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Abstract

We propose a new parametric representation of the departure capacity of airports. In par-

ticular, we show how the departure capacity can be represented by the variation of the average

departure throughput as a function of arrivals, conditioned on persistent departure demand. We

also show how this approach can be extended to quantify the dependence of departure capacity

on other parameters such as the fleet mix. The proposed approaches are illustrated through the

parametric estimation of the departure capacity of Boston Logan International Airport (BOS).
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1 Introduction

This work focuses on parametrically estimating and representing the departure capacity of the

runway system of an airport. For the purposes of this work, the departure capacity of the runway

system is defined as the average number of departures that can be performed on the runway

system in the presence of persistent demand conditioned on relevant parameters, such as landings,

runway crossings, fleet mix etc. We show that this parametric measurement of the departure

capacity explains some of the variation in the departure process. The unexplained variance is due to

factors such as controller strategies, their performance, unexpected events, and other unaccounted

disturbances to the system.

We illustrate the proposed approaches for runway configuration (22L, 27 | 22L, 22R) at Boston

Logan International Airport (BOS) under VMC. ASPM and Flightstats data from 2007 were used

for the analysis. All estimation problems were formulated as convex optimization problems and

were solved using the CVX MATLAB-based modeling system.

2 Average departure throughput

The starting point for departure throughput estimation is the representation of the departure

throughput (or takeoff rate) as a function of departure demand. The departure demand, N(t), at

some time t (represented in 1-min increments) is measured as the number of aircraft taxiing out

during that time interval. In other words, it is the number of aircraft that have pushed back, but

not taken off yet. The departure throughput during a 15-minute period starting at time t is defined

as the takeoff rate T̄ (t) over this time period, and is measured as the number of aircraft that took

off during the 15-minute interval [t, t+ 14] min.

This representation yields the plots in Figure 1a for the most frequently used runway configu-

ration (22L, 27 | 22L, 22R) at BOS in 2007 under VMC. For the entire year, we have 121,414 data

points, (N, T̄ ). In Figure 1a (left), we plot the mean and median takeoff rate for each value of the

departure demand, N . The error bars depict the standard deviation of the takeoff rate at each

value of N . As N(t) increases, the takeoff rate initially increases, but then saturates at a critical

value N∗. From Figure 1a, we can infer that N∗ is around 20 AC and that the average takeoff rate

in saturation is around 11 AC /15 minutes.

We can formalize the estimation of the mean and median throughput rate as a function of the

departure demand by formulating the estimation problem as a regression problem. The function f

to be fitted has to adhere to the physics of the system:

• Departure throughput is a monotonically non-decreasing function of departure demand.

• Departure throughput is a concave function of departure demand.

The estimation problem can be formulated as a least-squares problem: Given m pairs of mea-
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(a) Measurements of the takeoff rate as function of the
number of departing aircraft on the ground
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(b) Regression of the takeoff rate as function of the number
of departing aircraft on the ground

Figure 1: BOS throughput in segment (VMC ; 22L, 27 | 22L, 22R)

surements N(t) and ¯T (t), denoted (u1, y1), . . . , (um, ym) for all time, we seek a non-decreasing,

concave function f : R → R that estimates the mean T̄ = f(N). This infinite-dimensional problem

gets significantly simplified by the fact that we have measurements only for discrete values of N(t)

and thus f . We only need to estimate the points f(0), f(1), . . . , f(n), where n = max(N(t)). The

function f is therefore simply a piecewise linear function of N , and the monotonicity and concavity

constraints are imposed at the points 0, 1, . . . ,max(N(t)) by comparing the values and the slopes

of subsequent pieces. T̄ is given by the solution to the simple convex optimization problem:

min
m
∑

i=1

(ŷi − yi)
2 (1)

subject to:

ŷi = f(ui), i = 1, . . . ,m (2)

f(i+ 1) ≥ f(i), i = 0, . . . (n− 1) (3)

f(i+ 1)− f(i) ≤ f(i)− f(i− 1), i = 1, . . . (n− 1) (4)

Similarly, the median estimation problem is formulated as:

min

m
∑

i=1

|ŷi − yi| (5)

subject to:
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ŷi = f(ui), i = 1, . . . ,m (6)

f(i+ 1) ≥ f(i), i = 0, . . . (n− 1) (7)

f(i+ 1)− f(i) ≤ f(i)− f(i− 1), i = 1, . . . (n− 1) (8)

The results of the regression fit can be seen in Figure 1b. The mean takeoff rate saturates at

11 takeoffs/15 minutes when N ≥ 22 and median takeoff rate saturates at the same value when

N ≥ 19. We can conclude that the average takeoff rate of this runway configuration under persistent

demand is 11 takeoffs per 15 minutes, or 44 takeoffs per hour. Persistent demand is achieved when

the number of taxiing out aircraft is around 20.

Finally, we note that this framework can be easily extended to find estimates of upper quantiles

by formulating the quantile regression, as described in [3], as a convex optimization problem:

min
m
∑

i=1

(

(1− p) ·max(ŷi − yi, 0) + p ·max(−ŷi + yi, 0)
)

(9)

subject to:

ŷi = f(ui), i = 1, . . . ,m (10)

f(i+ 1) ≥ f(i), i = 0, . . . (n− 1) (11)

f(i+ 1)− f(i) ≤ f(i)− f(i− 1), i = 1, . . . (n− 1) (12)

Here, p takes the value of the quantile we are interested to estimate: for the median it is 0.5, for

the 90% percentile 0.9, etc.

3 Departure throughput as a function of departure demand and

arrival throughput

The method described above can be extended to represent departure throughput as a two variable

function of both departure demand and arrival throughput. The arrival throughput, Ā(t), is mea-

sured as the number of landings in the 15 minute interval [t, t+14]. In other words, we represent the

departure throughput, T̄ (t), in the 15 minute interval [t, t+14] as a function of both the departure

demand N(t) at time t and the arrival throughput, Ā(t), in the same 15 minute interval [t, t+ 14].

The 2-variable fitting problem has additional constraints, resulting from the physics of the system:

• For a fixed departure demand, the departure throughput is a monotonically non-increasing,

concave function of the arrival throughput following the principle of capacity envelopes.

• For any value of arrival throughput, the departure throughput as a function of departure

demand cannot increase at a higher rate than for a lower value of arrival throughput.

• For any value of departure demand, the departure throughput as a function of arrival through-
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put cannot decrease at a lower rate than for a lower value of departure demand.

The problem is formulated similarly to the two-dimensional one: Given m triples of mea-

surements N(t), Ā(t) and T̄ (t), denoted by (u1, v1, y1), . . . , (um, vm, ym), at all times, we seek a

function g : R2 → R that estimates the mean T̄ = g(N, Ā(t)). This infinite-dimensional problem

gets again simplified by the fact that we have measurements only for discrete values of N(t), Ā(t)

and thus g. We only need to estimate the points g(0, 0), g(0, 1), . . . , g(n, l), where n = max(N(t)),

l = max(Ā(t)). Thus, function g is a piecewise linear function of Ā(t) and T . The constraints are

imposed only between neighboring points, as was done in the 2D case, but are more complex:

min
m
∑

i=1

(ŷi − yi)
2 (13)

subject to:

ŷi = g(ui, vi), i = 1, . . . ,m (14)

g(i+ 1, j) ≥ g(i, j), i = 0, . . . (n− 1),∀j (15)

g(i+ 1, j) − g(i, j) ≤ g(i, j) − g(i− 1, j), i = 1, . . . (n− 1),∀j (16)

g(i, j + 1) ≤ g(i, j), j = 0, . . . (l − 1),∀i (17)

g(i, j + 1)− g(i, j) ≤ g(i, j) − g(i, j − 1), j = 1, . . . (l − 1),∀i (18)

g(i+ 1, j) − g(i, j) ≥ g(i+ 1, j + 1)− g(i, j + 1), i = 0, . . . (n− 1), j = 0, . . . (l − 1) (19)

g(i, j) − g(i, j + 1) ≤ g(i+ 1, j) − g(i + 1, j + 1), i = 0, . . . (n− 1), j = 0, . . . (l − 1) (20)

Inequalities 15-16 are analogous to the ones in the 2D case: For a fixed arrival throughput,

the departure throughput is a monotonically non-decreasing, concave function of the departure

demand. Inequalities 17-18 ensure that for fixed departure demand, the departure throughput is

a non-increasing, concave function of the arrival throughput following the principle of capacity

envelopes. Finally, Equation 19 ensures that the marginal gain in departure throughput from

increasing the departure demand for one unit increases as the arrival throughput decreases, and

Equation 20 ensures that the marginal gain in departure throughput from decreasing the arrival

throughput for one unit decreases as the departure demand decreases.

Under these assumptions, the departure throughout is estimated as a function of the departure

demand and arrival throughput. Two visualizations of the estimated function g can be seen in

Figure 2. Figure 2a is essentially the mean regression curve of Figure 1b parameterized for different

levels of arrival throughput. As expected, the arrival throughput impacts the departure throughput.

Figure 2b displays the same graph from a different angle: the arrival throughput is the variable on

the x-axis and the departure demand is a parameter. We observe that the trade between arrival

throughput and departure throughput changes with the departure demand. We also note that for
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high values of departure demand, the departure runway(s) are under persistent demand and so the

curves for values of N coincide and envelop all average departure throughput data points. Thus,

this envelope can be also interpreted as the capacity envelope for this runway configuration: It

shows the average departure throughput under high departure demand as a function of arrivals.
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Figure 2: BOS departure throughput in segment (VMC ; 22L, 27 | 22L, 22R) as function of arrivals
and departure demand

3.1 Variance of the departure throughput

It could be hypothesized that the high variance of the departure throughput which can be seen

in Figure 1a can be explained by the (hidden) arrival throughput variable, and that by control-

ling for the arrival throughput variable, the variance of the departure throughput would decrease

significantly. In order to informally inspect this hypothesis, we plot the departure throughput as

a function of departure demand for two frequent values of arrival throughput overlaid with the

departure throughput for all values of arrival throughput in Figure 3a. We observe that the vari-

ance of the departure throughput remains high even at individual arrival throughput values. In

Figure 3b, we visualize the boxplots of the throughput measurements grouped for every value of

the departure demand for 7 arrivals and for all arrivals. From the boxplots we observe that the

25th and 75th percentiles are spread over a range of 3 AC/15 minutes for both cases under high

departure demand.

These results suggest that the observed variance of the departure throughput needs to be

explained by other variables. Three potential candidates are:

• Fleet mix
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Figure 3: BOS throughput in segment (VMC ; 22L, 27 | 22L, 22R) for different numbers of landings

• Human factors (controller performance, pilot response times)

• Unexpected incidents (runway closures, mechanical failures, etc.)

Currently, we do not have data on the human factors and unexpected incidents variables, and so we

focus on examining the impact of fleet mix on the departure throughput. This analysis is presented

in Section 4.

3.2 Estimation of the saturation point N
∗ and the average departure through-

put under continuous demand

Traditional statistical methods for the problem of predicting the response variable (departure

throughput) as a function of several independent variables (departure demand, arrival through-

put, fleet mix) would make hard to exploit the structure of the problem and impose the constraints

that result from the physics of the system. For this reason, we follow a different approach: We iso-

late instances of high departure demand, and then estimate the departure throughput as a function

of the arrival throughput and and the fleet mix. To this end, we need to estimate the threshold N∗

at which the departure throughput stops varying with departure demand. There are several ways

to estimate N∗, for example, through the inspection of Figure 1a or Figure 1b. Both plots suggest

that the mean throughput saturates at N∗ = 22.

A more robust way to identify N∗ is to group the throughput observations of each value of N and

use a non-parametric method to test for significant differences between the throughput observations

of each group. More specifically we use the Kruskal-Wallis one-way analysis of variance. The test

8



does not reject the null-hypothesis that the throughput observations at different values of N are

drawn from the same distribution at both 0.05 and 0.1 significance levels for N ≥ 22. However, it

does reject the null hypothesis if we include more groups at lower values of N . The test implies that

the measurements of throughput for different values of N ≥ 22 are not significantly different. As

we can see, the different methods lead to the same conclusion: All else being equal, the departure

throughput does not significantly change with departure demand at demand values greater than or

equal to 22. In other words, N∗ = 22. We can now isolate all data points for which N ≥ 22 and

study the explanatory power of other variables.

As a first step, we use the data points for which N ≥ N∗ to plot the average departure through-

put as a function of arrival throughput, and estimate the least square fit of a concave non-increasing

function to the data. Given k pairs of measurements Ā(t) and T̄ (t), denoted (v1, y1), . . . , (vk, yk)

at all times when N ≥ N∗, we seek a non-increasing, concave function h : R → R that estimates

the mean T̄ = h(Ā(t)|N ≥ N∗). Again, we only need to estimate the points h(0), h(1), . . . , h(l),

where l = max(Ā(t)). Thus, function h is a piecewise linear function of A and the monotonicity

and concavity constraints are imposed at the points 0, 1, . . . , l by comparing the values and the

slopes of subsequent pieces. The formulation of this estimation problem is as follows:

min
k

∑

i=1

(ŷi − yi)
2 (21)

subject to:

ŷi = h(vi), i = 1, . . . , k (22)

h(i+ 1) ≤ h(i), i = 0, . . . (l − 1) (23)

h(i+ 1)− h(i) ≤ h(i)− h(i − 1), i = 1, . . . (l − 1) (24)

The boxplot of the departure throughput, grouped for every value of the arrival throughput,

can be seen in Figure 4a, and the corresponding fitted function is shown in Figure 4b. The plot

of Figure 4b provides a robust estimate of the average departure throughput as a function of the

arrival throughput under persistent departure demand (N ≥ N∗).

4 Estimation of the impact of fleet mix

In order to estimate the impact of fleet mix, we continue working with the data points for which

N ≥ N∗. We address the problem of estimating the departure throughput as a function of the

arrivals and the fleet mix. The fleet mix is not a simple numerical variable like the number of arrivals,

its impact is highly dependent on the particulars of each airport (such as, runway configuration,

sequencing decisions, airspace design, and local procedures). For runway configuration (22L, 27 |

22L, 22R) at BOS, given operational information from controllers, our hypothesis is that the fleet
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(a) Boxplot of takeoff rate as function of landings rate for
N ≥ 22
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(b) Regression of the takeoff rate as function of landings
rate for N ≥ 22

Figure 4: BOS departure throughput in segment (VMC ; 22L, 27 | 22L, 22R) as a function of
arrivals, for N ≥ 22

mix can be represented with two variables:

• Number of propeller-powered aircraft (PDeps) in the mix that is taking off in the 15-minute

interval.

• Number of heavy aircraft (HDeps) in the mix that is taking off in the 15-minute interval.

The props are fanned in between jet departures and are thus expected to increase the departure

throughput. The heavy aircraft introduce longer separation requirements, and are expected to

decrease the departure throughput. Based on this discussion we attempt to model the response

variable, departure throughput (Departures) in each 15-minute time interval [t, t+14], as a function

of four potential explanatory variables:

1. Number of departing aircraft on the ground at time t (DepDem) 1

2. Number of landings in the 15 minute interval (Arrivals)

3. Number of props taking off in the 15-minute time interval (PDeps)

4. Number of heavy aircraft taking off in the 15-minute time interval (HDeps)

Prior to the analysis of this multi-variable estimation problem, we note that the variables

PDeps, HDeps, as we defined them, introduce a bias in the estimation problem. We illustrate

1Although we have established that the departure throughput does not change significantly with the number of
aircraft on the ground, when N ≥ N

∗, it is useful to revisit this hypothesis in a more complex multi-variable model.
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this bias with an example. When we estimate the departure throughput in a 15-minute interval

during which 5 heavy departures were reported, what we really intend to measure is the following:

how does the throughput of the airport get impacted when 5 aircraft in the front positions of the

departure queue are heavy? However, we only measure the throughput of the airport given that

five heavy departures were recorded. The fact that we control for the number of departures on the

ground does not remove this bias. Some of the time intervals in the measurements are bound to

include rare events such as a runway closure because of some unexpected incident, or the mechanical

failure of some aircraft. However, the time interval in which 5 heavy departures took place is bound

to be free of those rare events, otherwise 5 heavy departures would not be feasible.

We considered solving this problem by using other variables to measure the impact of fleet mix,

such as the number of departing props on the ground and the number of departing heavy jets on

the ground. It turned out that the most robust way to reduce the measurement bias was to remove

from the data set the 15-minute intervals during which the total departure throughput is lower than

the highest prop throughput, and the highest heavy aircraft throughput recorded in any 15-minute

interval. In this way, we removed time intervals with exceptionally few operations. We did not

remove these points in Section 3, because we wanted the average throughput curves to take into

account moments of unexpectedly low throughput.

We analyze the correlations between all the variables in the model. For that we use the pairs

function of the R programing language which produces panels with the correlations among all

variables of the model. Each panel shows the scatterplot between the variable on the vertical axis

and the variable on the horizontal axis as well as the lowess2 curve, in red color, through a set of

data points. Lowess fits follow the general trend of the data and so they are a good measure of

the correlation between the two variables [1]. The response variable Departures is shown on the

y−axis of the top row of the panels.

From Figure 5, we can observe that:

• The lowess fit line for the variable pair (DepDem, Departures) does not exhibit any large

or systematic deviance from the y = 11 line. This is further evidence that N∗ was calculated

correctly, and that for N ≥ N∗, there is no correlation between the departures demand and

the departure throughput. The departure throughput is shown to be stable at 11 AC/15 min,

the same value that was calculated using the estimation method of Figure 1b.

• The lowess fit line for the variable pair (Arrivals, Departures) follows the same trend as the

curve of Figure 4b: It shows that the departure throughput drops from 12 to 9 as a concave

function of the arrival throughput.

• The lowess fit line for the variable pair (Heavies, Departures) exhibits a rather unclear,

humped trend. The curve initially increases from 10.5 to 11 and then decreases and stabilizes

2locally weighted scatterplot smoothing
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Figure 5: Correlations between Departures, Departure Demand, Arrivals, Heavy Departures and
Prop Departures

at around 10.

• The lowess fit line for the variable pair (DepDem, Departures) exhibit a clear positive corre-

lation between the two: As the number of departures of props increases from 0 to 6 the total

departure throughput appears to increase from 9 to 14.

The relationship between the departure throughput and these four variables is also examined

with advanced statistical tools such as regression trees, random forests and generalized additive

models. They all lead to the same conclusion: the two most significant explanatory variables are

the arrivals and the prop departures. The departures of heavy aircraft do not seem to significantly

impact the departure throughput. This might be surprising, but it can be explained by the opera-

tional procedures at BOS: Controllers use the high wake vortex separation requirement between a

heavy and a subsequent departure to do runway crossings, and so the impact of a heavy departure

on throughput may be insignificant.
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4.1 Estimation of departure capacity as a function of arrival throughput and

fleet mix

Having established that at N ≥ N∗ the departure throughput is primarily a function of arrivals

and prop departures, we estimate this function using the approach described in Section 3. The

plot of the estimated function, hp(Ā, PDeps|N ≥ N∗), can be seen in Figure 6a overlaid with the

dashed curve of Figure 4b (the Average Fleet Mix Throughput). The comparison shows that the

solid lines in Figure 6a are in fact the dashed line parameterized by the number of props taking off

in the 15-minute interval.
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Figure 6: BOS departure throughput in segment (VMC ; 22L, 27 | 22L, 22R) using different
estimation methods

From Figure 6a, we observe the following:

• The average departure throughput curve is close to that corresponding to a fleet mix of 1

prop taking off in a 15 minute interval. This is consistent with the number of props in the

fleet mix at BOS, which was around 10% in 2007.

• The number of props has a significant impact on the departure throughput. In the most

common operating scenarios in which the rate of arrivals is 5-10 aircraft/15 min and the

number of props is 0-2, the departure throughput increases at a a rate of almost one for each

additional prop.

• From this plot and other statistical analyses, we conclude that for this runway configuration at

BOS, the fleet mix is a more significant explanatory variable of the departure throughput than

the arrival throughput. The departure throughput decreases with the arrival throughput by

at most 2.6 operations per 15 min, for an increase of arrival throughput from 0 to 14 aircraft
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/15 minutes. In contrast, increasing the number of props in the fleet mix from 0 to 5 increases

the departure throughput by 4.4 operations/15 min.

4.2 Comparison to capacity envelopes

In this section, we demonstrated how the departure throughput can be modeled as a function of

the arrival throughput and the fleet mix under persistent departure demand. We showed how the

average departure throughput under persistent demand (11 aircraft/15 min) can take range from

8.5 to 14.5 aircraft /min depending on the arrival throughput and the fleet mix.

A logical question is how the estimated functions plotted in Figure 6a compare to standard em-

pirical capacity envelope estimates. Empirical capacity envelopes represent the highest departure

throughput as a concave non-increasing function of the arrival throughput: The curve enveloping

the observed maximum arrival and departure counts, after correcting for outliers, is considered the

airport capacity envelope. For the capacity envelope estimation, we use the approach suggested by

Ramanujam and Balakrishnan [5], which for this runway configuration at BOS yields the capacity

envelope plotted in Figure 6b. The maximum total capacity is achieved at the point of free depar-

tures: 27 movements/ 15 minutes3. The capacity envelope is overlaid with the average departure

throughput curve and the highest departure throughput curve (the one with the most favorable

fleet mix). We observe that the capacity envelope is close to the throughput curve of the most

favorable fleet mix. This reveals an inherent ambiguity in the analysis of the capacity envelope.

While the commonly accepted definition of capacity is ”the average number of movements that can

be performed on the runway system in the presence of continuous demand” [2], most empirical ca-

pacity envelope estimation methods focus on the best-case scenario, that is, the maximum number

of movements that can be performed on the runway system in the presence of continuous demand.

These maximum counts are achievable only under special circumstances, such as a favorable fleet

mix or a favorable runway sequence. In this case of BOS, the difference between the capacity enve-

lope and the average departure throughput in the presence of continuous demand estimates for the

departure capacity at a given arrival throughput can be as large as 4 operations/15 minutes.

4.3 Interactions between jet and pro departures

In the last section, we showed that the departure throughput increases at a rate of almost one

operation per prop in the departure fleet mix. This could imply that jet and prop operations are

fairly decoupled at BOS, which supports the belief of Air Traffic Controllers. In order to study the

interaction of jets and props in more detail, we estimate the jet throughput under persistent jet

demand as a function of arrivals and prop departures.

We isolate data points which satisfy the following two conditions:

3FAA calculates the capacity of this runway configuration at 28-29 movements/15 minutes [4].
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• The time intervals which can be assumed to be under persistent jet departure demand.

• The time intervals for which the total departure throughput is at least as high as the highest

prop throughput.

As we shall see later, the first condition is satisfied when the number of jets taxiing out is equal

or higher than 17. The second condition ensures that we exclude conditions with unexpectedly

low throughput. Figure 7 shows the takeoff rate of jets as a function of the landing rate and prop

takeoffs. Figure 7 shows that for this runway configuration at BOS, increasing the number of props

in the fleet mix decreases the takeoff rate of jets by very little. In particular, we note that the curve

of the average jets throughput given 3 prop takeoffs is one unit lower than the one of the average

jet throughput given 0 props. This means that on average, for the servicing of three props, one less

jet will takeoff. The total departure throughput will increase by two units in agreement with the

plots of Figure 6a.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

1

2

3

4

5

6

7

8

9

10

11

 

 

Landings rate (AC/15 min)

J
et

s
T
a
ke

o
ff

ra
te

(A
C

/
1
5

m
in

)

Jets Throughput | 0 Props Takeoffs
Jets Throughput | 1 Props Takeoffs
Jets Throughput | 2 Props Takeoffs
Jets Throughput | 3 Props Takeoffs
Jets Throughput | 4 Props Takeoffs

Figure 7: BOS departure throughput tradeoff between props and jets in segment (VMC ; 22L, 27
| 22L, 22R)

Figures 6a and 7 demonstrate that there is little interaction between jets and props for this

particular runway configuration at BOS. Their operations tend to be decoupled, especially for low

numbers of props in the departing mix (such as 0, 1, or 2), which are also the most frequently

encountered (the mean value of prop takeoffs is 1.04 and the median 1 / 15 minutes), the reduction

of the jet departure throughput is at most 0.5 operation. This validated the hypothesis of the ATC

controllers that prop departures have a marginal impact on jet departure throughput. As a next

step we study the departure throughput of jets only as a function of jet departure demand and

arrivals, neglecting the impact of prop departures. This is essentially an approximation, but we

will show that it is a sufficiently robust one.
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5 Jet Departure Throughput

For this section, we use the whole dataset excluding all prop departures. As a first step we generate

the average throughput curves, similarly to Section 2: The jet departure demand, NJ , at some

minute t is measured as the number of jets taxiing out during this minute. The jet departure

throughput during a 15-minute period starting at time t is defined as the jet takeoff rate, T̄j over

this time period and is measured as the number of jets that took off during the 15-minute interval

[t, t+ 14] min.

This representation yields the plots of Figure 8a, in which we plot the mean and median jet

takeoff rate for each value of the jet departure demand, NJ . The error bars depict the standard

deviation of the takeoff rate at each value of NJ . In Figure 8b, we show the corresponding regression

fits. The mean takeoff rate saturates at 9.6 jet takeoffs/ 15 minutes when NJ ≥ 20 and median

takeoff rate saturates at 10 when NJ ≥ 21. We observe that the average jet average takeoff rate

of this runway configuration under persistent demand is around 10 jet takeoffs/ 15 minutes. The

fitted curves suggest that persistent demand is achieved when the number of jets taxiing out is

around 20.
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(b) Regression of the jet takeoff rate as function of depart-
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Figure 8: BOS jet departure throughput in segment (VMC ; 22L, 27 | 22L, 22R)

5.1 Estimation of the saturation point N
∗

J

The mean and median throughput measurements and fitted curves coincide in Figure 1 in conges-

tion, whereas they do not match in Figure 8. This discrepancy results from the approximation of

excluding props. The median estimates are more robust to outliers resulting from the rare events

of having a high number of props, which would lead to a reduced number of jet operations even
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under high demand. The fitted curves also saturate at a very high number of NJ , in particular

they saturate at NJ = 21, at only one point less than N∗. This is also a result of excluding props.

Because of the approximation of this analysis, we need a more robust way to identify N∗

J . By

using Kruskal-Wallis one-way analysis of variance, we find that the measurements of throughput

for different values of NJ for NJ ≥ 17 are not significantly different. We can conclude, that all else

being equal, the jet departure throughput does not significantly vary with jet demand at demand

values greater or equal than N∗

J = 17.

5.2 Jet departure throughput as a function of jet departure demand and arrival

throughput

Using the same methodology as in Section 3, the jet takeoff rate is estimated as a function of the jet

departure demand and arrival throughput. Two visualizations of the estimated function g can be

seen in Figure 9. Figure 9a is essentially the mean regression curve of Figure 8b, parametrized for

different levels of arrival throughput. As expected, the arrival throughput impacts the jet departure

throughput. Figure 9b displays the same graph from a different angle: the arrival throughput is

the variable on the x-axis and the departure demand is a parameter.
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Figure 9: BOS jet departure throughput in segment (VMC ; 22L, 27 | 22L, 22R) as function of
arrivals and departure demand

5.3 Average jet departure throughput as a function of arrival throughput and

fleet mix under persistent jet departure demand

Similarly to Section 3.2, we isolate the data points for which NJ ≥ 17 and we estimate the average

jet departure throughput as a non-increasing concave function of the arrival throughput. The fitted

curve can be seen in Figure 10a in red labeled as “Jet Average Throughput”. We also plot three

curves from Figure 7, namely the average jet throughput given 0,1 and 2 prop takeoffs. As a
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reminder, these throughput plots are fitted curves of the jet departure throughput for NJ ≥ 17,

parametrized for the number of prop takeoffs. We note that the “Jet Average Throughput” curve

almost coincides with the curve of “Jet Throughput | 1 Prop Takeoffs” and lies between the curves

of “Jet Throughput | 0 Prop Takeoffs” and “Jet Throughput | 2 Prop Takeoffs”. This shows that

estimating the jet departure throughput after neglecting all prop operations does not bias the

estimation. Thus, by studying the jet departures omitting the props, the resulting jet throughput

estimation is representative of the average mix between jets and props.

As a final step, we study the impact of heavy weight class departures on the jet departure

throughput. We have already seen in Section 4 that they are a less significant explanatory variable

of the departure throughput than the number of props and the number of arrivals. Now, we can

visualize this result by representing the jet departure throughput under persistent jet demand as a

function of the arrivals and the number of heavies in the jet mix taking off in a 15-minute interval.

The graph of the estimated function can be seen in Figure 10b. Evidently, the jet departure

throughput is insensitive to the number of heavies in the jet mix as long as the number of heavies

is not higher than 3, which is the case 95% of the high demand periods at BOS. There are two final

remarks in respect to Figure 10b. We see that the departure throughput when 5 heavies depart

is at most 9.7 jets in 15 minutes. This is to be expected, given that a heavy departure introduces

a two minute separation requirement. Thus, 5 heavy departures occupy a ten minute window

leaving room for at most 5 more jets in the remaining 5 minutes. Therefore, the throughput is

expected to be slightly lower than 10 jet departures in 15 minutes. Similarly, when the number of

heavies is 6, the throughput is expected to be slightly lower than 9. Finally, it is not surprising

that the throughput curve when there are six heavies departing is flat implying that the departure

throughput is insensitive to the number of arrivals: The large number of heavies results in many

long separation requirements during which practically all available arrivals can cross the departure

runways.

6 Conclusions

In this report we showed new methods for the parametric estimation of the departure throughput

and capacity of an airport. We showed that the departure throughput can be estimated and

represented as a function of two variables: the departure demand and the arrival throughput. We

also showed how to measure departure capacity as a function of the arrival throughput and the

fleet mix.

For the case of runway configuration (22L, 27 | 22L, 22R) of BOS, we showed how the mean

departure capacity (11 aircraft/15 min) can take range from 8.5 to 14.5 aircraft / 15 min depending

on the arrival throughput, and the fleet mix. We also demonstrated that for this runway configu-

ration at BOS, the fleet mix is a more significant explanatory variable of the departure throughput

than the arrival throughput, and compared our results to state of the art capacity envelopes. The
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Figure 10: Jet departure throughput in segment (VMC ; 22L, 27 | 22L, 22R) using different
estimation methods

comparison suggested that capacity envelope estimates differ from our estimates primarily because

traditional capacity envelopes do not consider the effect of fleet mix.

Furthermore, we presented a methodology for studying the interactions between different weight

classes of aircraft. This methodology indicated that jet operations are decoupled from those props

of BOS. Moreover, it showed that jet throughput does not get impacted by the share of heavy

weight class jets in the mix of departing aircraft for reasonable numbers of heavy aircraft.
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