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Rapid Association Learning in the Primate Prefrontal
Cortex in the Absence of Behavioral Reversals

Jason A. Cromer™, Michelle Machon™, and Earl K. Miller

Abstract

B The pEC plays a central role in our ability to learn arbitrary rules,
such as “green means go.” Previous experiments from our labora-
tory have used conditional association learning to show that slow,
gradual changes in pFC neural activity mirror monkeys’ slow acqui-
sition of associations. These previous experiments required mon-
keys to repeatedly reverse the cue—saccade associations, an ability
known to be pFC dependent. We aimed to test whether the rela-
tionship between pFC neural activity and behavior was due to the

INTRODUCTION

The pFC is the brain area most central to higher order cog-
nition and implicated in neuropsychiatric disorders (for
reviews, see Stuss & Knight, 2002; Miller & Cohen, 2001).
The foundation of this capacity is pFC’s ability to direct
the achievement of future goals through the learning of
rule-based behavior (Miller, Nieder, Freedman, & Wallis,
2003; Miller & Cohen, 2001; Wallis, Anderson, & Miller,
2001; White & Wise, 1999), such as conditional learning
(Petrides, 1985a, 1985b, 1986, 1990). Our laboratory has
used conditional association learning paradigms to examine
pFC neural activity while arbitrary rules were being acquired
(Pasupathy & Miller, 2005; Asaad, Rainer, & Miller, 1998).
Monkeys learned to associate each of two cue stimuli with
the appropriate behavioral responses (Figure 1A). These
stimulus-response associations were then repeatedly re-
versed after learning. We found that the activity of individual
pFC neurons reflected the stimuli, the responses, or their
association and that neural activity in pFC showed slow ac-
quisition of the cue-response associations that was in
accordance with slow improvements in behavioral perfor-
mance (Pasupathy & Miller, 2005; Asaad et al., 1998).

In this investigation, we tested whether the slow changes
in pFC activity and its correspondence with behavioral im-
provements might have been due to the use of behavioral
reversals. pFC seems particularly critical for the cognitive
flexibility needed to deal with reversals. It is involved in sup-
pressing unwanted or inappropriate actions (Donohue,
Wendelken, & Bunge, 2008; Xue, Aron, & Poldrack, 2008;
Aron & Poldrack, 2006; Aron, Robbins, & Poldrack, 2004;
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reversal requirement, so monkeys were trained to learn several new
conditional cue-saccade associations without reversing them.
Learning-related changes in pFC activity now appeared earlier
and more suddenly in correspondence with similar changes in be-
havioral improvement. This suggests that learning of conditional
associations is linked to pFC activity regardless of whether reversals
are required. However, when previous learning does not need to
be suppressed, pFC acquires associations more rapidly. [l

Kelly et al., 2004; Perret, 1974) and is highly engaged dur-
ing reversal learning (Kehagia, Murray, & Robbins, 2010;
Ghahremani, Monterosso, Jentsch, Bilder, & Poldrack, 2009;
Xue, Ghahremani, & Poldrack, 2008; Remijnse, Nielen,
Uylings, & Veltman, 2005; Cools, Clark, Owen, & Robbins,
2002; O’Doherty, Kringelbach, Rolls, Hornak, & Andrews,
2001). Indeed, a classic observation of neuropsychiatric pa-
tients with frontal lobe damage is their ability to learn a sin-
gle arbitrary rule but difficulty in switching to a new rule
(e.g., Demakis, 2003; Milner, 1964). Thus, it is possible that
our prior observation of slow changes in pFC activity corre-
lated with slow behavioral improvement was due to the
strong dependence of the task on pFC because of the re-
versals. Hence, we tested pFC activity during conditional
association learning without reversals.

METHODS
Behavioral Task

Monkeys performed a conditional association learning
task without reversals (Figure 1A). Each trial began with
the presentation of a fixation spot. Once monkeys fixated
for 800 msec, a cue image was presented for 500 msec. The
cue was then removed, and the monkeys were required to
maintain fixation through a 1000-msec delay period. The
fixation light was then extinguished, and two targets ap-
peared on the right and left. Monkeys were required to
make a direct saccade to the target associated with the
cue object to obtain a reward. Each cue object was un-
iquely associated with a given response direction (e.g.,
Cue A — Right, Cue B — Left). After performance reached
criterion (at least 30 correct trials of each cue and =290%
correct over the last 10 trials per cue), a new block of trials
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Figure 1. (A) The conditional iy =
association l,eam,mg paradigm. Cue Delay Target onset Block structure
After a cue is briefly presented
at the center of gaze, monkeys A
—

maintain fixation during a A nght
memory delay before making a Fixation . ¢ —e B —»Left
saccade to one of two targets
presented on the right and C —»Rj ght
left of the extinguished fixation

L 500 msec 1.000 msec Response —_—
spot. Only a saccade to the P D Left
target associated with the
cue generates a reward. -~ E —I—Right
(,B) The blofclist?uc'ture c?f tbe 800 msec <Al N . —t— = F » Left
conditional association learning
task without reversals. On any Y :
given block of trials, each of two

novel cues is associated with a
single saccade direction. Once
a block of trials is completed,
the old images are discarded,
and two novel cues are again
presented and must be learned.

was started (Figure 1B). Upon entering each new block, the
old images were discarded (never shown again), and two
new cue images were presented, again each associated with
either the right or the left target (e.g., C — Right, D — Left).
Thus, there was no proactive interference between cues—
learning the new cues was not affected by the previous cues
because they were not reversed and not in conflict.

Data Collection

Data were collected from two macaque monkeys (Macaca
mulatia) that were cared for in accordance with National
Institutes of Health guidelines and the policies of the MIT
Committee on Animal Care. Recording wells were posi-
tioned over the dorsolateral pFC (Areas 9 and 46) on the
basis of images obtained from structural MRIs. Eye move-
ments were recorded using an infrared eye tracking sys-
tem (Iscan, Burlington, MA) at a sampling rate of 240 Hz.
Neural recordings were made using individual, epoxy-
coated tungsten electrodes (FHC Inc., Bowdoin, ME). Up
to 16 of these electrodes were lowered through the dura
each day using custom-built screw microdrives. Electrodes
were either driven independently or in pairs. No prescreen-
ing of neurons took place. This resulted in an unbiased sam-
ple of dorsolateral pFC neurons rather than simply those
neurons that may be task related. Waveforms were ampli-
fied, digitized, and then stored for off-line sorting. Princi-
pal components analysis was subsequently used to sort the
waveforms into individual neurons (Offline Sorter; Plexon
Inc., Dallas, TX). All well-isolated neurons were accepted
for study as long as a minimum of four blocks were com-
pleted while the neuron was recorded.

Data Analysis

All data analysis procedures were similar to a previous
study from our laboratory using a similar conditional asso-
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ciation learning paradigm except with reversals (Pasupathy
& Miller, 2005). One-way ANOVAs were assessed over four
time epochs throughout the trial. The “cue” epoch was
analyzed from 100 to 600 msec after cue onset and repre-
sented the time when the cue image was present (adjusted
for the visual delay to pFC). The “delay” epoch was ana-
lyzed for 900 msec starting 100 msec after cue offset and
captured the period when no image was physically present
on the screen, but the monkey was presumably remem-
bering the cue and/or upcoming saccade direction asso-
ciated with the cue image. The “saccade” epoch was
analyzed for 300 msec centered on saccade onset. Finally,
the “reward” epoch was 250 msec starting 50 msec after
reward onset. These epochs were only used to select those
neurons that showed “direction sensitivity,” that is, those
neurons that showed a significant effect of saccade direc-
tion (p < .01). However, similar results were obtained
when all neurons were used for analysis because the re-
maining analysis methods examined only the amount of
neuronal variance accounted for by direction (see below).

Selection of neurons that were direction sensitive was
based on the last 10 correct trials per association before
changing blocks. Saccade direction selectivity strength
(R* for the direction factor) was first quantified as the var-
iance for the direction factor (0, ) divided by the total var-
iance (04,). This computation was repeated for each
neuron across time and across trials by a double sliding
window: A 100-msec centered window was slid in 10-msec
steps over time (along the x-axis), and an eight-trial win-
dow was slid in one-trial steps over the first 30 correct trials
per cue per trial block (along the y-axis, resulting in 23 cor-
rect trials shown in each figure). Results were collapsed
across cues and trial blocks.

Saccade direction selectivity was then quantified as the
percentage of each neuron’s variance explained by sac-
cade direction (PEVg;). PEVy;, for the neural population
was computed by averaging the R* values from each neuron
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and normalizing by subtracting the population mean R*
during the baseline (fixation) period and then dividing
by the population maximum. To examine the time course
of direction selectivity with learning, a half-maximum
PEVg; was computed on the basis of the highest PEV ;.
found during any window (any time in any trial) for the
neural population. These values determined the rise time
of learning. If neural activity on a given trial was too low to
reach the half-maximum, the maximum activity on that
trial was used instead. Rise times were fit with sigmoid

~ o . _ _ X2
curves of the form: y = x TrontaT

RESULTS

Both monkeys were familiar with the conditional associa-
tion learning task (Figure 1A). On each new block of trials,
two novel cue stimuli (never before seen) were used (Fig-
ure 1B). Monkeys had to learn by trial and error which of
the two saccade alternatives (left or right) was associated
with which of the two cues. Figure 2A shows the percen-
tage of correct performance of the monkeys averaged
across both cues on all recorded blocks. Thus, for exam-
ple, Trial 3 on the y-axis refers to the average percentage
of correct the third time the monkeys saw Cue A and the
third time they saw Cue B. Behavioral performance at the
beginning of a block was not significantly above chance le-
vels (p = .99), but performance quickly jumped above
chance (from about 50% to approximately 60%) by the sec-
ond time the monkey saw each cue (p < .001) and then
gradually improved as the monkeys learned the cue-
response associations (Figure 2A). Figure 2B plots the
average behavioral RT as a function of correct trials aver-
aged for each cue and block. RTs decreased most sharply
over the first four correct trials of each cue but then
showed only gradual improvement as the block pro-

gressed (Figure 2B). Figure 2B plots correct trials only
(RT on incorrect trials is not relevant because many of
those trials reflected random guesses, not true choices).
Thus, the sharp decrease in RT on fourth correct trial on
Figure 2B corresponds to a later trial in the all trial plots in
Figure 2A (on average Trial 7 of the all trial plot in Fig-
ure 2A). Thus, the decrease in RT is lagging behind the
monkeys’ improvement in the percent correct. This makes
sense if the monkeys’ RT was improving once they were
confident they were making the correct choice.

We examined activity of neurons in the dorsolateral pFC
during learning; 192 neurons were recorded across 21 ses-
sions from two monkeys (96 from monkey P and 96 from
monkey A). There was an average of 74 (SD = 20) correct
trials per block (minimum = 60 based on criterion, see
Methods) and monkeys completed between four and
nine blocks per recording session (mean = 6 blocks). We
identified pFC neurons that showed selectivity for the direc-
tion of the forthcoming saccade by performing a one-way
ANOVA on the average activity across each of the four anal-
ysis epochs (cue, delay, response, and reward). This re-
vealed that 37% (71/192) of all pFC neurons were saccade
direction selective (i.e., showed a significant difference in
activity between trials requiring right vs. left saccades) in at
least one of the four epochs (all tests evaluated at p < .01).
Previous studies from our laboratory using the identical
task (but with reversals) have shown that pFC neurons
show a learning-related increase in early trial activity (dur-
ing and just after the cue) that reflected the forthcoming
saccade direction (Pasupathy & Miller, 2005; Asaad et al.,
1998). As in these previous studies, we assessed learning-
related changes for the saccade direction-selective neu-
rons by using the percentage of variance explained by
saccade direction (PEVy;;,, see Methods) as the measure
of neural information.
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Figure 2. (A) Percentage of correct performance averaged across blocks and cues for all trials (correct plus error trials). At the start of a block (Trial 1),
average performance is not above chance levels (50%) but quickly jumps above chance by the second presentation of each cue and continues to

gradually improve throughout the block. (B) RTs averaged across blocks and cues for correct trials to match neural data from the two monkeys. RTs are
slowest at the start of new blocks but rapidly improve over the first four trials and then continue to gradually improve over the remainder of the block.

Error bars show SEM.
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Figure 3A shows the average population saccade direc-
tion information as a function of time within a trial and as
a function of correctly performed trials of each cue within
a block (averaging across all cues and blocks). Thus, the
y-axis in Figure 3A is in correspondence with the RT plot in
Figure 2B. By contrast, a given (correct) trial on Figure 3A
corresponds to a later trial in the performance level plot
in Figure 2A, which uses all trials. Early in learning (correct
Trials 1-4), there is little information about the saccade
the monkey will (correctly) make at the end of the delay.
However, starting at Trial 5, there is a relatively sudden in-
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Figure 3. (A) Change in peri-cue direction selectivity during
association learning without reversals. Population percentage of
variance explained by direction (PEV;,, color scale) shown as a function
of correct trials and time from cue onset, averaged across blocks and
cues. Black dots indicate the half-maximal PEVy;, or rise times. (B) Rise
times replotted and fit with a sigmoid curve show bistable learning, with
initial late activity (Trials 1-4) followed by an increase in early trial
direction selectivity starting with Trial 5. (C) Mean PEV;, from the
second half of the cue period (250-500 msec after cue onset) also
shows a jump by Trial 5 but continues to increase with learning.
Error bars show standard deviation of the mean.
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crease in information about the forthcoming saccade direc-
tion that continues to gradually increase in strength with
learning. As in previous studies, we quantified this by plot-
ting the time at which the average amount of information
about saccade direction reached its half maximum on each
trial (black circles, Figure 3A and B). On correct Trials 1-4,
saccade information was weak, and the half maximum was
not reached until an average of 663 msec after cue onset.
However, on correct Trial 5, the relatively sharp increase
in PEVy;, caused the half maximum to be reached after
cue onset, where it remained through the course of learn-
ing. Note that this corresponds with the decrease in mon-
keys’ RT, which showed the sharpest decrease over correct
Trials 1-4 and levels off at Trial 5. A sigmoid fit to the rise
times again indicated two relatively stable phases of activity
with a sharp increase after several learning trials (Figure 3B).
Although this time to half maximum was eventually stable
(starting with correct Trial 5) at an average of 261 msec after
cue onset, the overall PEVy;. continued strengthening as
learning progressed. For example, the mean PEVy;, from
the last half of the cue period is plotted in Figure 3C. Note
how there is a sharp increase between correct Trials 3 and 5,
corresponding to when behavioral RT is sharply decreasing,
followed by continued gradual improvement throughout
learning. Thus, this sudden change in pFC activity corre-
sponds well with this RT decrease. Indeed, this mean PEVy;,
was significantly correlated with the decrease in the mon-
keys’ RTs (r = —.93, p < .001). Note, however, that the
rapid increase in neural rise times (Figure 3B) and the
mean PEVy;, (Figure 3C) occur well after the largest jump
in the monkeys’ percentage of correct performance, which
occurred on the second absolute, not correct, trial. Thus,
the sharp change in pFC neural activity is in better corre-
spondence with the sharp change in monkeys’ RT but not
its earlier sharp jump above chance performance.

DISCUSSION

We recorded neural activity from the dorsolateral pFC
while monkeys performed an association learning task that
required them to repeatedly learn to associate new visual
cues with a rightward or leftward saccade. pFC neurons
showed a relatively strong increase in information about
the forthcoming saccade after a few correct trials. This
was similar to that found in the BG during association
learning with reversals and in contrast to that found in
pFC during reversals, which was much slower and more
gradual; it only became relatively strong after 15 correct
trials (Pasupathy & Miller, 2005). In previous work with re-
versals, behavior improved gradually in correspondence
with the gradual changes in pFC activity. By contrast, in
this study without behavioral reversals, a sharp increase
in pFC saccade direction activity with learning occurred
much earlier, after just 5 trials. However, pFC activity was
still in correspondence to the monkeys’ behavior (RTs),
which also showed a quick jump in performance followed
by gradual improvement.
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Association learning with reversals means that during a
new trial block, cue-response associations are switched.
Therefore, the same cue stimuli are present but are asso-
ciated with the opposite saccade direction. When mon-
keys perform this task, their performance drops to near
0% upon a reversal (entry of a new block), whereas the
monkeys continue to perform the old associations and
then jumps back to chance before gradually improving
(Pasupathy & Miller, 2005). This reversing of stimuli means
that in addition to learning the new cue-response associa-
tions, monkeys must inhibit the old learned associations
that are no longer correct. Therefore, with reversals there
is “proactive interference” between the former associa-
tions (no longer relevant) and the new associations (cur-
rently relevant).

Inhibition of previously relevant behavior and resolution
of conflict because of proactive interference is thought to
be a major function of pFC (Burke, Takahashi, Correll, Leon
Brown, & Schoenbaum, 2009; Aron, Behrens, Smith, Frank,
& Poldrack, 2007; Badre & Wagner, 2004, 2005, 2006; Aron
et al., 2004; Asahi, Okamoto, Okada, Yamawaki, & Yokota,
2004; Dalley, Theobald, Eagle, Passetti, & Robbins, 2002).
Inhibitory control can be lost in neuropsychiatric patients
or monkeys with frontal damage or dysfunction (Caycedo,
Miller, Kramer, & Rascovsky, 2009; Krueger et al., 2009;
Aron & Poldrack, 2005; Meunier, Bachevalier, & Mishkin,
1997; Iversen & Mishkin, 1970). Neural correlates of asso-
ciative learning without reversals are seen in many brain
areas (such as the medial-temporal lobe and BG) and dam-
age to any of these areas can disrupt learning (Bedard &
Sanes, 2009; Cohn, McAndrews, & Moscovitch, 2009; Braun
et al., 2008; Finke et al., 2008; Aosaki et al., 1994; Murray,
Gaffan, & Mishkin, 1993). This is in contrast to reversal
learning, which is more dependent on pFC per se. There-
fore, in this study, we tested whether simpler forms of asso-
ciative learning (i.e., without reversals) were also reflected
in pFC. We found that it was and still tightly linked to behav-
ior and that they both showed more rapid improvement
than with behavioral reversals.
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