procedure is not easy.

Since U > Cg for internal waves and the formation of the energy den-

sity peak is possible only when the rays are convergent ( 0),

xy5> x. and tp > tealways. For lee waves, we introduce (faf into

(49 and (/f$) to get

72'L Uj UL 61)

If U sin) t 0

S to

We then have
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tP ~34)&, t fot

A typical curve of the energy density peak is shown in figure 26.

From (/3j), it is obvious that no energy density peak is observed if

the distance of the observation site from the mean location of the

ridge is greater than xs'

Now we will analyze the envelope of the lee wave trains that

are found far away from the ridge. The amplitude of the waves when

they are generated, i.e., the energy density EO at x = xs, is assumed

known. Using linearized theory and the Boussinesq approximation,

we have

V2 -LP = 0 , O'1*o)

where (/Jis the perturbation stream function, U is the steady velocity

of the mean. current, and the density is fP= f((-/-). The second

term in (4,37) is ordinarily very small. If the vertical length scale

is H, the ratio of the second term to the last term is O(UgH):z:: ef2

where E is the nonlinear parameter and d' is the fractional change

in mean density over H. By neglecting the second term and putting

9 = N 2, we have
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Figure 26 . The rays and the energy density peak curve generated by a
quasi-steady, periodic moving ridge.
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Since{= U5 , where is the deflection of stream line, (fjg) can

be transformed into the following form:

2 v2

The boundary conditions are

Using the standard Fourier transform theory, we get

(V 1

7'2 -e Hd

The disturbance generated by the moving ridge comprises the near

field, which fades rapidly away from the "source", and the far field,

which consists of an internal gravity wave. These wave solutions

are due to the contributions from the poles of the integral (4./)

on the real axis of k. These poles are

__2 2 /2
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where m is the largest integer such that k remains real. These poles

which satisfy the lee wave dispersion relation (.,23) give rise to

the following contributions,

Thus, for a fixed vertical mode number n, the wave amplitude P(t)

increases as U(t) increases according to

Equation (*4f) shows that for an arbitrary mode n, the amplitude

approaches zero as the mean current U(t) approaches zero. However,

for a constant U(t), the amplitude increases with the mode number n.

In the limit U(t)-+0, infinite modes may be generated by the moving

ridge, however, the amplitude 0(t) approaches zero in this limit,

because there is no energy to supply the generating mechanism. Our

experimental results show that the internal waves generated by a

low oscillatory ridge are mainly of the first mode. Thus at a fixed

observation station well away from the ridge, we find that these

internal wave trains are characterized by a relatively large araplitude

first wave followed by several of decreasing size (figure 27, 28 & 2.3).

In a field experiment, the observation is made at a station fix-

ed relative to the submarine ridge. Thus, in the x - t diagram, the

position of the observation station is ?(t 0)= Xs(t0 1 Xo ,
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Figure 27. Quasi-steady lee wave trains: RA - 57.5 cm, L = 55 cm, T - 76 sec,
N = 0.1 cycle/sec, A = 2.3 cm, W = 12.5 cm, and H - 12.5 cm.
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Figure 2 S. Longer period quasi-steady lee wave trains: RA = 60 cm, L = 100 cm,
T = 135 sec, N = 0.1 cycle/sec, A = 2.3 cm, W = 12.5 cm, and

H = 12.5 cm. Lower record is simple a continuation of upper record.
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Figure29, Measurements of the displacement of streamline at
the energy density peak curve at x = 1L/8 and
x = 1L/4 corresponding to figure 26.
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where xo is the constant distance between the ridge and the station.

This curve intersects the rays at some different points instead of

at the points which correspond to the previous analysis for a station

fixed in relation to the mean current. The frequency difference due

to the relative motion of the reference frame is simply kU(t), where

k is the wave number, which is invariant in a time-dependent mean

current U(t). Part of the energy will be reflected as these waves

propagate across the ridge. For a low smooth ridge, the transmission

coefficient is approximately one, as can be shown using W.K.B.

approximation (Bremmer [1951]).
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During the experiments on quasi-steady lee wave generation,

mixing was observed around the moving ridge. Although the mixing

process was generally weak, its accumulative effect was appreciable.

The influence of the mixed fluid was seen not only around the ridge

but also at a distance from the ridge. In order to separate mixing

from internal wave phenomena, a "mixer" was made using a high ridge

which moved horizontally over a short excursion at a high frequency

fa (f, > N). The mixed fluid was found to flow horizontally away

from the "mixer" along its neutral buoyancy level like a horizontal

wedge, causing the unmixed fluid to flow back in two shear layers

at the top and the bottom of the ridge, as shown in figure 30, and to

increase the mixing process near the ridge. These shear layers

delineated the density difference which could be observed from the

salinity conductivity probes (see figure3 ).

The energy source of this system came from the moving ridge

(or mean current in the ocean). This energy was transfered to the

fluid by increasing the potential energy through mixing (Turner,

1966). The density discontinuity along the interface between the

mixed and unmixed fluid generated a pressure gradient (Mei, 1969)

which pushed the mixed fluid away from the mixing "source". The

walls of the tank force a vertical and horizontal recirculation of

the unmixed fluid as required by continuity of mass.

The fluid motion may be classified by the following regions,

the interior region, the mixing region, and the shear layer zone,

as shown in figure30. We will now examine these different
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(A) (B)
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- -.--. --- -;Neutral
- -o levelI

t-16

K X(t) --4
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Figure 30. (A) Photograph showing formation of mixed fluid
region (colored here by dark KMnO 4 dye). (B)
Photograph of horizontal velocity profile. (C)
A sketch of the experimental results showing the
shape of the mixed fluid region, shear layers,
and stream lines.
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Figure 31.

50 75 100 125 150
t (sec]

Typical density variations from the experimental results on mixing
which show the formation of density jump: (A) Below the velocity
shear layer (z = h ). (B) Inside the shear layer. (C) Above the
shear layer.
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schematic regimes separately.

A. Interior Region:

The motion of the fluid in this region is quite similar to the

slow motion of a solid body in a density stratified fluid (Foster and

Saffman, 1970). The governing equations of the interior region are

t 2 bX

= 0 (.f-3 )

The neglect of the diffusion term in (5.2) is due to the very large

Peclet number ?e - >> / , where ho is the vertical charac-

teristic length, L is the horizontal characteristic length, K is the

diffusivity of salt, and U is the typical horizontal velocity. Equa-

tions (5.3) and (5.4) are results from the hydrostatic approximation.

From (5.3) and (5.4) we have

f =f( 2, t )'(-)



Equations (f.) and (5.A) imply

From (5,/) and (5.7) , we have

(1-~ t) XKS-

The boundary condition at the end of the tank is

(U =0 az X = L- . a

The equation of the interface between the mixed and stratified

fluids is

X = t (2, t ) 
-

Then for a particle which remains on the interface,

( x - %(,t ) = 0

or

(f./)

Equation (5?) and (3.4) imply that

LL~=(LX) 1c

Equations (f/o), (.//), and 6/2) imply that

t W ~ (L )
(3-3)

= 0 (;/

110.

)

(3$ /2)

(f.Nf)
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The solution of (f./ is

C (6

(g. /f j7

Due to vertical symmetry of the steady flow, the vertical velocity

has to vanish at the neutral buoyancy level, i~e.,

at 2 -= . (;/)

Equation (./1) then implies

/ '
zFes

For reasons which will become clear in the nc&t: section, we will choose

V=xY
We then find

L 0 - (z)(M 2 p)

- (t-)(L -i )S=(/- x) - -1 I /- f

(L~.KY~

Z2 -7 (t?2 -Z? 92) -

wrT =

and

(f./f)

Ka , utfs)t( t- /-

(S-- /?~)

Y6 C/ a
/ - Y-
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From (f.2) and (f./4), we have

along the characteristic lines.

The characteristic lines and streamfunction respectively are given by

d2 Y( _- 412 - )

ZJ /3 7)

Since both diffusion and viscosity are neglected in the analysis

of the unmixed fluid region, discontinuities such as density jumps

and velocity shear layers cannot be avoided. The regions z >ho

remain stationary because of the end walls, so -that internal boundary.

layers form to close the recirculation. These fully nonlinear viscous

layers help to reduce the vertical velocity to zero, make the density

continuous, and carry the backward mass transport. The boundary

layers at the end wall reduce the vertical velocity to zero, while

the boundary layers at the interfaces between the mixed and unmixed

fluids smooth out the density jumps and velocity discontinuities.

Further discussion of these boundary layers (with the exception of

the interfacial layer) is given by Foster and Saffman (1970). -

B. Mixed Region:

The motion of this fluid is complicated. To simplify the situ-

ation, we neglect the ttirbulent motion and weak density gradients ina

side the mixed region and liken the case to the collapse of a homo-
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geneous fluid mass in a density stratified fluid (Schooley and

Stewart [1963], Jin Wu [1969], and Mei [1969]). The important

difference of the case considered here is that newly mixed fluid is

continuously generated by the moving ridge. Assuming the length of

the horizontal axis of the mixed fluid X (t) is large and the dri-

ving pressure gradient is small, we may again use a quasi-steady

approximation, provided that L is so large that the constant Brunt-

Vaisala frequency of the unmixed fluid stays constant in time. The

governing equations are then

X/~ 7fZYJ -4 -7

Guided by the experimental results, the following horizontal column

solution is assumed

ZA)~ = , O'.3)

(L = f , t ), (-9

f being a function to be determined later. From (1.2o), (f.2/), (f,23),

and (5.2f), the horizontal momentum equation becomes

Equation (.l2) means that the driving pressure gradient along the inte

terface between the mixed and stratified fluid is balanced by the

viscous force, where f is the height of the interface from the
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neutral level and o( is the square of the constant Brunt-Vaisala

frequency of the stratified fluid.

In order to satisfy (-23), f(z, t) must assume a certain form.

Since is only a function of x and t, and o( is a constant, this

implies

with A(t) and B(t) to be determined. The two boundary conditions for

the mixed fluid are

x

Although the mathematical forms of the boundary conditions are very

simple, their correct physical interpretation is very important. It

is well known (Kato and Phillips, 1969) that mixing causes vertical

entrainment in a stratified fluid, and the height of vertical en-

trainment depends crucially on the strength of the mixing process.

Thus $ in (52f) represents the strength of the mixing process around

the ridge, where the boundary condition ("-27) means that the tip of the

mixed fluid region has to be at neutral buoyancy level.

It is obvious that there should be a close relation between

and the horizontal speed {4(t) of the tip ( ? =0). From (..2),

(2), and (.2f), we have



~~ (do () A (t) lx

- Uo (t) A ()zt)-x01C

By introducing (.2g) into we have

* 4.../ A (t ) )

we will now

Introducing

17-=

determine the two arbitrary functions A(t) and B(t).

(n0o) into (S..2 yields

( .3 /)
~Xi Ct)

(. .2 )X Y (L-) - 2
-/0 2

This result plus qualitative experimental evidence suggested the

form used in the previous section for g(z, t). However, from (.2,

has to satisfy the following relation

fL

4 

,( 
' d

) 1
C.n3)

By comparing (f.32) and (f, we see that

115.

),

(- 3o)
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BCE) = ( ~3Y)

Equation (.3//) is an expected result since we have a symmetric flow

with respect to z = 0. The solution to the integral equation (33)

is

Introducing ('.i into (5.//) then yields

This is a very important relationship between the strength of the

mixing process and the horizontal collapse speed. The physical

interpretations of (.37) are as follows.

(a) Ua(t) is proportional to the fourth power of he,; thus

U, depends crucially on the strength of the mixing

process around the ridge.

(b) U0 (t) is proportional too( , which is expected since

large o( means a large driving pressure gradient along

the interface.

(c) Uo1(t) is decreased by an increase in visco sity .

(d) Ub(t) is proportional to 1/3(t), because as X(t) is

increased, the driving pressure gradient is decreased.

Other quantities are



117.

(X> .2 0: .31)
2Ko

4 /

In order that the above theory may be easily compared with experimental

results, (5.40) has to be modified to avoid the sigularity at t = 0.

Integrating (5.37) with respect to t, we have

x (t) = [ x| + " ( - to) ] &-+.2K'

where xo= x(t) t=to*. We have initially assumed in this theoretical

development that xo>> h, . The results of a typical mixing experiment

are compared in figure32 for xo/ho= 6.3 with theoretical curves

predicted usin8 (5.41). The rough agreement suggests that the effective

viscosity coefticient in the mixing region is of order 1 cm2/ sec (at

least 102 times the molecular value).

Since the quasi-steady approximation and the assumption of cons-

tant oC do not accurately apply to these experiments, the theory and

experimental results agree only qualitatively. The introduction-of

rotation would make this problem more interesting (Walin, 1969) and is

worthy of further investigation.
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Figure 32.. The cross points represent the observed trajectory of the tip of the mixed fluid
region in a typical mixing experiment (h,= 3.8 cm, CC= 0.75) where the solid
and dash lines represent the theoretical results computed for different
viscosity coefficients with x = 24 cm.
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6. Conclusion

The experimental results and numerical calculations have already

demonstrated that nonlinearity is very important in the generation

of long nonlinear internal gravity waves from a local isolated inter-

nal disturbance. While wave dispersion in surface and internal waves

is similar, a major difference between long surface and internal wave

theories is that the basic density stratification of the fluid can

even change the sign of the nonlinear effect for internal waves. Thus,

an internal solitary wave may exist for both an initial elevation or

depression of the stream lines, whereas surface solitary waves exist

for only an initial surface elevation. Assuming that the fractional

change in the basic density over the vertical characteristic length

is small (use Boussinesq approximation), it is found that an internal

warm front or depression (corresponding to the first mode) tends to

steepen in a typical seasonal thermocline, and long nonlinear internal

wave trains will be generated on this depression due to the dispersive

effect of the sharp front. A comparison of Halpern's temperature

observations in Massachusetts Bay and our numerical results shows that

a fully nonlinear model does give accurate estimates for the observed

sharp warm front, the'phase speed and the wave length of these internal

waves. The finite amplitude effect vanishes identically to first

order approximation for a linearity stratified fluid of constant

Brunt-Vaisala frequency, which is often used. Inclusion of the non-

Boussinesq term simply reduces the phase speed of the internal waves.
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We should also point out that temperature observations made in

the Straits of Gibraltar by Ziegenbein (1969, 1970), also suggest

the presence of long nonlinear internal waves even though the water

depth is not small in comparison to a typical wave length. This may

be because the thermocline depth rather than the total water depth

becomes the appropriate vertical characteristic length (Benjamin,

1967). A time-dependent KdV equation for this case is under investi-

gation at present.

The experimental results for quasi-steady lee wave trains agree

only qualitatively with ray theory, possibly because the excursion

of the oscillating ridge is not really large enough in comparison to

the wave length of the lee waves. The lee wave regime is bounded by

several limits (mixing, blocking, and the maximum long internal wave

speed). A possible application of this ray theory is to explain some

small-amplitude internal wave trains which occur without significant

mean level change in a semi-diurnal tidal flow.

The mixing phenomena due to the moving ridge, which can be

replaced by any other "mixer", is worthy of further investigation.

Our analysis of a very simple model shows that the "mixer" is not only

the source of the mixed fluid but also the sink of the unmixed fluid.

The resulting circulation set up by the "mixer" causes internal.

density discontinuities and high velocity shear layers. The final

steady state is that all the fluid below (approximately) the height

of the top of the ridge will become homogeneous, and diffusion will

gradually decrease the subsequent density jump. The summer vertical

temperature profile in Massachusetts Bay seems to give a good proof
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of this limiting case.



122.
Acknowledgements

I am very grateful to Prof. Robert Beardsley and Prof. Peter

Rhines for their excellent guidence, their moral support, their

patience to listen, and their willingness to comment during this

study. I would also like to thank Prof. Norman Phillips for his

instructive suggestions and for letting me read his unpublished

research work on quasi-steady lee waves. I thank Prof. C. C. Mei

for his many valuable suggestions and comments and Prof. Erik

Mollo-Christensen and Dr. William Simmons for many helpful discussions.

I gratefully acknowledge the assistance of Prof. Carl Wunch and

Dr. David Cacchione for letting me use their wave tank and probes.

I greatly appreciate the skilled technical assistance given by

Mr. Edward Bean of the departmental machine shop during the

construction of the experimental apparatus. Shian-yun, my wife made

many sacrifices (including her own graduate study) to be a wife of

a graduate student. In addition, she typed the first and final

draft.

This study was supported by the Office of Naval Research under

contract NONR 1841(74).



References 123.

Airy, G.B., 1845, Tides and waves. Encyclopaedia Metropolitana,

Vol. 5, London

Benjamin, T.B., and Lighthill, M.J., 1954, On cnoidal waves and

bores. Proc. Roy. Soc., A224, 448

Benjamin, T.B., 1966, Internal waves of finite amplitude and

permanent form. J. Fluid Mech., 25, 241

Benjamin, T.B., 1967, Internal waves of permanent form in fluids

of great depth. J. Fluid Mech., 29, 559

Benney, D.J., 1966, Long nonlinear waves in fluid flows. J. Math.

Phys., 45, 52

Bremmer, H., 1951, The WKB approximation as the first term of a

geometric-optical series. Communications on Pure and

Applied Mathematics, Vol. 4

Bretherton, F.P., 1968, Propagation in slowly varying waveguides.

Proc. Roy. Soc., A302, 555

Bretherto-:, F.P., and Garrett, C.J.R., 1968, Wave tra.ins in

inhomogeneous moving media. Proc. Roy. Soc., A302,

529

Cacchionc, D.A., 1970, Experimental study of internal waves on a

slope. Ph.D. Thesis, Massachusetts Institute of

Technology and Woods Hole Oceanography Institution

Foster, M.R., and Saffman, P.G., 1970, The drag of a body moving

transversely in a confined stratified fluid. J. Fluid

Mech., Vol. 43, 407

Gibson, C.H., and Schwarz, W.H., 1963, Detection of conductivity

fluctuations in a turbulent flow field. J. Fluid Mech.,

16, 357

Halpern, D., 1971, Observations on short period internal waves in

Mass-,chusetts Bay. J. of Marine Research, 29, 116



124.

Howard, L.N., 1961, Note on a paper by John W. Miles. J. Fluid

Mech., 10, 509

Kato, H., and Phillips, 0.M., 1969, On the penetration of a turbu-

lent layer into stratified fluid. J. Fluid Mech., 37, 643

Korteweg, D.J., and DeVries, G., 1895, On the change of form of long

waves advancing in a rectangular canal and on a new type

of long stationary waves. Phil. Mag., Series 5, 39, 442

Lemoine, R., 1948, Sur les ondes positives de translation dans les

canaux et sur ressaut ondule de faible amplitude.

La Houille Blanche, No. 2 Grenoble

Lighthill, M.J., 1967, Waves in fluid. Communication on Pure and

Applied Mathematics, 20, 267

Long, R.R., 1953, Some aspects of the flow of stratified fluid,

1: A Theoretical investigation. Tellus, 5, 42

Long, R.R., 1954, Some aspects of the flow of stratified fluid,

2: Experiments with a two-fluid system. Tellus, 6, 97

Long, R.R., 1955, Some aspects of the flow of stratified fluids,

3: Continuous density gradient&, Tellus, 7, 341

Long, R.R., 1965, On the Boussinesq approximation and its role in

the theory of internal waves. Tellus, 17, 46

Long, R.R., 1970, Blocking effects in flow over obstacles. Tellus,

22, 471

Madsen, O.S., Mei, C.C., and Savage, R.P., 1971, The evolution of

time periodic long waves of finite amplitude. J. Fluid

Mech., 44, 195

Mei, C.C.,'1969, Collapse of a homogeneous fluid mass in a strati-

fied fluid. Proc. 12th Intern. Congr. Appl. Mech.

(Berlin: Springer), 321

Mei, C.C., and Unluata, U., 1971, Harmonic generation in shallow

water wave, paper presented by Mei at "Advanced seminars

on waves on beaches", University of Wisconsin



125.
Miles, J.W., 1961, On the stability of heterogeneous shear flows.

J. Fluid Mech., 10, 496

Oster, G., 1965, Density gradients. Sci. Amer., 213, 70

Peregrine, D.H., 1966, Calculations of the development of an undular

bore. J. Fluid Mech., 25, 321

Phillips, O.K., George, W.K., and Mied, R.P., 1968, A note on the

interaction between internal gravity waves and currents.

Deep Sea Research, 15, 267

Rayleigh, Lord, 1876, Phil. Mag. Ser. 5, 257; Papers, 1, 251.

Cambridge University Press

Schooley, A.H., and Stewart, R.W., 1963, Experiments with a self-

propelled body submerged in a fluid with a vertical

density gradient. J. Fluid Mech., 15, 83

Scott, R.J., 1837. Rep. Brit. Ass., p-417

Scott, R.J., 1844. Rep. Brit. Ass., p-311

Stokes, G.G., 1880, Papers, 1, 197-229, 314. Cambridge University

Press

Stokes, G.G., 1847, Trans. Camb. Phil. Soc., 8, 441

Turner, J.S., and Kraus, E.B., 1966, A one dimensional model of the

seasonal thermocline. I. A laboratory experiment and its

interpretation. Tellus, 18, 937

Walin, G., 1969, Some aspects of time-dependent motion of a strati-

fied rotating fluid. J. Fluid Mech., 36, 289

Whitham, G.B., 1965, Nonlinear dispersive waves. Proc. Roy. Soc.,

A283, 238

Whitham, G.B., 1965, A general approach to linear and nonlinear

dispersive waves using a Lagrangian. J. Fluid Mech.,

22, 273

Wu, Jin, 1969, Mixed region collapse with internal wave generation

in a density stratified medium. J. Fluid Mech., 35, 531



126.

Yih, C.S., 1965, Dynamics of nonhomogeneous fluid. New York

Macmillan

Zabusky, N.J., and Kruskal, M.D., 1965, Interaction of "soliton"

in a collisionless plasma and the recurrence of initial

state. Phyaical Review Letters, 15, 240

Zabusky, N.J., 1967, Synergetic approach to nonlinear wave problems

(nonlinear partial differential equation, edited by

Ames, W.F.) Academic Press, New York



127.

Biographical Sketch

The author was born on June 6, 1942 in Szuchung province, China,

and raised in Taiwan. He received a B.S. degree in civil engineer-

ing from Cheng Kung University in June 1964, and a M.S. degree in

geophysics from the Institute of Geophysics, National Central Univer-

sity, in June 1966. He served for one year in the chinese military

service before entering M. I. T. in September 1967. He married the

former Shian-yun Yao in Cambridge, Massachusetts, in 1969.


