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Abstract

The Fourth Assessment Report of the Intergovernmental Panel on Climate Change acknowl-
edged that the lack of relevant observations in various regions of the world is a crucial gap
in understanding and modeling impacts of climate change related to hydrologic cycle. The
Surface Radiation Budget (SRB) is an important component in the study of land surface
processes. Existing SRB retrieval algorithms generally suffer from two major shortcomings:
difficulty in dealing with cloudy sky conditions and reliance on study-site specific ancillary
ground data. In this work, a framework of estimating net radiation from the MODerate-
resolution Imaging Spectroradiometer (MODIS) data is presented that is applicable under
all-sky conditions, while solely relying on satellite data. The results from the proposed
methodology are compared against several ground measurements within the United States
for the entire 2006. Finally, monthly radiation maps for the Continental United States are
produced.

Modeling, similar to observations, is critical to the Earth Sciences and the second part
of this work focuses on the impact of incorporating vegetation dynamics and topography in
modeling hydro-climatology over large river basins. Land and atmosphere are coupled with
each other through the exchange of heat, momentum and water at the boundary. This work
involves coupling of a physically-based, fully distributed ecohydrology model with a numeri-
cal atmospheric model, using high performance computing. The ability of the ecohydrology
model (in an offline mode) to accurately resolve hydro-climatic signatures and vegetation
dynamics is first examined. The ecohydrology model is applied in a highly instrumented
catchment, Walnut Gulch Experimental Watershed (WGEW) in Arizona, for a period of
11-years (1997-2007). The ecohydrology model is able to capture the behavior of several key
hydrologic variables and vegetation dynamics within the WGEW.

A series of three synthetic experiments are conducted with a coupled land-atmosphere
model. The anomalies of various simulated quantities between the synthetic experiments are
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examined within the rainfall-soil moisture feedback hypothesis proposed by Elathir [1998].
The results from the experiments highlight the need to explicitly account for vegetation
dynamics and topography within a numerical atmospheric model. The thesis concludes with
a discussion of contributions, and future directions for this work.

Thesis Supervisor: Rafael Luis Bras
Title: Edward Abdun-Nur Professor of Civil and Environmental Engineering
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CHAPTER 1

INTRODUCTION

Many changes in global climate have been observed and documented by a variety of reports

published by the Intergovernmental Panel on Climate Change (IPCC) and the U.S. Climate

Change Science Program (CCSP). On the one hand, human activities have increased the

concentration of “greenhouse” gases in the Earth’s atmosphere, which absorb heat radiated

from the Earth’s surface, thereby causing Earth’s surface temperature to rise. On the other

hand, emission of aerosols, produced by burning of coal products, reflect incoming solar

radiation and thus offset some of the warming caused by greenhouse gases. Human activities

are also responsible for major land-use changes such as burning of forests, replacing natural

vegetation with agricultural fields and large-scale irrigation.

Earth system researchers study the Earth’s atmosphere, oceans, ice and lands; and the

consequences of anthropogenic climate change on these various components. The global and

regional Earth system models represent natural systems interactions and circulations affect-

ing the climate system. Ultimately, scientists and modelers engaged in impacts, adaptation,

and vulnerability (IAV) studies are interested in the consequences of changes to Earth’s

climate for humans. IAV modelers depend on output from climate models to project the

impact of climate change under various scenarios. Usually the IAV models are sector-specic,

focusing on topics such as energy, forestry, transportation, agriculture, health, and more, as

shown in Figure 1-1. Recently, in a report on future research directions for climate change
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SCIENCE CHALLENGES AND FUTURE DIRECTIONS: 
Climate Change Integrated Assessment Research

8

Fig. 2.1. IA Modeling. The focus of IAMs is on the interactions among human and Earth systems. Energy is the predominant human system represented 
in IAMs, but many systems—from the economy to managed ecosystems—are included. Earth systems that affect and are affected by humans en-
compass the atmosphere, oceans, fresh water, the carbon and nitrogen cycles, and ecosystems. Modeling the interactions among these systems yields 
insights that do not usually arise from disciplinary studies.

IA research continues in several U.S. universities, U.S. 
Department of Energy (DOE) laboratories and agen-
cies, and foreign institutions. IA groups in the United 
States frequently are asked to respond to inquiries 
from federal, state, and local government agencies; 
congressional staff; the IPCC and other international 
organizations; nongovernmental groups; the media; 
and the public in more detail (Fig. 2.2).

As useful as IA efforts have been, the evolving cli-
mate issue is presenting new demands that require 
substantial extensions and deepening of IA research 
if societal needs are to be met satisfactorily. Current 
research focuses on the global and national levels, but 

decision makers increasingly need additional research 

century are common, but such projections and quan-
titative predictions over years and decades are now 
required. Scientific inquiry has done much, but now 
inquiry must be coupled with policy-making, planning, 
and decision support. The focus on mitigation stud-
ies has shifted to encompass both mitigation and IAV. 
Finally, climate understanding as a goal must yield to 
climate and combined insights on energy, environ-
ment, and economic security. Subsequent sections 
of this report present several of the most important of 
these research and information needs. 

IA Modeling

Natural Earth Systems

Human Systems

Economy Security Food Managed
Ecosystems

Infrastructure Science Technology Health

Population TransportENERGY

Atmospheric
Chemistry Sea Ice Coastal

Zones
Carbon
Cycle

Nitrogen
Cycle

Oceans Hydrology Ecosystems

IAMs focus on the connection between 
human systems research and energy.

 with information about human systems, 
 such as GHG emissions, land 

IAMs integrate natural and human system 
climate science.

 research.

 complex and highly nonlinear systems.

decision support tools.

Figure 1-1: Interactions among human and Earth systems. Energy is the predominant human
system represented in Integrated Assessment Models, but many systems - from the economy
to managed ecosystems - are included. Earth systems encompass the atmosphere, oceans,
fresh water, the carbon and nitrogen cycles, and ecosystems. (Adapted from [Janetos, 2009])

integrated assessment, the U.S. Department of Energy has stressed the importance of treat-

ing the Earth and human system as a “single, integrated” system to identify vulnerabilities

arising from climate change [Janetos, 2009].

Progress in Earth System Modeling

The integration of both human and climate systems would be a very valuable tool for policy

makers to manage risks of climate change. Janetos [2009] emphasized the need for develop-

ment/improvement of current generation climate models. Incorporation of previously unac-

counted physical/biological processes within the models of the Earth system leads to new

insights. An example is the explicit accounting of nitrogen cycling within a Dynamic Global

Vegetation Models (DGVMs) and Atmosphere Ocean General Circulation Model (AOGCM)
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[Thornton et al., 2007, Sokolov et al., 2008, Thornton et al., 2009]. Plants require nutrients

such as nitrogen to support growth and several studies have shown that limitations of avail-

able mineral nitrogen hinders primary production in many natural and managed ecosystem

[Vitousek and Howarth, 1991, Elser et al., 2007, LeBauer and Treseder, 2008]. Thornton

et al. [2007] demonstrated that the Carbon-Nitrogen (C-N) interaction fundamentally al-

ters the land surface response to interannual variability in temperature and precipitation

by coupling the biophysical Community Land Model (CLM) to terrestrial biogeochemistry

model (Biome-BGC). The C-N simulations (forced by a reanalysis of historical near-surface

atmospheric conditions without feedback to the atmosphere) showed a 74% reduction in

global terrestrial carbon uptake in response to increasing atmospheric CO2 concentration

when compared against simulations that included C-only model. Sokolov et al. [2008] cou-

pled a climate model of intermediate complexity, MIT Integrated Global Systems Model

(IGSM), to the Terrestrial Ecosystem Model (TEM) and further demonstrated that explicit

accounting of the N cycle changes terrestrial C uptake with increased surface temperature.

Recently, Thornton et al. [2009] introduced terrestrial C-N interactions explicitly within a

fully-coupled AOGCM; and supported conclusion of previous studies that the capacity of

the land ecosystem for net carbon uptake is reduced when C-N interactions are taken into

account. Vegetation dynamics is another crucial biophysical processes that the current gen-

eration terrestrial models simulate. The inclusion of of the terrestrial carbon cycle introduces

feedbacks into the climate system on the timescales of decades to centuries [Randall et al.,

2007]. Major advancement in this research area have been made since the Third Assessment

Report (TAR) was published by IPCC in 2001. Yet, all of the participating climate mod-

els in IPCC’s Fourth Assessment Report (AR4) included prescribed static vegetation types

because the dynamic vegetation modeling components at the time of AR4 were not rou-

tinely incorporated within the AOGCMs. It is expected that explicit account of vegetation

dynamics would be among various additions to the models for the Fifth Assessment Report.
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Figure 1-2: Historical and projected performance of top 500 supercomputers in the world
(From http://www.top500.org).

Advances in computational resources

One of the key drivers responsible for the development of more sophisticated climate models

is the recent advancement in computer hardware. The computational performance of first,

last and aggregate of all supercomputers on the list of fastest 500 supercomputers in the

world is shown in Figure 1-2. In June 2008, IBM’s Roadrunner machine of the Los Alamos

National Laboratory became the first ever computer to cross the petaflop/s (1015 floating

point operations per second) barrier, while as of Nov., 2009 the Oak Ridge National Lab-

oratory’s (ORNL’s) Jaguar supercomputer is fastest in the world. Multi-core (dual, quad

and six) processors by Intel and Advance Micro Devices are becoming a norm in computer

hardware. Recently, Nvidia corporation, which specializes in the development of graphics

processing units (GPUs) and chipsets for computers, has shown that GPUs can be used as
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escalated incentive for parallel program development has been referred to as the 
parallelism revolution [Larus ACM Queue article]. The practice of parallel programming is 
by no means new. The high-performance computing community has been developing 
parallel programs for decades. These programs run on large scale, expensive computers. 
Only a few elite applications can justify the use of these expensive computers, thus 
limiting the practice of parallel programming to a small number of application developers. 
Now that all new microprocessors are parallel computers, the number of applications that 
need to be developed as parallel programs has increased dramatically.  There is now a great 
need for software developers to learn about parallel programming, which is the focus of 
this book.  

1.1. GPUs as Parallel Computers 
 
Since 2003, a class of many-core processors called Graphics Processing Units (GPUs), 
have led the race for floating-point performance. This phenomenon is illustrated in Figure 
1.1. While the performance improvement of general-purpose microprocessors has slowed 
significantly, the GPUs have continued to improve relentlessly. As of 2008, the ratio of 
peak floating-point calculation throughput between many-core GPUs and multi-core CPUs 
is about 10. These are not necessarily achievable speeds, merely the raw speed that the 
execution resources can potentially support in these chips: 367 gigaflops vs. 32 gigaflops. 
NVIDIA has subsequently delivered software driver and clock improvements that allow a 
G80 Ultra to reach 518 gigaflops, only about seven months after the original chip.  In June 
2008, NVIDIA introduced the GT200 chip, which delivers almost 1 teraflop (1,000 
gigaflops) of single precision and almost 100 gigaflops of double precision performance.  
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Figure 1.1. Enlarging Performance Gap between GPUs and CPUs.

 

Figure 1-3: Performance gaps between GPUs (shown as squares) and CPUs (shown as tri-
angles) (Adapted from [Kirk and Hwu, unpublished]).

alternates to traditional central processing units (CPUs) in parallel computing. Nvidia has

developed the Compute Unified Device Architecture (CUDA) framework for programming

on GPUs. Figure 1-3 shows the evolution of performance of GPUs against CPUs over time.

Though, the GPUs are clearly faster than CPUs, they do have certain drawbacks when

compared with CPUs such as limited memory, lower performance with double precision

computing and lack of error-correcting code (ECC). The next generation CUDA architec-

ture, code named “Fermi”, will overcome some above mentioned shortcomings and ORNL

has already disclosed plans of using it for their new supercomputer. These breakthroughs

in computer industry present excellent opportunities for researchers to develop new Earth

system models capable of conducting simulations at higher spatial and temporal resolutions,

while simultaneously incorporating more feedbacks among various physical processes.
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Need for new satellite-based observations

Development of more complex climate models alone cannot lead to improvement in the

understanding of Earth systems. Observations, equally vital as the models, are not only

helpful in evaluating and improving models; but can be used separately to gain improved

understanding about the Earth system. Satellite-based observations have been routinely

used to forecast weather, climate and natural hazards over the past 50 years [Minster et al.,

2008]. Both active and passive remote sensing sensors have provided measurements related to

several components of the Earth system such as radiation budget, atmospheric composition,

precipitation, land/sea surface temperature, ocean color, surface winds, topography, etc.

Observations from satellites are also continuously assimilated into weather prediction models,

so as to improve the agreement between model forecasts and observations. There exists a

need for developing new types of data products from satellite data, while simultaneously

improving existing data products.

Scope of work

This work can be separated in two distinct parts. The first part focuses on developing a

new data product, surface radiation budget, from existing satellite data. Numerous studies

have developed retrieval algorithms to estimate net radiation or its components from the

MODIS data [Bisht et al., 2005, Wang et al., 2005, Tang et al., 2006, Zhou et al., 2007, Tang

and Li, 2008, Kim and Hogue, 2008, Wang and Liang, 2009, Wang et al., 2009, Formann

and Margulis, 2009]. Such retrieval algorithms to estimate the surface radiation budget

(SRB) generally suffer from two major shortcomings: difficultly in dealing with cloudy-sky

conditions and reliance on study-site specific ancillary ground data.

Chapter 2 of this work provides a brief overview of the basics of surface radiation budget.

A review of existing remote sensing methodologies to estimate shortwave and longwave

radiation is covered. The chapter concludes by enumerating the shortcomings of existing SRB

retrieval algorithms and outlines the desired objectives of the new proposed SRB algorithm.
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Chapter 3 presents the retrieval algorithm to estimate various components of SRB un-

der all sky conditions. Comparison of estimated SRB components is carried out against

ground measurements from both the Department of Energy’ (DOE’s) Atmospheric Radia-

tion Measurement (ARM) program in the Southern Great Plains and the National Oceanic

and Atmospheric Administration’s (NOAA’s) Surface Radiation (SURFRAD) budget net-

work for the entire 2006. The remotely sensed data from the MODIS sensor from both Aqua

and Terra satellites is used. Finally, monthly radiation maps for the Continental United

States are presented.

The second part of this work focuses on effects of incorporating vegetation dynamics and

topography on hydro-climatology over large river basins. Land and atmosphere are funda-

mentally coupled with each other through the exchange of heat, momentum and water at

the boundary. Prior studies have looked at feedbacks between soil, vegetation, topography

and climate by considering either two or three of the components coupled together. This

research would investigate the regional scale feedbacks between the atmosphere and vegeta-

tion, controlled by topography and soil moisture. The contrast between static and dynamic

modeling approaches on these feedbacks is also examined. The work involves coupling of

a physically-based, fully distributed ecohydrology model with a regional climate model, us-

ing high performance computing. Vegetation dynamics and topography play an important

role in land-atmosphere interactions and this work examines their importance by explicitly

accounting for them.

Chapter 4 presents the soil moisture in the context of global hydrological cycle and

illustrates that vegetation and topography are key factors determining its evolution. A his-

torical treatment of land surface processes within climate and distributed hydrologic models

is introduced next.

Chapter 5 introduces the two numerical models, an ecohydrology model and a numerical

atmospheric model, used in the study; along with a description of the model coupling. In

order to utilize high performance computing, the treatment of the domain within the eco-

hydrology model is modified. Additionally, a new one-dimensional ground heat flux scheme
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that is incorporated within the ecohydorology model is also presented.

Chapter 6 assessed how capable the ecohodrology model (in an offline mode), which

explicitly accounts for hydrologic processes in a complex terrain, is in accurately resolving

hydro-climatic signatures and vegetation dynamics in a semiarid region. The ecohydrology

model is applied in a highly instrumented semiarid catchment, Walnut Gulch Experimental

Watershed in Arizona for a period of 11 years (1997-2007). The model performance is

examined with respect to several key hydrologic variables: energy fluxes, distributed soil

moisture within the watershed at three depths and land surface temperature. Additionally,

the model’s capability to capture vegetation dynamics for two generic plant functional types,

C4 grass and shrubs, is also evaluated against the MODIS leaf area index product.

Chapter 7 describes a series of three synthetic experiments that are preformed to inves-

tigate the effect of incorporating vegetation dynamics and topography on hydro-climatology

over large river basins. Configuration of the three synthetic experiments conducted, along

with a description of the coupled model (WRF - ptRIBS+VEGGIE) setup is also presented.

Results demonstrate the role of explicitly accounting for topography and vegetation dynam-

ics in coupled land-atmosphere model.

Finally, Chapter 8 summarizes the original contribution of this work, along with some

potential future research directions to extend the current work.
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Part I

Estimation of net radiation under

all-sky conditions
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CHAPTER 2

LITERATURE

REVIEW

2.1 Surface radiation budget

The Sun is the dominant source of energy supporting life on the Earth. Incoming solar

radiation is transmitted, reflected, scattered and absorbed through the Earth’s atmosphere.

The terrestrial radiative processes allow loss of energy to space and is the ultimate energy

sink. Radiation budgets at the surface and in the atmosphere drive the global hydrologic

cycle. The net radiation, Rn [Wm−2], at the Earth’s surface can be expressed as:

Rn = R↓S −R
↑
S +R↓L −R

↑
L

= R↓S(1− αsrf ) +R↓L −R
↑
L (2.1)

where R↓S, R↑S, R↓L and R↑L are downwelling shortwave radiation [Wm−2], upwelling shortwave

radiation [Wm−2], downwelling longwave radiation [Wm−2] and upwelling longwave radiation

[Wm−2], respectively; and αsrf [-] is land surface albedo.

Electromagnetic radiation is the primary process responsible for energy transfer in the

Earth’s atmosphere [Liou, 2002]. Planck’s law is often used to model radiation from the Sun

and the Earth; and it describes the monochromatic radiance (or intensity), Iλ(T ) [Wm−2

sr−2 m−2], emitted by a black-body as a function of temperature, T [K], and wavelength, λ

[µm], as:
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Figure 2-1: Black-body radiance curve for the Sun (at 6000K) and the Earth (at 295K), with
36 MODIS spectral bands superimposed. (Adapted from [Chagnon, 2005])

I(λ, T ) =
2h2c

λ5
(
e

hc
KTλ − 1

) (2.2)

where h = 6.626 × 10−34 [J s] is the Planck’s constant, c = 2.998 × 108 [m s] is the speed

of light and K = 1.38062× 10−23 [J K−1] is the Boltzmann’s constant. Black-body emitted

radiance given by the Planck’s law for the Sun (at 6000K) and the Earth (at 295K) are shown

in Figure 2-1, with the MODerate-resolution Imaging Spectroradiometer (MODIS) spectral

bands superimposed on it. It is evident from the Figure 2-1 that most of the Sun’s energy

lies in the shorter wavelength region (0.3−4.0µm) and is thus accordingly termed shortwave

radiation; while energy emitted by the Earth lies in 4.0 − 10.0µm wavelength band and

called longwave radiation. The balance of incoming and outgoing shortwave and longwave

radiation at the Earth’s surface is the net radiation and drives the process of evaporation,

photosynthesis, heating of soil and air, melting of ice and development of the planetary
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boundary-layer.

The various gases (water vapor, carbon dioxide, ozone, oxygen, methane and others)

present in the Earth’s atmosphere absorb the incoming shortwave radiation from the Sun.

The knowledge about atmospheric transmittance through various regions within the elec-

tromagnetic spectrum is useful in designing remote sensing instruments with bands that lie

within (for atmospheric composition studies) or outside (for estimating land surface condi-

tions) the absorption bands. Atmospheric scattering by gases and aerosols (volcanic dust,

windblown dust, smoke from forest fires and anthropogenic combustion processes) is also

responsible for attenuation of the shortwave radiation and results in diffuse sky radiation

reaching the surface. Surface reflectively or albedo determines the net amount of shortwave

radiation available at the surface and varies with the type of surface. The albedo for water

is about 0.06-0.09; while it ranges from 0.10 to 0.40 over land surfaces (deserts have higher

value compared to vegetated surfaces). Snow and ice covered surface have albedo values

greater than 0.40. The absorption of outgoing longwave radiation by atmospheric gasses

plays an important role in sustaining life on Earth by raising it’s temperature from a below-

freezing temperature of 255[K] (predicted by simple energy equilibrium black-body radiation

model) to 295[K] [Liou, 2002].

The IPCC’s AR4 has shown widespread warming of the Earth system by temperature

observations taken at the surface, in the atmosphere and in the oceans [Bates et al., 2008].

IPCC-AR4 states:

It is very likely that anthropogenic greenhouse gas increases caused most of the

observed increase in global average temperatures since the mid-20th century.

Without the cooling effect of atmospheric aerosols, it is likely that greenhouse

gases alone would have caused a greater global mean temperature rise than that

observed during the last 50 years.

Since global energy and hydrologic cycle are intertwined, changes in the radiative flux

at the Earth’s surface would affect the surface heat and moisture budgets, thereby altering

the hydrologic cycle. Recent studies indicate that the interaction of some forcing agents
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with clouds and aerosols can influence the hydrologic cycle in unforeseen ways. Quantifi-

cation of the Surface Radiation Budget (SRB) at the Earth’s surface is essential for the

study of land surface processes and land-atmosphere interactions. Estimates of the SRB

and its components (upwelling or downwelling longwave and/or shortwave radiation) have

applications in hydrology [Jacobs et al., 2002, Nishida et al., 2003, Norman et al., 2003,

Batra et al., 2006, Venturini et al., 2008, Kim and Hogue, 2008], climate research [Li et al.,

2005], agriculture [Hunt et al., 1998, Diak et al., 2000] and renewable energy [Myers, 2005].

Climate change elevates the significance of studying the surface radiation budget (SRB). One

of the scientific questions to be investigated in Phase II (2003-2012) of the Global Energy

and Water Cycle Experiment (GEWEX) is whether the Earth’s energy and water cycle are

changing [see http://www.gewex.org/gewex_overview.html]. The AR4 report, while ad-

dressing potential impacts of climate change on freshwater resources, acknowledged the lack

of observations as a crucial gap to improve understanding and modeling of climate changes

related to hydrological cycle. Records of hydrometerological variables, such as actual and

potential evapotranspiration, are short and sparse globally, thereby hindering global analy-

sis of droughts [Rind et al., 1990, Anderson and Kustas, 2008]. Remote sensing data from

polar-orbiting and geostationary satellites provide high spatial and temporal coverage of

land, atmosphere and ocean. Numerous studies have attempted to compute the SRB from

remotely sensed data. SRB estimates can be used as forcings to drive the existing physically-

based hydrologic models [Formann and Margulis, 2009] and also serve to evaluate the model

performance. Additionally, data assimilation of the SRB or its components within a nu-

merical weather prediction and hydrologic models could lead to improvements in forecast

[Lakshmi, 2000, Kumar and Kaleita, 2003, Huang et al., 2008]. A brief overview of remote

sensing methodologies aiming to estimate the SRB and its various components is presented

next.
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2.2 Remote sensing of surface radiation budget

Remote sensing is most commonly a framework of collecting and interpreting data related to

electromagnetic radiation in various wavelength regions from an object of interest, while not

being in physical contact with the object. The remote sensing platforms include aircrafts and

satellites. The remote sensing instrument records an electromagnetic signal and fundamental

radiative transfer theories are employed to invert the signal to infer states of atmosphere,

land and ocean. Different electromagnetic regions are well-suited for distinct applications

and an example of 36 spectral bands of the MODIS, with their primary use, are summarized

in Table 2.1. Remote sensing techniques can be classified based on the source of radiant

energy into two fundamental types: active and passive. In active remote sensing, an artificial

source of radiation (such as lasers in lidar or microwaves in radar) sends energy within a

specific wavelength band to a target and a detector records the intensity of the backscattered

energy. Passive remote sensing measures natural radiation emitted or reflected by a target.

The most common sources of radiation recorded by passive sensors include reflected solar

radiation and thermal radiation emitted by the Earth and its atmosphere. Space-borne

remote sensing satellites provide can be classified on the basis of their orbit: geostationary

and polar-orbiting. Geostationary satellites remain virtually stationary above a point on the

equator and orbit the Earth at an altitude of ≈ 36,000 km. Since geostationary satellites are

stationary, they provide a continuous stream of data regarding the region of interest with

only one set of zenith and azimuthal angles. Polar-orbiting or sun-synchronous satellites are

typically at an altitude of 870 km above the Earth’s surface and generally provide data about

every location on the Earth twice each day. Numerous studies have used various remote

sensing platforms including Geostationary Operational Environmental Satellites (GOES),

the Advanced Very High Resolution Radiaometer (AVHRR), Landsat and the MODIS to

estimate components of the SRB [Gautier et al., 1980, Diak and Gautier, 1983, Gratton

et al., 1993, Li et al., 1993, Jacobs et al., 2002, Ma et al., 2002, Lee and Ellingson, 2002,

Nishida et al., 2003, Bisht et al., 2005, Wang et al., 2005, Tang et al., 2006, Zhou et al.,

2007, Tang and Li, 2008, Wang and Liang, 2009, Wang et al., 2009, Formann and Margulis,
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Table 2.1: MODIS Spectral bands specifications [Obtained from MODIS-website]

Primary Use Band Bandwidth Primary Use Band Bandwidth
[µm] [µm]

Land/Cloud/Aerosol 1 0.620 - 0.670 20 3.660 - 3.840
Boundaries 2 0.841- 0.876 Surface/Cloud 21 3.929 - 3.989

3 0.459 - 0.479 Temperature 22 3.929 - 3.989
Land/Cloud/Aerosol 4 0.545 - 0.565 23 4.020 - 4.080

Properties 5 1.230 - 1.250Ψ Atmospheric 24 4.433 - 4.498
6 1.628 - 1.652 Temperature 25 4.482 - 4.549
7 2.105 - 2.155 Cirrus 26 1.360 - 1.390
8 0.405 - 0.420 Clouds 27 6.535 - 6.895
9 0.438 - 0.448 Water Vapor 28 7.175 - 7.475
10 0.483 - 0.493 Cloud Properties 29 8.400 - 8.700

Ocean color/ 11 0.526 - 0.536 Ozone 30 9.580 - 9.880
Phytoplankton/ 12 0.546 - 0.556 Surface/Cloud 31 10.780 - 11.280
Biogeochemistry 13 0.662 - 0.672 Temperature 32 11.770 - 12.270

14 0.673 - 0.672 33 13.185 - 13.485
15 0.743 - 0.753 Cloud Top 34 13.485 - 13.785
16 0.862 - 0.877 Altitude 35 13.785 - 14.085

Atmospheric 17 0.890 - 0.920 36 14.085 - 14.385
Water 18 0.931 - 0.941
Vapor 19 0.915 - 0.965
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2009].

The remote sensing methodologies developed for estimating the SRB can be broadly

classified into two categories on the basis of data usedand they are: (i) parameterization

schemes that use near-surface conditions (eg. land surface temperature, surface albedo,

near-surface air and dew temperature) to estimate SRB; and (ii) statistical regressions which

relate the Top Of the Atmosphere (TOA) data to surface radiation measurements. The

parameterization schemes are based on radiative transfer theories that utilize near-surface

conditions to estimate various components on the SRB and vary in their level of complexity.

For statistical regression approaches, the first step involves using a radiative transfer model

(eg. MODTRAN), to simulate the TOA radiance or reflectance observed by a particular

sensor for varying surface radiation and atmospheric conditions. The next step is to then

establish a statistical relationship, that incorporates dependence on solar zenith angle and/or

satellite viewing angle, between the TOA radiance/reflectance in various satellite channels

and SRB components. A review of methodologies estimating satellite-derived shortwave and

longwave radiation is presented in Schmetz [1989], Ellingson [1995], Pinker et al. [1995],

Niemelä et al. [2001a,b] and Diak et al. [2004]. A separate review of the theory and retrieval

algorithms for estimating surface shortwave and longwave radiation estimates from satellite

data are presented next.

2.2.1 Shortwave radiation

The incoming TOA solar radiation is absorbed, scattered and reflected as it passes through

the Earth’s atmosphere, before reaching the surface. The radiation emitted by the atmo-

spheric constituents does not contribute in the solar or shortwave region (0.3 − 4.0µm), as

evident from Figure 2-1. Fritz et al. [1964] reported a correlation of -0.9 between the TOA

solar flux estimated from the third Television Infrared Observation Satellite (TIROS III) and

ground measurements in the United States. Hanson [1971] provided early quantification of

solar irradiance from satellite measurements.

The downwelling shortwave flux, R↓S, reaching the surface can be expressed as:
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R↓S = S0Γatm cosθs (2.3)

where S0 = 1367 [Wm−2] is the solar constant, θs [rad] is the solar zenith angle and Γatm

is broadband atmospheric transmissivity. (The term “broadband” refers to integrated value

over all wavelengths; in contrast to “narrowband”, where integration is confined over a

smaller wavelength window, usually the range of the satellite channel). Thus, accurate

estimation of Γatm is critical for retrieving R↓S from satellite-based observations. At the

Earth’s surface, the upwelling shortwave radiation flux, R↑S, can be expressed in terms of

downwelling shortwave radiation and the surface albedo, αsrf [-], as:

R↑S = αsrfR
↓
S (2.4)

Next, an overview of the algorithms to estimate R↓S using the TOA satellite data is

given. Later, the parameterization schemes based on near-surface conditions to estimate

downwelling surface shortwave radiation is presented.

TOA broadband albedo

The first step in estimate R↓S using the TOA data is developing a linear regression between

the broadband atmospheric transmissivity and the TOA broadband albedo. The second

step involves estimating the TOA broadband albedo from narrowband albedos obtained by

the satellite’s various channels. The shortwave radiation budget for the Earth-atmosphere

system can be written as [Schmetz, 1989]:

αTOA + βatm + (1− αsrf )Γatm = 1 (2.5)

where αTOA[-], βatm[-] and αsrf [-] are broadband albedo at the TOA, fractional total absorp-

tion within the atmosphere and the surface albedo, respectively. Schmetz [1989] showed that

atmospheric absorption can be expressed as a linear function of the TOA broadband albedo.
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βatm − βclearatm = ξ(αTOA − αclearTOA) (2.6)

where ξ is a constant. Substituting Eq. 2.6 in Eq. 2.5 and rearranging, the broadband

atmospheric transmissivity can be expressed as linear function of broadband albedo:

Γatm =
1− βclearatm + ξαclearTOA

1− αsrf
− 1 + ξ

1− αsrf
αTOA

= a− bαTOA (2.7)

a and b are constants and can be obtained as intercept and slope of the scatter plot between

Γatm and αTOA. Li et al. [1993], Masuda et al. [1995] and Tang et al. [2006] incorporated

dependance on solar zenith angle and precipitable water in the atmosphere while estimating

a and b. An atmospheric radiation model is generally used to estimate a and b based on

a wide range of simulations that vary surface and atmospheric conditions (LOWTRAN-6,

LOWTRAN-7 and MODTRAN by Li et al. [1993], Masuda et al. [1995] and Tang et al. [2006],

respectively). The TOA data obtained from a satellite in various channels are narrowband

quantities, while it should be noted that αTOA is a broadband quantity. Thus, a narrowband-

to-broadband albedo conversion is necessary and presented next.

Narrowband-to-broadband albedo conversion

Before proceeding to present the narrowband-to-broadband albedo conversion, it is useful

to take a detour to get a theoretical foundation about exactly what a spaceborne remote

sensing platforms measures.

The reflected radiance, I↑, at the Earth’s surface in the direction of zenith and azimuth

angle given by (θr, φr) and at a particular wavelength, λ, can be expressed as:

I↑(λ; θr, φr) =

∫ 2π

0

∫ π
2

0

I↓(λ, θi, φi)γr(θi, φi; θr, φr)cosθisinθidθidφi (2.8)

where subscript i and r denotes “incoming” and “reflected” direction, respectively (see Fig. 2-
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Figure 2-2: Illustration of sun-satellite geometry. θs is the solar zenith angle, θv is the
satellite zenith angle, φs is the solar azimuth angle, and φv is the viewing azimuth angle

2). γr(θi, φi; θr, φr) is the Bi-Directional Reflectance Function (BRDF) and represents the

relative amount of radiation coming from the direction (θi, φi) being reflected in the direction

(θr, φr). For a Lambertian surface, which reflects incoming radiation equally in all direction,

the BRDF can be written as:

γr(θi, φi; θr, φr) =
ρ

π
(2.9)

Radiation from the Sun is the only source of shortwave radiation at the TOA and can be

expressed as delta function of magnitude IS(λ) in the direction given by (θs, φs), where the

subscript ‘s’ denotes the sun.

I↓(λ, θi, φi) =

 Is(λ) (θi, φi) = (θs, φs);

0 otherwise.
(2.10)

Substituting Eq. 2.9 and 2.10 in Eq. 2.8 and integrating, we obtained:

I↑(λ; θv, φv) = Is(λ)Ωscosθs
ρ

π
(2.11)

The Sensor Response Function (SRF) of a satellite in the k-th channel with a band
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[λmink , λmaxk ], is usually a non-linear function that can be written as:

wk(λ) =


0 λ < λmink ;

f(λ) λmink ≤ λ ≤ λmaxk ;

0 λ > λmaxk .

(2.12)

The measurement by the remote sensing platform at the TOA in the k-th channel is

weighted by the SRF as:

∫ λmaxk

λmink

I↑(λ; θv, φv)wk(λ)dλ = cosθs
ρ

π
Ωs

∫ λmaxk

λmink

Is(λ)wk(λ)dλ (2.13)

The terms on the right and left side of Eq. 2.13 can be normalized by the integral of the

SRF and defined as radiance measured by the satellite in the k-th channel, Lk, and solar

irradiance, F�, in the same channel.

Lk ≡

∫ λmaxk

λmink
I↑(λ; θv, φv)wk(λ)dλ∫ λmaxk

λmink
wk(λ)dλ

(2.14)

F� ≡ Ωs

∫ λmaxk

λmink
Is(λ)wk(λ)dλ∫ λmaxk

λmink
wk(λ)dλ

(2.15)

Thus, Eq. 2.13 can be expressed as:

ρk =
πLk

F�(r0/r)2cosθs
(2.16)

where ρk is the reflectance in the k-th channel at the TOA. A correction factor (r0/r) is

applied to incorporate seasonal variation in the Earth-Sun distance. It should be noted that

reflectance is a narrowband quantity (as it is computed over the spectral band of [λmink , λmaxk ])

and the derivation of the TOA albedo involves narrowband-to-broadband conversion. A

linear conversion of narrowband reflectance in N bands can be expressed as:
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αTOA =
N∑
k=1

ckρk + c0 (2.17)

where ck (k = 0, 1, . . . N) are the conversion coefficients. Similar to the approach of es-

timating linear coefficients for the relationship between the TOA albedo and atmospheric

transmissivity (Eq. 2.7), ck are obtained based on multiple simulation runs of a radiative

transfer model. Tang et al. [2006] used 158,976 MODTRAN simulation runs and developed a

non-linear relationship based on solar zenith and satellite view angle to estimate ck for seven

MODIS shortwave bands. Once αTOA is obtained from Eqn. 2.17, boradband transmissivity

can be estimated using Eqn. 2.7; and finally the downwelling shortwave radiation can be

estimated from Eqn. 2.3.

Parameterization schemes

Numerous simple parameterizations have been presented in the literature to estimate R↓clearS

by providing an empirical relationship for the atmospheric transmissivity (see Eq. 2.3). The

parameterizations vary in the level of complexity and a review of such schemes are presented

in Pinker et al. [1995] and Niemelä et al. [2001b]. A few parameterizations of R↓S are men-

tioned briefly below. The first three schemes are the simplest parameterizations that depend

only on the cosine of the solar zenith angle.

• Bennett [1982]:

R↓clearS = 0.72S0cosθs (2.18)

• Paltridge and Platt [1976]:

R↓clearS = 10 + 1411 cosθs − 310
√
cosθs (2.19)

• Moritz [1978]:
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R↓clearS = S0cosθs(0.47 + 0.47cosθs) (2.20)

• Zillman [1972] used screen level water vapor pressure, ea [hPa], along with solar zenith

angle to estimate downwelling surface shortwave radiation.

R↓clearS =
S0cos

2θs
1.085cosθs + ea(2.7 + cosθs)× 10−3 + 0.10

(2.21)

• Iqbal [1983] presented a parameterization that estimated the direct, RS, dir , and diffuse,

RS, dif , component of solar radiation separately.

R↓clearS = R↓S, dir +R↓S, dif (2.22a)

R↓S, dir = 0.9751S0TrTgTwTaTocosθs (2.22b)

R↓S, dif = DR +Da +Dm (2.22c)

where Tr, Tg, Tw, Ta and To are transmittance by Rayleigh scattering, gases, water

vapor, aerosols and ozone respectively; DR, Da and Dm are Rayleigh-scattered, aerosol-

scattered and multiple-reflected irradiance, respectively (see Iqbal [1983] for details).

Under cloudy conditions, a correction factor is applied to clear-sky shortwave radiation

reaching the surface that depends on fraction of cloud cover, fc, as proposed by Berliand

[1960]:

R↓cloudyS = R↓clearS [(1− fc) + fcTc] (2.23)

where Tc is the transmittance through the cloud. Laevastu [1960] proposed a correction

factor that was a cubic function of amount of cloud cover, as indicated by:

R↓cloudyS = R↓clearS (1− 0.6f 3
c ) (2.24)
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While, Niemelä et al. [2001b] proposed a parameterization that partitions total cloud fraction,

fc, into low cloud, fc,low and “other clouds”, fc,oth(= fc − fc,low), as:

R↓cloudyS = R↓clearS

(
1− f

h
4.7−2.24

fc,low

fc+10−3

i
c + 0.31f 2.46

c,low + 0.73f 4.7
c,oth

)
(2.25)

Stephens [1978] suggested a parameterization to estimate cloud optical depth, τc, (which

is related to cloud transmittance by Tc = e−τc) as a function of cloud optical properties, such

as effective cloud droplet size and cloud water path. A detail analysis of Stephens’ [1978]

scheme is beyond the scope of this text and interested readers are referred to Stensrud [2007]

for details.

2.2.2 Longwave radiation

Unlike the shortwave radiation, which has the incoming solar radiation at the TOA as

a the only source, the longwave radiation reaching the surface is the aggregate result of

atmospheric absorption, emission and scattering of the entire atmospheric column. Schmetz

[1989], Ellingson [1995], Niemelä et al. [2001a] and Diak et al. [2004] have presented reviews

of methods to estimate longwave radiation from the satellite data. Schmetz [1989] showed

that nearly 80% of the longwave radiation reaching the surface is emitted by the lowest 500 m

of the atmosphere. It thus follows that accurate retrieval of downwelling longwave radiation

at the surface crucially depends on accurate estimation of near-surface temperature and

humidity, amount of cloud cover, cloud height and cloud base temperature. Recent studies

have alternatively estimated surface longwave budget using the TOA radiance from the

MODIS data for clear sky conditions [Tang and Li, 2008, Wang and Liang, 2009, Wang et al.,

2009]. The rationale behind the using the TOA satellite radiance to estimate components

of longwave radiations is presented next, followed by parameterization schemes that rely on

near-surface data.
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TOA radiance

In clear-sky conditions, the longwave (or thermal infrared) radiance reaching at the TOA,

ITOA, can be written as the contribution from the Earth’s surface and all levels of the

atmosphere as [Tang and Li, 2008]:

ITOA(λ) = εsrfI(λ, Tsrf )Γ(λ, θv, φv, Psrf → 0) +

∫ 0

Psrf

I(λ, TP )
dΓ(λ, θv, φv, P → 0)

dlnP
dlnP

+
1− εsrf

π

∫ 2π

0

∫ π/2

0

∫ Psrf

0

I(λ, TP )
dΓ(λ, θv, φv, P → 0)

dlnP
cosθ′sinθ′dlnPdθ′dφ′

.Γ(λ, θv, φv, Psrf → 0) (2.26)

where Tsrf [K] and εsrf [-] are surface temperature and surface emissivity, respectively;

Psrf is the surface pressure; θv and φv are satellite viewing and zenith angle, respectively;

and Γ(λ, θv, φv, P → 0) denotes atmospheric transmittance from a pressure level P , with a

temperature Tp, to the top of the atmosphere. The first and second term on the right hand

side of the Eq. 2.26 represents transmittance of longwave radiation through the atmosphere

emitted by the Earth’s surface and atmosphere, respectively. The third term represents the

downwelling atmospheric longwave radiation that is reflected from the surface and transmit-

ted through the atmosphere to reach the TOA. It should be noted that Eq. 2.26 represents the

radiance reaching the TOA that is dependent on wavelength λ. The measurement recorded

by the satellite in a particular channel can be obtained by integrating ITOA(λ) with the

sensor response function similar to Eq. 2.13. The term dT/dlnP is know as the channel

weighting function. An example of the MODIS infrared channels obtained by Tang and

Li [2008] is shown in Figure 2-3. The weighting function determines the measured channel

radiance by giving relative importance to the emitted radiation from various atmospheric

levels and the surface. As clearly evident from the Figure 2-3, channels 31 and 32 provide

radiance measurements that are mainly based on the Earth’s surface; while channel 33 gives

information about near-surface conditions.

Several regression techniques have been developed to estimate surface longwave radiation
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atmospheric layer at pressure about 590 hPa, and 850 hPa for channel
33, 660 hPa for channel 34, and 320 hPa for channel 36. Channels 29,
31, and 32 are window channels.

2.2. Retrieval of the DSLR from the satellite measured radiances

2.2.1. Rationale
The Downwelling Surface Longwave Radiation (DSLR, 4.0–100 μm),

for cloud-free conditions, is the result of atmospheric absorption,
emission and scattering of the entire atmospheric column, and it
depends on the vertical profiles of temperature and gaseous ab-
sorbers. However, the DSLR is determined effectively only by the
radiation emitted in a shallow layer close to the surface. Nearly 80% of
the longwave radiation reaching the surface is emitted within the
lowest 500 m of the atmosphere (Schmetz, 1991).

It should be emphasized here that the radiances measured by the
TIR channels at the TOA are strongly dependent on the channel
weighting functions. In other words, the channel radiances contrib-
uted from the surface and each atmospheric layer mainly rely on their
weighting functions. From Fig. 1, one can see that the radiances of
channels 33 and 34 are mainly from the upwelling radiations of the
near-surface atmosphere, and partly from the upwelling radiations of
the surface. Channels 28 and 36 can provide the information of the
upper layers of the troposphere and stratosphere, respectively, which
can be used to correct for theirs influences on the other TIR channels.
Channels 29 and 31 provide mainly the information emitted by the
earth's surface, and can be also used to provide near-surface atmo-
spheric information. As shown in Eq. (1) the upwelling and down-
welling radiations of the atmosphere are nearly coupled and related
with each other. Although the DSLR actually is not linearly related to
MODIS channel radiances at the TOA as formulized in Eq. (1) and
assuming linear relationship between DSLR and MODIS channel
radiances could cause errors, yet for simplicity and time efficiency, we
propose to retrieve the DSLR directly from the TOA radiances mea-
sured by MODIS TIR channels for cloud-free and Lambertian surface
conditions using the following linear formula.

DSLR ¼ a0 h; zð Þ þ
Xn

i¼1

ai h; zð ÞMi ð2Þ

with

Mi ¼ p% Li hð Þ ð3Þ

where a0 and ai are conversion coefficients, which are functions of the
satellite Viewing Zenith Angle (VZA) θ and the terrain altitude z, and Li
is the TOA radiance (W/(m2 sr μm)) measured by the MODIS TIR
channel i.

2.2.2. Retrieval algorithm
The atmospheric radiative transfer model MODTRAN 4 (Berk et al.,

1998) is used to simulate the MODIS data measured at the TOA. In our
MODTRAN simulations, eight surface emissivity spectra, collected
from the ASTER spectral library (http://speclib.jpl.nasa.gov/), are
employed, including vegetation canopy, grassland, wetland, and
sandy loam, barren-desert, urban, ocean water and fresh snow, their
spectral emissivities are shown in Fig. 2. Since there is no spectral
emissivity available beyond thewavelength 14 μm, and considering the
strong absorption of the atmosphere at the spectra wavelength larger
than 14 μm, the surface emissivity used in MODTRAN simulation
beyond this wavelength is assumed to be unity in our simulations.

Keeping in mind that a practical DSLR algorithm should accom-
modate atmospheric variations wide enough to cover all possible real
situations, two radiosonde observation databases are considered in
our simulation. One is the latest version of the Thermodynamic Initial
Guess Retrieval (TIGR) database TIGR2002, which was constructed by
the Laboratoire de Meteorologie Dynamique (LMD) and represents a
worldwide set of atmospheric situations (2311 radiosoundings) from
polar to tropical atmosphere with varying water vapor amounts rang-
ing from 0.1 to 8 g/cm2, and varying atmospheric surface temperature
from 231 K to 315 K (http://ara.lmd.polytechnique.fr/htdocs-public/
products/TIGR/TIGR.html). The other is the six standard atmospheric
profiles (tropical, mid-latitude summer, mid-latitude winter, sub-
arctic summer, sub-arctic winter, and US76) stored in theMODTRAN 4.
As we only consider atmospheric variation in clear-sky conditions
for DSLR retrieval, the profiles with relative humidity at one of
levels greater than 90% in TIGR2002 are discarded since this seldom
happens under clear-sky conditions. Therefore, 1413 representative
atmospheric situations are extracted from TIGR2002. In total, 1419
atmospheric profiles are used in our simulation.

Taking into account the angular dependence of the TOA radiance
and the maximum MODIS viewing zenith angle (less than 65° from
nadir), different viewing zenith angles varying from 0° to 60° are used
in MODTRAN simulations to compute simultaneously the TOA
radiances of MODIS TIR channels and the DSLR. In addition, different
altitude values of surface relative to sea level, ranging from 0 km to
2.5 km, are considered in our investigations. On the basis of the above
simulated data pairs of TOA radiances Li and the corresponding DSLR,
for a given viewing zenith angle and a given altitude value and

Fig. 1. Weighting functions (ds/dlnP) for MODIS infrared channels as functions of
pressure (hPa), calculated with the mid-latitude summer atmosphere and horizontal
visibility of 23 km in MODTRAN 4 using a sensor view angle of 0°.

Fig. 2. Spectral emissivity curves of eight surface types used in MODTRAN simulation.

3484 B. Tang, Z.-L. Li / Remote Sensing of Environment 112 (2008) 3482–3492

Figure 2-3: Weighting functions (dT/dlnP ) for the MODIS infrared channels 27-36 (shown
with different lines) as functions of atmospheric pressure, calculated from MODTRAN4 using
sensor viewing angle of 00 (From Tang and Li [2008])
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from the TOA satellite radiance. Even though Eq. 2.26 is highly non-linear, Tang and Li

[2008] used a linear regression for the MODIS channels 28, 29, 31, 33, 34 and 36 to estimate

R↓L; while Wang and Liang [2009] developed linear and non-linear regressions to compute R↓L

from radiance in MODIS channels 27-34. Similarly, Wang et al. [2009] obtained upwelling

longwave radiation as a linear combination of the TOA radiance in channel 29, 31 and 32 of

the MODIS. The coefficients of linear and non-linear regression analysis by Wang and Liang

[2009] incorporated a dependance on satellite viewing angle. The attempts of using the TOA

to estimate downwelling and upwelling longwave radiation have been untill now limited to

cloud-free conditions. Next, parameterizations schemes are presented that estimate longwave

radiation based on near-surface conditions.

Parameterization schemes

The total energy emitted by a perfect black-body at a given temperature T can be obtained

by integrating the emitted radiation over all wavelengths using Eq. 2.2 as:

Rblackbody = π

∫ ∞
0

I(λ, T )dλ

= π

(
2π4K4

15c2h3

)
T 4

= σT 4 (2.27)

where σ = 2π5K4

15c2h3 = 5.67 × 10−8 [W m−2 K−4] is the Steffan-Boltzmann constant. However,

most objects do not behave as perfect black-bodies and the emitted energy is lower than in

the ideal case. Energy emission from a real body is described as:

Rgreybody = εσT 4 (2.28)

where ε [-] is the surface emissivity (less than unity) and this is often called a grey-body

emission. Nearly all downwelling longwave parameterization schemes under clear-sky con-

ditions use a grey-body emission formulation, which uses screen level air temperature, Ta
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[K], and develop empirical relationships for air emissivity based near-surface atmospheric

conditions (such as, vapor pressure, ea, [hPa] and Ta). Examples of few parameterizations

are presented below:

• Ångström [1918]

R↓,clearL = (0.83− 0.18× 10−0.067ea)σT 4
a (2.29)

• Brunt [1932]

R↓,clearL = (0.52− 0.065
√
ea)

1/7
σT 4

a (2.30)

• Brutsaert [1975]

R↓,clearL = 1.24

(
ea
Ta

)1/7

σT 4
a (2.31)

• Idso [1981]

R↓,clearL =

[
0.7 + 5.95× 10−5eaexp

(
1500

Ta

)]1/7

σT 4
a (2.32)

• Prata [1996]

R↓,clearL =
[
1− (1 + ξ)exp(−

√
(1.2 + 3ξ))

]
σT 4

a (2.33)

ξ =
46.5

Ta
ea (2.34)

During cloudy conditions, parameterization schemes included the influence of clouds by

incorporating cloud fraction, fc, cloud temperature, Tc, and cloud emissivity, εc as:

• Jacobs [1978]
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R↓,cloudyL = (1 + 0.26fc)R
↓,clear
L (2.35)

• Maykut and Church [1973]

R↓,cloudyL = (1 + 0.22f 2.75
c )R↓,clearL (2.36)

• Formann and Margulis [2009]

R↓,cloudyL = σεaT
4
a + (1− εa)εcT 4

c (2.37)

2.3 Conclusion

Recently numerous studies have developed retrieval algorithms to estimate net radiation or

its components from the MODIS data [Bisht et al., 2005, Wang et al., 2005, Tang et al.,
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Table 2.2: Number of clear sky days (i.e. 75% or more of study site had no cloud cover) for
the MODIS onboard the Terra satellite for the Southern Great Plains (SGP) during 2006.
Values in the parenthesis indicate the total number of the MODIS-Terra overpasses for the
SGP region.

Month Number of clear Number of clear
day-overpasses night-overpasses

January 09 (40) 04 (41)
February 08 (38) 00 (39)

March 06 (42) 02 (44)
April 14 (40) 06 (43)
May 12 (42) 06 (44)
June 08 (38) 04 (38)
July 09 (42) 03 (44)

August 01 (40) 01 (43)
September 14 (40) 02 (41)
October 15 (39) 04 (39)

November 14 (41) 05 (42)
December 09 (41) 05 (42)

Full-year 118 (483) 43 (500)
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2006, Zhou et al., 2007, Tang and Li, 2008, Kim and Hogue, 2008, Wang and Liang, 2009,

Wang et al., 2009, Formann and Margulis, 2009]. Retrieval algorithms to estimate the SRB

generally suffer from two major shortcomings: difficultly in dealing with cloudy-sky condi-

tions and reliance on study-site specific ancillary ground data. Figure 2.3 is a composite of

fractional cloud cover (where a value 1.0 denotes total cloud cover) for all MODIS overpasses

on 1st Jan., 2006. It is clearly evident that a large portion of remotely sensed data is ob-

tained under cloudy conditions. Table 2.2 the number of clear sky and total overpasses for

the MODIS-Terra over the Southern Great Plains (SGP) in the United States during 2006,

where an overpass is deemed to be under clear skies if 75% of the SGP was cloud free. Only

24% and 9% of the MODIS-Terra overpassed during the day and night, respectively, were

under clear sky conditions. Thus, a retrieval algorithm applicable under clear-sky days only

omits a large portion of remote sensing data. Dependence on additional study-site specific

data in estimating the SRB from remotely sensed data, curtails the global applicability of

the retrieval algorithm. Thus, the research objective of the present work can be summarized

as:

Accurate retrieval of instantaneous and daily average estimates of the SRB under

all sky conditions, while relying solely on remote sensing data.

The proposed retrieval algorithm to estimate various components of SRB under all sky

conditions is presented in the following chapter. Comparison of the estimated SRB compo-

nents against ground measurements within the Southern Great Plains and seven additional

stations within United States for entire 2006 is carried out.
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CHAPTER 3

DEVELOPMENT

AND ASSESSMENT

OF AN ALGORITHM

TO ESTIMATE NET

RADIATION UNDER

ALL-SKY

CONDITIONS

This chapter presents the algorithm to estimate all components of the surface energy budget

using the MODIS data under all-sky conditions. The current work extends the Bisht et al.

[2005] framework that estimated net radiation from the MODIS data under clear sky condi-

tions only and is briefly summarized in Section 3.1.1. The extension of the retrieval algorithm

for cloudy sky conditions using various cloud parameters from the MODIS cloud product

(MOD06 L2 and MYD06 L2) is outlined in Section 3.1.2. Two adaptations are also pre-

sented to make the estimation of net radiation over the Continental United States (CONUS)

feasible. The study sites (Southern Great Plains and Surface Radiation Budget network

in the U.S.) over which the proposed retrieval algorithm is applied, as well as, the ground

measurement and the MODIS data products used are described in Section 3.2. The results

for various components of the SRB estimated by the proposed methodology for the Southern

Great Plains and Surface Radiation Budget network are presented in Section 3.3 and 3.4,

respectively. Finally the chapter concludes with a summary of the current methodology.
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3.1 Methodology to Estimate Net Radiation

3.1.1 Instantaneous net radiation: clear sky pixels with 1-km MOD11 L2

LST available

Estimation of net radiation for clear sky pixels uses the algorithm of Bisht et al. [2005]. At

the Earth’s surface, instantaneous Rclear
n [Wm−2] for clear sky conditions can be expressed

in terms of downwelling and upwelling radiations as:

Rclear
n = R↓clearS −R↑clearS +R↓clearL −R↑clearL

= R↓clearS (1− α) +R↓clearL −R↑clearL (3.1)

where R↓clearS , R↑clearS , R↓clearL and R↑clearL are downwelling shortwave radiation [Wm−2], up-

welling shortwave radiation [Wm−2], downwelling longwave radiation [Wm−2] and upwelling

longwave radiation [Wm−2] for clear sky respectively; and α [-], is land surface albedo.

A parameterization scheme developed by Zillman [1972] is used to estimate downwelling

shortwave radiation using near-surface vapor pressure, e0 [hPa], and solar zenith angle, θ

[rad], as

R↓clearS =
S0cos

2(θ)

1.085cos(θ) + e0(2.7 + cos(θ))× 10−3 + β
(3.2)

where β is 0.1 and S0, is the solar constant at the top of atmospheric, is 1367 [Wm−2].

Niemelä et al. [2001a] and Bisht et al. [2005] have shown that Zillman’s [1972] scheme tends

to overestimate the downwelling shortwave radiation, thus a β value of 0.2 is proposed.

Downwelling longwave radiation is obtained from air emissivity, εa, and air temperature,

Ta [K], at near-surface; while upwelling longwave requires surface emissivity, εs [-], and surface

temperature, Ts [K]. Air emissivity is parameterized using a scheme proposed by Prata [1996].

Near-surface vapor pressure, e0 [hPa], is computed from dew point temperature, Td [K], using
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the Clausius-Clapeyron equation [Rogers and Yau, 1989].

R↓clearL = σεaT
4
a (3.3a)

εa = 1− (1 + ξ)exp(−
√

(1.2 + 3ξ)) (3.3b)

ξ =
46.5

Ta
e0 (3.3c)

e0 = 6.11exp

[
Lv
Rv

(
1

273.15
− 1

Td

)]
(3.3d)

R↑clearL = σεsT
4
s (3.3e)

where σ = 5.67 × 10−8 [W m−2 K−4] is the Steffan-Boltzmann constant, Lv = 2.5 × 106 [J

kg−1] is the latent heat of vaporization and Rv = 461 [J kg−1 K−1] is the gas constant for

water vapor.

Bisht et al. [2005] used the following MODIS data products: geolocation data (MOD03

at 1-km); aerosol depth (MOD04 L2 at 10-km); atmospheric profile data (MOD07 L2 at 5-

km); land surface temperature and surface emissivity (MOD11 L2 at 1-km); and land surface

albedo (MOD43B1 at 1-km). The methodology of Bisht et al. [2005] used air and dew point

temperatures from the MOD07 L2 at the vertical pressure level of 1000 hPa as surrogates

for near-surface temperatures. The land surface temperature and surface emissivity were

obtained from the MOD11 L2 product. The land surface albedo was computed as a linear

combination of black-sky albedo, αbs and white-sky albedo, αws, provided in the MOD43B1

data product as [Lucht et al., 2000]:

α = [1− S(θ, τ)]αbs + S(θ, τ)αws (3.4)

where τ [-] is the aerosol depth and S(θ, τ) is the isotropic fraction representing the state

of the atmosphere between the extreme cases of completely direct (black-sky) and diffuse

(white-sky) illumination. A look up table for computing the isotropic fraction was available

from the MODIS albedo products homepage. The solar zenith angle and aerosol optical

depth are obtained from the MOD03 L2 and MOD04 L2 data products, respectively. For a
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detailed description of the algorithm to estimate clear sky net radiation, readers are referred

to Bisht et al. [2005].

Tang and Li [2008] argued that approximating air and dew temperatures at 1000 hPa

as near-suraface temperatures maybe inappropriate due to variations caused by Earth’s

terrain and suggested using the hydrostatic assumption in the atmosphere to estimate near-

surface temperatures. Thus, in this study, we assume a hydrostatic atmosphere assumption

to extrapolate Ta and Td provided at the lowest vertical pressure level from the MODIS

atmospheric profile product to estimate near-surface Ta and Td. The hydrostatic atmospheric

assumption can be written as:

dp

dz
= −ρg

PL − P S

∆z
= −ρg (3.5)

where PL is the lowest pressure level of the MODIS atmospheric profile measurement;

while P S is the surface pressure level obtained from the MODIS data. The ambient lapse

rate is assumed to be equal to −6.50K/km [Cosgrove et al., 2003] and can be used to relate

temperature at the lowest pressure level, TLa , and near-surface temperature, T Sa , as:

dT

dz
= −6.50K/km

TLa − T Sa
∆z

= −6.50K/km (3.6)

Combining equation 3.5 and 3.6 and rearranging the terms, near-surface air temperature

can be estimated as:

T Sa = TLa +
6.50K/km

ρg
(P S − PL) (3.7)

Even though the above equation is strictly applicable to air temperature, we additionally
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use it to estimate near-surface dew temperature. Near-surface Td is used to compute air-

emissivity through Eq. 3.3b, 3.3c and 3.3d; which is eventually used to estimate downwelling

longwave radiation as Eq 3.3a. Thus, the retrieval of R↓clearL is not very sensitive to near-

surface dew temperature and justifies our estimation of near-surface Td using an identical

approach as given by Eq 3.7.

3.1.2 Instantaneous net radiation: cloudy pixels with 1-km MOD11 L2

LST unavailable

The net radiation, Rcloudy
n [Wm−2], for cloudy pixels is defined as:

Rcloudy
n = R↓cloudyS (1− α) +R↓cloudyL −R↑cloudyL (3.8)

Under cloudy-skies, the downwelling shortwave radiation, R↓cloudyS [Wm−2], is estimated

as a linear combination of the fluxes from clear sky and cloudy sky, weighted by cloud

fraction, according to the parameterization proposed by Slingo [1989] as:

R↓cloudyS = R↓clearS

[
(1− fc) + fce

−τc/cos(θ)
]

(3.9)

where fc [-] is the cloud fraction and τ [-] is cloud optical thickness. The downwelling

longwave radiation for cloudy conditions, R↓cloudyL [Wm−2], is estimated as a combination

of downwelling radiation from near-surface conditions and clouds as proposed by Formann

and Margulis [2009]; while the upwelling longwave radiation, R↑cloudyL [Wm−2], for cloudy

conditions follows the similar approach as during clear sky conditions given by:

R↓cloudyL = σεaT
4
a + σ(1− εa)εcT 4

c (3.10a)

R↑cloudyL = σεsT
4
s (3.10b)

where εc [-] and Tc [K] are cloud emissivity and cloud temperature, respectively.

The proposed methodology of estimating Rcloudy
n requires numerous parameters regarding
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clouds. The MODIS cloud product provides cloud optical depth at 1-km spatial resolution

(for Eqn 3.9); while cloud emissivity (for Eqn 3.10a), cloud top temperature (for Eqn 3.10a)

and land surface temperature (for Eqn 3.10b) are available at the 5-km spatial resolution.

Computation of downwelling longwave radiation requires surface air and dew temperature

(Eqn 3.3b, 3.3c, 3.3d and 3.10a), which under clear sky are available at 5-km resolution

from the MOD07 L2. For cloudy conditions, Ta and Td are estimated by subtracting offsets

from 5-km LST provided by the MOD06 L2 product, T 06 L2
s , as:

Ta = T 06 L2
s − δdaya if day-overpass (3.11a)

= T 06 L2
s − δnighta if night-overpass (3.11b)

Td = T 06 L2
s − δdayd if day-overpass (3.11c)

= T 06 L2
s − δnightd if night-overpass (3.11d)

where δdaya [K] and δnighta [K] are offset for air temperature during day- and night-overpass;

while δdayd [K] and δnightd [K] are offset for dew temperature during day- and night-overpass.

The procedure to estimate the temperature offsets are presented in Section 3.3.1.

3.1.3 Daily average net radiation

Daily average net radiation estimates are more meaningful totals than instantaneous net ra-

diation estimates. Methodologies aimed to estimate evapotranspiration from remote sensing

data require daily average net radiation values [Nishida et al., 2003, Norman et al., 2003,

Batra et al., 2006, Venturini et al., 2008]. Bisht et al. [2005] suggested a sinusoidal model to

estimate the diurnal cycle of net radiation, which closely follows the framework for retriev-

ing the diurnal cycle of surface temperature proposed by Lagouarde and Brunet [1983]. The

daily average net radiation, Ravg
n [Wm−2], in terms of the instantaneous (clear or cloudy)

net radiation estimate obtained at local satellite overpass time, tovp, is given as [Bisht et al.,

2005]:
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Ravg
n =

2Rn

πsin
[
π
(
tovp−t∗rise
t∗set−t∗rise

)] (3.12)

where t∗rise and t∗set corresponds to local time when Rn becomes positive and negative, respec-

tively. It should be pointed out that t∗rise and t∗set are related to the local sunrise and sunset

time; and are approximated as one hour after local sunrise time and one hour before local

sunset time, respectively. Similarly, daily average net shortwave radiation can be estimated

as:

Ravg
S,net =

2RS,net

πsin
[
π
(
tovp−trise
tset−trise

)] (3.13)

where trise and tset corresponds to the local sunrise and sunset time, respectively.

3.1.4 Adaptations to the algorithm for estimating surface radiation

budget over the Continental United States

In order to estimate net radiation over the CONUS using the proposed algorithm, two adap-

tations have been incorporated. The first is related to the computation of temperature offsets

(eq. 3.11a and 3.11c) necessary for estimating near-surface air and dew temperatures from

5-km LST given by the cloud product; while the second addresses the issue of missing sur-

face albedo values in the MOD43B2 product. Under cloudy sky conditions, the atmospheric

profile data is unavailable and the proposed methodology relies on estimating near-surface

temperatures (air and dew) by subtracting offsets from T 06 L2
s . Explicit computation of tem-

perature offsets for the CONUS at 1 km spatial resolutions is computationally expensive,

thus the CONUS domain was divided into sub-domains of 50× 50 (as shown in Figure 7-15).

Temperature offsets for each sub-domains are computed separately for the Aqua and Terra

overpasses; and then applied to all the 1-km MODIS pixels that lie within the sub-domain.

The MODIS surface albedo product (MCD43B3) is a combined Aqua and Terra 16-day

product, produced every 8 days, that supplies black-sky and white-sky albedo for seven
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Figure 3-1: Division of the Continental United States domain into 50×50 regions over which
temperature offsets, required to estimate near-surface air and dew temperatures from 5-km
LST given by the cloud product, are computed.

spectral bands (0.47-2.10 µm) and three broad bands (0.3-0.7, 0.7-3.0 and 0.3-5.0 µm) at

1 km resolution [Schaaf and coauthors, 2002]. Due to weather, corrupt satellite data and

requirements of retrieval algorithm, the MODIS albedo products often has gaps. Fang et al.

[2007] reported that 13.3% of land pixels did not contain any valid retrieval values during

2000-2004. In order to estimate Rn over the CONUS at 1 km, a spatially gap-free surface

albedo product is a necessary requirement. Since the primary focus here is to demonstrate

the applicability of a framework to estimate net radiation over the CONUS domain, while

relying entirely on remotely sensed data, a simple spatial-temporal interpolation scheme to

fill missing albedo values is adopted. The first step of our simple spatio-temporal approach

involves taking the MODIS surface albedo data at a given julian day and filling the missing

values with data available 8 days earlier or later than the julian day in consideration. In

the second step, the remaining missing albedo values, for which no valid albedo values

were available 8 days earlier or later, are filled using a nearest-neighbor approach. The
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Bondville, IL

Boulder, CO

Desert Rock, NV

Fort Peck, MT

Goodwin Creek, MS

Penn State, PA

Sioux Fall, SD

SGP

ARM SGP stations

SURFRAD and ARM SGP sites

Figure 3-2: Map of the Continental United States showing SURFRAD sites and ARM SGP
network. ARM SGP ground stations in circles, triangle and squares had SIRS station only,
EBBR station only and both SIRBS and EBBR stations, respectively.

MODIS land surface albedo team is developing a more sophisticated approach of producing

continuous 1 km surface albedo product using multiyear observations [Fang et al., 2007] and

once such a product is available, it can be readily used in our methodology to estimate Rn.

These two above-mentioned adaptations to the proposed methodology enable the estimation

of the SRB over the CONUS feasible.

3.2 Study site and data used

In this study, ground measurement data is used from both the Department of Energy’s

(DOE’s) Atmospheric Radiation Measurement (ARM) program in the Southern Great Plains

and the National Oceanic and Atmospheric Administration’s (NOAA’s) Surface Radiation

budget (SURFRAD) network.
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3.2.1 Southern Great Plains

The Southern Great Plains (SGP) region covers southern part of Kansas and most of Ok-

lahoma, extending from 34.50 to 38.50N and 95.50 to 99.50W, as shown in Figure 3-2. The

dashed box in Figure 3-2 corresponds to the grid, with interval of 0.0090. The region has

a relatively flat terrain with heterogenous land cover [Batra et al., 2006]. The Atmospheric

Radiation Measurement (ARM) program funded by the U.S. Department of Energy, main-

tains continuous measurements of various meteorological and surface variables. In this study,

data from Energy Balance Bowen Ratio (EBBR) stations and Solar and Infrared Radiation

Stations (SIRS) is utilized. The radiation system uses Eppley Normal Incidence Pyrhe-

liometers (NIP) and Precision Spectral Pyranometers (PSP) to measure direct and diffuse

downwelling shortwave radiation; upwelling shortwave radiation is measured by Eppley PSP;

while downwelling and upwelling longwave radiation are measured by Eppley Precision In-

frared Radiometer (PIR). The spatial distribution of ground stations within the SGP, along

with the data-type measured at each location, is shown in Figure 3-2. EBBR stations

provided measurements of air temperature and vapor pressure (which is used to compute

dew-temperature) at 2.05 m above the land surface; while SIRS recorded upwelling and

downwelling shortwave, as well as, longwave radiation. The 1-minute SIRS data, along with

details about the instruments, are available from the ARM website (http://www.arm.gov).

The local sunrise and sunset times for the study region are obtained from the website of

US Naval Observatory, Astronomical Application Department (http://aa.usno.navy.mil/),

which are used in estimating daily average net radiation.

3.2.2 Surface Radiation Budget network

The NOAA’s SURFRAD network has been operational since 1995 and includes seven sites:

Bondville, Illinois; Boulder, Colorado; Desert Rock, Nevada; Fort Peck, Montana; Good-

win Creek, Mississippi; Penn State, Pennsylvania; and Sioux Falls, South Dakota (see Fig-

ure 3-2 and Table 3.1). Primary measurements at the SURFRAD sites involve upwelling

and downwelling solar and infrared radiations, direct and diffuse solar radiations, photosyn-
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Table 3.1: Geographic locations of SURFRAD and ARM ground stations.

Network Site identification Name Latitude (N) Longitude (W)
BON Bondville, IL 40.050 88.370

TBL Table Mountain, CO 40.130 105.240

DRA Desert Rock, NV 36.630 116.020

SURFRAD FPK Fort Peck, MT 48.310 105.100

GWN Goodwin Creek, MS 34.250 89.870

PSU Penn State, PA 40.720 77.930

SXF Sioux Falls, SD 43.730 96.620

E01 Larned, KS 38.200 99.320

E02 Hillsboro, KS 38.310 97.300

E03 LeRoy, KS 38.200 95.600

E04 Plevna, KS 37.950 98.330

E05 Halstead, KS 38.110 97.510

E06 Towanda, KS 37.840 97.010

E07 Elk Falls, KS 37.380 96.180

E08 Coldwater, KS 37.330 99.310

E09 Ashton, KS 37.130 97.270

E10 Tyro, KS 37.070 95.790

ARM SGP E11 Byron, OK 36.880 98.290

E12 Pawhuska, OK 36.840 96.430

E13 Lamont, OK 36.610 97.490

E15 Ringwood, OK 36.430 98.280

E18 Morris, OK 35.690 95.860

E19 El Reno, OK 35.560 98.020

E20 Meeker, OK 35.560 96.990

E21 Okmulgee, OK 35.620 96.070

E22 Cordell, OK 35.350 98.980

E24 Cyril, OK 34.880 98.210
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thetically active radiation, ultraviolet radiation and meteorological parameters [Augustine

et al., 2000, 2005]. The SURFRAD data is available at a 3-minute temporal resolution from

ftp://ftp.srrb.noaa.gov/pub/data/surfrad/. The direct and diffuse component of incoming

solar radiation are measured with an Eppley Normal Incidence Pyrheliometers (NIP) and

shaded Eppley Black and White (B&V) pyranometers, respectively; while Spectolab pyra-

nometer, mounted on a 10-m tower, measures upwelling solar radiation. The downwelling

and upwelling longwave radiation are measured with the Epply Precision Infrared Radiome-

ter (PIR). A detail description about the instruments used for measuring various components

of surface radiation budget and quality control of the data are presented in Augustine et al.

[2000, 2005] and Long et al. [2009]. The measurement data from both, SURFRAD and

SGP, are aggregated to 15-minute interval when comparing with estimates of various SRB

components presented in Section 3.3 and 3.4.

3.2.3 MODIS data products

The MODIS data products used in this study for clear sky and cloudy conditions consist of:

geolocation product (MOD03 and MYD03)1, aerosol product (MOD04 L2 and MYD04 L2),

cloud product (MOD06 L2 and MYD06 L2), atmospheric profile product (MOD07 L2 and

MYD07 L2), land surface temperature and emissivity product (MOD11 L2 and MYD11 L2)

and albedo product (MCD43B3). A detail descriptions about all the MODIS data prod-

ucts, except the cloud product, is presented in Bisht et al. [2005]. In the MOD06 L2 and

MYD06 L2 product, cloud top temperature, cloud emissivity and cloud fraction are esti-

mated at 5-km resolution from a CO2 slicing technique using the MODIS channels 31 (11.03

µm), 33 (13.34 µm), 34 (13.64 µm), 35 (13.94 µm) and 36 (14.24 µm) [Menzel et al., 2006].

Cloud optical thickness is estimated at 1 -km resolution from the MODIS channel 1 (0.645

µm) which exploits the fact that the reflection function of clouds at a nonabsorbing band

in the visible wavelength region is primarily a function of the cloud optical thickness [King

et al., 1998]. The various MODIS data products, along with their spatial resolution and

1MOD and MYD refers to the MODIS data products obtained from Terra and Aqua satellites, respectively
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parameters used, are summarized in Table 3.2. All the MODIS data products are available

in Hierarchical Data Format (HDF) and are obtained from the NASA’s Warehouse Inventory

Search Tool (WIST) website. Next the comparison of estimated SRB components obtained

from the proposed methodology with ground measurements are presented.

3.3 Results: Over the Southern Great Plains

In this section, the applicability of the retrieval algorithm is tested over the SGP region using

only MOIDS-Terra data for both day and night overpasses during 2006.

3.3.1 Temperatures: land surface, air and dew

In this section, a comparison of the 5-km land surface temperature obtained from the

MOD06 L2 product against ground measurements. Furthermore, the temperature offsets

mentioned in equations 3.11a, 3.11b, 3.11c and 3.11d to estimate air and dew temperature

under cloudy conditions are also obtained. Direct measurements of LST were not available,

thus measurements of upwelling longwave by the SIRS stations were converted to obtain

surrogate observations of LST using Eqn 3.3e, while assuming a constant surface emissivity

of 0.98. The scatter plot between T 06 L2
s and ground observations is shown in Figure 3-

3(a) and (b) for day- and night-overpasses. The bias, root mean square error (RMSE) and

correlation (R2) between T 06 L2
s and ground observations are summarized in Table 3.3. In

this study, the bias is computed as the MODIS data minus in-situ observations (the same

definition is also used while reporting values of bias from any other study). Recently Wang

et al. [2008] compared clear sky nighttime surface temperatures provided by another the

MODIS product, MOD07 L2 over eight ground locations (six in U.S. and two in Germany).

They reported biases in MOD07 L2 LST that varied between -3.38 [K] to 3.14 [K]; while

RMSE ranged from 1.97 [K] to 4.10 [K]. Thus, the surface temperature estimates from the

MOD06 L2 are not only comparable to those obtained from the MOD07 L2, but have an

advantage of being available for all sky conditions, while the MOD07 L2 LST are produced
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for only clear sky pixels.

Air and dew temperatures, needed to compute downwelling longwave radiation, are esti-

mated as offsets from T 06 L2
s . EBBR measurements of vapor pressure at 2.05 m above land

surface are converted to Td measurements for comparison purposes. Scatter plot of T 06 L2
s

and Ta during day- and night-overpasses is shown in Figure 3-3(c) and (d); while Figure 3-

3(e) and (f) show the scatter plot between T 06 L2
s and Td for day- and night-overpasses. Bias,

RMSE and R2 are summarized in Table 3.3. The RMSE and R2 between T 06 L2
s and Ta

for both day- and night-overpasses are better than to those between T 06 L2
s and Ts; while

statistical agreement between T 06 L2
s and Td is not as strong (higher RMSE and lower R2).

The temperature offsets used in Eqn 3.11a, 3.11b, 3.11c and 3.11d are estimated as biases

from scatter plots as:

δdaya = 4.35 [K] (3.14a)

δnighta = −0.51 [K] (3.14b)

δdayd = 16.01 [K] (3.14c)

δnightd = 7.18 [K] (3.14d)

The above estimates of temperature offsets rely on ancillary surface measurements and

such measurements are sparse globally. An alternate approach to estimate temperature

offsets that does not require surface measurements is also proposed. Thus, the proposed

framework of estimating Rn can rely exclusively on remote sensing information when surface

measurements regarding air and dew temperatures are absent. The comparison of near-

surface air and dew temperatures (using a hydrostatic assumption in the atmosphere) from

the MOD07 L2 data with Ts06 L2, under clear-sky conditions, are shown in Figure 3-4. The
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Figure 3-3: Comparison of 5-km land surface temperature (LST) from the MODIS cloud
data product (MOD06 L2): panels (a) and (b) are comparison of MOD06 L2 LST against
observation during day- and night-overpasses, respectively; panels (c) and (d) are comparison
of MOD06 L2 LST against observed air temperature during day- and night-overpasses; and;
panels (e) and (f) are comparison of MOD06 L2 LST against observed dew temperature
during day- and night-overpasses. Bias is computed as LST-MOD06 L2 minus Observed
values.
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Figure 3-4: Comparison of 5-km land surface temperature (LST) from the MOD06 L2 prod-
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Table 3.3: Bias, Root Mean Square Errors (RMSE), correlation (R2) and number of data
points for following quantities given or derived from the MODIS data and ground observa-
tions: (i) Land surface temperature (LST); (ii) Near-surface air temperature (Ta); (iii) Near-
surface dew temperature (Td); (iv) Near-surface air temperature derived from MOD07 L2
product; and (v) Near-surface dew temperature derived from MOD07 L2 product. Bias is
computed as the MODIS data minus observed data.

MODIS data Observation Overpass Sky Bias RMSE R2 # of
data Time Condition points
LST Day Clear and -1.62 3.80 0.95 8261

Night Cloudy 0.19 2.54 0.97 8320
5-km Land Ta Day Clear and 4..5 2.76 0.97 4710

surface Night Cloudy -0.51 2.12 0.98 5240
temperature Td Day Clear and 16.01 5.00 0.86 3347

from Night Cloudy 7.18 4.94 0.87 2927
MOD06 L2 Ta from Day Clear 3.47 2.93 0.95 590

MOD07 L2 Night Clear 0.85 2.46 0.96 251
Td from Day Clear 16.45 6.08 0.79 605

MOD07 L2 Night Clear 8.73 3.17 0.94 256

temperature offsets computed as biases from the scatter plot as:

δday, cleara = 3.47 [K] (3.15a)

δnight, cleara = 0.85 [K] (3.15b)

δday, cleard = 16.45 [K] (3.15c)

δnight, cleard = 8.73 [K] (3.15d)

where the superscript emphasizes that these offsets are obtained under clear-sky condi-

tions. The difference in temperature offsets obtained from surface measurements and the

MOD07 L2 product during the day and night are ≈ 1 [K] and ≈ 1.5 [K], respectively. In

Section 3.3.2, the results regarding various components of the surface energy budget under

cloudy-skies use temperature offsets obtained from surface measurements, as presented in

Eqn 3.14. The overall impact of using temperature offsets obtained under clear-sky condi-

tions (Eqn 3.15) to estimate net radiation is also presented in Section 3.3.2.
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3.3.2 Instantaneous and daily average net radiation: under cloudy-skies

condition

In this section, we present the results of instantaneous Rn obtained using data about cloud

properties and 5-km surface temperature from the MOD06 L2 product; along with geoloca-

tion (MOD03), surface albedo data (MCD43B3) and temperature offsets obtained in Sec-

tion 3.3.1. Under clear sky conditions, a higher resolution 1-km LST MOD11 L2 product is

available and the MOD07 L2 provides direct estimates of Ta and Td at 20 vertical pressure

levels. The MODIS overpasses that were deemed as under clear-sky (i.e. 75% of the SGP

domain was cloud free) in 2006 were omitted from the analysis presented in this section.

The error histogram between estimated and in-situ measurements of downwelling, up-

welling and net radiation for shortwave and longwave is shown in Figure 3-5; while the

summary of bias, RMSE and R2 are presented in Table 3.4. Tang and Li [2008] reported

an overall bias, RMSE and R2 for clear sky R↓L for the SURFRAD locations in U.S. as -

20.3 [Wm−2], 30.1 [Wm−2] and 0.91, respectively; while clear sky net longwave radiation,

Rnet
L , statistics were -11.7 [Wm−2], 26.1 [Wm−2] and 0.94. Wang and Liang [2009] similarly

estimated clear sky R↓L and clear sky Rnet
L for SURFRAD locations in U.S. from the Terra

and Aqua satellites. Overall bias by Wang and Liang [2009] for R↓L and Rnet
L from the Terra

satellite were -0.40 [Wm−2] and -2.80 [Wm−2]; while RMSE were 17.60 [Wm−2] and 17.72

[Wm−2]. Thus, the longwave radiation estimates presented in this section are comparable

to those reported in literature, while having an added advantage of being available under

cloudy conditions, though at a coarse 5-km resolution. Wang et al. [2008] estimated net

surface shortwave radiation using the TOA reflectance and obtained RMSE under clear and

cloudy skies of 20 [Wm−2] and 35 [Wm−2], respectively.

The comparison of instantaneous Rn estimates with ground measurements during day-

and night-overpasses are shown in Figure 3-6. The bias, RMSE and R2, including day- and

night-overpasses, are 10.46 [Wm−2], 38.70 [Wm−2] and 0.99. The R2 between estimated and

measured Rn during the night-overpass is significantly lower (0.32) when compared to day-

overpasses (0.95), as summarized in Table 3.4. The use of temperature offsets obtained under
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Figure 3-5: Error histograms between observed and estimated components of net radiation
for cloudy overpasses: (a) Downwelling longwave; (b) Upwelling longwave; (c) Net longwave;
(d) Downwelling shortwave; (e) Upwelling shortwave; and (f) Net shortwave radiation. Bias
is computed as estimated minus observed values.
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Table 3.4: Bias, Root Mean Square Errors (RMSE, correlation (R2) and number of data
points for various quantities given or derived from the MODIS data and ground observations.
Bias is computed as MODIS data minus observed data.

Sky Condition Component of the Overpass Bias RMSE R2 # of
the surface time data

energy budget points

R↓L Day+Night 0.28 19.34 0.95 3552

R↑L Day+Night -1.05 16.11 0.98 3552

Net R↑L Day+Night 1.33 21.99 0.75 3552

R↓S Day 25.64 66.52 0.92 1156

Cloudy R↑S Day 5.41 19.14 0.81 1156

Net R↑S Day 20.24 54.89 0.93 1156
Day 35.16 50.58 0.95 1156

Instantaneous Night -5.23 17.72 0.33 2396
Rn Day+Night 7.91 37.44 0.99 3552

Daily average Rn - 34.00 37.72 0.93 1152

R↓L Day+Night 3.87 20.79 0.93 1653

R↑L Day+Night -2.50 15.76 0.98 1653

Net R↑L Day+Night 6.37 19.37 0.86 1653

R↓S Day 17.82 42.05 0.96 1097

Clear R↑S Day -17.40 17.79 0.79 1097

Net R↑S Day 35.22 40.78 0.96 1097
Day 23.08 39.34 0.96 1118

Instantaneous Night -3.72 11.51 0.51 476
Rn Day+Night 16.19 34.60 0.99 1594

Daily average Rn - 11.27 31.98 0.93 991
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as estimated minus observed values.
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Figure 3-7: Comparison of daily average estimated and observed net radiation for cloudy
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clear-sky conditions only (Eqs 3.15(a)-3.15(d)) has little impact on Rn estimates, including

day- and night-overpasses, with an overall bias, RMSE and R2 as 3.28 [Wm−2], 40.49 [Wm−2]

and 0.99, respectively. Figure 3-7 shows the scatter plot between estimated daily average

net radiation and ground observations. The bias, RMSE and R2 between estimated daily

average net radiation and ground observations were 22.75 [Wm−2], 34.11 [Wm−2] and 0.95.

Overall the proposed methodology is successfully able to estimate instantaneous and daily

average net radiation from the MOD06 L2 product for 2006. Furthermore, when the use of

ancillary ground measurements in estimating temperature offsets is excluded, the impact on

Rn estimates is minor.

3.3.3 Instantaneous estimates of net radiation: Under all sky-conditions

In 2006, a large portion of the MODIS-Terra overpasses over the SGP were contaminated

by the presence of clouds. Only 24% of day-overpasses and 9% of night-overpasses had

75% or more of the SGP region as cloud free. Thus, the methodologies that focus on

retrieving net radiation during clear sky days are not applicable to a large portion of the

MODIS overpasses. In the previous section, it was successfully demonstrated that for cloudy

days the MOD06 L2 product can be used to estimate Rn, albeit at a coarser 5-km spatial

resolution when compared to 1-km Rn estimates available under clear sky conditions. Before

proceeding to present the framework of estimating Rn for all sky conditions, the results

obtained using the approach of Bisht et al. [2005] under clear-sky conditions for 2006 over

the SGP are presented for the sake of completeness. Figure 3-8 shows the error histograms

between estimate and in-situ measurements for the various components of longwave and

shortwave energy budget; while Figure 3-9 and 3-10 present results for instantaneous and

daily average Rn. The statistical summary of the results for components of the surface energy

budget under clear-sky conditions is given in Table 3.4.

It is then possible to use the high resolution (1-km) clear skies algorithm with the lower

resolution (5-km) cloudy skies algorithm to suggest an all-sky conditions methodology to

estimate instantaneous and daily net radiation as shown in Figure 3-11. An example of this
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Figure 3-8: Error histograms between observed and estimated radiations for clear-sky over-
passes: (a) Downwelling longwave; (b) Upwelling longwave; (c) Net longwave; (d) Down-
welling shortwave; (e) Upwelling shortwave; and (f) Net shortwave radiation. Bias is com-
puted as estimated minus observed values.

84



−200 −100 0 100 200 300 400 500 600 700 800
−200

−100

0

100

200

300

400

500

600

700

800

Estimated

O
bs

er
ve

d

Instantaneous Rnet: Clear−sky

o  Day−overpass
Bias   :  23.08
RMSE:  39.34
R2      :   00.96
# Pts :   1118

!  Night−overpass
Bias   :  −3.72
RMSE:  11.51
R2      :   00.51
# Pts :   476

Day and Night
Bias   :  16.19
RMSE:  34.60
R2      :   0.992
# Pts :   1594
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Is 1-km 
MOD11_L2 LST 

available?

1) Estimate surface Tair and Tdew from LST 
MOD06_L2 [ Eqn 8(a) and 8(b) ].

1) Estimate surface Tair and Tdew from 
MOD07_L2 using hydrostatic assumption.

Yes

No

2a) Estimate clear-sky R↓S [Eqn 2].

2b) Estimate cloudy-sky R↓S using cloud 
fraction and optical depth from MOD06_L2 
[Eqn 6].

2c) Use albedo from MCD43B3 to compute 
cloudy-sky  R↑S .

2a) Estimate clear-sky R↓S [Eqn 2].

2b) Use albedo from MCD43B3 to compute 
clear-sky  R↑S .

3a) Estimate air-emissivity [Eqn 3(b)].

3b) Estimate cloudy-sky R↓L using air-
emisivity, air temperature, cloud emissivity 
and cloud top temperature [Eqn 7(a)].

3b) Use cloudy-sky  R↑L using LST 
MOD06_L2 [Eqn 7(b)].

3a) Estimate air-emissivity [Eqn 3(b)].

3b) Estimate clear-sky R↓L using air-
emisivity and air temperature [Eqn 3(a)].

3b) Use clear-sky  R↑L using 1km-LST 
MOD11_L2 [Eqn 3(d)].

4) Estimate instantaneous cloudy-sky Rn 
[Eqn 5].

4) Estimate instantaneous clear-sky Rn   
[Eqn 1]. 

Are there any 
remaining 

pixels?

Start

End

Yes

No

Pick a pixel in the image
at 1-km resolution

Pick the next pixel 

5) Estimate daily average Rn [Eqn 9]

NOTE:
          (1) 5-km data products are converted to 1-km by assuming homogenous values over 5x5-km grid.
           
           (2) Similar approach is adopted to convert 10-km data products to 1-km.

Figure 3-11: Flowchart to estimate instantaneous and daily average net radiation from the
MODIS data for all sky conditions.
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Figure 3-12: Instantaneous estimation of net radiation (Rn) from the MODIS-Terra for all
sky conditions on 24th July, 2006 at 17:35UTC. (a) Cloud fraction from MOD06 L2 data
over the SGP; (b) Estimate of Rn using clear sky algorithm (White region represents no data
due to cloud cover); (c) Estimate of Rn using cloudy-sky algorithm for the cloud covered
portion only; (d) Estimate of Rn for all sky conditions obtained by merging (b) and (c).
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Figure 3-13: Same as Figure 3-12 except for the MODIS-Terra overpass on 6th July, 2006 at
17:45UTC.
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merged framework to the MODIS-Terra overpass on 24th July, 2006, at 17:35 UTC is shown

in Figure 3-12. Clouds are present in eastern and south-western part of the SGP and occupy

≈23% the SGP domain. In Figure 3-12(b) and (c), estimates of Rn are shown for the clear

sky and cloudy region of the image. Finally the merged Rn map is shown in Figure 3-12(d).

Similarly, Figure 3-13 demonstrates the application of merged framework to estimate Rn

when ≈71% of the SGP was covered with clouds for the MODIS-Terra overpass on 6th July,

2006 at 17:45UTC. The strength of the proposed approach is that it can rely solely on remote

sensing data and thus can be applied to globally.

3.4 Results: Over the Continental United States

The SURFRAD network provides additional radiation observations at seven locations within

the U.S.; while data from MODIS-Aqua is further source of remotely sensed data. Thus, in

this section applicability of the proposed methodology is explored while comparing the SRB

estimates against SURFRAD and SGP measurements. MODIS data from Aqua and Terra

is used for entire 2006, while limiting the analysis to day-overpasses only.

3.4.1 Instantaneous surface energy budget

In this section, the results of comparison between estimated instantaneous components of the

SRB using the MODIS data (Aqua and Terra) and ground measurements at the SURFRAD

and the SGP-ARM sites is presented. The results presented here encompass all the MODIS

day overpasses during 2006, except when there was error in the satellite data or ground

observations. The scatter plot between the estimated and observed quantities of the SRB

are shown in Figure 3-14 - 3-19, while the the summary of bias, RMSE and R2 at individual

study sites are presented in Table 3.5.

A comparison of results obtained from four other studies, which similarly estimated var-

ious components of the SRB using the MODIS data, along with the results obtained in

this study are presented in Table 3.6. Tang et al. [2006], Tang and Li [2008] and Wang

89



!

"!!

#!!!

#"!!

$

%&'($$$)$$!**+,-

./01)$$-*+23$

.
*
$$$$$)$$$!!+3-

%45

%&'($$$)$$!6*+6-

./01)$$-6+63$

.
*
$$$$$)$$$!!+32

7%8

%&'($$$)$$!2!+,6

./01)$$26+9*$

.
*
$$$$$)$$$!!+32

:.;

%&'($$$)$$!*"+6"

./01)$$-#+*#$

.
*
$$$$$)$$$!!+3-

<=>

! "!! #!!!
!

"!!

#!!!

$

$

%&'($$$)$$!*#+#3

./01)$$9#+2!$

.
*
$$$$$)$$$!!+32

=0?

! "!! #!!!

$

%&'($$$)$$!*,+#9

./01)$$-9+62$

.
*
$$$$$)$$$!!+32

@A5

! "!! #!!!

$

%&'($$$)$$!*2+--

./01)$$-#+,2$

.
*
$$$$$)$$$!!+3-

0B<

! "!! #!!! #"!!

$

%&'($$$)$$#2+92

./01)$$-*+2*$

.
*
$$$$$)$$$!!+32

0@=

Estimated  Downwelling Shortwave Radiation [Wm-2]

O
bs

er
ve

d 
 D

ow
nw

el
lin

g 
Sh

or
tw

av
e 

Ra
di

at
io

n 
[W

m
-2

]

Figure 3-14: Comparison of estimated and observed instantaneous downwelling shortwave
radiation at all study sites. Bias is computed as estimated minus observed values.

and Liang [2009] developed a statistical regression analysis between the MODIS TOA radi-

ance/reflectance to estimate components of the SRB; while Kim and Hogue [2008] and the

proposed algorithm uses near-surface and cloud data products to estimate the SRB. Tang

et al. [2006] and Kim and Hogue [2008] applied their methodology under all sky conditions,

while other two studies were limited to clear sky conditions only. Tang and Li [2008] and

Wang and Liang [2009] computed longwave radiation; while Tang et al. [2006] produced net

shortwave radiation estimates. Kim and Hogue [2008] reported all components of SRB as

produced by the proposed algorithm using the proposed methodology, except for instanta-

neous upwelling shortwave and instantaneous net radiation. The time period, study sites

and satellite used to obtained the MODIS data for each study are summarized in Table 3.6.

Errors in instantaneous downwelling shortwave radiation obtained from the proposed

methodology range between 8.7%-16.5% of its mean value; while errors in upwelling short-

wave radiation were higher, between 15.3%-38.0% across the study-sites. Instantaneous up-
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Figure 3-15: Same as Figure 3-14 except for instantaneous upwelling shortwave radiation.
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Figure 3-16: Same as Figure 3-14 except for instantaneous dowwelling longwave radiation.
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Figure 3-17: Same as Figure 3-14 except for instantaneous upwelling longwave radiation.
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Figure 3-18: Same as Figure 3-14 except for instantaneous net shortwave radiation.
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Figure 3-19: Same as Figure 3-14 except for instantaneous net radiation.

welling and downwelling longwave radiation had errors between 9.1%-12.1% and 3.9%-8.0%

respectively. Overall errors in instantaneous net shortwave and net radiation ranged between

15.2%-22.2% and 12.7-23.8%, respectively. Among the various components of SRB, instan-

taneous downwelling shortwave radiation has the largest overall RMSE of 76.26 [Wm−2].

Thus, a more accurate retrieval of instantaneous downwelling shortwave radiation will lead

to an overall improvement in estimation of instantaneous net radiation.

The RMSE of the various components of instantaneous SRB from the proposed method-

ology are similar to those obtained from other studies reported in Table 3.6. Tang et al.

[2006] converted narrowband reflectance to broadband albedo at the TOA and used sta-

tistical regression to estimate net shortwave radiation from the TOA broadband albedo

Results of instantaneous RS,net obtained by Tang et al. [2006] under all sky conditions show

significantly lower RMSE than those from the proposed methodology. This suggest that an

approach to estimate Rn from remotely sensed data could benefit by using hybrid data types:

near-surface data products for longwave radiation; and TOA data for shortwave radiation.
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3.4.2 Daily average net shortwave and net radiation

Daily average net radiation is more useful than instantaneous values for methodologies es-

timating evapotranspiration from remote sensing data [Nishida et al., 2003, Norman et al.,

2003, Batra et al., 2006, Venturini et al., 2008]. A sinusoidal model was used to estimate

both the daily average net shortwave and net radiation. The sinusoidal model used infor-

mation about local sunrise and sunset times. The daily averages radiation quantities are

obtained from both Aqua and Terra satellites; and the mean of the two estimates is used in

comparison against the ground measurements. The scatter plots between the estimated and

measured daily average Ravg
S,net and Ravg

n for all study sites are shown in Figure 3-20 and 3-21,

respectively. The statistical summary of the daily average radiation quantities at the various

locations is given in Table 3.7; while an overall comparison with other studies is presented in

Table 3.6. The daily average of net shortwave and net radiation have better agreement than

the instantaneous estimates and are comparable with those obtained by Kim and Hogue

[2008].

An example of the estimated net radiation values from the Terra and Aqua satellite

is shown in Figure 3-22 (a) and (b) at Bondville, IL site from 10-15 April, 2006. Ground

observation is shown with a solid line; while instantaneous estimates of net radiation from the

Terra and Aqua are shown as circles and triangles, respectively. The sinusoidal model fitted

to the retrieved instantaneous Rn values is shown with a dashed line. The instantaneous

estimates agree well with the ground observations. The sinusoidal model is able to capture

the diurnal variation of the net radiation during clear sky days (i.e 4/11, 4/12 and 4/14). For

the two cloudy days, especially for 4/14, the diurnal cycle of net radiation is not well captured

with the sinusoidal model, even though the instantaneous values from both satellites agree

well. This highlights the limitation of using polar-orbiting satellites only to retrieve the

diurnal cycle of Rn. Recently, Formann and Margulis [2009] presented a methodology to

estimate the diurnal cycle of downwelling radiation (longwave and shortwave) from satellite

data by combining data from geostationary and polar-orbiting satellites. A limitation of

the Formann and Margulis [2009] methodology to be applicable globally is its reliance of
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Figure 3-20: Same as Figure 3-14 except for daily average net shortwave radiation.
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Figure 3-21: Same as Figure 3-14 except for daily average net radiation.
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Figure 3-22: Time series of net radiation at Bondville, IL from 10-15 April, 2006. Instanta-
neous net radiation estimates, along with the sinusoidal model fitted through those estimates,
are shown for the Terra and Aqua overpasses in (a) and (b), respectively.
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a climatological lookup table derived from a regional climate model over the study site.

Nonetheless, it presents a way to use satellite data from different platforms and can serve

as a guidance to extend the proposed methodology, that relies solely on satellite data, to

retrieve the diurnal cycle of net radiation.

3.4.3 Net shortwave and net radiation over CONUS

A data analysis study of the measurements at SURFRAD and ARM sites from 1995-2007,

showed an occurrence of widespread decadal brightening of shortwave over the CONUS [Long

et al., 2009]. One of the advantages of the proposed methodology is that it can be potentially

used to detect spatial pattens of such a shortwave brightening over the CONUS. The proposed

methodology was applied to produce daily maps of net shortwave and net radiation daily

from both the Aqua and Terra satellites. All the MODIS data product (listed in Table 3.2)

are Level-2 swath, except surface albedo, which is a tiled Level-3 product. The MODIS

tiles are 100 × 100 at the equator and 14 of them cover the CONUS domain. Each swath

overpass data was reprojected onto the tiles and then the SRB estimates were computed. As

mentioned in Section 3.1.4, two adaptations allow estimation of the SRB feasible over the

CONUS. The first adaptation of the algorithm (see Section 3.1.4) reduces the computational

cost of estimating temperature offsets at 1 km spatial resolution for the entire CONUS

domain by splitting the CONUS in 50 × 50 sub-domains. Temperature offsets computed at

the aggregated sub-domain scale and then applied to all 1-km MODIS pixels that lie within

the sub-domain. It is acknowledged that this level of aggregation could introduce errors

because of difference in land cover type. An alternate approach could involve computing

separate temperature offsets for the various vegetation types present within the 50 × 50

sub-domain. Information regarding the vegetation types can be obtained from the MODIS

Land Cover Type product (MCD12Q1), a combined Aqua and Terra product, produced

yearly. The second adaptation to the proposed methodology involved filling the missing

surface albedo values in the MCD43B3 data product. During the entire 2006, the minimum

coverage of surface albedo product was 80% the CONUS domain; and more than 85% of
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Figure 3-23: Monthly estimated net shortwave radiation maps for the CONUS.
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Figure 3-24: Same as Figure 3-23 except for net radiation.
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the CONUS had valid surface albedo for 95% of the year. Daily average Ravg
S,net and Ravg

n are

used to produce monthly maps as shown in Figure 3-23 and 3-24.

3.5 Conclusion

The MODIS sensor on the Aqua and Terra satellites provides various data products about

the Earth’s land surface, atmosphere, cryosphere and ocean. The MODIS data products

have large spatial footprint as compared to sparse ground-observations. The surface energy

budget plays a significant role in land-atmosphere interactions, thus numerous studies have

attempted to estimate the surface energy budget or its components from the MODIS data.

Such attempts until now have been mostly limited to cloud-free days and thus a large share of

the MODIS overpasses are discarded. The proposed Rn estimation methodology overcomes

the restriction of cloud-free condition to estimate net radiation using the MODIS-Terra data.

The MODIS cloud product is employed to provide information about cloud top temperature,

cloud fraction, cloud emissivity, cloud optical thickness and land surface temperature for

cloud covered regions within a MODIS overpass. A statistical regression, using ancillary

ground measurements, is applied to 5-km MOD06 L2-LST in order to obtain near-surface

air and dew temperatures. In absence of ancillary ground measurements, a similar statistical

regression can be obtained by using the MOD07 L2 product, thus presenting a framework

that can exclusively utilize remote sensing information. The MODIS geolocation and surface

albedo data products are used under both sky conditions. Downwelling shortwave radiation

is obtained as a linear combination of cloud-free and cloudy radiation weighted by cloud

fraction following the approach of Slingo [1989]. The estimate of downwelling longwave

radiation has a component dependent on near-surface conditions along with an influence of

clouds as suggested by Formann and Margulis [2009]. Upwelling shortwave and longwave

radiation uses land surface albedo data and 5-km MOD06 L2-LST data.

In order to appraise how well the estimates of Rn from the MOD06 L2 perform, the

methodology is first applied over the SGP for 2006, as presented in Section 3.3. The Rn

estimates from this study are shown to be comparable to other existing methodologies, while
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apparently having an advantage of being applicable to cloudy days. Finally, a framework

of to estimate Rn from the MODIS under all sky conditions is proposed by merging the

higher resolution methodology (1-km) outlined by Bisht et al. [2005] for clear sky pixels of

the overpass and the present low resolution methodology (5-km) for cloudy pixels. Two

applications of the proposed methodology are demonstrated for the MODIS-Terra overpass

on 6th July, 2006 and 24th July, 2006 that had 71% and 23% cloud cover for the SGP

respectively.

Section 3.4 explored the global applicability of the proposed methodology in estimating

instantaneous SRB components, along with daily net shortwave and net radiation. The

study site comprises of seven sites of SURFRAD network and twenty one stations within the

SGP for all seasons of 2006 using data from the Aqua and Terra satellites. The results at

the various study sites and a comparison with similarly published approaches is presented.

Instantaneous downwelling shortwave radiation has the largest RMSE. Overall, the proposed

methodology is successfully able to estimate SRB at different study sites. Adaptation related

to estimation of temperature offsets and missing surface albedo values is incorporated in the

proposed methodology, to produce daily SRB estimates over the CONUS. A simple spatio-

temporal approach was used to produced gap-free surface albedo product. Finally, monthly

average net shortwave and net radiation over the CONUS are presented.

In summary, the applicability of the proposed methodology to retrieve instantaneous

and daily average components of the SRB over the CONUS had been demostrated. The

proposed methodology relies only on remotely sensed data and is applicable under all sky

conditions. Future research efforts would be aimed at enhancing the accuracy and usefulness

of the present methodology.
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Part II

Role of topography and vegetation

dynamics in seasonal to inter-annual

hydro-climatology
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CHAPTER 4
LITERATURE

REVIEW AND

SCOPE OF

RESEARCH

The land and atmosphere are fundamentally coupled. The source of this coupling lies in

the exchange of heat, momentum and water at the boundary, which are affected by land

characteristics such as soils, vegetation and topography. In the second part of this thesis,

we focus on the effects of vegetation dynamics and topography on hydro-climatology over

large river basins. We begin this chapter by studying soil moisture in the context of global

hydrological cycle. The role of soil moisture in feedbacks to the climate system through

rainfall; and the importance of vegetation and topography in determining the evolution soil

moisture is presented. The crucial role played by high performance computing in Earth

systems modeling is briefly covered. A historical overview regarding the treatment of land

surface processes within climate and distributed hydrologic models is presented next. Finally,

the chapter concludes with an outline of the research for this part of thesis work.

4.1 Motivation

The Earth’s atmosphere and terrestrial ecosystem interact with each other in a nonlinear

way through the exchange of energy, water, momentum and carbon flux by physical and

biological processes. The feedbacks between the ecosystem and climate occur at varying

timescales, ranging from seconds to millions of years [Sellers et al., 1995]. Understanding
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Figure 4-1: Estimates of the global water resources

and quantification of feedbacks between the atmospheric boundary layer and the land sur-

face are critical to the study of land surface processes. Several studies have demonstrated

the importance of land-atmosphere interactions in both long-term climate simulations, as

well as, short-term weather forecasting applications [Eltahir, 1996, Wang and Eltahir, 2000,

Dickinson, 2000, Piekle, 2001]. The role of the land surface, after sea surface temperature,

as a key component in enhancing seasonal climate prediction has been recognized in the

recent years [Dirmeyer, 2006]. Among the various land surface states (soil moisture, tem-

perature, snow-depth and presence/absence of vegetation), soil moisture has been identified

as potentially the most crucial [Dirmeyer, 1995]. The strength of the soil moisture coupling

to precipitation has been suggested, by numerical modeling studies to be weakest near the

ocean and equator; and highest in interior semiarid regions [Koster et al., 2004a]. Before

embarking on a discussion about the role of soil moisture on various feedback pathways for

land-atmosphere coupling, it is beneficial to study soil moisture within the context of the

global hydrological cycle.

4.1.1 The global hydrologic cycle

Water is a naturally circulating resource and is essential for all living organisms, including

humans. The majority of the water on Earth is in the oceans (97%) and is not fit for human

consumption. The Fourth Assessment Report (AR4) by the Intergovernmental Panel on

Climate Change (IPCC) concluded that all regions of the world show an overall net negative
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Table 4.1: Storage volume (absolute and percentage) and residence time of the various
components of the global hydrologic cycle (Obtained from [Oki and Kanae, 2006] and [Shik-
lomanov, 1999]).

Reservoir Estimate Volume Percentage volume Residence time
[103 km3] [%]

Saltwater
Oceans 1,338,000 96.5376 4,000 years

Freshwater
Glaciers, snow and Permafrost 24,364 1.7579 1,000-10,000 years
Groundwater 23,400 1.6883 100-10,000 years
Lakes 175 0.0126 10 years
Soil moisture 17 0.0012 2 weeks to 1 year
Atmosphere 13 0.0009 1.5 weeks
Rivers and Streams 2 0.0001 2 to 6 months

Total 1,385971

impact of climate change on water resources and freshwater ecosystems. Thus, ensuring

adequate supplies of freshwater are available in the future is a critical task. Based on the

synthesis from various sources [Korzun, 1978, Church, 1996, Shiklomanov, 1997, Oki, 2005,

Oki and Kanae, 2006], the estimated global water resources are schematically shown in

Figure 4-1, while the breakdown of volume and residence time for each storage reservoir

within the global hydrologic cycle is summarized in Table 4.1. The largest portion of the

freshwater is stored in glaciers and snow cover (≈69%); while groundwater is the second

largest source of freshwater. Soil moisture accounts for only one-thousandth of one percent

of the global water budget and it has about 25% more water than in the global atmosphere

(see Table 4.1). Oki and Kanae [2006] suggested that instead of focusing on the amount

of water stored within various reservoirs, one should concentrate on the fluxes in and out

of individual reservoirs (as shown with arrows in Figure 4-2. The residence time, which is

the average time a water molecule spends in a given reservoir, is estimated by dividing the

volume of the reservoir by the mean flux into and out of it. Residence time is on the order

of 100 to 10,000 years for groundwater and oceans; while it is about 9 days for water in the

atmosphere and ranges from 2 weeks to 1 year for soil moisture (see Table 4.1). It is the
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use or water pollution (11). Runoff is accumu-
lated through river channels and forms river
discharge (Fig. 2B). River discharge can be con-
sidered as the potentially maximum available
RFWR if all the water from upstream can be
used. Both runoff and river discharge are con-
centrated in limited areas, and the amounts range
from nearly zero in desert areas through more
than 2000 mm/year of runoff in the tropics and
more than 200,000 m3/s of discharge on average
near the river mouth of the Amazon. Further-
more, the water demands for ecosystems and
navigation should also be met, and all the
RFWR cannot be used only for human beings.

How Are the World Water Resources Assessed?

In the late 1960s, the International Hydrological
Decade promoted studies on world water bal-
ances, and pioneering estimates were published
in the 1970s (5, 12, 13). Shiklomanov (4) as-
sembled country statistics on water withdrawals
in the past and present and made future
projections. Recent advances in information tech-
nologies have enabled global water-balance esti-
mations at finer spatial resolution (11, 14, 15).

Water withdrawals now can be distributed into
grid boxes, using the distributions of popula-
tion and the irrigation area as proxies, and
compared with the available RFWR in each
grid box (11, 14, 15).

The water scarcity index is defined as Rws 0
(W – S)/Q, where W, S, and Q are the annual
water withdrawal by all the sectors, the water
use from desalinated water, and the annual
RFWR, respectively. A region is usually con-
sidered highly water stressed if Rws is higher
than 0.4 (7, 11, 14, 15). It is considered to be a
reasonable, although not definitive, threshold
value because not all the RFWR can be used
by human society. Data with shorter time scales
will enable more detailed assessments consider-
ing the effects of temporal variability in the
hydrological cycles.

In the era of the ‘‘Anthropocene’’ (16), where
human impacts on natural processes are large
and widespread, it no longer makes sense to
study only natural hydrological cycles. For this
reason, some studies have started to consider the
impact of human interventions on the hydrolog-
ical cycles, thereby simulating more realistically

the hydrological cycles on a global scale. In such
studies, human withdrawals are subtracted from
the river flow (15), and the regulation of flow
regime by major reservoirs is incorporated (17).

The distribution of the water scarcity index
Rws (11), recalculated with the latest multimodel
ensemble estimates (3), is shown in Fig. 2C. Rws
is high in Northern China, in the area on the
border between India and Pakistan, in the Middle
East, and in the middle and western areas of the
United States. Based on this assessment, approx-
imately 2.4 billion people are currently living in
highly water-stressed areas (18).

Can the ‘‘Virtual Water Trade’’ Alone Save the
Water-Stressed Regions?

Transporting water over long distances, from
regions where water is abundant to dry regions
under water stress, is only feasible when gravity
can be used. The demand for high-quality drink-
ing water is limited to a few liters per person per
day and can be met through international trade
or by desalination. However, other demands for
water for households, industry, and agriculture
require up to one metric ton of water per day per

Fig. 1. Global hydrological fluxes (1000 km3/year) and storages (1000 km3)
with natural and anthropogenic cycles are synthesized from various sources
(1, 3–5). Big vertical arrows show total annual precipitation and evapo-
transpiration over land and ocean (1000 km3/year), which include annual

precipitation and evapotranspiration in major landscapes (1000 km3/year)
presented by small vertical arrows; parentheses indicate area (million km2).
The direct groundwater discharge, which is estimated to be about 10% of
total river discharge globally (6), is included in river discharge.
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Figure 4-2: Schematic representation of global hydrologic cycle showing fluxes and storages
of water (From [Oki and Kanae, 2006]).

more dynamic nature of atmospheric water vapor, leading to precipitation, which impacts

evolution of soil moisture at the land surface.

The global hydrologic cycle is connected with the global radiation cycle, which is shown

in Figure 4-3. Evaporation from water bodies (rivers, lakes and oceans) and terrestrial

evapotranspiration (from bare soil and vegetation) replenishes water in the atmosphere,

which gets depleted by condensation processes in the form of rain and snow. The state change

of water from liquid to vapor, through the process of evapotranspiration, requires an input of

energy (latent heat); while condensation and sublimation processes in the atmosphere release

energy. Thus, the global hydrologic and energy cycles are intertwined together. Incoming

solar radiation reaching the surface is the main driver of the hydrologic cycle and is converted

into latent (λE), sensible (H) and ground (G) heat flux at the land surface (see Figure 4-3).

Three factors that control the amount of latent heat flux at the land surface include: (1) the
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Figure 4-3: Estimate of the Earth’s annual and global mean energy balance (From [Treut
et al., 2007])

availability of energy, (2) the availability of water, and (3) transport mechanism to remove

the moist air. It is via the availability of water that soil moisture directly exerts control on the

amount of λE, thereby affecting the partitioning of energy at the land surface. The energy

partition at the land surface, serves as a forcing at the bottom boundary of the atmospheric

column and depending on atmospheric conditions, can eventually lead to precipitation.

4.1.2 Soil moisture-rainfall feedback

The feedback mechanisms between soil moisture and rainfall has been of a point of interest for

numerous studies related to land-atmosphere interactions. The hypothesis that soil moisture

could sustain month-to-month persistence in climatic anomalies was proposed by Namias

[1952]. Several simple water balance models have demonstrated positive soil moisture-rainfall

feedbacks on the basis of precipitation recycling [Eltahir, 1989, Rodriguez-Iturbe et al., 1991,

Eltahir and Bras, 1994, Savenije, 1995]. Entekhabi et al. [1996] proposed theoretical feedback

pathways between soil moisture and atmospheric phenomenon on multiple space and time
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scales. Net radiation, surface heat fluxes (λE and H) and convective potential energy were

identified as mechanisms through which soil moisture and rainfall interacted. Brubaker

and Entekhabi [1995a,b, 1996] using a nonlinear stochastic model of the land-atmosphere

boundary, concluded that soil moisture and temperature anomalies could be self-reinforcing

causing persistence of hydrologic conditions.

Findell and Eltahir [1997] analyzed 14 years soil moisture and provided observational

evidence of low, but statistically significant positive correlation between average soil moisture

saturation and subsequent summer rainfall over Illinois, USA. Eltahir [1998] proposed a

hypothesis about positive feedback between soil moisture and precipitation. Wetter soil

moisture conditions, decreased both surface albedo and bowen ratio (the ratio of H to λE).

This leads to a decrease in surface temperature, an increase in atmospheric water vapor,

an increase in net radiation at the surface, a decrease in depth of planetary boundary layer

(PBL), which eventually results in an increase in moist static energy in the PBL leading to

more rainfall. Findell and Eltahir [1999] presented a followup analysis of their earlier work

[Findell and Eltahir, 1997] to gain further understanding of the physical processes associated

with the feedback mechanism. The average soil moisture and near-surface meteorological

conditions did not exhibit the expected correlation as suggested by theory; though available

surface moisture conditions strongly impacted wet-bulb depression of near-surface air during

mid-May to end of August.

Numerical modeling approaches, in lieu of limited data, have been an alternative tool

to explore linkages between soil moisture and precipitation using climate models at global

[Shukla and Minz, 1982, Rind, 1982, Oglesby et al., 2002] and regional spatial scales [Seth

and Giorgi, 1998, Lu et al., 2001, Pal and Eltahir, 2001]. The strength of the soil moisture-

precipitation feedback varies geographically. Koster and Suarez [2001] documented signifi-

cant soil moisture persistence over regions including central United States was by analyzing

the lagged autocorrelation of soil moisture over the globe based on results from the Na-

tional Aeronautics and Space Administration (NASA) Seasonal-to-Interannual Precipitation

Project. Entin et al. [2000] used in-situ soil moisture observations from the United States
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(in Illinois and Iowa), Russia, Mongolia and China, to evaluate the observed temporal and

spatial scales of soil moisture variations. Their results showed persistence in the top 1-m soil

moisture is approximately 2 months. Betts [2004] found the strong evaporation-precipitation

feedback during the summer over the continents of the Northern Hemisphere in the ERA40-

model. This is supported by Koster et al. [2004a, 2006], who identified different regions

on the continent that exhibited a strong coupling between soil moisture and precipitation.

Numerical modeling studies have also shown that the persistence in soil moisture transforms

into persistence in droughts as well as floods [Bonan and Stillwell-Soller, 1998]. Various

studies have focused on the role of soil moisture in the 1988 summer drought [Oglesby and

Erickson III, 1989, Oglesby, 1991, Sud et al., 2003] and the 1993 summer flood [Bosilovich

and Sun, 1999, Paegle et al., 1996] in the United States.

Soil moisture initialization within climate models has been shown to significantly affect

their forecasts and a proper initialization can potentially improve precipitation predictability

[Mahfouf, 1991, Beljaars et al., 1996, Schär et al., 1999, Koster et al., 2004b, Mo et al., 2006,

Aligo et al., 2007, Vivoni et al., 2009]. The spatial structure of initial soil moisture has

also been shown to impact precipitation patterns at the regional scales [Avissar and Liu,

1996, Georgescu et al., 2003, Weaver, 2004, Taylor et al., 2007, Kim and Wang, 2007].

The physical parameterization related to convection has been shown to influence simulated

rainfall [Xu and Small, 2002, Gochis et al., 2002, 2003, Ratnam and Kumar, 2005]. Findell

and Eltahir [2003a,b] investigated the interaction between soil moisture and the boundary

layer and showed that the variability of soil moisture conditions over large regions has a

direct influence on important processes associated with rainfall in the boundary layer. Thus,

numerous studies have suggested coupling of soil moisture and precipitation.

4.1.3 Bidirectional feedbacks between soil moisture and vegetation in

the presence of topography

The evolution of soil moisture at the land surface during inter-storm periods is dependent on

surface characteristics such as vegetation and topography. Vegetation, as well as its dynam-
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ics, plays a fundamental role in the energy and water balance, by altering surface roughness,

albedo, soil aggregation and macroporosity, and intercepting rainfall. Vegetation adaptively

evolves and responds to seasonal and inter-annual cycles of radiative forcing and water re-

distribution. The impacts of deforestation in tropics on large-scale atmospheric circulation

has been documented by a number of numerical studies [Dickinson and Henderson-Sellers,

1988, Eltahir and Bras, 1993, Eltahir, 1996, Dickinson, 2000]. Wang and Eltahir [2000]

demonstrated that biosphere-atmosphere system in West Africa has multiple equilibrium

states with respect to vegetation perturbations. At spatial scales smaller than those used in

climatological studies, vegetation-hydrology interactions are crucial [Rodriguez-Iturbe et al.,

2001]. Eagleson [1978] was the first to study the complex dynamics of vegetation-hydrology

in a water-limited system under stochastic climate forcing at a point-scale. Using an ecologi-

cal optimality theory of water-limited systems, Eagleson [1982] argued that such systems can

reach equilibrium state at shorter timescales by minimizing water demand stress. Protopa-

pas and Bras [1987] developed a point model of a plant physiology to investigate conditions

for optimal plant growth, while accounting for moisture and soil salinity. In a series of papers

by Rodriguez-Iturbe et al. [2001], Laio et al. [2001b,a], Porporato et al. [2001], the proba-

bilistic structure of steady-state soil moisture and water balance was explored by linking soil

moisture deficit to vegetation water stress at point scale.

Topography also exerts control on the hydrological processes, like soil moisture redistri-

bution, runoff response and incoming radiation, [Western and Grayson, 2000]. Capturing

this control within a land surface hydrologic models is central to accurate prediction of catch-

ment response [Beven and Kirkby, 1979, Wood et al., 1990, 1997]. The topographic data

is readily available at high-resolution (30m or less), yet progress in incorporating the effect

of topography explicitly in a regional climate model (RCM) has been slow. Additionally

topography influences the organization of plant species and functional types [Florinsky and

Kuryakova, 1996, Hack and Goodlett, 1960] and plants in turn dynamically modulate the

spatial variability of soil moisture by preferentially uptaking water from different depths.

Ivanov et al. [2008b] presented a quantitative evidence of the interactions between vegeta-
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tion and topography occurring at basin scale in New Mexico through a local mechanism of

radiation and soil moisture redistribution, using a fully distributed hydrology and dynamic

vegetation model.

4.1.4 The role of high performance computing in Earth system models

Spatial variability of soils, topography and vegetation at sub-meter spatial scales are sig-

nificant in determining the response of watershed states (soil moisture) and fluxes (runoff,

evapotranspiration); but their explicit accounting within the land surface models in regional

climate model is computationally expensive. Thus, numerous simplifications are made re-

garding the physical processes while applying these models. Also, challenging the compu-

tation capabilities is the large amount of readily available remote sensing data that can

be assimilated to constrain and improve predictive capabilities of regional climate models.

Use of RCMs with an operational framework involves additional computational cost, since

these models are required to produce an ensemble of model simulations rather than a single

simulation. Recently, high performance computing (HPC) has become ubiquitous tool for

conducting simulations across wide-range of scientific disciplines. IBM’s Roadrunner ma-

chine of the Los Alamos National Laboratory became the first ever computer to cross the

petaflop/s (1015 floating point operations per second) barrier in June 2008, while the Oak

Ridge National Laboratory’s Jaguar supercomputer is presently rated as fastest in the world

for open science as of Nov., 2009. A report by a committee of scientists clearly identified hy-

drologic models as of the scientific frontiers that would benefit from large computing systems,

[UCAR/JOSS 2005 ]:

“High-performance computing and petascale machines provide an opportunity to enhance

spatial and temporal resolutions in hydrologic models that operate in a stand-alone mode or

are coupled with atmospheric codes to address the societal-relevant questions that have been

posed.”

Washington et al. [2008] presented a report reviewing research challenges and opportu-

nities for climate change science, and made recommendations about the role of computing
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Figure 4-4: Computational resources tradeoff (From [Washington et al., 2008])

for achieving the research goals. The report suggested that it is necessary to identify which

components (i.e., physical, chemical, and biological) of the climate system are needed to be

modeled, at what resolution, and how large of an ensemble of predictions is needed. In other

words, how do we best balance resolution versus complexity versus ensemble size to give cur-

rent and future computational resources (see Figure 4-4)? The report also acknowledged the

important role of continued and vigorous effort in model improvement. The advancement in

the computer industry presents excellent opportunities for researchers to incoroporate more

physical processes in next generation Earth system models.

4.2 Modeling overview of land surface processes

4.2.1 Land surface models in climate models

The land surface model (LSM) in a global or regional climate model provides the lower

boundary conditions of the transport of heat, momentum and moisture. The latent heat
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flux from the Earth’s surface determines the amount of water evaporated and transpired,

while sensible heat flux warms the planetary boundary layer, transporting the evaporated

water up in the atmosphere, causing condensation and finally producing precipitation. Thus,

the partitioning of net radiation into sensible and latent heat has a strong influence on the

evolution of climate. In a pioneering work, Charney [1975] proposed the bidirectional rela-

tionship between the atmosphere and the ecosystem by explaining that the lack of vegetation

in Sahara sustains itself and its arid climate. Lack of vegetation cover in the Sahel leads

to higher surface albedo values, thereby reducing the net incoming solar radiation at the

surface. Cooling of the land surface affects the overlying atmosphere so as to reduce rainfall,

which further reduces the vegetation.

One of the earliest attempts to study the role of hydrologic cycle through numerical

simulation in a GCM was done by Manabe et al. [1965]. In those simulations, the Earth’s

surface was assumed completely wet with no heat storage capacity and the model was re-

ferred as a “moist general circulation model”. In the subsequent study, the assumption of a

completely wet land surface was revised and soil moisture and snow depth were accounted

for in the model, which was referred to as the “bucket” model [Manabe, 1969]. Precipitation

replenished the bucket, while evaporation occurring at a potential rate (scaled down by a

factor to account for dry soils) depleted the bucket. The second generation of LSMs included

functions that describe the role of soil and vegetation in land-atmosphere interactions. The

interactions that were incorporated in those models are biophysical control of evapotranspi-

ration through an introduction of a canopy layer, radiation absorption by leaves and canopy,

alteration of roughness in boundary layer due to canopy height, precipitation interception by

the canopy and soil moisture availability due to root depth and root density. These models

represented vegetation as a big-leaf, where a single leaf is used to scale the fluxes for the

whole canopy [Dickinson et al., 1986, Sellers et al., 1986].

Avissar and Pielke [1989] developed a parameterization scheme to account for sub-grid

vegetation heterogeneity within the grid cells of the land surface model by subdividing the

grid cell into homogeneous vegetation types. A complicated mircometeorological model of
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soil-vegetation-atmosphere was separately applied for each of the vegetation type present to

compute surface temperature and heat fluxes. The heat fluxes at the grid cell level were

obtained by area-weighted averaging of heat fluxes from each vegetation type in proportion

of their presence within the grid cell. The third generation of LSMs incorporated the relation

between photosynthesis and transpiration, along with the role of stomatal conductance in

energy, momentum and carbon fluxes [Bonan, 1996].

In the late 1980s and early 1990s, the scientific community became increasingly interested

in investigating how climate change would affect the ecosystem structure and the feedbacks

of those changes on the atmosphere. The third-generation LSMs operated globally with

prescribed vegetation and soil characteristics and were thus inadequate for modeling the

effects of transient vegetation cover on climate [Piekle and Avissar, 1990, Solomon and

Cramer, 1993]. This lead to the development of the fourth generation of land models, termed

as Dynamic Global Vegetation Models (DGVMs) [Foley et al., 1996, Dickinson et al., 1998],

which have a mechanistic model of photosynthesis simulating the flux of carbon and water;

along with a biogeochemistry model to track the fate of carbon in above- and below-ground

pools. In recent years, DGVMs have started to incorporate the role of soil carbon dynamics

and nitrogen cycling with varying degree of complexity to study feedbacks in the climate

systems [Cox, 2000, Sitch et al., 2003, Krinner et al., 2005, Michle et al., 2006, Sokolov et al.,

2008, Xu-Ri and Prentice, 2008, Thornton et al., 2009].

Following the development of a more realistic treatment of surface processes (interaction

of energy fluxes and vegetation dynamics) within LSMs, the importance of soil moisture

transport in the subsurface has also been recognized [Famiglietti and Wood, 1994, Peters-

Lidard et al., 1997]. The effect of subgrid topographic variability on land-atmosphere in-

teractions of a climate model have been incorporated in basin-scale hydrologic models, at

“catchment” scale [Koster et al., 2000] and “large area basin scale” [Chen and Kumar, 2001].

Chen and Kumar [2001] showed that the inclusion of topographic attributes had a significant

impact on water table dynamics and predicability of soil moisture. Choi et al. [2007] incor-

porated a three dimensional volume-averaged soil moisture transport model in a regional
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climate model and the effects of subgrid topographic variability were noticeable in both the

vertical and lateral drainage over most moist conditions.

Groundwater influences soil moisture in regions where the water is shallow, thus incor-

poration of groundwater components in the LSMs has also gained attention in the recent

years. Using atmospheric forcings (real or projected under climate change scenarios), sev-

eral studies have demonstrated the importance of groundwater on simulated streamflow, soil

moisture, recharge and surface fluxes [Liang et al., 2003, Maxwell and Miller, 2005, Yeh

and Eltahir, 2005, Gulden et al., 2007, Niu et al., 2007, Maxwell and Kollet, 2008]. While

other studies have explicitly coupled water table dynamics within the atmospheric models

[Gutowski et al., 2002, York et al., 2002, Georgescu et al., 2003]. In a further effort to

develop LSMs, Kollet and Maxwell [2008] coupled a three-dimensional subsurface flow and

overland flow with the Community Land Model (CLM). Janetos [2009] envisions that with

the advancement in computing capabilities will allow future global climate models to run at

cloud resolving resolution (≈1 km) and increase our in understanding of the Earth system.

4.2.2 Distributed hydrologic models

The early generation of hydrologic models represented the whole catchment by a single bucket

and were appropriately called lumped models. They captured the integrated behavior of the

whole catchment. An example of such a model is Sacramento Soil Moisture Accounting

(SAC-SMA), developed by National Weather Service (NWS) [Burnash et al., 1973]. The

spatio-temporal dynamics of precipitation, soil moisture, topography, soil properties were

shown as key factors for predicting the timing and magnitude of streamflow events [Pes-

soa et al., 1993, Goodrich et al., 1995]. Beven [1985] envisioned that the advantage of a

distributed approach over a lumped one would be in their capability to capture effects due

to land-use change, spatially variable inputs, pollutant and sediment movement and hydro-

logic response at the basin interior. Studies have shown that the fine-scale dynamics of

soil moisture arising due to spatial heterogeneity of topography, land-use and vegetation are

among the major predictors of landslides and fire occurrences [Pelletier et al., 1997, Taylor
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and Solem, 2001]. A plethora of new data sources, such as the Shuttle Radar Topography

Mission (SRTM) for topography, Soil Survey Geographic (SSURGO) database for soil types,

the United States Geological Survey (USGS) Land Use and Land Cover (LULC) database

and rainfall maps from the Next Generation Weather Radar (NEXRAD), were motivating

factors responsible for the development of distributed rainfall-runoff hydrologic models.

Freeze and Harlan [1969] pioneered the idea of a physically-based distributed hydrologic

model. The distributed models accounts for spatial heterogeneity in a catchment by discretiz-

ing model processes in space. Two kinds of distributed models have emerged: conceptually

and physically-based models, where the philosophical difference between them is that the

parameters of latter approach can be measured directly in the field. Beven and Kirkby [1979]

presented a conceptual model, TOPMODEL, based on a topographic wetness index obtained

from topographic analysis. The working assumption for physically based distributed models

is that such explicit representation of spatial heterogeneities, particularly topography, soils

and vegetation should enhance predictability at season to inter-annual time scales. A variety

of such models exists [Abbott et al., 1986, Beven et al., 1987, Grayson et al., 1992, B., 1991,

Wigmosta et al., 1994, Garrote and Bras, 1995, Berger and Entekhabi, 2001, Ivanov et al.,

2008a, Qu and Duffy, 2007].

The Hydrology Laboratory of the National Weather Service (HL-NWS) undertook a

comparison study of many distributed and lumped models during the Distributed Model

Intercomparison Project (DMIP) [Smith et al., 2004]. One of the conclusions drawn from the

study was that distributed models produced reasonable results at interior points, but not as

statistically satisfactory as those obtained from parent basins. Among the criticisms against

distributed models are a large number of parameters [Refsgraard, 1996, 1997] and an absence

of a general framework for evaluating the simulated dynamics against spatial observations

[Grayson et al., 2002]. Numerous model calibration methodologies have been used, not only

to improve model performance [Gupta et al., 1998, Madsen, 2003, Leavesley et al., 2003],

but also to detect and resolve model shortcomings [Yilmaz et al., 2008]. Physically-based

hydrologic models are playing an increasingly important role in understanding and predicting
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the impacts of climate change on hydrological processes and water resources [VanRheenen

et al., 2004, Kollet and Maxwell, 2008]; while still continuing to serve more traditional needs

of river and flash flood forecasting [Foody et al., 2004]. Owing to their explicit representation

of spatially varying forcing and state fields, physically-based hydrologic models are promising

candidates to represent land-surface processes and thereby lead to advances in hydrologic

forecasts [Lyon et al., 2008].

4.3 Conclusion

The aforementioned studies have looked at the soil moisture-vegetation-climate, soil moisture-

topography-climate or soil-vegetation-topography interactions. This work will focus on the

role of vegetation modulated by topography and soil moisture in seasonal to inter-annual cli-

matic patterns. Figure 4-5 presents a schematic illustration of the scope of proposed research

work. Climate models (regional or global) at the land surface allow for two-way feedback

between soil moisture and vegetation dynamics; but they usually neglect the role of topog-

raphy (in lateral soil moisture redistribution and local radiation budget due to slope/aspect)

in the evolution soil moisture (as shown in Figure 4-5 (a)). Distributed hydrologic models

account for role of topography explicitly in soil-moisture and vegetation dynamics, but do

not provide feedbacks to the atmosphere. In this research, we propose a two-way coupling

of a regional climate model with a physically based eco-hydrology model that accounts for

topography in soil moisture and vegetation dynamics (see Figure 4-5 (c)). Description of the

eco-hydrology and regional climate model is presented in the next chapter; along with an

overview of model coupling, domain modification to enable the usage of high performance

computing and a new one-dimensional ground heat flux scheme.

Before proceeding to couple a fully distributed hydrological model, incorporating dy-

namic vegetation, with a regional climate model, we need to ascertain the performance of

the hydrologic model under consideration. A rigorous benchmarking of the eco-hydrology

model, driven with observed meteorological data, to correctly represent hydrologic and veg-

etation states is performed in Chapter 6. The eco-hydrology model is applied in a highly
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Summary

Surface Radiation Budget estimation
Role of topography in modeling

Soil Moisture VegetationTopography
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Soil Moisture VegetationTopography
LAND
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(a) CLIMATE MODELS (b) HYDROLOGIC MODELS

(c) PROPOSED MODEL

Figure 4-5: A schematic representation of land-atmosphere modeling, illustrating how the
feedbacks (one- or two-way) within the various land surface components (topography, soil
moisture and vegetation) are considered. (a) Within climate models (regional or global),
the atmosphere, soil moisture and vegetation are two-way coupled; while role of topography
in lateral redistribution and surface radiation is neglected. (b) In hydrologic modeling, the
atmospheric forcings drive the model, and topography influences soil moisture and vegetation
dynamics. (c) The proposed model of regional climate will explicitly account for the role of
topography in the evolution of soil moisture and vegetation.
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instrumented semiarid USDA-Agricultural Research Services (ARS) Walnut Gulch Experi-

mental Watershed in southeast Arizona for a period of 11 years. The model performance is

examined with respect to several key hydrologic variables: energy balance, distributed soil

moisture with the watershed at three depths, and land surface temperature. Additionally,

the model’s capability to capture vegetation dynamics for two generic plant functional types,

C4 grasses and C3 shrubs, is also evaluated against the MODIS leaf area index product.

Three different experiments are conducted in Chapter 7 to examine the impacts of re-

gional scale feedbacks between atmosphere and dynamic vegetation modulated by topogra-

phy and soil moisture at seasonal to inter-annual timeseries. The dollowing cases of vegeta-

tion and topography are considered:

• Flat topography with static vegetation

• Observed topography with static vegetation

• Observed topography with dynamic vegetation

The results from the experiments are explained within the framework of soil moisture-rainfall

feedback hypothesis of Eltahir [1998]. The results demonstrates the role of explicitly account-

ing for topography and vegetation dynamics in coupled land-atmosphere model.
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CHAPTER 5

MODELS

The core of this research relies on two numerical models: an ecohydrology model and a

regional climate model. This chapter presents an overview of both the models individually

and describes how they are coupled together to address one of the questions raised in this

thesis. The modification in domain representation of the ecohydrology model in order to

utilize high performance computing is also described. Additionally, a brief description of the

new one-dimensional ground heat flux scheme incorporated within the ecohydrology model

is also presented.

5.1 tRIBS+VEGGIE Model

Natural and anthropogenic changes in climate have been shown to significantly impact the

hydrologic cycle [DeWalle et al., 2000, Porporato et al., 2004, Milly et al., 2005, Oki and

Kanae, 2006, Scibek and Allen, 2006, Weiskel et al., 2007]. A recent report summarizing the

impacts of climate change on the United States has recognized that the southwest United

States has seen some of the longest documented mega-droughts on Earth [Karl et al., 2009].

Ecosystems throughout the southwestern United States have been significantly altered by

the encroachment of shrubs into grasslands [Buffington and Herbel, 1965, Grover and Mu-

sick, 1990, Bahre and Shelton, 1993]; which not only out-competes the native species, but
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provides additional fuel for forest fires [Weiss and Overpeck, 2005]. Physically-based hy-

drologic models are playing an increasingly important role in understanding and predicting

the impacts of climate change on hydrological processes and water resources [VanRheenen

et al., 2004, Kollet and Maxwell, 2008, Liuzzo et al., 2010]; while still continuing to serve

more traditional needs of river and flash flood forecasting [Foody et al., 2004]. Owing to

their explicit representation of spatially varying forcing and state fields, physically-based

hydrologic models are promising candidates to represent land-surface processes and thereby

lead to advances in hydrologic forecasts [Lyon et al., 2008].

One of the models used in this thesis is the Triangulated Irregular Network (TIN) based

Real-time Integrated Basin Simulator (tRIBS), a fully distributed physically based hydrologic

model [Ivanov et al., 2004]; integrated with a plant physiology and spatial dynamics compo-

nent, VEGetation Generation for Interactive Evolution (VEGGIE) [Ivanov et al., 2008a,b].

Unlike the use of regular mesh adopted by most hydrologic models [Wigmosta et al., 1994,

Downer et al., 2002, Kollet and Maxwell, 2006], the tRIBS+VEGGIE model uses a tri-

angulated irregular network (TIN) representation of land surface topography (Figure 5-1).

The TINs capture topographic detail with fewer computational nodes as compared to the

traditional grid based representation, thus allowing to simulate basin hydrologic response

in a computationally efficient manner [Vivoni et al., 2004]. Elevation data from the Shut-

tle Radar Topography Mission (SRTM) [Farr et al., 2007] can be used to construct a TIN

representation of the watershed under consideration. The Voronoi polygons are the funda-

mental computational element of the tRIBS+VEGGIE model, where the energy and water

budgets are solved numerically (see Figure 5-1(a) and (b)). The Voronoi polygon can have

both vegetated and non-vegetated surfaces simultaneously within it. The model allows for

spatially varying precipitation forcing to be intercepted by vegetation (if present), or reach

the ground surface directly; where it may infiltrate into the soil or produce surface runoff.

The Rutter et al. [1971] scheme is used to model canopy interception and the intercepted

water can evaporate from the leaf surface or drain to the surface as leaf dripping. A finite-

element solution of the ψ-based form of 1-D Richards formulation of infiltration process,
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Figure 5-1: A schematic representation of the fully distributed eco-hydrology model: the
tRIBS+VEGGIE is shown. (a) The various hydrologic process represented in tRIBS and
the TIN representation of the surface, (b) The basic computational voronoi element of tRIBS,
(c) The partitioning of radiation fluxes, and (d) The carbon fluxes simulated by the model
(tRIBS+VEGGIE). [Adapted from Ivanov [2006]]
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with a varying vertical mesh resolution, is implemented within the model [Ivanov, 2006].

The model uses the Brooks and Corey [1964] parameterization for soil water retention curve.

The surface (runoff) and subsurface (unsaturated zone) mass flux exchange occurs along the

steepest-descent direction. The surface runoff can be produced in the model as saturation

excess or infiltration excess. Hydrologic runoff routing is performed on the hillslope; while

hydraulic kinematic wave routing is performed in the channel network. The model can ac-

count for spatially varying hydraulic, thermal and albedo properties of soil types within the

watershed.

The dynamic vegetation component of the tRIBS+VEGGIE model is a “big-leaf” model

that operates on specified plant functional types (PFTs) [Bonan, 1996]. The various biophys-

ical and biochemcial processes that are accounted for with the coupled vegetation-hydrology

system include absorption, reflection and transmittance of radiative fluxes (shortwave and

longwave); sensible and ground heat fluxes; partitioning of latent heat into bare soil evapo-

ration and canopy transpiration; photosynthesis and primary production; plant respiration;

tissue turnover and stress-induced foliage loss; carbon allocation and vegetation phenol-

ogy (for details see [Ivanov et al., 2008a]). The exchange of CO2 flux between the atmo-

sphere and land surface contribute to the dynamics in three carbon pools modeled within

tRIBS+VEGGIE: foliage, sapwood, and fine roots. Assimilation of CO2 through photosyn-

thesis is coupled to surface energy and water balance through the stomatal resistance model.

A conceptual map of the VEGGIE model is shown in Figure 5-1 (c) and (d). The simulated

physical processes allow for numerous dynamic feedbacks among various components of the

coupled vegetation-hydrology system. These physical processes within the model operate

at different time scales: simulation of infiltration, lateral moisture distribution and runoff

is carried out at a finer time step of ≈ 7.5 - 15 minutes; while meteorological forcings and

biophysical processes operate at 1 hour time step. Vegetation responds to environmental

conditions of water and energy through stomata dynamics at an hourly time scale. At daily

time scale, the vegetation affects the land-surface state through the change of its structural

attributes and vegetation fraction.
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5.2 Weather Research and Forecasting Model

The Weather Research and Forecasting (WRF) model is a state-of-the-art numerical weather

prediction (NWP) system, developed from the collaborative efforts between various US agen-

cies, including National Center for Atmospheric Research (NCAR) and National Oceanic and

Atmospheric Administration (NOAA), and universities. There are two dynamics solvers in

the WRF: the Advanced Research WRF (ARW) solver developed primarily at NCAR, and

the NMM (Nonhydrostatic Mesoscale Model) solver developed at NOAA’s National Cen-

ters for Environmental Prediction (NCEP). The WRF-NMM replaced the Eta model in the

North American Mesoscale (NAM) modeling system as of June 2006 to be used in operational

forecast mode.

The atmospheric dynamics of the WRF core are based around full set of primitive dif-

ferential equations, advancing three-dimensional fields of momentum, heat and moisture

[Skamarock et al., 2008]. The vertical grid of the model is terrain-following with the top of

the model being a constant pressure surface, while the horizontal grid is the Arakawa-C grid.

The time integration scheme in the model uses the third-order Runge-Kutta scheme, and the

spatial discretization employs 2nd to 6th order schemes. The model supports one-way, two-

way and moving nest options. It runs on single-processor, shared- and distributed-memory

computers. The latest release of WRF version 3.0 in April, 2008, includes global modeling

capabilities. WRF has five physics categories, namely microphysics, cumulus parameteri-

zation, planetary boundary layer, LSM and radiation, each of which has several options as

listed in Table 5.1.

5.3 Domain Representation

5.3.1 Domain decomposition for tRIBS+VEGGIE

Topography and drainage network of a domain within the tRIBS+VEGGIE model is rep-

resented via a triangulated irregular network (TIN) of points [Vivoni et al., 2004, Ivanov
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Table 5.1: Various physics options available in WRF-ARW v3.0

Kessler scheme
Purdue Lin scheme

WRF Single-Moment 3-class(WSM3) scheme
WSM5 scheme

Microphysics WSM6 scheme
Eta Grid-scale Cloud and Precipitation scheme

Thompson scheme
Goddard Cumulus Ensemble model scheme

Morrison 2-Moment scheme
Kain-Fritsch scheme

Betts-Miller-Janjic scheme
Cumulus parameterization Grell-Devenyi ensemble scheme

Grill-3 scheme
Similarity Theory - MM5

Surface layer Similarity Theory - Eta
Similarity theory - PX

5-layer thermal diffusion
Noah LSM

Rapid Update Cycle model LSM
Land surface model Pleim-Xiu LSM

Urban Canopy Model
Ocean Mixed-Layer Model

Specified Boundary conditions
Medium Range Forecast Model (MRF)

Yonsei University (YSU)
Planetary boundary layer Mellor-Yamada-Janjic (MYJ)

Asymmetrical Convective Model version 2 (ACM2)
Rapid Radiative Transfer Model (RRTM) Longwave

Eta Geophysical Fluid Dynamics Laboratory Longwave
CAM Longwave

Atmospheric radiation Eta Geophysical Fluid Dynamics Laboratory Shortwave
MM5 (Dudhia) Shortwave

Goddard Shortwave
CAM Shortwave
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et al., 2004]. The primary motivation for the use of TINs is the multiple resolutions offered

by the irregular domain. The fundamental computational element is a voronoi polygon,

which is defined by two axes: p in the direction parallel to the plane along the maximum

slope, α5, (positive downslope) and n in the direction normal to the plane (positive down-

wards). The state variable of the one-dimensional mass flow equations, when applied to a

voroonoi polygon, are a function of the direction n. The surface (overland-flow) and sub-

surface (unsaturated-zone) mass flux exchange occurring between upstream and steepest

downstream cell occurs in the plane parallel to p. Details regarding the geometric represen-

tation of the computational element can be found in Vivoni et al. [2004] and Ivanov et al.

[2004]. In the following section, we describe the extension of the basic tRIBS+VEGGIE

domain to accommodate the use high performance computing architecture and coupling of

the tRIBS+VEGGIE model with a regional climate model.

5.3.2 Domain decomposition for Parallel tRIBS+VEGGIE

High performance computing (HPC) has become ubiquitous tool for conducting simula-

tions. Modeling large spatial domains in distributed hydrologic models at fine resolution

over long period of time can now be achieved using HPC. Vivoni et al. [2005] successfully

parallelized an early version of the tRIBS model [Ivanov et al., 2004]. During the implemen-

tation of VEGGIE component within the tRIBS model [Ivanov, 2006], the representation

of hydrologic processes underwent improvements, including development of finite-element

based formulation of the Richards equation. The implementation of Vivoni et al. [2005]

served as guide to develop parallel tRIBS+VEGGIE (ptRIBS+VEGGIE henceforth) model.

ptRIBS+VEGGIE uses the Message Passing Interface (MPI) for distributed memory com-

puter system.

Within a given ptRIBS+VEGGIE domain, the lateral exchange in the subsurface and

overland occurs along the steepest decent downstream. Thus, a watershed domain can be

interpreted as a directed-graph, where each computational element interacts with its down-

stream neighbor only. The watershed domain is decomposed into sub-watersheds or reaches
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(a) WGEW domain (b) Reach delineation
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Figure 5-2: (a) Domain representation for the Walnut Gulch Experimental Watershed, AZ.
The computational elements in black are the stream nodes, while elements with same color
belong to a common reach. (b) Delineation of reaches within the watershed. (c) Directed
graph that shows the connectivity of reaches and contains weights at the vertices. The
weights corresponds to the number of computational elements draining into a given reach.
(d) Partition of the WGEW domain for a simulation with three processors.
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Figure 5-3: Performance of the ptRIBS+VEGGIE model for a 240-hours simulation experi-
ment.
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along the stream-network. Each reach is assigned a weight corresponding to the number of

computational elements that flow directly into the reach under consideration. Freely avail-

able graph partitioning software, METIS [Karypis and Kumar, 1999], is used to partition

the weighted directed graph over the specified number of processors during runtime, while

trying to balance the load on each processor. An example of the ptRIBS+VEGGIE domain

is shown for the Walnut Gulch Experimental Watershed (WGEW) in Arizona in Figure 5-

2(a). In Figure 5-2(a) the computational elements classified as streams are shown in black,

while those elements that belong to a common reach are displayed with a similar color. The

delineated reaches within the watershed are shown in Figure 5-2(b); while the resulting di-

rected graph with weights on each vertices in shown in Figure 5-2(c). The resulting domain

after partitioning using METIS for three processors is illustrated in Figure 5-2. In order

to test the performance of the ptRIBS+VEGGIE model a 240 hours simulation experiment

with conducted for the WGEW with varying number of processors. The simulation was

conducted on an AMD Quad-core Opteron 2.1GHz with 8Gb RAM. The performance of

the ptRIBS+VEGGIE model is shown in Figure 5-3 and the model scales well with the

increasing number of processors.

5.3.3 Domain representation for WRF - ptRIBS+VEGGIE

The WRF and the ptRIBS+VEGGIE model use different horizontal discretization, a rect-

angular grid and a watershed domain, respectively (see Figure 5-4). When a simulation is

run on multiple processors (say 4 processors), the WRF domain gets broken into rectan-

gular tiles, as shown in Figure 5-4 with four different solid colors; while the watershed of

ptRIBS+VEGGIE gets partitioned along stream reaches (shown with filled colors in Fig-

ure 5-4). One immediate challenge that arises during the simulation of the coupled model

running on multiple processors is demonstrated in Figure 5-4 : Reach-3 of the watershed

for the ptRIBS+VEGGIE model resides entirely on one processor; while the atmospheric

conditions corresponding to it within the WRF model are present on all 4 processors. Thus,

while running a simulation in a parallel mode, additional care has to be taken to ensure that
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Figure 5-4: Horizontal domain representation for WRF and ptRIBS+VEGGIE model. WRF
employs a rectangular gird, while ptRIBS+VEGGIE works on a watershed domain.
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both models receive and return correct information while communicating with each other.

The coupling between WRF - ptRIBS+VEGGIE models is graphically represented in

Figure 5-5. The two models are separated via a “buffer” which communicates instanta-

neous values of atmospheric forcing and land surface boundary state variables, heat and

moisture fluxes between models. As the first step, on each processor, the buffer receives

atmospheric forcings from the WRF model (Figure 5-5 a.1). The buffer on each processor

then communicates its individual atmospheric forcings to other processors, untill buffers on

processors have atmospheric forcings for the entire simulation domain (Figure 5-5 a.2). Af-

ter the ptRIBS+VEGGIE model has updated the land surface fluxes and state variables

for the portion of watershed domain active on the given processor, the buffers communicate

among themselves to reconstruct the fluxes and state variable for the entire watershed do-

main (Figure 5-5 b.1). Finally, each buffer returns the corresponding fluxes to the WRF

model (Figure 5-5 b.2).

The ptRIBS+VEGGIE model was initially developed to represent a single watershed and

simulate hydrological processes occurring within the watershed boundary. In order to obtain

estimates from ptRIBS+VEGGIE regarding land surface state (temperature, albedo) and

heat and moisture fluxes over the entire WRF domain of atmospheric processes simulation, it

was necessary to extend ptRIBS+VEGGIE to operate on several watersheds simultaneously.

Multiple watersheds were implemented in a parallel computing framework that allowed cer-

tain watersheds to reside entirely on a single processor, while simultaneously allowing for

larger watersheds to be distributed over multiple processors.

5.4 Ground heat flux

Ground heat flux transfers heat from the surface to subsurface via conduction and Wang

and Bras [1999] method was used within the original tRIBS+VEGGIE model. In this work,

a one-dimensional heat diffusion model within the soil is incorporated. The heat diffusion

model in a vertical soil column, z[m], for soil temperature, T [K], can be described as
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C(θ)
∂T

∂t
=

∂

∂z

(
κ(θ)

∂T

∂z

)
(5.1)

where C(θ) [J m−3 K−1] and κ(θ) [J m−3 s−1 K−1] are volumetric soil heat capacity and

volumetric soil heat conductivity respectively. Soil moisture (θ) directly impacts both the

volumetric soil heat capacity and volumetric soil heat conductivity.

In this study, the soil heat conductivity parameterization scheme of Farouki [1981] is used.

The volumetric soil heat conductivity is given as a combination of dry (κdry) and saturated

(κsat) conductivities, weighted by a normalized conductivity ( Ke, Kersten number) as

κ(θ) =

 Ke(κsat − κdry) + κdry if θ/θs ≥ 10−7;

κdry if θ/θs < 10−7.
(5.2)

and

Ke = ln

(
θ

θs

)
+ 1.0 (5.3)

where θs [mm3 mm−3] is saturated volumetric soil moisture. The volumetric soil heat capacity

is assumed to vary linearly with soil moisture as

C(θ) = (1− θs)Csoil + θCwater (5.4)

where Csoil [J m−3 K−1] is soil heat capacity of dry soil and Cwater = 4.188×106 [J m−3 K−1]

is the specific heat capacity of water. The current formulation of the heat diffusion is only

applicable to unfrozen soil conditions, but the extension to frozen soils is straight-forward.

The ground heat flux at the surface, G [Wm−2], defined as positive into the ground, and
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its partial derivative with respect to soil surface temperature, Tsurf [K], are given by

G =

(
κ
∂T

∂z

)∣∣∣∣
z=0

= κ1

(
Tsurf − T1

(∆z1)/2

)
(5.5a)

∂G

∂Tsurf
=

2κ1

∆z1

(5.5b)

The numerical approximation for solving 1-D heat diffusion model in this study closely

follows the approach of Bonan [1996] and is detailed in Appendix A.

5.5 Conclusion

This chapter has discussed the two numerical models that are used in this thesis. A brief

description of the modifications carried out in the ecohydrology model (domain representa-

tion for HPC and 1-D ground heat diffusion formulation) were summarized. An overview of

how the two numerical models coupled together was also presented. Before proceeding to

simulations with WRF - ptRIBS+VEGGIE model to study the importance of incorporating

dynamic vegetation and topography within a regional climate model, one needs to access

how capable the ecohydrology model (in an offline mode) is in accurately resolving hydro-

climatic signatures and vegetation dynamics in a semiarid region. In the next chapter, we

discuss the results from the application of the ptRIBS+VEGGIE model (driven by measured

atmospheric forcings) in a highly instrumented semiarid catchment, Walnut Gulch Experi-

mental Watershed in Arizona for a period of 11 years (1997-2007). The model performance

is examined with respect to several key hydrologic variables: energy fluxes, distributed soil

moisture within the watershed at three depths and land surface temperature. Additionally,

the model’s capability to capture vegetation dynamics for two generic plant functional types,

C4 grass and C3 shrubs, is also evaluated against the MODIS leaf area index product.
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CHAPTER 6
APPLICATION OF

ptRIBS+VEGGIE

OVER A SEMI-ARID

REGION

6.1 Walnut Gulch Experimental Watershed

The USDA-ARS Walnut Gulch Experimental Watershed (WGEW) is located in the San

Pedro River Basin of southeastern Arizona, a transition zone between the Sonoran and

Chihuahuan Deserts. It is one of the most highly instrumented semi-arid experimental

watershed in the world [Renard et al., 2008]. The WGEW has a total area of approximately

150 km2 and the elevation of the watershed ranges from 1220m to 1950m above mean sea

level, as shown in Figure 6-1. The North American monsoon (NAM) is responsible for

supplying two-thirds of the region’s annual precipitation during the summer [Goodrich et al.,

2008]. Primary surface condition measurements were made in 1953 and are continuing to

the present, including various locations throughout the WGEW and surrounding area. The

WGEW has an extensive database of precipitation, runoff, soil hydrology, meteorological,

vegetation, geographic information system, carbon dioxide and water flux [Goodrich et al.,

2008, Stone et al., 2008, Keefer et al., 2008, Skirvin et al., 2008, Emmerich and Verdugo,

2008, Moran et al., 2008, Heilman et al., 2008].

Lucky Hills and Kendall are two intensive rangeland study areas with small (<10 ha)

within the WGEW. They are representative of the two main vegetation cover types, shrubs

in Lucky Hills and grasses in Kendall. The Kendall sub-watershed includes rain gage 82
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Figure 6-1: (a) Location of the USDA-ARS Walnut Gulch Experimental Watershed in south-
east Arizona and the digital elevation map of the WGEW along with rain gage locations
from which data is used. Kendall and Lucky Hills are station 82 and 83, respectively. (b)
Soil types within the Walnut Gulch Experimental Watershed provided by Soil Survey Geo-
graphic (SSURGO) database. (c) Spatial distribution of the two dominant vegetation types,
grass and shrub, within the WGEW.
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(a) (b)

Figure 6-2: Illustrations of surface conditions at sites Kendall (grass-dominated) and Lucky
Hills (shrub-dominated), respectively. [Pictured in June, 2008]

and Lucky Hills is near rain gage 83 (Figure 1a) and their dominant vegetation cover can

be seen in photographs presented in Figures 6-2(a) and (b). The Lucky Hills site is located

at 11003′5′′W 31044′37′′N with an elevation of 1372 meters. The dominant shrubs present at

the site are creosotebush (Larrea tridentata), hitethorn Acacia (Acacia constricta), tarbush

(Flourensia Cernua), and desert zinnia (Zinnia pumila) with some mariola (Parthenium in-

canum) and little leaf sumac (Rhus microphylla) [King et al., 2008]. The soil at this site

is Lucky Hills series (coarse-loamy, mixed, thermic Ustochreptic Calciorthids) with 3 to 8%

slopes [Heilman et al., 2008]. The Kendall site is located at 109056′28′′W 31044′10′′N with

an elevation of 1526 meters. Dominant grasses are sideoats grama (Bouteloua curtipendula),

black grama (Bouteloua eriopoda), three-awn (Aristida sp.) and cane beard grass (Both-

riochloa barbinodis) [King et al., 2008]. The soils at the site are a complex of Stronghold

(coarse-loamy, mixed, thermic Ustollic Calciorthids) with 4-9% slopes [Heilman et al., 2008].
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Table 6.1: Station number in Walnut Gulch and data type used either for model forcing or
evaluation.

Model forcing data Model evaluation data

Meteorological data Precipitation Energy Soil moisture Soil surface
(except precipitation) data fluxes (at following depths) temperature

5 cm 15 cm 30 cm

S
ta

ti
on

n
u
m

b
er

82 14 82 3 46 46 46
83 7-72 83 13 82 82 69

74 14 83 83 92
76 18 100

79-83 20
87-92 28
100 34
384 37

398-399 40
46
57
69
70
76
82
83
89
92
100

142



6.1.1 Hydro-Meteorological in situ data

Both, Kendall and Lucky Hills sites in the WGEW have automated weather stations to

collect meteorological data [Keefer et al., 2008]. The meteorological variables used by the

ptRIBS+VEGGIE model include atmospheric pressure, relative humidity, wind speed, air

temperature, solar radiation and precipitation. In this study, 11 years (1997-2007) of hourly

meteorological data was used to force the ptRIBS+VEGGIE simulation. Precipitation data

from 88 rain gage stations during the study period are used for the simulations. The mea-

surements of net radiation, latent, sensible and ground heat flux at Kendall and Lucky Hills

from 1998 to 2007, are used to evaluate the simulation results. Soil moisture and soil surface

temperature observations are also employed to assess the model performance. Soil moisture

observations are available for the 2002-2007 period at three depths: 5 cm (at 19 stations),

15 cm (at 3 stations) and 30 cm (at 3 stations); while surface soil temperature observations

are available at 4 stations for the time-period of 2004-2007. A summary of the different data

types, available at the various stations, used in this study are presented in Table 6.1.

6.1.2 Remote sensing data

Remote sensing provides data with a high spatial and temporal coverage, which can be used

not only to evaluate the performance of a distributed hydrologic model but also improve

model estimates through data assimilation. One such source is the MODerate-resolution

Imaging Spectroradiometer (MODIS) instrument onboard of the Earth Observing System

(EOS) Terra and Aqua satellites. Terra and Aqua satellites were launched in Dec., 1999

and May, 2002 respectively. With 36 spectral bands and a global coverage of 1 to 2 days,

the MODIS sensor provides various atmospheric, land, cryospheric and ocean data products.

The MODIS products used in this study include the level-3 land surface temperature (LST)

product and the level-4 leaf area index (LAI) product.

The MODIS 5-minute swath LST day/night data product is a level-2 product and is

produced by the generalized split-window LST algorithm [Wan and Dozier, 1996] for pixels

whose emissivities are known in the MODIS band 31 and 32. In the case of pixels with
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variable or unknown emissivities, the Day/Night LST Algorithm [Wan and Li, 1997] is used

to simultaneously retrieve band emissivities and temperature from a pair of daytime and

nighttime the MODIS observations in bands 20, 22, 23, 29, 31, 32 and 33. The MODIS

LST data product used in this study is 11A1, a daily level-3 LST product, produced by

reprojecting 5-minute swath LST product in 1 km sinusoidal projection.

The MODIS LAI data product, MOD15A2 from the Terra satellite, was used in this study

to evaluate the model’s performance in capturing vegetation dynamics. The MOD15A2 is

a level-4 product, produced at 1 km spatial resolution and composited over 8 days. The

retrieval algorithm producing this product is based on a three dimensional radiative trans-

fer model tuned for six main biome classes [Knyazikhin et al., 1998]. The inputs for the

retrieval algorithm include atmospherically corrected bidirectional reflectance values for two

wavelength bands, red and near-infrared; the Sun and satellite viewing angle for reflectance

data; a land cover classification map and a lookup table for a radiative transfer coefficient

[Knyazikhin et al., 1998]. The algorithm compares observed and modeled canopy reflectances

for a range of canopy structures and soil patterns expected in natural conditions. The LAI is

retrieved as the mean value from all possible solutions within a specific level of input satellite

data and model uncertainties [Knyazikhin et al., 1998]. Both MODIS data products, LST

and LAI, are available in EOS-hierarchical data format and were obtained from NASA’s

Warehouse Inventory Search Tool (WIST) website and are subsetted to spatially cover the

WGEW.

6.2 Model setup and calibration

The Bowen ratio measurements at Kendall and Lucky Hills began in July, 1996 and starting

from 1997 the measurements were quality controlled. Thus, a study period of 11 years,

1997-2007, was selected to evaluate whether the ptRIBS+VEGGIE model is able to resolve

hydrologic variables and vegetation dynamics in a semiarid region. The model is initialized

with spatially homogenous (horizontally as well as vertical) soil moisture at 20% saturation.

As the study period spans over a decade, we believe that the initial conditions will not bias
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Figure 6-3: Domain discretization of the WGEW (a) Horizontal discretization (19,443
Voronoi polygons); and (b) Vertical discretization (25 exponentially varying soil layers)

the results of this study. Furthermore, the results obtained during the first year of study

(i.e. 1997) were neglected while making any comparisons between the modeled outputs and

observations. A 30-meter Digital Elevation Model (DEM) from the U.S. Geological Survey

was used to construct the mesh for the WGEW. An efficient TIN mesh was constructed

using the ArcInfo Geographic Information System package developed by ESRI following

the approach outlined by Vivoni et al. [2005]. The final TIN mesh comprised of 19,433

computational elements in the horizontal; while the vertical discretization comprising of 25

soil layers (whose thickness varies exponentially, increasing with depth) extending ≈2 m

deep. Figure 6.2 illustrates the horizontal and vertical discretizations for the domain. The

Soil Survey Geographic (SSURGO) database, maintained and published by the USDA, was

used to determine the spatial distribution of soils within the WGEW, as shown in Figure 6-

1(b). The soil parameterizations used by the ptRIBS+VEGGIE model corresponding to the

various soil types present within the WGEW are listed in Table 6.2. Since the groundwater

has been shown to be deep [Goodrich et al., 2004], the simulations do not include saturated

dynamics. The bottom boundary condition of each computational element is specified as

the open flow boundary approximated as the gravity-driven drainage.

The vegetation cover map was obtained from a publicly accessible website of the South-

west Watershed Research Center, Tucson, Arizona [Skirvin et al., 2008]. The vegetation map

included six classes and for this study we further simplified the classification into grass and
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shrub only, as shown in Figure 6-1(c). Vegetation is simulated by the ptRIBS+VEGGIE

model as spatially-static, but temporally dynamic. Tables 6.3, 6.4 and 6.5 summarizes

the various vegetation parameters used by the model, which include biophysical, biochem-

ical, allocation, phenology, water uptake and interception. A detailed description of these

vegetation parameters for C4 grass is provided in Ivanov et al. [2008a]. The corresponding

vegetation parameters for C3 shrubs were obtained from the Community Land Model (CLM)

parameterization [Olseson et al., 2004].

Manual model calibration was performed to accurately capture the vegetation dynamics

of C4 grass and C3 shrubs for smaller sub-watersheds nested within the WGEW at Kendall

and Lucky Hills respectively. The goal of the calibration exercise was to better capture the

start of growing season, duration of growing season and peak LAI during the growing season

for both vegetation types. Simulations for sub-watersheds at Kendall and Lucky-Hills are car-

ried out for the 11 years period (1997-2007) and basin average simulated vegetation dynamics

were compared with the mean of the MODIS LAI pixels, lying within the sub-watersheds,

for the period of 2000-2007. Several parameters were varied during the calibration procedure

from the reported values in Ivanov et al. [2008a] and Olseson et al. [2004]. These parameters

include: soil matric potential at which the stomatal closure begins, Ψ∗; soil matric potential

at which vegetation starts to wilt, Ψw; temperature threshold below which cold-induced leaf

loss begins, Tcold; minimum days for which conditions of transition from/to the dormant

season have to be met, ∆Tmin,Fav; maximum drought induced foliage, γWmax; and maximum

cold induced foliage, γCmax. These parameters control the range over which photosynthesis

uptake occurs and the stress caused by cold and drought, curtails growth activity. After the

manual calibration was completed, the model simulations for the entire WGEW are carried

using hourly meteorological variables from Kendall and Lucky Hills stations (except rainfall)

at hourly time-step. Hourly rainfall data from 88 rain gages within the WGEW were used

to drive the simulation.
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Table 6.3: Vegetation biophysical and interception parameters: χL is departure of leaf an-
gles from a random distribution; Leaf reflectance and transmittance, αleafΛ [-] and τ leafΛ [-]
respectively; Stem reflectance and transmittance, αstemΛ [-] and τ stemΛ [-] respectively; VIS and
NIR denote visible and near-infrared spectral bands; Canopy water drainage rate coefficient,
Kc [mm h−1]; Exponential decay parameter of canopy water drainage rate, gc [mm−1]; and
Specific leaf area, Sla [m2 leaf area kg C−1] (For detail descriptions of the parameters, the
reader is referred to Ivanov et al. [2008a].)

C3 Shrub C4 Grass

χL 0.01 -0.30

αleafΛ - VIS 0.10 0.11

αleafΛ - NIR 0.45 0.58
αlstemΛ - VIS 0.16 0.36
αstemΛ - NIR 0.39 0.58

τ leafΛ - VIS 0.05 0.07

τ leafΛ - NIR 0.25 0.25
τ lstemΛ - VIS 0.001 0.22
τ stemΛ - NIR 0.001 0.38

Kc 0.18 0.10
gc 3.90 3.20
Sla 0.011 0.020
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Table 6.4: Biochemical parameters: Maximum catalytic capacity of Rubisco at 250C, Vmax,25

[µmol CO2 m−2 leaf s−1]; Mean time PAR extinction coefficient parameterizing decay of ni-
trogen content in canopy, K̄ [-]; Slope parameter, m[-]; Minimum stomatal conductance, b
[µmol CO2 m−2 leaf s−1]; Intrinsic quantum efficiency for CO2 uptake for C3 and C4 plants,
ε3,4 [µmol CO2 µmol−1 photons]; Sapwood and root tissue respiration at 100C, rsapw [g C g
C−1 s−1] andrroot [g C g C−1 s−1], respectively; Fraction of canopy assimilation less mainte-
nance respiration utilized for tissue growth, ωsapw [-]; Leaf turnover rate, dleaf [year−1]; Stem
turnover rate, dstem [year−1]; and Root turnover rate, droot [year−1]. (For detail descriptions
of the parameters, the reader is referred to Ivanov et al. [2008a].)

C3 Shrub C4 Grass

Vmax,25 35.0 30.0
K̄ 0.30 0.30
m 9 4
b 10000 40000
ε3,4 0.053 0.053

rsapw 9.61×10−10 -
rroot 1.09×10−8 4.0×10−8

ωsapw 0.25 0.25
dleaf 1 1
dsapw 0.1 -
droot 0.33 1.0
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Table 6.5: Vegetation allocation, phenology and water uptake parameters: Maximum
drought induced foliage, γWmax [day−1]; Maximum cold induced foliage, γCmax [day−1]; Shape
parameter reflecting sensitivity for drought,bW [-], and cold, bC [-]; Temperature threshold
below which cold-induced leaf loss begins, Tcold [0C]; Base allocation fraction for canopy,
eleaf [-], sapwood, esapw [-] and root, eroot [-]; Sensitivity parameter of allocation fractions
to changes in light and soil availability, $ [-]; Parameters controlling the relation between
carbon content in the above and below ground biomass, ξ [-] and εs [-]; Mean daily soil
temperature,T̄soil [0C], and day length, DC

LH [hour], that have to be exceeded for the growing
season to start; Minimum duration of period for which the conditions of transition from/to
the dormant season have to be continuously met, ∆Tmin,Fav [day]; Faction of structural
biomass, fC,init [-], and leaf area index, Linit [-], used to initiate the leaf onset; Soil matric
potential at which stomatal closure, Ψ∗ [Mpa], and plant wilting, Ψw [MPa], begins. (For
detail descriptions of the parameters, the reader is referred to Ivanov et al. [2008a].)

C3 Shrub C4 Grass

γWmax 1/10 1/15
bW 4.0 4.0
γCmax 1/6.67 1/6.67

bC 3.0 3.0
Tcold 12 9.0
eleaf 0.25 0.45
esapw 0.1 -
eroot 0.65 0.55
$ 0.8 0.7
ξ 1.6.0 1.0
εs 2.0 1.25
T̄soil 5.0 5.0
DC
LH 10.0 10.0

∆Tmin,Fav 5.0 2.0
fC,init 0.025 -
Linit 0.22 0.25
Ψ∗ -0.01 -0.01
Ψw -2.8 -3.0
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6.3 Model evaluation

6.3.1 Energy fluxes

At the Earth’s surface, conservation of energy for snow-free surface (neglecting the energy

of photosynthesis and storage effects), is given by:

Rnet = LE +H +G (6.1)

where Rnet [Wm−2] is the net radiation, LE [Wm−2] is latent heat flux, H is sensible

heat flux[Wm−2] and G [Wm−2] is the ground heat flux. Traditionally, soil moisture and

streamflow are used as primary benchmarks to appraise the performance of a distributed

hydrologic model. In this study, we use energy fluxes as additional benchmarking informa-

tion to evaluate the ecohydrology model. The intention here is to demonstrate that the

ptRIBS+VEGGIE model can potentially serve as a land surface parameterization scheme

within a regional climate model. Therefore, it is important for this ecohydrology model to

provide accurate estimates of net radiation, but also have the ability to correctly quantify

the partitioning of net radiation into latent, sensible and ground heat fluxes. Addition-

ally, vegetation type and amount impacts the energy and water balances by altering surface

characteristics. The model thus has to demonstrate the capability to reasonably reproduce

vegetation dynamics.

The ability of the ptRIBS+VEGGIE model to correctly quantify net radiation and

it’s components is separately demonstrated over the grass-dominated Kendall and shrub-

dominated Lucky Hills sub-watersheds in WGEW. The comparison between the modeled

fluxes and the observations at the two stations is carried out at an hourly scale over the 10

years of study period (excluding 1997), except for days when the instruments malfunctioned

and no data were recorded. The bias, root mean square error (RMSE) and correlation (R2)

between hourly observed and simulated net radiation, latent heat, sensible heat and ground

heat flux for Kendall and Lucky Hills are summarized in Table 6.6. In this study, the bias

is computed as the modeled output minus observation for the variable under consideration.
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Figure 6-4: Hourly difference between ptRIBS+VEGGIE model and observations at grass-
dominated Kendall station for (a) Net radiation; (b) Latent heat flux; (c) Ground heat flux;
and (d) Sensible heat flux.
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Figure 6-5: Same as Figure 6-4, except for shrub-dominated Lucky Hills station.
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Figure 6-6: Hourly time-series for August, 2006 simulated by the ptRIBS+VEGGIE model
(red) and observations (blue) at grass-dominated Kendall station for (a) Net radiation, (b)
Latent heat flux (c) Sensible heat flux; and (d) Ground heat flux.
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Figure 6-7: Same as Figure 6-6 except for Lucky Hills station.
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Figure 6-8: Monthly energy fluxes at grass-dominated Kendall: (a) Net radiation; (b) Latent
heat flux; (c) Ground heat flux; and (d) Sensible heat flux
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Figure 6-9: Same as Figure 6-8, except for shrub-dominated Lucky Hills station.
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The point-scale measurements of energy fluxes show good agreement with the simulated

energy fluxes over the period of 10 years. Histograms of the hourly error between modeled

and observations energy fluxes are shown in Figure 6-4 and 6-5 for Kendall and Lucky Hills,

respectively. Examples of the time-series of energy fluxes simulated and observed for Kendall

and Lucky Hills stations are shown in Figure 6-6 and 6-7 for August, 2006.

In order to gain a better understanding of the model performance at a larger integration

scale, we computed daily mean values for all energy fluxes. Subsequently, monthly-mean of

mean daily values are computed across the 10 years of the study period (neglecting 1997) for

both modeled and observed energy fluxes. The mean monthly energy fluxes for Kendall and

Luck Hills are shown in Figure 6-8 and 6-9, respectively. As expected, the daily mean ground

heat flux is close to zero. The latent heat flux of the semiarid climate of the study sites is

also insignificant for most part of the year, except for pronounced monsoon in July and

August. The model tends to underestimate latent heat flux when compared to observations

in August at both, Kendall and Lucky Hills.

Table 6.6: Bias, RMSE and R2 for hourly net radiation (Rnet), latent heat flux (LH), ground
heat flux (G) and sensible heat flux (H) for Kendall and Lucky Hills between the hourly
observations and ptRIBS+VEGGIE simulations for 1997-2007.

Kendall Lucky Hills

Bias RMSE R2 Bias RMSE R2

[Wm−2] [Wm−2] [Wm−2] [Wm−2]
Rnet -1.2 ±34 0.99 -5.7 ±33 0.99
LH -10.8 ±33 0.79 -11.4 ±30 0.77
G -1.1 ±30 0.88 -0.6 ±46 0.94
H 14.1 ±49 0.96 8.5 ±57 0.97

6.3.2 Soil moisture

In this section, we present a comparison between the observed and simulated daily volumetric

soil moisture at 19 stations within the WGEW, spanning over a period of six years, 2002-

2007. Data that were used are summarized in Table 6.1. The number of stations representing
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Table 6.7: Bias, RMSE and R2 for the daily volumetric soil moisture between modeled and
observations for 2002-2007 at various soil depths. The comparison was carried for all station
within each of the four soil-type classes and separately for Kendall and Lucky Hills site.

Depth Bias RMSE R2

[cm] [mm3 mm−3] [mm3 mm−3]

Sandy loam
5 0.01 ±0.03 0.84
15 -0.05 ±0.06 0.57
30 -0.03 ±0.07 0.42

Loam
5 0.02 ±0.04 0.86
15 0.02 ±0.03 0.83
30 0.00 ±0.03 0.61

Clay
5 0.01 ±0.04 0.84
15 - - -
30 - - -

Silty clay loam
5 0.04 ±0.04 0.86
15 - - -
30 - - -

Kendall
5 0.02 ±0.04 0.83
15 0.02 ±0.02 0.83
30 0.00 ±0.03 0.61

Lucky Hills
5 0.01 ±0.03 0.80
15 0.00 ±0.03 0.71
30 0.03 ±0.03 0.45

a particular soil type varies: sandy loam (3, 13, 40, 46, 57, 69, 70, 76, 83, 92), clay (28, 37),

loam (18, 82), and silty clay loam (14, 20, 34, 89, 100). All of the 19 stations had soil moisture

measurements at 5 cm depth, but only 3 stations (46, 82 and 83) had measurements at the

depths of 15 and 30 cm. For the purpose of this analysis, we compare the point observations

of soil moisture with the closest Voronoi polygon within the computational domain. The

quantitative comparisons of simulated and point-scale soil moisture observations for the four

soil types and separately for Kendall and Lucky Hills sites are reported in Table 6.7. The

agreement between the model and observations is best at 5 cm and slightly deteriorates

for deeper soil depths. The time-series of rainfall and volumetric soil moisture, observed as

well as simulated, at depth of 5, 15 and 30 cm, at Kendall and Lucky Hills are shown in
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Figure 6-10 and 6-11 respectively. Overall, the model captures the timing and magnitude

of the observed soil moisture with depth at both locations. It should also be noted that

it is very difficult to make highly accurate, replicated observations of soil moisture due to

the high percentage of rocks (>2mm) in the soil matrix and associated problems of contact

between continuously sensing soil moisture monitoring probes [Paige and Keefer, 2004]. This

results in substantial uncertainties in the observed soil moisture values. These results indicate

that the physically-based distributed model is able to reproducing consistent soil moisture

conditions for different soil types. Note that only a minimum calibration effort has been

carried out, thus holds the promise for using the model for less studied watersheds with little

observational information.

6.3.3 Land surface temperature

Land surface temperature is another key parameter in the physics of land-surface processes

and in this section we contrast our model simulated LST against ground-based and space-

based observations. The four ground stations that recorded skin surface temperature over

2004-2007 in the WGEW are listed in Table 6.1. The comparison of hourly the modeled

LST and observations is carried out for the day and night hours separately. The scatter plot

and acompanying error histogram are shown in Figure 6-12; while the bias, RMSE and R2

are summarized in Table 6.8. The result shows that the model tends to under-estimate the

peak surface temperature during the day; while over-estimating the surface temperature at

night. The RMSE for surface temperature at night is much lower than during the night.

Space-based observations of LST have an advantage of a large spatial coverage, though

being temporally sparse. The MODIS LST product is generally available twice during the day

and twice during the night, provided the region had clear-sky conditions at the overpass time.

We examined the performance of our model estimated LST against MODIS LST product.

Before undertaking such a comparative analysis, we evaluated the performance of the MODIS

LST product against the point observations of surface temperature. Figure 6-13 (a) and (b)

show the error histogram between the MODIS LST product and point-observations for 2004-
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Figure 6-10: Time-series of (a) daily rainfall; and daily volumetric soil moisture, modeled
along with observations, at Kendall station at varying soil depths: (b) 5cm; (c) 15cm; and
(d) 30cm respectively.
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Figure 6-11: Same as Figure 6-10, except for Lucky Hills.
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Figure 6-12: Hourly surface temperature comparison between the modeled and ground ob-
servations. Scatter plots and error histogram during daytime are shown in (a) and (b),
respectively; while (c) and (d) comparison during nighttime.
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Figure 6-13: Evaluation of the MODIS-derived land surface temperature (LST) product.
Error histogram for the MODIS-LST with respect to ground observations for day and night
overpasses shown in (a) and (b) respectively; while (c) and (d) show the error histogram for
the MODIS-LST with respect to upscaled modeled surface temperature for day and night
overpasses.
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Table 6.8: Bias, RMSE and R2 for land surface temperature: (a) ptRIBS+VEGGIE mod-
eled output against ground observations at hourly interval (2004-2007); (b) MODIS LST
product against ground observation for day and night overpasses (2004-2007); and (c)
ptRIBS+VEGGIE modeled output against MODIS LST product for day and night over-
passes (2001-2007); (d) Upscaled ptRIBS+VEGGIE modeled output at 1km resolution
against MODIS LST product for day and night overpasses (2001-2007).

Bias RMSE R2

[0K] [0K]
(a) Modeled - Observation Day only -3.0 ±7.2 0.87

Night only 3.2 ±4.1 0.89
(b) Observation - MODIS Day only 4.0 ±11.0 0.46

Night only 3.0 ±6.3 0.60
(c) Modeled - MODIS Day only -0.4 ±10.0 0.37

Night only 5.0 ±6.3 0.54
(d)Upscaled Modeled - MODIS Day only 1.2 ±11.0 0.40

Night only 5.2 ±6.3 0.56

2007; while Table 6.8 quantifies the results. The results show high RMSE for day and night

overpasses; while the correlation is low, especially for the day overpasses. The comparison of

the upscaled modeled LST to match with the MODIS LST at 1km resolution did not provide

any significant improvements. Figure 6-13 (c) and (d) show the error histogram between

the MODIS LST and upscaled modeled surface temperature. Even though modeled LST

compared well with point observations, the MODIS-LST products did not have significant

agreement with point observations, as well as, upscaled modeled LST.

6.3.4 Vegetation dynamics

The North American monsoon contributes the majority of annual rainfall in the southwest

U.S. and the northwest Mexico, which leads to a dramatic vegetation response in the region

[Watts et al., 2009, Vivoni et al., 2008]. These vegetation dynamics are known to strongly

impact the surface energy balance of radiation, heat and moisture. In this section, we

evaluate the performance of the ptRIBS+VEGGIE in capturing the vegetation dynamics
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for two plant functional types: C4 grass and C3 shrubs, present within the WGEW. The

MODIS LAI eight-days product from the Terra satellite was used to compare the model

performance over the period of 7 years, 2001-2007. Time-series of modeled LAI (mean value

as a solid black line, with gray region denoting one standard deviation from the mean) and

the MODIS-LAI product (as red dots) for grass-dominated and shrub-dominated region are

shown in Figure 6-14 (a) and (b), respectively. The model was able to capture the timing of

the start of the growing season, the magnitude of peak LAI, and the length of the growing

season quite well over the analysis period. The ptRIBS+VEGGIE model simulates live-

biomass and thus during dry months the near-zero LAI corresponds to absence of any live

biomass. The model reproduced the trend of decreasing maximum LAI from 2000 to 2004

and increasing maximum biomass from 2004 onwards. The model was able to replicate the

response vegetation to spring rainfall in 2001 and 2004 as observed by the MODIS data.

The overall R2 between the simulated and the MODIS LAI are 0.77 and 0.76 for grasses and

shrubs, respectively. Recognizing the uncertainty in the derived LAI products, the above

mentioned results imply that the ptRIBS+VEGGIE model is able to successfully capture

the amount, as well as, the dynamics of vegetation.

Recognizing the uncertainity in the derived LAI products, the above mentioned results

imply that the ptRIBS+VEGGIE model is able to successfully capture the amount, as well

as, the dynamics of vegetation.

6.4 Conclusion

Distributed, physically-based ecohydrologic models are key tools in understanding land-

surface processes and their interaction with the atmosphere. High performance computing

has enabled the application of hydrologic models at large spatio-temporal scales. In this

study, we investigate whether the framework that combines a dynamic vegetation and a

physically-based hydrologic model (ptRIBS+VEGGIE), that takes advantage of HPC, is

capable of capturing hydrologic signatures and vegetation dynamics in a semi-arid region.

The WGEW in Arizona was chosen as the study site and simulations were carried out for a
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Figure 6-14: Comparison between modeled leaf area index (LAI) and MODIS-LAI for grass-
dominated Kendall and shrub-dominated Lucky-Hills sites.
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period of 11 years (1997-2007). Weather station data from two sites in the WGEW: grass-

dominated Kendall and shrub-dominated Lucky Hills; along with 88 distributed rain gages

is used as forcing data for the model simulation. The model performance was benchmarked

with respect to various hydrologic variables: energy fluxes, soil moisture and land surface

temperature. The model is not only able to estimate net radiation at the land surface

accurately, but also correctly quantified the partitioning of it into latent, sensible and ground

heat fluxes at Kendall and Lucky Hills.

Quantitative comparison between simulated and measured soil moisture at 5, 15 and 30

cm depth were in good agreement for different soil types. High correlation was observed

between simulated land surface temperature and measurements, including day and night

observations. The model was however unable to capture the diurnal range of surface tem-

perature by under-predicting during day and over-predicting during night. The MODIS LST

1-km product did not show a good agreement with ground-observations. The MODIS LST

product did not have a significant agreement with the point scale and upscaled 1-km modeled

LST. The ptRIBS+VEGGIE model was able to capture the timing of the start of the grow-

ing season; magnitude of peak LAI; and the length of the growing season when compared

against the MODIS LAI product.The results presented here demonstrate the ability of the

ptRIBS+VEGGIE model to successfully capture hydrologic and ecologic signatures.

This study also shows that the ptRIBS+VEGGIE model transcends classical hydrology

applications and has the potential of being used as a land surface parameterization scheme

within a RCM to study land-atmosphere interactions. At the same time, we need to ac-

knowledge the limitations of the present version of the ptRIBS+VEGGIE model. Ground

water table dynamics, which are not modeled presently, are shown to have significant im-

pact on soil moisture in certain geographical locations [Chen and Kumar, 2001]. The lack

of snow dynamics also curtails the application of the current version of the model to snow-

free regions. Though, it should be pointed out that a snow module is available for the

tRIBS model [Rinehart et al., 2008] and has not been presently incorporated within the

ptRIBS+VEGGIE model. Nutrient cycling is also not accounted for as a possible limiting
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resource in vegetation dynamics. These limitations of the ptRIBS+VEGGIE model were not

important during its application in the WGEW, which being a semi-arid region has little

influence of water table on surface processes. It is also assumed that water-limitation is the

dominant factor controlling vegetation growth in the WGEW. Though runoff observations

are available from various locations within the WGEW, in this study modeled runoff was not

compared against observations. The reason for not performing the runoff comparison is that

ephemeral channel transmission losses play an important role the WGEW [Goodrich et al.,

2004]; and these channel losses are currently not modeled within the ptRIBS+VEGGIE.

These present limitations of the ptRIBS+VEGGIE model need to be addressed in the fu-

ture in order to expand the geographical regions where the model could be used to study

hydrologic and vegetation dynamics. Nonetheless, the ptRIBS+VEGGIE model is able to

capture hydro-climatic signature and vegetation dynamics in a semi-arid region.
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CHAPTER 7
WRF -

ptRIBS+VEGGIE

SIMULATIONS

This chapter describes a series of synthetic experiments that investigate the effect of incor-

porating vegetation dynamics and topography on hydro-climatology over large river basins.

The configuration of the three synthetic experiments conducted is explained first, followed by

a description of the coupled model (WRF - ptRIBS+VEGGIE) setup. Results are presented

for each of the three cases next, followed by a discussion.

7.1 Synthetic experiments

7.1.1 Design of synthetic experiments

The land and atmosphere are fundamentally coupled through the exchange of heat, momen-

tum and water at the the boundary. Prior studies have looked at the feedbacks between

soil moisture, vegetation, topography, and climate by considering either two or three of the

Table 7.1: Description of synthetic experiments
Experiment Description
FLAT-STAT Flat Earth and Static vegetation
TOPO-STAT Observed topography and Static vegetation
TOPO-DYN Observed topography and Dynamic vegetation
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Figure 7-1: Schematic representation of physical processes accounted within the three syn-
thetic experiments. (a) Static vegetation with flat Earth assumption. (b) Topographic
effects on surface radiation and lateral redistribution of moisture (above- and below-ground)
are accounted, while keeping static vegetation cover. (c) Accounting for both, vegetation
dynamics and topographic effects.

components coupled together. In this work, a series of three experiments (see Table 7.1) are

designed to investigate the impacts of regional scale feedbacks between vegetation (modu-

lated by topography and soil moisture) and atmosphere at seasonal to inter-annual timescale.

In the first experiment, it is assumed that the Earth’s surface is flat and vegetation cover

is prescribed, static in time and space. In this work, the term “flat Earth” does not imply

an absence of orography within the computational domain, but it mainly refers to the lack

of accounting for two physical processes at the land surface: lateral redistribution of soil

moisture (via subsurface and overland flow); and the impact of local terrain (through slope

and aspect) on downwelling solar shortwave radiation. In the second experiment, we use

observed topography available from the Digital Elevation Models (DEMs), while keeping the

vegetation static. The second experiment investigates how explicitly accounting for topogra-

phy influence the hydro-climatic patterns within the coupled model. The third experiment

allows vegetation to respond to climate, while simultaneously using the observed topography.

A schematic representation of the various physical processes accounted for within the three

synthetic experiments is shown in Figure 7-1.
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Figure 7-2: Modeling domain over the Southwestern United States. (a) One-way nested
domains for simulations. Domain 1 (D01), Domain 2 (D02) and Domain 3 (D03) have grid
spacing of 27-km, 9-km and 4.5-km, respectively. (b) Delineated watersheds used by the
ptRIBS+VEGGIE model for D03. 173



7.1.2 Nested domains

In this study, we perform one-way nested simulations using the WRF model version 3.0

over the Southwestern United States and part of Mexico at a spatial resolutions of 27, 9

and 4.5 km respectively, as shown in Figure 7-2 (a). Several studies have documented the

role of soil moisture in promoting rainfall during the North American Monsoon (NAM) over

the Southwestern United States [Hong and Pan, 2000, Kurc and Small, 2007, Vivoni et al.,

2007, 2008]. On the two outer domains, D01 and D02, simulations are carried using the

Noah land surface scheme; while on the innermost D03 domain simulation are performed

using the ptRIBS+VEGGIE model as the land surface scheme. Thirty vertical levels in the

atmosphere are used. The initial and lateral boundary conditions are derived from the North

American Regional Reanalysis (NARR) dataset for the outermost domain [Mesinger et al.,

2006]. The other physics parameterization options used for the coupled model include: (i)

microphysics scheme by Lin et al. [1983], (ii) cumulus parameterization scheme by Kain and

Fritsch [1990], (iii) the Yonsei University Planetary Boundary Layer scheme [Hong and Pan,

1996], (iv) longwave radiation based on the Rapid Radiative Transfer Model scheme [Mlawer

et al., 1997] and (v) shortwave radiation based on the Goddard scheme [Chou and Suarez,

1994]. No convective parameterization scheme is used for the D03 domain.

One-way nested simulations on domains, D01 and D02, are carried out from 1 Jan,

2000 to 1 Jan, 2004 with the WRF model using the Noah land surface scheme. Year long

simulations on the innermost D03 domain are carried, separately for years 2001 and 2003,

using the WRF - ptRIBS+VEGGIE model. The reason for not performing a continuous

simulation spanning 2001 to 2003 on D03 is due to the computational demand the WRF

- ptRIBS+VEGGIE model. Separate simulation runs for two different years on the D03

allowed the simulations to be started simultaneously.The results presented in section 7.2 will

only focus on those obtained from the WRF - ptRIBS+VEGGIE model on D03.
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Table 7.2: Soil hydraulic and thermal properties: Saturated hydraulic conductivity in the
surface normal direction, Ksn[mm hr−1]; saturation moisture content, θs[mm3 mm−3]; resid-
ual moisture content, θr[mm3 mm−3]; pore size distribution, λo [dimensionless]; air entry
bubbling pressure, ψb[mm]; dry soil thermal conductivity, ks,dry[J m−1 K−1]; saturated soil
thermal conductivity, ks,sat[J m−1 K−1]; and soil heat capacity Cs,soi[J m−3 K−1] (Obtained
from Ivanov [2006]).

Parameter Ksn Θs Θr λ0 Ψb ks,dry ks,sat Cs
Sand 235.0 0.417 0.02 5.92 -73 0.214 2.789 1202632

7.1.3 Topography data

The input mesh, required by the ptRIBS+VEGGIE model for the D03, is generated from a 1-

km DEM using a watershed delineation package. The watershed delineation package consists

of several modules within the ESRI ArcGIS and is developed to delineate watersheds within

a rectangular domain. The delineation of watersheds and constructing TINs describing

topography and extracting channel network within the watersheds, is a tedious process and

ArcGIS modules automate this process fully. The D03 domain consists of 24 watersheds,

which have connectivity between nodes based on flow direction as shown in Figure 7-2 (b).

A channel network (shown in blue), based on a flow accumulation threshold, is also overlaid

on the figure and each watershed has an outlet where the channel network intersects the

boundary of the rectangular domain. Figure 7-2 (b) also shows watersheds with black

boundaries, where it is not possible to designate a single outlet with sufficient upstream

contributing area.

7.1.4 Soils and vegetation type

In order to keep the number of independent factors influencing the outcome of this study,

we assume homogeneous soil and vegetation type within the entire the D03 domain for

simulations with the WRF - ptRIBS+VEGGIE model. The soils are assumed to sandy soils,

whose hydraulic and thermodynamic properties are obtained from Ivanov [2006], and are

provided in Table 7.2. The vegetation is assumed to be a generic C4 grass and the various

vegetation parameters required by the model, are obtained from the validation exercise of
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Figure 7-3: Timeseries of various simulated quantities for 2001 by the WRF -
ptRISB+VEGGIE model. Panel (a) shows domain average simulated monthly precipita-
tion, along with the estimates obtained from the PERSIANN data over the same region.
Panel (b) shows simulated domain average latent and sensible heat fluxes, along with the
estimates from the NARR data.
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the ptRIBS+VEGGIE model over the WGEW (see Chapter 6). It is acknowledged here that

spatial heterogeneity in soil types and vegetation types does exist in nature, nonetheless the

goal of this study is investigate the influence of topography and vegetation dynamics on

regional scale atmospheric feedbacks, and as a first step such heterogeneities are ignored in

this study.

7.2 Results

As mentioned earlier, the simulations with the WRF - ptRIBS+VEGGIE model over D03

domain is carried out for two separate years, 2001 and 2003. Results from the two years are

similar. In the following sections, we present the results from 2001, while results for 2003

are given in the Appendix B.

7.2.1 Flat Earth with static vegetation experiment

To reiterate, only results from the WRF - ptRIBS+VEGGIE model on the D03 are pre-

sented, since the focus of this work is to investigate the impact of explicit accounting of

topography and vegetation dynamics on hydro-climatology. We begin this section with an

analysis of simulated monthly timeseries of precipitation and surface fluxes. The NAM occurs

from July through September and is responsible for bringing rain to the southwest United

States and northwest Mexico [Douglas et al., 1993]. Figure 7-3 shows the simulated domain

average monthly timeseries of precipitation; along with sensible and latent heat flux for the

year 2001. Along with the simulated rainfall timeseries, estimates from the Precipitation

Estimation from the Remotely Sensed Information Using Artificial Neural Networks (PER-

SIANN) system [Hsu et al., 1997, 1999] are presented in Figure 7-3(a). The PERSIANN

product estimates rainfall at 0.250× 0.250 using geosynchronous satellites longwave infrared

(GOES-IR) bands along with instantaneous rain-rate estimates from the Tropical Rainfall

Measurement Mission (TRMM) microwave images [Sorooshian et al., 2000]. The goal of this

work is not to more accurately reproduce the NAM system. Nevertheless, considering that
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homogeneous soil and vegetation type are assumed for the current simulation, the model is

able to reasonably reproduce the monthly precipitation behavior over the study domain for

2001.

Domain average simulated latent and sensible heat fluxes, along with the NARR model

outputs of the surface fluxes for 2001 are presented in Figure 7-3 (b). The NARR model uses

the NCEP Eta Model (32km/45 layer) together with the Regional Data Assimilation System

(RDAS), which assimilates precipitation along with other variables. The NARR outputs are

available 8 times daily data at 29 levels for most of the model variables. A complete list of

model output variables is available at http://www.emc.ncep.noaa.gov/mmb/rreanl/narr_

archive_contents.pdf. The simulated sensible heat flux is over predicted at the start of

simulation when compared to the NARR outputs. The peak latent heat flux in August, 2001

is under estimated by the WRF - ptRIBS+VEGGIE. Separate analysis of the MODIS LAI

data over the D03 domain for 2001 (not shown here) indicates that vegetation shows peak

values in August. The static vegetation within the FLAT-STAT simulation experiment is

thus expected to under-predict the latent heat flux. Once again, acknowledging that the

homogenous soil and vegetation, the domain average simulated surface fluxes are reasonable

when compared to the NARR outputs.

Spatial maps of monthly average precipitation, 10-cm soil moisture and downwelling sur-

face shortwave radiation for 2001 are presented in Figure 7-4, 7-5 and 7-6, respectively;

while the correlation coefficient (R2) of rainfall with 10-cm soil moisture and dowelling

surface shortwave radiation for each month of 2001 are shown in Figure 7-7. During the

monsoon months, higher rainfall occurs diagonally in the domain from south-east to north-

west. Downwelling surface shortwave radiation exhibits a strong negative correlation with

rainfall patterns and has a R2 value of less than −0.60 from April to October. Vegetation

needs sufficient amount of incoming solar radiation, along with available water, to grow.

In the third synthetic experiment, where vegetation is allowed to respond dynamically to

the climate forcings and surface conditions, the spatial pattern of downwelling shortwave

radiation plays a significant role.
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Figure 7-4: Spatial distribution of simulated monthly precipitation for 2001 by the WRF -
ptRISB+VEGGIE model for the FLAT-STAT case.
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Figure 7-5: Spatial distribution of simulated monthly volumetric root-zone soil moisture for
2001 by the WRF - ptRISB+VEGGIE model for the FLAT-STAT case.
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Figure 7-6: Spatial distribution of simulated monthly downwelling surface shortwave radia-
tion for 2001 by the WRF - ptRISB+VEGGIE model for the FLAT-STAT case.
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Figure 7-7: Correlation coefficient for various months in 2001 simulated by the WRF -
ptRISB+VEGGIE model for FLAT-STAT case among the following quantities: (i) rainfall
and downwelling surface shortwave radiation; and (ii) rainfall and soil moisture.
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7.2.2 TOPO-STAT: Observed topography with static vegetation ex-

periment

The second synthetic experiment attempts to elucidate the impact of explicitly represent-

ing topography on land-atmosphere interactions through lateral redistribution of moisture

(above- and below-ground) and local radiation budget (via slope and aspect of the terrain).

The domain average simulated quantities (for eg. rainfall, latent and sensible heat flux)

for the TOPO-STAT are similar to those obtain in the FLAT-STAT case; but their spatial

distribution are quite different in the two cases. It is expected that the influence of land

on atmospheric states through the local mechanism of convection would be strongest during

the monsoon, thus like many other previous studies [Eltahir, 1998, Koster et al., 2004b,

Jiang et al., 2009], we limit our analysis to months of June, July, and August (JJA) in this

section. Figure 7-8 shows the monthly percentage anomalies during JJA between the TOPO-

STAT and the FLAT-STAT case for rainfall, latent and sensible heat fluxes, respectively.

Percentage anomalies for all quantities are computed as the TOPO-STAT value minus the

FLAT-STAT value with respect to the FLAT-STAT value. A large portion of the domain

has rainfall anomalies with magnitude larger than 10% for JJA; while anomalies in latent

and sensible heat are generally less than 5% in the domain.

Eltahir [1998] proposed a theoretical framework of positive feedback mechanisms between

soil moisture conditions and subsequent rainfall, shown in Figure 7-9. Following the frame-

work of Eltahir [1998], we identified six variables of interest: rainfall, 10-cm soil moisture,

Bowen ratio (the ratio of sensible to latent heat flux), surface temperature, planetary bound-

ary layer height, and wet bulb depression (difference between dry bulb temperature and wet

bulb temperature). Higher rainfall lead to wetter soil conditions, which in turn influence

the energy partitioning at the surface by reducing the Bowen ratio [Molders and Ruhaak,

2007] and causing a decrease in surface temperature. Cooler surface temperature tends to

lower the planetary boundary layer height. Maxwell et al. [2007] demonstrated through a

simulation of a coupled groundwater and atmospheric model that boundary layer height was

lower in regions with shallower water table. Eltahir [1998] argued that wet bulb depression
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Figure 7-8: Monthly average anomalies between the TOPO-STAT and the FLAT-STAT case
during the months of June, July and August, 2001 for: (a) Rainfall; (b) Latent heat flux;
and (c) Sensible heat flux. (Percentage anomalies are computed as the TOPO-STAT value
minus the FLAT-STAT value with respect to the FLAT-STAT value).
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cal Research [Sellers et al., 1992]) and are presented here to
support the proposed hypothesis. Section 4 describes the rela-
tionship between soil moisture and boundary layer energy.
Section 5 covers the role of clouds in the surface radiation
processes. Section 6 includes a discussion and conclusions.

2. Theory
Here we propose a hypothesis that describes the role of soil

moisture in land-atmosphere interactions. In particular, we
suggest that wet soil moisture conditions enhance the following
related variables: net surface radiation, total heat flux from the
surface into the atmosphere, and moist static energy in the
atmospheric boundary layer. The latter can be quantified using
several variables including wet bulb potential temperature and
equivalent potential temperature. These two variables are im-
portant for the energetics and dynamics of local convective
storms [Williams and Renno, 1993; Eltahir and Pal, 1996;
Zawadzki and Ro, 1978; Zawadzki et al., 1981] as well as the
dynamics of large-scale atmospheric circulations in the tropics
[Emanuel et al., 1994; Eltahir, 1996; Eltahir and Gong, 1996].
The proposed pathways for relating soil moisture conditions
and subsequent rainfall are described in Figure 2. We hypoth-
esize that Figure 2 describes the dominant pathways for relat-

ing soil moisture and subsequent rainfall. However, this figure
is not designed to describe all possible interactions. The pro-
posed hypothesis is based on considerations of the following:
(1) the relationship between soil moisture conditions and two
basic properties of the land-surface, albedo and Bowen ratio;
(2) the surface radiation balance; (3) the energy balance at the
land-atmosphere boundary; (4) the energy balance of the at-
mospheric boundary layer; and (5) the thermodynamic and
dynamic processes that relate boundary layer conditions and
subsequent rainfall.

2.1. Basic Properties of the Land Surface: The
Relationship Between Soil Moisture Conditions, Surface
Albedo, and Bowen Ratio

The role of soil moisture conditions in regulating surface
albedo and Bowen ratio is the fundamental basis of the pro-
posed hypothesis. Basic radiation physics suggests that water
absorbs significantly more solar radiation than dry soil. As a
result, absorption of solar radiation increases with the relative
fraction of water in any mixture of soil and water. Several
observations confirm these theoretical arguments. Bowers and
Hanks [1965] and Bowker et al. [1985] studied the spectral
reflectance of soil surfaces and confirmed that at all wave
lengths of solar radiation, reflectance decreases with the level

Figure 2. The proposed hypothesis for relating soil moisture conditions and subsequent rainfall processes.

767ELTAHIR: SOIL MOISTURE–RAINFALL FEEDBACK, 1

Figure 7-9: Soil moisture-rainfall feedback hypothesis proposed by Eltahir [1998].
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Figure 7-10: Correlation coefficient in June, July and August, 2001, among anomalies be-
tween the TOPO-STAT and the FLAT-STAT case for various quantities: rainfall, 10-cm
soil moisture (SM), Bowen ratio (BR), surface temperature (Ts), planetary boundary layer
height (PBLH), and wet-bulb depression (WBD).
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Table 7.3: Average correlation during June, July and August, 2001, among the various
anomalies: rainfall, 10-cm soil moisture (SM), Bowen ratio (BR), surface temperature (Ts),
planetary boundary layer height (PBLH), and wet-bulb depression (WBD). The first and
second column corresponds to anomalies between the TOPO-STAT and the TOPO-DYN
cases with respect to the FLAT-STAT case. The third column corresponds to anomalies
in the TOPO-DYN with respect to the FLAT-STAT case, after neglecting the “radiation-
limited” points within the domain (see Section 7.2.3)

TOPO-STAT vs TOPO-DYN vs TOPO-DYN vs
FLAT-STAT FLAT-STAT FLAT-STAT*

∆Rain and ∆SM +0.88 +0.82 +0.84
∆SM and ∆BR -0.71 -0.43 -0.44
∆BR and ∆Ts +0.49 -0.01 +0.25

∆Ts and ∆PBLH +0.54 +0.37 +0.46
∆Ts and ∆WBD +0.71 +0.71 +0.71

∆PBLH and ∆WBD. +0.64 +0.51 +0.62

is more sensitive to soil moisture conditions as compared to either dry- or wet-bulb temper-

atures. In order to investigate the differences in the spatial pattern of simulated quantities

between the TOPO-STAT and the FLAT-STAT case, R2 is computed among the anomalies

of six variables of interest for all the points within the simulation domain for each month in

JJA. Figure 7-10 show the monthly variation of R2 for the six quantities during JJA, while

their average values for JJA are summarized in Table 7.3.

Rainfall anomalies are very strongly related to top layer (10-cm) soil moisture anomalies

with an average R2 of 0.88; while wetter soil conditions do tend to reduce the Bowen ratio.

The R2 between anomalies of Bowen ratio and surface soil temperature is the lowest (in

absolute value). Surface temperature anomalies are positively correlated to the depth of

planetary boundary layer (PBL) and wet-bulb depression. PBL height and wet-bulb depres-

sion anomalies also show a positive correlation. The direction of co-dependence (positive or

negative) among various anomalies agrees with the soil moisture-rainfall feedback mechanism

proposed by Eltahir [1998].
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7.2.3 Observed topography with dynamic vegetation experiment

In the third synthetic experiment, vegetation is allowed to respond to climatic and surface

conditions, while simultaneously accounting for the impacts of topography on soil moisture

and local radiation budget. Analogous to the previous case, the domain average values of the

simulated quantities for the TOPO-DYN case are similar to those obtain in the FLAT-STAT

case; but their spatial distribution are quite different in the two cases. We limit our analysis

similarly to JJA and anomalies of the six quantities identified in Section 7.2.2 are studied.

Figure 7-11 shows the spatial distribution of the monthly percentage anomalies between

the TOPO-DYN and the FLAT-STAT case JJA for rainfall, latent and sensible heat fluxes.

Similarly to the previous case, a large portion of the domain has rainfall anomalies with

magnitude larger than 10% for JJA. Unlike the anomalies of latent and sensible heat flux

obtained in the previous case, a greater portion of the domain exhibits anomalies larger than

2.5% (in absolute value). The latent heat anomalies are mostly negative in June because the

average vegetation cover for the TOPO-DYN case is less than the prescribed value for the

FLAT-STAT case. In August, the TOPO-DYN case has more vegetation cover as compared

to the FLAT-STAT case, thus the latent heat flux anomalies are positive, especially along

the river channel network. In June, the vegetation cover in the TOPO-DYN is closer to the

prescribed value for the FLAT-STAT case; and the anomalies in sensible and latent heat

are lower in absolute magnitude in comparison to June and August. Thus, in July, when

vegetation cover is similar in the two cases, accounting for processes controlled by topography

have large impact on spatial distribution of rainfall, but lower impact on latent and sensible

heat flux. This is consistent with the results obtained in the previous section 7.2.2, where

keeping vegetation static, inclusion of topography shows a lesser impact of spatial distribution

of heat fluxes as compared to rainfall.

Spatial distribution of simulated monthly average LAI by the WRF - ptRIBS+VEGGIE

model is shown in Figure 7-12. The ptRIBS+VEGGIE model only tracks live above-ground

biomass and does not account for standing dead biomass. Thus, at the beginning (January

to March) and end (November and December) of the simulation time-period, the model
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Figure 7-11: Monthly average anomalies between TOPO-DYN and FLAT-STAT case during
the months of June, July and August, 2001 for: (a) Rainfall; (b) Latent heat flux; and (c)
Sensible heat flux. (Percentage anomalies are computed as TOPO-DYN minus FLAT-STAT
with respect to FLAT-STAT).
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Figure 7-12: Spatial distribution of simulated monthly average leaf area index for 2001 by
the WRF - ptRISB+VEGGIE model for the TOPO-DYN case.
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Figure 7-13: Spatial distribution of simulated monthly average downwelling surface short-
wave radiation for 2001 by the WRF - ptRISB+VEGGIE model for the TOPO-DYN case.
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Figure 7-14: Spatial distribution of simulated monthly average rainfall for 2001 by the WRF
- ptRISB+VEGGIE model for the TOPO-DYN case.
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Figure 7-15: Simulated monthly average LAI for June, 2001, along with three sub-regions
within the domain.

predicts zero LAI values, which corresponds to an absence of live biomass. It is also evident

from Figure 7-12, that vegetation first emerges along the river channel network in April, and

stays for a longer duration within the river channel, untill the end of October. Additionally,

there are regions (shown in brown) within the simulation domain, where LAI values remain

lower as compared to the rest of the domain throughout the year. The regions of low LAI

values correspond to regions that receive lower downwelling surface shortwave radiation and

higher rainfall, as shown in Figure 7-13 and 7-14, respectively. Thus, the regions with lower

LAI values are “radiation-limited” as compared to other parts of the domain. This highlights

the co-dependenece of vegetation dynamics on water and radiation availability.
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Figure 7-16: Timeseries of simulated (a) LAI; (b) Cumulative rainfall; and (c) Monthly
average downwelling shortwave radiation for three sub-regions within the D03 domain.
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In order to further examine the “radiation-limited” regions, we focused our analysis on

sub-regions A, B and C within the D03 domain, as shown in Figure 7-15. A timeseries of

simulated LAI, cumulative rainfall and downwelling shortwave radiation for the three sub-

regions are shown in Figure 7-16. The ptRIBS+VEGGIE model accounts for downwelling

shortwave incident on a non-flat surface, through slope and aspect of the local terrain. The

values of downwelling shortwave radiation plotted in Figure 7-15 are before the local effects

of terrain are accounted for within the ptRIBS+VEGGIE model. Sub-regions B and C

receive similar downwelling shortwave radiation values; while B receives larger rainfall and

higher simulated LAI as compared to C. Thus, higher water availability, without a significant

decrease in downwelling shortwave radiation, leads to a positive feedback on vegetation

growth as suggested by Eltahir [1998].

Sub-region A receives highest rainfall and lowest downwelling shortwave radiation, due

to cloudiness, and results in lowest overall vegetation growth. An observational study

by Mendez-Barroso and Vivoni [2010] over northwest Mexico also support these results.

Mendez-Barroso and Vivoni [2010] used the eddy covariance data from the 2007 summer

season and created two composites on the basis of cloud conditions for the day following a

rainfall event or high soil moisture conditions. Mendez-Barroso and Vivoni [2010] found that

there exists a positive vegetation-rainfall feedback, as long as, clouds do not decrease the

net solar radiation. Cloudy conditions weakened the positive vegetation-rainfall feedback,

thus Mendez-Barroso and Vivoni [2010] suggested modification to the soil moisture-rainfall

hypothesis proposed by Eltahir [1998].

To further investigate how vegetation impacts the partitioning of energy flux at the land

surface, diurnal monthly average timeseries of net radiation, latent and sensible heat flux for

June, July and August, 2001 are shown in Figure 7-17. Sub-regions B and C having received

similar downwelling shortwave radiation, produce similar net radiation. Nonetheless, the

partition of net radiation for sub-regions B and C is different, with B producing more latent

heat flux as compared to C and vice-versa for sensible heat flux. The higher evapotran-

spiration over B can be explained with the higher vegetation cover and more rainfall when
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Figure 7-17: Average diurnal cycle for (a) Net radiation; (b) Latent heat flux; and (c)
Sensible heat flux for June, July and August, 2001.
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compared to C. It is also interesting to note that latent heat flux for A is higher as compared

to C, even though the vegetation biomass for C is higher than A. It is expected that bare

soil evaporation from A is able to compensate for lower transpiration values as compared to

C, given that A does receives much higher rainfall.

The correlation coefficients among the anomalies of the six index quantities during JJA

are summarized in the second column of Table 7.3, and are generally lower (in absolute

value) than those obtained in the TOPO-STAT case. Anomalies of Bowen ratio and surface

temperature shown no correlation at all. The soil moisture-rainfall feedback hypothesis

of Eltahir [1998] did not account for changes in vegetation cover. As mentioned earlier,

soil moisture conditions, along with downwelling solar radiation reaching the surface, exert

control on vegetation dynamics. Thus, the R2 for the six anomalies are recomputed by

neglecting the “radiation-limited” points within the domain (which constitute approximately

13% of all the points) and summarized in the last column of Table 7.3. R2 values are higher

(in absolute value) when “radiation-limited” points are neglected.

7.3 Discussion

This work demonstrates the role of explicitly accounting for topography and vegetation

dynamics in coupled land-atmosphere model. A series of three experiments are performed

for two separate years over the southwestern United States. Results show that monthly

domain average quantities (eg. rainfall, latent and sensible heat flux) do not show significant

change when topography and vegetation dynamics are accounted for within the coupled land-

atmosphere model, but their spatial distributions show differences. Accounting for processes

influenced by topography only (namely redistribution of soil moisture and changes in local

solar radiation budget) as demonstrated by the TOPO-STAT case, resulted in precipitation

anomalies of magnitude larger than 10% during JJA; while anomalies in latent and sensible

heat flux are generally less than 5%. The anomalies among six variables of interest: rainfall,

10-cm soil moisture, Bowen ratio, surface temperature, planetary boundary layer height, and

wet bulb depression, were explained within the framework of soil moisture-rainfall feedback
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hypothesis of Eltahir [1998].

Incorporation of dynamic vegetation along with topography within the coupled land-

surface model shows that the latent heat flux anomalies (with respect to static vegetation

and flat Earth case) for most of the domain are negative in June and positive in August.

The reason for the switch in sign of the latent heat flux anomalies is due to the fact that

vegetation cover in the dynamic vegetation case is less as compared to that prescribed in

the static vegetation case in June and vice-versa in August. Additional analysis of three

sub-regions within the D03 domain for the TOPO-DYN case illustrate the role of rainfall

and cloudiness on vegetation growth. Positive vegetation-rainfall feedback is observed as

suggested by Eltahir [1998] with an additional constraint that downwelling shortwave ra-

diation remains nearly unaffected by increased rainfall. Further increase in rainfall at the

expense of decreasing downwelling shortwave radiation leads to lower vegetation growth, as

suggested by Mendez-Barroso and Vivoni [2010]. Impact of vegetation on the partitioning

of net radiation at the land surface is also demonstrated.

The results presented in this work demonstrate the need to explicitly account for to-

pography and vegetation dynamics within the coupled land-atmosphere models. Given the

assumption of homogeneous soil and vegetation types made, additional experiments need to

be performed using the observed vegetation and soil types. Several studies have recently

demonstrated the impact of accounting for groundwater on surface fluxes and soil moisture

within the regional climate models (RCMs) [Gutowski et al., 2002, Liang et al., 2003, Yeh

and Eltahir, 2005, Maxwell et al., 2007, Niu et al., 2007, Gan et al., 2007, Maxwell et al.,

2007, Kollet and Maxwell, 2008, Anyah et al., 2008, Jiang et al., 2009]. An earlier version of

the tRIBS model included a quasi three-dimensional cascade groundwater module [Ivanov

et al., 2004], though the current version of the ptRIBS+VEGGIE model does not include

it. Incorporation of the groundwater module within the ptRIBS+VEGGIE model would not

only extend the eco-hydrology model’s applicability in an offline mode, but would also allow

the WRF - ptRIBS+VEGGIE model to study the influence of groundwater dynamics on the

regional climate.
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It should be acknowledged here that vegetation requires nutrients, along with water and

radiation, for growth, as demonstrated by several studies [Vitousek and Howarth, 1991,

Elser et al., 2007, LeBauer and Treseder, 2008]. Accounting for the nitrogen cycle within

the global climate models has recently been shown as a crucial factor in simulating the

response terrestrial ecosystem to increasing atmospheric CO2 concentration by Thornton

et al. [2009]. At the present, the ptRIBS+VEGGIE model does not account for nutrients,

and the vegetation growth is controlled by water and radiation availability only. Thus,

accounting for nutrients while modeling could lead to more non-linear interactions within

the soil moisture - vegetation hypothesis proposed by Eltahir [1998].
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CHAPTER 8

CONCLUSIONS

In order to improve our understanding of the Earth system, advancement in both, obser-

vations and modeling, are necessary. The first part of this work focused on estimating the

surface radiation budget from existing satellite data under all-sky conditions, while not rely-

ing on study-site specific ancillary ground data. In the second part of this work, the impact of

explicitly accounting for topography and vegetation dynamics on hydro-climatology using a

coupled ecohydrology and atmospheric model was examined. This final chapter summarizes

the original contribution of this work, along with some potential future research directions.

8.1 Contribution

8.1.1 Satellite-based estimates of surface radiation budget

Retrieval algorithms to estimate net radiation and its components from the MODIS data

have recently been developed by numerous investigators [Bisht et al., 2005, Wang et al., 2005,

Tang et al., 2006, Zhou et al., 2007, Tang and Li, 2008, Kim and Hogue, 2008, Wang and

Liang, 2009, Wang et al., 2009, Formann and Margulis, 2009]. Most retrieval algorithms to

estimate the surface radiation budget (SRB) generally suffer from two major shortcomings:

difficultly in dealing with cloudy-sky conditions and reliance on study-site specific ancillary

ground data. In this work, a retrieval algorithm to estimate various components of SRB
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under all sky conditions was presented. Comparisons of estimated SRB components were

performend against ground measurements within the Southern Great Plains and seven ad-

ditional stations within United States for the entire 2006. The remotely sensed data from

the MODIS sensor from both Aqua and Terra satellites is used. The results indicate that

the proposed methodology was successful in retrieving various components of the SRB under

all-sky conditions while not relying on any ancillary ground data. In order to estimate net

radiation over the Continental United States (CONUS) using the proposed algorithm, two

adaptations were incorporated. The first was related to the computation of temperature

offsets necessary for estimating near-surface air and dew temperatures from the 5-km LST

values given by the cloud product; while the second addressed the issue of missing surface

albedo values in the MOD43B2 product. Finally, monthly radiation maps for the Continental

United States were presented.

8.1.2 Coupled WRF - ptRIBS+VEGGIE modeling framework

The second part of this work required coupling of a physically-based, distributed ecohydrol-

ogy model with a numerical atmospheric model. One of the biggest hurdles that was evident

from the beginning of this work was the additional computational cost associated in using a

sophisticated ecohydrology model within the WRF model. Recent advances in high perfor-

mance computing and its adaptation within the earlier version of the tRIBS model [Vivoni

et al., 2005] served as a blueprint for developing the parallel version of the tRIBS+VEGGIE

model. Additionally, a restart capability was added in the ptRIBS+VEGGIE model to

ensure that if any simulation was terminated unexpectedly, it can be restarted from the

time-step prior to termination. The restart capability within the ptRIBS+VEGGIE also

complements the WRF restart capability and allows year-long simulations to be split as

several shorter monthly runs.

The present work also enabled the ptRIBS+VEGGIE model to now serve as a new LSM

option with the WRF model. The two models are written in different programming lan-

guages, C++ (ptRISB+VEGGIE model) and FORTRAN (WRF model); and they were
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coupled via a “buffer” that communicates instantaneous values of atmospheric forcing and

land surface states between the two models. Furthermore, the tRIBS+VEGGIE model was

initially developed to represent a single watershed and simulate hydrological processes occur-

ring within the watershed boundary; while the WRF model works on a rectangular horizontal

grid. In order to obtain ptRIBS+VEGGIE estimates of land surface states and surface fluxes

over the rectangular WRF domain, it was necessary to enable the ptRIBS+VEGGE model

to operate on multiple watersheds simultaneously, which covered the entire WRF domain.

The ability of the ptRIBS+VEGGIE model to handle multiple watersheds was implemented

in a fashion that allowed watersheds to be distributed on to different computational nodes

when using a parallel computing framework.

The capability of the ecohydrology model (in an offline mode) to accurately resolve

hydro-climatic signatures and vegetation dynamics within a semiarid region was examined.

The ecohydrology model was applied in a highly instrumented semiarid catchment, Walnut

Gulch Experimental Watershed in Arizona for a period of 11 years (1997-2007). The model

performance is examined with respect to several key hydrologic variables: energy fluxes,

distributed soil moisture within the watershed at three depths and land surface temperature.

Additionally, the model’s capability to capture vegetation dynamics for two generic plant

functional types, C4 grass and C3 shrubs, was also evaluated against the MODIS leaf area

index product.

A series of three experiments were performed for two separate years over the southwestern

United States with the WRF - ptRIBS+VEGGIE model. The work demonstrated the role

of explicitly accounting for topography and vegetation dynamics in coupled land-atmosphere

model. Results show that monthly domain average quantities (eg. rainfall, latent and sensible

heat flux) do not show significant change when topography and vegetation dynamics are

accounted for within the coupled land-atmosphere model, but their spatial distributions show

differences. Accounting for processes influenced by topography (namely redistribution of soil

moisture and changes in local solar radiation budget) resulted in precipitation anomalies of

magnitude larger than 10% during JJA; while anomalies in latent and sensible heat flux are
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generally less than 5%. The anomalies among six variables of interest: rainfall, 10-cm soil

moisture, bowen ratio, surface temperature, planetary boundary layer height, and wet bulb

depression, were explained within the framework of soil moisture-rainfall feedback hypothesis

of Eltahir [1998].

Incorporation of dynamic vegetation along with topography within the coupled land-

surface model shows that the latent heat flux anomalies (with respect to static vegetation

and flat Earth case) for most of the domain are negative in June and positive in August.

The reason for the switch in sign of the latent heat flux anomalies is due to the fact that

vegetation cover in the dynamic vegetation case is less as compared to that prescribed in

the static vegetation case in June and vice-versa in August. Additionally, the control of

solar radiation and rainfall in vegetation growth is demonstrated. Regions with increases in

rainfall without significant decreases in downwelling shortwave radiation have higher vege-

tation growth. Although, an increase in rainfall with a decrease is downwelling shortwave

radiation, leads to lower vegetation.

8.2 Future research

8.2.1 Satellite-based estimates of surface radiation budget

In order to achieve better accuracy and broaden the scope of application of satellite-based

estimation of the SRB, several potential future improvements have been enumerated.

1. Estimation of downwelling shortwave radiation had the largest error among all the

components of surface radiation budget, thus future efforts should focus on reducing

that error. A statistical regression approach between the MODIS Top Of the Atmo-

sphere (TOA) reflectance to estimate net surface shortwave radiation by Tang et al.

[2006] for clear and cloudy days has shown to have a lower RMSE than the proposed

methodology in this work. Use of TOA data for shortwave radiation; while employing

near-surface data products for longwave component of the SRB, is one of the avenues

to be pursued.
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2. Distributed hydrologic models [Ivanov et al., 2004], that could potential benefit from

the current approach, require separate estimation of diffuse and direct components of

shortwave radiation. Currently, the use of Zillman’s [1972] parameterization to esti-

mate downwelling shortwave radiation, lumps diffuse and direct components together.

Kim and Hogue [2008] computed direct and diffuse shortwave radiation separately us-

ing the MODIS data regarding total ozone amount (MOD07 L2), angstrom turbidity

factor (MOD04 L2) and precipitable water (MOD05 L2); and their approach could

serve as a guidance for future improvements.

3. Retrieval of the diurnal cycle of the SRB and its components can also be used by

distributed hydrologic models. The diurnal cycle of downwelling components of the

SRB could be used to force the hydrologic models; while upwelling components of

the radiation could be used to evaluate or improve (via data-assimilation approaches)

model forecasts. Data from polar-orbiting satellites only is unable to capture the

diurnal cycle of radiation as shown in Figure 3-22 and incorporation of additional

remote sensing data from geostationary satellites should be pursued.

4. Estimation of SRB over the CONUS was made feasible by computing temperature

offsets over 50 × 50 sub-domains. An alternate approach could involve computation of

temperature offsets for the different vegetation types present within the sub-domains

by using the MODIS Land Cover Yearly Level 3 data product (MCD12Q1).

5. The current spatio-temporal technique of filling the missing surface albedo from the

MCD43B3 product is a simplistic one. Integration of a 1-km continuous surface albedo

product, being developed by the MODIS land surface team, will be straight forward.

6. Finally, MODIS data from the Terra satellite are available from March, 2000 onwards;

while data from the Aqua satellite are available from July, 2002 onwards. Furthermore,

there exists a global network of ground stations, Baseline Surface Radiation Network

(BSRN), shown in Figure 8-1, which record various components of the radiation budget

at the surface. This presents an excellent opportunity to extend the temporal and
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Figure 8-1: Global locations of Baseline Surface Radiation Network. (Obtained from
http://www.gewex.org/bsrn.html)

spatial application of the current SRB retrieval methodology using the MODIS data.

8.2.2 Coupled WRF - ptRIBS+VEGGIE modeling framework

Ensemble runs

In order to further bolster the results from this study, ensemble runs with the WRF -

ptRIBS+VEGGIE model need to be performed. The southwest of the United States was

under a drought from 2001-2004 [Webb et al., 2005], thus to see how results of this study

change under wet conditions, additional simulation runs must be performed. Hourly model

diagnostics pertaining to various components of the water and energy budget (such as bare

soil evaporation, under-canopy soil evaporation, transpiration and shortwave radiation within

the PAR) should be outputted so as to gain a better understanding of the system when

topographic related processes and vegetation dynamics is accounted for within the coupled

model.
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Figure 8-2: Spatial distribution of soil and vegetation types within the D03 domain, as
obtained from the NARR data.

Incorporation of heterogenous soil and vegetation types

In the present work, the assumption of homogeneous soil and vegetation types was made

in order to keep the number of independent factors influencing the outcome of this study.

Figure 8-2 shows the distribution of soils and vegetation types within the D03 domain, as

obtained from the NARR data. The impact of explicitly accounting for topography and

vegetation dynamics in the coupled land-atmosphere model has been demonstrated, and

additional experiments need to be performed using the observed vegetation and soil types.

Offline runs of the ptRIBS+VEGGIE model also need to be undertaken to obtain relevant

vegetation parameters required by the VEGGIE module for the different vegetation types

present within the domain.

Dynamical downscaling of regional climate change prediction

IPCC AR4 acknowledged that due to the complexity of AOGCMs and computational con-

straints, the horizontal resolution of such AOGCMs generally range from 400-km to 125-km.

Even though AOGCM projections provide plausible future global climate scenarios, methods

to establish reliable estimates of regional scale climate change are still not mature [Chris-
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tensen et al., 2007]. Regional climate models (RCMs), which have been traditionally used

for numerical weather prediction, are now serving as useful tools in dynamically downscaling

information from AOGCMs [Leung et al., 2003, Wood et al., 2004, Castro et al., 2005, Lo

et al., 2008]. A recent report summarizing the impacts of climate change on the United States

has recognized that the southwest United States has seen some of the longest documented

megadroughts on the Earth [Karl et al., 2009]. Ecosystems throughout the southwestern

United States have been significantly altered by the encroachment of shrubs into grasslands

[Buffington and Herbel, 1965, Grover and Musick, 1990, Bahre and Shelton, 1993]; which not

only out-competes the native species, but provides additional fuel for forest fires [Weiss and

Overpeck, 2005]. Physically-based hydrologic models are playing an increasingly important

role in understanding and predicting the impacts of climate change on hydrological processes

and water resources [VanRheenen et al., 2004, Kollet and Maxwell, 2008, Liuzzo et al., 2010].

The WRF - ptRIBS+VEGGIE model, a combination of RCM with a physically-based eco-

hydrology model, thus presents an excellent opportunity to study regional impact of climate

change with emphasis on water resources and vegetation distribution.

Incorporation of groundwater dynamics

Groundwater is estimated to be approximately 50% of potable water [Foster and Chilton,

2003] and is replenished by precipitation that escapes evaporation, transpiration, and sur-

face runoff. The land surface schemes within the RCMs have commonly ignored groundwater

dynamics. Recently several studies have demonstrated the impact of accounting for ground-

water on surface fluxes and soil moisture within RCMs [Gutowski et al., 2002, Liang et al.,

2003, Yeh and Eltahir, 2005, Maxwell et al., 2007, Niu et al., 2007, Gan et al., 2007, Maxwell

et al., 2007, Kollet and Maxwell, 2008, Anyah et al., 2008, Jiang et al., 2009]. The com-

plexity of groundwater model coupled with RCMs shows quite a range of variation: use

of water table as a lower boundary condition [Yeh and Eltahir, 2005, Niu et al., 2007]; a

TOPMODEL [Beven and Kirkby, 1979] based lateral redistribution [Famiglietti and Wood,

1994]; a full integration of variably-saturated groundwater flow modeling [Maxwell et al.,
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2007, Maxwell and Kollet, 2008]. RCMs coupled with groundwater models have been ap-

plied at spatial scale ranging from catchment [Maxwell et al., 2007] to continental [Anyah

et al., 2008, Yuan et al., 2008]. An earlier version of the tRIBS model included a quasi three-

dimensional cascade groundwater module [Ivanov et al., 2004], though the current version

of the ptRIBS+VEGGIE model does not include it. Incorporation of the groundwater mod-

ule within the ptRIBS+VEGGIE model would not only extend the eco-hydrology model’s

applicability, but would also allow the WRF - ptRIBS+VEGGIE model to study the in-

fluence of groundwater dynamics on regional climate. Climate change is expected to alter

precipitation patterns (amount and timing of rainfall), thus affecting the moisture supply

for recharge. Increased temperatures could lead to higher evaporative demands, thereby

lowering the amount of recharge. A number of studies have started to look at the impacts of

climate change on recharge in various watersheds [Krishnen, 2002, II and Luukkonen, 2003,

Scibek and Allen, 2006, Green et al., 2007, Herrera-Pantoja and Hiscock, 2008, Ng, 2009].

Thus, incorporating the groundwater modeling capability within ptRIBS+VEGGIE could

further enable the use the WRF - ptRIBS+VEGGIE model to study regional impacts of

climate change on groundwater recharge.
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APPENDIX A

1-D HEAT

DIFFUSION MODEL

The implementation of 1-D heat diffusion model in this study closely follows the approach

of Bonan [1996]. The heat flux, F [W m−2], at depth z[m] with soil temperature, T [K], is

given as

F = −κ(θ)
∂T

∂z
(A.1)

and 1-D heat diffusion model for is

C(θ)
∂T

∂t
= −∂F

∂z
(A.2)

=
∂

∂z

(
κ(θ)

∂T

∂z

)
(A.3)

where C(θ) [J m−3 K−1] and κ(θ) [J m−3 s−1 K−1] are volumetric soil heat capacity

and volumetric soil heat conductivity respectively. The details about the parameterization

scheme used for C(θ) and κ(θ) are given in Section 5.4.
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A.1 Spatial discretization

For the finite-volume formulation of 1-D heat diffusion equation, the mesh used is shown

in Figure A-1. The spatial domain is discretized into grid cells, where i-th grid cell (Ci) is

denoted by [zi−1/2, zi+1/2].

zi-3/2

Tn
i-1

Tn
i

Tn
i+1

zi-1/2

zi+1/2

zi+3/2

Δzi-1

Δzi

Δzi+1

Fn
i-1/2

Fn
i+1/2

+ve z

Figure A-1: Vertical mesh used of soil profile used in solving 1-D heat diffusion model

The value of average soil temperature (Ti) will be approximated over the i-th interval at

n-th time interval as

T ni ≈
1

∆zi

∫ zi+1/2

zi−1/2

T (z, tn)dz ≡ 1

∆zi

∫
Ci
T (z, tn)dz

where ∆zi = zi+1/2 − zi−1/2 is the length of the grid cell.

Integrating Eq A.2 over the control volume Ci gives

∫
Ci
C(θ)

∂T

∂t
dz =

∫
Ci
−∂F
∂z

dz

∆ziC(θi)
∂T

∂t
= −Fi+1/2 + Fi−1/2 (A.4)
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Assuming the heat flux from depth zi to interface zi+1/2 is equal to heat flux from the

interface zi+1/2 to depth zi+1 i.e.

Fi+1/2 = −κi
(
Ti+1/2 − Ti

∆zi/2

)
(A.5a)

= −κi+1

(
Ti+1 − Ti+1/2

∆zi+1/2

)
(A.5b)

= −κi+1/2

(
Ti+1 − Ti

∆zi/2 + ∆zi+1/2

)
(A.5c)

Using algebraic manipulation, the interface soil temperature and interface soil thermal

conductivity are

Ti+1/2 =
1

2κi
∆zi

+ 2κi+1

∆zi+1

[
Ti
∆zi
2κi

+
Ti+1

∆zi+1

2κi+1

]
(A.6)

(∆zi + ∆zi+1)/2

κi+1/2

=
(∆zi)/2

κi
+

(∆zi+1)/2

κi+1

(A.7)

Combining A.5c and A.7, the interface heat flux is given as

Fi+1/2 = −

(
Ti+1 − Ti

∆zi
2κi

+ ∆zi+1

2κi+1

)
(A.8)

A.2 Temporal discretization

Crank-Nicolson method, second-order accurate method in time, is used for time discretiza-

tion. The method combines the explicit method fluxes evaluated at n-th time level and the

implicit method fluxes evaluated at n+1-th time level as

∆ziC(θi)

(
T n+1
i − T ni

∆t

)
=

1

2

(
−F n

i+1/2 + F n
i−1/2

)
+

1

2

(
−F n+1

i+1/2 + F n+1
i−1/2

)
(A.9)
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The above results in a tri-diagonal system of equations that can be given in the form of

aiT
n+1
i−1 + biT

n+1
i + ciT

n+1
i+1 = ri (A.10)

where ai, bi, ci and ri are described in the following section.

A.3 Derivation for the system of equations

Let us define three following variables

m1 =
∆zi−1

κi−1

+
∆zi
κi

(A.11)

m2 =
∆zi
κi

+
∆zi+1

κi+1

(A.12)

m3 =
∆t

∆zCi
(A.13)

For first layer, i = 1, F−1/2 = G, where G is the ground heat flux into the soil (positive

into the soil).

∆z1C1

(
T n+1

1 − T n1
∆t

)
= G− 1

2

(
F n

1+1/2 + F n+1
1+1/2

)
= G+

1

2

(
T n2 − T n1 + T n+1

2 − T n+1
1

∆z1
2κ1

+ ∆z2
2κ2

)

Rearranging the above equation and multiplying both sides by m3, one obtains the fol-

lowing equation

(
1 +

m3

m2

)
T n+1

1 − m3

m2

T n+1
2 = T n1 +Gm3 +

m3

m2

(T n2 − T n1 ) (A.14)

Comparing A.14 with A.10, the coefficients of the tri-diagonal system are given as
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a1 = 0 (A.15a)

b1 = 1 +
m3

m2

(A.15b)

c1 = −m3

m2

(A.15c)

r1 = T n1 +Gm3 +
m3

m2

(T n2 − T n1 ) (A.15d)

For the last soil layer, i = N, zero flux boundary condition is implemented i.e. FN+1/2 = 0

∆zNCN

(
T n+1
N − T nN

∆t

)
=

1

2

(
F n
N−1/2 + F n+1

N−1/2

)
=

1

2

(
−T nN + T nN−1 − T n+1

N + T n+1
N−1

∆zN−1

2κN−1
+ ∆zN

2κN

)

Rearranging the above equation and multiplying both side by m3, one obtains the fol-

lowing equation

−m3

m1

T n+1
N−1 +

(
1 +

m3

m1

)
T n+1
N Ψ = T nN +

m3

m1

(T nN−1 − T nN) (A.16)

Comparing A.16 with A.10, the coefficients of the tri-diagonal system are given as

aN = −m3

m1

(A.17a)

bN = 1 +
m3

m1

(A.17b)

cN = 0 (A.17c)

rN = T nN +
m3

m1

(T nN−1 − T nN) (A.17d)

For the all other layers, 1< i < N,
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∆ziCi

(
T n+1
i − T ni

∆t

)
=
−1

2

(
F n
i+1/2 + F n+1

i+1/2

)
+

1

2

(
F n
i−1/2 + F n+1

i−1/2

)
=

1

2

(
T ni+1 − T ni + T n+1

i+1 − T n+1
i

∆zi
2κi

+ ∆zi+1

2κi+1

)

+
1

2

(
−T ni + T ni−1 − T n+1

i + T n+1
i−1

∆zi−1

2κi−1
+ ∆zi

2κi

)

Rearranging the above equation and multiplying by m3 on both sides, one obtains

−m3

m1

T n+1
i−1 +

(
1 +

m3

m1

+
m3

m2

)
T n+1
i − m3

m2

T n+1
i+1 =

T ni +
m3

m1

(T ni−1 − T ni )− m3

m2

(T ni − T ni+1) (A.18)

Comparing A.18 with A.10, the coefficients of the tri-diagonal system are given as

ai = −m3

m1

(A.19a)

bi = 1 +
m3

m1

+
m3

m2

(A.19b)

ci = −m3

m2

(A.19c)

ri = T ni +
m3

m1

(T ni−1 − T ni )− m3

m2

(T ni − T ni+1) (A.19d)
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APPENDIX B

RESULTS FROM

THE WRF -

ptRIBS+VEGGIE

SIMULATION IN

2003

This appendix provides results with the WRF - ptRIBS+VEGGIE model over the D03

domain for 2003. The sequence of results presented here, follow closely those presented in

Section 7.2.
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Figure B-1: Timeseries of various simulated quantities for 2003 by the WRF -
ptRISB+VEGGIE model. Panel (a) shows domain average simulated monthly precipita-
tion, along with the estimates obtained from the PERSIANN data over the same region.
Panel (b) shows simulated domain average latent and sensible heat fluxes, along with the
estimates from the NARR data.
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Figure B-2: Spatial distribution of simulated monthly precipitation for 2003 by the WRF -
ptRISB+VEGGIE model for the FLAT-STAT case.
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Figure B-3: Spatial distribution of simulated monthly volumetric root-zone soil moisture for
2003 by the WRF - ptRISB+VEGGIE model for the FLAT-STAT case.
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Figure B-4: Spatial distribution of simulated monthly downwelling surface shortwave radia-
tion for 2003 by the WRF - ptRISB+VEGGIE model for the FLAT-STAT case.
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Figure B-5: Monthly average anomalies between the TOPO-STAT and the FLAT-STAT case
during the months of June, July and August, 2003 for: (a) Rainfall; (b) Latent heat flux;
and (c) Sensible heat flux. (Percentage anomalies are computed as the TOPO-STAT value
minus the FLAT-STAT value with respect to the FLAT-STAT value).
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Figure B-6: Monthly average anomalies between the TOPO-DYN and the FLAT-STAT case
during the months of June, July and August, 2003 for: (a) Rainfall; (b) Latent heat flux;
and (c) Sensible heat flux. (Percentage anomalies are computed as the TOPO-DYN value
minus the FLAT-STAT value with respect to the FLAT-STAT value).
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Figure B-7: Spatial distribution of simulated monthly average leaf area index for 2003 by
the WRF - ptRISB+VEGGIE model for the TOPO-DYN case.
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Figure B-8: Spatial distribution of simulated monthly average downwelling surface shortwave
radiation for 2003 by the WRF - ptRISB+VEGGIE model for the TOPO-DYN case.
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Figure B-9: Spatial distribution of simulated monthly average rainfall for 2003 by the WRF
- ptRISB+VEGGIE model for the TOPO-DYN case.
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Table B.1: Average correlation during June, July and August, 2003, among the various
anomalies: rainfall, 10-cm soil moisture (SM), bowen ratio (BR), surface temperature (Ts),
planetary boundary layer height (PBLH), and wet-bulb depression (WBD). The first and
second column corresponds to anomalies between the TOPO-STAT and the TOPO-DYN
cases with respect to the FLAT-STAT case. The third column corresponds to anomalies
in the TOPO-DYN with respect to the FLAT-STAT case, after neglecting the “radiation-
limited” points within the domain (see Section 7.2.3)

TOPO-STAT vs TOPO-DYN vs TOPO-DYN vs
FLAT-STAT FLAT-STAT FLAT-STAT*

∆Rain and ∆SM +0.88 +0.87 +0.88
∆SM and ∆BR -0.69 -0.36 -0.47
∆BR and ∆Ts +0.53 -0.06 +0.17

∆Ts and ∆PBLH +0.54 +0.40 +0.46
∆Ts and ∆WBD +0.74 +0.74 +0.74

PBLH and ∆WBD. +0.63 +0.54 +0.60
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