
Human-Automation Collaboration in Occluded Trajectory Smoothing

by

Jason M. Rathje

S.B. Aerospace Engineering
Massachusetts Institute of Technology, 2010

Submitted to the Department of Aeronautics and Astronautics
in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics
at the

Massachusetts Institute of Technology

June 2010

@2010 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:

Certified by:

MASSACHUSETTS INSTTUTE
OF TECHNOLOGY

JUN 2 3 2010

LIBRARIES

Ar:5=

/ L- Jason M. Rathje
Department of Aeronautics and Astronautics

May 21, 2010

1'
Associate Professor of

M.L ummings
Aeronautics an stronautics

Msis Supervisor

/ I

Accepted by:
Eytan H. Modiano

Associate Pro ssor of Aeronautics and Astronautics
Chair, Committee of Graduate Students

,-I I .



This Page Left Intentionally Blank



Human - Automation Collaboration in Occluded Trajectory Smoothing

by

Jason M. Rathje

Submitted to the Department of Aeronautics and Astronautics

on May 21, 2010, in partial fulfillment of the requirements for the degree of

Master of Science in Aeronautics and Astronautics

ABSTRACT

Deciding if and what objects should be engaged in a Ballistic Missile Defense System

(BMDS) scenario involves a number of complex issues. The system is large and the

timelines may be on the order of a few minutes, which drives designers to highly

automate these systems. On the other hand, the critical nature of BMD engagement

decisions suggests exploring a human-in-the-loop (HIL) approach to allow for

judgment and knowledge-based decisions, which provide for potential automated

system override decisions.

This BMDS problem is reflective of the role allocation conundrum faced in many

supervisory control systems, which is how to determine which functions should be

mutually exclusive and which should be collaborative. Clearly there are some tasks that

are too computationally intensive for human assistance, while other tasks may be

completed without automation. Between the extremes are a number of cases in which

degrees of collaboration between the human and computer are possible. This thesis

motivates and outlines two experiments that quantitatively investigate

human/automation tradeoffs in the specific domain of tracking problems.

Human participants in both experiments were tested in their ability to smooth

trajectories in different scenarios. In the first experiment, they clearly demonstrated an

ability to assist the algorithm in more difficult, shorter timeline scenarios. The second

experiment combined the strengths of both human and automation to create a

human-augmented system. Comparison of the augmented system to the algorithm

showed that adjusting the criterion for having human participation could significantly

alter the solution. The appropriate criterion would be specific to each application of this

augmented system. Future work should be focused on further examination of

appropriate criteria.

Thesis Supervisor: M.L. Cummings

Title: Associate Professor of Aeronautics and Astronautics
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1. Introduction

This chapter addresses the motivation for research into occluded trajectory smoothing.

In this thesis, occluded trajectories, or incomplete trajectories that contain gaps, will be

considered in the context of radar tracks in the Ballistic Missile Defense System (BMDS).
However, such trajectories can be encountered in a number of other areas of tracking

problems such as satellite tracking or air traffic control. This chapter first addresses

particular issues involved in the BMDS that motivated this research and how these

issues might be addressed by a collaborative effort between humans and automation.

Next it presents the problem statement and the four research objectives addressed in

this thesis. A brief description of the subsequent chapters concludes the introduction.

1.1. Motivation

The basic function of the BMDS is to protect a designated area, such as the continental

United States, against ballistic missile attacks. These attacks can be characterized by
scenarios that give launch points, numbers of objects launched, and targets. However,
the number of objects launched may be much larger than the number of available
missiles to defend against them so deciding if and which objects should be engaged

becomes a more complex issue. The system is very large as it has many interconnected
elements and is physically spread over an area that is a significant fraction of the Earth.
The information for such decisions may be incomplete and/or inconclusive, and, given
the enormity of the decision-making task, the timelines may be extremely short. For an
intercontinental ballistic missile, the flight time is on the order of half a hour [1]. The
magnitude of the task and the short timelines drive designers to highly automate these
systems because of the computational speed, repeatability, and high consistency that
automated systems provide. On the other hand, the grave nature of BMDS engagement
decisions suggests exploring a human-in-the-loop (HIL) approach to exploit the
judgment and knowledge-based decisions that humans can provide [2], which could
allow the humans to override automated system decisions when anomalies are
apparent.

This BMDS problem is representative of the role allocation conundrum faced in many
supervisory control systems, which is how to determine which functions should be
mutually exclusive between the human and automation, and which should be
collaborative [3]. There are some tasks that are simply too fast or computationally
intensive for humans to make useful contributions, especially in time-pressured
environments. An example of such a task in the BMDS is real-time target tracking
computations. On the other hand, there are tasks that are tractable by humans in the
available time, and these may be completed without automation or with basic computer



assistance. An example of such a task in the BMDS is in setting defended target
priorities. Between these extremes are a number of cases in which degrees of
collaboration between the human and computer are possible.

Because humans can reason inductively and generate conceptual representations based
on both abstract and factual information, they also have the ability to make decisions
based on qualitative and quantitative information [4]. In addition, allowing operators
active participation in decision-making processes provides not only safety benefits, but
promotes situational awareness and also allows a human operator, and thus a system,
to respond flexibly to uncertain and unexpected events (as opposed to the brittleness of
many algorithms). Thus, decision support systems that leverage the collaborative
strength of humans and automation in supervisory control planning and resource
allocation tasks could provide substantial benefits, in terms of both human and
computer impacts on system performance.

To make these notions of human-automation collaboration more concrete, this thesis
motivates and discusses two experiments that quantitatively investigated
human/automation role allocation tradeoffs in the specific domain of trajectory
smoothing. The need for smoothing occurs when, due to normal processing errors,
trajectories do not appear as continuous curves but as segments and thus create
ambiguity about how the segments should be connected. Computers running predictive
algorithms could be relied upon for proper connection of such track segments.
However, this task has clear vision-based pattern recognition elements, so it is possible
that human operators could perform as well, or better than, the automation. The
possibility that humans can make contributions to these problems has support in a
number of studies which investigated the ability of humans to perceive lines in data
that is incomplete or has the appearance of being occluded [5]. The experiments
assessed how well humans and a specific algorithm, known as the Lincoln Multi Target
Smoother (LMTS), described in Chapter 2, compare in the task of correlating track
segments that offer cases of varying difficulty. The ultimate goal is to determine an
empirically-based rationale for a collaborative human-automation track correlation
decision support system.

1.2. Problem Statement

The problem is to determine the best way to perform the trajectory smoothing task.
Both human and the LMTS, collectively referred to as the decision sources in this thesis,
each have a set of comparative strengths that can potentially be combined to output a
better solution in the track smoothing environment than either acting alone.



1.3. Research Objectives

In order to address the problem statement, the goal of this research is to understand
both human and algorithm strengths and explore the possible areas of collaboration.
This goal is addressed through the following objectives.

* Objective 1. Study the various ways in which LMTS and human participants
smooth trajectories. In order to achieve this objective, the way in which LMTS
operates is investigated. Next, the prior research into the ability for humans to
perceive and interpolate occluded contours was reviewed. This information is
described in detail in Chapter 2.

* Objective 2. Study and assess if human participants can outperform the LMTS
algorithm in smoothing occluded trajectories. Experiment One, discussed in
Chapter 3, addresses whether a human operator, presented with the same data as
the LMTS, can give more accurate, smooth trajectories than the algorithm. The
results from that experiment are given in Chapter 4.

* Objective 3. Analyze to what degree participant confidence correlates with
accuracy in trajectory smoothing. Experiment One also addresses the confidence
that the subjects had in their solutions by asking them to estimate confidence for
each smoothed trajectory. Since confidence may play an important role in an
actual application of this research, it is useful to determine if participant
performance would correlate with confidence. These results are also discussed in
Chapter 4

e Objective 4. Study a collaborative effort between human participants and the
LMTS. Experiment Two, discussed in Chapter 5, was designed to investigate
whether a collaborative effort can produce a better solution than LMTS acting
alone. This experiment builds on the results of Experiment One. The subsequent
results and evaluation of the second experiment are discussed in Chapter 6.

1.4. Outline

This thesis is organized into seven chapters:

e Chapter 1, Introduction, provides the motivation for this research, the problem
statement, and the research objectives.

" Chapter 2, Background, addresses objective one by providing a summary of the
information used to create and interpret the two experiments. It explains
Lincoln's Multi Target Smoother (LMTS) algorithm, discusses how the human



visual system interprets and connects occluded contours, and details possible

areas for collaboration between humans and automation.

* Chapter 3, Experiment One Design, explains the initial experiment design and
addresses the second and third research objectives. It outlines the hypotheses,
participants, apparatus, experimental design, and subsequent testing.

* Chapter 4, Experiment One Results and Discussion, addresses the results of the

initial track smoothing experiment and discusses their implications. The results
are addressed in four categories, missed and false trajectories, accuracy of correct

trajectories, total performance, and confidence. The discussion addresses the two

hypotheses stated in Chapter 3 in the context of the results of the experiment.

* Chapter 5, Experiment Two Design, explains the second experiment's design and

addresses the fourth research objective. It outlines the hypothesis, participants,
apparatus, experimental design, and subsequent testing.

* Chapter 6, Experiment Two Results and Discussion, addresses the results of the

second track smoothing experiment and discusses their implications. The results

are addressed in three categories: missed and false trajectories, accuracy of

correct trajectories, and total performance. The summary addresses the

hypothesis stated in Chapter 5 using the results of the experiment.

* Chapter 7, Conclusions and Future Work, examines results from both experiments

to suggest ways in which human operators can contribute to the track smoothing

task. This chapter summarizes the rationale of a collaborative effort by discussing
the cost and benefits of invoking human assistance in the track smoothing task.
Future work is also discussed.



2. Background

This chapter discusses the background information used to create and interpret the

experiments in this thesis. The Lincoln Multi Target Smoother (LMTS) algorithm, which

is the algorithm that was used in this research effort for connecting and smoothing

contours, is presented first. A contour is defined as a "continuous perceived boundary

between regions of a visual image [6]," which in this case is defined by trajectories. The

chapter then discusses how the human visual system interprets and connects occluded

contours. While the occluded vision field of study is diverse, this research will only deal

with the particular areas that apply to occluded track smoothing problems in

supervisory control domains. Possible areas for collaboration between humans and

automation are discussed in the final section.

2.1. The LMTS Algorithm

Many radars process both signature and metric data. Signature information is

dependent on the tracked object's inertial properties, such as spin about its center of

mass, while metric data are dependent upon kinematic data such as the object's

trajectory. The metric data usually have six dimensions (position and velocity in three

dimensions). In many current algorithms, data are processed sequentially on a pulse-

by-pulse basis as they are received. While these algorithms tend to work well with

widely-spaced targets in multi-target scenarios, noise and interference among closely

spaced targets often disrupt pulse-by-pulse algorithm performance [7]. Sequential

algorithms by design cannot backtrack to connect information that may be missed by

poor tracking. In order to overcome this limitation, a batch model algorithm, the LMTS

used in this experiment, was created in 2007.

Batch mode algorithms collect data pulse-by-pulse just as sequential algorithms would,

but they store some set of data points for a certain predetermined period of time prior

to processing. In this manner, a batch mode algorithm can collect a large amount of

information that enables it to connect trajectories that may be separated in distance and

time. LMTS operates by connecting partial trajectory segments through a series of

ballistic fits [7]. Even though it functions at a high percentage of accuracy, some

researchers at MIT Lincoln Laboratory noticed that in certain instances, the algorithm

was not able to match all of the trajectories. One main source of failure is due to the

step-by-step processes the algorithm uses. The algorithm connects partial trajectories

only if they meet a chi-square test of fit to a ballistic trajectory. One downfall of this

procedure is that if the partial trajectories fall within the chi-squared distribution, they

are connected with no further consideration of their accuracy compared to other

possibilities. The best fits are matched first, and then successively worse fits are



matched. This difficulty is illustrated in Figure 2-1, which shows a plot of occluded
radar information that could be processed by LMTS. The dashed box highlights an
occluded region where the algorithm has calculated multiple, high probability fits to the
partial trajectories on either side of the occlusion. In such cases, LMTS will always
choose the highest probability. For example, if two possible trajectories can be
calculated, say the probability of smoothing Trajectory 1 is pT1 = .95 and to smooth
Trajectory 2 is pT2 = .92, Trajectory 1 will be formed instead of Trajectory 2.
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Figure 2-1: Trajectories occluded by a data drop out.

However, if the standard error of fit is large enough, the probability of Track 1 existing
may not be significantly different from Track 2. In multiple test cases, it was shown that
frequently two almost-equivalent trajectories were incorrectly plotted, one with a small
amount of error and one with a large amount of error, as shown in Figure 2-2. These
cases were most prominent for trajectories which were occluded over a point of
crossing.
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Figure 2-2: Figure 2-2a depicts multiple partially occluded trajectories, in which the different colors

represent the different connected trajectories by LMTS. The algorithm mistakenly connected the

trajectories, which are shown correctly connected in Figure 2-2b.

These errors, while few, were obvious to the LMTS developers when the LMTS results

were plotted. While it would likely take a complicated and computationally expensive

algorithm to correct these errors and output a better solution, there is no guarantee it

would be 100% accurate.

2.2. Human Performance in Track Smoothing

Because of potential errors in LMTS, the possibility that a human operator could assist

to improve overall performance was considered in this thesis. This will be discussed in

this section in terms of Gestalt theory and extrapolation, as they relate to occluded

contour perception.

2.2.1. Gestalt Theory and Occluded Contour Interpolation

Trajectory smoothing can be interpreted as occluded contour interpolation given

trajectories with incomplete segments. Gestalt theory studies human perception of

occluded contours and contains specific theories on how humans connect, or in this case

smooth, those contours. There are a number of specific areas such as similarity,
proximity, good continuation, and closure that are applicable to the smoothing

problem. While these features do not prescribe the specific steps for the interpolation of

occluded contours, they give some insight into how the human visual system works [8].



GOOD CONTINUATION

Figure 2-3: A representation of occluded trajectories. The 3 sections are representations of similarity,
proximity, and good continuation (left, right and bottom section respectively).

Similarity implies that contour shape and orientation leads to a grouping together of
patterns. In the case of trajectory smoothing, the similarity of partial trajectories allows
the human to accurately interpolate them. The upper left section of Figure 2-3 shows
how similarity plays an important role in interpolating the correct trajectory, which is a
shown by the two arrows. Proximity maintains that items close together will be
grouped more frequently than those farther apart. The upper right section of Figure 2-3
displays how the partial trajectories are much more difficult to interpolate when they
are farther apart. Quantitatively, there may exist some distance over which proximity
can filter out wrong choices in interpolation [9]. Furthermore, that range may exist but
be substantially different depending upon whether a human or LMTS is trying to
interpolate. Good continuation is the name of a Gestalt principle which states that
objects arranged along lines will be visually grouped together. It can be seen as a
combination of similarity and proximity, as it represents how patterns are simply a
separation of whole figures. For example, a disconnected parabolic contour, which is
representative of partial trajectories, does not appear as a two segments but as one
continuous curve, as shown in bottom section of Figure 2-3. This effect is, however,
dependent upon the proximity (they are close together) and similarity (they are mirror
images of each other) of the segments.



Good continuation has been tested using occluded contours [5, 10, 11]. Kellman and

Shipley showed that a disrupted line segment would be perceived as whole if 1) the

linear extension of the two edges intersects and 2) the turning angle, or the angle at

which the two edges intersect, does not exceed 90'. More recent research has challenged

the last constraint by showing there may be no "hard cutoff" in the turning angle

criteria, rather this results in a decrease in precision of interpolation [5]. This loss in

precision could be remedied by ensuring that neighboring segments are co-circular

(tangent to the same circle) [11]. Additionally, there has been a limited amount of

research showing that parabolas, similar to ballistic trajectories, may play an important

role in connection [12, 13]. Parabolas can act as a connection tool, where the visual

system projects parabolas, independent of the perceived crossing angle, to interpolate

occluded line segments. This often leads to the interpolation of a smooth rather than a

sharp, discontinuous connection.

The type of connections humans make during interpolation has been investigated in an

experiment where the subjects were asked to place a dot to estimate the point of

connection between two equally sloped projected surfaces [14]. It was found that the

subjects predicted a smooth connection rather than a discontinuous one, such as the

linear extension of the edges of the surfaces, in about 90% of the trials. While only three

subjects participated in this experiment, the results suggest that humans tend to favor

smooth connections in the trajectory smoothing case, particularly for parabolic

connections.

Closure is a Gestalt property that addresses the fundamental tendency of humans to

want to close gaps. Humans can perceive inside and outside space between contours,

allowing them to fill in the boundary that should, in their mind, exist [6]. Since partial

trajectories can be defined as occluded trajectories (for which closure will be applicable),
this relationship allows the closure property to be useful in trajectory smoothing. As

long as a partial trajectory can be identified as being one trajectory the human will tend

towards closing the gap.

2.2.2. Extrapolation

Extrapolation, defined as the extension of a contour beyond itself, is another possible

theory used to interpret occluded contours. Some work has shown that the completion

of discontinuous curves is sometimes the extension of one curve rather than

interpolation, which is the connection of two pieces [15]. Furthermore, some partial

trajectories do not have connecting information, and in those cases extrapolation would

be the only way to smooth that trajectory. LMTS does not have any capability to

extrapolate, and therefore the human ability to extend trajectories may provide further



utility in the trajectory smoothing task. Figure 2-4 shows that the bold partial trajectory
can be interpolated to the left of the vertical line. However, it must be extrapolated to
the right where there are not any possible connecting segments. The extrapolation will
most likely follow the same shape as its surrounding elements. This means that while
LMTS would not be able to fully interpret the occluded trajectory, human extrapolation
may be able to accurately predict the extension of the bold segment. While interpolation
will be the primary focus of this research, the ability to extrapolate may provide
additional capability that human participants could add to the trajectory smoothing
task.
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Figure 2-4: The bold trajectory can only be extrapolated to the right of the vertical line.

2.3. Barriers to Interpolation

Noise, or possible distractions, is a well-researched area of contour perception [16-19].
This section will define noise and relate it to the way in which trajectory information is
presented. Specifically, each incomplete trajectory can be considered as an occluded
contour, and other trajectories present in the display act as noise, potentially interfering
with the specific contour a human will try to connect. The bold contour displayed in
Figure 2-4 is an example of this. If one tries to interpolate this contour to the left,
determining which contours to connect becomes a difficult problem, as the correct

I
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contour is obscured by the contours surrounding it. This section will discuss several

aspects of contour interpolation in noise, including contour detection and how noise

may hinder interpolation, as well as the effects of orientation in noise.

2.3.1. Contour Interpolation in Noise

Noise can be defined as the surrounding information in which the target curvature, i.e.

the curvature that a human is trying to interpolate, is presented [17]. Specifically, noise

can create illusory effects, which in turn alters the perception of the contours. In the

trajectory smoothing case, this means the perception of the actual curvature may be

altered, which impacts how well the human will be able to interpolate trajectories.

Subsequent sections discuss target contour detection in noise and how noise may act as

an inhibitor to contour detection.

2.3.2. Target Contour Detection in Noise

Target contour detection is the ability to focus on a single partial trajectory in noise. A

common approach to detection begins with filtering the information to determine edges

in a figure [19]. Edge detection is important because it allows the observer to

distinguish contours in possibly noisy, densely packed backgrounds. It has also been

shown that edge detection is no different for straight lines (such as chevrons) or

curvatures [16]. Therefore in the case of trajectory smoothing, all types of trajectories

should be able to be detected in noise irrespective of their actual shape.

2.3.3. Noise as an Inhibitor

Perception of a curvature (which occurs after detection) is the ability of the visual

system to correctly identify how convex or concave a curvature is. It has been shown

that human interpolation may have a "specific sensitivity to contour curvature" [18].
There may be aspects of the visual system that readily grasp different curvatures.

Therefore, it is important to understand how the sensitivity to target curvature would

vary dependent upon different noise factors. Recognition of curved lines in straight-line

noise was shown to be independent of numbers of "distracters," which are all the

segments besides the target curvature. This is particularly applicable in the case of

trajectory smoothing, as the noise contains surrounding trajectories that could be any

shape from straight lines to steeply curved trajectories. However, it has also shown that

the perception of straight lines can be altered, and is dependent upon the number of

curved contours that exist as noise [18]. So, while curvature is more easily deciphered in

the presence of straight-line distracters, it is also true that straight lines can appear to be

curved when surrounded by other curved lines. Figure 2-5 shows how surrounding a

target curvature with noise could alter its perception.



Figure 2-5: The dashed target curvature, a straight line, could be perceived to be curved depending upon
the degree of curvature of surrounding contours.

Foster showed that humans' responses to different curvatures from straight lines to

partially curved lines (0 to 20' arc) can be grouped into categories of straight, just

curved and more than just curved that he defined as a "discrete encoding process" [17].

This process allowed him to place curvature detection into various categories in which

an observer would be more or less sensitive to multiple contour curvatures. While the

exact numbers for the categories in this process are not applicable to this thesis because

they apply to research done on angle changes on the order of minutes, this research

shows that there may be a separate discrete encoding process for the varying curvatures

in the discontinuous trajectories that allows the human to readily perceive and connect

them.

2.3.4. Orientation of Noise

The presence and orientation of distracting contours is important in perceiving and

interpolating contours of interest. There is evidence that contour detection is achieved

through the use of separate contour filters that are in effect tuned to different contour

orientations [20]. Moreover, there exists some relationship between orientation and the

observer's viewing condition in the ability to decipher symbols. This is interesting as

many of the "symbols" used to determine those contour filters are similar in shape to

the crossings found in track smoothing/identification data. Furthermore, there is

evidence that the shape of curvature is distinguished by the same visual devices that

recognize orientation [16]. Therefore in the case of trajectory smoothing, altering the

orientation of noise may affect the perception of partial trajectories.

Secondly, integration of various contour properties suggests that the visual system has

filters that preferentially perceive certain orientations [21-23]. For example, certain

orientations may become visually salient to the human before others. Furthermore,

some recent experiments have suggested that human perception may be more accurate

in certain orientations. In a study using various types of displays, it was shown that

..................



performance of contour interpolation in 3D decreased slightly by "inducing surfaces

with a vertical rather than a horizontal tilt direction" [24]. This suggests that a

horizontal display of information may provide superior results than a vertical

orientation.

2.4. Human-Automation Collaboration

LMTS was developed to solve the problem of trajectory smoothing in the BMDS. Like

many other automated tools used to assist in problem-solving tasks, it has been shown

that LMTS may not function in situations that were not anticipated during its creation.

For example, LMTS may function poorly when dealing with smaller amounts of data as

it was designed to smooth a completed, long term data set. To deal with this in other

areas, studies have suggested that cooperative problem-solving systems should be

considered [25]. Given that humans have been shown to have some track smoothing

abilities, a collaborative effort could possibly produce the best solution for the track

smoothing application.

Similar to this smoothing application, path planning research deals heavily with

perception. The ability for collaboration in these studies depends on a unified

understanding of the search space, and thus perception of that space is vital. The

Human-Guided Search (HuGS) platform [26], developed as a tool for solving

optimization problems, focused on involving people in a heavily automation-

dominated field. The HuGS platform requires people to alter selection criteria by

presenting solutions in a simple step by step process. This allows the human-user to

gain different views of the search space, altering perception of the problem and

therefore arriving at alternative human-aided solutions that can be evaluated.

Other work has recommended that if technology cannot fully solve a complex issue, the
design of a support system can influence alternative solutions [25]. Multiple

visualizations of an automated solution could be given to users to see if a difference in
perception would alter overall performance [27]. In the trajectory smoothing case, a

possible application of this work would be to provide human insight into areas that are

problematic for LMTS, which could in turn allow LMTS to generate alternative, better
solutions.

Fitts' List [28] has been adapted to illustrate which traits of each decision source may

prove helpful in the trajectory smoothing task. However, since this is the first time the

track smoothing task has been performed by human operators, certain assumptions

have been made about which decision source, human or algorithm would be better at

certain tasks. This Fitts' List adaptation simply defines possible superior traits, rather

than presenting a "who is better at what" table.



Table 2-1:
Fitts' List [28] of Possible Superior Traits From Each Decision Source Adapted to

LMTS Settings

Humans Are Better At LMTS Is Better At
Resolving uncertainty to improvise fits to Using strict rules to evaluate likelihood of a
trajectories match

Consistently producing results, such that
Extrapolating trajectories each application of the algorithm to the same

data will provide the same output
Viewing data thought knowledge-based Defining the curvature of the various partial
filters to resolve uncertainty trajectories
Recalling previous similar pattern-matching
experiences _Quick and efficient computation

2.5. Summary

Previous research has shown that either automation or a human acting alone often does
not generate an acceptable end result [25-27]. It has been suggested that the automation
can utilize its computational speed to search the solution space while keeping the
human involved [25]. Leveraging the human ability to intuitively assess the LMTS
solutions and modify automated solutions allows for use of both parties' strengths.

This chapter has presented the operation and potential weaknesses of LMTS and how a
human operator may be able to assist in those areas. The potential for human
contribution to the track smoothing task is supported by research that has taken place in
a wide variety of fields and affords an understanding of how humans interpret
occluded contours. Gestalt theory provides some proposed bounds on this capability
while other research shows that depending on the application, these boundaries may be
altered or may not exist at all. Finally, the possibility of a collaborative solution through
reliance on human perception was discussed.



3. Experiment One Design

An experiment was designed investigate whether a human could better connect
trajectories than the LMTS algorithm, and the conditions under which the human
outperformed LMTS most dramatically. The subsequent sections will describe how that
information was collected and analyzed. The hypotheses, participants, apparatus,
experimental design, and testing will be discussed.

3.1. Hypotheses

The data used for this experiment are simulated outputs of a hypothetical radar's real-
time, multi-target tracker an example of which is shown in Figure 3-1. The data contains
incomplete segments similar to those discussed earlier. As discussed in the last chapter,
the amount of information available to the decision source plays an important role in
perception and interpolation. In the case of trajectory smoothing, there are distinct cases
in which LMTS performs better or worse, which can be used to measure the degree of
difficulty of a data set. Human and algorithm performance are expected to vary with
both the degree of difficulty and the amount of information present. The confidence of
human participants is also expected to vary. The following hypotheses capture the
expected decision source performance.
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Figure 3-1: Occluded radar data as used in the experiment.
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3.1.1. Hypothesis One

Human and algorithm performance will deteriorate with shorter data spans and narrower
crossing angles, as there is less information and trajectories are harder to interpolate.

3.1.2. Hypothesis Two

Human participants will be less confident with shorter data spans and narrower crossing angles,
as there is less information and trajectories are harder to interpolate.

3.2. Participants

A total of 29 participants participated in the initial experiment, 20 male and 9 female.
The participants were all Lincoln Laboratory employees who received no additional
compensation for their participation. The subject pool ranged in age from the early 20s
to mid 70s, and included a sampling of individuals with diverse backgrounds. The
participants' ages can be split into 4 groups as follows: 38% were over 50, 31% were
ages 35-50, 28% were 25-35, and 3% 18-25. The population spanned multiple fields of
work including engineers, scientists, librarians, executive assistants, and support staff.
The complete subject demographic information is listed in Appendix A.

A pre-experiment survey asked participants the amount of time spent drawing on a
computer (Appendix A). Out of the 29 participants, 17 had computer drawing
experience. The amount of experience was split into three categories where 7 drew on a
yearly basis, 5 drew on a monthly basis, and 5 drew on a weekly basis. It was
considered important to acquire such a diverse sample population in the initial
experiment to explore the overall human ability to interpolate incomplete contours.

3.3. Apparatus

This section outlines the interface and the equipment used by the human participants to
smooth trajectories.

3.3.1. Track Smoothing Interface

In order to conduct the experiment to investigate human operator performance in track
smoothing, an interface was designed to allow a human to interpret and interpolate the
radar plots (Figure 3-2). The design of this interface was guided by principles that direct
that effective displays should allow users to have appropriate control, both in solution
creation and editing and provide them with error correction and appropriate feedback,
while keeping the interface as simple as possible, especially for a time-constrained task
[29]. While the interface was not designed to be an actual operational interface, it was



designed to evaluate concepts for an operational interface insofar as possible. In order
for the user to efficiently produce best-fit tracks, simple graphing ability, including an
editing capability, was vital. From an operational standpoint, to keep the participant
aware of the time available for fitting the tracks, a timer was placed in the interface. The
resulting interface has four major components: plotting area, interaction panel for track
fitting including the capability for the user to express his/her confidence in the fit, plot
appearance, and timer. These are discussed below.

The plotting area, which constitutes the majority of the interface in Figure 3-2, displays
the simulated radar plot that is presented to the subjects. This is the working area for
the subjects to select their best fit for each track. The radar track data is displayed in
gray so as not to prejudice subjects about possible connections. The option of utilizing
color-coded data in a subsequent experiment may be considered for future work.
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Figure 3-2: Track Smoothing Interface



The panel of buttons at the top left of the interface in Figure 3-2 is used for plotting the
fitted trajectories and manipulating them. The user can initiate, complete, and edit
tracks using this panel. To initiate a trajectory, the user clicks "Create New Track"
which gives the operator the ability to plot. The user clicks then points along the
proposed trajectory until the trajectory is completed, which is finalized by clicking the
button "Complete Track". The trajectory is then plotted using a spline fit, with a
segment fitted in between each of the plotted points. After completion a user can adjust
or delete trajectories by selecting the trajectory to be edited, then choosing "Delete
Track" or "Delete End Point".

In addition, this panel allows the user to select a confidence that he/she feels
appropriate for each segment of each track. This estimate is color-coded along the track,
indicating when confidence estimates change from point to point along the track.
Appendix B explains the operation of the interface in detail.

The panel of buttons in the lower left of the interface in Figure 3-2 allows the user to
change the plot appearance during the experiment. One button allows the user to select
a "right/left" or "up/down" data display and allows for adjustment for individual
preferences as well as allowing operators to observe a different orientation to spot

potential patterns. A second button allows the user to inhibit the display of previous
tracks that may be interfering with a current selection; the remaining data is then
darkened to alert the user to the fact that visibility of previous selections has been
turned off.

Lastly, because the tasks must be completed in a specified time, a timer is included in
the interface to keep the user aware of the time available for the task. The timer's size
and font were chosen to be salient while not taking away from the task at hand. In the
present experiment the users are given ten minutes to complete each scenario.

3.3.2. Test Bed

The experiment was run on a Dell Precision 670 computer with a Intel Xeon CPU 3.2
GHz processor and a NVIDIA Quadro FX 3400 graphics card. The monitor was a Dell
2001FP with a resolution of 1280 x 1024. All experiments were run in a study room in
the library at Lincoln Laboratory.

3.4. Experimental Design

The independent and dependent variables are outlined in this section.



3.4.1. Independent Variables

The first independent variable is decision source, as both LMTS and human participants
were tested. It has been shown that over a long time period, the algorithm performs
well; however, at shorter time spans the algorithm's performance degrades [7].
Therefore the second independent variable, the data span, was selected to test cases that
represent temporal effects. For the experiment, data spans of 30%, 60% and 100% of the
interval over which radar data were available (which is represented as Time After
Launch or TAL) were investigated. For the data used here, these data spans were on the
order of 3, 6, and 9 minutes, which represent operational scenarios.

The data were also sorted by degree of difficulty. Like the data span, the degree of
difficulty affects the algorithm's ability to accurately smooth trajectories. Observations
show that cases with shallow crossing angles and high track density are the most
difficult cases [7]. Therefore the third independent variable, degree of difficulty, was
split into two categories, easy and hard. Based on previous LMTS experience, the hard
degree of difficulty was defined as trajectories crossing at <15' degrees, shown in Figure
3-3, and the easy degree of difficulty was defined as crossings at >150, shown in Figure
3-4.
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Figure 3-3: Hard Degree of Difficulty
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Figure 3-4: Easy Degree of Difficulty

The experiment was conducted by presenting the subjects with representative data
segments on an interface and asking them to fit lines to the segments that they perceive
as actually connected. In parallel with the human subject testing, the same data
presented to the subjects were also presented to the LMTS algorithm. The results for
both cases were scored using truth data that were generated as part of the simulation.
The independent variables for the experiment are summarized in Table 3-1. Given the
three independent variables, this is a 2x2x3 fully crossed within-subjects experiment.

Table 3-1:
Independent Variable Breakdown

Variable Levels

Decision source Human or Computer

Degree of difficulty Hard or Easy

Data span 30, 60 or 100% of the available data interval

--- r - -- - .,.- -- --------- 7 --------- ----- -



3.4.2. Dependent Variables

Trajectory detection and trajectory fit were the primary dependent variables used to
score performance. A measure of the confidence of each subject on each trajectory,
defined below as confidence density, was used to answer the third research objective.
These variables are defined below.

Trajectory Detection

Each decision source was tasked with correctly detecting each trajectory present in the
data. Both the humans and LMTS could miss some trajectories (Missed Trajectory) or
plot additional trajectories (False Trajectory) as neither decision source had previous
knowledge of the number of truth trajectories that existed. These scores were tallied for
each plot using a matching algorithm, which uses the relative range from the plotted to
the truth trajectory to calculate which user trajectory should be matched with a truth
trajectory, as displayed in Figure 3-5.
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Figure 3-5: The dotted lines show the user plotted trajectories and the solid lines the corresponding truth.



Trajectory Fit

In addition to detection, it is important to quantitatively determine how accurate each
decision source was. The closer the human or algorithm matches the corresponding
truth trajectory, the better the score. This score is calculated from goodness-of-fit
measures used in linear regression modeling. The truth trajectory is assumed to be the
model (regression fit), while the line plotted by the participants or the algorithm is
assumed to represent the observations. The mean squared error (MSE) and the root
mean squared error (RMSE), shown in Equation 3-1 and Equation 3-2 respectively, are
calculated for each plotted track [30]. The number of samples along the line was set at N
= 500. This was selected by observing that, while the results changed significantly from
as N was increased from 100 to 500, there was little change beyond this.

MSE (Yestimatei -- truth ) 2

N Equation 3-1: Mean Squared Error

RMSE =sqrt(MSE) Equation 3-2: Root Mean Squared Error

The resolution of the monitor is another important factor in scoring. The display area
horizontal dimension, DH, is about 41 cm (1280 pixels) and the vertical dimension, Dv, is
about 31 cm (1024 pixels). When performance is scored, the difference between results
and truth is calculated in meters. However, the difference between human results and
truth is ultimately limited by the ability of the human to resolve points on the screen. It
has been estimated that the human eye can resolve points to about a minute of arc [6].
At a nominal distance from a monitor of 50 cm, this is a point separation of about 0.015
cm or 0.15 mm. On the other hand, the extent of a pixel on the screen can be
approximated as Dv/1024 = 0.03 cm or 0.3 mm. Clearly the pixel extent and not the
resolution of the eye dominates the observer's power of resolution. Thus it is assumed
that, if a human performance is within one pixel of the truth, that is the best that can be
achieved, and the human should be given credit for a "perfect" performance when this
occurs.

Confidence Density

The last dependent variable is the measurement of operator confidence. Confidence
density was calculated as shown in Equation 3-3.

=1
3 z M =soo

N * M -in which x E 1,2,3
N*M Equation 3-3 Confidence Density



N represents the number of total plotted trajectories and M represents the number of

iterations that the color was evenly sampled along each trajectory. M = 500 was used as

a limit to be consistent in the measurement bounds used in the Trajectory Fit variable.

At each iteration the confidence was recorded (Appendix C). The value 1 corresponded

to a high confidence level, 2 a medium level and 3 a low confidence level. The

confidence was thus polled by the algorithm at each iteration, and therefore the average

confidence per scenario (see Section 3.5.3) could be calculated, providing an overall

confidence measure.

3.5. Testing

Testing involved pre-experiment activities, a training session, and a test session.

3.5.1. Pre-Experiment Activities

Each participant was first introduced to the experimental setup. Next, each participant

read and signed the Consent to Participate Form (Appendix C) which discussed the

purpose of the experiment, the compensation policy, and the experimental aspects that

the participants would be asked to complete. Then the participants filled out a pre-

experiment survey.

3.5.2. Training Session

After filling out the required information, a tutorial instructing participants on the

intricacies of the interface was presented. The tutorial started with an overview of the

BMDS scenario and the motivation for the trajectory smoothing task (Appendix B).

Then the interface was presented in detail. The participants were given instructions on

how to smooth the trajectories and manipulate the interface to indicate their desired

confidence. After the tutorial, Camtasia@ software was turned on to record all interface
activity during each experiment.

Three practice scenarios were given to each user. The three practice scenarios were
chosen to familiarize the user with both the interface and the interpolation task they
were asked to perform. The first scenario had 4 trajectories to interpolate, and the
scenarios became progressively harder until the last practice scenario, which was as

difficult as any data set the participants would be asked to interpolate.

3.5.3. Test Sessions

After the three practice sessions, all participants were asked to complete six scenarios,
which were derived from crossing the three data spans and two degrees of difficulty.



All the test scenarios given to each subject are presented in Table 3-2. While the practice

scenarios were given in a specific order, all test scenarios were randomized such that

there was no specific order or presentation. All users were allowed to ask questions

throughout the entire experiment regarding the interface and its capabilities.

Table 3-2:
Scenarios Seen by Participants

Scenario Crossing Angle Data Span
Practice Scenario Easy 100%
Practice Scenario Easy 100%
Practice Scenario Hard 100%
Scenario 1 Easy 30%
Scenario 2 Easy 60%
Scenario 3 Easy 100%
Scenario 4 Hard 30%
Scenario 5 Hard 60%
Scenario 6 Hard 100%

3.6. Summary

Experiment One, the initial track smoothing experiment, was designed to answer the

primary research question of which decision source (human or automation) could best

smooth trajectories. Independent and dependent variables were created to measure the

necessary information to determine which decision source was better and why. The

Track Smoothing Interface was designed to best capture the operator's interpolation of

the occluded contours of the radar plot. Subjects received background and training

prior to the experiment and each subject completed six text scenarios. All information

was gathered in real time and recorded for analysis, which will be detailed in the next

chapter.



4. Experiment One Results and Discussion

This chapter addresses the results of the first track smoothing experiment and discusses

their implications. The chapter then addresses the two hypotheses outlined in Section

3.1 of this thesis.

4.1. Results

The results are addressed in four categories: 1) Missed or false trajectories, 2) Accuracy

of correct trajectories, 3) Total performance tables, and 4) Confidence.

4.1.1. Missed or False Trajectories

In Experiment One, each of the 29 tested participants tried to plot 77 trajectories. There

were actually 78 true trajectories but, due to noise in the data, one trajectory could not

be seen by the participants. Combining all participant data, there were a total of 2,233

possible trajectories to plot. Human participants missed a total of 144 trajectories and

predicted 12 false trajectories. This averages to 3.97 (1.40 std. dev.) missed and 0.41 (0.73

std. dev.) false trajectories predicted per participant. The algorithm missed a total of 2

trajectories and predicted 5 false trajectories. The number of missed and false

trajectories for all participants is listed in Appendix E.

4.1.1.1. Algorithm-Missed Trajectories

Table 4-1 shows the first step in the analysis, which was to research the 2 trajectories the

algorithm missed and determine if any human participants detected those trajectories.

The algorithm only missed trajectories in the hard degree of difficulty, 30% data span

case, which was Scenario 4. The specific trajectories the algorithm missed are

designated by the dashed arrows in Figure 4-1.

Table 4-1:
The Number of the Human Correctly Plotted Trajectories vs. the Number of Missed

Trajectories for the 2 Trajectories Missed by the Algorithm

Scenario, Track, Factor Level Scenario 4, Scenario 4,
Trajectory 1, Trajectory 6,
Hard 30% Hard 30%

Human-Correct Trajectories 4 6

Human-Missed Trajectories 25 23
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Figure 4-1: The 12 possible trajectories for Scenario 4 (Hard, 30%) that could have been identified by

either decision source.

Figure 4-2 shows the two cases where some humans managed to form trajectories when
the algorithm could not. In the area designated by the dashed green lines in Figure 4-2a,
each decision source should have plotted four trajectories. However, both the majority
of human participants and the algorithm only plotted two. The green dashed
trajectories are the two trajectories that the majority of the participants and the
algorithm missed (Trajectories 1 and 6). It is easy to see that these trajectories are
difficult to plot. They have been magnified in Figure 4-2b to highlight the difference
between the two. While the number of humans who managed to accurately identify
those trajectories is relatively small, 14% for trajectory 1 and 21% for trajectory 6, it still
demonstrates that there were at least 14% of the participants who were able to identify
trajectories when the algorithm could not.
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Figure 4-2: Test data (for Scenario 4) as seen by both decision sources prior to processing. The location
where both trajectories 1 and 6 should be plotted is shown by the green dashed trajectories, which are

magnified in (b).

4.1.1.2. Human-Missed Trajectories

The next step in the analysis was to investigate the cases in which the human missed

trajectories. All participants missed at least 2 trajectories during the course of the

experiment. The 4 trajectories that approximately half or more of the humans missed
are listed in Table 4-2. A full list of these results is given in Appendix E.

Table 4-2:
The 4 Most Missed Trajectories by Humans

Scenario, Scenario 3, Scenario 3, Scenario 4, Scenario 4,

Trajectory, Trajectory 1, Trajectory 7, Trajectory 1 Trajectory 6
Factor Level Easy 100% Easy 100% Hard 30% Hard 30%

Human-Correct 3 13 4 6
Trajectories

Human-Missed 26 17 25 23
Trajectories

Algorithm No No* Yes Yes
Missed

(Yes or No)

Human-Missed 90% 59% 86% 79%
Trajectory %

* LMTS was only able to smooth a small portion (30%) of this trajectory



Table 4-2 shows that the two trajectories which the algorithm did not detect (Scenario 4,
Trajectories 1 and 6) were also difficult for the human. However, as discussed next, the
algorithm was able to identify some trajectories with which humans had trouble.

Figure 4-3 shows the missed trajectories as a function of the degree of difficulty and
data span. The family-wise alpha for these tests was set to a = .02. Overall, the
algorithm and the human are significantly different (Wilcoxon, Z = -6.814, p = 0.000+).
There is also a difference between decision sources in the easy degree of difficulty case
(Wilcoxon, Z = -4.88, p = 0.00+), showing algorithm superiority in this area. Figure 4-3
shows that for the easy crossing degree of difficulty factor, the algorithm correctly
identifies all trajectories, while the human performance starts to degrade for the 100%
data span case (where human participants only match 87% of trajectories).

However, there is no difference between decision sources in the hard degree of
difficulty factor (Wilcoxon, Z = -1.507, p = .132). This suggests that the human
participants may be able to best assist the trajectory smoothing task in this area. The two
trajectories the algorithm missed (Scenario 4, Trajectories 1 and 6) are in the hard degree
of difficulty factor, and at least 14% of human participants correctly predicted those
trajectories, which demonstrates the potential for human improvement over the
algorithm.
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Figure 4-3: Fraction of correctly detected trajectories by both algorithm (first bar, blue) and humans

(yellow) separated by Scenario.



Of the human-missed trajectories, Scenario 3, Trajectory 7, presents the most interesting
case. Only a slight minority (13) of the participants were able to accurately detect it.
Figure 4-4 shows the truth Trajectory 7 as the dashed, green trajectory. Since the human
participants were instructed to plot from start to finish of the data span presented to
them, in order to detect this trajectory, each participant had to connect partial
trajectories spanning an information gap that was 66% of the data span. Perceiving a
connected trajectory over this gap was extremely difficult.

600 700 800 900 1000 1100
Time After Launch (s)

1200

Figure 4-4: Scenario 3 in which Trajectory 7, demarcated by the green, dashed line, can only be correctly
detected if the user connects partial trajectories over a span of 66%.

On the other hand, the algorithm lacked the ability to extrapolate, and therefore
detected only the first 30% of Trajectory 7. So while LMTS detected a partial trajectory,
it was unable to associate it over the large gap to any other partial trajectory. That large
information gap is suspected to be the cause of the failure to connect the trajectory by
both the algorithm and the majority of the participants. However, 13 participants were
able to smooth Trajectory 7 and all 13 of those participants were able to complete the
trajectory over the information gap of 66%. It is important to realize that that failure of



LMTS to detect a full trajectory over large gaps could limit its effectiveness while it is
equally important to realize that some human participants have detection ability, in the
form of extrapolation, which could be exploited. This result is revisited in the accuracy
section of this chapter.

4.1.1.3. False Trajectories

Unlike missed trajectories, there is a major difference between the decision sources in
the prediction of false trajectories. Out of the 174 possible scenarios, human participants
predicted 12 false trajectories. However, out of the 6 possible scenarios the algorithm
processed, it predicted 5 false trajectories. Broken down by individual test scenario, the
algorithm predicted 0.83 false trajectories per test scenario while the aggregate human
participant predicted 0.069 false trajectories per test scenario. Averaging over all
independent variables, there was a significant difference between the algorithm and the
average human participant in predicting false trajectories (Wilcoxon, Z = 7.819, p
0.00+, a = .05).

The number of false tracks predicted by both decision sources as well as the percentage
of false tracks predicted by human participants is listed by independent variables in
Table 4-3. The two numbers that should be compared are the ratio of human false tracks
(averaged per participant) vs. the number of false tracks predicted by LMTS.
Comparison of these two numbers demonstrates the ability for the average human to
outperform the algorithm in all cases except for the two shortest data spans, easy degree
of difficulty scenarios. However, even in those cases the vast majority of participants
did not predict a false trajectory. A table of all participants and the false trajectories
predicted for each is given in Appendix E.

Table 4-3:
The Ratio of False Tracks Predicted Per Scenario.

(Decision Source, Scenario) Easy, Easy, Easy, Hard, Hard, Hard,
30% 60% 100% 30% 60% 100%

(# Human false tracks/ .103 .35 0 0 .172 .03,
#'total participants)
LMTS# 0 0 1 0 1 3

The bold lines in Figure 4-5 show an example of how the algorithm could predict false
trajectories. First, the algorithm incorrectly connected a trajectory, which is shown by
the complete bold trajectory with the discontinuity. Because the algorithm plotted the
incorrect trajectory first, the two bold partial trajectories that are designated by the



double arrow were calculated to be their own separate trajectories by the algorithm,

which were false representations.
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Figure 4-5: Hard, 100% (Scenario 6) Factor-Level crossing as plotted by LMTS

4.1.2. Accuracy of Correctly Plotted Trajectories

The next step in the analysis was to measure the accuracy of each decision source. For

all the trajectories correctly detected (i.e. not missed or falsely identified), Equation 3-2

was used to calculate the RMSE. Figure 4-6 shows the respective RMSE averages for

both decision sources in each scenario.
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Figure 4-6: Error plot for both decision sources

The results in Figure 4-6 depict varying accuracy for both decision sources. The family

wise error was set to a = 0.01. Using the RMSE of all trajectories plotted, there is a

significant difference between decision sources (t = 6.704, p=O+), between degrees of
difficulty (15.167, p=O+) and between the 30%-100% (t = 5.526, p=O+) and 60%-100% (t =
4.564, p=O+) data spans. There was no significant between the 30%-60% (t = 1.02,

p=0.303) data span crossing, which provides evidence that something may be

happening in the 100% data span case that would alter accuracy. Figure 4-6 depicts that
the human and automation exhibited differences in ability to accurately plot

trajectories. The algorithm (mean 1.06 m, std dev 3.09) clearly outperformed the human

(mean 14.87 m, std. dev 37.5) in the easier degree of difficulty cases. However, the

algorithm (mean 23.44 m, std dev 49.05) and human (mean 23.17 m, std dev 26.63) were

a closer match in the harder degree of difficulty cases. The humans also seemed to have

a relatively constant ability to accurately plot trajectories for the last four scenarios,

while the algorithm has a definite decrease in ability with increasing data span in the

hard degree of difficulty factor scenarios.

........................



Scenario 3 (Easy, 100%) presents an interesting case as it has the largest difference in

RMSE between algorithm and human participants. In Section 4.1.1.2 it was shown that

Trajectory 7 of this scenario was smoothed by 13 participants while the algorithm could

detect, but not smooth, the same trajectory. Those 13 participants plotted Trajectory 7
with an average RMSE of 97m, which in relation to the averages shown in Figure 4-6 is

extremely large (about 80m greater than average RMSE for the Easy degree of

difficulty). While trajectory smoothing is possible over the large information gap in this

scenario, the smoothing requires extrapolation rather than interpolation. Therefore,

since LMTS cannot extrapolate, future experiments should take this into consideration

when comparing accuracy between human participants and automation.

The most interesting case is Scenario 6 (Hard, 100%), circled in red on Figure 4-5, where

the human (mean 20.02 m, std. div. 16.02), on average, was superior to the algorithm

(mean 37.13 m, std. div. 57.96). This is due to the fact that the algorithm missed a

trajectory crossing (i.e. connected two trajectories erroneously) and thus predicted false

trajectories as shown in Figure 4-5. Therefore, it had a large error over a long data span.

Analyzing the RMSE results for the hard degree of difficulty factor level, it was found

that errors occurred due to missed crossings, and all missed crossings occurred over

information gaps. Similarly, those information gaps were all large compared to the gaps

over which the trajectories where correctly smoothed. In Scenario 6 that gap was ~34%

of the data span. The average gap for missed crossings was 29% while the average gap

for correct connection was -7%. On the other hand, the humans' ability to perform with

relatively constant accuracy allowed them to be more accurate, in comparison with the

algorithm, as difficulty increased.

Demographically, only the age group proved to be correlated with the data (Spearman

Q = .104, p=O+). While this is a significant correlation, it is weak, and therefore any future
research would have to address this question in more detail.

4.1.3. Factored Performance Tables

In comparing decision sources, it is necessary to compare performance on the
individual trajectories. Out of 77 possible trajectories, the average human outperformed

the algorithm 10 times and did equally well 3 times. This means that 17% of the time,

the average human participant did better than or the same as the algorithm.

Furthermore, at least one person did better than or the same as the algorithm for a total

of 45 trajectories (Table E-4, Appendix E). That means the algorithm did better than all

participants only 42% of the time



Additional analysis was conducted to determine when to best rely on algorithm or

human input. First for each trajectory the difference between the human and algorithm

RMSE was calculated. Then differences were tallied for superior performance by either

decision source or a tie, which occurred when the difference in trajectories was within

one standard error for that trajectory. In addition, if both decision sources missed a

trajectory, that score was tallied as a tie. All of the result tables are in Appendix E. The

tables show trends in how performance varied, i.e. which decision source was better as

a function of the dependent variables. The tables also show the effects of mutually

missed tracks on overall performance. Table 4-4, which shows the number of superior

trajectories by dependent variable, illustrates that the automation outperforms humans

by a wide margin. The dark gray boxes show the LMTS's best performance with respect

to the humans, in which the ratio of algorithm to human performance shows that the

algorithm was superior in 92% of the easy, longer (60%, 100%) data span cases.

However, humans showed an increase in performance in the harder degree of difficulty

cases. The light gray boxes in Table 4-4 depict the best human performance in which the

algorithm was superior to the human in only 57% of the cases. Table 4-4 also shows

humans performing much better in comparison with the algorithm in the Easy, 30%

case and the Hard 60% and 100% cases as compared to those in the dark gray boxes.

This implies that humans have the opportunity to contribute the most when the

algorithm has the least amount of information and/or the crossing angles are difficult.

Table 4-4:
Performance Results as a Function of Decision Source

Superior Decision Source Degree of Difficulty Total

wn s n d n Tin bData Span Easy Hard
26an afr Tev30% 90 144 263

60% 69 95
100% 118 139
30% 270 188 458

Algorithm 60% 284 545
100% M213 521

To analyze the effect of jointly missed trajectories had on performance, Table 4-5 was

tabulated, removing the jointly missed trajectories from consideration. Figure 4-7 was

created in order to compare the results from both tables. The Hard, 30% data span case

was significantly different in both cases, (X2 = 5.381, p=0.016, a = 0.05) before and (X2 =

26.472, p=0+, ac = 0.05) after, even though approximately 30% of the cases in this factor-

level crossing were jointly missed trajectories. The difference in the Hard, 30% factor



level shows that the interpretation of missed trajectories as ties could change how to

interpret human performance. While both trajectory detection and trajectory accuracy
play a significant role in determining overall performance, it is important to show that

they should be analyzed separately.

Table 4-5:
Performance Results Without Including Joint Missed Trajectories as a "Tie"

Superior Decision Source Degree of Dfficulty Total

Data Span Easy Hard

Human and Tie 30% 89 86 175
60% 26 69 95
100% 21 118 139

30% 263 168 431

Algorithm 60% 257 276 533
100% 255 206 461

w/out Jointly Missed

0 w/Jointly Missed
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Figure 4-7: Ratio of trajectories which humans are superior to algorithm

It is instructive to also consider the superior participant's performance. Out of 29

participants, participant 8 was more than 2 standard deviations above the average of

the number of superior human tracks per participant. She was superior to the algorithm

23 times and tied it 6 times out of the 77 possible trajectories. The next best user only

outperformed the algorithm in 14 of the trajectories, and the average of all users was

approximately 7. This participant's performance, broken down by the dependent

variables, is shown in Table 4-6. Just as with the aggregate human performance, the

ratio of human to algorithm superiority increases for the hard degree of difficulty and

short time span cases. Figure 4-8 shows participant 8's performance with respect to the



aggregate score from the previous figure. It highlights that the best performer
outperforms the aggregate user in four of the six cases.

Table 4-6:
Performance table for Participant 8

Superior Decision Source Degree of Difficulty Total
Data Easy Hard

Human and Tie 30% 5 3 8
60% 1 6 7
100% 3 7 10
30% 7 6 13

Algorithm 60% 11 7 18
100% 9 6 15

Aggregate

U Best

Easy, 30% Easy, 60% Easy, 100% Hard, 30% Hard, 60% Hard, 100%

Scenario

Figure 4-8: Ratio of trajectories, by factor level crossing, of the best participant (the red bars) as
compared to the aggregate.

4.1.4. Confidence Measurement

To address the second hypothesis, which stated, "Human participants will be less
confident at the short data span and narrower crossing angles, as there is less
information and trajectories are harder to interpolate," participants were asked to color



code the trajectories with a confidence level. Confidence levels were coded with a score,
where a score of "1" corresponds to a "High" confidence, a "2" represents a "Medium"
confidence, and a "3" represents a "Low" confidence. The results of averaging those
values are shown in Figure 4-9.
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Figure 4-9: Averages of confidence measurements

It should be noted that while all participants were instructed to update their confidence
levels depending upon perceived ability, the confidence measurement tool was
sometimes ignored. Since the default confidence level was "High", all of the confidence
levels in Figure 4-9 may be biased towards a higher confidence level than may have
existed.

Pairwise tests (dependent Mann-Whitney U) were run for 9 factor-level crossings. A full
table of those results can be found in Appendix E. Results from these tests show
significant differences for the following comparisons (degree of difficulty by data span):
Easy 30% - Easy 60%, Easy 30% - Easy 100%, Hard 30% - Hard 60%, Hard 30% - Hard

100%. There is also a significant difference between the 30%-60%, 30%-100% data spans.
There is no significant difference between the 60% and 100% data spans or between
degrees of difficulty (Figure 4-10). From the human perspective, it appears that only the
data span played a role in determining the confidence of the participant, as there was



no difference between easy and hard factor levels. Interestingly, the scenarios where the
participants lacked confidence were those ones that they provided the most benefit in
terms of correcting the automation.
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Figure 4-10: Confidence per data span box plots.

4.2. Discussion

This section discusses the results of Experiment One as they relate to the hypotheses
listed in Chapter 3. The second and third research objectives, which aim to discover
decision source performance and human confidence, are addressed through discussion
of the hypotheses. The first hypothesis states:

Human and algorithm performance will deteriorate with the shorter data span
and narrower crossing angle cases, as there is less information and the trajectories
are harder to interpolate.



In support of this hypothesis, the following findings are offered. Overall, human users
missed more trajectories, while the algorithm predicted more false trajectories. Based on
average RMSE, both human and LMTS performance deteriorated with the narrower
crossing angle (hard degree of difficulty) cases. Human performance increased as
compared with the algorithm for shorter data spans and harder degrees of difficulty.

Comparison of decision source factor levels showed where there may be opportunities
for improvement through collaboration. Using the trajectory performance tables, the
algorithm is the strongest at the easy, 60% and 100% data span factor level crossings
and significantly outperformed the human in those scenarios. Human input became
important at the easy, 30% and hard, 30%, 60%, and 100% factor level crossings where
20%-40% of the trajectories smoothed by the participants were superior. Therefore,
there is a higher likelihood of collaboration being beneficial in the shorter data span and
hard degree of difficulty where the human could best assist the algorithm. This suggests
updating the first hypothesis to state:

Collaboration between the human and algorithm will produce the greatest benefit
with the shorter data span and narrower crossing angle cases.

It was also shown that missed and falsely predicted trajectories and overall accuracy
should be analyzed separately. This is important because it means that increasing
accuracy may not decrease the amount of missed or falsely predicted trajectories, and
both should therefore be studied. Furthermore, the best participant did substantially
better than the aggregate user, which shows that individual performance matters.

The second hypothesis from this experiment states:

Human participants will be less confident at the short data span and narrower
crossing angle cases, as there is less information and the trajectories are harder to
interpolate.

The confidence results show that the only significant differences lie between the 30%,
60% and 30%, 100% factor level crossings. The most important inference gained from
this is that the human user is significantly less confident in cases that it can best assist
the algorithm. While there is less confidence at the short data span scenarios, there is no
difference in confidence between degrees of difficulty, so the hypothesis was not
accurate. The updated second hypothesis states:

Human participants will be less confident at the short data span cases as there is
less information to interpolate.



While it was not hypothesized, it has been shown that the size of information gap plays
an important role in the correct connection of partial trajectories. This is important,
especially for the hard degree of difficulty factor, as it creates an increase in missed and
false trajectories and in RMSE. However, it has also been shown that both LMTS and
the human participants respond to this gap differently, which will need further study to
understand.

4.3. Summary

An experiment was conducted to address the second and third research objectives listed
in Chapter 1. Two hypotheses were created to address those objectives. The first
hypothesis was supported as algorithm and human accuracy decreased in the short
data span and hard degree of difficulty scenarios. These results indicated that humans
could possibly add value for the short data spans, especially with narrow crossing
angles and in extrapolation. It was concluded that both humans and automated
algorithms can contribute to the track smoothing task. The second hypothesis was not
accurate as results showed that confidence is dependent solely on data span. The
second hypothesis was restated to express the results that humans will be less confident
when their input is most important. The next step in this investigation was to use these
results to predict cases of algorithm failure and exploit human augmentation of those
cases for a better result.



5. Experiment Two Design

The second experiment was designed to address the fourth research objective, to study
a collaborative effort between human participants and the LMTS algorithm. It was
motivated by the results of Experiment One, which suggest the creation of human-
augmented system to achieve superior system performance. The subsequent sections of
this chapter will describe how the information regarding that collaborative effort was
collected and analyzed. The hypothesis, participants, apparatus, experimental design,
and testing will be discussed.

5.1. Hypothesis

The results of Experiment One showed that for four distinct factor level crossings, a
collaborative effort is possible. In order to exploit areas of possible improvement, the
algorithm results from Experiment One were analyzed to find the areas with the highest
probability of algorithm error. Experiment One showed that the algorithm had the
worst accuracy when it incorrectly connected partial trajectories. Generally the
incorrectly connected trajectories occurred when LMTS connected partial trajectories
over visually large occlusions. This was shown in the Section 4.1.2, where the
information gap was shown to limit the ability of LMTS to correctly connect trajectories.
This is logical as the algorithm would be expected to function less well if information to
be connected was more greatly separated. Also shown in Section 4.1.2 was that the
information gap over which the algorithm failed was, on average, 29% of the trajectory
on the Time After Launch axis, or X-axis.

In order to create a human-augmented effort that allows the human participant to input
information into the cases of most likely algorithmic failure, a criterion was created for
the invocation of human performance. As was shown, the algorithm functioned the
worst over large occlusions. While the average of these cases was 29% of the trajectory,
the smallest gap was 22%. Since the exact percentage of the range over which the
algorithm is more likely to fail could not be quantified statistically, a gap of 20% will be
used as a conservative criterion for invoking the human in the smoothing task.

The process by which trajectories were identified for human assistance is as follows:



1. LMTS first solves the entire scenario and saves the results. An example of its

performance is shown in Figure 5-1.
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Figure 5-1: Algorithm solution (right) of a test scenario (left)

2. Any smoothed trajectory in the results that meets the conditions previously

described (crosses over an information gap of greater than or equal to 20%) is

considered an "incorrect trajectory". Such a trajectory is shown as the dashed

trajectory in Figure 5-2 .
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Figure 5-2: In the algorithm solution, the bolded, dashed line highlights the trajectory that connected

segments which were greater than 20% of the data span apart from each other
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3. All smoothed trajectories that cross the incorrect trajectory at any point are also
considered possibly incorrect trajectories. While they might be correct, there is no
way of knowing during the experiment, and since these trajectories have been
shown to be incorrect in the past, they will be assumed to be incorrect for the
human-augmented case. These trajectories are shown in bold in Figure 5-3.
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Figure 5-3 -All bolded lines meet the criterion in step 3

4. Since the track that met the 20% criterion connected multiple track segments, any
(or all) of those segments could actually be parts of different trajectories.
Therefore, any crossing trajectory (which may or may not have met the standards

.00

E0



listed above) has some probability of containing the correct segments of the track
(and vice versa). All segments are then considered to be possibly incorrectly
connected and require operator attention.

5. Track segments used in the incorrect trajectories are then presented to the human
operator to smooth

In summary, the criterion of a 20% gap acts as a flag for invoking the human review of
the trajectories that were most prone for algorithm error. On the basis of this
observation the following hypothesis was made to address the fourth research
objective:

5.1.1. Hypothesis Three

The human-augmented decision source will produce a superior solution to the automation acting
alone.

5.2. Participants

The participants were selected insofar as possible from the best participants in
Experiment One - 12 in all. Best is defined as anyone who performed average or better
(Appendix E). The 12 participants chosen, 6 male and 6 female, were all Lincoln
Laboratory employees. The age group percentages were similarly spread as compared
to Experiment One, 25% over 50, 33% were ages 35-50, 33% were ages 25-35, and 8% 18-
25. Only 7 of the participants had computer-based drawing experience, which is similar
to the first experiment. The complete subject demographic information is listed in
Appendix F.

5.3. Apparatus

The apparatus and test bed used by the participants in Experiment Two was the same
interface as used in Experiment One and described in Chapter 3, with one minor

alteration. The hypothesis previously stated does not require a confidence

measurement, so the confidence panel was removed. The interface used in this

experiment is shown in Figure 5-4.



Figure 5-4: Experiment Two Interface

5.4. Experimental Design

The independent and dependent variables will be outlined in this section.

5.4.1. Independent Variables

The independent variables used in this experiment were the same as the variables used

in Experiment One. The decision source for this experiment was either the LMTS

algorithm or the augmented human decision source detailed in Section 5.1. Degree of

Difficulty (Hard or Easy) and Data Span (30%, 60% 100%) were reused in this

experiment. The factor level crossings that were examined, however, were limited only

to the cases in which a collaborative effort had the best opportunity to be successful

(Figure 4-7). Therefore, only the Easy 30%, Hard 30%, Hard 60%, and Hard 100%

scenarios were examined.

5.4.2. Dependent Variables

Trajectory detection and trajectory fit were the primary dependent variables used to

score performance. They are the same variables as used in Experiment One. The scoring
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of trajectory fit did not consider the trajectories that the algorithm could not extrapolate.
The issues with these trajectories were discussed in Section 4.1.2. Since Experiment Two
contains more difficult scenarios, it is expected to have a number of trajectories the
algorithm cannot extrapolate. Therefore, to fairly compare trajectory accuracy between
decision sources, only interpolated (i.e. completely plotted by LMTS) trajectories were
evaluated for trajectory fit. However, if the augmented human decision source is forced
to extrapolate, those trajectories will be individually evaluated to see how well they did
as compared to the other interpolated trajectories.

5.5. Testing

The testing was altered from Experiment One because it only tested the 12 best
performers from Experiment One, and each user smoothed eight scenarios. There were
13 initial trajectories per scenario. The following section will detail the pre-experiment
activities, a training session, and a test session.

5.5.1. Pre-Experiment Activities

Each participant was first introduced to the experimental setup. Next, each participant
read and signed the Consent to Participate Form (Appendix G).

5.5.2. Training Session

After filling out the required information, a tutorial instructing them on the intricacies
of the interface was presented. As a refresher from the previous experiment, the tutorial
started with an overview of the BMDS scenario and the motivation for the trajectory
smoothing task (Appendix B). The same tutorial was used for both Experiment One and
Two, however the participants were told to ignore all information regarding the
confidence measurement in the second experiment. After the tutorial, Camtasia*
software, which recorded all interface activity during each experiment, was turned on.
Finally the interface was started.

Next, to provide initial training, three practice scenarios were given to each user. The
three practice scenarios were chosen to familiarize the user with both the interface and
the interpolation task they were asked to perform. The practice scenarios were given in
a fashion that would best facilitate training. The first scenario had only 4 trajectories to
interpolate, and the scenarios became progressively harder until the last practice

scenario, which was as difficult as any data set the participants would be asked to
interpolate in the test sessions.



5.5.3. Test Session

After the three practice sessions, all participants were asked to plot eight scenarios,
which were derived from 2 scenarios of each of the studied factor level crossings
previously mentioned (Table 3-2). While the practice scenarios were given in a specific
order, all test scenarios were randomized such that there was no specific order or
presentation. All users were allowed to ask questions throughout the entire experiment
regarding the interface and its capabilities.

Table 5-1: Scenarios Seen by Participants

Scenario Crossing Angle Data Span
Practice Scenario Easy 30%
Practice Scenario Easy 60%
PrSctico Scenario Ear 100%
Scenario I Easy 30%
Scenario 2 Easy 30%
Scenario 3 Hard 30%
Scenario 4 Hard 30%
Scenario 5 Hard 60%
Scenario 6 Hard 60%

5.6. Summary

The second track smoothing experiment was designed to evaluate the third hypothesis
developed from Experiment One, which was that a collaborative decision source could
better smooth trajectories than the LMTS algorithm alone. Independent and dependent
variables were created to accurately measure the necessary information to determine
which was better and why. Subjects received background and training prior to the
experiment and each subject completed eight test scenarios. All information was
gathered in real time and recorded for analysis. The results will be presented in the next
chapter.
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6. Experiment Two Results and Discussion

This chapter addresses the results of the second track smoothing experiment and their
implications. The summary addresses the third hypothesis which was presented in
Section 5.1.1 of this thesis.

6.1. Results and Implications

The results are addressed in three categories: 1) Missed or false trajectories, 2) Accuracy
of correct trajectories, and 3) Total performance tables.

6.1.1. Missed or False Trajectories

In Experiment Two, there were a total of 104 true trajectories. Thirty-two trajectories
were found to be accurately plotted by the algorithm on the basis of the previously
defined 20% criterion, and therefore all data associated with them were removed from
further consideration. The 12 tested participants were then presented with 72
trajectories each (which was relatively close to the 77 trajectories plotted in the first
experiment). Of these, LMTS missed a total of 2 trajectories and predicted 13 false
trajectories. The combined augmented users missed a total of 42 trajectories and
predicted 31 false trajectories. This averages to 3.5 (1.17 std dev) missed and 2.58 (2.31
std dev) false trajectories predicted per augmented decision source. The means and
standard deviations for all participants are listed in Appendix I. The implications of
these results for the third hypothesis will now be considered in detail.

6.1.1.1. Algorithm-Missed Trajectories

The first step in the analysis was to research the 2 trajectories the algorithm missed and
determine if any human participants detected those trajectories. The algorithm only
missed trajectories in the 30% time span case, one in both Scenario 1 (Easy, 30%) and
Scenario 3 (Hard, 30%). The specific trajectories the algorithm missed are designated by
the arrows in Figure 6-1 and Figure 6-2. The areas designated in Figure 6-1 and Figure
6-2 show that the algorithm missed trajectories due to a lack of information. Table 6-1
shows that there were two cases where some humans managed to form trajectories
when the algorithm could not. These cases were similar to those found in Experiment
One where two trajectories should have been formed in the location where only one
was plotted. The results in Table 6-1 show that some participants were able to detect
these trajectories, however in no instance was the augmented decision source able to
detect the existence of two side-by-side trajectories.



Table 6-1:
The Number of the Augmented User Correctly Plotted Trajectories vs. the Number of

Missed Trajectories for the 2 Trajectories Missed by the Algorithm

Scenario, Track, Factor Level Scenario 1, Trajectory 5, Scenario 3, Trajectory 5,
Easy 30% Hard 30%

Augmented-Correct Trajectories 2 2

Augmented-Missed Trajectories 10 10
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Figure 6-1: The raw data for Scenario 1 (Easy, 30%).

The arrow points to the area where two
tracks existed, but only one was plotted by
the algorithm (and only one human
participant plotted both trajectories).
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Figure 6-2: The data for Scenario 3 (Hard, 30%).

6.1.1.2. Augmented Decision Source-Missed Trajectories

The next step in the analysis was to look into the cases in which the human-augmented
decision source missed trajectories. There were three trajectories (4.2%) that the majority
(10) of the augmented participants missed. All participants missed at least 2 trajectories
during the course of the experiment. The 3 trajectories that approximately half or more
of the humans missed are listed in Table 6-2, which is an expansion of Table 6-1. The
misses correlate well with the 2 trajectories missed by LMTS. A full list of these results
is given in Appendix I.



Table 6-2:
The 3 Most Missed Trajectories by the Augmented Decision Source and the

Percentage of Augmented Participants Who Missed These Trajectories

Scenario, Trajectory Factor Level Scenario 1, (Scenario 3, (Scenario 3,
Trajectory 5, Trajectory 1, Trajectory 5,

Easy 30%) Hard 30%) Hard 30%)

Augmented-Correct Trajectories 2 2 1

Augmented-Missed Trajectories 10 10 11

Algorithm-Missed (Yes or No) Yes No Yes

Missed Trajectory % 83% 83% 92%

Table 6-2 shows that both LMTS and the augmented user missed trajectories in the 30%

data span case, and the augmented user missed the most trajectories in the Hard, 30%

case (which is the same as in the first experiment). Figure 6-3 shows the missed

trajectories as a function of the four factor levels. The family wise error was set at a =

.01. Overall, the algorithm and the augmented decision source are significantly different

(Wilcoxon, Z = -3.84, p = 0.000+). However, testing all factor levels, the only significant

difference is at the Hard, 30% case (Wilcoxon, Z = -2.71, p=0.00 7 ). The Wilcoxon scores

for all factor levels can be found in Table 6-3.
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Figure 6-3: Fraction of correctly detected trajectories for both algorithm and the human-augmented
decision source.



Table 6-3: Wilcoxon Scores for all Factor Levels
Factor Level Easy, Hard, Hard, Hard,

30% 30% 60% 100%
Wilcoxon Z -1.41 -2.71 -1.63 -1.73

P .157 .007 .102 .083

6.1.1.3. False Trajectories

Experiment Two showed similar false trajectory performance as the first experiment.
The 13 trajectories the algorithm falsely predicted greatly outnumber the augmented
decision source average of 2.58. Out of the 8 possible scenarios, the algorithm on
average predicted 1.65 false trajectories per scenario, and the comparison between
LMTS and the augmented decision source is shown in Table 6-4. The two numbers that
should be compared are the ratio of average collaborative false tracks per participant vs.
the number of false tracks predicted by LMTS. Comparison of these two numbers
demonstrates the augmented user outperforms the algorithm in all cases. The
augmented user clearly outperforms LMTS and does not predict nearly as many false
trajectories. Averaging over all dependent variables, there was a significant difference
between the collaborative participant and LMTS (Wilcoxon Z = 6.219, p = 0+, a =.05).

Table 6-4:
The Ratio of False Tracks Predicted Per Factor Level

(Decision Easy, Hard, Hard, Hard,
Source, Factor Level) 30% 30% 60% 100%

(# Collaborative false tracks/ .66 .5 .6 .7
# total participants)
LMTS# 4 3 4 2

There are two reasons for such large number of false trajectories from the algorithm.
First, performance is similar to LMTS results from the first experiment, in which the
algorithm took information from two trajectories and created three. The augmented
user minimized this behavior by allowing the human to connect trajectories over areas
in which the algorithm had the highest probability of failure. Second, the partial
trajectories were often not connected. If two partial trajectories were not connected on
either side of a large gap, they would both qualify as detected trajectories. These false
hits would increase the number of "objects" detected by the algorithm above the
number that actually existed.



It can also be seen that the numbers differ slightly from the first experiment. Table 6-5
represents the two false trajectory tables normalized by scenario for LMTS. It can be

seen that there is an overall increase of 2.5 trajectories (38%), however, there was a

decrease in the Hard, 100% crossing angle case.. This overall increase is believed due to

the increase in difficulty of overall difficulty in Experiment Two.

Table 6-5:
Number of False Trajectories by LMTS Normalized by Scenario

(Experiment, Scenario) Easy, Hard, Hard, Hard,
30% 30% 60% 100%

Experiment One 0 0 J 3

Experiment Two 2 1.5 2 1

When looking at the same comparison for the individual human user in the first
experiment to the augmented decision source in Experiment Two, there is still a similar
increase. Table 6-6 presents the two false trajectory tables normalized by scenario for the
augmented decision source. It shows an overall increase of .932 trajectories for the four
factor levels in Experiment Two. This is a 72% increase in false hits, which is about 30%
larger than the 42% increase by LMTS.

Table 6-6:
Number of False Trajectories by the Augmented Human Normalized by Scenario

(Experiment, Scenario) Easy, Hard, Hard, Hard,
30% 30% 60% 100%

Experiment One .103 0 .172 .103

Experiment Two .33 .25 .38 .35

The most likely reason for the increase in the number of overall false trajectories is that

the second experiment is only testing cases in which the algorithm and the human user
were most likely to predict false trajectories. The subsequent increase in overall

difficulty between the two experiments would contribute, in part, to the overall increase

in the number of false tracks predicted by both the algorithm and the human. However,

the human still significantly outperforms LMTS predicting less false trajectories, 5 to .41

in the first experiment and 13 to 2.58 in the second.



6.1.2. Accuracy of Correctly Plotted Trajectories

In addition to missed or false trajectories, the accuracy of each decision source is an

important measure of performance. For all the trajectories correctly detected (i.e. not

missed or falsely identified), Equation 3-2 was used to calculate the RMSE. This section

first compares the RMSE from each decision source, not including extrapolated

trajectories. It then compares the accuracy of the extrapolated trajectories by the human

to the average accuracy in those scenarios.

6.1.2.1. Accuracy Comparison

Figure 6-4 shows the RMSE averages for both decision sources at each factor level. This

figure shows that the collaborative effort significantly increases the ability for humans

to contribute, especially at the 30% data span levels. In order to fairly compare the

RMSE for both LMTS and the augmented decision source, this information does not

include any trajectories that the algorithm failed to extrapolate.
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Figure 6-4: Error plot (wlo extrapolated trajectories) for both decision sources
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To find how effective the algorithm was in comparison to the collaborative effort,
the data were first broken down to individual scenarios, as shown in Figure 6-5. This
provides a more in-depth view of the individual effort per scenario.
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Figure 6-5: Error plot (w/o extrapolated trajectories) for both decision sources broken down by scenario

Figure 6-5 shows some interesting results. The family-wise error was set to a = .005.
First, there was no overall significant difference between the algorithm and augmented
user (t= -1.427, p=0.154). Further analysis showed that the augmented user significantly
outperforms the algorithm in Scenario 2 (t= 4.482, p=O+). However, the algorithm
outperforms the augmented decision source in Scenario 5 (t= -2.844, p=0.005). In both of
those cases, the average mean difference was greater than 20 meters. However, the
other cases (6 out Of 8 scenarios) show no significant differences between algorithm and
augmented user (Appendix I). The average difference between both decision sources in
those cases is 3.41 m, an order of magnitude less than the two scenarios that showed
significant differences. This information shows a difference from Experiment One
where the average accuracy of the algorithm was significantly better, overall, than the



human user. In this experiment, accuracy is significantly closer, and statistically there is

no difference between algorithm and augmented user.

Figure 6-6 depicts RMSE error plots from both experiments. The red line shows the 20m

accuracy level. Comparison of these charts shows that the average RMSE stays

relatively constant between both experiments, 16m in Experiment One and 19m in

Experiment 2. When comparing the error for the same factor levels, the average RMSE

increases to 19m for Experiment One. So while there were more false trajectories

predicted by each decision source in Experiment Two, the missed trajectories and

accuracy stayed relatively constant.
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Figure 6-6: Comparison of error plots from Experiments One (left) and Two (right)

6.1.2.2. Extrapolated Trajectories

There were 14 trajectories that could not be extrapolated by the LMTS algorithm. On

average 7.9 human participants (std dev 4.9) detected these extrapolations. In order to

see if human contributions would be beneficial in this task, the average RMSE of those

trajectories was calculated and found to be 95m, std. dev. 165m. This is approximately

80m more than the average RMSE of all other trajectories smoothed by the human

augmented decision source. This shows a general lack of ability of the human to

accurately extrapolate the trajectories over long distances. However, the large standard

deviation is an indication that some participants may be able to accurately extrapolate.

So while there is not enough information to do a full statistical analysis, it suggests that

the lack of the capability to extrapolate by LMTS creates a void that can be somewhat

filled by the human augmented user. However, extrapolation seems to be a problem for

both decision sources and, therefore, should be a focus of future research.
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6.1.3. Factored Performance Tables

In comparing decision sources, it is also necessary to compare accuracy of performance
on the individual trajectories. Since the comparison is now strictly comparing human to
algorithm results, only the trajectories that the algorithm and the human both smoothed
were examined. Out of the 72 possible trajectories, the average human outperformed
the algorithm 15 times and did equally well 4 times. Thus in 26% of the trajectories, the
average human participant did better than or the same as the algorithm. The algorithm
only outperformed every human participant in 20 trajectories, meaning that at least one
human user did better than or the same as the algorithm in 72% of the trajectories.

Further analysis was directed to determining if the collaborative effort was the best
place to exploit human input. Using the same factor performance tables found in
Chapter 4, and using only the interpolated trajectories (recall the algorithm cannot
extrapolate), all ties and superior human trajectories were summed as were all superior
algorithm trajectories as shown in Table 6-7.

Table 6-7:
Number of Superior Trajectories as a Function of Decision Source Including Ties

Decision Source Factor Level Total
Easy 30% Hard 30% Hard 60% Hard 100%

Human(Tie or Better) 53 57 105 83 298
Algorithm 45 119 88 107 359

To analyze if the humans outperformed the algorithm, strictly superior performance,
not including ties, was examined in Table 6-8. It was important to see if there were any
cases for which both human and LMTS plotted with the same accuracy. It is shown in
Figure 6-7 that there are similar results to Experiment One, in which there were a large
number of trajectories that are ties for which both decision sources plotted accurately.
Furthermore, the figure shows that the collaborative effort performed as expected. The
criterion for invoking human performance was set to allow the human sufficient
opportunities to alter the algorithm's results. In this experiment the human user was
asked to plot 70% of the trajectories, which averages to 9 out of every 13 in each
scenario.



Performance
Table 6-8:

Results Without Including Ties
Decision Source Factor Level Total

Easy 30% Hard 30% Hard 60% Hard 100%
H uman 39 25 47 54 165

Algorithm 45 119 88 107 359

w/out Ties

N w/Ties

7 ----

-I

Easy, 30% Hard, 30% Hard, 60% Hard, 100%

Scenario

Figure 6-7: Ratio of trajectories the human either tied or was more accurate than the algorithm with and

without including ties.

The performance increase between experts can be seen in Figure 6-8 which shows the
difference in superior trajectories by the human in Experiment One and Experiment

Two. There is an increase in superior trajectories in Experiment Two. The only factor
level that does not experience an increase is the Hard, 30% Scenario, which is interesting
as this was one of the best cases for the human in Experiment One. These show that

overall the participants in Experiment Two did better than those of Experiment One,

even with more difficult scenarios.
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Figure 6-8: Ratio of trajectories the human either tied or was more accurate than the algorithm with out
jointly missed trajectories

It is instructive to also consider superior participant performance. Participant 11 bested
the algorithm 17 times and tied it 9 times. Participants 11's performance for superior
trajectories is broken down by factor level in Figure 6-9. The resultant graph is similar to
Figure 6-7, which is different from Experiment One. While one participant was
numerically the best, there was no clearly superior participant. The average number of
superior trajectories was 14 per participant, with a standard deviation of 3. While
participant 11 did the best with 17, 4 other participants were superior in 16 trajectories,
with 8 participants scoring better than average (Appendix I). The evidence shows that
the superior performer is now not that much different from the aggregate, which
suggests that the user pool is beginning to converge to the best possible performers.
This further supports the evidence that the participants in Experiment Two
outperformed those in Experiment One and validates that an expert user pool can really
increase overall performance.

Table 6-9:
Performance Table for Participant 11

Superior Decision Factor Level Total
Source

t sy 30% Hard 30% Hard 60% Hard 100%
Human (Tie or Better) 6 5 8 7 26

Algorithm 3 11 9 6 29
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Figure 6-9: Ratio of trajectories, by factor level, comparing aggregate vs. best participant superior
trajectories

Figure 6-10 depicts the best performer in both experiments. This provides similar

evidence to Figure 6-9, which shows that the best performers in both experiments have

similar performance in comparison with the algorithm. The only large difference is in

the Easy, 30% case which is most likely due to the increase in overall performance by
the human decision source in this factor level in Experiment Two. This data also

suggests that as the expert user pool becomes narrower, the superior performance

charts will begin to converge.
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Figure 6-10: Ratio of trajectories, by factor level, comparing best users from Experiment One and
Experiment Two.

0.7 -

0.6 -

0.5 --

0.4

0.3 -

0.2 -

0.1 -

0 -

0.6

0.5

0.4

0.3

0.2

0.1

Easy, 30% Hard, 30%

.....................



6.2. Summary

An experiment was conducted to address the fourth research objectives as listed in
Chapter 1. A hypothesis was created to address that objective. That hypothesis was:

Human and algorithm collaboration will produce a superior solution to the automation acting
alone.

That hypothesis was shown to be partially correct. While the human augmented
solution did not produce a superior solution overall, it produced a solution that in
terms of accuracy was no different than the algorithm working alone. However, it was
far superior in terms of fewer false trajectories and slightly worse in failed detection of
actual trajectories. The hypothesis is amended to state:

Human and algorithm collaboration will produce a superior solution to the automation acting
alone, depending upon the resources of the system and the needs of the operator.



7. Conclusions and Future Work

This thesis has presented the results of two experiments that investigated potential
human contributions to a track smoothing task that had previously been done only by
the LMTS algorithm. The results from both experiments demonstrate ways in which
humans can contribute to the task. This chapter will first summarize how human
augmentation of the LMTS algorithm can generate solutions superior to those generated
by either the human or algorithm acting alone. It will then discuss potential tradeoffs in
implementing that augmentation. Some results are then generalized to a wider domain
of human-automation collaboration. Finally, possible future work is discussed.

7.1. Augmentation to Automation

Experiment One showed that both humans and automation have distinct areas of
superior performance. On average, the algorithm missed fewer trajectories and was
more accurate in making connections. However, the humans predicted significantly
fewer false trajectories and were more accurate in one factor level crossing (Scenario 6,
Hard 100%). Experiment Two revisited four factor level crossings from Experiment One
using 12 of the best participants from the previous experiment. In Experiment Two, the
participants were asked to smooth only those cases where the results of Experiment
One suggested that the LMTS algorithm would have difficulty. The results showed that
the human-augmented system matched the algorithm in terms of accuracy with no
significant difference for six of the scenarios. The results further showed that the
humans missed, on average, one more trajectory than the algorithm alone but predicted
significantly less false trajectories than the algorithm alone. The Fitt's List from Chapter
2 has been slightly updated as shown in Table 7-1 to highlight these differences.

Table 7-1:
Fitts' List [28] for the Track Smoothing Task

Humans Are Better At LMTS Is Better At
Resolving uncertainty to improvise fits to Using strict rules to evaluate likelihood of a
trajectories match

Consistently producing results, such that each
Extrapolating trajectories application of the algorithm to the same data

will provide the same output
Detecting all partial trajectory information so

Not adding false trajectories ls rjcoisaemseless trajectories are missed
Recalling previous similar pattern-matching
experiencesQuick and efficient computation



The differences in results from Experiment One to Experiment Two show that
augmented automated systems can mitigate missed or false outcomes without
decreasing system accuracy. While accuracy was constant between LMTS and the
human-augmented system, human participation dramatically decreased the number of
false trajectories as compared to LMTS alone. LMTS, on the other hand, significantly
decreased the number of missed trajectories compared to the human acting alone. These
benefits came about because LMTS was not forced to choose trajectories when there was
a small probability of fit, and likewise, potentially confusing trajectories were not
presented to the human.

7.2. Possible Role Allocations

The criterion for invoking augmentation in Experiment Two was to remove the data for
any trajectory that was connected over a gap that was smaller than 20% of the data
span, provided that trajectory did not connect with any other trajectory whose gap was
greater than 20%. This resulted in a human-dominated augmented system, since the

20% criterion resulted in the human addressing 70% of the true trajectories. The
accuracy of the trajectories processed by humans was found to be equivalent in
accuracy to LMTS. This section considers the costs and benefits that changing the 20%
gap criterion would have on performance in the trajectory smoothing task. The

discussion will focus on missed trajectories, false trajectories, and accuracy of smoothed
trajectories.

The humans averaged 1-2 more missed trajectories than the algorithm. While the
algorithm was clearly superior in not missing trajectories, the 20% gap criterion and use
of the best performers from the previous experiment clearly resulted in better system
performance than the humans acting alone. False trajectories, on the other hand, were a

problem for LMTS. LMTS's inability to extrapolate resulted in having many partial

trajectories remaining, which were not complete predictions and thus labeled as false in

these experiments. The algorithm predicted 5 false trajectories in the first experiment

and 13 in the second experiment while the average human predicted 0.41 and 2.58
trajectories, respectively. This demonstrates that the 4 factor level crossings (Easy 30%,
Hard 30%, Hard 60%, Hard 100%) are indeed much harder since both decision sources

predicted more false trajectories. It also shows that the human and human-augmented

system were superior to the algorithm in mitigating false trajectories.

As discussed above, accuracy increased in the human-augmented system to the point

that there was no statistical difference between the augmented system and LMTS.



Further adjustment of the criterion will likely result in a trade-off between missed/false
trajectories and accuracy of the solution, similar to the tradeoff that occurred from
Experiment One to Experiment Two. This is further discussed in Section 7.4.

7.3. Generalization of Results

While the results of this thesis are specific to the track smoothing application,
extrapolation difficulties, failure to predict trajectories that actually exist, and the results
of using an expert pool of users suggest generalization to other applications in human-
augmented automated systems.

Extrapolation, as previously stated, can be thought of as prediction of future states. The
fact that the algorithm was not programmed to extrapolate forced the human
participant to have to do so, and in most cases the human performed poorly with low
accuracy. The result shows that automated system designers must consider human
limitations in extrapolation if it is necessary for successful system operation.

Previous research into interpolation shows that there are factors that limit the human's
ability to perceive whole contours. In addition, the results of Experiments One and Two
showed that both the human and LMTS had difficulties connecting correct segments
due to the constraints data span and degree of difficulty of the trajectories. Thus,
human and automation error may not be so different in these types of tasks, which
should be a consideration in evaluating future automation of techniques that also
involve human perception.

There are clear benefits of using experts. Experts, in this experiment, were identified
only after an hour of operation. After the second experiment, the field had narrowed
even further, but the variation was significantly less than the first experiment. After two
full hours of experience, the expert users were a distinct twelve individuals. Their
expertise resulted in increased mean accuracy, in comparison to the first experiment.

7.4. Future Work

This thesis suggests two topics in particular for further work: better extrapolation of
trajectories and adjustable cost-benefit criterion. Extrapolation, which is essentially
prediction, is needed in these track smoothing tasks to understand the past, not just the
future. Understanding the past cannot only assist in prediction, but more importantly



increase the likelihood of determining correct trajectories. LMTS had no ability to

extrapolate. Human extrapolation, which sometimes was useful, showed poor accuracy

and therefore future work should look into better techniques that may help in

extrapolation.

As discussed earlier, adjusting criterion for collaboration could alter the type of

smoothed trajectories. While it cannot be determined from these experiments, the

alteration of the 20% criterion could also affect missed and false trajectories. For

example, a criterion that would invoke smoothing on trajectories with a 10% gap might

decrease the augmented missed trajectory average to approach the algorithm's

performance. Future experiments may be able to establish a relationship between the

number of predicted trajectories and the accuracy of the truth trajectories, which could

be crucial to maximizing the cost-benefit analysis of future augmented track smoothing

systems.
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Appendix A: Demographic Information

Participant Gender Age Career Served Country Service Years Drawing How
in Served of Experience Often

Military Service

2 Male >50 Scientist No Yes Monthly
3 Male 25-35 Engineer No yesYtig
4 Male >50 Scientist No No
5 Female 25-35 Engineer NO Yes- Yfl
6 Male 25-35 Engineer No No
7 Male 35-50 Engineer No No
8 Female 25-35 Staff No No
9 Male 35-50 Engineer No No
10 Male >50 Staff Yes USA Army 22 Yes Yearly
11 F:emrnle -50 ibrarian ~N Ves Vs*

12 Male 25-35 Engineer No Yes Yearly
13 Female 35-50 Exec. No No

Assistant
14 Female 35-50 Secretary No No

16 Male >50 Staff Yes Taiwan Air Force 1 No

18 Male >50 Librarian Yes USA Air Force 4 No
19 Male 25-35 Engineer No Yes, -Mrthly
20 Male >50 Engineer No Yes Weekly
21- Female >50 Editor No Yes MdINy
22 Male 25-35 Electrical No Yes Weekly

Engineer
23 Male >50 Mathema Yes USA Navy 3 N

tician
24 Male 35-50 Engineer No Yes Yearly
25 Female 35-50 Radar No yes We~ekly

Analyst

26 Female >50 Secretary No No
27 Male 35-50 Research No No.

Staff
28 Female 35-50 AE No Yes Monthly

Engineer



Pre-Experiment Survey

o Please indicate your sex:

o Male

o Female

o Please indicate your age:

o 18-25

o 25-35

o 35-50

o >50

o Please indicate your occupation

o Are you currently or have you ever served in the armed forces of any country?

o Yes

o No

If yes,

o Country:

o Service: __Army _Navy _Air Force

o Years of service:

o Do you have any experience with drawing on a computer?

o Yes

o No

If so, how often?

o Weekly

o Monthly

" Yearly



Appendix B: Tutorial

Track Smoothing Experiment
Introduction

MIT Humans and Automation Lab iiiii
Research funded by

MIT Lincoln Laboratory

Overview

Objects in space, that are not accelerating, have trajectories that are smooth and
continuous. However, when such objects are tracked by a radar, sometimes the
software produces paths that contain gaps or track segments that may be mislabeled
as if there are multiple objects present on a single track.

In this experiment you are responsible for improving the trajectories for a set of these
objects by plotting what you feel is the "best fit" to the trajectories presented to you.
The available information will be presented as object tracks plotted over time and
relative distances. Some of the objects may cross in the data that you are given and
some may contain gaps. In each of these cases mislabeling could occur. Also, the way
the data has been produced, no object will sub-divide in the time span presented so
you should make sure every plotted trajectory has a start and a finish. To clarify,
every object starts and finishes outside the data shown in the plot.



User Interface Introduction

You will interact with the data by means of a user interface. On the interface, there
are two panels of buttons. The first panel deals with plotting the trajectory and
manipulating it. The second panel deals with the plotted data itself. You can turn the
visibility of the tracks on and off, and rotate the axes as needed to select the view
that you find most useful.

In the course of the experiment you use the cursor to select the tracks that seem to
you to fit best. Furthermore, you will be asked to indicate your confidence as you
make these selections. You can change your confidence (High, Medium, Low) at any
time both from track to track and along a particular track. The confidence will be
denoted by the color change in the track, the darker the color the higher the
confidence. You will be given ten (10) minutes to complete each data set.

Subsequent slides give more details about the experiment itself.

User Interface



User Interface

User Interface

* After iicking on "Complete
T-ack'' you are in plotting mode

* The timer shows the time
/remaining to complete the tracks

* The cursor fills the screen so that
you can tell that you're in plotting/moce./ After clicking "Create New Track,"
you can create points insice the
plot area by clicking on the left
mouse button. Outside the plot
area the cursor w I remain visible
ht you ill not be r* tI-IA +lwe toMo

points

*Each point will be plotted in the
color selected by your confidence
level

eTo complete each trajectory click
on the "Complete Track" button,
which will complete the track at the
-t rrert point.

Confidence Le2vel

SBe-ore )lottilng, you must select your
desired confidence level ( ow, medium, 9-54
high) which represerts hcw sure you are
about the track you are about to plot

. The (obr of the track will be reflect which
level you x cct

. You can also alter confidence level while M0
pictting

- However, ycu cannot change confidence
v-i Aftter you hav completed thre tric<

Create New Track

- To stat pottirg the trajedcry ci ck
Create New Trac k'

- Th s will octvAte a large cross hair, which
lir eri dllows you 3u begii plclUr ig puirt



User Interface

- After clicking "Ccmplete Track", a line will be
plotted through the points in the confidence
color you selected

- Each track wi I be numbered in the order
they were plotted.

. You can change the plot at any tine. To do
this:

. First click on the track to highlight it
Cick oi ihe ldk d secund Lime Lo

cortinue plotting You can continue the
track in either direction by clicking on the
end pclnt you wish to work on (denoted
by a diamond).
-The large crosshair will appear to show

that you are in plotting rnode
. If you double clicked by accident, click
on "Complete Track" to leave the track as
is

User Interface

lo edit a track, you must hignlight it first

Delete Track
. This will celete the enti-e highlighted track,
. it will not affert thre nrinhPring schemP

Delete End Point
Just like continuing the plot, you can
change the trajectory by deletng the end
point.

- This button will delete the current end
point (denoted by a diamond) and the line
between the end point anc the "next"
point

- Select Lhe specillt end-puinL by dlicking un
which side of the track you wish to edit

- Again, you can use his button only when
a track is highlighted. The point deleterd
wil be the one highighted by a diamond



User Interface

. The lower panel contains the "Visibility" buttons,
that control how the underlying tracks are displayed

. The Rotate Button will rotate the axis into
either a vertical or horizontal direction
. The Hide Tracks button will hide all the tracks
already plotted so that you can look at the radar
data with out trajectory interference. It will also
darken the data so that you can visually see that
you have turned off the track visibility.

- The Show Tracks button will then allow you to
see all plotted tracks.

User Interface

Tine (s)

Submit
- Will submit all tracks and complete the scenario
- You can not re-visit the scenario after submitting

Reset All
- Will delete all user plotted tracks and reset the interface
. Will also restart all numbering (as all tracks are deleted)

Things To Remember:
- All tracks go from start to finish. This means tracks have to start left side of the data
plot and finish somewhere in the time span. For this reason you cannot plot outside
the axis and no track can split
* You can continue plotting or delete points, but only from the end point, which can be
selected and is highlighted by a diamond

- You cannot undo a track deletion, reset, or submit so make sure you want to
perform this action before you click

. ....... ......... ........ ...... tH. ... mmmmmmmmmNmmmpoKa I
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Appendix C: Experiment One Consent to Participate Form

CONSENT TO PARTICIPATE IN
NON-BIOMEDICAL RESEARCH

Human Performance in Ballistic Missile Discrimination Scenarios

You are asked to participate in a research study conducted by Lee Spence, Ph.D., from

the MIT Lincoln Laboratory Advanced Concepts and Technology Group. You were

selected as a possible participant in this study because of your interest in improving

human performance in ballistic missile defense scenarios. You should read the

information below, and ask questions about anything you do not understand, before

deciding whether or not to participate.

. PARTICIPATION AND WITHDRAWAL

Your participation in this study is completely voluntary and you are free to choose
whether to be in it or not. If you choose to be in this study, you may subsequently

withdraw from it at any time without penalty or consequences of any kind. The

investigator may withdraw you from this research if circumstances arise which warrant
doing so.

. PURPOSE OF THE STUDY

Ballistic Missile Decision Support involves a number of very broad and complex issues.
The system is very large, it has many interconnected elements, and it is physically
spread over an area that is a significant fraction of the Earth. In addition the information
on which to make decisions is often incomplete and/or inconclusive, and, given the
enormity of the decision making task, the timelines are extremely short. Thus, the
allocation of tasks automation and humans requires careful consideration of the areas
where each can best perform. The general purpose of this research program is to
investigate automation and human operator performance. To this end, this experiment
will investigate how well humans and computers can assess missile crossing tracks.



. PROCEDURES

If you volunteer to participate in this study, we would ask you to do the following
things:

- Participate in a 15 minute training session to familiarize yourself with the display
and test conditions.

- Assess automated track identification post track crossings in up to 10 test
scenarios, each about 5 minute in length.

- All of these steps will occur in the Lincoln Laboratory S-Building (South
Laboratory), Room S1-346 and in laboratories in Building 33 on campus.

. POTENTIAL RISKS AND DISCOMFORTS

There are no foreseeable risks, discomforts, inconveniences in participating in this
experiment.

* POTENTIAL BENEFITS

Your benefit in participation in this study is developing a better understanding of
human and computer strengths and weaknesses in the track estimation task. In terms of
benefit to society, this research will provide for better understanding of human versus
computer capabilities in track estimation, which is applicable not only to ballistic
missile defense but also the air traffic control and other domains.

. PAYMENT FOR PARTICIPATION

Participation in this experiment is strictly voluntary with no payment.

. CONFIDENTIALITY

Any information that is obtained in connection with this study and that can be
identified with you will remain confidential and will be disclosed only with your
permission or as required by law. Your performance in this study will only be coded by



your subject number, which will not be linked to your name so your participation in
this research is essentially anonymous.

. IDENTIFICATION OF INVESTIGATORS

If you have any questions or concerns about the research, please feel free to contact Lee
Spence at Group 32 - Advanced Concepts and Technology, MIT Lincoln Laboratory,
244 Wood St, Lexington MA 02240-9185 (781) 981-5043 or Professor Cummings at 77
Massachusetts Ave., 33-305, Cambridge, MA 02139 (617) 252-1512.

. EMERGENCY CARE AND COMPENSATION FOR INJURY

If you feel you have suffered an injury, which may include emotional trauma, as a
result of participating in this study, please contact the person in charge of the study as
soon as possible.

In the event you suffer such an injury, M.I.T. may provide itself, or arrange for the
provision of, emergency transport or medical treatment, including emergency treatment
and follow-up care, as needed, or reimbursement for such medical services. M.I.T. does
not provide any other form of compensation for injury. In any case, neither the offer to
provide medical assistance, nor the actual provision of medical services shall be
considered an admission of fault or acceptance of liability. Questions regarding this
policy may be directed to MIT's Insurance Office, (617) 253-2823. Your insurance carrier
may be billed for the cost of emergency transport or medical treatment, if such services
are determined not to be directly related to your participation in this study.

. RIGHTS OF RESEARCH SUBJECTS

You are not waiving any legal claims, rights or remedies because of your participation
in this research study. If you feel you have been treated unfairly, or you have questions
regarding your rights as a research subject, you may contact the Chairman of the
Committee on the Use of Humans as Experimental Subjects, M.I.T., Room E25-143B, 77
Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253 6787.



SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE

I understand the procedures described above. My questions have been answered to my
satisfaction, and I agree to participate in this study. I have been given a copy of this
form.

Name of Subject

Name of Legal Representative (if applicable)

Signature of Subject or Legal Representative Date

SIGNATURE OF INVESTIGATOR

In my judgment the subject is voluntarily and knowingly giving informed consent and

possesses the legal capacity to give informed consent to participate in this research

study.

Signature of Investigator Date



Appendix D: Experiment One Radar Data

The following data are broken into individual scenarios. The first figure represents the

pre-processed radar data given to both decision sources. The second figure represents
truth. The figures are listed in order of scenarios, one through six.
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Figure D-1: Scenario 1 (Easy, 30%)
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Figure D-3: Scenario 2 (Easy, 60%)
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Figure D-4: Truth trajectories for Scenario 2 (Easy, 60%)
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Figure D-6: Truth trajectories for Scenario 3 (Easy, 100%)

102

700 B00 900 1000

Time After Launch (s)

Figure D-5: Scenario 3 (Easy, 100%)

600 1100 1200

1000 1100 1200

3 2

-- -



500

0

-500

-1000

-1500

-2000-

-2500 ---------
550 80oo

- - -- - ------ __ __-_ - - -

650 700 750
Time After Launch (s)

Figure D-7: Scenario 4 (Hard, 30%)
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Figure D-8: Truth trajectories for Scenario 4 (Hard, 30%)
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Figure D-9: Scenario 5 (Hard, 60%)
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Figure D-10: Truth trajectories for Scenario 5 (Hard, 60%)
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Figure D-11: Scenario 6 (Hard, 100%)
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Figure D-12: Truth trajectories for Scenario 6 (Hard, 100%)
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Appendix E: Experiment One Statistics

0.00 500.00 1000.00

RM SE

1500.00 2000.00

RMSE for both decision sources. It's heavily weighted towards a "0" score

which represents a perfect match

Missed and False Trajectories

Table E-1:
The Number Participants Who Missed Each of the Trajectories

Scenario/Trajectory 1 2 3 4 5 6
1 0 0 1 0 0 1
2 0 0 1 0 0 0
3 26 0 0 0 0 4
4 25 2 11 1 0 1 23
5 0 3 1 0 0 0
6 1 2 1 0 0 0

Scenario/Trajectory 7 8 9 10 11 12 13
1 2 1 0 0 0 2 1
2 1 1 0 0 1 0 0
3 17 0 0 2 2 1 1
4 13 0 0 10 1 2 N/A
5 1 0 0 2 1 0 0
6 0 0 1 1 0 0 1
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Figure E-1: Histogram of the



Table E-2:
The Percentage of Missed Trajectories Per Scenario, Per Track.

(Scenario, Track) 1,3 1,6 11,7 11,8 11,1211,1312,3 12,7 12,8 12, 111 3,113,6 13,7 13,1013,1113,1213,131
H Missed Trajectories 1 1 12 1 12 1 11111 1 1 1 12614 117 12 12 111

Please refer to Appendix D for the Actual Trajectories

Table E-3:
The Number of False Trajectories per Participant

Participant 1 2 3 4 5 6 7 8 9 10
# False Traiectories 0 0 1 2 0 0 0 0 0 0

1 0 1 0 1 1 2 1 0 1 0 1 0

Accuracy
The following family wise error correction was used to correct for Type-I error.

ajW = 1 - (1 - a),

Equation E-1: Family wise error correction. C = # of comparisons
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Performance Tables

Table E-4:
Number of Superior and Tied Trajectories by the Human Decision Source

Scenario/Trajectory 1 2 3 4 5 6
1 4 2 1 4 10 3
2 0 1 1 1 0 1
3 2 0 0 0 1 0
4 294 2 1 24 24 29
5 1 16 0 1 0 0
6 1 24 0 1 1

Scenario/Trajectory 7 8 9 10 11 12 13
1 20 1 1 5 12 20 7
2 0 0 0 2 2 14 4
3 1 1 0 0 1 15 0
4 1 0 26 0 1 7 0
5 1 0 2 25 5 13 5
6 26 0 25 25 1 14 0

Table E-5:
Performance Table Including Joint-Missed Trajectories as Ties.

Superior Decision Source Degree of Difficulty Total

Data Span Easy Hard

Human 30% 24 81 105
60% 2 37 39
100% 0 100 100

30% 66 63 158
Tie 60% 24 32 56

100% 21 18 39

30% 270 188 458

Algorithm 60% 261 284 545
100% 308 213 521
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Table E-6:
Performance Table Not Including Joint-Missed Trajectories

Superior Decision Source Degree of Difficulty Total

Data Span Easy Hard

Human 30% 24 71 95
60% 2 37 39

100% 0 100 100
30% 65 15 80

Tie 60% 24 32 56
100% 21 18 39
30% 263 168 431

Algorithm 60% 257 276 533
100% 255 206 461

Table E-7: Number of More Accurate Trajectories and Number of Standard
Deviations From Mean For All Participants

Overall Mean Number = 6.758, Standard Deviation = 4.556

# of More Accurate Trajectories 7 6 111 51 0 6 3 9 3 11
Std Dev from Mean 0.053 -0.166 0.931 -0.386 -1.483 -0.166 -0.825 0.492 -0.8251 0.9311
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Confidence
Table E-8 lists the results for the 13 pairwise comparison tests, in which the significant

differences are depicted with an asterisk.

Table E-8: Pairwise Comparisons (Mann-Whitney U)

Variables Two-Tailed Significance
(a = .004)

Easy, 30%-60% Z = -4.986, p =.000*

Easy, 60%-100% Z = -2.007, p =.045

Easy, 30%-100% Z = -4.286, p =.000*

Hard, 30%-60% Z = -4.286 p = .000*

Hard, 60%-100% Z = -.955, p = .339

Hard, 30%-100% Z = -3.969, p = .000*

30%, Easy-Hard Z = -1.978, p = .048

60%, Easy-Hard Z = -1.682, p = .093

100%, Easy-Hard Z = -1.286, p = .199

30%-60% Z = -4.625, p = .000*

60%-100% Z = -1.141, p= .254
30%-100% Z = -4.398, p = .000*

Easy-Hard Z = -1.459, p = .145
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Appendix F:

Participant

Experiment Two Demographic Information

Participant
(from Exp 1)

Electrical
FnninAer

Assistant
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Appendix G: Experiment Two Consent to Participate Form

CONSENT TO PARTICIPATE IN
NON-BIOMEDICAL RESEARCH

Human Performance in Ballistic Missile Discrimination Scenarios

You are asked to participate in a research study conducted by Lee Spence, Ph.D. from the MIT
Lincoln Laboratory Advanced Concepts and Technology Group and Jason Rathje from the MIT
Humans and Automation Laboratory. You were selected as a possible participant in this study
because of your interest in improving human performance in ballistic missile defense scenarios.
You should read the information below, and ask questions about anything you do not understand,
before deciding whether or not to participate.

. PARTICIPATION AND WITHDRAWAL

Your participation in this study is completely voluntary and you are free to choose whether to be
in it or not. If you choose to be in this study, you may subsequently withdraw from it at any time
without penalty or consequences of any kind. The investigator may withdraw you from this
research if circumstances arise which warrant doing so.

* PURPOSE OF THE STUDY

Ballistic Missile Decision Support involves a number of very broad and complex issues. The
system is very large, it has many interconnected elements, and it is physically spread over an
area that is a significant fraction of the Earth. In addition the information on which to make
decisions is often incomplete and/or inconclusive, and, given the enormity of the decision
making task, the timelines are extremely short. Thus, the allocation of tasks automation and
humans requires careful consideration of the areas where each can best perform. The general
purpose of this research program is to investigate automation and human operator performance.
To this end, this experiment will investigate how well humans and computers can assess missile
crossing tracks.

. PROCEDURES

If you volunteer to participate in this study, we would ask you to do the following things:
- Participate in a 15 minute training session to familiarize yourself with the display and test

conditions.
- Assess automated track identification post track crossings in up to 7 test scenarios, each

about 10 minutes in length. Total time will be no longer than 1 hr 10 minutes.
- All of these steps will occur in the Lincoln Laboratory S-Building (South Laboratory),

Room S 1-425.
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. POTENTIAL RISKS AND DISCOMFORTS

There are no foreseeable risks, discomforts, inconveniences in participating in this experiment.

* POTENTIAL BENEFITS

Your benefit in participation in this study is developing a better understanding of human and
computer strengths and weaknesses in the track estimation task. In terms of benefit to society,
this research will provide for better understanding of human versus computer capabilities in track
estimation, which is applicable not only to ballistic missile defense but also the air traffic control
and other domains.

. PAYMENT FOR PARTICIPATION

Participation in this experiment is strictly voluntary with no payment.

. CONFIDENTIALITY

Any information that is obtained in connection with this study and that can be identified with you
will remain confidential and will be disclosed only with your permission or as required by law.
Your performance in this study will only be coded by your subject number, which will not be
linked to your name so your participation in this research is essentially anonymous.

. IDENTIFICATION OF INVESTIGATORS

If you have any questions or concerns about the research, please feel free to contact Lee Spence
at Group 32 - Advanced Concepts and Technology, MIT Lincoln Laboratory, 244 Wood St,
Lexington MA 02240-9185 (781) 981-5043 or Professor Cummings at 77 Massachusetts Ave.,
33-305, Cambridge, MA 02139 (617) 252-1512.
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. EMERGENCY CARE AND COMPENSATION FOR INJURY

If you feel you have suffered an injury, which may include emotional trauma, as a result of
participating in this study, please contact the person in charge of the study as soon as possible.

In the event you suffer such an injury, M.I.T. may provide itself, or arrange for the provision of,
emergency transport or medical treatment, including emergency treatment and follow-up care, as
needed, or reimbursement for such medical services. M.I.T. does not provide any other form of
compensation for injury. In any case, neither the offer to provide medical assistance, nor the
actual provision of medical services shall be considered an admission of fault or acceptance of
liability. Questions regarding this policy may be directed to MIT's Insurance Office, (617) 253-
2823. Your insurance carrier may be billed for the cost of emergency transport or medical
treatment, if such services are determined not to be directly related to your participation in this
study.

0 RIGHTS OF RESEARCH SUBJECTS

You are not waiving any legal claims, rights or remedies because of your participation in this
research study. If you feel you have been treated unfairly, or you have questions regarding your
rights as a research subject, you may contact the Chairman of the Committee on the Use of
Humans as Experimental Subjects, M.I.T., Room E25-143B, 77 Massachusetts Ave, Cambridge,
MA 02139, phone 1-617-253 6787.
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SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE

I understand the procedures described above. My questions have been answered to my
satisfaction, and I agree to participate in this study. I have been given a copy of this form.

Name of Subject

Name of Legal Representative (if applicable)

Signature of Subject or Legal Representative Date

SIGNATURE OF INVESTIGATOR

In my judgment the subject is voluntarily and knowingly giving informed consent and possesses
the legal capacity to give informed consent to participate in this research study.

Signature of Investigator Date
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Appendix H: Experiment Two Radar Data

The following data are broken into individual scenarios. The first figure represents the
pre-processed radar data given to both decision sources. The second figure represents
truth. The figures are listed in order of scenarios, one through six.
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Figure H-1: Scenario 1 (Easy, 30%)
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Figure H-2: Truth trajectories for Scenario 1 (Easy, 30%)
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Figure H-3: Scenario 2 (Easy, 30%)
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Figure H-4: Truth trajectories for Scenario 2 (Easy, 30%)
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Figure H-5: Scenario 3 (Hard, 30%)
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Figure H-6: Truth trajectories for Scenario 3 (Hard, 30%)
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Figure H-7: Scenario 4 (Hard, 30%)
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Figure H-8: Truth trajectories for Scenario 4 (Hard, 30%)
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Figure H-9: Scenario 5 (Hard, 60%)
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Figure H-10: Truth trajectories for Scenario 5 (Hard, 60%)
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Figure H-11: Scenario 6 (Hard, 60%)
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Figure H-12: Truth trajectories for Scenario 6
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Figure H-13: Scenario 7 (Hard, 100%)
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Figure H-14: Truth trajectories for Scenario 7 (Hard, 100%)
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Figure H-15: Scenario 8 (Hard, 100%)
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Figure H-16: Truth trajectories for Scenario 8 (Hard, 100%)
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Appendix I: Experiment Two Statistics

260.
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Figure I-1: Histogram of the RMSE for both decision sources. It's heavily weighted towards a "0" score
which represents a perfect match

Missed and False Traiectories

Table I-1:
The Number Participants Who Missed Each of the Trajectories

Scenario/Trajectory 1 2 3 4 5 6
1 3 0 0 0 10 0
2 0 0 0 0 0 0
3 10 0 0 0 11 0
4 0 1 0 0 0 0
5 2 0 0 0 1 0
6 0 0 0 0 0 0
7 0 0 0 0 0 0
8 0 0 0 0 1 1

Scenario/Trajectory 7 8 9 10 11 12 13
1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 0 0 0 0 0 0 1
8 0 0 0 0 0 0 0
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Table 1-2:
The Percentage of Missed Trajectories Per Scenario, Per Track.

(Scenario, Track) (1,3) (1,5) (3,1) (3,5) (4,2) (5,1) (5,5) (7,13) (8,5) (8,6)
Augmented Missed Trajectories 3 10 10 11 1 2 1 1 1 1

Missed Trajectory Percentage 0.25 0.83 0.83 0.92 0.08 0.17 0.08 0.08 0.09 0.09

Please refer to Appendix H for the Actual Trajectories

Table 1-3: Number of More Accurate Trajectories and Number of Standard
Deviations From Mean For All Participants

Overall Mean Number = 13.75, Standard Deviation = 2.987

Participant 1 2 3 4 5 6
#of More Accurate Trajectories 16 16 15 8 12 10
Std Dev from Mean 0.7529 0.7529 0.4183 -1.924 -0.586 -1.255

Participant 7 8 9 10 11 12
# of More Accurate Trajectories 15 16 10 16 17 14
Std Dev from Mean 0.4183 0.7529 -1.255 0.7529 1.0875 0.0837

Table 1-4:
The Number of False Trajectories per Participant
Participant 1 2 3 4 5 6 7 8 9110 11 12

# False Trajectories 2 0 1 3 9 3 2 1 3 2 4 1
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Mean Comparisons
Mean comparison t tests for all scenarios for between decision source comparisons, in

which the significant differences are depicted with an asterisk.

Table 1-5: Pairwise Comparisons (Wilcoxon) Based on RMSE Decision Source Scores

Scenario #, Factor Level Two-Tailed Significance
(a = .005)

Combined t= -1.427, p=0.154

Scenario 1 t = 0.502, p = 0.616

Scenario 2 t = 4.482, p = 0.000*

Scenario 3 t = -0.672, p = 0.502

Scenario 4 t = -1.802, p =0.073

Scenario 5 t = -2.844, p =0.005*

Scenario 6 t = -1.334, p =0.183

Scenario 7 t = -0.712, p =0.477

Scenario 8 t = -0.554, p =0.580
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