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Abstract: We demonstrate a new approach to measuring high-order 

temporal coherences that uses a four-element superconducting nanowire 

single-photon detector. The four independent, interleaved single-photon-

sensitive elements parse a single spatial mode of an optical beam over 

dimensions smaller than the minimum diffraction-limited spot size. 

Integrating this device with four-channel time-tagging electronics to 

generate multi-start, multi-stop histograms enables measurement of 

temporal coherences up to fourth order for a continuous range of all 

associated time delays. We observe high-order photon bunching from a 

chaotic, pseudo-thermal light source, measuring maximum third- and 

fourth-order coherence values of 5.87 ± 0.17 and 23.1 ± 1.8, respectively, in 

agreement with the theoretically predicted values of 3! = 6 and 4! = 24. 

Laser light, by contrast, is confirmed to have coherence values of 

approximately 1 for second, third and fourth orders at all time delays. 

2010 Optical Society of America 
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1. Introduction 

The temporal coherence of an optical field contains information about dynamic processes in a 

light source and in any subsequent media with which the light interacts. Photon-correlation 

techniques that measure temporal coherences have furthered our understanding of a wide 

variety of physical systems. For example, the dynamics of chemical reactions on a few-

molecule scale can be accessed via Fluorescence Correlation Spectroscopy [1] or Dynamic 

Light Scattering [2]. In quantum optics, the quality of a single-photon source—an essential 

component in many quantum information protocols—is gauged by how close the second-

order coherence is to the ideal value of zero [3]. Coherences higher than second order are not 

routinely measured, even though they can reveal new information, in part because of the 

added experimental complexity. 

The second-, third- and fourth-order temporal coherences can be defined in terms of the 

creation ( †
â ) and annihilation ( â ) operators as [4] 
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where < > indicates an average over time, t, and the τ’s are time delays. Loss does not change 

the coherence properties of a light field, provided all modes experience the same loss [4]; as a 

result, coherences can be measured accurately even with low detection efficiencies. Because 

g
(2)

(τ) has the form of an autocorrelation, it must be symmetric about τ. Asymmetry in 

g
(3)

(τ1,τ2), which lacks this constraint, can indicate irreversible processes, which can be used to 

distinguish a non-equilibrium steady-state from true equilibrium in chemical reactions, for 

example [5]. In Dynamic Light Scattering experiments, the scattering processes are generally 

presumed to obey Gaussian statistics, in which case higher-order coherences can be accurately 

predicted from measured second-order coherences using generalized Siegert relations; 

measured higher-order coherences that violate these relations can indicate the presence of 

non-Gaussian scattering processes [6]. Third- and fourth-order coherences have also been 

predicted or demonstrated to contain new information about atomic [7] and polaritonic [8] 

condensates, microcavity lasers [9,10] and molecular aggregates [11]. 

Often, g
(2)

(τ) is measured with a Hanbury Brown-Twiss interferometer [12] consisting of a 

beamsplitter, two discrete single-photon detectors, and timing electronics that record the 

number of instances in which photons registered by the two detectors are delayed by τ. 

Ideally, the beamsplitter projects one incoming optical mode onto two identical output modes, 

so that both detectors sample light from the same spatial mode. In principle, this technique can 

be scaled to measure higher-order coherences by adding more beamsplitters and detectors, 

provided that the timing electronics have a sufficient number of independent channels. 

However, the increased experimental complexity can introduce unwanted artifacts if there is 

optical or electrical crosstalk between any of the detectors, or if the detectors do not all sample 

the same spatial mode(s), either because of imperfect beamsplitters or misalignment. Nearly 

all previous measurements [6,11,13–15] of g
(3)

(τ1,τ2) and g
(4)

(τ1,τ2,τ3) were performed with 

only one or two detectors, and zero-delay values could only be extrapolated from measured 

data at non-zero delays, due to finite detector and electronics dead times [11]. 

Here, we demonstrate a more direct approach to measuring higher-order coherences that 

uses a four-element superconducting nanowire single-photon detector (SNSPD) [16,17] in 

which four independent, single-photon-sensitive elements are interleaved over a single spatial 

mode of the optical beam [18]. We show the power of this technique by measuring n
th

-order 

coherences (n = 2,3,4) both of a chaotic, pseudo-thermal source that exhibits strong photon 

bunching consistent with the expected g
(n)

(0,0,...,0) = n!, and of laser light, for which 

g
(n)

(τ1,τ2,...,τn-1) ≈1. Whereas previous measurements of g
(3)

(τ1,τ2) and g
(4)

(τ1,τ2,τ3) were limited 

to investigating correlations where at least one of the time delays was fixed [6,9–11,13–

15,19], here we measure them for continuous ranges of all delays, offering more complete 

insight into the nature of high-order photon bunching. These results demonstrate that using 

multiple detector elements to parse an optical beam over dimensions smaller than the 

minimum diffraction-limited spot size can be equivalent—and in some cases superior—to 

using beamsplitters and discrete detectors that each sample a replica of the entire mode. 

2. Experiment 

The four-element SNSPD is shown in Fig. 1. Each element is an independent single-photon 

detector, consisting of a current-biased superconducting nanowire that is driven into a 

resistive state—thus delivering an output voltage pulse—upon absorption of one photon [16]. 
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SNSPDs combine high speed with spectral sensitivity spanning from ultraviolet to near-

infrared [20]. Devices with sub-30 ps timing jitter [18,20], dead time < 5 ns [21], and 

detection efficiency exceeding 50% [17] have recently been demonstrated. Light is coupled to 

the device, which is held at a temperature of ~3 K in a closed-cycle helium cryocooler, 

through a single-mode optical fiber [22]. The active area of the four-element SNSPD is 

matched to the mode field diameter of this fiber, allowing all four interleaved nanowire 

elements to equally sample a single spatial mode. Each element of the SNSPD—which has 

not been optimized with optical coatings [17]—has a system detection efficiency of ~1% at 

1550 nm and a dark count rate of ~100 Hz. Each element is independently biased and read 

out, leading to little or no spurious cross-correlation between the elements. 

 

Fig. 1. Scanning-electron microscope image of the four-element SNSPD, with nanowire 

elements 0-3 traced out in color. Each element consists of a ~5 nm-thick × 80 nm-wide NbN 

nanowire on a sapphire substrate, with 60 nm gaps between wires. The 9.4 µm-diameter active 

area is well matched to the spatial mode of a single mode optical fiber, the cleaved end of 

which is held within ~10 µm of the detector surface. The interleaved design ensures that all 

four elements equally sample this spatial mode. 

Fast, four-channel electronics record photon arrival times on each element. These time-tag 

data are post-processed to obtain multi-start, multi-stop correlation histograms between two, 

three and four SNSPD elements. To compute g
(2)

(τ), g
(3)

(τ1,τ2) and g
(4)

(τ1,τ2,τ3), the raw 

histograms are normalized by the number of counts expected in each bin for uncorrelated 

events, r0r1∆τT, r0r1r2(∆τ)
2
T and r0r1r2r3(∆τ)

3
T, respectively, where ri is the measured count 

rate on element i, ∆τ = 60 ns is the histogram bin width, T is the integration time, and τi is the 

delay between a photon registered by element 0 and a photon registered by element i = 1, 2, 3. 

To reduce errors due to slow variations in count rates, the data are piece-wise normalized, 4 × 

10
6
 time stamps (4 to 10 s) at a time. The g

(2)
(τ) data are averages of the six measured two-

channel correlation histograms: 0-1, 0-2, 0-3, 1-2, 1-3 and 2-3. Likewise, the g
(3)

(τ1,τ2) data are 

averages of four three-channel histograms: 0-1-2, 0-1-3, 0-2-3 and 1-2-3. 

The combined timing jitter of the SNSPD and electronics is ~50 ps, permitting the 

investigation of processes with much shorter coherence times than most prior work. 

Furthermore, having four independent detector elements and timing channels with no inter-

element or inter-channel dead time and virtually no crosstalk allows us to measure temporal 

coherences for arbitrary values of all delays, including the origin, τ1 = τ2 = τ3 = 0, which is 

often the most relevant point. Recently, we demonstrated that two adjacent (non-interleaved) 

SNSPD elements can be used to accurately measure the second-order coherence [23]. 

We measure coherences for two sources. One source is a single-mode, 1070 nm-

wavelength diode laser, operated well above threshold and attenuated with neutral density 

filters, coupled into a single-mode optical fiber and directed to the four-element SNSPD. The 

laser should exhibit all the properties of a coherent source, with 
( ) ( ) 1
n

g τ =
�

 for all n and all 
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( )1 2 1
,

n
τ τ τ τ −=
�

…  [4,24]. The other source is a chaotic, pseudo-thermal source, in which the 

attenuated laser light is scattered off of a rotating ground glass disk, and the resulting speckle 

pattern is sampled in the far field with the fiber and again directed to the four-element 

SNSPD. This source should exhibit bunching: for an ideal, single-mode chaotic source, 
( ) ( )0 !
n

g n=
�

 at the origin, where all delays are zero, and g
(n)

 → 1 for τi >> τc for all i and (τi -

τj) >> τc for all i ≠ j, where τc is the source coherence time [4,6]. For both sources, a polarizer 

before the fiber launch and microbends in the fiber (which is designed for a wavelength of 

1550 nm) ensure that the light reaching the detector is single mode. 

 

Fig. 2. Measured nth-order temporal coherences for n = 2 (�), 3 (�) and 4 (�). (a) Chaotic 

source data. The magnitude of photon bunching scales roughly as n!, as can be seen from the 

expected peak g(2), g(3) and g(4) values of 2 (dashed green line), 6 (dashed red line) and 24 (top 

axis). (b) Laser source data, also showing the expected value of 1 (black line) and the mean 

measured g(4) value of 1.011 (dashed blue line). In both (a) and (b), the g(2) data are displayed as 

a function of τ, while the g(3) and g(4) data are plotted against parameterized delays that measure 

temporal distance from the origin, τP3 =  ± (τ1
2 + τ2

2)1/2 and τP4 =  ± (τ1
2 + τ2

2 + τ3
2)1/2, 

respectively, where ± is determined by the sign of τ1. These trace out cross sections from (τ1, τ2) 

= (−6/√2 µs, 6/√2 µs) to (6/√2 µs, −6/√2 µs) and (τ1, τ2, τ3) from (−4 µs, 2 µs, 4 µs) to (4 µs, −2 

µs, −4 µs). 

3. Results and discussion 

Measured coherences are shown in Fig. 2. The chaotic source data are bunched around the 

origin and decrease to ~1 as the delays increase beyond ~ ± 4 µs. The second-order coherence 

reaches a peak value of g
(2)

(0) = 1.985 ± 0.019 for the 60 ns-wide bin centered at the origin, 

less than one standard deviation away from the expected value of 2. The peak g
(3)

 and g
(4)

 

values of 5.87 ± 0.17 and 23.1 ± 1.8 are in agreement with the values of 3! = 6 and 4! = 24 

expected for a chaotic source. A very different result is observed from the laser source. All 

these data lie close to the expected value of 1 for all delays, indicating that this source is 

highly coherent at least to fourth order. Averaging these coherent source data over delays 
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ranging from −6 µs to + 6 µs yields mean values of 1.0018 ± 0.0008 for g
(2)

, 1.006 ± 0.002 for 

g
(3)

, and 1.011 ± 0.005 for g
(4)

. 

Third-order coherence data for the chaotic source are shown in Fig. 3(a) for a more 

complete set of delays τ1 and τ2. The strongest bunching occurs around the origin, where each 

of the three elements registers a photon simultaneously and g
(3)

(0,0) = 5.87. This result 

indicates that the probability of three elements firing at the same time is nearly 6 times higher 

than the probability of the elements firing at three (particular) different times. The three 

ridges, which intersect the origin along lines at τ1 = 0, τ2 = 0 and τ1 = τ2, correspond to two of 

the three elements firing simultaneously; g
(3)

 reaches a peak value of ~2 along each of these 

ridges. Far from the origin and away from the ridges, g
(3)

 ≈1, as expected for uncorrelated 

events. 

 

Fig. 3. (a) Measured third-order coherence from the chaotic source, where both color and 

height indicate measured value of g(3). The cross-section in Fig. 2(a) samples these data along a 

diagonal line (not shown) extending from the far left corner to the far right corner as plotted 

here. (b) Calculated third-order coherence for a chaotic source derived from an ideal Gaussian 

scattering process with a coherence time of 900 ns, as discussed in the text. 

The fourth-order coherence data from the chaotic source are shown in the left column of 

Fig. 4 and Media 1, where each frame represents a slice of the data for a fixed value of τ3. For 

τ3 = 0, when elements 0 and 3 detect photons simultaneously, the data appear qualitatively 

similar to the g
(3)

 data in Fig. 3(a), but the values are significantly higher: g
(4)

 reaches its peak 

value of 23.1 at the origin, where all four elements fire at the same time, and decreases to ~2.1 

far from the origin. Slices at nonzero values of τ3 have even richer structure. In the black 

regions, the four elements detect photons at four different times, and g
(4)

 is close to the value 

of 1 expected for uncorrelated events. At the center of the dark blue bands, where just two of 

the four elements register a photon at once, g
(4)

 reaches a value of ~2. In the small light blue 

areas where any two of these bands cross, the value increases to ~4, corresponding to two 

elements firing at one time and the other two elements firing at a different time. Events where 
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Fig. 4. Four frames from a movie (Media 1) of fourth-order coherence data (left) and theory 

(right) for the chaotic source for four values of τ3. Color bar at the bottom shows g(4) values. 
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three elements register photons simultaneously appear as larger green areas where three bands 

intersect and g
(4)

 ≈6. 

The primary source of experimental uncertainty is a slow variation in the measured 

coherences. For the chaotic source, this variation is likely due to time-dependent leakage of an 

additional mode [6] to the multi-element detector. For the coherent source, the more likely 

culprit is a time-dependence to the weak cross-correlation between channels evidenced by the 

small, yet statistically significant, deviation from 1 of g
(n)

. This cross-correlation has a 60 Hz 

component, suggestive of laser intensity fluctuations or pickup in the external biasing and/or 

readout electronics. For delays <5 ns, we observe somewhat larger variations (not shown), 

with g
(2)

(τ) ranging between ~0.98 and ~1.02. This variation could indicate crosstalk in the 

external electronics or among the elements themselves; nonetheless, the impact is minimal for 

the 60 ns histogram bin widths used here. 

Although the coherences in Eqs. (1)-(3) are defined in terms of the quantized field 

operators â  and †
â , a chaotic source can be modeled by calculating intensity correlations for 

a classical field with chaotic fluctuations [4]. We have computed the quantities 

 
( ) ( )

( ) ( ) ( )
( )

1 23

1 2 3
,

I t I t I t
g

I t

τ τ
τ τ

+ +
=  

 
( ) ( )

( ) ( ) ( ) ( )
( )

1 2 34

1 2 3 4
, ,

I t I t I t I t
g

I t

τ τ τ
τ τ τ

+ + +
=  

for a chaotic source assuming an ideal Gaussian scattering process with a coherence time of 

900 ns, following the method of Lemieux and Durian [6]. The calculated g
(3)

 [Fig. 3(b)] and 

g
(4)

 (Fig. 4, right column) reproduce all the major features visible in the data, reaching values 

of g
(3)

(0,0) = 6 and g
(4)

(0,0,0) = 24 at the origins. The excellent agreement between data and 

theory for the Gaussian process studied here, for which knowledge of g
(2)

(τ) could have been 

used to determine the higher-order coherences [6,24], confirms that our technique is sound. 

Our apparatus, which has a timing jitter of ~50 ps, could be used to characterize much faster 

processes than the sources studied here. While this time resolution does not rival that of a 

recent g
(2)

(τ) measurement relying on detector nonlinearities [25], our technique is linear, and 

thus is suitable for states with low mean photon number. 

We anticipate that higher-order temporal coherence measurements with multi-element 

SNSPDs could further our understanding of the dynamics of non-Gaussian processes such as 

quantum condensates [7,8], molecular aggregates [11], fractal diffusers, single-photon sources 

[3], and biochemical reactions in non-equilibrium steady-state [5]. Even for Gaussian 

processes, higher-order measurements can yield improved visibility or signal-to-noise ratio 

under certain conditions [26–28]. Finally, although it has long been argued [24] that g
(n)

 = 1 

for the emission of an ideal laser, the experimental record contains limited data for coherences 

higher than second order. This technique could enable precision measurements of the degree 

of high-order coherence of laser emission. 
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