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Abstract

In this paper, we wish to build a high quality database of
images depicting scenes, along with their real-world three-
dimensional (3D) coordinates. Such a database is useful
for a variety of applications, including training systems for
object detection and validation of 3D output. We build such
a database from images that have been annotated with only
the identity of objects and their spatial extent in images. Im-
portant for this task is the recovery of geometric information
that is implicit in the object labels, such as qualtitative rela-
tionships between objects (attachment, support, occlusion)
and quantitative ones (inferring camera parameters). We
describe a model that integrates cues extracted from the ob-
ject labels to infer the implicit geometric information. We
show that we are able to obtain high quality 3D informa-
tion by evaluating the proposed approach on a database
obtained with a laser range scanner. Finally, given the
database of 3D scenes, we show how it can find better scene
matches for an unlabeled image by expanding the database
through viewpoint interpolation to unseen views.

1. Introduction
A database of images and their three-dimensional (3D)

description would be useful for a number of tasks in com-
puter vision. For example, such a database could be used
to learn about how objects live in the world and train sys-
tems to detect them in images. Techniques for aligning
images [10, 25, 20] may also benefit from such data. The
database can be used to validate algorithms that output 3D.
Furthermore, image content can be queried based on abso-
lute attributes (e.g. tall, wide, narrow). Our goal is to create
a large database of images depicting many different scene
types and object classes, along with their underlying real-
world 3D coordinates.
Of course, there are a variety of ways to gather such a

dataset. For instance, datasets captured by range scanners
or stereo cameras have been built [27, 28]. However, these
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datasets are relatively small or constrained to specific loca-
tions due to the lack of widespread use of such apparatuses.
More importantly, by hand-collecting the data, it is difficult
to obtain the same variety of images that can be found on
the internet. One could undertake a massive data collection
campaign (e.g. Google Street View [1]). While this can be
a valuable source of data, it is at the same time quite expen-
sive, with data gathering limited to one party.
Instead of manually gathering data, one could harness

the vast amount of images available on the internet. For this
to reasonably scale, reliable techniques for recovering abso-
lute geometry must be employed. One approach is to learn
directly the dependency of image brightness on depth from
photographs registered with range data [27] or the orienta-
tion of major scene components, such as walls or ground
surfaces, from a variety of image features [12, 13, 14].
While these techniques work well for a number of scenes,
they are not accurate enough in practice since only low and
mid level visual cues are used. An alternative approach is
to use large collections of images available on the internet
to produce 3D reconstructions [30]. While this line of re-
search is promising, it is currently limited to specific loca-
tions havingmany image examples. There has recently been
interesting work that produces some geometric information
and requires fewer images of the same scene [11, 29, 7].
We would like to explore an alternate method for pro-

ducing a 3D database by exploiting humans labeling on the
internet. Recent examples of such collaborative labeling for
related tasks include ESPgame [35], LabelMe [26], andMe-
chanical Turk [31]. In a similar manner, we could ask a hu-
man to provide explicit information about the absolute 3D
coordinates of objects in a scene, such as labeling horizon
lines, junctions, and edge types. However, it is often not
intuitive as to which properties to label and how to label
them. Furthermore, annotating is expensive and great care
must be taken to scale to all of the images on the internet.
The challenge is to develop an intuitive system for humans
to label 3D that scales well to internet images.
We propose a system that produces high quality absolute

3D information from only labels about object class identity
and their spatial extent in an image. In this way, we only re-
quire that humans provide labels of object names and their

1
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Figure 1. An image with object relations labeled. Support and
part relations provide much information about object relations.

location in an image. The advantages of this approach are
twofold: (i) one needs to simply label the objects in a sin-
gle image to get 3D, which is relatively cheap (especially
with semi-automatic labeling methods [26, 19]), (ii) label-
ing static objects is in general fairly intuitive.
At first glance it seems impossible to infer 3D informa-

tion from object labels alone. However, there is rich geo-
metric information implicitly captured in the collection of
object labels. For example, consider the labeled image de-
picting a scene shown in Figure 1. Notice that cues impor-
tant for the recovery of geometry, such as attachment, sup-
port, and occlusion relationships holding between objects,
are manifested in the spatial configuration of the polygons.
For instance, overlapping polygons correspond to attach-
ment or occlusion and adjacent edges from abutting poly-
gons correspond to contact, occlusion, or attachment. We
wish to develop cues to detect these relationships from the
annotations provided for an image.
An important issue is that cues extracted from the poly-

gons are ambiguous and may correspond to multiple geo-
metric relationships. To disambiguate these relationships,
we can leverage the fact that many of them are labeled con-
sistently across the database for object class instances. This
holds because of the regularity in the spatial configuration
of objects in a scene. For example, when we see a person
against the side of a building, we know that the person is not
physically attached to the building since people also appear
outside the spatial extent of buildings. In contrast, we know
that windows do not rest against buildings, but are attached
to them, since windows tend to lie inside the spatial extent
of buildings. This reasoning also applies to edges, as in the
case of chimneys, where only the lower part of the boundary
is attached to buildings. We wish to learn this information
by analyzing the statistics of detected relationships across a
labeled database and use it to infer 3D information.
There is a rich body of prior work that has looked into re-

covering these relationships in images, with early accounts
described in the textbook of Ballard and Brown [2]. We
also draw inspiration from early work in line-drawing anal-
ysis [4, 3, 16, 32], which can be seen as a precursor to work
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Figure 2. (a) Camera and scene layout. A scene is composed of
objects, represented as piecewise-connected planes, standing on a
ground plane. (b) Polygon and edge types. Polygons are either
ground (green), standing (red), or attached (yellow). Edges are
contact (white), occluded (black), or attached (gray).

in this area. In our case, we have the advantage of a large
database of labeled images to learn from. More recently,
there has been work to develop systems for humans to ex-
plicitly label 3D information [15, 6, 22]. Also relevant are
methods to recover geometric information from image in-
formation [27, 28, 14, 24, 34, 18, 9, 21, 37].
The main contribution of this paper is a high quality

database of labeled images spanning many different scenes
and objects, and their corresponding absolute 3D coordi-
nates. To obtain such a database, we develop a model that
integrates cues from the object labels across the database to
infer geometric information, such as qualitative object rela-
tionships (attachment, support, occlusion) and quantitative
ones (camera parameters). In addition, we show some ap-
plications where such a database is useful.
A number of databases have labeled objects and may be

useful for our task [26, 36, 8]. For our work, we use the
LabelMe database since it has labeled examples for many
different scene types and object classes. Furthermore, the
database grows over time since the labels are provided by
humans on the internet.

2. Recovering 3D from user annotations
We wish to develop an integrated model to recover ab-

solute 3D coordinates from user annotations. For this, we
will integrate various cues that can be extracted from the
annotations to infer the 3D coordinates of the labeled ob-
jects in the scene. In addition, we will leverage information
about cues that are consistently observed across the dataset.
Furthermore, the model will recover geometric information
important for recovering the 3D coordinates, such as attach-
ment and support relationships, where objects contact the
ground, and distributions of absolute object size.
We make several assumptions about the camera and the

geometric layout of a scene. For the camera we assume
perspective projection, which is expressed as a 3 × 4 ma-
trix P = (p1,p2,p3,p4) that relates world coordinates
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X = (X,Y, Z,W ) to image coordinates x = (x, y, w)
(written as homogeneous vectors) via the transformation
x = PX. As in [15, 6], we assume that a scene is com-
posed of a number of objects standing on a ground plane
(dubbed standing objects), with the objects represented as
piecewise-connected planes oriented orthogonally to the
ground plane. In addition, there may exist attached objects,
whose 3D coordinates are derived from the objects that they
are attached to. Figure 2(a) depicts our camera and scene
layout assumptions.
To recover P, we assume that the origin of the world

coordinates O lies at the intersection of the ground plane
and the line perpendicular to the ground plane that passes
through the camera center C = (0, 0, ch) . The X and
Y axes lie in the ground plane, with the Z axis oriented
towards the direction of the camera center. Furthermore,
we assume that there is no yaw or roll in the rotation of
the camera relative to the world coordinates (there is only
pitch). The pitch can be recovered from the camera focal
length cf , principal point (which we take to be the center
of the image), and the image location of the horizon line
of the ground plane (since there is no roll, the line can be
parameterized by its y location in the image c0). Together,
c = {cf , ch, c0} are the intrinsic and extrinsic camera pa-
rameters for P.
We can relate points on the image planeΠI to the ground

plane ΠG by the homography matrix H = (p1,p2,p4).
For a planeΠS orthogonal toΠG (dubbed standing plane),
let lΠ be the line intersecting the two planes, which projects
to lΠ′ inΠI (the latter dubbed contact line). The two lines
are related by lΠ = H−T lΠ′. Points on ΠI are related to
ΠS by a homography H̃, which can be computed by choos-
ing a new coordinate system with origin Õ that lies on lΠ.
Since the relationship between O and Õ is known, we can
relate points in the new coordinate system to the world co-
ordinates.
Since standing objects are represented by a set of

piecewise-connected standing planes, let {l1, . . . , lD} be
the set of contact lines corresponding to the standing planes
and s = {s1, . . . , sD} the corresponding set of piecewise-
connected line segments and rays that mark the valid ex-
tent of the contact lines for an object. We restrict s so that
any line passing through the vanishing point v correspond-
ing to the Z axis intersects with at most one line segment
or ray (i.e. we do not model object self-occlusion). As an
approximation, we assume that v lies at infinity, which is
reasonable for standard cameras with the horizon line lying
within the image. For image point x, we use the contact line
corresponding to the line segment or ray intersecting the x
coordinate of the image point.
For an annotation, a user provides an object class label o

and a polygon that marks the spatial extent of the object in
the image. For the polygon, let p = (x1, · · · ,xK) be the

set of image points, ek = (xk,xk+1) the edge connecting
adjacent points, and e = (e1, · · · , eK−1) the set of edges.
Given the scene layout assumptions, a polygon must be ei-
ther on the ground plane, a standing object, or attached to
another object. Let q ∈ {ground, standing, 1, · · · ,M}
be the polygon type, where the index of another poly-
gon is provided if the polygon is attached. We assume
that edges must be one of the following types: rk ∈
{contact, occlusion, attached}. Finally, we assume that
ground and attached objects have attached edges only. Fig-
ure 2(b) illustrates the polygon and edge types.
We define the function f(x, j, e, q, r, c) that takes as in-

put the edges, polygon types, and edge types for all poly-
gons in the image, along with the camera parameters, and
computes the 3D coordinates for an image point x on poly-
gon j. For attached objects, we compute the 3D coordinates
from the object it is attached to. For standing objects, the set
of piecewise-connected line segments and rays s are derived
from the contact edges.
For images i = 1, . . . , N and model parameters

θ, φ, α, β, η, ϑ, we compute the MAP estimate of the cam-
era parameters and the polygon and edge types:

arg max
ci,qi,ri

Mi∏

j=1

P (qi,j |oi, si,j , θ, α, η)
Li,j∏

k=1

P (ri,j,k|ti,j,k, qi,j , β)

P (ci|oi, ui,j, ri,j,k, φ, ϑ)
∏

(k,l,m)

ψ(ri,j,k, ri,j,l, ri,j,m)

where si,j , ti,j,k, and ui,j are cues derived from the poly-
gons in the image. The rest of this section will describe how
the cues are extracted, the precise form of the probability
distributions, and how the model parameters are learned.

2.1. Recovering polygon types
Critical to the recovery of a polygon’s type is its relation-

ship to other polygons in the same image. Two relationships
we consider are (i) when an object is attached to another
object and (ii) when a ground object supports a standing
object. We describe a model for these two relationships.

Discovering attachment relationships: Given the
database of N labeled images, each having M i polygons,
we wish to recover information about which objects are at-
tached to (i.e. part of) other objects in an image. To recover
attachment relationships, we assume the following: (i) the
spatial extent of an attached object mostly lies inside the
object it is attached to; (ii) the relationship is consistently
observed across the entire database when instances of the
two object classes appear in the same image. When an
attachment relationship holds in an image and users label
one polygon inside the other, they are implicitly labeling
the relationship. Therefore, critical to finding attachment
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relationships is reasoning about how polygons overlap
across the database.
However, we must take care when analyzing overlapping

polygons in the LabelMe database. In particular, two poly-
gons may also overlap when there is an occlusion and the
user labels behind the occlusion. We need to detect when
these cases arise. For this, we assume that polygon over-
lap due to occlusion is more likely to occur for objects that
occupy a large area of the image.
To measure whether polygon A lies inside polygon B,

we compute the relative overlap between the two polygons
RA,B = area(A∩B)

area(A) , which is the intersection area normal-
ized by the area of A. If A lies completely inside B, then
RA,B = 1 (conversely RA,B = 0 if A lies outside of
B). We also measure the relative area of a polygon as
aA = area(A)

area(Image) , which is the area of the polygon nor-
malized by the image area.
Suppose for polygon j in image i we observe s i,j =

(Ri,j , ai), where Ri,j = (Ri,j,1, · · · , Ri,j,Mi) is a vector
containing the relative overlap between polygon j and the
other polygons in the image and a i = (ai,1, · · · , ai,Mi)
is a vector of the relative polygon areas. We as-
sume the following generative model: P (s i,j |oi, α, θ) =∑

qi,j∈ξ\ξj
P (si,j |qi,j , α)P (qi,j |oi, θ). The first term is the

likelihood of the polygon overlap and area measurements
given qi,j , which indicates the presence or absence of an
attachment relationship between polygon j and the other
polygons in the image. The second term is the likelihood
of an attachment relationship holding between instances of
two object classes (e.g. windows and cars), and is learned
across the database.
More specifically, qi,j = (qi,j,0, · · · , qi,j,Mi) is a latent

binary vector indicating which polygon in the image, if any,
that j is attached to. For example, if p ∈ {1, . . . ,Mi}, then
qi,j,p = 1 indicates that j is a part of polygon p. Con-
versely, if p = 0, then polygon j is not attached to any other
polygon. We assume that j can be attached to at most one
polygon and not to itself (i.e. qi,j ∈ ξ \ ξj , where ξ is the
standard basis).
We assume that the data likelihood factorizes

into the product of two terms P (si,j |qi,j , α) =
P (Ri,j |qi,j , αR)P (ai|qi,j , αa), with the first term mod-
eling the likelihood of relative overlap given attachment
and the second as modeling the likelihood of occlusion
given no attachment. These terms further decompose into
the product of terms for each component. We assume
that Ri,j,p ∼ Beta(αR, 1) and ai,p ∼ Beta(αa, 1). The
parameters αR and αa are set so that (i) relative overlap
must be close to one for attachment relationships and (ii)
overlap due to occlusion is biased toward zero.
To determine the likelihood of which polygon j is at-

tached to (if any), we rely on the frequency of attachment
across the database of other polygons belonging to the same
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Figure 3. Recovered attachment relationships. We show graphs
of several object classes (building, car, road and bird) from the
LabelMe dataset, along with objects that are likely to be attached
to them. The images to the right of each graph show examples of
images and the object polygons that are found to be parts of the
parent object class.

object class. For j belonging to object class oi,j = l, we
use a decision tree to decide which polygon it is attached
to. First, decide if object class l is attached to anything, pa-
rameterized by θl,0. If so, then decide which object classm
it is most likely attached to, parameterized by θ l,m. If there
are multiple examples of object class m in the image, then
choose among them with equal probability.
Concretely, we assume that qi,j ∼ Multinomial(θ̄),

where θ̄0 = θl,0 and θ̄p = (1−θl,0)θl,m

Nm\j
for p �= 0 and

op = m. Here, Nm\j is the number of instances of ob-
ject class m in the image, excluding polygon j. Notice that
with this formulation, we handle attachment detection and
assignment. We also handle multiple instances of the same
object and polysemy (e.g. a “window” can be attached to a
“car” or a “building” in an image).
We learn the parameters for attachment likelihood via

Gibbs sampling. We sample over the posterior distribution
of qi,j given attachment assignments for all the other poly-
gons in the database. We assume a Beta/Dirichlet prior
over θ, and set the parameters as η0 = 5, ηl = 0.5, αa = 2,
and αR = 20.
Figure 3 shows attachment relationships that our model

recovers by thresholding θ. The left side shows a graph of
objects that our model deems as possible parts of an object.
The right side shows objects in an image their automatically
recovered parts. Notice that we recover attachment relation-
ships for a variety of object classes.

Discovering support relationships: We assume that ob-
jects in a scene are supported by other objects (e.g. road,
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Figure 4. Recovered support relationships. We show graphs for
example object classes (road and table) that support other objects.
The images to the right of each graph show the polygonal bound-
aries of the objects being supported.

sidewalk, floor, table). We would like to automatically re-
cover these support relationships. This is important since
we will need to reason about the geometry of objects
through the objects that support them. As for attachment,
we would like to analyze the frequency of support relation-
ships across the database.
We assume that a support relationship occurs when the

bottom of an object touches (makes contact with) its object
of support. Users implicitly label this when they draw a
polygon where the bottom touches a labeled support object.
However, attached objects also satisfy this condition. We
must first infer attachment and remove those objects from
consideration.
To recover support relationships, first remove attached

objects. Then, for pairs of instances from two object classes
in an image, count the number of pairs where the bottom of
one instance lies inside the other. Finally, normalize this
count by the total number of observed pairs.
In Figure 4, we show object classes likely to be in sup-

port relationships. We show relationships with normalized
score exceeding 0.5. Notice that we recover many different
relations spanning indoor and outdoor scenes.

2.2. Recovering edge types

We employ a variety of cues for recovering the different
edge types for a polygon. If a polygon is attached to another
polygon, then we assume that all of its edges are attached.
Edges close to ground objects are likely to be contact edges.
Also, edges that are long, relative to the width of the ob-
ject, and horizontally oriented are more likely to be contact
edges. We also assume that contact edges cannot have an-
other edge below it from the same polygon. All other edges
are assumed to be occlusion edges.
We describe how to extract edge cues for edge k belong-

ing to polygon j in image i. To measure if an edge is close
to a support object, we compute the mean distance d i,j,k

from evenly sampled points along the edge to the support
object and normalize the distance with respect to the im-
age width. The edge length li,j,k is computed relative to the
object width and is clipped to lie in [0, 1]. The edge ori-
entation vi,j,k is measured with respect to a horizontal line
and is normalized to lie in [0, 1]. Finally, we set bi,j,k = 1
if there is no other edge below k. We collect all of these
observations into an observation vector t i,j,k.
We wish to infer the latent edge label ri,j,k as attached,

contact, or occlusion for edge k. We assume that the dif-
ferent edge cues are distributed independently given the
edge label. For attached and occlusion edge labels, we
assume that the cues are distributed uniformly. For con-
tact edge labels, we assume that di,j,k ∼ Beta(βd, 1),
li,j,k ∼ Beta(βl, 1), vi,j,k ∼ Beta(βv, 1), and bi,j,k ∼
δ(1). We assume the following prior probabilities for the
different edge types given the attachment relationship q i,j :
P (ri,j,k = att|qi,j = ξ0) = 1, P (ri,j,k = cont|qi,j �= ξ0) =
ρ, P (ri,j,k = occ|qi,j �= ξ0) = 1− ρ.

2.3. Incorporating edge constraints
We wish to exploit additional information about groups

of edges. For example, this may come in the form of Gestalt
cues (c.f. a model for exploiting colinear edges to detect
crosswalks in images [5]). In this work, we explore incor-
porating edge constraints to more robustly handle objects
that do not make flush contact with the ground, but at iso-
lated points (e.g. car wheels, chair and table legs). Often,
non-contact edges along the bottom of these objects lie in
close proximity to a support polygon because they live well
below the camera height. For these edges, local cues alone
are not sufficient to disambiguate their type.
We use information about neighboring edges to resolve

the edge type ambiguity. For edge l, if its two neighboring
edges are below it and occlusion edges, then most likely l
is not a contact edge. This is a powerful constraint since
vertical edges (e.g. along the leg of a table) are likely to be
occlusion edges, thus causing the horizontal edge along the
bottom of the table to be labeled as an occlusion edge.
We model the above constraint by first detecting edges

ri,j,l with neighbors ri,j,k and ri,j,m below it. We define a
ternary potential functionψ(ri,j,k, ri,j,l, ri,j,m) for the edge
triple. ψ has unit energy for all edge configurations except
when edge k and m are occlusion edges. If l is a contact
edge, the energy is νc (νo if l is an occlusion edge). We set
νc = 0.01 and νo = 10.

2.4. Estimating camera parameters
To estimate the camera parameters, we follow the pro-

cedure outlined in [17], which uses information about the
contact location and polygon height u i,j = (vi,j , hi,j)
in the image. The method estimates the horizon line c0

and the camera height ch by assuming that the polygon
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height is Gaussian distributed hi,j ∼ N (μ̄, σ̄2) where μ̄ =
μl(c

0−vi,j)
ch and σ̄ = σl(c

0−vi,j)
ch . Here, oi,j = l is the ob-

ject class of the polygon, and φl = (μl, σl) is the mean and
standard deviation of the 3D height for the object class. We
only use polygons for which we recovered contact edges
and assume a fixed focal length of cf = 800 pixels.
To the learn the parameters for object heights, we use

the procedure outlined in [17], where the mean and standard
deviation of the height of a person is used to find initial esti-
mates of the camera parameters. These parameters are then,
in turn, used to estimate the object heights. Objects with re-
liable height estimates are then used to refine the camera
parameters. This process is repeated until a stable solution
is found. Finally, we use a prior on the camera height, with
mean 1.7 meters and standard deviation 0.5 meters.

2.5. Inference

We perform inference to recover the edge labels and
camera parameters by marginalizing over the attachment
variables qi,j . Since there are loops in the model, we
use sum-product loopy belief propagation, which converges
within 10 iterations (the entire system run within a few sec-
onds per image). We restrict our 3D scene models to one
level of the recovered support/part graph (i.e. we do not
render items on a table that is supported by the floor). Fur-
thermore, we ignore objects for which we do not infer any
contact edges, along with portions of ground objects that
reside above the recovered horizon line. We assume that
objects with a single short contact edge (edge length less
than 5% of the image width) are frontal-parallel, with the
contact line parameterized by the lowest polygon point.

3. Evaluation
In this section, we evaluate various components of our

system. We first evaluate inference for labeling polygon
edges. We then show qualitative and quantitative results of
the overall system.
To evaluate edge classification, we manually labeled

edges corresponding to the polygonal annotations of 13 im-
ages depicting different views of street scenes. This cor-
responded to 8621 edges over 854 polygons, spanning 61
object classes. As a result, there were 313 contact, 3198
attached, and 5110 occluded edges.
Figure 2(b) shows the inferred edge types, as determined

by our system. Notice that our output agrees well with the
image data. Also, we handle different object classes hav-
ing different number of planar facets and being in different
occlusion and attachment relationships.
Table 1 shows a confusion matrix for the edge classifica-

tion. The columns show for each edge type the fraction of
ground truth edges that were classified into each type. Per-
fect performance corresponds to the identity matrix. Notice

Contact Attached Occlusion
Contact 0.58 0.00 0.03
Attached 0.24 0.97 0.22
Occlusion 0.19 0.03 0.76

Table 1. Confusion matrix for edge classification. Each column
shows for an edge type the fraction of ground truth edges that were
classified into each edge type. The average confusion is 0.77.

(a) (d)(c)(b)

Figure 6. Depth estimates on a dataset gathered with a laser range
scanner [27]. (a) Input image. (b) Range scanner depth map. (c)
System output depth maps. (d) Baseline depth map, which is the
harmonic mean of the depth maps in the training set.

that we achieve high accuracy.
We demonstrate our full system on a variety of images

depicting many different scenes and object categories and
spanning different depths and scene viewpoints. Figure 5
shows pairs of rows depicting input images, along with their
object labels, and output depth maps from our system. A
legend for the absolute depths (in meters, plotted in log-
scale) is shown at the top-right.
To quantitatively assess the accuracy of our depth maps,

we used a ground-truth dataset gathered with a laser range
scanner [27]. This dataset consists of 400 images taken on
the Stanford campus, with a subset having associated depth-
maps. We provided dense object annotations for 62 of these
images. The images are 256x192 resolution and depict out-
door scenes. We measured depth accuracy using the mean
per-pixel relative error across all pixels in the test set. To
handle systematic bias in our depth outputs, we found a lin-
ear regressor that minimized the relative error of our system
depth outputs to the ground truth depth values. We per-
formed cross validation, using 20 images for training and
the rest for testing. Due to noise in the range data, we only
considered depths in the range of 5-70 meters in the ground
truth and system output depths.
Figure 6 shows example images from the test set along

with the ground truth, baseline, and system output depth
maps. Notice that the estimated depths from our system are
close to those produced from the range scanner. Our system
has relative error of 0.29±0.02. As a baseline, we compared
against the harmonicmean of the depth maps corresponding
to the training images. The baseline has relative error of
0.33± 0.04. We considered 40%± 2% of the pixels for the
evaluation. Notice that we achieve improved performance
over the baseline.
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Figure 5. System outputs. Top row: input image and object labels. Bottom row: depth maps (in meters) produced by our system, with a
legend for the depths (in log-scale) shown at right. Our system handles a variety of scenes and objects with different depths and viewpoints.

original view 1

view 2 view 3

Figure 7. Examples of new images obtained by simulating a per-
son walking in the scene and taking pictures.

4. Extending a database with virtual views
In object detection, a typical strategy to improve train-

ing is to generate new virtual examples obtained by ran-
domly perturbing the training examples. This works espe-
cially well for faces when it is possible to build accurate
generative models [33].
In the case of image retrieval, this task is challenging

since the set of possible image transformations is large
and difficult to model. One simple solution is to gener-
ate new images by randomly cropping each picture in the
database. However, this strategy produces images with
different statistics than normal pictures taken by a person
standing on the ground.
If a database has 3D information, then a better way of

extending it is by simulating a personwalking on the ground
and taking pictures in random orientations (but keeping the
camera parallel to the ground plane). The right column of
Figure 7 shows three images (matched in size with the left
column) generated by a random walk on the ground plane.
We used 1600 fully annotated images depicting street

scenes to generate a new set of 6000 annotated images by
generating 20 new images for each image and removing
those with less than 40% valid pixels. We used the new set
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Figure 8. Matching unlabeled images to our expanded database
with virtual views generated from the recovered 3D. (a) Input im-
ages. (b) First nearest neighbor match from the expanded database.
(c) The set of valid pixels in the match. (d) The original location
of the virtual image.

to perform queries for an input image. To compute image
similarity, we used the gist descriptor [23]. For the synthetic
images, we keep a list of the valid pixels and only use those
to compute the gist descriptor.
Figure 8 shows (a) three different input images, (b) the

first nearest neighbor for each query found using Euclidean
distance, (c) the set of valid pixels for each neighbor, and
(d) the original image used to synthesize the virtual image
and the region seen by the virtual camera that best matches
the input image. Notice that we obtain database matches
that are similar to the query image.

5. Conclusion

We have shown how to build a high quality database of
images depicting scenes with absolute 3D information from
object labels alone. We formulated an integrated model to
infer the geometric information implicit in the object labels.
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We showed that we can achieve a low relative error rate on
the benchmark database obtained with a laser range scan-
ner [27]. Finally, we showed one application of the database
to improve scene matches for an unlabeled image.
Even with object detection and segmentation informa-

tion, we had to make a number of assumptions about the
scene geometry. While our results hold for a wide variety
of images, there are still a number of labeled images for
which we cannot extract reliable 3D information. We be-
lieve that this, and other applications of our database, yields
promising directions for future research.

6. Acknowledgements
We thank Jean Ponce and Josef Sivic for helpful feed-

back. Funding for this research was provided by National
Science Foundation Career award (IIS 0747120).

References
[1] http://www.maps.google.com. 1
[2] D. Ballard and C. Brown. Computer Vision. Prentice-Hall,

Englewood Cliffs, NJ, 1982. 2
[3] H. Barrow and J. Tenenbaum. Recovering intrinsic scene

characteristics from images. In Computer Vision Systems,
pages 3–26. Academic Press, N.Y., 1978. 2

[4] M. Clowes. On seeing things. Artificial Intelligence Journal,
2(1):79–116, 1971. 2

[5] J. Coughlan and H. Shen. A fast algorithm for finding cross-
walks using figure-ground segmentation. In 2nd Workshop
on Applications of Computer Vision, in conjunction with
ECCV, 2006. 5

[6] A. Criminisi, I. Reid, and A. Zisserman. Single view metrol-
ogy. IJCV, 40(2):123–148, 2000. 2, 3

[7] S. K. Divvala, A. A. Efros, and M. Hebert. Can similar
scenes help surface layout estimation? In IEEE Workshop
on Internet Vision, associated with CVPR, 2008. 1

[8] M. Everingham, A. Zisserman, C. Williams, and L. V. Gool.
The pascal visual object classes challenge 2006 (VOC 2006)
results. Technical report, September 2006. 2

[9] A. Gupta and L. S. Davis. Beyond nouns: Exploiting prepo-
sitions and comparative adjectives for learning visual classi-
fiers. In ECCV, 2008. 2

[10] J. Hays and A. Efros. Scene completion using millions of
photographs. In ”SIGGRAPH”, 2007. 1

[11] J. Hays and A. A. Efros. IM2GPS: estimating geographic
information from a single image. In CVPR, 2008. 1

[12] D. Hoiem, A. Efros, and M. Hebert. Automatic photo pop-
up. In SIGGRAPH, 2005. 1

[13] D. Hoiem, A. Efros, and M. Hebert. Geometric context from
a single image. In ICCV, 2005. 1

[14] D. Hoiem, A. Stein, A. Efros, and M. Hebert. Recovering
occlusion boundaries from a single image. In ICCV, 2007.
1, 2

[15] Y. Horry, K.-I. Anjyo, and K. Arai. Tour into the picture: us-
ing a spidery mesh interface to make animation from a single
image. SIGGRAPH, pages 225–232, 1997. 2, 3

[16] D. Huffman. Realizable configurations of lines in pictures of
polyhedra. Machine Intelligence, 8:493–509, 1977. 2

[17] J. F. Lalonde, D. Hoiem, A. Efros, J. Winn, C. Rother, and
A. Criminisi. Photo clip art. In SIGGRAPH, 2007. 5, 6

[18] B. Leibe, N. Cornelis, K. Cornelis, and L. V. Gool. Dynamic
3d scene analysis from a moving vehicle. In CVPR, 2007. 2

[19] L.-J. Li, G. Wang, and L. Fei-Fei. OPTIMOL: automatic
object picture collection via incremental model learning. In
CVPR, 2007. 2

[20] C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman.
SIFT flow: dense correspondence across different scenes. In
ECCV, 2008. 1

[21] V. Nedovic, A. Smeulders, A. Redert, and J.-M. Geusebroek.
Depth information by stage classification. In ICCV, 2007. 2

[22] B. M. Oh, M. Chen, J. Dorsey, and F. Durand. Image-based
modeling and photo editing. SIGGRAPH 01, 2001. 2

[23] A. Oliva and A. Torralba. Modeling the shape of the scene:
a holistic representation of the spatial envelope. IJCV,
42(3):145–175, 2001. 7

[24] X. Ren, C. C. Fowlkes, and J. Malik. Figure/ground assign-
ment in natural images. In ECCV, 2006. 2

[25] B. C. Russell, A. Torralba, C. Liu, R. Fergus, and W. T. Free-
man. Object recognition by scene alignment. In Advances in
Neural Info. Proc. Systems, 2007. 1

[26] B. C. Russell, A. Torralba, K. P. Murphy, and W. T. Free-
man. LabelMe: a database and web-based tool for image
annotation. IJCV, 77(1-3):157–173, 2008. 1, 2

[27] A. Saxena, S. Chung, and A. Ng. Learning depth from single
monocular images. In NIPS, 2005. 1, 2, 6, 8

[28] A. Saxena, M. Sun, and A. Ng. Learning 3-d scene structure
from a single still image. In ICCV workshop on 3D Repre-
sentation for Recognition, 2007. 1, 2

[29] J. Sivic, B. Kaneva, A. Torralba, S. Avidan, and W. T. Free-
man. Creating and exploring a large photorealistic virtual
space. In First IEEE Workshop on Internet Vision, associ-
ated with CVPR, 2008. 1

[30] N. Snavely, S. M. Seitz, and R. Szeliski. Photo tourism: Ex-
ploring photo collections in 3d. SIGGRAPH, 2006. 1

[31] A. Sorokin and D. Forsyth. Utility data annotation with
Amazon Mechanical Turk. In IEEE Workshop on Internet
Vision, associated with CVPR, 2008. 1

[32] K. Sugihara. An algebraic approach to the shape-from-
image-problem. Artificial Intelligence Journal, 23:59–95,
1984. 2

[33] N. P. H. Thian, S. M., and S. Bengio. Improving face authen-
tication using virtual samples. In ICASSP, 2003. 7

[34] A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars, and L. V.
Gool. Depth-from-recognition: Inferring meta-data by cog-
nitive feedback. In ICCVWorkshop on 3d Representation for
Recognition, 2007. 2

[35] L. von Ahn and L. Dabbish. Labeling images with a com-
puter game. In SIGCHI, 2004. 1

[36] B. Yao, X. Yang, and S.-C. Zhu. Introduction to a large scale
general purpose ground truth dataset: methodology, annota-
tion tool, and benchmarks. In EMMCVPR, 2007. 2

[37] L. Zhang, G. Dugas-Phocion, J.-S. Samson, and S. M. Seitz.
Single view modeling of free-form scenes. In CVPR, 2001.
2

2718


