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Abstract

Post-translational modications (PTMs) regulate cellular signaling networks by mod-

ifying activity, localization, turnover and other characteristics of proteins in the cell.

For example, signaling in receptor tyrosine kinase (RTK) networks, such as those

downstream of epidermal growth factor receptor (EGFR) and insulin receptor, is

initiated by binding of cytokines or growth factors, and is generally propagated by

phosphorylation of signaling molecules. The rate of discovery of PTM sites is increas-

ing rapidly and is signicantly outpacing our biological understanding of the function

and regulation of those modications. The ten-fold increase in known phosphorylation

sites over a five year time span can primarily be attributed to mass spectrometry

(MS) measurement methods, which are capable of identifying and monitoring hun-

dreds to thousands of phosphorylation sites across multiple biological samples. There

is significant interest in the field in understanding these modifications, due to their

important role in basic physiology as well as their implication in disease. In this thesis,
we develop algorithms and tools to aid in analysis and organization of these immense

datasets, which fundamentally seek to generate novel insights and testable hypotheses

regarding the function and regulation of phosphorylation in RTK networks. We have

developed a web-accessible analysis and repository resource for high-throughput quan-

titative measurements of post-translational modifications, called PTMScout. Addi-

tionally, we have developed a semi-automatic, high-throughput screen for unsuper-

vised learning parameters based on their relative ability to partition datasets into

functionally related and biologically meaningful clusters. We developed methods for

comparing the variability and robustness of these clustering solutions and discovered

that phosphopeptide co-clustering robustness can recapitulate known protein inter-

action networks, and extend them. Both of these tools take advantage of a new linear

motif discovery algorithm, which we additionally used to find a putative regulatory

sequence downstream of the highly tumorigenic EGFRvIII mutation that indicates

casein kinase II (CK2) activity may be increased in glioblastoma.
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Chapter 1

Introduction

1.1 A role for post-translational modification in

the cell

Cellular organisms encode their genetic information in the form of four nucleic acids.

During transcription, this information is transcribed into another set of four nucleic

acids. During translation this information is then translated into yet another set

of chemical information: amino acids. Proteins, the fundamental functional unit of

the cell, are composed of these twenty amino acids. It turns out that these twenty

amino acids represent only a small fraction of the possible chemical entities that

can compose a protein, since the cell has one more mechanism of control available,

post-translational modification. Post-translational modifications (PTM) all entail the

covalent transfer of a biochemical entity to a particular amino acid residue within the

target protein following, or in tandem with, translation. These biochemical entities

can range from small molecules, such as a phosphate group, to large protein segments,

such as ubiquitin. The effect of this covalent modification on protein function is as

diverse as the range of possible modifications. Table 1.1 demonstrates a sampling of

the various types of post-translational modifications, the residues they modify, and

examples of their resulting cellular effects. In March of 2010, Uniprot, a repository

for protein information, contained controlled vocabularies for 405 post-translational



modifications representing roughly 200 different types of functional groups.

Table 1.1: Examples of post-translational modifications. Post-translational modifica-

tions capitalize on a variety of different functional groups, yielding a diverse repertoire

of molecular functional control.

PTM Functional Group Protein Example Effects
Side
Chain

Phosphorylation phosphate Y,S,T,H enzymatic activity
protein-protein interactions

Acetylation acetyl group N- histone code
terminal,
K

binding

Palmitoylation fatty acid C membrane association
protein-protein interactions

Glycosylation saccharides N, S, T, protein folding
OH-K

Ubiquitination ubiquitin (8.5kDa protein) K protein stability
degradation

SUMOylation SUMO (12kDa protein) K binding
nuclear import

The covalent modification of a protein requires the assistance of an enzyme and

in some cases, such as ubiquitination, the assistance of multiple enzymes [61]. In

the case of reversible modifications, complementary enzymatic processes exist for the

removal of the modification. The use of post-translational modification allows the

cell to quickly alter the function and regulation of proteins within the cell. This is a

marked difference between transcriptional control circuitry, which can require thirty

minutes to several hours to effect change and post-translational control, which can

take only seconds. This use of cellular control is not only fast, but can also be tightly

regulated.

Phosphorylation, a post-translational modification that involves the transfer of

a phosphate group from a donor ATP molecule, is highly utilized in the cell. It

has been thought that at least 30% of human proteins undergo phosphorylation [16].

Although there are several residues capable of phosphate addition, the majority of

stable eukaryotic phosphorylations exist on serine, threonine and tyrosine amino acid



side chains. Protein kinases and phosphatases are the enzymes responsible for phos-

phorylation and de-phosphorylation, respectively, of target proteins. Kinases are one

of the largest family of proteins in the human proteome consisting of 518 catalogued

members, which constitutes roughly 1.7% of all human genes [64]. Identification of

phosphatases reveals a smaller family of proteins, however the number of tyrosine

phosphatases roughly matches the number of tyrosine kinases in the human pro-

teome [3]. Both protein tyrosine kinases and phosphatases have been implicated in a

variety of diseases [52,73,113]

A primary function of phosphorylation is the alteration of a protein's enzymatic

activity. For example, phosphorylation within the activation loop segment of a ki-

nase catalytic domain increases its enzymatic activity through conformational alter-

ations [75]. In addition to altering enzymatic activities, another primary role of phos-

phorylation is to induce protein-protein interactions and protein localization changes.

Several phosphopeptide binding domains exist which recognize phosphorylated forms

of an amino acid sequence [128] such as Src homology region 2 (SH2) domains, phos-

photyrosine binding domains (PTB), 14-3-3 domains, and WW domains. Given the

specific nature of phosphopeptide domain recognition, a protein containing such a

domain and a protein containing a cognate phosphorylation sequence can be made

to interact in a temporal- or condition-specific manner. These protein-protein in-

teractions can lead directly to controlled localization of proteins. For example, the

phosphorylation of a transcription factor, STAT, induces dimerization, the product

of which can then be imported into the nucleus [18].

The linear amino acid sequence directly surrounding the site of phosphorylation

plays an important role in the recognition of the sequence by kinases and binding

domains. Kinase-target specificity is a combination of additional factors, including

the proximity of the kinase and target as a result of adaptor or scaffolding proteins

[11]. Information regarding phosphatases has, and remains, limited in scope. In

the past, it has been assumed regulation of receptor tyrosine kinase (RTK) networks

is primarily controlled by regulation of kinases and that phosphatase activity and

quantity is uniform in time. However, phosphatase mutations have been implicated



in cancer [73, 113] indicating an important role for the regulation of phosphatases

in cellular signaling networks as well. It is now thought that the balance of both

positive and negative regulators control duration and amplitude of RTK stimulated

responses. It is believed that protein tyrosine phosphatases, like protein tyrosine

kinases, recognize their targets in part by the specific linear sequence surrounding a

phosphorylated residue [117].

De niovo prediction of the function and regulation of phosphorylation modifications

is a difficult problem given the complicated functional role of phosphorylation and

its control by two separate enzymatic processes. A study by Kumar et. al. [55]

showed that even "canonical" phosphorylation functions are situation dependent.

There is no blanket statement regarding the general activity increase or decrease

in signaling networks due to phosphorylation. For example, phosphorylation of Src

family kinase domains on the activation loop (Y415) increases enzymatic activity.

However, phosphorylation of its cytoplasmic tail (Y527) by the kinase Csk produces

a Src-SH2 binding recognition site, which inhibits kinase catalytic activity through

protein conformational changes [6]. Phosphorylation of the phosphatase Shp-2 on

Y580 increases the activity of the phosphatase [62], thereby generally decreasing the

phosphorylation on targets of Shp-2.

A resource for the repository of known phosphorylations in proteomes of many

species, Phospho.ELM, included 1,703 known phosphorylation sites in 2004 when

it was first published [23]. By 2009, that number had increased more than ten-

fold to almost 20,000 documented phosphorylation sites [22]. This indicates a rapid

expansion in the characterization of new sites of phosphorylation within cells across

many species. In combination with the complexity of the regulation and function

of phosphorylation within cells and signaling networks, this expansion represents an

active area of ongoing research.



1.2 Receptor tyrosine kinase networks and the epi-

dermal growth factor receptor

A specific class of proteins in the cell, receptor tyrosine kinases (RTK), monitor ex-

tracellular cues and translate these cues into phenotypic outcomes, primarily through

the utilization of phosphorylation as a regulatory mechanism. Most receptor tyrosine

kinases contain an extracellular binding region, a transmembrane spanning region,

and a cytoplasmic kinase catalytic domain. The typical first steps in RTK activation

involve two receptors binding their extracellular ligands followed by receptor dimer-

ization, activation, and then cross-autophosphorylation. Autophosphorylation events

on the receptors are numerous and occur extensively on the cytoplasmic tail of the re-

ceptors. These phosphorylation sites can then recruit other signaling proteins. Once

recruited to the receptors, those proteins are then phosphorylated and go on to effect

a cascade of changes in the cell that will eventually lead to a discernible phenotypic

outcome, such as migration, proliferation, differentiation, structural changes, or basic

functional increases and decreases, such as glucose uptake. A second class of recep-

tors rely on the same network principles, but have no native kinase function and rely

on the recruitment of cytosolic kinases in place of autophosphorylation ability. An

important example of this is the interleukin family of receptors, which are essential

components of immune system functionality.

Despite the wide diversity of RTK families, such as the insulin receptor, fibroblast

growth factor receptors, epidermal growth factor receptors, Met, and neuronal growth

factor receptors, there are a relatively small number of common downstream path-

ways utilized across these receptor systems. These pathways include the PI(3)K/Akt,

Jak/Stat, Plc-y/PKC, and Ras/MAPK pathways [34]. The control of these and other

pathways in RTK networks can result in transcriptional changes, metabolic and cy-

toskeletal changes, which drive phenotypic alterations such as proliferation, differen-

tiation, and migration. Another common feature of these networks is their negative

regulation, which is driven primarily by two mechanisms: (1) dephsophorylation on

network components following signaling activation and (2) downregulation of the re-



ceptor by endocytosis. It is thought that recycling and degradation of the receptor

works to desensitize the immediate future response of the cell to the extracellular cue,

as well as to establish a differential signaling mode, compared to signaling from the

plasma membrane [12]. Differential EGFR signaling from the plasma membrane, ver-

sus from the endocytic compartment, is just one example of the spatial localization of

RTK signaling networks. Lipid rafts, focal adhesions, endosomes and the nucleus are

just a few of the cellular compartments that can function as important and specific

locations for cellular signaling.

The epidermal growth factor receptors, known as either HER or ErbB receptors,

are an important receptor tyrosine kinase family involved in a variety of cellular and

tissue functions. They play an especially important role in the differentiation and

development of epithelial tissues such as lung, heart, brain, and breast tissues. There

are four members of the ErbB family, which recognize a variety of ligands, see Figure

1-1 [131]. ErbB family members have been implicated in the progression and severity

of a number of cancers including glioblastoma [81] and breast [15], lung [68], and ovar-

ian cancer [100]. Several veins of therapeutic development have focused on the EGFR

family and its network components. For example, gefitinib (Iressa, AstraZeneca) and

erlotinib (Tarceva, Genentech) are ATP analogs specific to EGFR, which are effec-

tive in the treatment of cancers expressing EGFR mutants with increased catalytic

activity [63,80]. ErbB family antibodies are another avenue of successful therapeutic

development, such as trastuzumab for breast cancer (Herceptin, Genentech) and ce-

tuximab (Brystol Meyers Squibb BMS/ImClone) for colorectal cancer and neck and

squamous cell carcinoma.

Scientists have employed a variety of modeling techniques as they have sought to

understand the underlying biochemical structure of RTK networks. These models

serve as a framework for testing our current understanding of the network as well

as allowing for in silico perturbation experiments, such as inhibition of a network

component by a drug. Just as experimental measurements in the ErbB network have

been substantial, so has the development of various models, from fully mechanistic

[49,94], to logic-based [91], to probabilistic [89]. These models typically include either
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Figure 1-1: a Ligands and the ten dimeric receptor combinations comprise the
input layer. Numbers in each ligand block indicate the respective high-affinity ErbB
receptors. For simplicity, specificities of receptor binding are shown only for epider-
mal growth factor (EGF) and neuregulin 4 (NRG4). ErbB2 binds no ligand with high
affinity, and ErbB3 homodimers are catalytically inactive (crossed kinase domains).
Trans-regulation by G-protein-coupled receptors (such as those for lysophosphatidic
acid (LPA), thrombin and endothelin (ET)), and cytokine receptors is shown by
wide arrows. b - Signalling to the adaptor/enzyme layer is shown only for two re-
ceptor dimers: the weakly mitogenic ErbB1 homodimer, and the relatively potent
ErbB2-ErbB3 heterodimer. Only some of the pathways and transcription factors are
represented in this layer. c - How they are translated to specific types of output is
poorly understood at present. (Abl, a proto-oncogenic tyrosine kinase whose targets
are poorly understood; Akt, a serine/threonine kinase that phosphorylates the anti-
apoptotic protein Bad and the ribosomal S6 kinase (S6K); GAP, GTPase activating
protein; HB-EGF, heparin-binding EGF; Jak, janus kinase; PKC, protein kinase C;
PLCgamma, phospholipase Cgamma; Shp2, Src homology domain-2-containing pro-
tein tyrosine phosphatase 2; Stat, signal transducer and activator of transcription;
RAF-MEK-MAPK and PAK-JNKK-JNK, two cascades of serine/threonine kinases
that regulate the activity of a number of transcription factors.) Reprinted by per-
mission from Macmillan Publishers Ltd: Nature Reviews Molecular Cell Biology 2:
127-137. Copyright 2001. [131]



a small number of specific phosphorylation sites, or the representation of lumped

phosphospecies components. This limitation is due primarily to the tradeoff between

the number of species and mathematical tractability as well as the methods in which

validation data may be generated, for example by the use of single phosphospecies

antibodies. In 2005, Oda and Kitano used the standardized form of Systems Biology

Markup Language (SBML) to represent the highest resolution of the ErbB network

to date [77].

1.3 Global phosphorylation measurements of RTK

networks

Monitoring the global state of RTK networks in response to cues, therapeutics, and

other factors is fundamental to expanding our understanding of the basic processes at

work in the cell as well as our ability to design interventions in diseased states. One

successful method for measuring the system under various conditions is the combina-

tion of phospho-specific antibodies and high-throughput platforms such as multicolor

flow cytometry [89] and bead-based technologies, such as Luminex [91]. Although

these platforms are capable of multiplexed measurements across many cellular states

and conditions, they are subject to the following limitations: (1) our current un-

derstanding of the phosphorylations occurring in the signaling network of interest,

(2) the existence of specific antibodies to those phosphorylation sites, and (3) possi-

ble antibody interference due to competing protein-protein binding events or protein

conformational changes. The first two assumptions are clearly problematic at this

relatively early stage in our knowledge of RTK networks. The explosive growth in

the documented phosphoproteome over the last decade is a testament to our lim-

ited knowledge of the number of phosphorylation sites and their role in the cellular

environment.

One of the fundamental reasons our knowledge of the phosphoproteome has in-

creased so drastically in recent years is due to the use of mass spectrometry (MS).



MS is able to exquisitely differentiate small changes in mass due to modifications on

residues and therefore it is an excellent measurement tool for discovering those modi-

fications and their location on the protein. Additionally, multiple methods have been

developed in order to quantify the relative differences between phosphorylated pro-

tein states in different conditions by peptide and protein labeling strategies [1]. One

class of labeling strategies is stable isotope labeling with amino acids, SILAC [79].

Alternatively, iTRAQ labeling involves the addition of a label by incorporation of an

isobaric tag [88]. Enrichment for phosphorylation is the key step required to measure

phosphopeptides given their relatively low abundance compared to nonphosphory-

lated forms of peptides, and has included techniques such as strong cation exchange

(SCX) [116], immobilized metal affinity chromatography (IMAC) [116], and phospho-

specific antibody immunoprecipitation [132]. This general strategy, as well as chemi-

cal exchanges, have also been used to measure other types of modifications, including

lysine acetylation [14], glycosylation [121], and ubiquitination [82].

A number of research groups, studying a variety of different biological problems,

have utilized mass spectrometry as a means to discover, as well as quantify, changes

in phosphorylation within cells, such as the profiling the yeast phosphoproteome [120]

and phosphoproteomic profiling of a variety of lung carcinoma cell lines [86]. The size

and complexity of these datasets vary considerably, from tens of sites [104] to thou-

sands [78]. Between strategies for sample separation, phosphorylation enrichment,

sample labeling, and instrumentation, there are an overwhelming number of options

for MS discovery of phosphorylation in cells and tissue samples. Amidst all of these

options is a general trend that discovery, quantitative measurement and reproducibil-

ity of phosphorylation measurement is improving continuously. Figure 1-2 shows how

coverage of the ErbB phosphotyrosine network has increased roughly two orders of

magnitude since the first MS measurements in 2002 by Steen et. al. [104].
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Figure 1-2: Trends in network coverage of the ErbB system. There has been a dras-
tic improvement in the coverage of the network in MS measurement of the ErbB
system as well as reproducible measurements of the same nodes across multiple con-
ditions or times. The following studies were used: Steen 2002 [104], Zhang 2005 [132],
Mukherji 2006 [69], Olsen 2006 [78], Wolf-Yadlin 2006 [123], Wolf-Yadlin 2007 [122]
and the evaluation of reproducibility is based on the number of sites reproduced in
all experiments within the study.

1.4 Tools and repositories for high-throughput phos-

phoproteomic measurements

Given the immensity of the data being generated in phosphoproteomic MS experi-

ments, from the various species, dataset sizes, and the degree of relative quantification,

the field has been faced with two fundamental problems. The first is how does one

store and make available known measurements? Secondly, how does one generate an

understanding about the wealth of this information, from function to regulation of all

of the emerging phosphorylation sites in all of these species, cells, and conditions? In



response to these demands, a number of repositories and tools have emerged. Chapter

4 of Liu et. al. [60] gives a nice overview of the current state of phosphoproteomic

tools.

Currently, high-throughput phosphoproteomic experimental data is cataloged in

repository sources of three different varieties: (1) proteome repositories that catalog

the presence of a known modification, such as Uniprot [114], (2) specialized reposi-

tories of phosphorylation including Phospho.ELM [22], Phosphosite [39] and dbPTM

[57], (3) experiment-specific repositories. There are two categories of experiment-

specific repositories, those that have catalog the MS spectra [9] and those that catalog

the modification and its quantification within the experiment. At the time of this

work only one example of experimental quantification storage existed, PHOSIDA,

which is limited to data generated by the lab that developed it [33].

A wealth of tools has been developed for predicting kinase-substrate and phos-

phopeptide binding domain-substrate relationships. Most capitalize on the fact that

recognition by kinases and binding domains is conveyed, in part, by the linear amino

acid sequence surrounding the target residue, such as KinasePhos [124], PPSP [126],

and Scansite [76]. Scansite [76], for example, uses degenerate peptide library screens

[102] to build position-specific scoring matrices (PSSM) representing the specificity

of a kinase or binding domain targets. A protein sequence can then be scored against

each PSSM and a likelihood of recognition can be quantified. NetworKIN [59] com-

bines Scansite predictions with protein-protein interaction networks to further specify

possible kinase-substrate relationships. In addition to tools for predicting kinase-

substrate interactions and domain-substrate interactions, other phosphoproteomic

tools have focused on analysis of phosphoprotein conservation across species, such as

SysPTM [58] and PhosphoBlast [118].



1.5 Motivation of global phosphoproteomic mea-

surement

The explosion in our knowledge of the phosphoproteome (a ten-fold increase in a four

year span), due in a large part to improvements of measurement methodologies, is

evidence of the interest in understanding the role of phosphorylation in regulating

normal cellular function and its role in the genesis and progression of human dis-

ease. It is thought that tyrosine phosphorylation represents only 1% of all protein

phosphorylation, whereas phosphoserine is much more abundant, representing the

majority of protein phosphorylations [42]. Despite the low abundance of tyrosine

phosphorylation, according to data in PhosphoSite [39] at the time of this writing,

tyrosines actually represent 23% of known phosphorylations in the human proteome.

The disparity in these numbers is most likely due to the intense and concerted effort

of the field to measure tyrosine phosphorylation. The driving force behind this effort

is the important and fundamental role tyrosine phosphorylation plays in signaling

transduction, in particular the signaling networks of receptor tyrosine kinases. These

experimental studies seek to expand our knowledge regarding the possible phospho-

rylation states within the cell, how they are regulated, what role they play in the

network, and how their dysregulation leads to disease. Understanding the underlying

biochemical control and function is pivotal to our understanding of abnormalities and

the development of successful therapeutics for the treatment of disease.

Knowing only whether a phosphorylation site is present is insufficient information

to discern the function and regulation of a phosphorylation and so MS experiments

have sought to measure quantitative differences in the network across various states to

help elucidate a functional role for phosphorylation sites. One example is to measure

a signaling network in time, following stimulation. For example, EGF stimulation of

EGFR and ErbB containing cell lines will kick off a dynamic series of phosphoryla-

tion and signaling events that can then be captured by MS. These dynamics can then

be parsed to yield a variety of information regarding potential upstream regulatory

events and co-regulation among phosphorylations. Alternatively, measurement of dif-



ferential cellular states, such as diseased tissue versus normal tissue, can give insights

regarding the mode and function of the differences in disease. Additionally, global

phosphoproteomic measurements of a network before and after inhibition by a drug

can yield insight into the cellular effects of that drug, indicating potential efficacy

and mode of action.

At this point in time, global phosphoproteomic measurements are capable of

greatly expanding our current knowledge of cellular networks. For example, a dy-

namic measurement of the ErbB network in human mammary epithelial cells, the

latest experiment in Figure 1-2, shares only a 20% overlap with those modifications

depicted in the most complete ErbB system network model by Oda et. al. [77]. In

order to incorporate this wealth of knowledge we must first understand the complex

regulation of each site and the functional role each site plays in the signaling network.

1.6 The present work

In this thesis we develop tools and algorithms for the analysis of global phosphopro-

teomic experiments, which also serve as general frameworks for inference and handling

of other large-scale quantitative biological measurements. The motivation of this work

is to enhance and improve the biological information that can be garnered from quan-

titative phosphoproteomic measurements, such as hypotheses concerning regulation,

function, and interactions of phosphorylation sites within RTK networks, or isolation

of key network components responsible for dysregulation. The key concept used in

this work relies on the idea that a large dataset, too large to be evaluated as a whole,

can be broken into components based on some common feature. These subsets can

then be searched in other feature dimensions for enrichment. In addition to linking

the two feature dimensions, this method can hypothesize information about those

components in the group with unknown function, a "guilty-by-association" method

of inference. This thesis demonstrates this concept in a layered manner. In Chapter

2, we show that simple rules of shared regulation downstream of a mutated receptor

yield insight regarding a common controlling component. In Chapter 3, we expand the



dimensionalities of both subset selection and subsequent shared information searches

to include metadata annotations, such as shared molecular function and cellular lo-

calization. In Chapter 4, we take a look at full dataset partitioning through the use of

unsupervised learning, a method that has proven useful in the field of gene expression

analysis.

In Chapter 2 the feature we focus on is enrichment of the linear amino acid

sequence surrounding similarly regulated phosphorylation sites. In order to do this

we develop a greedy motif algorithm. When a subset consists of highly co-regulated

phosphopeptides, the enriched sequence may yield insight regarding the regulating

enzymes or binding partners. This is an important extension, because although tools

like KinasePhos [124] or Scansite [76] can predict some of this information, they do

not have the capability to discover regulatory motifs for unchartered enzymes and

binding partners, in particular phosphatase motifs.

Chapter 3 establishes a web-based resource, PTMScout, now available to the phos-

phoproteomic community at large. PTMScout provides a flexible interface for arbi-

trary subset generation, as well as providing the only repository of its kind that allows

for the full scientific community to store and analyze experimental datasets regarding

phosphorylation. The large degree of metadata present in PTMScout, annotations of

the biological molecules within experimental datasets, enables the high-throughput

framework developed in Chapter 4 for the analysis of unsupervised learning parame-

ters. The framework developed in Chapter 4, like PTMScout developed in Chapter

3, focuses on enabling scientists in the community to generate the maximum amount

of biological hypotheses from quantitative experiments by decreasing the barrier to

utilization of specialized computational tools.

In addition to the methods and tools developed, this thesis also includes biolog-

ical inference concerning the ErbB network. For example, in Chapter 2 we pose a

direct link between a variant of EGFR correlated with poor prognosis of patients

with glioblastoma, EGFRvIII, and increased activity of CK2, indicating a potential

intervention point for treatment of a currently untreatable disease. In Chapters 3

and 4, a variety of biology is posed, including implications of components involved



in the crosstalk of the EGF receptor and focal adhesions, extension of our current

knowledge regarding phosphoproteins involved in endocytosis of the receptor, and

hypotheses regarding roles for several of EGFR phosphorylation sites. The biolog-

ical relationships shared in each of the chapters represents only a fraction of those

available, but ideally it establishes the usefulness of each of the methods posed in

generating relevant biological hypotheses.
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Chapter

An Integrated Comparative

Phosphoproteomic and

Bioinformatic Approach Reveals

Novel Class of MPM-2 Motifs

Upregulated in

EGFRvIII-Expressing

Glioblastoma Cells

2.1 Summary

Glioblastoma (GBM, WHO grade IV) is an aggressively proliferative and invasive

brain tumor that carries a poor clinical prognosis with a median survival of 9 to 12

months. In a prior phosphoproteomic study performed in the U87MG glioblastoma

cell line, we identified tyrosine phosphorylation events that are regulated as a result

of titrating EGFRvIII, a constitutively active mutant of the epidermal growth factor



receptor (EGFR) associated with poor prognosis in GBM patients. In the present

study, we have used the phosphoserine/phosphothreonine-specific antibody MPM-2

(mitotic protein monoclonal #2) to quantify serine/threonine phosphorylation events

in the same cell lines. By employing a bioinformatic tool to identify amino acid se-

quence motifs regulated in response to increasing oncogene levels, a set of previously

undescribed MPM-2 epitope sequence motifs orthogonal to the canonical "pS/pT-P"

motif was identified. These motifs contain acidic amino acids in combinations of the

-5, -2, +1, +3, and +5 positions relative to the phosphorylated amino acid. Phos-

phopeptides containing these motifs are upregulated in cells expressing EGFRvIII,

raising the possibility of a general role for a previously unrecognized acidophilic kinase

(e.g. casein kinase II (CK2)) in cell proliferation downstream of EGFR signaling.

2.2 Introduction

Glioblastoma (GBM, WHO grade IV) is a complex disease driven by a number of

genetic aberrations that dysregulate normal cellular processes such as proliferation,

apoptosis and cell cycle control [31]. In particular, expression of EGFRvIII, a con-

stitutively active mutant of the epidermal growth factor receptor (EGFR), promotes

GBM cell proliferation and survival by preventing cell cycle arrest upon serum with-

drawal [72]. This loss in serum dependency has been attributed to a downregulation

of the cyclin-dependent kinase (CDK) inhibitor p27 as a result of phosphatidylinos-

itol 3-kinase (P13K) activation by EGFRvIII [72]. Improved characterization of the

regulatory network by which EGFRvIII alters mitotic processes in GBM would not

only provide further insight into its mitogenic signaling networks but also generate a

broader inventory of candidate target genes that may serve as points of therapeutic

intervention.

While proximal signals downstream of receptor tyrosine kinases (RTKs) such as

EGFR are largely propagated by tyrosine phosphorylation, distal cellular processes

are often the consequence of serine/threonine phosphorylation events, which comprise

more than 99% of the phosphoproteome. This large background makes the enrich-



ment of interesting phosphoproteomic subsets, such as mitogenic signaling proteins,

particularly challenging [42]. This problem is highlighted by a recent global phospho-

proteomic study of EGF-mediated signaling in HeLa cells where fewer than 10% of the

identified phosphorylation sites were found to be responsive to EGF stimulation [78].

In order to overcome this limitation in global phosphoproteomic analysis, we have de-

vised a sequential immunoprecipitation (IP) strategy coupled to mass spectrometry

(MS) that builds on a previously described phosphotyrosine-enrichment approach to

quantify the mitotic phosphoproteome downstream of EGFRvIII, Figure 2-1 [41].

To access the subset of phosphoserine and phosphothreonine modifications in the

mitotic compartment, we have employed MPM-2, a monoclonal antibody, derived

from mitotic HeLa cell lysates, that recognizes a wide variety of mitotic phospho-

rylated antigens [19]. Despite its widespread use in the literature as a marker of

serine/threonine phosphorylation in mitotic cells, only a small number of the sub-

strates recognized by MPM-2 have been identified [106,125]. Furthermore, only lim-

ited characterization of the in vivo phosphorylation sites of these substrate proteins

has been performed. However, in vitro peptide library screens have shown that the

binding specificity of MPM-2 is dominated by the "pS/pT-P" motif commonly propa-

gated by the cyclin-dependent kinases (CDKs) and mitogen-activated protein kinases

(MAPKs) [87,130].

Quantitative phosphoproteomic mass spectrometry offers the ability to analyze the

effects of different conditions, treatments, and cell lines on the global phosphorylation-

mediated state of intracellular signaling [93, 132]. In order to obtain mechanistic

insight into how changes in phosphorylation affect cell phenotype it is necessary to

combine the data from quantitative phosphoproteomics with additional information,

including protein sequence surrounding the phosphorylation site. Kinases that gen-

erate phosphosites, phosphopeptide-binding domains that use phosphosites as signals

to prompt a response, and phosphatases that remove phosphosites are all regulated in

part by the amino acid sequence surrounding the phosphorylated residue [47,127,129].

There is a great deal of literature and a number of online resources linking linear

amino acid sequence motifs to associated kinases and binding domains [4, 76]. Here
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Figure 2-1: Experimental workflow for MS discovery of phosphorylation. U87MG
sublines (U87-M, 1.5 x 106 copies/cell; U87-H, 2.0 x 106 copies/cell; U87-SH, 3.0 x
106 copies/cell; U87-DK, 2.0 x 106 inactive copies/cell) were serum starved for 24
hours prior to cell lysis and protein digestion. Digested peptides were stable-isotope
labeled with the isobaric iTRAQ reagent, mixed and subjected to phosphotyrosine
immunoprecipitation (IP) using a pan-specific phosphotyrosine antibody [41]. Mi-
totic phosphopeptides were then immunoprecipitated from the supernatant with the
MPM-2 antibody. Eluted phosphopeptides were further enriched with immobilized
metal affinity chromatography (IMAC) prior to liquid chromatography tandem mass
spectrometry analysis (LC-MS/MS). Phosphopeptide identification (ID) and quan-
tification was performed as described in the methods.



we describe a bioinformatics tool to identify amino acid sequence motifs significantly

enriched among the phosphopeptides associated most strongly with various expression

levels of EGFRvIII. We anticipate that this new motif information will lead to en-

hanced mechanistic biological insight by connecting the probed processes to sequence

motifs associated with known molecules and molecular functions and by revealing

motifs of unknown biological function that can be explored further. We also expect

that our new method will prove useful in many other problems of interest in basic

cellular biochemistry and in therapeutics discovery applications.

2.3 Results

To characterize the effect of EGFRvIII on the mitotic cellular signaling networks,

we have utilized the MPM-2 antibody to enrich for peptides containing sites of ser-

ine and threonine phosphorylation from U87MG glioblastoma cell lines with titrated

levels of the EGFRvIII. A previous phosphoproteomic study of EGFRvIII receptor-

mediated signaling has determined the effect of titrating EGFRvIII receptor levels on

phosphotyrosine-driven networks [411. We now build on those foundational findings

by investigating a key subset of serine/threonine substrate phosphorylation sites up-

regulated by EGFRvIII expression in this same battery of cell lines. Since this study

is focused on signaling downstream of the EGFRvIII receptor, cells were subjected

to serum starvation prior to analysis to minimize any confounding signaling events

that may arise from components in serum and cell culture media. After depleting

phosphotyrosine-containing peptides using the pan-specific phosphotyrosine antibody

PY100, the iTRAQ-labeled supernatant was subjected to a subsequent immunopre-

cipitation using the MPM-2 monoclonal antibody, Figure 2-1. Peptides eluted from

the MPM-2 IP were further enriched for phosphopeptides using immobilized metal

affinity chromatography (IMAC) prior to liquid chromatography tandem mass spec-

trometry (LC-MS/MS) analysis. Two biological replicates were performed, resulting

in the identification and quantification of 87 unique sites of phosphorylation on 68

phosphopeptides (58 proteins), Table 2.1. Of these sites, 11 were found to be novel



with respect to the resources Phospho.ELM [22], PHOSIDA [33], PhosphoSitePlus

(www.phosphosite.org), and a recent study of mitotic phosphoproteins [20]. Three

of the sites have not been detected previously in humans, but only in homologous

proteins.

This phosphoproteomic analysis is, to our knowledge, the most extensive char-

acterization of MPM-2 substrates to date. Our present study is also distinct from

previous MPM-2 proteomic analyses in that our MS analysis provides quantitative

information on in vivo MPM-2 substrates with site-specific resolution. A previous

IVEC screen to identify MPM-2 substrates in Xenopus embryo extracts was per-

formed by Stukenberg et al. and identified 20 candidate proteins that underwent mi-

totic phosphorylation [106]. More recently, a proteomic study of MPM-2 substrates

performed using 2D gel electrophoresis identified [101] MPM-2 candidate substrate

proteins [125]. Strikingly, there is no overlap between the proteins identified in these

two studies and our current analysis. The lack of similarity in the datasets is likely due

to context-dependent variation, including the use of different cell lines and chemically-

induced cell cycle synchronization or mitotic activation in previous studies [106,125]

compared to asynchronously cycling EGFRvIII-expressing cells in the current study.

Additionally, we have performed substrate isolation using solution-based peptide IP

coupled to mass spectrometry, an approach that may yield different substrates from

the cDNA screens and 2D gel electrophoresis analysis carried out in the two prior

studies.

Ectopic expression of EGFRvIII in U87MG cells results in an increased pro-

liferation rate and a larger G2-M cell population under serum depravation condi-

tions [40,72]. Consistent with the well-recognized binding affinity of MPM-2 to phos-

phoproteins in mitotic cells, we observe that phosphorylation of the established pro-

liferation markers Ki-67 and MCM3 (minichromosome maintenance protein 3) were

upregulated 1.4-fold and 2.7-fold respectively in the U87-H subline, which expresses a

high level of EGFRvIII, compared to the U87-DK kinase-dead control cells [37,101].

It has previously been demonstrated that EGFRvIII downregulates p27 expression

via activation of the P13K pathway, resulting in an increase in CDK2-cyclin activity



Table 2.1: MS detected MPM-2 substrates in U87 EGFRvIII expressing cells. There
were 68 phosphopeptides measured, covering 58 proteins, following enrichment of U87
cells expressing a kinase dead (DK) EGFRvJII and medium (M), high (H), and super
high (SH) levels of EGFRvIII.

gene name trypsinized phosphopeptide site DK M H SH
AFF4

AKAP11
ARFGAPI

ATF2
BCLAF1

Cl4orfl06
CHD8

CTAGE5
CTAGE5

EHD1
EHD4
EIF3C

EIF4EBP1
EIF4EBP1
EIF4EBP2

ERCC6
FAM33A
FAM40B

FASN
FLJ20297

FZR1
FZR1

HERC1
HNRPF

KIAA0460
KIAA1458
LOC439961
LOC440991

MAP1A
MAPIB
MAP1B
MAPIB
MCM3
MCM3

MEF2A
MK167

MPHOSPH10
MPHOSPH6

NKAP
NUMA1
NUP98
PDE5A

PGRMC1
PGRMC2
PRPF31
RANBP2
RBI

RBL1
RCAN1

RIFI
RRM2

SCD
SDCCAG1

SMARCADI
SMARCADI

SON
SQSTM1
SQSTM1
SRRM2
SRRM2

SSB
SURF2
SURF2

THRAP3
TMEM51
TOP2B

YTHDC2
ZC3H13

MFsPIEEK
SSAFsPLGGCTPAECFCQTDIGGDR

EWSLESSPAQNWtPPQPR
M PLDLsPLATPIIR

AEGEWEDQEALDYFsDKESGK
EFLEQLPKDDHDDFFSTtPLQHQR
HFSTLKDDDLVEFsDLEsEDDERPR

EHsPYGPsPLGWPSSETR
EHSPYGPsPLGWPSSETR
DKPTYDEIFYTLsPVNGK
DKPVYDELFYTLsPINGK

QPLLLsEDEEDTKR
VVLGDGVQLPPGDYSTtPGGTLFSTtPGGTR
VVLGDGVQLPPGDYSTTPGGTLFSttPGGTR
TVAISDAAQLPHDYCTtPGGTLFSTtPGGTR

KVPVQEIDDDFFPssGEEAEAASVGEGGGGGRK
QTDLELsPLTKEEK

RYDRPQDSEFsPVDNCLQSVLGQR
ADEASELACPtPKEDGLAQQQTQLNLR

QLPDCIVGEDGLILtPLGR
RSsPDDGNDVSPYSLsPVSNK
SSPDDGNDVSPYSLsPVSNK

DRWIsENQDSADVDPQEHSFTR
ATENDIYNFFsPLNPVR

DVEDMELsDVEDDGSKIIVEDRK
RGTFsDQELDAQSLDDEDDNMHHAVYPAVNRFsPsPR

LTDEDFsPFGSGGGLFSGGK
DEILPTtPISEQK

ELVLssPEDLTQDFEEMKR
SVNFSLtPNEIK

SDISPLtPRESsPLYsPTFSDSTSAVK
AAEAGGAEEQYGFLTtPTK

DGDSYDPYDFsDTEEEMPQVHTPK
DGDSYDPYDFsDTEEEMPQVHtPKTADSQETK

GCDsPDPDTSYVLtPHTEEK
AAVGEEKDINTFVGtPVEK

SDLRKsPVFsDEDsDLDFDISKLEQQSK
DHANYEEDENGDItPIK

IGELGAPEVWGLsPK
LPPKVEsLESLYFtPIPAR

NLNNSNLFsPVNRDSENLAsPSEYPENGER
EQMPLtPPRFDHDEGDQCSR

LLKEGEEPTVYsDEEEPKDESAR
LLKPGEEPSEYtDEEDTKDHNKQD
SSGTAsSVAFtPLQGLEIVNPQAAEK
KKPEDSPSDDDVLIVYELtPTAEQK

DREGPTDHLESACPLNLPLQNNHTAADMYLsPVRsPK
EKEAVItPVASATQSVSR

QFLIsPPAsPPVGWK
NYTEDIFPVtPPELEETIRDEK

VPLAPITDPQQLQLsPLK
GSTLDLsDLEAEK

NPYLLsEEEDDDVDGDVNVEKNETEPPKGK
RNDDIsELEDLSELEDLKDAK
RNDDIsELEDLsELEDLKDAK

SFsIsPVR
SRLtPVSPESSSTEEK
SRLtPVsPESSSTEEK

GEFSAsPMLK
ELSNsPLRENSFGsPLEFR

FAsDDEHDEHDENGATGPVKR
DLGSTEDGDGtDDFLtDKEDEKAKPPR

DLGSTEDGDGTDDFLtDKEDEK
NREEEWDPEYtPK

YYVPsYEEVMNTNYSEAR
ASPITNDGEDEFVPsDGLDKDEYTFSPGK

STDSSSYPsPCAsPSPPSSGK
GNIETTSEDGQVFsPK

S694;
S456;
T135;
S 112;
S385;
T993;

S1420;S 1424;
S442;S447;

S447;
S456;
S459;
S39;

T37;T46;
T45;T46;
T37;T46;

S429;S430;
S101;
S788;

T2204;
T640;

S138;S151;
S151;
S1328;
S310;
S337;

S315;S345;S343;
S 104;
T221;

S526;S527;
T1156;

T1662;S1667;S1671
T941;
S711;

S711;T722;
S98;T108;

T1923;
S163;S171;S167;

T147;
S149;

S1755;T1762;
S595;S606;

T137;
S181;
T211;

S450;T455;
T2639;

S608;S612;
T385;

S163;S167;
T702;
S20;

S203;
S417;
S146;

S146;S152;
S2011; S2013;

T269;
T269;S272;

S1124;
S1320;S1329;

S366;
T190;T195;

T195;
T874;
S133;
S1408;

S1263;S1267;
8993;

0.48
0.73
0.53
0.62
0.54
0.63
0.39
0.13
0.2

0.54
0.68
0.74
0.56
0.59
0.64
0.69
0.48
0.64
0.71
0.58
0.44
0.6
0.42
0.55

1
0.57
0.45
0.68
0.85
0.72
0.67
0.78
0.37
0.37
0.48
0.72
0.4
0.05
0.6

0.51
0.51
4.67
0.55
0.6
0.72
0.54
0.44
0.47
0.7
0.61
0.52
0.36
0.5
0.47
0.78
0.75
1.08
0.95
0.69
0.64
0.52
0.48
0.45
0.69
0.7
0.93

1
0.57



and Rb (retinoblastoma protein) hyperphosphorylation, allowing cells to enter the

cell cycle [72]. In line with this result, we also observe that phosphorylation of Rb

(S608 & S612) and the Rb family member p107 (T385) increase more than 2-fold in

the U87-H cells compared to the control U87-DK cells. These phosphorylation sites

directly precede proline residues, a characteristic motif recognized by proline-directed

kinases such as the CDKs [59].

Of the 58 proteins identified in this study, only 8 are annotated in the Gene On-

tology database as having a role in the cell cycle. It is surprising that only 15% of the

phosphopeptides immunoprecipitated by MPM-2 have a previous association with cell

cycle, especially given that MPM-2 is considered to specifically recognize substrates

in proliferating cells and mitotic cell lysates [19]. Nonetheless, those proteins that are

labeled as having the GO process annotation term cell cycle are enriched (p-value of

0.01) in the subgroup of peptides whose phosphorylation level is upregulated is in the

top quartile in the U87-H cell line as compared to the control U87-DK cells.

Intriguingly, only 59 of the 87 phosphorylation events identified in this study were

on a serine or threonine residue followed by a proline, Figure 2-2A. Of the 28 re-

maining sites, 20 had an aspartic or glutamic acid in the +1 position, directly to the

C-terminal side of the phosphorylated residue. Moreover, 16 of the 68 phosphopep-

tides identified in the MS study contained at least one "pS/pT-D/E" site, and no

"pS/pT-P" site, demonstrating that a large fraction of the acid-directed sites were

specifically recognized by the MPM-2 antibody, and were not merely neighbors to

proline-directed sites on the same peptide. To ensure that this surprising departure

from the canonical MPM-2 epitope was not a byproduct of non-specific binding, a

degenerate peptide library experiment was performed to determine whether non- "pS-

P" containing motifs could be directly recognized by the MPM-2 antibody. Peptide

libraries were synthesized on a cellulose membrane and immunoblotted with MPM-2

to discover the in vitro affinity of MPM-2 for positional dependence and amino acid

composition of favorable motifs, Figure2-2. Importantly, due to the prevalence of

the "pS-P" motif in MPM-2 literature, all libraries degenerate at the +1 position ex-

cluded proline in the +1 position, in an attempt to minimize the effect of what might



be a dominant interaction. The results show that MPM-2 binds directly to peptides

containing acidic residues in the +1 position, as well as to peptides containing proline,

at levels significantly above the background. In fact, the in vitro binding of MPM-2

to the "pS-E" and "pS-D" libraries is higher than to "pS-P".

The largest positional variance occurs in the -1 and +2 positions, where the

aliphatic and aromatic amino acids, I, L, F, and V increase the affinity for MPM-2

significantly over pS alone. These results are in very good agreement with two pre-

vious degenerate peptide studies that also found aliphatic and aromatic dependence

in the -1 and +2 positions [87,130]. In comparison with these previous studies, the

most significant difference seen in this study is the preference for acidic residues in

the +1 position in addition to the canonical pS-P. This acidic motif was obscured in

one of the previous studies because Yaffe et al. chose to fix both the pS and a +1

proline in response to an initial screen that showed heavy +1 proline selectivity [130],

although significant acidic residue preference was also detected in this initial screen

(data not shown). The experiment by Rodriguez et al. did allow for degeneracy in

the +1 position [87], yet only detected a preference for glycine and proline in this po-

sition. It is possible that the discrepancy between this study and our current results

may be due to a mixture of pS and pT in the oriented position in the Rodriguez et

al. screen, especially given that, as shown in Figure 2-2C, phosphothreonine, but not

phosphoserine, alone in many positions is sufficient to bind to MPM-2 in a negative

control library with a fixed, oriented non-phosphorylated serine residue.

The selectivity of MPM-2 for pT is also evident in our MS phosphoproteomics

data set, where 33% of the phosphorylated sites discovered in this study are phospho-

threonines, a 3-fold increase over the previously reported pT:pS ratio in the phospho-

proteome [42]. This data also demonstrates that MPM-2 strongly favors pT followed

by proline in the +1 position, as 87% of the pT sites enriched by MPM-2 match this

"pT-P" motif. To gauge the specificity of MPM-2 for pT and surrounding amino

acids, we compared our results to the general composition of the human phospho-

proteome to date, as represented by the Phospho.ELM [22] database of identified

protein phosphorylation sites. By comparison, pT represents approximately 14% of
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the known human phosphoproteome, and 44% of these sites are have a proline in the

+1 position. Since the phosphoproteome is still largely uncharacterized, it is difficult

to predict whether this percentage is reflective of the true biological composition of

pT sites, or whether it is the result of study bias. However, it is clear that there is

enrichment for "pT-P" phosphorylation sites in our data set beyond that which can

be accounted for in the known human phosphoproteome, indicating good agreement

for phosphothreonine with the canonical "pS/pT-P" MPM-2 epitope.

To highlight the effect of EGFRvIII on mitotic regulatory networks, we performed

a motif enrichment analysis (see Methods) on the sequence surrounding the mapped

phosphorylation sites in the peptides captured by the MPM-2 antibody and upreg-

ulated in the top quartile of all detected phosphosites in cells expressing either a

medium, high, or super-high level of EGFRvIII relative to the kinase-dead nega-

tive control. Surprisingly, the motifs enriched in the EGFR expressing cells did not

contain the C-terminal proline corresponding to the generally accepted specificity of

the MPM-2 antibody [106,119,1301. Though the motif "pS/pT-P" was present in

about half of the phosphopeptides in the top quartile for each of the U87-M, U87-H,

and U87-SH cell lines, it was present in a higher fraction (over two-thirds) of the

total data, and was therefore not enriched among sites upregulated downstream of

EGFRvIII signaling and captured by MPM-2. Instead, a number of acid-directed mo-

tifs were found significantly enriched among EGFRvIII-regulated phosphosites (Table

2.2 for U87-H cells and Tables A.1 and A.2 for U87-M and U87-SH cells). Motifs were

found containing aspartic acid, glutamic acid, or both, at positions -5, -2, +1, +3,

and +5 relative to the phosphorylated residue.

The rate of false positive motif discovery must be considered because the statistical

significance of a large number of amino acid sequence motifs has been calculated

in this study. Familywise error rate control using traditional Bonferroni correction

would be overly penalizing considering the extremely large search space. Therefore,

to approach the question of whether the sequence motif enrichments we observed

might be spurious false positives, we took an empirical approach. We generated 1000

random foregrounds of 25 phosphosites (corresponding in size to our foregrounds of



Table 2.2: Motifs significantly enriched among top quartile of MPM-2 antigen pep-
tides upregulated in U87-H cells vs. U87-DK controls.

Motif, Motif in Motif in Foreground Background Statistical
Foreground Background Size Size Significance

D.x 8 10 25 95 2.73x10-4
-.x 12 20 25 95 3.27x10-4
-.s 10 15 25 95 3.98x10-4

-.x- 8 11 25 95 8.24x10-4
-. s....E 5 5 25 95 9.17x10-4
-..D.x 5 5 25 95 9.17x10-4
-.s-.- 7 9 25 95 1.05x10-3

-. s....- 6 7 25 95 1.17x10-3
D.x- 6 7 25 95 1.17x10-3
x- 12 23 25 95 2.09x10-3

D.s 6 8 25 95 3.80x10-3
-.s-.E 6 8 25 95 3.80x10-3
-..-. x 6 8 25 95 3.80x10-3
-.xD 6 8 25 95 3.80x10-3

-. sD.E.E 4 4 25 95 3.97x10-3
-. s.L..- 4 4 25 95 3.97x10-3
sD.-.-O 4 4 25 95 3.97x10-3
-.. D.x- 4 4 25 95 3.97x10-3
D.xD 4 4 25 95 3.97x10-3

-... xP..S 4 4 25 95 3.97x10-3
D.s-.E 5 6 25 95 4.48x10-3
-.sD.-.- 5 6 25 95 4.48x10-3
-. s-L- 5 6 25 95 4.48x10-3

xD.E.E 5 6 25 95 4.48x10-3
s- 10 19 25 95 5.81x10-3

xD.-.- 7 11 25 95 6.47x10-3
-. s.L 6 9 25 95 9.30x10-3
s-.- 9 17 25 95 9.30x10-3

sD.-.- 6 9 25 95 9.30x10-3
6 9 25 95 9.30x10-3
10 20 25 95 9.60x10-3

xP 13 64 _ 25 95 0.983
1"s" = ps, "x" = pS/pT, "."= Any amino acid, "-" D/E,"O" M/I/L/V

interest), and tabulated the number of detected enriched motifs in each, as well as the

statistical significance of the most significant discovered motif. Only 6.8%, 1%, and

2%, respectively, of random foregrounds have as many statistically significant (p <

0.01) motifs identified as the foregrounds built from the top quartile of sites in U87-M,



U87-H, or U87-SH cells relative to the U87-DK control, Figure 2-3A. Moreover, only

5.6%, 6%, and 6% of random foregrounds have a motif with a statistical significance as

significant as the most significant motif found among the top quartile of phosphosites

in U87-M, U87-H, or U87-SH cells, respectively, as compared to U87-DK controls

Figure 2-3B. Finally, 2.6%, 0.8%, and 1.5% of random foreground datasets have both

as many motifs and as significant a strongest motif as foregrounds generated from

each of the three EGFRvIII-expressing cell lines U87-M, U87H, and U87-SH. Taken

together, these empirical metrics indicate that our motif analyses are identifying a

biologically relevant phenomenon.

2.4 Methods

2.4.1 Cell Culture and Retrovirus Infection

For this study, U87MG glioblastoma cells lines were transfected with EGFRvIII and

sorted to generate sublines that express the following mean receptor levels, U87-

M (1.5 x 106 copies/cell), U87-H (2.0 x 106 copies/cell) and U87-SH (3.0 x 106

copies/cell). In addition, we have included the U87-DK subline that expresses 2.0 x

106 copies/cell of a kinase-dead version of the EGFRvIII receptor as a negative con-

trol for its activity [40,41]. Cell lines were cultured in DMEM with 10% fetal bovine

serum, 2 mM glutamine, 100 units/ml penicillin, and 100 mg/ml streptomycin in 95%

air/5% C02 atmosphere at 370C. U87MG cells expressing EGFRvIII or DK recep-

tors were selected in 400 pg/ml G418. For U87MG cells expressing titrated levels of

EGFRvIII, a bulk population of cells was prepared by retroviral transduction with

pLERNL and stained as previously described [41] with an anti-EGFR monoclonal an-

tibody Ab-1 (clone 528; Oncogene Science, Cambridge, MA), followed by fluorescein

isothiocyanate-conjugated goat anti-mouse Ig antibody (PharMingen, Minneapolis,

MN) and sorted for medium (1.5 x 106 receptors, U87-M), high (2.0 x 106 receptors,

U87-H), and superhigh (3.0 x 106 receptors, U87-SH) receptor amounts. For this

procedure, U87-EGFRvIII cells engineered previously and determined to express 2 x
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106 receptors per cell were used as a gating control. The sorted cells were then main-

tained in culture and receptor levels were analyzed again by flow cytometry prior to

experimental use.

2.4.2 Cell lysis, Protein digestion and Peptide fractionation

U87MG cells were maintained in DMEM medium supplemented with 1% FBS. 1.5x106

cells per 10cm plate were seeded for 24 hours, then washed with PBS and incubated

for 24 hrs in serum-free media. Cells were lysed in 1 ml of 8 M urea. For each of

the two biological replicates performed, lysate from three 10 cm plates were pooled

together. Cells were reduced with 10 mM DTT for 1 hr at 56'C, alkylated with 55mM

iodoacetamide for 45 min at room temperature, and diluted to 12 ml with 100mM

ammonium acetate, pH 8.9, prior to digestion with 40 pg of trypsin (Promega). The

lysates were digested overnight at room temperature. Digested lysate were acidified

to pH 3 with acetic acid and loaded onto a C18 Sep-Pak Plus cartridge (Waters). The

peptides were desalted (10ml 0.1% acetic acid) and eluted with 10 ml of a solution of

25% acetonitrile and 0.1% acetic acid. Each sample was divided into 5 aliquots and

lyophilized to dryness.

2.4.3 iTRAQ labeling of peptides and immunoprecipitation

Lyophilized peptides were subjected to labeling with the iTRAQ 4-plex reagent (Ap-

plied Biosystems). Each aliquot of peptides was dissolved in 30 pl of 0.5 MI tri-

ethylammonium bicarbonate, pH 8.5 and reacted with two tubes of iTRAQ reagent

(dissolved in 70 pl of ethanol each). The reagents for each of the conditions used were,

iTRAQ-114 (U87-DK), iTRAQ-115 (U87-M), iTRAQ-116 (U87-H) and iTRAQ-117

(U87-SH). The mixture was incubated at room temperature for 50 min and then

concentrated to 30 pl. The four different isotopically labeled samples were combined

and acidified with 360 pl of 0.1% acetic acid and then reduced to dryness.

The combined sample was reconstituted with 150 pl of IP buffer (100 mM Tris,

100 mM NaCl, 1% NP-40, pH 7.4), 300 pl of water and the pH was adjusted to 7.4.



After immunoprecipitation with pTyr100 (Cell Signaling Technology, Beverly, MA)

for the phosphotyrosine-containing peptides, which were used in a prior study [41], the

supernatant was incubated with 10 pg of protein G Plus-agarose beads (Calbiochem)

and 12 pg of MPM-2 antibody (Upstate) for 8 hrs at 4C. Phosphopeptides were

washed and eluted as previously described [41].

2.4.4 Immobilized metal affinity chromatography (IMAC) and

Mass Spectrometry

Immobilized metal affinity chromatography (IMAC) was performed to enrich for phos-

phorylated peptides and remove non-specifically retained non-phosphorylated pep-

tides. Eluted peptides were loaded onto a 10 cm self-packed IMAC (20MC, Applied

Biosystems) capillary column (200 m ID, 360 pm OD), and rinsed with organic rinse

solution (25% MeCN, 1% HOAc, 100 mM NaCl) for 10 min at 10pl/min. The col-

umn was then equilibrated with 0.1% HOAc for 10 min at 10 pl/min and then eluted

onto a 10 cm self-packed C18 (YMC-Waters 10 5 pm) precolumn (100 pm ID, 360

pm OD) with 50pl of 250mM Na2HPO4, pH 8.0. After a 10 min rinse with 0.1%

HOAc, the precolumn was connected to a 10 cm self-packed C18 (YMC-Waters 5 pm

ODS-AQ) analytical capillary column (50 pm ID, 360 pm OD) with an integrated

electrospray tip (1 pm orifice). Peptides were eluted with a 125 minute gradient

with solvents A (1% HOAC) and B (70% MeCN in 1% OHAc): 10 min from 0% to

13%, 95 min from 13% to 42%, 10 min from 42% to 60% and 10 min from 60% to

100%. Eluted peptides were directly electrosprayed into a QqTof mass spectrometer

(QSTAR XL Pro, Applied Biosystems). MS/MS spectra of the five most intense

peaks with 2 - 5 charge states in the full MS scan were automatically acquired in

information-dependent acquisition mode with previously selected peaks excluded for

40 sec.



2.4.5 Phosphopeptide sequencing, quantification and clus-

tering

MS/MS spectra were extracted and searched using MASCOT (Matrix Science). For

MASCOT, data was searched against the human non-redundant protein database

with trypsin specificity, 2 missed cleavages, precursor mass tolerance of 2.2 amu for the

precursor ion and 0.15 for the fragment ion tolerance. Phosphorylation sites and pep-

tide sequence assignments were validated and quantified by manual confirmation of

raw MS/MS data (raw MS/MS data available at http://web.mit.edu/fwhitelab/data/index.html).

Peak areas of iTRAQ marker ions (m/z 114, 115, 116 and 117) were obtained and cor-

rected according to manufacturers instructions to account for isotopic overlap. The

quantified data was then normalized with values from the iTRAQ marker ion peak

areas of non-phosphorylated peptides in the supernatant of the immunoprecipitation

(used as a loading control to account for possible variation in the starting amount of

sample for each condition). Each condition was normalized against the U87-H cell

line to obtain fold changes across all 4 conditions.

2.4.6 Phosphopeptide library array

Methods used here are similar to Elia et al. [26]. An ABIMED peptide arrayer was

used to synthesize degenerate libraries on an amino-PEG cellulose membrane. The

libraries consisted of four degenerate positions each on the N- and C-terminal sides

of the central phosphoserine or serine positions, i.e. X-X-X-X-pS/S-Z-X-X-X, where

X represents all naturally occurring amino acids except cysteine and Z additionally

excludes proline. On most spots, one of the degenerate positions was fixed as a

specific amino acid in addition to the orienting phosphoserine or serine. The cellulose

membrane was blocked for 1.5 hr at room temperature in 3% milk and 1% TBS-T

at pH 7.4. It was then incubated with the primary antibody, MPM-2 (Upstate), at

room temperature for 1.5 hr at 0.5pg/mL in 1% TBS-T. The membrane was washed,

blocked, and then probed with a secondary anti-mouse HRP-conjugated antibody (GE

Healthcare) overnight at 4C. MPM-2 library binding was detected using enhanced



chemiluminescence, imaged and quantified using a Kodak Image Station.

2.4.7 Determination of MPM-2 selectivity

The quantified phosphoserine-oriented peptide library was normalized to the serine-

oriented control library. Each fixed position was then normalized to the average of

the completely degenerate column (column 1) to determine total selectivity of that

fixed position over pS alone. Quantification and normalization are provided in Table

A.3.

2.4.8 Preparation of data for motif enrichment analysis

Of the 68 phosphopeptides identified in this study, 44 are singly phosphorylated, 21

are doubly phosphorylated, and 3 are phosphorylated on three amino acids. We there-

fore expanded the dataset to include the full complement of individual phosphosites,

each centered on a single phosphorylation. For sites quantified more than once in the

context of different phosphopeptides with different partner residues simultaneously

phosphorylated, we included each instance of the site, for a total of 95. In three

instances, the exact residue of phosphorylation could not be determined, and a choice

between two possible sites was made arbitrarily. Analysis was repeated with all 8

possible selections of the identities of these three sites, with no significant qualitative

effect on the results (data not shown). We expanded each site to include the 7 amino

acids N-terminal and 7 amino acids C-terminal of the phosphorylated residue using

the Entrez Protein database. For each of the three cell lines expressing medium,

high, or super-high levels of EGFRvIII, we identified the top quartile of phosphosites

upregulated relative to kinase-dead U87-DK control cells. For U87-M, U87-H, and

U87-SH cells, this corresponded to 1.67-fold, 2.10-fold, and 2.20-fold enrichment, re-

spectively, and 25 sites. The 24th- and 25th- most upregulated sites in each cell line

came from the same phosphopeptide and had identical quantification.



2.4.9 Enriched motif search

The space of possible motifs in a 15-mer peptide containing a central fixed phospho-

residue is enormous over 2.1x10 19, if a few combinations of chemically similar amino

acids are allowed for. A strategy must therefore be used for restricting the search to

those motifs most likely to be significantly enriched in the regulated data of interest.

For each of phosphoserine, phosphothreonine, and the combination of the two, the

significance of enrichment in the regulated data relative to the full background was

calculated (see section 2.4.10) for every motif that can be created by fixing any one or

two of the seven positions on either side of the phosphorylated residue as any of the

twenty amino acids, as the combination of the basic amino acids arginine and lysine,

as the combination of the acidic amino acids glutamate and aspartate, or as the com-

bination of the hydrophobic amino acids leucine, isoleucine, valine and methionine.

For each motif identified with an enrichment significance of 0.01 or less that appeared

3 or more times in the EGFRvIII-regulated foreground data, the significance of all

motifs that can be created by fixing the identities of any further one or two amino

acids was calculated. This procedure was recursed until no further significant motifs

were found.

2.4.10 Motif significance calculation

For each motif of potential interest, the statistical significance of enrichment of that

motif in the EGFRvIII-regulated foreground subset of the total background data was

calculated by summing the distribution of the hypergeometric distribution from the

number of appearances, k, to the number of possible appearances:

min(n,K) (K N--K

p(k')= k n-k'
k'=k n

where N is the number of phosphosites in the full dataset, n is the number of sites in

the EGFRvIII-regulated subset, m is the number of motif sites in the full data, and

k is the number of motif sites in the regulated data subset. This corresponds exactly



to the probability of seeing as many instances or more of the motif as are seen in

the EGFRvIII-regulated dataset by chance if drawing a dataset the same size as the

regulated data randomly from the full dataset.

2.4.11 Empirical analysis of false positive rate

To characterize the rate of false positive motif discovery, 1000 foreground sets of

25 phosphosites (corresponding in size to the top-quartile datasets studied) were

randomly generated, and motif enrichment analysis was performed on each. The

number of motifs found and the significance of the most significantly enriched motif for

each were tabulated and compared to the same statistics for the foreground datasets

of interest.

2.5 Conclusions

Discovery of an antibody epitope through MS measurement revealed biologically rele-

vant substrates and non-canonical selectivity for a well-studied biological probe. The

previously-established belief that MPM-2 binds only to "pS/pT-P" sites was most

likely derived from inadequate substrate-detection sensitivity, with earlier methods

capable of only picking up the most abundant of MPM-2s substrates: "pS-P" sites.

With contemporary state-of-art peptide IP and MS peptide identification, we have

now been able to complement the traditional in vitro affinity assay with in vivo bi-

ological substrates for MPM-2, thereby providing positional selectivity for cellular

substrates. For example, of the singly phosphorylated peptides, 98% conform to se-

lectivity for P/E/D in the +1 position. On average, each of these phosphopeptides

conformed to three positions of selectivity defined in Figure 2-2B, and all conformed

to at least one. The range of conformity among the sequence positions varied greatly,

with the -1 positional selectivity ranking second to the +1 position, whereas the

-2 position contributed to only about 30% of the peptides identified. Of the pep-

tides that conform to the -1 positional selectivity of MPM-2 for isoleucine, leucine,

phenylalanine, and valine, 90% of the MS-identified singly-phosphorylated substrates



contain either a leucine or a phenylalanine, while no peptides contain valine, although

there are known "V-pS/pT" and "V-pS/pT-P" sites listed in the Phospho.ELM [22]

database. This observation demonstrates the difference between favorable in vitro

degenerate library interactions and actual biological substrates. The most likely ex-

planation for this difference is that proteins in vivo must be optimized for both

kinase-dependent phosphorylation and for MPM-2 binding, while in vitro MPM-2

binding is not restricted by kinase-dependent phosphorylation.

The set of peptides identified by an MS experiment arises from a convolution

of many factors. In order to appear in an IP/MS experiment, a peptide must be

present in the cell, have sufficient affinity for the antibody, be compatible with any

further purification, and be efficiently measured and sequenced via MS. This convo-

lution of effects makes it difficult to perform motif-enrichment analysis of MS data.

To address these issues, we have developed a tool to identify amino acid sequence

motifs enriched in a regulated subset of a larger dataset. By comparing a biolog-

ically interesting subset of an MS dataset to the entire MS dataset, many of the

confounding elements are cancelled. Most existing motif identification tools, such

TEIRESIAS [85], EMOTIF [44], and PRATT [74], solve a fundamentally different

problem: motif identification without regard to a biologically relevant background.

In contrast, our method compares a list of phosphopeptides of interest to a pro-

teomic background, and is therefore similar to the MOTIF-X method of Schwartz

and Gygi [97]. Although similar, these methods differ in several respects important

to the goals of this study. First, and most importantly, our method uses the full

cohort of peptides identified in the MS study as a comparative background. This

dataset provides the most specific set of peptides possible, thereby effectively mini-

mizing all influences except the biological regulation of interest. Second, our method

allows each peptide to be associated with any number of enriched motifs by search-

ing over individual and pairs of amino acid positions, expanding the space of motifs

that may be found at a manageable computational expense. Third, statistical sig-

nificance of enrichment is calculated by using the exact hypergeometric probability

function, which is more appropriate to the relatively small background data sets of



current interest than the binomial approximation. Finally, an empirical analysis of

randomly selected data provides some indication that foregrounds generated from up-

regulated phosphosites within this dataset have meaningful arrays of enriched amino

acid sequence motifs.

A very recent study by Dephoure et al. provides a great number of novel phospho-

sites upregulated in mitotic cells relative to an asynchronous control [20]. MOTIF-

X [97] was used to compare phosphoserine sites upregulated in mitotic cells to all

serines in the human proteome. This comparison revealed four motifs that the au-

thors associated with CDKs, two that the authors associated with the kinases Aurora

A and Plkl, and two that the authors felt indicated uncharacterized mitotic kinase

function. It is worth noting that the motifs we have discovered here do not correspond

well to any of the motifs described by Dephoure et al. This disparity in findings is

likely due to the targeted nature of our study: we have examined only phosphopep-

tides captured by the antibody MPM-2, and focused on those motifs that correspond

explicitly to increased levels of EGFRvIII expression.

Although the accepted "pS/pT-P" epitope of MPM-2 is most often generated by

the cell-cycle dependent kinases [102] and the MAP kinases [35], a number of other

kinases including Plk1, NIMA, and MEK are known to generate MPM-2 epitopes in

at least one substrate [54], but not necessarily in a manner that matches the motifs

found in this study. The motifs we identify here as being associated with EGFRvIII

upregulation in U87 glioblastoma cells are most reminiscent of the specificity of casein

kinase II, with acidic amino acids prevalent in the -2, +1, +3 and +5 positions,

corresponding well to the substrate specificity of CK2 for serine and threonine residues

with nearby negative amino acids, with the +1, +2, and particularly the +3 residues

most often acidic [65, 103]. The presence of acidic residues in the +1 position, in

particular, seems to indicate that the known acidophilic mitotic kinase, Plk1, is not

wholly responsible, as Plk1 substrates most often have an aliphatic residue in the +1

position [71]. In fact, one of the phosphorylated sites identified in this study, serine

366 on the RNA-binding protein La, is a known CK2 substrate [98]. We attempted

to measure CK2 activity in H and DK cellular lysates, through the incorporation of



radio-labeled phosphate of an ideal CK2 peptide target sequence of RRDDDSDDD,

see Appendix A.2. Unfortunately, CK2 inhibition by TBCA in these experiments

indicated this sequence may not be specific enough for use in cellular lysate studies.

The idea of a role for CK2 in mitosis is not a new one. Though thought to be

constitutively active, CK2 is known to be required in the G2/M portion of the S.

cerevisiae cell cycle [38], as well as to promote the meiosis of Xenopus oocytes [70].

Specific roles have been found for CK2 in the activation of the cell-cycle regulatory

phosphatase CDC25B [111], and at a mitosis-specific site on DNA topoisomerase Ila;

in fact, a pair of studies has identified casein kinase II as being capable of gener-

ating an MPM-2 epitope on DNA topoisomerase Ila [27, 28]. The amino acid se-

quence surrounding the phosphorylated residue, "NRRKRKPpSTSDDSDS" contains

the common +3 acid aspect of motifs found enriched in MPM-2-captured, EGFRvIII-

regulated sites in our data, although it does not match directly to any of the motifs

we have identified. CK2 activity has also been found to be upregulated in a large

number of cancers (reviewed in [2] and [92]). While the similarity of the motifs

we have identified to the known substrate specificity of CK2 is striking, it is sim-

ilarly possible that there is another acidophilic kinase with an undescribed motif

specificity and uncharacterized role in mitosis. In fact, the artificial neural network

analysis available through the recently published NetPhorest algorithm provides the

following consensus CK2 motif: E-E-E-(E/D/S)-(E/D)-S/T- (D/E/S/G)-(D/E/S)-

(E/D)-(E/D)-(E/D)-(E/D)-E, with weak selectivity in italics, moderate selectivity

in normal text, and strong selectivity in bold [66]. Although this motif does not

exactly match to any of the motifs found in this study, the panel of motifs identified

here is a combination of kinase phosphorylation specificity, antibody binding speci-

ficity, and regulation downstream of EGFRvIII. The motifs described here, therefore,

likely represent only a subset of the kinase recognition motif. Regardless of the kinase

responsible, we have identified a set of motifs that are upregulated in a manner coor-

dinated with the expression level of EGFRvIII in glioblastoma cell lines. EGFRvIII

expression itself correlates with poor prognosis in GBM patients [31], therefore un-

derstanding the generation and regulation of these motifs may lead to an improved



understanding of glioblastoma and to improvements in its treatment.

Similar analyses can be applied to other diseases and disorders. We hypothe-

size that identified motifs will be a signature for kinases, phosphopeptide-binding

domains, and perhaps phosphatases, associated with the particular regulation being

analyzed. Properly interpreted, these motifs may provide mechanistic insight into

the origin and phenotype of the samples studied. This information may aid in de-

termining systematic signaling differences among existing cell lines, thereby enabling

mechanistic hypotheses with respect to treatment. Ultimately, it should be possible to

apply these methods to characterize individual patient tumors, as differentiated from

adjacent healthy tissue, with the goal of discovering hidden dysregulated signaling

modules that could be effective therapeutic targets.



Chapter 3

PTMScout: A Web Resource For

Analysis of High-Throughput

Post-Translational Proteomic

Studies

3.1 Summary

The rate of discovery of post-translational modification (PTM) sites is increasing

rapidly, and is significantly outpacing our biological understanding of the function

and regulation of those modifications. To help meet this challenge, we have created

PTMScout, a web-based interface for viewing, manipulating, and analyzing high-

throughput experimental measurements of PTMs in an effort to facilitate biological

understanding of protein modifications in signaling networks. PTMScout is con-

structed around a custom database of PTM experiments and contains information

from external protein and post-translational resources, including Gene Ontology an-

notations, Pfam domains, and Scansite predictions of kinase and phosphopeptide

binding domain interactions. PTMScout functionality comprises dataset comparison

tools, dataset summary views, and tools for protein assignments of peptides identified



by mass spectrometry (MS). Analysis tools in PTMScout focus on informed subset

selection via common criteria, and on automated hypothesis generation through sub-

set labeling derived from identification of statistically significant enrichment of other

annotations in the experiment. Subset selection can be applied through PTMScout's

flexible query interface, available for quantitative data measurements and data an-

notations, as well as an interface for importing dataset groupings by external means,

such as unsupervised learning. We exemplify the various functions of PTMScout

in application to datasets that contain relative quantitative measurements, as well

as datasets lacking quantitative measurements, producing a set of interesting bio-

logical hypotheses. PTMScout is designed to be a widely accessible tool, enabling

generation of multiple types of biological hypotheses from high-throughput PTM ex-

periments and advancing functional assignment of novel PTM sites. PTMScout is

available at http://ptmscout.mit.edu.

3.2 Introduction

Post-translational modifications (PTMs) regulate cellular signaling networks by mod-

ifying activity, localization, turnover and other characteristics of proteins in the cell.

For example, signaling in receptor tyrosine kinase (RTK) networks, such as those

downstream of epidermal growth factor receptor (EGFR) and insulin receptor, is ini-

tiated by binding of cytokines or growth factors, and is generally propagated by phos-

phorylation of signaling molecules. Additionally, receptor surface expression can be

regulated by ubiquitination while gene expression can be regulated by acetylation of

transcription factors and histones. With the increasing utilization of high-throughput

mass spectrometry (MS) technologies and the ability to enrich for a particular modi-

fication from a biological sample, hundreds or even thousands of PTM sites can now

be identified in a single experiment and relatively quantified across biological condi-

tions [132]. This increase in the number of PTM sites identified in each analysis has

led to a rapid and accelerating expansion of known post-translational modifications,

as evidenced by the number of the entries in a knowledgebase of phosphorylation over



the past five years: in 2004, when Phospho.ELM was first published [23] it contained

1,703 known phosphorylation sites; in 2009 Phospho.ELM contained 19,649 known

sites of phosphorylation, a more than ten-fold increase.

A number of database resources, including Phospho.ELM [22], PhosphoSite [39],

PHOSIDA [33], and SysPTM [58], have emerged in response to the large production

of phosphorylation data and are expanding to include other PTMs. For instance,

PhosphoSite [39], originally established as a compendium of phosphorylation sites,

has started to incorporate acetylation, methylation, glycosylation, ubiquitination,

and other PTMs. Sites of modification can also be found in large protein compendia

such as UniprotKB [114]. In addition to storing PTM data, SysPTM [58] brings

bioinformatics resources to bear on PTMs in the context of the PTM compendium,

such as mapping known PTMs onto signaling pathways [58]. Other bioinformatic tools

specific to phosphorylation exist as well: for example, Phospho.ELM, PHOSIDA [33],

Scansite [76], KinasePhos [124], and PPSP [126] contain predictions or annotations

of the kinase responsible for the phosphorylation of particular sites. Unfortunately,

there is no wide-ranging resource currently that allows users to browse the data from

diverse high-throughput PTM experiments (with the exception of PHOSIDA, which

is specific to experiments done by the research group of Matthias Mann [33]).

Despite the daunting volume of PTM measurement by MS, the lack of computa-

tional methods for deriving experimental hypotheses from these datasets has become

a bottleneck limiting the contribution of high-throughput PTM study to biological

understanding. To address this limitation, a few studies have implemented unsuper-

vised learning techniques as a method of reducing data dimensionality to elucidate

dynamic and functional patterns in phosphoproteomic measurements [78,132]. These

methods were successful in highlighting functionality of novel protein modifications,

but the vast majority of uncharacterized PTMs remain without putative biological

function, even after unsupervised learning.

We have developed PTMScout in an effort to bring hypothesis generation tools

into proteomic studies of PTMs, while leaving each peptide in the larger context of

the phosphoproteome, acetylome, etc. PTMScout provides an interface to a novel



database of post-translational protein modifications, which incorporates functional

annotations and mRNA expression profiles. Individual experiments and their quan-

titative measurements are treated as unique entities, uploaded by their producers for

availability to the broader scientific community. These data may then be analyzed

through PTMScout via subset selection by functional or dynamic annotation along

one axis followed by identification of statistically significantly enriched annotations

along all other axes. Additionally, by utilizing expression profiles and multiple exist-

ing datasets, PTMScout provides information regarding the assignment of individual

peptides to particular proteins, in cases where there are a number of proteins or

protein isoforms from which a peptide may have been cleaved.

The main functions of PTMScout are six-fold, see Figure 3-1 for a depiction. First,

PTMScout allows browsing of experimental data alongside publically available anno-

tations, such as Gene Ontology (GO) terms and protein domain structures. Second,

PTMScout allows for direct comparison of a particular experiment to one or more

other experiments, including highlighting novel sites of modification. Third, PTM-

Scout highlights potentially contentious assignments of peptides to proteins and gives

biologists tools, such as tissue and cellular mRNA expression data, to determine an op-

timum protein assignment. Fourth, PTMScout allows for dataset reduction by subset

selection, either on the data itself or on its imported annotations. Fifth, PTMScout

provides automated statistical significance testing of a number of metrics orthogonal

to the selection criteria (including quantitation in dynamic data and external annota-

tions) in selected subsets. Finally, PTMScout provides an interface to unsupervised

learning and automatic partition labeling based on statistically significantly enriched

information.

Example use cases of PTMScout for generating biological insights from a number

of previously published datasets will be shown using the data described in Table 3.1,

which includes a mix of datasets with quantitatively measured conditions in cells

stimulated with EGF ligand (datasets EGF4 [132], EGF7 [122], and HER2 [123]), as

well as a discovery dataset from acetylated intracellular proteins lacking quantitative

information (AcK [14]). Using the readily available tools within PTMScout, Figure
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Figure 3-1: A depiction of the major features, analysis tools, and page view types
available in PTMScout. (A) One can choose to search by protein, load a new dataset,
or analyze an existing dataset. The metadata incorporated in PTMScout to annotate
the biological molecules of interest is described. (B) Analysis tools for experimental
datasets include: experiment browsing, full dataset ambiguity reports and assign-
ment functions, dataset comparisons and novelty analysis, dataset summary features,
which can be linked directly to subset evaluation, and subset selection and evaluation
by metadata or data queries. (C) Most analysis and search tools rely on three funda-
mental data views: protein pages, ambiguity pages, and enrichment pages of subset
selection features.

3-1, we were able to construct multiple biological hypotheses regarding the potential

functional characterization of multiple PTM sites, including a role for phosphorylation

of Y497 on FRK in EGFR proliferation by subset selection in the EGF4 [132] dataset.

We were also able to find potential signal integrators between focal adhesions and the

EGFR pathway by using a mix of subset selection and enrichment based on dynamics,

as well as metadata selection and the ability to view data on a protein across datasets.

Moreover, peptide assignment ambiguity tools were used to indicate a preferable

Ambiguity Report
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that have multiple possible
protein assignments

Modify assignments and export
for reloading

A



protein assignment for the Src family kinase activation loop phosphorylation event.

An interface to arbritrary dataset clustering was used to recapitulate unsuprevised

learning results from the EGF4 [132] dataset and subset selection by quantitative

data was used to expand the endocytic signaling module in this dataset. Using

dataset comparison tools the degree to which the AcK [14] dataset expands our

current knowledge of acetylation is quantified. By using subset selection based on

protein sequence and previously described acetyl transferase sequence recognition we

demonstrate that CBP/p300 acetylates both non-histone and histone proteins, and

in particular, it targets RNA binding proteins. Finally, the dataset summary view

demonstrates there may be acetylation sites missed by using trypsin as the proteolytic

enzyme prior to MS measurement.

3.3 Results

PTMScout is a web application that provides access and a computational interface

to an underlying MySQL database. The PTMScout database contains data from

high-throughput studies of protein modifications and existing PTM compendia, Fig-

ure 3-2A. Phosphorylation and acetylation experiments are currently included, but

PTMScout has been designed to incorporate additional modification types as they be-

come available experimentally. The database incorporates information at the protein

level, such as Gene Ontology (GO) terms [5] and Pfam domain structures [29], Figure

3-2C, as well as information at the level of individual sites of modification, such as

Scansite [76] predictions of the enzymes responsible for, or proteins interacting with,

modification sites, short peptide sequences aligned around the site of modification,

and the predicted Pfam domain in which a site falls, if any, Figure 3-2B. The infor-

mation contained in the database, and the level of its specificity, is depicted in Figure

3-2 using an example peptide measured on JAK2 after stimulation by EGF [122]. In

addition to high-throughput datasets of measured modifications, PTMScout incorpo-

rates larger, curated datasets of known post-translational modifications [22, 39, 114]

for easy comparison of a new experiment to the current state of knowledge for a



Table 3.1: Datasets used to demonstrate the functionality of PTMScout.
Name is used for quick reference to the dataset of interest.

Reference

particular modification or modifications on a particular protein. PTMScout version

1.2, at the time of this writing, included 16 unique datasets, 11 experimental and 5

compendia, totaling 224,072 modifications across 72 species (133,440 phosphoserine,

38,906 phosphothreonine, 34,149 phosphotyrosine, and 17,577 acetyllysine).

The scale of high-throughput proteomic PTM data is approaching that of genomic

data, leading to similar problems, as it is difficult to derive biological meaning from

large datasets without a specific prior hypothesis. To address this challenge, PTM-

Scout tools allow users to partition their data into a more comprehensible format

using subset selection in one of four ways. First, users can select a subset of data

that is annotated with a particular label from an imported data source (such as a GO

Reference Dataset Name Cell Stimulatior Measurements PTM Dataset
Name Type Size

(pep-
tides)

EGF7 Multiple reaction HMEC EGF 0,1,2,4,8,16,32 pY 222

[122] monitoring for ro- minutes
bust quantitative
proteomic analysis
of cellular signaling
networks

EGF4 Quantitative pro- HMEC EGF 0,5,10,30 pY 77
[132] teomic analysis of minutes

phosphotyrosine-
mediated cellular
signaling networks:
SUPPLEMENTAL
TABLE #1

HER2 Effects of HER2 HMEC EGF, 0, 5, 10, pY 68
[123] overexpression on 24H HRG 30 minutes

cell signaling net- EGF, HRG
works governing stimulation
proliferation and Parental,
migration 24H cell lines

AcK [14] Lysine acetylation MV- X X AcK 3,286
targets protein 411
complexes and co-
regulates major
cellular functions
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Figure 3-2: An abstracted database schema of PTMScout with an example peptide
measured from JAK2 in the EGF7 experiment [122]. The database consists of three
major classes of information. (A) Experimental data are the basic data elements
and consists of all measured modified peptides in an experiment and their associated
quantification, when applicable. (B) PTMScout site-level information includes the
15-mer sequence of peptides centered on individual sites of modification, the domain
within which the site falls in its protein (Pfam-site), and any predictions on the
function or regulation of that individual modification. (C) Protein-level information
includes Gene Ontology (GO) annotations, Pfam domain structures, GNF SymAtlas
mRNA expression information, and a variety of database accessions, gene names and
protein names. Peptide and experiment data in the database are connected through
protein identifiers, allowing for direct comparison across datasets and compendia.
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to PTMScout. Finally, the user can combine any or all of the first three methods to

create a subset of data. Once a data subset is selected by one of these means, the

statistical significance of enrichment with respect to the full dataset is automatically

calculated according to a hypergeometric distribution for all other metadata annota-

tions, as well as some qualitative characteristics of data dynamics. The fundamental

philosophy of this method is that subset selection, partitioning, or clustering in one

feature dimension could produce a biological hypothesis, highlighted by a statistically

significant enrichment of a term or feature in another dimension.

Features for subset selection and enrichment include GO terms, Pfam domains

(at a protein level as well as site level), kinase and binding domain predictions from

Scansite, local sequence features and measured quantitative features. Many features

are categorical, and selection and enrichment significance calculations are straightfor-

ward, as detailed in Experimental Procedures. Selection and enrichment of quantita-

tive data and sequence features require special mention due to their increased com-

plexity. We allow for local sequence feature selection by regular expression queries.

For example, to search for a common SH2 binding motif containing a phosphotyro-

sine with a hydrophobic amino acid in the +3 position, one can choose to search for

'y.. [PLIVM] (phosphotyrosine followed by any two amino acids, followed by a proline,

leucine, isoleucine, valine, or methionine). In the reverse problem, searching for mean-

ingful linear amino acid sequences in a subset, e.g. to establish an enriched motif,

requires an algorithm to reduce the search space to a feasible size. For this purpose,

PTMScout uses a previously developed greedy search motif algorithm [46]. Addi-

tionally, PTMScout implements flexible search queries for quantitative data fields

by allowing the user to create simple mathematical expressions as selection criteria.

For example, one can search for an early response subset of tyrosine phosphorylation

events in the EGFR signaling network (e.g. the EGF7 experiment [122], see Table

3.1) by requiring a four-fold change in the first minute with the query "time(1min) +

time(Omin) > 4". PTMScout searches for quantitative data enrichment in a subset

by testing for specific qualitative descriptors of quantitative dynamic features: fold

change, maximum modification, interval of peak upregulation, and interval of peak



downregulation amongst each of the quantitative data points. By rigorously defining

a "dynamics feature space", we are able to calculate the statistical significance of

enrichment of these labels in the same way we might calculate the significance of the

representation of a GO term or kinase prediction in a subset. Finally, all query types

can be combined, enabling the identification of, for example, a subset of sites that

adhere to canonical SH2 binding motifs and are upregulated within the first time

point.

3.3.1 Activating kinase events in the EGFR pathway

While ab initio prediction of the function of specific phosphorylation sites is difficult,

typically phosphorylation within the activation loop of the catalytic domain of protein

kinases can be expected to enhance activity of the kinase by driving a structural

transition [75]. In order to predict whether a PTM falls within a kinase activation

loop, PTMScout searches for the conserved flanking amino acid sequences 'DFG' on

the N-terminal side and 'APE', on the C-terminal side of the site of modification

[75]. This definition of the activation loop conservation was expanded by aligning

the kinase catalytic domains of kinases within PTMScout using ClustalW2 [56] (see

Experimental Procedures). Of the 2,089 tyrosine and serine/threonine kinase domains

in PTMScout version 1.2, ~79% of the activation loops are confidently predicted,

and with some certainty, another ~3.6% are predicted. Activation loops cannot

be predicted for the remaining kinases based on searching for conserved flanking

sequences.

We used PTMScout to explore the subset of kinase catalytic domain modifications

in the EGF4 experiment [132] by performing a metadata query requesting PTMs

that fall into the Pfam domains 'Pkinase' (serine/threonine kinase domains) or 'Pki-

nase-tyr' (tyrosine kinase domains). Figure 3-3 illustrates the query results, which

include modifications within the catalytid domains of the kinases CDC2, EPHA1,

EPHA2, GSK3A, INSR/IGF1R, MAPKi, MAPK3, PRPF4B and PTK2. PTM-

Scout predicts that all of these except the site on CDC2 fall into the activation loop

of their respective kinase, and are therefore, potentially kinase activating events. Ad-



ditionally, phosphorylation levels for each of these sites increased, albeit slightly in

some cases, upon stimulation of EGF (see Figure 3-3B). This subset is significantly

enriched, based on a FDR corrected value of 0.01, for proteins that contain 'Pkinase'

domains relative to the full EGF4 dataset (see Figure 3-3C). It is interesting to note

that while all modifications to serine/threonine kinases in the dataset occur within

the catalytic domain and are represented in this subset, less than half of measured

modifications to tyrosine kinases occur within the catalytic domain.

We examined the remaining phosphorylation events on tyrosine kinases by choos-

ing a subset based on proteins with "Domains= Pkinase-tyr". In addition to the four

phosphorylation sites that occur within tyrosine kinase catalytic domains, another

sixteen sites are found on ten tyrosine kinases, including Y497 on Fyn-related ki-

nase (FRK), a Src family kinase. This site falls on the c-terminal tail of the protein,

which, based on relative proximity between the c-terminus of the protein and the

kinase domain, is similar in location to the negative regulatory site (Y527) of Src [6].

Alignment of the eleven Src family kinases indicates all but one member, SRM, con-

tain a tyrosine in this region of the protein, and there is evidence for phosphorylation

on all of these sites, see Table 3.2. By extension, it is reasonable to predict that Y497

on FRK may bind FRK's SH2 binding domain, thereby inhibiting kinase activity of

FRK. Amongst the ten Src family kinases with known phosphorylation sites on a ty-

rosine in the c-terminal tail of the protein, the sequence surrounding Y497 on FRK is

the most dissimilar, potentially indicating that FRK Y497 may be phosphorylated by

a kinase different from the phosphorylating kinase(s) for the analogous sites on other

family members. Phosphorylation of FRK Y497 increases two-fold by 30 minutes

after stimulation of EGF, which indicates that EGF stimulation may cause this par-

ticular Src family kinase to decrease in catalytic activity. Gene Ontology annotations

for FRK indicate nuclear localization and involvement in the negative regulation of

cell cycle progression. If suppression of cell cycle progression is dependent on its ki-

nase activity, then this phosphorylation site may be one specific mechanism by which

EGF stimulation enhances cell growth and proliferation.
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Table 3.2: The c-terminal tyrosine that is phosphorylated in each of the human
Src family kinases and their relative positions corresponding to the given Swissprot
accession number.

Name Swissprot Site Peptide
YES P07947 Y537 FTATEPQyQPGENL
SRC P12931 Y530 FTSTEPQyQPGENL
FYN P06241 Y531 FTATEPQyQPGENL
FGR P09769 Y523 FTSAEPQyQPGDQT
HCK P08631 Y521 YTATESQyQQQP
LYN P07948 Y508 YTATEGQyQQQP
LCK P06239 Y505 FTATEGQyQPQP
BLK P51451 Y501 YTATERQyELQP
BRK Q13882 Y447 RLSSFTSyENPT
FRK P42685 Y497 YFETDSSySDANNFI
SRM Q9H3Y6 NA none

3.3.2 Focal adhesion signaling in response to EGF

PTMScouts flexible query interface allows users to apply intuitive rules for defining

a subset of interest, based on the features inherent in any particular dataset. For

example, using the data in the EGF7 experiment [122], we selected a subset of phos-

phorylation sites that are immediately downregulated in response to EGF stimulation,

a rare event. To generate this subset, we required that baseline phosphorylation be at

least 30% higher than at one minute after stimulation: "time(Omin) + time(lmin) >

1.3". This query resulted in the selection of only three phosphorylation sites on three

proteins: BCAR1 Y327, BCAR3 Y266 and PTK2/FAK Y576. PTMScout shows that

Y576 falls within the activation loop of the kinase domain of PTK2/FAK. Dynam-

ics for these sites after EGF stimulation, shown in Figure 3-4A, indicate that these

sites immediately decrease upon EGF introduction but recover within thirty-two min-

utes. The other functional annotations enriched in this cluster indicate a function

in integrin-mediated signaling and localization at the focal adhesions (GO Biologi-

cal Process term 'integrin-mediated signaling pathway' and GO Cellular Component

term 'focal adhesion'). BCAR1, BCAR3 and FAK have been implicated as important

signaling molecules with involvement in both EGFR and focal adhesion (FA) signal-



ing pathways [13, 95]. While the mechanism underlying decreased phosphorylation

of these sites following EGFR activation is still unclear, our findings may indicate

specific phosphorylation events involved in EGFR/FA crosstalk.

BCAR1 has five additional sites of phosphorylation which increase in response

to EGF treatment in the EGF7 experiment: Y234, Y267, Y362, Y387, and Y410.

Phosphorylation events on BCAR1 were chosen as a subset by selecting "protein

name=BCAR1", see Figure 3-4B for quantitative measurements of all six sites in

response to EGF treatment. All of the phosphorylation sites measured on BCAR1 in

this dataset have high sequence similarity, as shown by motif analysis: all have proline

in the +3 position relative to the phosphotyrosine, and all but one site additionally

contains an aspartic acid in the +1 position. CRK and NCK are known to bind to

BCAR1 [36] and enrichment analysis indicates that the majority of CRK and NCK

binding events that occur downstream of EGFR in this dataset occur on BCAR1,

based on enrichment for CRK and NCK binding predictions by Scansite. Given the

apparent redundancy of phosphospecific binding functionality of the six phosphoryla-

tion sites measured on BCAR1, it is interesting that one site has a completely oppos-

ing dynamic response to EGF stimulation. In integrin-mediated signaling complexes,

BCAR1 is associated with at least three tyrosine kinases, Src, FAK and Abl [67].

Although specific kinase targets on BCAR1 are not clearly mapped, we see that the

rare dynamic of BCAR1 Y327 correlates with a similar decrease in phosphorylation

on the activating site of FAK, Y576 [67], possibly indicating a difference in enzymatic

control of Y327 compared to the remaining five phosphorylation sites.

Physical aspects of EGF addition (e.g. shear stress from addition of solution con-

taining EGF and swirling of media) could be responsible for mechanotransduction-

related signaling events at the focal adhesions, versus a signaling response due to the

growth factor itself. PTMScout has the ability to plot all quantitative measurements

of modifications on a particular protein across all experiments contained in PTM-

Scout. Across multiple experiments, Y327 is consistently downregulated in response

to stimulation by EGF, see Figure 3-5; however, in the HER2 experiment [123], Y327

decreases in response to EGF, but increases in response to HRG. Addition of HRG
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Figure 3-4: BCAR1 subset selection and enrichment in the EGF7 dataset [122].
Dynamics are plotted along a log2 transformed axis for early time-point clarity. (A)
Dynamics of the only three phosphorylation sites in the EGF7 dataset that decrease
in the first minute by 30% or more. These sites are enriched for 'integrin-mediated
signaling pathway' annotation in GO Biological Process annotations. (B) Dynamics
of all six phosphorylation sites on BCAR1, all of which increase in response to EGF,
except Y327. (C) Motif enrichment of all six phosphorylation sites compared to the
full dataset. Number of sites matching the motif in the subset and the full dataset
are given along with the significance of that enrichment. All sites have a +3 proline
and all but one have an aspartic acid in the +1 position.

should produce similar mechanical cues (see above) compared to the introduction of

EGF, so these results indicate that the decrease in phosphorylation on these focal
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adhesion signaling molecules is probably EGF-specific rather than a consequence of

mechanical handling.

EGF HRG

Time (min)

HER2 OE EGF
Time (min)

HER2 OE HRG

10 20 30 0 10 20
Time (min) Time (min)

BCAR1 Y327
BCAR1 Y249
BCAR1 Y387
BCAR 1 Y234

Figure 3-5: Quantitative measurements of phosphorylation sites on BCAR1 in the
HER2 [123] dataset. As in the EGF7 [122] experiment, Y327 decreases in response
to addition of EGF, however, it increases in response to addition of HRG indicating
a ligand-specific, versus mechanotransduction, response.

3.3.3 Assignment of Src family kinase activation loop phos-

phorylation sites

Proteolytic peptide fragments can present an assignment problem as peptides can

often match multiple proteins within a proteome. This ambiguity typically occurs

when there are multiple isoforms or multiple gene products with a high degree of

similarity surrounding sites of modification. For quantitative data, there is no clear

way to deconvolute the degree to which each protein contributed to a particular

peptide measurement without further intensive experimentation. To address the issue



of ambiguous peptide/protein assignments, PTMScout generates an automated report

that allows users to immediately see all peptides within an experimental dataset that

could have been assigned to multiple proteins. Additionally, while viewing any peptide

assignment in the dataset throughout PTMScout, potentially ambiguous assignments

are highlighted for the user, and information is presented that may help with selecting

a particular protein among many choices. Specifically, for every protein that may

have contributed to the peptide measurement, PTMScout illustrates: 1) the degree

to which other datasets and compendia have annotated a protein, 2) the extent of

GO annotations, 3) protein domain structure, and 4) tissue expression, available

for Mouse and Human tissues, as well as NCI60 cell lines, incorporated from GNF

SymAtlas [107]. New protein assignments can be made using a web form, exported

as a new dataset, and then reloaded as a child experiment of the original. This

process allows scientists to explore a dataset using the assignments they prefer, while

faithfully maintaining the assignments chosen in the initial load of the dataset to

PTMScout.

To demonstrate the usefulness of PTMScout's peptide assignment tools, we exam-

ined the possible protein assignments of the trypsinized fragment representing activa-

tion loop phosphorylation of several Src family kinases from the EGF7 dataset [122].

Although the initial assignment of trypsinized peptide 'LIEDNEyTAR' was to the

proto-oncogenic tyrosine kinase LCK, based on its sequence the measured peptide

could belong to any of the proteins LCK, YES1, FYN, or SRC. All of these proteins

are Src family kinases, but closer examination of their individual characteristics can

help make a more informed protein choice. While FYN, SRC, and YES1 are ex-

pressed ubiquitously across all cell types, LCK is only highly expressed in leukocytes

and T-cells according to data imported to PTMScout from SymAtlas [107]. Since

the EGF7 experiment was performed on human mammary epithelial cells (HMECs),

which express an extremely low level of LCK mRNA, it is unlikely that the peptide

measured resulted from the cleavage of LCK. Among FYN, SRC, and YES1, based on

relatively similar mRNA expression in epithelial type cells, FYN is the protein with

the most GO annotations. There are three possible isoforms of FYN (FYN-1, FYN-2,



FYN-3) that match the given sequence. The majority of experiments and compendia

have preferentially chosen isoform B, the canonical sequence of FYN. In the absence

of any external confirmatory experiments, the combination of all relevant information

indicates that the most informative selection for the peptide 'LIEDNEyTAR' in the

EGF7 dataset is FYN isoform B.

3.3.4 Unsupervised learning highlights roles for proteins in

endocytosis of EGFR

PTMScout can be used to explore the characteristics enriched in subsets created by

unsupervised learning algorithms. The intent of unsupervised learning is to partition

the members of a dataset into clusters based on similar quantitative measurements.

This dataset reduction may then highlight interesting points of biology based on

shared functionality in the cell. In addition, novel pathway components with unknown

function can be hypothesized to share similar function or similar pathway effectors.

An example of unsupervised learning applied to a quantitative PTM dataset appears

in the experimental study of the EGF4 experiment by Zhang et al [132]. Using a self-

organizing map (SOM) [51], nine potential signaling modules were created based on

similar dynamics. Two of these clusters were explored in depth: one cluster included

EGFR Y1173 as well as several proteins known to bind directly to the receptor, while

the second cluster included several proteins known to be involved in endocytosis. The

'endocytosis' cluster contained sites whose phosphorylation reached maximum levels

relatively late, at ten minutes, and were strongly dephosphorylated at thirty minutes.

Two members of this cluster had no known function in the EGFR network, proteins

known at the time as Ymer and Chr20 ORF18 , also known as CCDC50 and RBCK1,

respectively. Based on their grouping with phosphorylation sites on endocytic pro-

teins STAM1, STAM2, EPS15, ACKI and ANXA2 the authors proposed a role for

Ymer/CCDC50 and Chr20 ORF18/RBCK1 in endocytosis and trafficking of EGFR.

Since that time RBCK1 was found to be involved in endocytic pathways following cy-

tokine stimulation [112], and Ymer/CCDC50 was found to suppress ligand-mediated



down-regulation of EGFR [109], thereby validating the original hypothesis derived

from unsupervised learning.

The type of observation made in Zhang et al. [132], regarding a common endo-

cytic functionality of several proteins in a cluster, involves extensive familiarity with

the proteins and intensive manual curation. To determine if PTMScouts enrichment

analysis of clusters could help bypass the onerous task of determining similarity, we

evaluated the clustering solution given in Zhang et. al. through the arbitrary group-

ing interface of PTMScout. The interface to arbitrary data partitioning currently

involves: exporting a dataset, appending it with cluster assignments, and then im-

porting the appended file for enrichment analysis. The endocytic cluster highlighted

in Zhang et al. was enriched for proteins containing the domains 'UIM', ubiquitin

interaction motif, and 'VHS', which are both indications of endocytosis according to

Pfam [29]. Additionally, this cluster was enriched for dynamic terms: "peak phos-

phorylation" at ten minutes and "peak down regulation" between ten and thirty

minutes.

To further investigate the functional assignments of phosphorylation sites with

temporal dynamics featuring peak activation at ten minutes followed by a quick de-

phosphorylation between ten and thirty minutes, we created a subset of data with

these features using the data-driven subset selection interface. Specifically, we re-

quired phosphorylation at ten minutes to be 10% greater than phosphorylation at

five minutes and 50% greater than phosphorylation at thirty minutes. This pro-

duced the subset shown in Figure 3-6, which includes the seven phosphorylation sites

from the SOM endocytic cluster as well as phosphorylation sites on PTPN18, TFRC

and CAV1. TFRC and CAVI are both known to be involved in endocytosis, but

functional characterization for PTPN18 in the EGFR pathway has not yet been elu-

cidated. Based on the inclusion in this cluster, PTPN18 may also participate in the

endocytic pathway. Another possibility is that phosphorylation of Y389 on PTPN18

may play a role in the negative regulation of EGFR since the temporal profile for this

site follows so closely with the phosphorylation dynamics of the negative regulation

machinery of endocytosis.
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Figure 3-6: Extended endocytic subset from the EGF4 dataset. (A) The subset of the
EGF4 dataset where phosphorylation at ten minutes is at least 10% higher than at
five minutes and phosphorylation at ten minutes is at least 50% higher than at thirty
minutes. This subset includes all members of the SOM trafficking cluster from [132] as
well as sites on PTPN18, CAV1, and TFRC. (B) Dynamics of the extended endocytic
subset.

3.3.5 Trypsin is potentially limiting in measurement of acety-

lation and '[GS]k' is an acetylation motif specific to

RNA binding proteins

The AcK dataset [14], published in August 2009, is one of the most recently loaded

experiments in PTMScout. This single dataset was larger than all other large-scale

measurements of acetylation recorded in Uniprot (version 15.8, released in Septem-

ber 2009). Upon comparing it with curated acetylation datasets using the compari-

son tool implemented in PTMScout, we found that only approximately 2.5% of the

approximately 3,200 acetylated peptides in the AcK dataset have been previously

detected. If we include Uniprot annotation records that extend acetylation knowl-

edge by predicted similarity among species, protein families, and other non-strict

annotations, this fraction increases only to 5%. Although the AcK dataset as orig-

inally published [14] contains 3,885 acetylated peptides, PTMScout contains only

3,286 acetylated peptides, since the remaining peptides were given nucleotide record

identifiers. PTMScout handles only proteomic accession types.



PTMScout allows users to view a breakdown of their dataset by annotation terms

incorporated in the database (such as GO annotations, domain structures, kinase pre-

dictions, etc.), through the Experiment Summary functionality of PTMScout. Table

3.3 represents the top terms for GO Molecular Function (MF) and predicted Pfam

domains of the AcK dataset [14]. One of the top MF annotation terms is 'None' (i.e.

no MF annotation), indicating that many of the proteins acetylated in this dataset

are not yet annotated with regards to function. The domain information in Table 3.3

represents the number of proteins containing the indicated domains in the dataset.

As can be seen from this table, acetylation frequently occurs on proteins containing

'RRM_1' domains, which are thought to be an indication of an RNA binding pro-

tein [29]. This information is consistent with the prevalence of the 'RNA binding'

term in the GO MF breakdown. Acetylation of histone proteins is present, as ex-

pected, but there is also a significant degree of acetylation on signaling proteins, as

indicated by domains such as 'Pkinase', 'SH3_1', 'PH' and 'SH2'. Figure 3-7 illustrates

a motif logo [17] for the entire AcK dataset, indicating the amino acid frequencies

surrounding the site of acetylation. Surprisingly, there is an abundance of lysines

surrounding the central modified lysine, with the exception of those positions most

proximal (-3 to +2) to the central residue. This systematic enrichment of lysine in the

vicinity of acetyllysine indicates that trypsin, which cleaves peptides to the C-terminal

side of lysine and arginine residues, may not be the most efficient protease for high-

throughput analysis of the acetylome, since it may be producing peptides too small to

be analyzed and sequenced by reverse-phase liquid chromatography mass spectrome-

try (LC-MS). Clearly this technique was successful in identifying thousands of sites;

however, the motif analysis would suggest that an improved approach might be to

combine several samples processed using different proteolytic enzymes to achieve a

more comprehensive coverage of the acetylome.

Acetyl transferases, like kinases, are thought to recognize linear amino acid se-

quences surrounding the site of modification [53]. The motif '[GS]k' (an acetyllysine

preceded by a glycine or serine) was found to be a consensus sequence for two related

acetyl transferases, CBP and p300, using direct substrate identification with recom-



Figure 3-7: Summary: at-a-glance feature for the AcK dataset [14] includes a fre-
quency motif logo [17] representation of all singly acetylated sites aligned on the
central modified residue. There is a high frequency of lysines in all positions except
those immediately proximal to the central residue.

binant acetyl transferase [7]. In addition to identification of a motif for these acetyl

tranferases, the authors looked for an expanded role for acetyl tranferases beyond the

canonical roles of histone and transcription factor modification, and found proteins

such as Rchl, a nuclear importin, to be acetylated by CBP. We chose to look at the

subset of acetylated sites in the large AcK experiment [14] that matched the con-

sensus motif of CBP/p300 by searching for '[GS]k' sequences. This subset selection

returned 656 acetyllysine sites, approximately 20% of the entire dataset, of which 292

were 'Sk' sites and 364 were 'Gk'. Histone proteins, as identified by the presence

of a histone domain, are not significantly enriched in this subset, in agreement with

the hypothesis that CBP/p300 can acetylate both histones and non-histone proteins.

However, proteins responsible for acetylation of histone proteins are enriched in the

subset of acetylation sites possessing the '[GS]k' motif, as indicated by enrichment

of GO Biological Process (BP) terms histone H3/H4-K5/H4-K8/H4-K12 acetylation

and GO Cellular Compartment (CC) term 'histone acetyltransferase complex'. Ad-

ditionally, acetylation of 'RRMl' domain-containing proteins is enriched within this

subset, specifically for acetylation within the domain itself. If '[GS]k' is indeed specific

to CBP/p300 recognition, our PTMScout results indicate that CBP/p300 is respon-

sible for acetylation of RNA binding proteins and proteins indicated to be involved

in histone acetylation.



Terms for GO Molecular Function and Pfam domains for the AcK exper-

with the highest incidence. The number of terms present in the dataset

the total number of proteins with that GO term or at least one of the

indicated domains. There are 1,662 unique proteins in the dataset.

GO:MF No. Pfam Domains No.
Prot. Prot.

protein binding
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DNA binding
ATP binding

protein homodimerization activity
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transcription factor activity
identical protein binding

structural constituent of ribosome
transcription coactivator activity
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transcription factor binding
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protein N-terminus binding
protein C-terminus binding

zinc ion binding
transcription activator activity

calcium ion binding
enzyme binding

transcription corepressor activity
GTPase activity

protein heterodimerization activity
ubiquitin-protein ligase activity

actin binding
translation initiation factor activity

single-stranded DNA binding
protein serine/threonine kinase activity
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3.4 Methods

3.4.1 Database and data resources

The master database underlying PTMScout was built using MySQL. The database

schema is outlined in Figure B-1. External, publically accessible protein information,

including sequence, alternate accessions, gene names, and species is retrieved from

Table 3.3:
iment [14]

represents



NCBI GenPept, Refseq [84], IPI [48], or Swiss-Prot [114], depending on the accession

type given in a new dataset. Gene ontology terms are from The Gene Ontology

consortium [5]. Species-specific annotation files and the current ontology file are

downloaded from the Gene Ontology website and GO programming packages were

used to parse annotation and ontology files. GO terms based on inferred electronic

annotations (IEA), which have not undergone further curation, are not stored in the

PTMScout database. Results in this paper were produced using downloaded files

from GO v1.2 and annotation files retrieved December 12, 2009. Protein domain

information comes from Pfam [29]. When possible, Swiss-Prot identifiers are used to

parse domains from the current Pfam release. When lookup in the stand-alone Pfam

release is not possible, the Pfam-A HMM library and the BioPerl Hmmpfam package

are used to predict domains in a protein sequence. Predictions with scores less than

le-5 are considered, and when there is overlap between domains, the domain with the

most stringent score is kept. Results in this paper were produced from Pfam release

23. When a phosphorylation site falls into a predicted structural domain, we include

this as a separate annotation of enrichment, denoted 'Pfam site'. Gene expression

information comes from the Genomic Institute of the Novartis Research Foundation

(GNF) SymAtlas project [107]. Expression information, analyzed by gcRMA, for

human and mouse tissue types and the NCI60 cell lines were downloaded and placed

in PTMScout as expression tables. GNF Symatlas annotation tables are used to link

PTMScout proteins with appropriate tissue/NCI60 mRNA expression.

For phosphorylation sites, PTMScout currently includes predictions of the re-

sponsible kinases and binding partners from Scansite [76], when available. Scansite

predictions for an input peptide sequence are automatically retrieved, parsed and then

stored in prediction tables of PTMScout. PTMScout Scansite prediction stringencies

correspond with suggested scores from Scansite. Ambiguous peptide-protein assign-

ments are identified by exact match of the full-length peptide sequence identified by

MS among all of the protein data sources imported to PTMScout, which is also ex-

panded to include proteins within the relevant species by searching the RefSeq [84]

database for a peptide match.



Curated datasets of phosphorylation sites were obtained from Phospho.ELM [22]

and PhosphoSite [39], by request. Automatic curation of Uniprot [114] for phospho-

rylation and acetylation is performed by searching for both large-scale analysis terms

(example search: [PHOSPHORYLATION LARGE SCALE ANALYSIS AT]) as well

as modified residues (search: [MOD-RES]). Uniprot search results were then parsed

and placed into a PTMScout loadable format.

Kinase activation loop predictions are based on finding the conserved amino acid

sequence 'DFG' to the N-terminal side of the modification and a flanking 'APE' to

the C-terminal side [75]. This exact requirement matched 58% of all kinase domains

in the PTMScout database version 1.1 as of January, 2009. We used ClustalW2 [56]

to align all kinase catalytic domains within PTMScout, which at the time included

306 domains. We found that 180 of them had both the conserved 'DFG' and 'APE',

while 70 had only the conserved 'DFG' sequence. Those that do not match the

motif exactly usually have partially conserved flanking sequences, such as 'DYG'

or 'SLE'. On average the two surrounding motifs were within 25 amino acids of

each other, and 83% of proteins contained the motifs within 22 to 27 amino acids

of each other. Based on the resulting ClustalW2 alignment, we developed a set of

rules for identifying activation loop modifications. First, if the amino acid sequence

surrounding the modification site contains a 'DFG' and an 'APE' motif, or degenerate

sequences 'D[FPLY]G' and '[ASP][PILW][ED]' spanning less than 35 amino acids, it

is marked confidently as being within the activation loop. If degenerate matches are

made and are more than 35 amino acids apart, then it is marked as potentially being

within the activation loop.

3.4.2 Calculations

Selection of foregrounds occurs at the level of proteins, the level of experimentally

measured peptides, or the level of individual sites of post-translational modification,

depending on the category of data or annotation being used for the selection. For

example, Gene Ontology terms and structural domain criteria will select subsets at

the protein level, whereas quantitative data will select at the measured peptide level,



and enzyme specificity predictions and sequence motif features will select at the PTM

level. We define the p-value for enrichment of a characteristic in a foreground, relative

to a background, as the probability that a characteristic would be as enriched, or more

enriched, if the foreground were randomly selected from the full data. This quantity

can be calculated exactly using the hypergeometric distribution. The probability

of having k or more labels in the foreground occurring by random chance when we

choose any n objects from the background, size N, having a total of K objects with

that same label, is calculated as:

min(n,K) (K) (N K)

p(k')= V n- k31
k'=k n

In order to determine k, K, n, and N for a label, translation from the selection

criteria specificity to the label specificity of interest is performed. Not all mappings

of selection specificity to label specificity are 1:1. For example, quantitative mea-

surement selection may lead to redundant selection at a protein level. A search for

significantly enriched amino acid sequence motifs was performed using a previously

published greedy search algorithm with a search index of +/-7 amino acids surround

the site of modification and a branch cutoff term of 0.01 [46].

Categorical multiple hypothesis correction can be user-corrected through the PTM-

Scout interface. Bonferroni [24] is the most stringent correction method, where the

corrected alpha is the desired p-value divided by the number of labels tested. False dis-

covery rate is implemented according to the method of Benjamini and Hochberg [10].

PTMScout can be found online at http://ptmscout.mit.edu. A tutorial for us-

ing PTMScout to obtain the results presented in this paper can be found in the

PTMScout documentation. Unless otherwise noted, results are from version 1.2 of

PTMScout, which includes Pfam Release 23, Gene Ontology annotations from ver-

sion 1.2 downloaded on December 12, 2009, and Uniprot compendium results from

Release 15.11. All protein records in PTMScout version 1.2 have been retrieved af-

ter December 11th, 2009. All terms considered enriched in the results have an FDR

adjusted p-value of 0.05 or better, unless noted otherwise.



3.5 Conclusions

PTMScout provides uniform, web-based access to MS measured PTM data and au-

tomates much of the feature selection and information extraction that is currently

performed manually following MS analysis of biological samples. For example, residue

position assignment and comparison to PTM data compendia for discovery of novel

PTM measurements are intensive manual operations that are performed automati-

cally in PTMScout. Additionally, programmatic access of protein databases by PTM-

Scout during dataset loading allows for protein assignment error checking, thereby

correcting typical errors in protein assignment including redirected records, updated

records with significantly changed sequence information, and species assignment er-

rors. While PTMScout can automatically handle most protein record redirections,

protein errors causing terminal failures due to sequence mismatch between the peptide

and the assigned protein are reported in an error log; erroneous species assignments

can be seen easily in the dataset summary function of PTMScout. Furthermore,

PTMScout allows for user-defined uploading of their own mass spectrometry datasets.

Data analysis by subset selection and subsequent enrichment have proven to be

useful tools for deriving biological hypotheses. However, hypothesis generation is

currently limited by metadata annotations. For example, the endocytic cluster found

in the EGF4 experiment [132] had only a few GO annotations indicating a role in

endocytosis despite several reports demonstrating that the majority of proteins in the

cluster participate in the endocytic pathway. Despite these limitations, the cluster

featured enrichment of UIM and VHS domain containing proteins, thereby enabling

hypotheses regarding phosphorylation of specific sites and regulation of endocytosis.

An expanded endocytic cluster was generated in PTMScout through use of relative

quantitative dynamics, leading to identification of another protein which may be in-

volved in EGFR endocytosis. Although the richness of hypotheses and observations

is expanded by inclusion of relative quantitation across multiple conditions, PTM-

Scout is also successful at deriving insight from datasets without quantitation, as

demonstrated with the AcK dataset [14].



By considering the composition of the entire dataset, enrichment testing provides

a way to uniquely label a dataset partition. An interesting cluster highlighted in the

EGF4 study was an 'early response cluster', which was composed of several known

EGFR binding proteins. Interestingly, enrichment for quantitative dynamic features

failed to corroborate this feature as being specific to that cluster alone. Despite the

fact that all members of the cluster experienced a large increase in phosphorylation

within the first five minutes of stimulation, this 'early response' label is applicable

to more than two-thirds of the entire dataset and therefore, although this label is

correct, it is not a unique feature of that cluster compared to the remaining dataset.

By performing enrichment of subsets compared to the background of the dataset

itself, versus the entire phosphoproteome or acetylome, experimental biases, such as

antibody specificity or MS fragmentation patterns, are eliminated.

PTMScout is a widely and readily accessible, user-friendly, web-based PTM database

with multiple bioinformatic tools to enable automated feature selection and subset

generation. Here we have demonstrated the application of PTMScout to multiple

published phosphorylation and acetylation datasets, leading to multiple hypotheses

regarding the potential functionality of various proteins and PTM sites. As more

experimental datasets are loaded into PTMScout additional biological insight, not

currently available from individual datasets, will emerge, as we are able to compare

the regulation and response of individual phosphorylation sites under a variety of

conditions. Application of PTMScout to quantitative PTM datasets will facilitate

the main data analysis challenge facing high-throughput PTM proteomics, and will

provide putative functional assignments to a greater percentage of previously unchar-

acterized sites.



Chapter 4

High-Throughput Quantitative

Phosphoproteomic Dataset

Analysis Using Combinatorial

Parametric Unsupervised Learning

4.1 Summary

Many cellular receptor systems utilize phosphorylation as a means to transduce ex-

tracellular signals into phenotypic responses, such as changes in migration or prolif-

eration. The extent of phosphorylation modifications in these signaling cascades is

widespread, however the biological function of the vast majority of modification sites

is currently unknown. Quantitative mass spectrometry (MS) is capable of measuring

the relative phosphorylation of hundreds to thousands of individual peptides under

various signaling conditions, which may be useful in understanding the normal func-

tion and regulation of these sites, as well as their role in disease. Unsupervised learning

methods have proven useful in highlighting interesting biology within MS datasets,

but its implementation has been limited to a few datasets and the use of single clus-

tering methods, without systematic exploration of the space of possible methods.



We have employed unsupervised learning in such datasets in order to gain an under-

standing of phosphorylation events in the epidermal growth factor receptor (EGFR)

network. We hypothesize that the parameters of unsupervised learning, including

data pre-processing, distance metric, number of clusters, and choice of algorithms

will play an important role in deriving specific types of biological understanding.

Therefore, we apply a combinatorial parametric approach to unsupervised learning,

producing hundreds of cluster sets using comprehensive combinations of a select set

of data transforms, distance metrics, algorithms, and targeted number of clusters. To

evaluate the biological information represented in this large number of cluster sets,

we employ automatic enrichment analysis of biological labels, such as predictions of

the responsible kinase and Gene Ontology terms. We have found that in some cases,

a set of parameters can optimally derive clusters with enrichment in a particular

type of biological labels. In other cases, a combination of several parameters is better

suited for deriving the full spectrum of possible enrichments in a category of biological

information in a given dataset. These dependencies of parameter and information en-

richment are dataset-dependent. Additionally, the integration of clustering analyses

produces a metric for robustness of phosphopeptide co-clustering that may pinpoint

phospho-specific signaling interactions within the network. This method correctly as-

sociates EGFR phosphorylation sites with their known immediate effector proteins;

for example, EGFR Y1172 is closely associated with phosphorylation of She at sites

Y427, Y349, and Y350; whereas EGFR Y1069 is associated with phosphorylation of

Cbl on three tyrosine residues, but most strongly with the phosphorylation of Cbl

at Y552. Correspondingly, the SH2 domain of Shc has been shown to bind EGFR

Y1172, while EGFR Y1069 phosphorylation binds the E3-ubiquitin ligase Cbl, which

is associated with internalization of the receptor. Site-specific characterizations of

known relationships, as well as generation of novel relationships, may be generated

using this method, which may aid in our ability to construct phosphorylation-specific

network models.



4.2 Introduction

In receptor tyrosine kinase (RTK) networks, such as the epidermal growth factor re-

ceptor (EGFR), phosphorylation plays a central role in the translation of extracellu-

lar cues into phenotypic changes, such as differentiation, proliferation, and migration.

Phosphorylation on proteins in the RTK network induce a variety of signaling events

including protein-protein interactions, enzymatic activation and inactivation, and cel-

lular localization changes, such as translocation to the nucleus or recruitment to the

plasma membrane. Understanding RTK networks, and the phosphorylation that oc-

curs within them, will be essential for developing representative signaling models.

These models are helpful for representing both typical and dysregulated networks.

Dysregulated RTK networks play an important role in disease progression. For ex-

ample, EGFR mutations and amplification are associated with a variety of cancers.

Mass spectrometry measurement of phosphorylation events in cellular signaling

networks is providing immense insight regarding the resolution of protein modifica-

tions, greatly increasing our understanding of the specific modifications occurring in

the cell as well as their relative changes in response to network perturbations, such

as ligand stimulation or kinase inhibition. The success of MS methodologies in quan-

tifying increasingly larger degrees of measurements, in both conditional and dynamic

space as well as more sites on more proteins, means that the datasets are beyond the

scope of manual analysis. A few groups have turned towards unsupervised learning in

attempts to reduce the dimensionality of their datasets into comprehensible biological

network components for a better understanding of the underlying biology [78, 132],

motivated by the success of such applications in the field of microarray expression

data and other types of high throughput biological data analysis. Phosphoproteomic

data represents a new challenge in unsupervised learning and to date no extensive

analysis of unsupervised learning has been applied to a dataset of this type.

Application of unsupervised learning to biological datasets is extensive and in-

cludes a seemingly endless option of algorithms, such as Kmeans [110], hierarchical

clustering [25], self organizing maps [108], and affinity propagation [30]. Unsupervised



learning algorithms seek to group a multidimensional dataset into clusters where

intra-cluster differences are minimized and inter-cluster differences are maximized.

Therefore, the criteria used to judge cluster fitness, i.e. the distance metric, is an

important factor in determining the final clustering solution [21,43,83]. Also, trans-

formations of the data can similarly effect the relationships between the data vectors,

and will effect the final result [21,115]. In addition to choosing an appropriate algo-

rithm, distance metric, and data transformation, scientists are faced with also having

to determine a suitable number of clusters (K) in which to partition their dataset

since few algorithms incorporate concurrent optimization of K. A variety of meth-

ods for determining the natural cluster structure of a dataset have been proposed,

see [32] for an example of their comparative performances using a set of microarray

experiments. Taken as a whole, the historical application of unsupervised learning to

microarray data, as well as other large biological datasets, paints an overwhelming

picture of variability and possibility.

In this work we propose a semi-automatic framework that capitalizes on protein

annotation information, such as Gene Ontology terms, kinase predictions and lin-

ear amino acid sequences. Enrichment of these terms allows for a high-throughput

evaluation technique for measuring the performance for a set of algorithms, distance

metrics, data transformations, and clustering set sizes (K). We apply this framework

to dynamic phosphoproteomic measurements of the EGFR network in human mam-

mary epithelial cells. We find, as has been seen in microarray analysis [21], that the

exact choice of all the possible variables in clustering analysis is heavily dependent on

the type of information desired from such an analysis as well as the specific dataset

in question. Additionally, we find utility in taking the vast array of clustering solu-

tions as a whole, both in the robust biological hypotheses and stories that result and

their direct overlap with known protein network information. We find that highly

co-regulated phosphorylation dynamics, as viewed by the robustness of clustering so-

lutions, recapitulates known protein interactions as well as known phosphorylation

site specific interactions. We can recapitulate Cbl recruitment to EGFR Y1069 as

well as the shared functionality of Y1172 and Y1197 in recruiting She and Grb2 to the



receptor. The information derived in the various applications of this process will help

inform our understanding of the role and regulation of individual phosphorylation

sites in RTK networks.

4.3 Results

In this work we will focus on measurements of the epidermal growth factor receptor

(EGFR) network. We evaluate a seven time point measurement of human mammary

epithelial cells (HMEC) stimulated with a saturating concentration of EGF, where

measurements were taken before stimulation (0 min) and then subsequently at 1, 2,

4, 8, 16, and 32 minutes following EGF addition [1221. Enrichment and fractionation

steps focused on capturing proximal EGFR tyrosine phosphorylation signaling events.

This dataset represents extensive measurement of the phosphotyrosine EGFR signal-

ing network, with 204 unique phosphopeptide measurements and high resolution at

early time points. Most phosphopeptides represent singly phosphorylated residues,

but eleven peptides are doubly phosphorylated. Throughout this work we will refer

to this dataset as EGF7 for brevity.

It has been shown in unsupervised learning of expression datasets that varying in-

dividual components of an unsupervised learning system, such as the transform or the

distance metric will perturb the measured relationships in various ways, impacting

the final clustering solution [21, 43]. To demonstrate this holds true in phosphopro-

teomic datasets, we clustered the EGF7 dataset into nine clusters using Kmeans and

self organizing map (SOM) algorithms. Figure 4-1 illustrates the clustering solutions

of a single parameter change relative to a parent set using Kmeans, a "normMax"

transformation (each peptide vector is normalized to its own maximum value) and

Euclidean distance. Since the solution of Kmeans and SOM is dependent on the

randomized staring point, the random seed was set as the same value in every imple-

mentation. Visually, one can see that changing the algorithm, the distance metric, or

the transformation heavily effects the final solution. Mutual information can be used

to quantify the total difference between any two sets. In this example, the distance



metric change from Euclidean to Cityblock has the smallest impact, whereas changing

the algorithm has the largest impact on the final solution.
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determine a method in which to judge the fitness of a particular clustering solution.

We choose to judge fitness using known annotations of the biological molecules in the

dataset, specifically information about the structure and function of the proteins as

well as information about the regulation and function of the phosphorylation sites.

We also explore the resulting dynamic partition labels based on relative levels of

phosphorylation at each time point. This fitness test is performed in an automatic

fashion; labels in each biological and dynamic metric are tested for statistically sig-

nificant overrepresentation within every cluster of a set. We control for type I error,

or an excess of false positives due to multiple hypothesis testing, by applying the false

discovery rate (FDR) procedure [10] at the level of each set within each metric. See

Figure 4-2B for a depiction of an MCA set, enrichment, and correction. Table 4.1

defines the biological metrics used in this study as well as metric abbreviations that

will be used throughout the remaining work.

Table 4.1: Description and categorization of metrics. There are a total of 13 metrics

analyzed. The metrics tested describe information regarding the protein a peptide

arises from, the particular site of phosphorylation, or the quantitative data. The

abbreviated labels used throughout this work are given.

Metric Level Metric Short Name

Gene Ontology: Molecular Function F
Gene Ontology: Biological Process P

Protein Metrics Gene Ontology: Cellular Compartment C
Pfam Domains Pfam

Domain Phosphorylation Pfam Site

PhosphoELM Kinase Annotations PELM Kinase

Site Metrics Linear sequences Motifs
Scansite Kinase Predictions Scansite Kinase
Scansite Binding Predictions Scansite Bind
Minimum Phosphorylation MinValue
Maximum Phosphorylation MaxValue

Dynamic/ Maximum Positive Change MaxPosChange

Quantitative Metrics Maximum Negative Change MaxNegChange

Motivated by the hypothesis that altering the parameters of unsupervised learn-

ing, thereby perturbing the relationships between phosphopeptide measurements, will

yield different but meaningful biological enrichment, we designed a semi-automatic



framework for testing the application of a variety of parameter combinations. Fig-

ure 4-2 illustrates the workflow for applying combinatorial analysis to a biological

dataset of interest. The data is first subjected to a set of transformations before

being clustered using a combination of algorithms, distance metrics, and target set

sizes. Each of these parameters is combined with the others producing M sets of

sets, on the order of 500 sets total, which we will refer to as a "Multiple Clustering

Analysis", MCA. The MCA size, and therefore the number of parameters chosen in

each round, is limited in order to perform all subsequent computational steps on an

average computer. Biological label enrichment in each cluster of all sets is calculated

using a hypergeometric test and deemed significant if it falls below an FDR corrected

alpha value of 0.05. Parameters that perform poorly with respect to production of

label enrichment can be removed in subsequent rounds. Iterations of parameter se-

lection, clustering, enrichment and parameter rating can continue until improvement

ceases, and then the loop is exited with a final MCA. This final MCA will then be

used in further analyses with the aim of generating testable hypotheses concerning

interacting and tightly regulated phosphorylation sites.

4.3.1 Evaluation of unsupervised learning parameters in the

EGF7 dataset

A number of MCA iterations were applied to the EGF7 dataset. Each round con-

sisted of a selection of the full parameter set listed in Table 4.2, where the final MCA

parameters are listed in the 'Final' column of Table 4.2. The relationships between

the parameters of unsupervised learning and particular biological information were

evaluated by searching for parameter enrichment in rank-ordered lists of the MCA

sets based on total number of labels enriched in each of the thirteen categories, Fig-

ure 4-3A. Kmeans appears to be particularly useful at producing enrichment in Pfam

domains, GO BP and GO MF terms. GO CC, another metric describing protein

level information, is not composed significantly of any particular type of algorithm.

There are a few terms that consistently appear in the bottom 25% of rankings, such
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Figure 4-2: The workflow and terminology of parametric combinatorial analysis of
biological datasets. A) Quantitative, high-throughput biological measurements are
subjected to a battery of clustering analyses, which are combinatorial applications
of a chosen subset of parameters in unsupervised learning. A "Multiple Comparison
Analysis", MCA, is a set of clustering solutions produced in the iteration of one loop.
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clusters. Enrichment is calculated for each cluster for all labels in a set of biologi cal
metrics. Type I error is controlled for each metric type by using the False Discovery
Rate (FDR) procedure across all clusters in a set.
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as K=5 and K=10. When sets with parameters of K=5 and K=10 are removed, the

average enrichment per set in all categories generously improved. Conversely, removal

of affinity propagation (AP) clustering, which appears in the top 25% of several cat-

egories, decreases enrichment per set in all categories. This evaluation technique was

employed in each round of MCA generation to create a final, satisfactory parameter

set.

Table 4.2: The parameters considered across multiple iterations of MCA creation and

the parameter subset used for MCA final. See Methods for exceptions in algorithms

with regard to distance metric and K limitations.

Parameter Full Set Final Set
None None
zscore zscore

normMax normMax
center rangeScale

Transforms pareto loglo
rangeScale power(0.5)

loglo differential
rangeScale-differential rangeScale-ifferential

FFT zscoreSFT
zscore-FFT normMaxiogl

normMaxnloglO
K 5,10,15,18,20,24,25,28,30,35,40 15,20,25,30

Euclidean Enclidean
Correlation Correlation
CityBlock CityBlock

Distances Cosine Cosine
Chebychev Chebychev
Minkowski
Spearman

____________ /MI

Neut Neut
Affinity Propagation Affinity Propagation

Algorithms Kmeans Kmeans
SOM SOM

Hierarchical

In order to find those sets that produce the best enrichment in all categories, the

intersection of the best 25% of sets was taken. Surprisingly, the intersection produced



Data Type Parameter F - C P Pfam

Transform normMax pow normMax normMax log10
Protein K 23,25,27,30 5,10 5,10 23,25,27,30 5,10 25,30 5

Distance city, euclid corr cheby, city corr, eucl euclid corr city, euclid corr
Algorithm AP, Kmeans Neut Kmeans AP, Kmeans Neut Kmeans

PfM Site motfs Scasite linase Scansite Rind PELM Kinase
Best $ Best (j@ Best MBest Worst Best Worst

site Transform loglo FFT, zscore loglo, pow log10, pow diff, log10, pow zscore
K 25,27,30 5.10 25,30 5 5,10 5,10 23 5,10

Distance city eucl eucl city, eucl eucl eucl city corr. eucl
Algorithm AP Kmeans Kmeans SOM Kmeans SOM Kmeans AP Kmeans, Ncut

Minv-lue MaxValue MaxPosChane Mafg ang
Best Best Wn Best $t i Best m

Dynamics Transform diff, zscore FFT normMax, zscore diff, FFT zscore FFT zscore diff, FFT
K 5 17,25,30 5,10 17,25,30 5 17,25,30 5

Distance corr, cosine city corr city
Algorithm Hierarchical Kmeans, Ncut Kmeans Hierarchical AP, Kmeans AP, Kmeans

Figure 4-3: Unsupervised learning parameters and biological enrichment dependencies. Each set in an early iteration of MCA,
comprised of 665 sets, was ranked according to performance for enrichment of labels in each biological metric. Overrepresentation
of parameters in the best and worst quartile is listed, if it exists. Overrepresentation is judged by a hypergeometric test value
less than le-4. Abbreviations: Distances: (city)block, (euclid)ean, (cheby)chev, (corr)elation; Transforms: normMax (each
vector normalized to its own maximum), (diff)erential, (pow)er-square root, log1O - log base 10, FFT-fast frequency transform.
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a null set; no single set appears in the best 25% of all categories. In order to fur-

ther evaluate the relationship between parameters and particular types of biological

information, we did a pairwise comparison of the best and worst ranking quartile

of sets across the thirteen metrics. Figure 4-4 indicates that for both protein- and

dynamic-level information, there is a good deal of overlap within the same category

type. Generally, when there is a high degree of protein-level enrichment, there tends

to be a large degree of enrichment in other types as well. Additionally, we observe

clustersets with the best enrichment in site-level metrics, specifically Scansite pre-

dictions and Phospho.ELM kinase annotations, have significantly decreased overlap

with sets that perform the best in dynamic-level enrichment.

We utilized mutual information (MI) as another method for studying the similarity

of clustering solutions and the parameters that gave rise to the solutions. Specifically,

we use an MI estimation algorithm, MIST [50], as the metric for set similarity. The MI

value for every pairwise comparison of sets within MCAjina is shown in matrix form

in Figure 4-5A. Hierarchical clustering was used to group the MI values to determine

if any particular aspect of clustering drives similarity and dissimilarity of clustering

solutions. Based on groups generated in the hierarchical clustering of the MI ma-

trix, we found the highest similarity was typically determined by the transform and

then secondarily by the algorithm. Only at very small groupings of the clustergram

are relations sorted by distance metric. Examples of groups that were all described

by a single parameter set are shown as labels on the heatmap, which demonstrates

the differential, FFT, log10, and rangeScale transforms mark the largest separation

between set architectures in the MCA. Next, the algorithms SOM and Ncut appear

to be distinguishable, whereas the remaining unlabeled sections are composed of a

indistinguishable mix of algorithms, distances and transforms.

There are many methods that may be used to reconcile the currently popular

application of a single algorithm, distance metric, set size, and transform with our

proposed Mutliple Comparison Analysis, based on selection of some subset of the

MCA sets for individual analysis of a more traditional kind. One method is to sim-

ply choose the top performers in each of the categories for direct analysis. Here, we
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corrected alpha value of 0.05. The top right represents the pairwise comparison of the
best performing 25% and the bottom left is the comparison of the worst performing
25% of sets in each category.



propose selection of sets that represent the highest degree of dissimilarity in order to

understand the spectrum of possible results and biological enrichment, using joint en-

tropy as a selection criterion. The sets in an MCA are ordered based on their relative

impact on joint entropy when removed from the set. We found that selection of sets

by this order resulted in two important effects. First, selection by entropy suppresses

the selection of completely redundant sets within the selection, which agrees with the

goal of this method of set selection, i.e. to guarantee the most diverse set architec-

tures, Figure 4-5B. The second observation is that selection by joint entropy improves

selection for a variety of resulting biological enrichment, indicating that selection of

the most variable architectures will also yield the most diverse biological hypotheses

highlighted by enrichment. An example of the first five sets within MCAinai are

shown in Figure 4-5D.

An alternative to traditional analysis of individual sets is to evaluate the sets en

masse by looking at the biological enrichments that occur throughout a majority of

all sets in a MCA. Figure 4-6A indicates the top six biological labels enriched in

every category and the number of times they occur in MCAfinal. In some cases, the

number of times a label is enriched is larger than the number of sets in an MCA,

indicating that multiple clusters within some sets are annotated with that label. For

example, the label indicating maximum positive change occurring between 0 and 1

minute is enriched, on average, in three clusters of every set. Specific biological sto-

ries emerge from these redundant enrichments, for example several of these labels

denote the clustering of MAPK signaling components denoted by: MAPK activation

loop phosphorylation (motif 'HTGFLTEyVATRWYR'), biological process term 'Ras

protein signal transduction', and phosphorylation occurring within serine/threonine

kinase domains (Pfam Site: 'Pkinase'). Phosphorylation within tyrosine kinase cat-

alytic domains is also consistently seen (Pfam Site: 'Pkinase-tyr'), indicating that

several tyrosine kinases are potentially activated in a similar dynamic manner. We

see consistent grouping of proteins with similar domains, such as 'SH3_1' and 'UIM',

where 'UIM' is short for ubiquitin interacting motif. 'UIM' enrichment may indicate

the robust creation of a cluster involved in ubiquitin-mediated endocytosis of the
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receptor.

A randomized version of the data matrix was generated and then clustered using

the same set of parameters as MCAfinal in order to validate enrichment results and

measure the false positive rate. The rates of enrichment per cluster and the rate of

rejected hypotheses per test performed are shown in Figure 4-6B and C. As expected,

a dramatic increase in rate of enrichment of dynamic terms, i.e. null hypothesis

rejection, in the results of real data versus random data is seen. Specifically, it appears

that clustering is differentiating when increases in phosphorylation and maximum

phosphorylation occur. If we assume that all null hypotheses rejected in randomized

data are false positives, then Figure 4-6C depicts the false positive rate in three

random controls. The false positive rate for all categories is controlled below the

target alpha value of 0.05, sometimes 10- to 100-fold below. The only exception of

this is PELM Kinase annotations.

4.3.2 Inferring phosphosite-specific signaling layers through

robust co-clustering

Another layer of information that can be derived from the creation of an MCA is

the robustness of phosphopeptide co-clustering. We evaluate this by creating a "co-

occurrence" matrix, which consists of the value of the number of times any two phos-

phopeptides are seen in the same cluster within all sets of the MCA, Figure 4-7A.

Given the high variability of results in various parameters, this metric demonstrates

how stable the association is between any pair of measurements. We found there was

extremely significant overlap, on the order of 10-12, between the co-occurrence ma-

trix values and known protein interactions (based on GeneGO network information),

Figure 4-7B. This method performs better than random when used as a selection

criteria for protein interactions, Figure 4-7C. Figure 4-7D indicates the total number

of interactions deemed significant at a particular cutoff of co-occurrences. We eval-

uated our randomized matrices used in Figure 4-6, which were also subjected to the

MCAfinal parameters, as randomized controls for network information. The distribu-
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tion of co-occurrences for real and random data are roughly the same, indicating that

all implementations of unsupervised learning will produce robust co-clustering of ran-

domized data as well as real data. Figure 4-7D shows the number of co-occurrences

at a given threshold is roughly the same, however, the number of peptide pairs that

occur at values greater than 50 (or 10% of the time) drop off faster in random data

than in clustering of real data. Importantly, the randomized data control performs

no better at classifying known protein interactions than expected by random, Figure

4-7B and C.

An important difference between hypotheses derived from robust co-clustering of

phosphopeptide information and protein interaction information is that the resolu-

tion of the interaction, i.e. site-specific interactions in the case of clustered data. To

determine whether predictions via this method make biological sense, we evaluated

the layer of the network for which the most resolution is known, that of the EGF

receptor itself. Figure 4-8 shows the table of all peptide measurements occurring

on the EGF receptor in the EGF7 dataset and the ten phosphopeptides that most

robustly co-cluster with each receptor peptide. EGFR Y1172 and Y1197 are known

She (SHC1) docking sites. EGFR Y1172 has been shown to recruit the PTB do-

main of She wherease 1197 the SH2 domain [8]. In turn, She can recruit Grb2 [8],

thereby recruiting GAB 1, to the receptor layer. We see this functionality in the co-

clustering rankings; two phosphopeptides on She most closely co-cluster with Y1172

and also highly co-cluster with Y1197, although to a lesser extent. The top rank-

ing co-clustered site of Y1197 is on a protein called PDLIM1/CLIM1, a cytoskeletal

adaptor protein. Another site with known functionality on EGFR is Y1069, which

is responsible for recruiting the E3 ubiquitin ligase Cbl. EGFR Y1069 co-clusters

more often with Y552 on Cbl than any other site in the dataset. The dynamic plots

demonstrate that there is a large similarity between the upregulation of phosphory-

lation on sites Y1172, Y1197 and Y1069 and the marked difference between them is

the relative sustainment of Y1172 and Y1197, where as Y1069 undergoes a rapid and

more complete downregulation within the time points measured, Figure 4-8A. This

difference between EGFR site regulations is visible by eye and by inspection of the
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Figure 4-7: Robust co-clustering as a method of network inference. A) A hierarchi-
cally clustered heatmap of the MCAfinal co-occurrence matrix. The log transform
of the matrix, normalized by the total number of sets in the MCAfnal was used
(490 sets). Label A indicates a group of phosphopeptides that occur a large num-
ber of times with most other phosphopeptides. Label B indicates a second group
type of phosphpeptides that co-occur with only a subset of phosphopeptides. B) The
significance of selection for known network interactions when selecting by a binary co-
occurrence matrix, thresholded by the number of co-occurrences indicated by 'cutoff'.
C) The corresponding receiver operator curve for selection of network interactions by
a thresholded co-occurrence matrix. D) The number of significant interactions given
a co-occurrence cutoff and the number of annotated protein interactions.
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terms often enriched along with Y1069. Roughly 25% of the time, Y1069 appears in

a cluster whose enrichment includes maximum negative change in phosphorylation

between two and four minutes, a distinct difference between Y1069 and the other

phosphorylation sites on EGFR.

There are two instances of doubly phosphorylated forms of a peptide on the re-

ceptor, S991/Y998 and S1166/Y1172. From observations of the rank ordered lists of

co-clustered phosphopeptides, it appears both of these forms participate in distinctly

different groups compared to their singly tyrosine phosphorylated forms, Figure 4-8A.

It appears that Y998 moves from co-clustering with phosphorylations on proteins in-

volved in cytoskeletal and phospholipid signaling, as indicated by phosphorylations on

tensin-3 (TNS3), catenin delta-1 (CTNND1), PLCy-1 (PLCG1), and SHIP-2/INPPL,

to correlations with late-stage EGFR tyrosine signaling as indicated by transcription

factor phosphorylation, STAT5B/STAT5 (the peptide could be from either or both

STAT gene products), as well as MAPK and P13K signaling. The second ranked

phosphorylation association with S991/Y998 is the negative regulation site on a Src

family kinase, PTK6/Brk Y447. The dynamics of this group of phosphorylations are

marked by delayed onset and sustained through the remainder of the time course.

EGFR phospho-Y1172 moves from interactions with SHC1 to syntaxin-4 (STX4), a

known SNARE, a translation initiation factor, EIF4B, and ITSN2, which is thought

to be a link between endocytic membrane traffic and actin assembly, when doubly

phosphorylated on S1166 and Y1172.

Given that EGFR Y1069 associates very robustly with only one site of three

sites measured on Cbl, we evaluated the top rankings for all Cbl sites, Figure 4-9.

Although Cbl Y552 is the highest-ranking site for Y1069 on EGFR based on co-

clustering, the converse is not true. However, EGFR Y1069 does rank in the ten

co-clustering phosphopeptides with Cbl Y552, but a variety of other sites rank higher

than that of EGFR Y1069, including AHNAK a highly phosphorylated protein known

as neuroblast differentiation-associated protein, but with no apparent role known

in mature epithelial cells and the EGFR network. The remaining two sites on Cbl

share many top ranking sites, including phosphorylations on INPPL/SHIP-2, PLCG1,
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and LSR, i.e. lipolysis-stimulated lipoprotein receptor, all proteins involved in lipid

signaling. Cbl Y552 also associates strongly with a site on PLC-y-1, however its site,

Y771, is distinct from the sites strongly associated with Cbl Y455 and Y700, which

include PLC7-i sites Y783 and Y1253.

The top ranking co-occurrences for the two measured phosphopeptides on Shc are

seen in Figure 4-9B, which are as similar in overlap with each other as Cbl Y455

and Y700 and EGFR Y1172 and Y1197 are. Given the high similarity, but also

variability, between lists of sites, we sought a method in which to find concurrent

robustness of multiple phosphopeptides based on a particular co-occurrence cutoff

value. This method seeks to define supergroups of phosphorylation sites. In order to

visualize the resulting supergroups, we used the Systems Biology Markup Language

(SBML) in order to depict group memberships and their interconnectivity. Examples

of supergroups derived at four different thresholds are available at the end of the

chapter, Figures 4-12 through 4-16. As the cutoff value of co-occurrence is varied the

total number of groups, the average group size, and the connectivity of groups via

shared phosphopeptides varies, Figure 4-10. At the extremes, with a cutoff of zero

co-occurrences there is one supergroup with number of members equal to the total

number of phosphopeptides (204 in the case of the EGF7 dataset) and when the

cutoff is equal to the total number of clustersets in the MCA, M, there are typically

M groups with one member each. In no iteration of the MCA generation did we

observe two phosphopeptides that co-clustered M times.

Setting a cutoff value for the number of co-occurrences can be based on a variety

of methods. One method is to base it on the expected value of co-occurrences in

a randomized trial of reshuffling set members in the MCA. For the set architecture

in MCAfinal, this has an expected value of roughly 66 co-occurrences and standard

deviation of 7, Figure 4-11. A cutoff of 80 co-occurrences translates to the number of

co-occurrences that would rarely be seen by random, being two standard deviations

above the random mean. The choice of cutoff could instead be based on maximiz-

ing overlap with known protein interaction information (Figure 4-7B) or the tradeoff

between the average size of groups and the extent of group interconnectivity, Figure
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Figure 4-10: Group network statistics based on the co-occurrence cutoff. The mini-
mum co-occurrence chosen for consideration is the value of the random expectation
plus the standard deviation of the random distribution. A) The number of interac-
tions considered significant versus cutoff. There are 20,706 total possible interactions
for the 204 phosphopeptides of the EGF7 dataset. B) The total number of groups in
a network structure at a cutoff and the corresponding number of groups that are not
connected to any other group through a joint phosphopeptide. C) The maximum,
average, and minimum group size for every cutoff. D) The maximum, average, and
minimum number of connections any one phosphopeptide has versus cutoff. For ex-
ample, using a cutoff of 80, the average peptide belongs to four supergroups. As the
cutoff increases phosphopeptides progressively belong to fewer supergroups.

4-10. We have included images of the SBML generated network figures of super-

groups for co-occurrence cutoffs of 80, 120, 200, 240 and 300 Figures 4-12 through

4-16. We found that a cutoff value of 120 yielded manageable group sizes and rea-

sonable interpretability. This cutoff value overlaps significantly with known network
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information and is significant when compared to random expectation. Examples of

three supergroups resulting from this cutoff are shown in Figure 4-8B. In the same

manner that we evaluated biological enrichment for clusters in an MCA, we evalu-

ated enrichment in each supergroup and overlaid this information with the supergroup

members. What results is a robust grouping of phosphopeptides based on dynam-

ics with informative partition labels. One example group represents components of

Ras/MAPK signaling, whose labels overlap with what we saw repetitively throughout

most sets of MCAfinaI. Second is a set unique in its regulation within this dataset,

immediate downregulation following stimulation by EGF. Components of this group

include sites on two proteins known to be involved in focal adhesion signaling and

cooperativity with EGF response, BCAR1 and BCAR3 [95]. This cluster addition-

ally contains two peptides from EPHA receptors, EPHA2 Y575 and EPHA7 Y791,

the activating phosphorylation event on EPHA7. Finally, Figure 4-8B includes a su-

pergroup representing the full EGFR-Shc layer components, which includes members

from the individually ranked lists of SHC1, EGFR Y1172, and EGFR Y1197. This

supergroup is enriched for predictions of Grb2 SH2 binding sites and for immediate

upregulation, in the first minute, following EGF addition.

4.4 Methods

4.4.1 Dataset preparation and biological term annotation

The EGF7 dataset was downloaded from the supplementary information of PNAS.

There were originally 222 peptide measurements; some of these phosphopeptides rep-

resented the redundant measurement of an identical phosphorylation site but with a

trypsin miscleavage. In most cases, the miscleaved form of the peptide often clus-

ters with the perfectly cleaved form and skewed the results of enrichment analysis.

Therefore, we systematically removed the miscleaved form of all redundant peptides

reducing the dataset to 204 unique phosphopeptide measurements on 141 proteins

representing 215 total phosphorylations. The dataset was then loaded into PTM-
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Scout, Chapter 3, and default selections in the ambiguity tool were used to assign

peptides to proteins with the largest number of annotations, with the exception of

the Src family kinase activation loop peptide, which was manually assigned to the

most well annotated Fyn isoform, where the default assignment in PTMScout and the

original dataset assignment is an isoform of Lck. In order to append Gene Ontology

terms, domains, Scansite predictions, we imported and exported the dataset through

PTMScout, using a new database slice export feature. For clustering, a flat form of

the dataset was exported from PTMScouts export for clustering feature.

4.4.2 Clustering

The flat text file of the dataset was imported into Matlab based on DataRail object

structures [90]. Transforms, distance metrics, and algorithms are from the Matlab

environment and its toolboxes, downloaded from other resources, or developed for our

purposes. Neut code for Matlab was obtained from http://www.cis.upenn.edu/-jshi/software/

based on the algorithm description in [99], affinity propagation (AP) clustering code

was downloaded from http://www.psi.toronto.edu/affinitypropagation/ based on the

algorithm described in [30]. A self organizing map (SOM) Matlab toolbox was down-

loaded from http://www.cis.hut.fi/somtoolbox/ and is based on the algorithm de-

scribed in [51]. Affinity propagation clustering was modified to accept an arbitrary

distance metric, but does not accept an argument for K. SOMs only utilize the Eu-

clidean distance metric. Average linkage distance is used in hierarchical clustering.

Kmeans uses the squared value of the Euclidean distance and does not accept the

Chebychev distance metric. An additional SOM parameter is used to indicate the

length direction in a rectangular grid pattern; if the division of K into two dimensions

is non-square, two solutions are produced, one solution where the width dimension is

largest and one with the height dimension set to the largest value. The largest value

of K is bounded by a number that would produce roughly 5 phosphopeptides per

cluster, assuming a solution were to equally distribute all phosphopeptides, which in

this case is Kmax=40. For non-deterministic algorithms, such as SOMs and Kmeans,

we store the random seed so that we could exactly reproduce the result, but allow the
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random seed to vary between individual implementations so as to ensure we do not

force all implementations of the algorithm into a poorly performing local minima.

4.4.3 Enrichment, multiple hypothesis correction and param-

eter refinement

Enrichment calculations are performed using the database slice and was programmed

in Perl and MySQL. Enrichment is calculated as in PTMScouts subset selection en-

richment analysis, using a hypergeometric distribution calculation, Chapter 3. The

motif algorithm (Chapter 2 and [46}) is set using a branch cutoff of 0.01 and search

space of +/-7 amino acids surrounding the site of phosphorylation. Scansite predic-

tion levels of three and better are considered, based on an empirical analysis of the

tradeoff between the false positive rate and total hypothesis rejection. When domains

were calculated de novo in PTMScout, predictions of le-5 and better are used. False

discovery rate correction (FDR) was performed at the metric and set levels as fol-

lowing: p-value calculations were accumulated for all tests within a category and the

p-value satisfying an FDR alpha value of 0.05 was used to determine final enrichment

for that metric.

Relationships between parameters and metrics are calculated by rank-ordering

the sets within each of the thirteen categories according to the total number of en-

riched labels within a set. Each parameter within the four categories is then tested

for overrepresentation in the best and worst performing 25% of the rank orderings.

Overrepresentation is calculated according to the hypergeometric distribution and

considered significant when below a Bonferroni corrected p-value cutoff of 0.05. To

determine parameter candidates for removal in future iterations, the average power of

enrichment for a parameter is calculated, i.e. the number of labels enriched per set,

before and after removal. Those removals that significantly improve all categories are

dropped from future iterations of the process. Those parameters that improve most

categories and only slightly decrease a small number of categories are also removed.

When removal of candidate parameters begins to have only a slight impact on en-
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richment per cluster, around a 1% change or less, the parameter refinement loop is

exited with a final MCA. The randomized control process subjected a randomized

version of the data matrix to the same MCA final parameters. This random MCA

was evaluated in exactly the same way as the real MCA.

4.4.4 Mutual information calculation and selection

Mutual information was calculated as in the MIST algorithm for compensation for

under sampled distribution spaces [50]. Selection order for maximum variability is

performed as follows: the total joint entropy for all sets in the MCA is calculated

before and after the removal of a test set from the MCA. The set that affects the joint

entropy, or normalized joint entropy, the least is removed. This process is repeated

until all sets in the MCA have been ordered according to this procedure. The resulting

order represents those sets with the most mutual information with the largest number

of other sets. This order is then taken in reverse, which instead indicates the sets

with the lowest total mutual information. We performed the selection operation in

this manner, requiring reversal, in order to prevent biases for selection of sets with

larger cluster numbers. In order to calculate redundant sets within an MCA, the

standard mutual information value between all sets is calculated and those sets with

both identical self-MI and pairwise-MI are considered to be redundant.

4.4.5 Co-Occurrence calculations and network analysis

The co-occurrence matrix is calculated by adding up all pairwise incidences of two

phosphopeptides in a cluster, within all sets. Network information is obtained from

the MetaCore software suite (www.genego.com). We created a binary matrix from

the network interaction information from MetaCore in the same order as the co-

occurrence matrix, assigning all interactions between two proteins a value of 1 for

every phosphopeptide measured arising from that protein. For a given co-occurrence

cutoff, values in the co-occurrence matrix are set to 1 if above and 0 if below the

cutoff. Taking only the upper triangular portion of the two matrices and ignor-
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ing the diagonal, since co-occurrence values of all self-phosphopeptide interactions

is meaningless via the co-occurrence matrix metric, we calculate the significance of

co-occurrence values above the cutoff overlapping with the binary values of the net-

work matrix using a hypergeometric distribution calculation, as in the methodology

of label enrichment. The same information is used to build the receiver operator

characteristics. SBML (www.sbml.org), which can be viewed using freeware packages

such as Cell Designer (www.celldesigner.org), is generated in order to visualize the

co-occurrence network at a given a threshold or cutoff. Groupings are made based

on finding all phosphopeptides that co-occur at the defined cutoff and above and are

placed in a compartment. Those phosphopeptides participating in multiple groups

are then copied into the global compartment and reaction arrows are drawn between

this central phosphopeptide and all of its counterparts within compartments.

4.5 Conclusions

One function of this semi-automatic framework is to provide a high-throughput

method for unsupervised learning parameter screening, a way in which to understand

how the parameters of clustering influence the resulting biological relationships, in the

context of known annotations. The result of these parameter screens is that there are

a variety of possible and informative clustering solutions, none of which are maximally

informative on their own. This implies that in seeking representations of the data in a

reduced dimensionality through clustering, the desired types of biological information

will influence the application of unsupervised learning or that a variety of solutions

should be taken into consideration. Alternatively, the combination of these variable

results may indicate those biological stories that are robust to perturbations of the re-

lationship between the quantitative measurements. When we looked at these robust

biological enrichment terms, there were repetitive formations of particular compo-

nents of the network, for example components of the Ras/MAPK signaling pathway.

This robustness indicates that relative to the rest of the dataset, these dynamics are

uniquely similar and our confidence in those components implicated for the first time
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with such a process increases with the robustness of their relationships with such a

cluster.

Phosphorylation changes in the EGFR network, proximal to the receptor, occur

very quickly following EGF addition. Roughly 42% of the measured phosphopeptides

reach a maximum value within two minutes. Even the most downstream events, such

as MAPK and STAT5 phosphorylation, reach a maximum value within eight minutes

following stimulation. These highly similar trajectories are highlighted in the appar-

ently poor separability of the dataset in the first three principal components, as shown

in Figure 1. Despite these apparent limitations, we are encouraged that unsupervised

learning is able to discern subtle differences in the regulation of phosphorylation based

on its ability to produce groups with related function. This ability is highlighted by

the results of MCA analysis of randomized data; this process does not produce mean-

ingful biological relationships among clusters, unlike clustering of real data. These

random relationships, or false positives, are controlled by the FDR procedure. In fact

our multiple hypothesis correction empirically controls false positives at a rate that

is roughly 10-fold more stringent than the level we set during testing, while leaving

a large number of biological and dynamic features intact for the real data. Although

we may then be able to loosen our significance requirement, or use an alternate hy-

pothesis correction technique with more power, such as the pFDR (105], the level and

method of correction used here is sufficient to yield a multitude of enrichment labels

with high confidence.

The results and interpretations of this framework depend entirely on known anno-

tations and sources of biological information, which is a major limitation. Parameter

performance as judged by these metadata terms will reflect the natural hierarchy and

structure of the metadata terms and not necessarily reflect the inherent structure of

the underlying data. Future inclusion of sources of information would require reeval-

uation of parameter performance. Despite limitations of current biological metrics

used and non-inclusion of other possible resources, the use of such information is a

vast improvement to the alternative of manual human evaluation, which is not only

biased and limited, but impossible to perform in such a high-throughput manner as
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to allow for evaluation of a set of possible algorithms and their various parameters.

Perhaps the most important advantage of this semi-automatic framework is that sci-

entists who are not experts in the field of data mining can empirically evaluate the

application of a variety of algorithms or mathematical data transformations within

the context of their biological problem and measurements. This separates scientists

from having to rely on the erroneous assumption that what has worked well in an un-

related dataset would now work well in their current evaluation. In our evaluations of

a variety of phosphoproteomic datasets we find the best performing parameters vary

depending on the dataset evaluated.

An additional utility of this framework is the generation of robust phosphopeptide-

phosphopeptide relationships, which not only recapitulates known protein network

information, but also appears to indicate network interactions occurring specifically

at the resolution of the modifications themselves. Using the combination of all sets in

an MCA, we are able to differentiate the known functions of the EGFR tyrosine sites

1172, 1197, and 1069. Their robust co-clustering with each other as well as similarity

of top ranking partners highlights the shared functionality of Y1172 and Y1197 for

recruiting She and subsequently Grb2. The higher ranking of GABI phosphorylation

with Y1197 may indicate a tighter relationship between GABI recruitment to the

receptor through Y1197, or perhaps a higher conformational availability of Y659 on

GABI through Y1197 recruitment versus Y627. Additionally, both Y1172 and Y1197

co-cluster with ErbB2/HER2 Y1248. The sequence surrounding Y1248 on ErbB2 is

highly similar to EGFR Y1197 [96] and has been shown to be capable of binding SHC

by two different in vitro studies [45,96]. The in vitro result, the sequence information,

and the network predictions by robust co-clustering suggest a strong possibility that

ErbB2 Y1248 recruits SHC in vivo, in the same manner as EGFR Y1197.

strengthens the predicted in vivo binding of ErbB2 Y1248 and SHC.

EGFR Y998 phosphorylation is strongly correlated with phosphorylations on pro-

teins involved in phospholipid signaling. However, when S991 and Y998 are phos-

phorylated at the same time, we see a shift in the top-ranked co-occurring sites

from phospholipid proteins to STAT5 Y699 phosphorylation. A study by Schulze et.
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al [96] showed that a phosphorylated bait peptide sequence surrounding Y998 is able

to bind STAT5 in vitro. Phosphorylation of STAT in this work appears to be most

similarly correlated with concurrent phosphorylation of Y998 and S991, indicating

that if phospho-Y998 is responsible for recruitment of STAT, subsequent phosphory-

lation is enhanced by the presence of phospho-S991. Serine-991 phosphorylation may

play a role in enhancing STAT5 binding by conformational changes in the receptor or

direct binding. Alternatively phospho-S991 may recruit effecter enzymes responsible

for STAT Y699 phosphorylation, or S991 phosphorylation may simply be a marker for

a change in localization, for example endocytic vesicular localization, of the receptor

and therefore a change in signaling. Without further experimental testing it is not

possible to know for sure which mechanism may be at work for the dynamic relation-

ship between S991/Y998 and STAT5 Y699 phosphorylation. However, this method

might play an important role in the first steps of highlighting functional relationships

between phosphorylation sites in RTK networks generating testable hypotheses that

can then inform a site-specific network model of RTK networks. This method may be

most useful in application to protein modification by phosphorylation since a primary

function of phosphorylation is to provide a highly dynamic and controllable mecha-

nism for protein binding and recruitment. As proteins are recruited into complexes

with the enzymes that will phosphorylate and dephosphorylate particular residues,

the shared regulation and function is observed through tightly correlated dynamic

changes. Future work will explore the utility of network generation via this method

using non-dynamic measurements of the network and modifications of other sorts,

such as ubiquitination, acetylation, or glycosylation.
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Figure 4-12: Supergroup architecture based on a co-occurrence cutoff of 80.
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Figure 4-13: Supergroup architecture based on a co-occurrence cutoff of 120.
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Figure 4-14: Supergroup architecture based on a co-occurrence cutoff of 200.
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Figure 4-15: Supergroup architecture based on a co-occurrence cutoff of 240.
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Figure 4-16: Supergroup architecture based on a co-occurrence cutoff of 300.
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Chapter 5

Concluding Remarks and Future

Directions

5.1 Experimental support for derived hypotheses

The methodologies developed in this thesis have sought to generate interesting and

pertinent biological relationships, which may help improve our understanding of bi-

ological networks. Although we can show that some of the hypotheses derived from

these frameworks are supported by literature evidence, many have yet to be explored.

This means that the immediate future direction of this work should include seeking

experimental support, or disagreement, with the derived hypotheses. In Chapter 2 we

hypothesized the motif upregulated in EGFRvIII expressing cells is a consequence of

increased CK2 activity. The kinase activity experiments performed using whole cell

lysates of the EGFRvIII U87 cells was not specific and therefore could not indicate a

whether CK2 activity differed based on EGFRvIII expression, Appendix A.2. Future

experiments for CK2 activity testing will require isolation of CK2 from the cell lysate

mixtures. Additionally, we may need to evaluate if the differential phosphorylation

of possible CK2 substrates in EGFRvIII expressing cells is due to higher nuclear

localization of CK2.

Specific mechanisms surrounding how BCAR1 might be a signal integrator of the

EGFR and focal adhesion pathways are another interesting hypothesis to pursue.
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Does dephosphorylation of BCAR1 Y327, BCAR3 Y266 and PTK2 Y576 indicate

movement of these components away from focal adhesions? Does the co-regulated

decrease in the activation loop of PTK2/FAK indicate the differential regulation of

BCAR1 Y327 and the other five phosphorylation sites measured in the EGF7 dataset?

If BCAR1 does move from the focal adhesions to elsewhere in the cell, is it taking its

Crk-binding capacity to a new location? We might begin to understand the answers

to these questions by monitoring the location of these components before and after

EGF stimulation.

Robust co-clustering analysis of Chapter 4 indicates that this method is useful for

predicting protein-protein interactions. Therefore, undertaking to look at whether

these newly hypothesized interactions take place in vivo will be important. Addi-

tionally, determining the dynamics of these protein interactions will be important to

understanding the mechanism underlying the interaction. Two studies that looked at

in vitro recruitment capability of EGFR phosphorylation sites produced a wide range

of possible interactions, and in some cases contradictory information [45, 96]. This

method might help narrow in on the important question of physiologically relevant

interactions.

5.2 The phosphoproteome

In a historical perspective of phosphorylation by Philip Cohen [16], he states the

complexity of the regulation and function of phosphorylation as follows "If a third of

the 30,000 proteins encoded by the human genome contain covalently bound phos-

phate, an 'average' protein kinase (on the basis of the probable number of protein

kinases) would be expected to phosphorylate about 20 different proteins in vivo, and

an 'average' protein phosphatase would be expected to dephosphorylate 60 proteins.

". Since that time the knowledge of the phosphoproteome has greatly expanded and

if we now look at the requirement for kinase- and phosphatase-substrate recognition

on a phosphorylation site level, versus protein substrate level, we find a drastic in-

crease in the predicted complexity. Figure 5-1 shows the breakdown of the number
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of phosphorylations per protein for the 11,832 phosphorylated proteins in the human

proteome that currently reside in PTMScout. By taking the arithmetic average of

the documented phosphorylation sites for human proteins in PTMScout, we see that

there are seven phosphorylation sites for every phosphorylated human protein. If

we still assume that 30% of human proteins are phosphorylated then the complexity

indicated by Cohen is at least seven-times greater than originally projected; that a

kinase would need to phopshorylate roughly 140 sites and phosphatases would need

to, on average, act on 420 phosphorylation sites.

Number of phosphorylation sites per protein

Figure 5-1: Breakdown of the number of phosphorylations (serine, threonine, and
tyrosine) documented for human proteins. There were 11,832 phosphorylated human
proteins in PTMScout as of April 2010 (PTMScout v1.2).

An important question in the field is that of biological relevance and importance

of phosphorylation. Given the abundance of phosphorylation sites, are all of them

biologically active and relevant, or are some a consequence of bystander phospho-
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rylation, i.e. phosphorylation of non-functional sites due to sequence similarity of

functional kinase targets? One major effort in the area has focused on conservation

of phosphorylation in order to gain an understanding of a site's biological importance

based on evolutionary conservation. However, kinases themselves are highly con-

served, so presumably off-target as well as target molecules may also be conserved,

independent of their relevance to basic physiological processes. Another method to

determine relevance of a phosphorylation site within a measured biological system is

to gauge it based on relative fold-change across conditions. Under this method, for

example, downstream events of the EGFR network would be considered more likely

to be involved in the specific network response if they illustrate a two-fold change

or more when stimulated with EGF. Although this method does demonstrate the

relative change of a pool of phosphorylation sites, it still says nothing about their

biological relevance. For example, a 1% change in the phosphorylation of a whole cell

lysate measurement of Akt would be considered an irrelevant change, based on most

fold-changes suggested. However, if that 1% change represented a 75% change in a

particular population of the cell, for example the membrane associated population,

which is the important component for driving a particular downstream effect, then

this would be extremely important. Therefore, one of the best methods for under-

standing the importance of a phosphorylation event is to understand why and how it

is regulated and its subsequent function. Given the immensity of this undertaking,

computational methodologies, such as those proposed in this thesis, will be vital to

generating predictions regarding regulation and function in a manner that matches

the speed of data generation.

5.3 Limitations of MS phosphoproteomic measure-

ment

There are many advantages to mass spectrometry as a measurement methodology

for post-translational modifications. In particular, the sensitivity of MS far surpasses
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most other techniques, given a correctly chosen enrichment strategy. This is one of

the reasons we believe that we were able to detect non-proline directed substrate

recognition by MPM-2 for the first time, Chapter 2. Additionally, resolution for very

specific residues is mostly guaranteed, unlike techniques that rely on detection using

antibodies. However, there are some important limitations to consider when deriving

biological hypotheses from MS measured data. In particular, scientists are turning to-

wards automatic peak detection algorithms in order to handle the increasingly larger

number of detectable peptides. These algorithms are accompanied by some acceptable

false positive rate, typically 5%. A 5% false positive rate for a dataset that includes

the assignment of 1000 phosphorylation sites translates to an erroneous assignment

of roughly 50 phosphorylation sites. As these sites are gathered into resources such as

Uniprot [114], PhosphoSite [39], and Phospho.ELM [22], the occurrence of potentially

incorrect assignments are lost to the end-user of that information. Experimental ev-

idence for post-translational modifications in PTMScout is clearly denoted, allowing

the user to evaluate the extent of agreement between multiple, independent experi-

ments. However, the end-user must still take potential for erroneous data into account.

One other limitation of site-assignment for post-translational modifications within a

measured peptide occurs when using MS methodologies, independent of the nature

of the assignment method (manual or automatic). Modification sites lying within the

middle of large peptide sequences, where more than one possible candidate amino

acid exists, cannot be determined when non-complete parent-ion fractionation oc-

curs. This error must be properly handled during data presentation and subsequent

addition to post-translational modification resources. The additional complication

introduced in data handling of MS datasets by ambiguous site assignment within

peptides has not yet had a standard solution accepted by the field. Unfortunately,

this means that handling of ambiguous site assignments varies from lab to lab and

dataset to dataset.

Another important limitation of many MS experiments, which is not limited to

only this measurement method, is the evaluation of whole cell lysates. As men-

tioned in Chapter 1, the location of signaling components within RTK networks can
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be an important factor in the determining downstream effects. This is also one of

the reasons that evaluating biological relevance based on quantitative fold-changes

is non-ideal, as outlined in the hypothetical example of Akt phosphorylation. One

method for determining the specific signaling differences among compartments is to

use cellular fractionation prior to quantitation, for example Olsen et. al. [78] mea-

sure phosphorylation in a nuclear and cytosolic fraction of human cells. However,

this fraction technique is not standard for most MS measurement pipelines and when

used still presents the same problems regarding fraction impurities that other biolog-

ical measurements face. Unfortunately, this means that deriving spatial information

from these datasets is extremely difficult given the nature of the measurements. The

incorporation of Gene Ontology cellular compartment information may be one way

in which the tools in this thesis could aid in making the distinction between specific

signaling locations.

5.4 Expansion of PTMScout

PTMScout was named with the intention of it eventually becoming a general resource

for multiple post-translational modifications. We have taken the first steps in order

to expand PTMScout to include more than just phosphorylation by incorporating

acetylation measurements. The field of MS measurement will continue to rapidly

expand the repertoire of available experimental evidence of PTMs, and PTMScout

will need to be expanded to meet that need. A mundane, but important obstacle to

this incorporation will be codification of a structured vocabulary, both machine- and

human-readable, for representation of the vast number of possible modifications on a

limited number of amino acids. Uniprot's [114] controlled vocabulary of modifications

can serve as a starting point for the solution to this problem.

Another major need in the field is the ability to analyze data prior to publication.

Unfortunately, the solution to this need is more complicated than what could be rea-

sonably addressed in the initial implementation of PTMScout. Ideally, a resource will

be established that has a shared and up-to-date view of the modification states of pro-
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teins, but that can allow for stand-alone databases of local and private data. Other

desirable extensions of the tool include expansion of metadata terms, such as path-

way annotations, and incorporation of unsupervised learning algorithms to further

automate analysis. Additionally, the framework of experimental datasets, metadata

annotations of the participating biological molecules, and subset selection with au-

tomatic enrichment is extensible to other types of large-scale biological datasets, for

example, RNAi, gene expression, and protease experiments.

5.5 The next steps in high-throughput unsuper-

vised learning analysis

Chapter 4 utilized a single experimental dataset of the EGFR network and showed

we could produce interaction style maps through the analysis of robust co-clustering.

We have additionally analyzed several datasets, both time-dynamic measurements

of the system as well as steady-state experiments with conditional perturbations,

such as overexpression of EGFRvIII. We are encouraged that all analyses of time-

dynamic measurements of the system performed so far have recapitulated known

network information. However, conditional experiments have not recapitulated known

network information. This may be a function of the inherent nature of the data, that

steady-state co-regulation of phosphopeptides cannot distinguish the temporal nature

of the way in which network interactions were derived. Also, it may be a function of

"network rewiring" that may occur upon the introduction of a transforming event,

such as overexpression of an oncogenic mutation. In this last case, the disagreement

between derived network topologies from experimental measurement and "canonical"

network models may in fact indicate the fragility and specificity of the derived network

models. These differences will be important to explore in order to understand whether

the derivation capability of experimental information is limited in certain cases or our

basic understanding and representation of the network is at odds with the real biology

of the system.
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Another important future step is to compare the basic network components that

are derived using the same system measured under different experimental conditions.

For example, when we compare the grouping of BCAR1 phosphorylation sites between

the EGF7 [122] and HER2 [123] datasets, we see that the immediate dephosphory-

lation of BCAR1 Y327 is EGF specific. When the data driving the relationships

includes both EGF and HRG stimulation, all sites on BCAR1 consistently cluster

together and Y327 no long clusters with focal adhesion proteins like BCAR3 and

FAK/PTK2. Therefore, we gain more understanding of the function and regulation

of these sites as we expand the repertoire of conditions under which they are mea-

sured. These types of comparisons will help us to understand the condition- and

time-specific modes in which phosphorylation-specific interactions occur.

5.6 Bringing it all together: modification codes

The treatment of modifications, for the most part, has been performed for individ-

ual sites of phosphorylation. For example, tens of phosphorylation sites exist in the

cytoplasmic tail of the EGF receptor, yet we do not fully understand how each site

interacts with other sites. For example, although multiply phosphorylated, can a

receptor bind multiple signaling components through each of its sites, or will steric

hindrance prevent multiple binding events? If so, how will determination of the bind-

ing event take place? Alternatively, is there a phosphorylation "state" that exists on

the receptor based on the dimerization partner or the ligand of stimulation? Addi-

tionally, how do different PTMs interact with each other? We know, for example,

that phosphorylation of Y1069/Y1045 on the EGF receptor recruits Cbl, thereby

causing ubiquitination of EGFR. This indicates a model of sequential modification

events in the network. We are starting to see now, with the advent of high-throughput

acetylation experiments, that the kinase activation loop is actetylated as well as phos-

phorylated. What does this mean for the activity of the kinase? Does the addition

of an acetylation change the activity or does it serve another purpose? Are the mod-

ifications mutually exclusive, sequential, or independent? A host of questions and

130



increased complexity will emerge in the future as data becomes available. To ade-

quately address this complexity, both experimental and computational strategies will

be required.
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Appendix A

Information and Materials for

Chapter

A.1 Motif enrichment tables for EGFRvIII vs. DK

Table A.1: Motifs significantly enriched among top quartile of MPM-2 antigen pep-
tides upregulated in U87-M cells vs. U87-DK controls.

Motif
t  

Motif in Motif in Foreground Background Statistical
Foreground Background Size Size Significance

xD.E.E 6 6 25 95 2.04x10-4

x-.E.- 8 11 25 95 8.24x10 -4

S ...... X- 5 5 25 95 9.17x10-4

xD.E.- 7 9 25 95 1.05x10 -3
PY..s 6 7 25 95 1.17x10-3

S....xO 6 8 25 95 3.80x10-3

S......S- 4 4 25 95 3.97x10 -3

S ...... S- 4 4 25 95 3.97x10-3

-. sD.E.E 4 4 25 95 3.97x10-3

S....x.L 4 4 25 95 3.97x10-3

S....X......0 4 4 25 95 3.97x10 -3

S......xD 4 4 25 95 3.97x10-3

D.xD 4 4 25 95 3.97x10-3

FxD.E.- 4 4 25 95 3.97x10-3

xD.E-E 4 4 25 95 3.97x10 3

x- 11 23 25 95 9.36x10 - 3

xP 13 64 25 95 0.983

1"s" = pS, "x" = pS/pT, "."= Any amino acid, "-" D/E,"O" = M/I/L/V
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Table A.2: Motifs significantly enriched among top quartile of MPM-2 antigen pep-

tides upregulated in U87-SH cells vs. U87-DK controls.

Motif, Motif in Motif in Foreground Background Statistical

Foreground Background Size Size Significance

D.x 8 10 25 95 2.73x10-4
-. x- 8 11 25 95 8.24x10 -4

D.x 5 5 25 95 9.17x10 -4

-. s. 7 9 25 95 1.05x10 -3

D.x- 6 7 25 95 1.17x10 - 3

11 20 25 95 2.02x10

x- 12 23 25 95 2.09x10 3

-.s 9 15 25 95 2.83x10- 

D.s 6 8 25 95 3.80xlO3

-. s-.E 6 8 25 95 3.80x10-3

-..-. x 6 8 25 95 3.80x10-3

-.xD 6 8 25 95 3.80x10 -3

-.sD.E.E 4 4 25 95 3.97x10-3

sD.-.-O 4 4 25 95 3.97x10 3

-.. D.x- 4 4 25 95 3.97x10

D.xD 4 4 25 95 3.97x10-3

-... XsP..S 4 4 25 95 3.97x10-

D.s-.E 5 6 25 95 4.48x10-3

-. sD.-.- 5 6 25 95 4.48x10

.s-L- 5 6 25 95 4.48x10

xD.E.E 5 6 25 95 4.48x10 - 3

s- 10 19 25 95 5.81x10-3

xD.-.- 7 11 25 95 6.47x10 3

s-.- 9 17 25 95 9.30x10 3

sD.-.- 6 9 25 95 9.30x10 3

-x 6 9 25 95 9.30x10-3

x-.- 10 20 25 95 9.60x10 3

xP 12 63 25 95 0.995
1 "s" pS, "x" pS/pT, "." = Any amino acid, "-" D/E, "O" M/I/L/V

A.2 CK2 activity measurements in EGFRvIII ex-

pressing cells

A.2.1 Protocol

A Casein Kinase 2 assay kit was purchased from Millipore, Catalog #17-132. [L-

32]ATP (3000 Ci/mmol) was purchased from Perkin Elmer. U87-H and U87-DK cells

were lysed (using Chapter 2 Cell lysis protocol) and mixed with a 90pul cold /10pl

hot ATP mix, 10pl PKA inhibitor, and CK2 substrate peptide (RRRDDDSDDD)

for 10 minutes at 30'C. The reaction was stopped with 20pl of 40% trichloroacetic

acid (TCA). P81 paper was spotted with 25pl of the reaction mix and allowed to dry

for 30 seconds before being transferred to a 0.75% phosphoric acid containing conical

tube. The P81 paper was washed 6 times with 0.75% phosphoric acid for 1 minute

then followed by a 1 minute wash with acetone. After drying the paper was immersed

in scintillation fluid and read using a scintillation counter. CK2 inhibition controls
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were performed by pre-incubating lystes with either a DMSO control or 2.5, 5 and 10

pM TBCA for one hour on ice.

A.2.2 TBCA inhibitor control

TBCA Control
35000

30000

U
25000

20000

15000

10000

5000

0

0 2.5 5

-5000

-10000
[TBCA] uM

I

Figure A-1: The scintillation count of U87-DK cell lysates with background scintilla-

tion removed and incubated with either DMSO (0) or 2.5, 5, or 10pl TBCA, a CK2
inhibitor.

A.3 MPM-2 degenerate peptide library quantita-

tion
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Table A.3: Raw and processed values for the MPM-2 solid-phase library screen

Scrine
A C D E F G H I K L M N P Q R S T V W Y pS pT KAc

-4 57.68 56.64 61.94 90.94 102.5 83.58 62.62 72.84 71.12 56 65.03 80.37 91 59.66 76.23 53.86 70.26 69.42 66.47 87.79 82.52 67.09 64.61 58.9
-3 62.57 58.43 85.89 81.6 78.94 247.56 72.77 69.04 77.48 60.68 70.53 62.22 66.25 58.54 60.75 57.02 65.52 62.87 65.32 109.2 280.73 75.91 90.22 59.3
-2 70.41 63.12 78.25 102.7 188.96 130.59 63.21 67.34 367.09 63.98 96.01 122.61 59.75 65.75 94.21 57 58.11 66.15 222.48 288.54 96.48 93 146.58 85.05
-1 70.36 81.92 72.98 61.74 68 412.35 70.49 71.22 534.65 74.83 523.81 66.46 62.25 147.84 58.31 58.75 58.46 87.86 538.74 79.93 101.99 117.94 587.22 61.96
1 67.83 80.74 90.13 243.85 266.34 117.06 111.72 88.83 85.62 66.77 91.83 68.96 71.2 182.79 64.14 67.93 67.57 69.91 79.7 111.08 107.65 169.37 552.53 71.83
2 68.33 60.71 97.46 76.8 73.81 311.16 90.76 81.42 500.27 76.22 529.49 78.86 64.94 83.22 59.59 66.97 59.35 74.77 275.22 92.96 109.84 301.43 216.:61 79. 4 93 72.89 62.37 74.48 132.68 198.11 124.4 71.88 139.18 153.79 67.14 139.95 80.97 74.1 65.68 76 69.77 65 64.38 88.48 176.51 90 177.68 629.31 75.84
4 71.31 63.47 72.64 140.09 204.02 115.35 75.86 136.27 92.12 65.89 112.34 74.53 69.11 73.76 73.83 68.73 71.52 72.88 90.42 96.46 131.71 327.38 589.23 75.33
phosphoSerine Control

x A C D E F G H I K L M N P Q R S T V W Y pS pT KAc
-4 50.84 53.27 51.35 54.43 56.76 56.86 59.42 65.3 62.01 59.9 62.34 59.2 57.4 59.38 56.85 55.82 57.07 56.05 60.69 64.34 75.17 64.72 63.96 65.18
-3 51.53 51.41 75.49 53.54 52.77 56.02 57.13 68.89 58.39 56.81 56.46 56.07 57.37 57.86 59.08 56.4 57.14 56.19 57.06 58.26 63.12 64.12 85.14 69.9
-2 50.38 51.45 68.19 50.93 51.75 53.71 54.7 66.9 55.6 53.67 54.41 54.69 55.45 55.01 55.35 54.59 55.37 55.24 54.88 57.76 62.22 65.65 93.64 63.06
-1 49.68 51.17 64.73 51.68 52.24 52.4 54.2 64.61 53.16 52.31 52.52 53.81 54.52 53.86 57.72 53.41 54.79 54.76 54.26 57.9 60.53 83.98 533.74 65.04
1 49.09 50.37 55.95 49.55 49.93 52.38 52.8 56.82 53.09 51.55 51.25 52.66 53.15 54.66 56.59 54.97 53.91 55.28 54.07 56.84 60.93 68.09 277.56 65.2
2 47.76 68.47 60.51 51.57 50.86 52.18 53.25 55.01 52.43 52.16 51.99 52.36 54.11 53.08 56.05 52.7 53.79 54.04 54.25 57.34 60.76 81.38 492.4 66.04
3 45.42 49.09 58.28 50.29 50.3 51.77 51.86 52.74 50.75 49.87 50.8 50.52 52.02 50.91 54.07 50.15 51.9 52.11 53.19 56 58.26 87.3 552.55 64.03
4 45.01 47.77 52.9 49.04 50.09 48.72 50.27 50.79 47.75 46.73 47.93 47.14 48.89 48.39 49.34 48.18 48.07 49.83 50.05 51.44 54.08 132.51 483.78 59.78

Normalized Values
A C D E F G H I K L M N P Q R S T V W Y pS pT KAc

-4 0.76 0.86 1.2 1.29 1.05 0.76 0.8 0.82 0.67 0.75 0.97 1.14 0.72 0.96 0.69 0.88 0.89 0.78 0.98 0.79 0.74 0.72 0.65
-3 0.81 0.82 1.09 1.07 3.17 0.91 0.72 0.95 0.77 0.9 0.8 0.83 0.72 0.74 0.72 0.82 0.8 0.82 0.34 3.19 0.85 0.76 0.61
-2 0.88 0.82 1.45 2.62 1.74 1.74 0.72 4.73 0.85 1.26 1.61 0.77 0.86 1.22 0.75 0.75 0.86 2.9 3.58 1.11 1.02 1.12 0.97
-1 1.15 0.81 0.86 0.93 5.64 0.93 0.79 7.21 1.03 7.15 0.89 0.82 1.97 0.72 0.79 0.76 1.15 7.11 0.99 1.21 1.01 0.79 0.68
1 1.15 1.15 3.53 3.82 1.6 1.52 1.12 1.16 0.93 1.28 0.94 0.96 2.4 0.81 0.89 0.9 0.91 1.06 1.4 1.27 1.78 1.43 0.79
2 0.64 1.15 1.07 1.04 4.27 1.22 1.06 6.84 1.05 7.3 1.08 0.86 1.12 0.76 0.91 0.79 0.99 3.63 1.16 1.3 2.65 0.32 0.86
3 0.91 0.92 1.89 2.82 1.72 0.99 1.89 2.17 0.96 1.97 1.15 1.02 0.92 1.01 1 0.9 0.89 1.19 2.26 1.11 1.46 0.82 0.85
4 0.95 0.98 2.05 2.92 1.7 1.08 1.92 1.38 1.01 1.68 1.13 1.01 1.09 1.07 1.02 1.07 1.05 1.29 1.34 1.75 1.77 0.87 0.9



Appendix B

PTMScout Database Schema

id - each table has a unique internal id.

Experiment Tables

experiment Contains pertinent information about the experiment, including all

the information regarding a published report. The ambiguity field, binary, indicates

whether an experiment contains ambiguous peptide:protein assignments, if 1 it will

cause ambiguity searches and storage upon dataset loading. This field is 0 for com-

pendia.

MS MS holds the peptide that was measured, with lower cases indicating the site

of modification. Links to data, protein, experiment and MS-pep tables.

data There are many data:MS mappings, so priority allows us to reconstruct the

vector of data. Type is the type of data, for example stddev or time, and label the

specific value of that data point, e.g. type=minute and label=1 means a data has

value at 1 minute. When multiple runs exist based on multiple line entries for an MS

peptide, run is incremented. "NA" is binary, 1 if that value did not exist for that

particular measurement. This serves as a placeholder for reconstructing a vector.

Peptide Tables

pep The peptide table contains the singly modified alignments of a measured

peptide (so there can be many pep to one MS if an MS measurement contains multiple

modifications). For increased query speed, the Pfam domain a site falls in is stored

in the field pfam-site.
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Figure B-1: Database schema for PTMScout. Expression tables have been condensed

pep-prediction There are many predictions per peptide possible. Source indi-

cates the source of the prediction or annotation, such as Scansitekinase and score
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holds the value for those sources that are predictions.

ambiguity A table for storage and reference to peptide sequences and the proteins

they can be assigned to through protein-id.

Protein Tables

protein Protein information including the full sequence and a representative gene

name is stored here.

acc Protein accessions, based on type (such as swissprot, refseq, etc.) are stored

here, many to one linkage with protein table.

domain There are potentially many to one domain entries per protein for a given

source. Currently, the only source of domain information is Pfam. Predictions score

stored as p-value.

proteinGO and GO proteinGO links the many to many relationships between

GO terms and proteins. aspect contains the code for GO type, MF, BP, or CC. version

is important for knowing and then updating the GO terms appropriately.

expression Expression tables from GNF symatlas project are imported as-is, and

protein-expression links PTMScout internal protein-id with expression information

via the probeset-id.
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Appendix C

Code Statistics

Table C.1: Count of the code used to develop tools and algorithms for the work
presented in this thesis. This count does not include Matlab code automatically
generated by Perl.

Language Lines of Code Lines of Comments
Perl 37,106 11,315

Python 4,921 1,014
Javascript 3,627 617

Matlab 338,727 10,831
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