
LOCALITY IN LOGICAL DATABASE SYSTEMS:
A FRAMEWORK FOR ANALYSIS

by

EDWARD JAMES McCABE

S. B., Massachusetts Institute of
(1976)

Technology

SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE

DEGREE OF

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

(July 21, 1978)

Signature of Author...
Alfred P. Sloan School of Management

July 21, 1978

Certified '.>y..
Thesis Supervisor

Accepted by...
Chairman, Department Committee

LOCALITY IN LOGICAL DATABASE SYSTEMS:
A FRAMEWORK FOR ANALYSIS

by

EDWARD JAMES McCABE

Submitted to the Alfred P. Sloan School of Management
on July 21, 1978 in partial fulfillment of the requirements

for the Degree of Master of Science.

ABSTRACT

This thesis proposes measures for database locality and
reports on their subsequent application to a series of
reference strings from a large database. These measures are
organized into temporal locality measures and spatial
locality measures. The research concentrates on examining
the interface between the user and the database system to
minimize the influence of data models and their
implementation on the results. Thus it differs from
previous work by virtue of its framework and its
perspective.

The reference strings are taken from a large IBM IMS
database, the property database for the County of Riverside,
California. Six temporal locality measures are applied to
the reference strings. They indicate that there is a
significant degree of temporal locality in the database.
Two spatial locality measures are applied to the same data.
These reveal that there is no appreciable spatial locality.
Suggestions for further work in this area are presented.

Thesis Supervisor: Stuart E. Madnick
Associate Professor of
Management Science

CONTENTS

Abstract . ..

1 Introduction and plan of thesis
1.1 Introduction
1.2 Significance of the problem
1.3 Specific goals and accomplishments
1.4 Generalistructure of the thesis ...

2 Locality
2.1 Program locality .
2.2
2.3
2.4

Types of locality
Literature about database locality
Implications of database locality

3 Measures
3.1 Why measures
3.2 Temporal locality measures
3.3 Spatial locality measures

4 Experiments
4.1 The database
4.2 Temporal locality measures
4.3 Spatial locality measures

5 Discussion and conclusions
5.1 Introduction
5.2 Summary
5.3 Further work

Bibliography

- 3 -

6
6
7
8
9

10
10
18
25
27

29
29
30
58

66
66
69
88

104
104
104
105

106

.......................

..................... 0

..................... 0 0

FIGURES

Only one record referenced
Each record referenced once
Only one record referenced
Each record referenced once
No consecutive references to same record
All references to same record consecutive
Transactions and records referenced v. time
Transactions and records referenced v. time
Transactions and records referenced v. time
Records referenced v. transactions
Records referenced v. transactions
Transactions, runs, and records referenced v. time ...
Pairs of references to the same record
Number of references v. stack distance

1
2
3
4
5
6
7
8
9
101
11

12
13l14
15
16

1E
190
20
21
22
23
24
25 E
26 E
27

v. stack distance
size = 50 records
size = 50 records
size = 100 records
size = 100 records
size = 200 records
size = 200 records
- window size = 50
- window size = 50
- window size = 100
- window size = 100
- window size = 200
- window size = 200

34
36
38
39
44
46
70
71
72
75
77
79
84
86
88
90
92
93
94
95
96
98
99
100
101
102
103

- 4 -

Number of record I/Os
Cooccurrences - block
Cooccurrences - block
Cooccurrences - block
Cooccurrences - block
Cooccurrences - block
Cooccurrences - block
Weighted cooccurrence
Weighted cooccurrence
Weighted cooccurrence
Weighted cooccurrence
Weighted cooccurrence
Weighted cooccurrence

TABLES

1 Sample reference string
2 Sample calculation of records referenced
3 Sample reference string
4 Sampl calculation of runs
5 Expected number of records referenc
Sample reference string
Sample calculation of di
Pr(d = j I d < n) for N
Sample reference string
Sample calculation
Final tableau
Record I/Os v. stack di
Sample reference string
Sample reference string
Sample calculation
Breakdown of data used
Results of linear regre

. 0
stan

=10

stan

in a
ssio

Number of transactions per
Expected number of records

ce
00, n = 1

ce......

nalysis
n .eo...
record .

j

00

referenced

t ime

j times

- 5 -

ed

8
9
10
11
12

16
17
18
19

32
33
41
42
49
51
51
54
56
56
57
58
60
.63
64
69
76
81
82

LOCALITY IN LOGICAL DATABASES

Chapter 1.

Introduction and plan of thesis

1.1 Introduction

The subject of this research is to investigate ways of

measuring a property of reference strings generated by users

of database systems. A reference string is a list of the

records requested from a database in chronological order.

The property chosen for investigation is known as the

principle of locality.

1.1.1 What is locality

Locality is usually discussed in the context of program

behavior. In this context, locality is:

"the idea that a computation will, during an
interval of time, favor a subset of the
information available to it." (1)

Database locality is:

the idea that the users of a database will, during
an interval of time, favor a subset of the
information available to them.

Consider the following example. The telephone

directory for the city of Boston contains approximately

(1) Denning [1968], Resource Allocation in Multiprocess
Computer Systems, p. 3.

- 6 -

LOCALITY IN LOGICAL DATABASES

400,000 listings, but most of us do not resort to it to call

our parents, friends, or business acquaintances. Instead we

have taken their phone numbers from the phone book and

placed them into personal directories (some have probably

been memorized). When we do place -a call,- we poll this

storage hierarchy according to its access speed (first, our

memory; second, the personal directory; and lastly, the

telephone directory). This system works because we tend to

call the same people day after day. If our calls were

placed at random, we would have to resort to the phone

directory many more times than we actually do. This favored

subset (parents, friends, and business acquaintances)

changes over time as people move, we meet new friends,

clients change, etc.

1.2 Significance of the problem

Easton [1975] notes that:

"One motivation for- studying references to the
data base is the availability of on-line storage
devices with extremely large capacities. (For
example, devices exist that can store more than
10**10 bytes of data.) Information concerning the
structure of the data base reference string is a
basic requirement for studies of a system that
uses such a device as a backing store for disk
storage." (2)

(2) Easton (1975], p.550.

- 7 -

LOCALITY IN LOGICAL DATABASES

This is the motivation behind this research. If large

information utilities (like Madnick's INFOPLEX [1975]) are

to be based on storage hierarchy systems, we must understand

the underlying phenomenon, locality. As Madnick [1975]

points out:

"If all references to information in the system
were random and unpredictable, there would be
little utility for the intermediate levels of
storage technologies. Most practical applications
result in clustered references such that during
any interval of time only a subset of the
information is actually used..." (3)

1.3 Specific goals and accomplishments

The specific goals and accomplishments of this thesis,

which are elaborated later, are:

- Review the literature on program locality and propose

extensions of the basic themes to database locality.

- Introduce the research being conducted on various

aspects of database locality.

- Propose measures for database locality based on

Madnick's decomposition of locality into its temporal

and spatial components.

(3) Madnick [1975], p. 582.

- 8 -

LOCALITY IN LOGICAL DATABASES

- Apply those measures to a series of database

reference strings and analyse the results.

- Discuss the extension of this work to experiments

with larger databases and speculate on locality in

those databases.

1.4 General structure of the thesis

The rough outline of this work follows. The purpose of

Chapter 2 is to acquaint the reader with the work done on

program locality and introduce him to database locality.

Chapter 3 proposes measures for both temporal and spatial

database locality. In Chapter 4, these measures will be

applied to a series of database reference strings and the

results will be analysed. Finally, in Chapter 5,

conclusions will be drawn about the effectiveness of the

measures and their possible extension to other larger

databases.

- 9 -

LOCALITY IN LOGICAL DATABASES

Chapter 2.

Locality

This chapter- focuses on formalizing the definition of

locality given in the introduction. By examining the fruits

of the research done on program locality, the reader will

gain a pe-rspective useful in dealing with database locality.

In particular, the definition of locality given above will

be decomposed into two components: temporal and spatial. It

has been shown that this distinction provides valuable

insight into the behavior of demand paging systems. It also

provides us with a framework for analysing database

locality. The literature on database locality is examined.

Finally, the implications of recognizing database locality

and reconciling it with the database's structure are

discussed.

2.1 Program locality

The principle of local-ity as it applies to programs

(program locality) has been the subject of most of the

research on locality. Section 2.1.1 gives a quick overview

of the roots of program locality and the research

community's efforts to model and measure it. Section 2.1.2

examines storage hierarchy systems, which relyr on program

locality to meet cost/performance criteria, and the

- 10 -

LOCALITY IN LOGICAL DATABASES

programming techniques that should be adopted to maximize

locality.

2.1.1 Historical perspective

This subsection begins by noting the speculation on

locality's origins. Then it recapitulates Spirn and

Denning's taxonomy of the models of locality. This taxonomy

divided the subject material into two perspectives: an

intrinsic view, which focuses on the state of the program as

determining its reference pattern; and an extrinsic view,

concentrating on the observable properties of the program as

it executes (e.g. the memory reference sequence). Some of

these models will surface again when the measures for

database locality are presented.

2.1.1.1 Origins of program locality

Program locality has been attributed to programmers'

own heuristic techniques. DO loops, arrays, and subroutines

are all manifestations of the quest to simplify and

generalize solutions to problems. Denning [1968] enumerates

these factors in greater detail:

"1. Sequential instruction streams. Both
programmers and compilers tend to organize
sequentially the instructions that direct the
activity of a process; this is especially true
in single-address machines (i.e., those with a

- 11 -

LOCALITY IN LOGICAL DATABASES

program counter) . If a process fetches an
instruction from a given page, it is highly
probable that it will soon fetch another
instruction, in sequence, from the same page.

2. Punctional modularity. Program modules are
organized and executed by function.

3. Content-related data organization. Information
is usually grouped by content into segments,
and is normally referenced that way; thus,
references will occur in clusters to a
content-related region in name space.

4. Looping. Programs often loop within a set of
pages.

5. People. Realizing that their programs will run
on a paged machine and that page transfers are
costly, programmers tend to organize their
algorithms so that activity is localized within
subsets of their information. Moreover, people
have been studying methods of minimizing
interpage references at execution time." (4)

It is these characteristics which give rise to locality.

In higher level procedural languages, these patterns

may be obscured by the compiler (alphabetizing variables

before allocating storage for them), but often the

programmer takes advantage of this behavior to produce more

efficient code (e.g. suffixing variables, grouping them into

structures or arrays).

(4) Denning [1968], Resource Allocation in Multiprocess
Computer Systems, p. 40-41.

- 12 -

LOCALITY IN LOGICAL DATABASES

2.1.1.2 Taxonomy

Several models have been developed for examining and

analysing program locality. These models form the basis for

various definitions of locality inasmuch as their parameters

provide quantitative measures for assessing a program's

locality. The taxonomy presented by Spirn and Denning

[1972] divides these models into two groups. The first-

group, the intrinsic models, identifies the models which are

based on some knowledge of the program's structure. These

models assume that the locality at any given time is a

function of the state. of the program at that moment.

Consequently they predict the probability of referencing any

given location as a function of the state of the program.

The models in this group are:

1) page reference distribution functions,

2) the independent reference model (IRM),

3) the locality model, and

4) the LRU (least recently used) stack model or SLRUM.

For example, the simplest intrinsic model is the

independent reference model. According to this model, the

probability of referencing a given location at any instant

in time is the same regardless of state. (In essence, one

reference is independent of any other.) As you may suspect,

- 13 -

LOCALITY IN LOGICAL DATABASES

it has been shown that the IRM produces poor fits to actual

programs. (5)

On the other hand, the SLRUM, a more complex model,

produces a good approximation to the real world behavior of

programs. (6) This model is based on the memory contention

stack generated by the LRU replacement algorithm. At any

given time, the location at the top of the stack is the most

recently used location. Subsequent references to different

locations cause the stack to be pushed down to accomodate

the referenced location. Let x(i) be a location in memory

(not necessarily ordered on i). Let s(t) be the stack at

time t, s(t) = {x(l), x(2), ... , x(n)}. If the program

references the ith item in the stack at time t, then s(t+l)

= {x(i), x(l), x(2), ... , x(i-1), x(i+l), ... , x(n)}. In

this model, the probability of referencing the ith item in

the stack (the stack distance probability, a(i)) at any

given time is constant. Thus the state of the program (as

represented by its stack, s(t)) determines the probability

of referencing any given location.

(5) Spirn and Denning (1972], p. 614.

(6) Spirn and Denning [1972], p. 620.

- 14 -

LOCALITY IN LOGICAL DATABASES

The extrinsic models are those that can be derived from

the observable properties of the memory reference sequence.

They are:

1) the locality sequence based on time intervals,

2) the locality sequence based on disjoint sets of

pages, and

3) the working set, W(t,T) - the set of pages

referenced among the last T references at time t.

For example, the working set model uses the set of

pages referenced among the last T references (which does not

make any assumptions about the program's state) as a model

of the program's locality.

2.1.2 Applications of program locality

Recognizing program locality and designing tools to

capture it has received a good deal of attention.

Particularly important applications of the principle are

those in storage hierarchy systems, programming techniques,

and reordering frequently used programs.

2.1.2.1 Storage hierarchy systems

Systems which rely on the principle of locality predate

the formal recognition of the principle itself. Demand

- 15 -

LOCALITY IN LOGICAL DATABASES

paging systems and segmentation memory management techniques

are based on locality. Demand paging takes advantage of

infrequent use of portions of a routine.

recognizes

(7) Segmentation

the time v. space tradeoff for loading

infrequently used routines into main memory.

(segmentation),

In one case

the partitioning is done at the user's

behest. In the other (paging), it is invisible.

Madnick [1973] argues that the principle of locality

extends to all storage hierarchies:

"[E]ach level [of a storage hierarchy] 'sees' a
different view of the program. The high levels of
the hierarchy must follow the microscopic
instruction by instruction reference pattern
whereas the middle levels follow a more gross
subroutine by subroutine pattern. The very low
levels are primarily concerned about the
processor's references as it moves from subsystem
to subsystem. We do not have any a priori
guarantee that locality of reference holds equally
true for all of these views, but we do have some
reported evidence to encourage us." (8)

(7) The Atlas computer system, developed in 1961, used a
demand paged memory hierarchy (described as the "Automatic
Use of a Backing Store"), but the concept itself (locality)
was not ennunciated until several years later when Denning
and others began to model the performance of virtual memory
systems.

(8) Madnick [1973], 56-57.

- 16 -

LOCALITY IN LOGICAL DATABASES

2.1.2.2 Programming techniques

Several researchers have investigated the effects of

different programming techniques on locality of reference.

Kuehner and Randell [1968] enumerated a set of "programming

commandments" that included localizing activity for

intervals instead of moving rapidly over the program's

address space. (9) These commandments are particularly

important for programs used frequently. Brawn and Gustavson

[1968] report that:

"The data indicate that, if reasonable programming
techniques are employed, the automatic paging
facility compares reasonably well (even favorably
in some instances) with programmer controlled
methods [e.g. overlays]. While not spectacular,
these results nonetheless look good in view of the
substantial savings in programmer time and
debugging time that can still be realized even
when constrained to employing reasonable virtual
machine programming methods." (10)

Essentially these authors urge the programmer to recognize

locality and act accordingly.

2.1.2.3 Reordering frequently used programs

Hatfield and Gerald [1971] demonstrated the use of

(9) Another commandment deals with excessive modularity (one
component of "structured programming"). It cautions against
using program modules at the expense of additional page
faults and dynamic control transfers.

(10) Brawn and Gustavon [1968], 1028-1029.

- 17 -

LOCALITY IN LOGICAL DATABASES

computer displays of memory usage to assist them in

reordering relocatable program sectors to substantially

reduce the number of page exceptions (faults) in frequently

used programs (e.g. assemblers, compilers). By interpreting

the memory usage data as graphic evidence of locality, they

sought to increase locality by clustering closely referenced

sectors into the smallest set of pages. These displays gave

them immediate feedback on the automated procedures they

were employing to reorder the program sectors.

2.2 Types of locality

Thus far, we have dealt only with the notion of program

locality; however, Madnick [1973] has identified two

underlying phenomena of locality: temporal and spatial.

This section examines these components and proposes

definitions for their database components. Finally, it

discusses the synthesis of these components.

One of the difficult concepts to resolve when extending

the definition of locality to databases is identifying the

database counterpart of "address". For our purposes that

counterpart is a record, where:

A record is the fundamental unit the user can deal
with (be it to retrieve, store, or modify).

- 18 -

LOCALITY IN LOGICAL DATABASES

This definition has been adopted to maintain independence

between the work done here and the implementations of

database systems. Indeed, users of the same database may

have different records (e.g. users in the personnel office

might have access to individual employees' records, while

those in the corporate strategy office might be restricted

to aggregate statistics by plant or division).

2.2.1 Program locality

2.2.1.1 Temporal locality

Madnick's definition of temporal locality is:

"If the logical addresses {al, a2, ... } are
referenced during the time interval t-T to t,
there is a high probability that these same
logical addresses will be referenced during the
time interval t to t+T." (11)

Thus, a reference sequence which repeatedly references the

same location in a period of time demonstrates a high degree

of temporal locality. An example of this behavior for a

program would be the reference sequence encountered when

searching an array.

(1) load i

(2) add 1

(3) store i

(11) Madnick [19731, p. 120.

- 19 -

LOCALITY IN LOGICAL DATABASES

(4) load b(i)

(5) compare

(6) go to (1)

In this sequence of references, the same location ("i") is

referenced on 2 of 3 data references.

2.2.1.2 Spatial locality

Madnick's definition of spatial locality is:

"If the logical address a is referenced at time t,
there is a high probability that a logical address
in the range a-A to a+A will be referenced at time
t+l." (12)

Here a reference to one location presages references in the

near future to neighboring items. The literature on program

locality usually defines neighboring items as those that are

physically contiguous (in the same page). The example given

for program locality in 2.2.1.1 above also demonstrates

spatial locality, inasmuch as a reference to "b(i)" presages

one to "b(i+l)".

2.2.1.3 Locality and its components

Though temporal and spatial locality are the underlying

phenomena, "general locality" is the topic of most of the

discussion in the literature. To reconcile our definitions

(12) Madnick [1973], p. 121.

- 20 -

LOCALITY IN LOGICAL DATABASES

with those in the literature, merge the definitions of

temporal and spatial locality found above. The result is a

definition for general locality:

"If the logical addresses {al, a2, ... } are
referenced during the time interval t-T to t,
there is a high probability that the logical
addresses in the ranges al-A to al+A, a2-A to
a2+A, ... , will be referenced during the time
interval t to t+T."' (13)

But the distinction between the two components is

important. Hatfield [1972] noted an anomoly when studying

the page fetch frequencies (the number of times it was

necessary to fetch a page from the paging device) of

programs with high locality. If the page size was halved,

the frequency- of page fetches occasionally more than

doubled. Madnick [1973] followed this work by determining

the upper bound on the increase in page fetch frequency and

proposed an algorithm, "tuple-coupling", to limit the page

fetch frequency to twice its former value when the page size

was halved. In his report he observed:

"In particular, we see, that whereas temporal
locality policies are given explicit attention [by
conventional removal algorithms], spatial locality
policies are usually handled implicitly and
subtely. The "least recently used", LRU, removal
algorithm, for example, is very much concerned
about the temporal aspects of the program's
reference pattern. The spatial aspects are

(13) Madnick [1973], p. 121.

- 21 -

LOCALITY IN LOGICAL DATABASES

handled as a by-product of the fact that the
demand fetch algorithm must load an entire page
(i.e., a spatial region) at a time and LRU removal
decisions are based upon these pages. With these
thoughts in mind, we can see that decreasing page
size causes the conventional storage management
algorithms to increase their sensitivity to
temporal locality and decrease their sensitivity
to spatial locality." (14)

2.2.2 Database locality

The idea that the probability of accessing any given

record in a database might differ from that of accessing

another record is not new. Knuth comments that a typical

distribution was formulated by G. K. Zipf in 1949. (15)

This distribution or "Zipf's Law" is based on Zipf's

principle of least effort. One demonstration of this

principle, the economy of words, involved word frequency

counts in James Joyce's novel Ulysses. In this novel and in

several other works, the rank of the word (in terms of its

frequency of use) times the number of times the word was

used was approximately equal to a constant. (See Zipf

[1949] for more detail.)

(14) Madnick [19731, p. 122.

(15) Knuth [1973], p. 397.

- 22 -

LOCALITY IN LOGICAL DATABASES

2.2.2.1 Temporal locality

By substituting record for logical address, the

definitions given above can be extended to apply to temporal

locality in a database- sense. In this context successive

references to the same record by an applications program

would be indicative of a high degree of locality. As an

example, an applications program might generate these

requests against the database.

(1) read record A

(2) modify record A

(3) print record A

This sequence, not atypical for a clerk modifying the

contents of a record, demonstrates locality inasmuch as the

same record is referenced three times in succession.

2.2.2.2 Spatial locality

Applying this concept to databases is not as simple as

applying temporal locality to databases. Particularly

bothersome is the notion of a neighboring record. Two

intrinsic definitions of a neighboring record are possible.

1) Given a particular application, a neighboring record

is an record logically related to the recently

referenced record.

2) Given a database system, a neighboring record is an

- 23 -

LOCALITY IN LOGICAL DATABASES

record physically grouped (i.e. in the same physical

data record or nearby data record) with the record

recently referenced.

Both these definitions have merit, but the former relies on

knowledge of the application that is hard to obtain. The

latter depends on the physical implementation of the

database (which may be in response to a perception of the

application's locality or may not be directly controllable).

An extrinsic definition has more merit for our

purposes. A neighboring record to one recently referenced,

is one with a substantially higher probability of being

referenced because the first record was referenced. The

definition for spatial locality for databases becomes:

If the record a is referenced at time t, there is
a high probability that a record from the set of
neighboring records (relative to a) will be
referenced at time t+l.

2.2.3 Measuring database locality - practice

From the discussion above, it is apparent that there is

no hard and fast rule for detecting locality. In fact, most

of the database installations visited in the course of this

research intimated that they had no way of detecting, much

less explaining abnormal levels of activity for sets of

records or individual records in a database. The intrinsic

- 24 -

LOCALITY IN LOGICAL DATABASES

definition which relies on knowledge of the application is

especially vulnerable to this criticism. An example of a

hitherto unanticipated locality in a group health -claims

application is the large volume of surgery claims against

the insurance company by workers of a company on strike.

Rather than man the picket lines, workers apparently elect

to undergo previously deferred elective surgery.

2.3 Literature about database locality

Most of the work on database locality has concentrated

on the interface between the storage subsystem and the

database system. The authors have drawn an analogy between

the virtual memory paging system and the database system.

In this context, the counterpart of the primary memory of a

paging system is the database buffer pool space. The page's

counterpart is the block (which contains a number of

records). These researchers have concentrated on modeling

the path segment reference string. (Path segments are

records that must be accessed before the requested record or

target segment can be referenced. This is similar to a tape

in which the first 499 records must be accessed before the

500th record may be referenced.) Often, the path segment

reference string is reduced to a string of block references

for the sake of convenience (i.e. the path segment

- 25 -

LOCALITY IN LOGICAL DATABASES

references are converted to block references).

Consequently, the uses of the model are in the determination

of the effects on working set size, etc. of altering the

block size or the database buffer pool space.

Easton [1975] used a simple Markov chain model to

describe an interactive database path segment reference

string and validated it using data from an interactive

database system, the Advanced Administrative System (AAS,

see Wimbrow [1971]). His model was found to accurately

predict working set sizes. An interesting result of this

work showed that as the window size is varied over three

orders of magnitude that the miss ratio (the'percentage of

references not satisfied by the first level storage devices)

varied by only a factor of three. This is quite contrary to

the behavior of demand paging systems in which window size

exponentially affects the miss ratio (generating a parachor

curve).

Rodriguez-Rosell [1976] comments that this finding and

his corroborating experiments carried out on an.IMS system

indicate that database reference strings exhibit weak

locality. But, he argues that these reference strings

display strong sequentiality. Consequently, prefetch is an

attractive alternative to demand fetch in database systems.

- 26 -

LOCALITY IN LOGICAL DATABASES

In March, 1978, Easton published a paper which

described another model for reference strings. The basis of

this model is the observation that:

"once a page is referenced, there are often
additional references to it within a relatively
short period of time." (16)

He calls this property the time clustering of references

(temporal locality). His new model distinguishes between

two kinds of references to records. If a record was last

referenced some arbitrary period of time, tau, before it is

referenced again, this later reference is a primary

reference; otherwise, the later reference is a secondary

reference. The time between the last secondary reference

and the subsequent primary refere-nce is modeled as a random

variable with a geometric distribution. From this he can

accurately predict the page fault probability and the mean

storage utilization. Again, this is verified by analysing

trace data from an AAS and an IMS system.

2.4 Implications of database locality

The reason so many resources have been focused on

recognizing locality and rearranging databases to match that

pattern is that the performance can be dramatically

(16) Easton [1978], p. 197.

- 27 -

LOCALITY IN LOGICAL DATABASES

improved. As many database administrators can tell you,

adding an inverted file or maintaining another set of set

pointers (network) can reduce the run time of an

applications package by several hundred percent.

- 28 -

LOCALITY IN LOGICAL DATABASES

Chapter 3.

Measures

3.1 Why measures

The brief survey of the field presented in Section 2.3

shows that the work on database locality has -focused on

modeling and analysing the requests for blocks of records

issued by the database system to the storage subsystem.

Indeed, these studies have concentrated on hierarchical

database systems with the predictable result:

"Data base reference strings have been found to
exhibit strong sequentiality in addition to weak
locality." (17)

There are two problems with the research that has been done

so far. First, the concentration on the interface between

the storage system and the database system has led to

conclusions that can not be generalized to other types of

database systems (e.g. network and relational). (I suspect

that Rodriguez-Rosell's assertion that reference strings

exhibit strong sequentiality is particularly subject to this

criticism due to the nature of the IMS hierarchical data

model.) The second fault with the research is that it

ignores an important distinction between the types of

locality. This distinction has proven valuable in the case

(17) Rodriguez-Rosell[1976], p. 13.

- 29 -

LOCALITY IN LOGICAL DATABASES

of program locality, but has been ignored in the work done

on database locality.

The measures presented here aim to correct this

situation by examining the interface between the user and

the database system. This makes it possible to distinguish

between sequentiality inherent in the application (i.e.

always processing credit card authorization requests in

ascending order) and sequentiality induced by the access

method employed by the database system (i.e. HISAM in IMS).

The insight gained from these measures into the processes

generating the requests should remain valid as the database

is modified or restructured. (18)

To facilitate the analysis presented in the rest of the

paper, we will present the measures in terms of transactions

to the database. A transaction is an action by a user

against one record in the database.

3.2 Temporal locality measures

In this section, the measures for temporal locality

will be presented. Some of the measures will be illustrated

(18) It is possible that the users of the database system
have adopted their mode of operation in view of the
performance characteristics of the database, but this
possibility will be ignored.

- 30 -

LOCALITY IN LOGICAL DATABASES

by extreme cases to guide the analyst examining his own

data. Some will use statistical tests to prove or disprove

a hypothesis about how the records were selected. The key

to using these measures is understanding the aspects of

temporal locality that each captures.

3.2.1 Database references v. time

A starting point in any analysis of database activity

should be the examination of database activity over time.

This sets up the ground work for subsequent analysis,

inasmuch as it pinpoints periods of unusual activity for the

database.

Not only should be number of references to the database

(transactions) be plotted against time, but the number of

records referenced should also be plotted. The number of

records referenced is the cumulative number of unique

records referenced by transactions. Since temporal locality

addresses the question of the probability of referencing the

same record again, the cumulative number of unique records

referenced represents the observed frequency with which

records were referenced.

For example, let Table 1 represent the transactions and

the records each transaction references (i.e. transaction #4

- 31 -

LOCALITY IN LOGICAL DATABASES

references record "A").

Sample reference string

transaction record

1 A
2 B
3 A
4 A
5 B
6 A
7 C
8 C
9 C

10 A

Table 1.

Then the number of records referenced at any transaction is

simply the number of different records referenced to that

point (i.e. 2 records, "A" and "B", have been referenced by

transactions 1-4).

- 32 -

LOCALITY IN LOGICAL DATABASES

Sample calculation of records referenced

transaction

1
2
3
4
5
6
7
8
9
10

record

A
B
A
A
B
A
C
C
C
A

records
referenced

1
2
2
2
2
2
3
3
3
3

Table 2.

This is illustrated

record was referenced

as follows. Suppose that only one

by 20 transactions over a period of

time, then the graph might look like:

- 33 -

LOCALITY IN LOGICAL DATABASES

Only one record referenced

t = transactions

r = records referenced

20 +

15 +

10 +

5 +

| t
I trr r r r r r r r r r r r r r r r r r r

0 +
------- +-------------+-------------+------------

Time

Figure 1.

(At time = 10, all 10 transactions thus far have referenced

the same record.) (19) In this case we would say that there

(19) The time scale here and in the rest of the figures in
this section has been arbitrarily chosen. Note that these
measures do not assume that transactions arrive at a
constant rate.

- 34 -

LOCALITY IN LOGICAL DATABASES

is a high degree of temporal locality in the database, since

during the interval of observation the probability of

referencing the same record is one.

If on the other hand each transaction accessed a

different record, the graph would show that the two lines

were superimposed.

- 35 -

LOCALITY IN LOGICAL DATABASES

Each record referenced once

t = transactions

r = records referenced

20 +

15 +

10 +

5 +

0 +

tr
tr

tr
tr

tr
tr

tr

tr
tr

tr
tr

tr

----------------+-------------+------------

Time

Figure 2.

(At time = 10, each of the 10 transactions has referenced a

different record.) This example demonstrates little or no

temporal locality, since the probability of referencing the

same record in the interval is zero.

- 36 -

LOCALITY IN LOGICAL DATABASES

These graphs display the ext-reme cases. In all

probability, real data would yield something in between.

3.2.2 Number of records referenced v. number of transactions

Though the graph described above gives us some

indication of the temporal locality in the database, it is

difficult to arrive at an idea of the consistency of this

behavior over time. By plotting number of records

referenced v. number of transactions, the time bias can be

eliminated. - (Lunch hour-s, coffee breaks, and other periods

when there were few transactions to the database will be

compressed.)

The shape of this curve tells us how locality changes

over time. The closer the slope of the curve is to zero,

the higher the degree of temporal locality since each

transaction tends to reference a previously referenced

record. Conversely, the closer the slope of the curve is to

one, the lower the degree of temporal locality. In this

case, each transaction references a previously untouched

record.

For example, the best case for temporal locality woula

produce a plot that looked like:

- 37 -

LOCALITY IN LOGICAL DATABASES

Only one record referenced

r = records referenced

20 +

15 +

10 +

5 +

r r r r r r r r r r r r r r r r r r r rr
0 +

---------------------- +----------------------

0 5 10 15 20

Transactions

Figure 3.

This curve is a straight line and has a slope of zero since

each transaction references the same record. The worst case

for temporal locality would be:

- 38 -

LOCALITY IN LOGICAL DATABASES

r = records

Each record referenced once

referenced

20 +

r
r

r
15 + r

r

I r

10 + r
r

r
r

r
5 + r

r
r

I r
1 r

0 +
----------- 5-----------------------

0 5 10 15 20

Transactions

Figure 4.

This curve is a straight line with a slope of one (i.e.

every reference touches a different record).

Within these bounds the curve is constrained to be

monotonically non-decreasing, since the cumulative number of

records referenced can not decrease. The slope of the curve

- 39 -

LOCALITY IN LOGICAL DATABASES

at any one point would reflect the average number of records

referenced per transaction and is everywhere constrained to

be between zero and one inclusive. (This can be taken as

one of the quantitative measures of temporal locality.)

The second derivative of the records referenced with

respect to the number of transactions gives us an indication

of the change in temporal locality at any given point. A

positive second derivative is indicative of decreasing

temporal locality, since transactions are referencing more

previously unreferenced records. A negative second

derivative indicates that temporal locality is increasing as

more transactions reference previously referenced items.

3.2.3 Runs v. time

Another method that may be used in examining database

temporal locality is to identify runs (successive references

to the same record) and plot the cumulative number of runs

v. time (the run curve). As the length of the runs

increases (and correspondingly the number of runs decreases)

the run curve will lag beneath the number of transactions

curve. The length of a run is indicative of temporal

locality since it shows a record's probability of being

referenced on the next transaction to the database. This is

- 40 -

LOCALITY IN LOGICAL DATABASES

particularly true in systems where only one user is allowed

in the database at any time (as is the case with many

database systems when the user wants to restructure or

modify the database). In a multi-threaded machine with

several users issuing transactions at any given instant, the

number of runs may not be an accurate indicator of temporal

locality since users' transactions will be interleaved.

Our definition of a run is similar to that of the

reduced block reference string derived from a program's

address trace as consecutive references to the same block

(or record in this case) are compressed to form one

reference. For example, if Table 3 is a reference string.

Sample reference string

transaction record

1 A
2 B
3 A
4 A
5 B
6 A
7 C
8 C
9 C

10 A

Table 3.

- 41 -

LOCALITY IN LOGICAL DATABASES

Then the number of runs would be:

Sample calculation of runs

transaction record runs

1 A 1
2 B 2
3 A 3
4 A 3
5 B 4
6 A 5
7 C 6
8 C 6
9 C 6

10 A 7

Table 4.

Transaction 4 marks the end of a run of length 2

(transactions 3-4). By transaction 4, there have been 3

runs. The average length of the runs could be used as a

quantitative measure of temporal locality subject to the

constraints discussed above. In this case, the average

length of a run for record "A" is (1 + 2 + 1 + 1)/4 or 1.25,

for "B" is 1 and for "C" is 3.

One of the problems with using the records referenced

measure (section 3.2.2) is that it has an infinite memory

for records referenced. For example, if there were 1000

transactions between successive references to the same

record, the number of records referenced v. number of

- 42 -

LOCALITY IN LOGICAL DATABASES

transactions curve would be a line

the long run ratio of the number of

the number of transactions. This

locality in the database.

whose slope was equal to

records referenced to

would belie the temporal

Once again, it is possible to establish bounds on the

run curve. At a worst case for temporal locality, each

reference to the database would reference a different record

than the preceding references. (This presupposes that there

is more than one record selected in the given period of

time.) Thus the run curve would be superimposed on the

number of transactions curve. Figure 5 shows this:

- 43 -

LOCALITY IN LOGICAL DATABASES

No consecutive references to same record

t = transactions

R = runs

r = records referenced

tR
tR

tR
tR

tR

tR

tR
tR

tR
tR

tR
tR

tR
tR r r r

tRr r r r
tRr

r r r
r r r r

r r r

--------- +-------------+-------------+------------

0 5 10 15 20

Time

Figure 5.

By time = 10, there had been 4 records referenced by 10

transactions. There were 10 runs, consequently each run had

a length of 1 transaction.

- 44 -

20 +

15 +

10 +

5 +

0 +

LOCALITY IN LOGICAL DATABASES

The best possible case for temporal locality would be

that where the first time a record was referenced was

followed by all other references to the same record. Thus

the number of runs to any point in time would be identical

to the number of records referenced. This would be

identical with the number of records referenced curve.

Figure 6 demonstrates this:

- 45 -

LOCALITY IN LOGICAL DATABASES

All references to same record consecutive

t = transactions

R = runs

r = records referenced

20 +

15 +

10 +

t
t

t
t

t Rr Rr Rr Rr

t Rr
RrRrRr

RrRrRrRr
RrRrRr

RrRrRr

I tRRr
0 +

0 5 10 15 20

Time

Figure 6.

In this figure, by time 10 there had been 4 runs, 4

records referenced, and 10 transactions.

- 46 -

5 +

LOCALITY IN LOGICAL DATABASES

3.2.4 Number of references per record

Another metric which goes hand-in-hand with those

mentioned here is the distribution of the number of records

referenced once, twice, thrice,- etc. If we model our

database as an urn with N distinct balls from which we are

making n picks we can test the following hypothesis:

At any given point in time, any record is equally
likely to be referenced.

This is a binomial process with x(i) the event of picking

the ith ball x times. Let j be the number of times a record

is picked. Given that j < n (there are at least as many

picks as the number of times the record is selected) and p

(the probability of picking a particular ball), then:

n j n- j
Pr(x(i) = j) = () p (1 - p)

Equation 1.

For example, given n picks, what is Pr(x(i) = 3)?

For n = 3, Pr(x(i) = 3) is:

3
p

For n = 4, Pr(x(i) = 3) is:

3 2 2 3
p (1-p) + p (-p) p + p (l-p) p + (1-p) p

- 47 -

LOCALITY IN LOGICAL DATABASES

In general (for j = 3):

n
Pr(x(i) = 3) =

3

3
p (1-p)

This formula becomes unwieldy for large n since it requires

computing n choose j. Instead we will use the approximation

found in Equation 2. (20) (21)

Pr(x(i) = j) =
-np np

Equation 2.

The expected number of

by multiplying Pr(x(i)

100 transactions to a

records referenced j times is found

= j) by the number of records. Given

1000 record database you would expect

that:

(20) Wonnacott recommends using the Poisson distribution for
rare events when np (the number of trials times the
probability of success) < 5. Wonnacott [1977], p. 170.

(21) Chou recommends using this approximation for n > 100
and p < 0.01. Chou [1975], p. 186.

- 48

n - 3

LOCALITY IN LOGICAL DATABASES

Expected number of records referenced j times
N = 1000, n = 100, p = 0.001

E(x(i) = j) E(x(i) = j)
(binomial) (Poisson)

0 904.792 904.837
1 90.570 90.484
2 4.488 4.524
3 0.147 0.151
4 0.004 0.004
5 0.000 0.000

Table 5.

Note that the sum of the number of records referenced for

all possible values of j is equal to N (the number of

records) and that the weighted sum of E(x(i) = j) for j > 0

equals n (the number of picks). Note too, that the Poisson

approximation yields:

np
E(x(i) = j) = E(x(i) = j - 1) --

J

If there is a significant degree of temporal locality

in the database, we would expect that the number of records

referenced twice would be much larger than expected, since a

high degree of temporal locality implies a high probability

of referencing a previously referenced record again. A

chi-squared test for goodness of fit will be used to

demonstrate that the selection process is not random and

- 49 -

LOCALITY IN LOGICAL DATABASES

consequently that there is temporal locality.

3.2.5 Distances between successive references to the same

record

If some portion of the popul'ation is referenced more

than once, the distance between successive references to the

same item gives us an important clue to the degree of

temporal locality in the database. The metric we will use

for distance, the number of intervening transactions, will

isolate this measure from the disturbances injected by

stochastic events (coffee breaks, lunch hours, etc.). If

the temporal locality is high, we would expect to find that

the distribution of distances favored the shorter distances.

Examining the distribution of these distances may shed some

light on this aspect of temporal locality that was left

unexplored by the number of records referenced v. number of

transactions plot and was crudely examined by the run curve.

First, an example of the operational definition of our

metric is presented.

If an item is referenced two or more times, order the

accesses to the record chronologically, pair the accesses

(take N accesses to the record and generate N-1 pairs by

combining successive references to the same record), and

- 50 -

LOCALITY IN LOGICAL DATABASES

record the number of intervening transactions. Thus if the

reference string was:

Sample reference string

transaction

1
2
3
4
5
6
7
8
9

record

A
B
A
A
B
A
C
C
C
A

Table 6.

Then the reference pairs generated would be:

Sample calculation of distance

transaction

1
2
3
4
5
6
7
8
9
10

record

A
B
A
A

next use

3
5
4
6

distance

2
3
1
2

Table 7.

- 51 -

LOCALITY IN LOGICAL DATABASES

If this were a random process with the probability of

picking a particular record at any given point in time equal

to p, we could model it as a binomial process. Let d be the

random variable whose value is the number of the pick on

which the given record appears. Then the probability of

picking a given record at pick j given that it is picked

within n picks is:

p (1 - p)
Pr(d = j I d < n) =--------------------

n

\ i - 1

> p (1 -p)

/==
i = 1

Equation 3.

The denominator is the sum of a finite geometric series (a =

p and r = (1 - p)). As such it reduces to:

n
p - p (1 - p)

1 - (1 - p)

Equation 4.

- 52 -

LOCALITY IN LOGICAL DATABASES

Consequently,

j-1
p (1 - p)

Pr(d = j | d < n) =--------------
n

1 - (1 - p)

Equation 5.

If the number of records is much larger than the number

of picks and the number of picks greater than 10, the

probability of any j for j < n is approximately 1/n or

uniformly distributed. We can show this if we substitute

1/N (where N is the number of records in the database) for p

in the preceding equation, the result is:

1 j-
(1 - -)

N
Pr(d = j I d < n) =----------------

1 n
(1 - (1 --)) N

N

Simplifying:

n -j j-1
N (N - 1)

Pr(d = j d < n) =- -------------------

n n
(N-1) -N

But for N >> 0, n > 10:

n n n-1
(N -1) =N - nN

- 53

LOCALITY IN LOGICAL DATABASES

Therefore, using this assumption:

- j + N + 1
Pr(d = j d < n) = -----------

nN

And.since N >> j:

1
Pr(d = j I d < n) = -

n

For example, examine Table 8, which shows

density function for selected values of

formula (given 1000 records

the probability

j using the exact

and 100 picks). (The

approximation yields the value 1/100 or 0.01.) Table 8

demonstrates the accuracy of the approximation.

Pr(d = j I d < n) for N = 1000, n = 100

j Pr(d = j)

1
11
21
31
41
51
61
71
81
91

100

0.010503
0.010399
0.010295
0.010193
0.010091
0.009991
0.009891
0.009793
0.009695
0.009599
0.009513

Table 8.

- 54 -

LOCALITY IN LOGICAL DATABASES

3.2.6 SLRUM

The LRU Stack Model (SLRUM) used for program locality

was modified to use records instead of memory addresses.

(22) This model is based on the memory contention stack

generated by the LRU replacement algorithm. At any given

time, the item at the top of the stack is the most recently

used record. Subsequent references to different records

cause the stack to be pushed down to accomodate the

referenced record. By recording the number of times

transactions are satisfied by the ith most recently

referenced record as a function of i, the stack distance

probabilities can be estimated.

The stack distance probability, a(i), is the

probability of a reference being satisfied by the ith item

from the top of the stack. The distance, i, varies from 1

(the top of the stack) to N (where N is the number of

records in the database). Strictly speaking if there is

temporal locality, the a(i)s should be monotonically

non-increasing as the distance from the top of the stack

increases. A less restrictive criteria for temporal

locality holds that min(a(l) + a(2) + ... + a(m)) >

(22) See Mattson, et. al. [1970] for a more through
discussion of this model applied to program locality.

- 55 -

LOCALITY IN LOGICAL DATABASES

max(a(m+l) + a(m+2) + ... + a(N)) for a memory of size m.

For Fxample, assume that Table 9 is the reference

string.

Sample reference string

transaction

1
2
3
4
5
6
7
8
9
10

Table 9.

record

A
B
A
A
B
A
C
C
C
A

The measure is constructed by noting the references to each

level of memory.

Sample calculation
References v. stack distance.

ref # 1
Hits Order

ref # 2
Hits Order

ref # 3
Hits Order

1
2
3

infinity

0 A

Table 10.

- 56

Depth

0 B
0 A

0 A
1 B
0 *
2 *

LOCALITY IN LOGICAL DATABASES

Thus, reference 3 to record "A" was satisfied by the record

at depth (stack distance) 2 and was the first reference to a

record at that depth. Record "A" was then placed at the top

of the stack. (References to previously unreferenced

records are recorded as references to a depth of infinity,

as displayed in references 1 and 2.) This continues until

the final reference is logged.

Final tableau
References v. stack distance.

ref # 10
Depth Hits Order

1 3 A
2 4 C
3 0 B

infinity 3 *

Table 11.

If we assume that one I/O is required to fetch a record for

the processor when the record is not in memory, the number

of record I/Os necessary to access the records in the sample

reference string can be tabulated as a function of memory

size (see Table 12).

- 57 -

LOCALITY IN LOGICAL DATABASES

Record I/Os v. stack distance

Depth record I/Os

0 10
1 9
2 6
3 3

Table 12.

If memory were large enough to hold all three records, only

three record I/Os would be required to satisfy the sample

reference string.

If this table is plotted as a function of the memory

size, a parachor curve for this reference string can be

derived that resembles that constructed for programs. This

curve traces the number of references made to the ith most

recently referenced item. In this manner, it is possible

for the database administrator to say for any given amount

of memory the number of record I/Os he would expect.

3.3 Spatial locality measures

Spatial locality measures are more difficult to come to

grips with because of the definitional problems of

neighborhoods. The two measures we will use here are both

extrinsic, in that they do not assume any a priori knowledge

- 58 -

LOCALITY IN LOGICAL DATABASES

of the reference string or the process generating the

reference string. The difficulty in interpreting these

measures stems from the fact that there is no way to deal

with the large -number of points generated by such measures.

Inasmuch as spatial locality implies a relationship between

a minimum of two points, the number of measurements to be

taken is approximately the number of records squared. (If

the measure is symmetric, this number may be trimmed by one

half.)

This is the classic problem of cluster analysis. To

deal with this large number of points cognitively it is

necessary for us to group them in some fashion, but by

limiting ourselves to an extrinsic measure we have no idea

how this grouping should be done. The key to this problem

is to define a measure that will allow us to construct

meaningful groups of records based solely on the value of

the measure.

3.3.1 Cooccurrences

If there is spatial locality in a database, we would

expect to find clusters of references to various groups of

records. This is a consequence of the definition of spatial

locality (i.e. "there is a high probability that a record

- 59 -

LOCALITY IN LOGICAL DATABASES

from the set of neighboring records will be referenced").

For example, records "A" and "B" are members of a set of

neighboring records; therefore, a reference to record "A"

would probably be followed by a reference to record "B".

For the purposes of the measure presented here we will

partition the reference string into blocks of equal length.

For each pair of records referenced, we will count the

number of blocks in which both occurred (a cooccurrence) and

the number of blocks in which either occurred (an

occurrence). The value of the measure for that particular

pair of records will be the result obtained by dividing the

number of cooccurrences by the number of occurrences.

For example, if the reference string were:

Sample reference string

transaction record

1 A
2 B
3 A
4 A
5 B
6 A
7 C
8 C
9 C

10 A

Table 13.

- 60 -

LOCALITY IN LOGICAL DATABASES

and the block size was 5 references (i.e. block 1 contained

references to records "A" and "B", while block 2 contained

references to records "A" and "C"), then our measure for

spatial locality would show that "A" and "B" were related at

the 0.5 level. ("A" and "B" cooccurred in 1 block, but "A"

or "B" occurred in 2 blocks.) Records "B" and "C" have a

cooccurrence measure of 0 since they do not appear in the

same block. The other pair of records, "A" and "C", are

related at the 0.5 level.

If there are N records referenced in the reference

string, this measure generates N (N - 1)/2 points. The

value of- the measure for a pair ranges from 0 (if the

records never cooccur) to 1 (if all blocks that contain a

reference to "A" contain a reference to "B"). Note that

this measure does not discriminate between numerous

cooccurrences in numerous occurrences and a single

cooccurrence in one occurrence. (i.e. If records "A" and

"B" cooccurred in 100 blocks and "A" or "B" occurred in 100

blocks, the measure for "A" and "B" would be 1. If records

"C" and "D" cooccurred in 1 block and occurred in 1 block,

their measure would be 1, too.)

Hence, the values obtained will be a function of the

reference string and the block size. An interesting feature

- 61 -

LOCALITY IN LOGICAL DATABASES

of this measure is its sensitivity to changes in block size.

Increasing the block size can result in a decrease in the

values of the measure! This anomaly can occur when the new

block size is not a multiple of the old. Suppose that the

block size is 3, transaction 8 references record "A", and

transaction 9 references record "B". If these were the only

references to these records, the value of the measure for

the "A" and "B" pair would be 1. However, if the block size

is increased by 1 to 4, the value of the measure is 0

(because transaction 8 is in block 2 and transaction 9 is in

block 3). This anomaly does not occur if the block sizes

are multiples of one another.

If we incorporate this restriction into the measure we

can examine the changes in' the distribution of the values as

the block size is varied. This should indicate the degree

of spatial locality.

3.3.2 Weighted cooccurrences

A measure which takes the relative number of each type

of record into account is the weighted cooccurrence measure.

This measure differs from the previous one in that it

employs a moving window of W references around each instance

of "A" instead of partitioning references into blocks and

- 62 -

LOCALITY IN LOGICAL DATABASES

since it counts the number of "B"s in that window as

distinct from noting the mere presence of a "B".

To determine the value of the measure for the paiir of

record "A" and record "B", simply count the number of "B"s

that occur within W transactions (forward or backward) of

the transaction that references "A".

For example, let Table 14 be a reference string and the

window size, W, assume the value 2.

Sample reference string

transaction record

1 A
2 B
3 A
4 A
5 B
6 A
7 C
8 C
9 C

10 A

Table 14.

Then the value of the measure for the "A" and "C" pair is

determined by summing the "# in window" column in Table 15.

(This column reflects the number of "C"s which lie in the

window, W = 2, surrounding each reference to "A". Thus the

- 63 -

LOCALITY IN LOGICAL DATABASES

value for transaction 6 is 2.)

Sample calc'flation
Weighted cooccurrence measure.

in
transaction record window

1 A 0
2 B -

3 A 0
4 A 0
5 B -

6 A 2
7 C -

8 C -

9 C -

10 A 2

Table 15.

The value of the measure for "A" and "C" is 4.

This measure is symmetric (i.e. the value of "A" and

"C" is the same as the value of "C" and "A"), but unlike the

previous measure it has no readily apparent upper limit.

The minimum value the measure may assume is 0, which would

mean that no references to "C" occurred within W references

of "A".

Once again, the measure is a function of the reference

string and the window size. Because of the moving window,

this measure demonstrates no anomaly as window size

- 64 -

LOCALITY IN LOGICAL DATABASES

increases. The distribution of the values will serve as the

indicator of spatial locality.

- 65 -

LOCALITY IN LOGICAL DATABASES

Chapter 4.

Experiments

4.1 The database

These measures were applied to a set of five reference

strings obtained by monitoring a large database. The

database, described by Hackathorn [1976], is the property

database for the County of Riverside, California.

The property database is implemented on an IBM 370/158

with two million bytes of main storage and over two billion

bytes of online disk storage. The database management

system used is IBM's IMS, version 2.3. The property

database contains approximately 400,000 records and occupies

500 million bytes of disk storage. Each record in the

property database (i.e. land parcel) can be identified by

one of three primary identifiers: (1) assessment number, (2)

situs address, and (3) assessee name. The principal

identifier used in the day-to-day transactions is the

assessment number. (The number of transactions to the

property database which used the assessment number as the

identifier is shown in Table 16 as the "with id" column.

The percentage of the transactions to the property database

that used the assessment number as the identifier appears in

the adjacent column.) A transaction may not include an

- 66 -

LOCALITY IN LOGICAL DATABASES

identifier if: (1) it was syntactically incorrect because

of operator error, (2) it was a dummy transaction to

initialize the screen menu on the CRT, or (3) it dealt with

multiple identifiers in a complex manner (e.g.

subdivisions).

Over one hundred transaction programs have been

implemented to support seven functional areas of county

government (valuation, identification, exemption, value

certification, tax rate establishment, tax accounting, and

public service). The main departments of the County of

Riverside with direct involvement in the property system are

the Assessor, Auditor, Tax Collector, Recorder, and Building

Department. Four title insurance companies have direct

access to the system for inquiry purposes.

In its raw form, the data for the experiment came from

users of the database system. Typically, a user would enter

an eight character transaction code and a variable length

message (which included the record identifier) on one of the

35 terminals connected to the system. This information (the

transaction and the message) would be logged by a common

service facility to the system log tape before it was passed

to the database system. Three to six reels of magnetic tape

were generated by a typical day's transactions. The data

- 67 -

LOCALITY IN LOGICAL DATABASES

from the system log tapes were reformatted by the IMS

Statistical Analysis Utility (IMSTATS) and processed by

routines written by Hackathorn to prepare them for his

experiments.

The transaction data contained a number of fields for

each transaction. For our purposes we are only interested

in the identifier of the record affected by the transaction

and the time the transaction took place (not part of the

transaction itself but added by the telecommunications

facility). To simplify this analysis, only those

transactions which reference records by assessment number

have been included in this experiment. The transactions

were garnered from Hackathorn's data for the dates August

19, 1975, August 22, 1975, August 25, 1975, August 29, 1975,

and September 5, 1975. Of the transactions so culled, a

number were unusuable because the time of the transaction

against the identified record could not be determined

(apparently this is due to the IMSTATS malfunction). Table

16 presents a breakdown of the relevant statistics.

- 68 -

LOCALITY !N LOGICAL DATABASES

Breakdown

date

Aug 19, 1975
Aug 22, 1975
Aug 25, 1975
Aug 29, 1975
Sep 5, 1975

day

Tue
Fri
Mon
Fri
Fri

of data

of
trans

7753
10281
11315
8743
8196

used in

with

-- d

4088
8803
9779
4802
7570

analysis

52.7
85.6
86.4
54.9
92.4

Table 16.

These transactions were

the experiments. Most

using programs found in

themselves placed in a database for

of the analysis herein was performed

MIT's Consistent System.

4.2 Temporal locality measures

4.2.1 Database references v. time

Both number of transactions and number of records

referenced were plotted against time for each of the five

days. The plots for August 19, August 25, and September 5

follow.

- 69 -

with
t ime

4014
6584
5845
1983
7240

98.2
74.8
59.8
41.3
95.6

LOCALITY IN LOGICAL DATABASES

Transactions and records referenced v. time
August 19, 1975

t = transaztions

r = records referenced

5000 +

4000 +

3000 +

2000 +

1000 +

t t t
t t t

t t t
t

t t
t t
t

t t
t

t t

t
t t

t t
t

t t
t t

t t t t r
r r

r r r

r r r r r
r r r

r r r
r r
r

I tt r r r r
t trr r

0 +trtrtrr
-+-------+-------+-----------------------------------

12 16

Time (hours)

Figure 7.

- 70 -

LOCALITY IN LOGICAL DATABASES

Transactions and records referenced v. time
August 25, 1975

t = transactions

r = records referenced

6000 +
t t

t
t t
t

t t

t t
t t
t

t t
t t

t t
t

t t
t

t t

t t r r
t r r
t r r

t t r r
t r r

t t r
t r r

t trr
t trr

r r r
r r r

r r r
r r

I t trtrr
0 +trtrtrr

--

Time (hours)

Figure 8.

- 71 -

4000 +

2000 +

LOCALITY IN LOGICAL DATABASES

Transactions and records referenced v. time
September 5, 1975

t = transactions

r .= records referenced

8000 +

6000 + t t
t t t

t t
t t
t

t t
t t

t t
4000 +

t t
t r r

t t r r
t r r r

t t r r
t t r
t r r r

t trr
trr

r r r r
r r

0 +trtrtrtr
-- +--

10 14

Time (hours)

Figure 9.

- 72 -

2000 +

LOCALITY IN LOGICAL DATABASES

In every'case it was immediately apparent that the database

activity was not constant with time. There were periods of

inactivity scattered throughout the day. (Of course, it is

impossible to say if the malfunction in the IMSTATS routine

mentioned above was the cause of the apparent inactivity.)

In any event this convinced us that time was not the best

base for future analysis.

Another feature of the transactions plotted was that

there was some temporal locality in the course of the day.

For example, examine the plot for August 19. Approximately

10 hours after the start of the day's activities, 1,400

records had been referenced by a total of 3,000

transactions. In particular, the slope of the number of

records referenced curve seemed to average about 1/2 the

slope of the number of transactions curve. This would

indicate that in the long run there was one record

referenced for the first time for every two references to

the database. However, it is difficult to demonstrate from

this curve that that behavior was constant throughout the

day, because of the time skew effect.

4.2.2 Number of records referenced v. number of transactions

Number of records referenced v. number of transactions

- 73 -

LOCALITY IN LOGICAL DATABASES

was plotted for each day in the sample to normalize for the

uneven levels of transaction activity over time. The slope

of this line is the average number of records referenced per

transaction. The closer the slope is to zero, the higher

the degree of temporal locality. As you can see in Figure

10, the slope of the line is approximately 1/2, confirming

the suspicions raised in the previous section that one

record is referenced for every two transactions.

- 74 -

r =recor

LOCALITY IN LOGICAL DATABASES

Records referenced v. transactions
August 19, 1975

ds referenced

20 00 +

r r
r r

r r
1500 + r

r r
r r

r r
r r

1000 + r r
r

r r
r r

r r
500 + r r

rr
I rr
I r

rr
0 +r r

--

0 1000 2000 3000 4000 5000

Transactions

Figure 10.

A linear regression was run using transactions as the

independent variable and records referenced as the dependent

for each of the five days. Table 17 presents the results.

- 75 -

Aug
Aug
Aug
Aug
Sep

LOCALITY IN LOGICAL DATABASES

Results of linear regression
Transactions v. records referenced.

of index
date day trans of fit s

19, 1975 Tue 4014 .999
22, 1975 Fri 6584 .990
25, 1975 Mon 5845 .996
29, 1975 Fri 1983 .948
5, 1975 Fri 7240 .999

lope

.466

.547

.559

.497

.532

Table 17.

The shape of the curve is another matter. If the day's

transactions started up by referencing some large portion of

the records to be used that day we would see a curve like

Figure 11.

- 76 -

LOCALITY IN LOGICAL DATABASES

Records referenced v. transactions

r = records referenced

20 +

r r r r r r

r r
15 +

10 +

5 +

0 +

r r

0 10 20 30 40

Transactions

Figure 11.

Here the slope of the curve is one through the first 10

transactions as each transaction references an unreferenced

record. Transactions 10 through 20 reference only 5

previously unreferenced records, whereas transactions 20

through 30 reference only 3 more. Finally transactions 30

through 40 deal only with previously referenced records.

- 77 -

LOCALITY IN LOGICAL DATABASES

Note that the temporal locality is increasing and the second

derivative is negative. The slope of the curve for August

19, 1975 (see Figure 10) suggests that there is little if

any change in the temporal locality in the course of the

day.

4.2.3 Runs v. time

The run curve was plotted for each of the five days.

Figure 12 is typical of the results obtained.

- 78 -

LOCALITY IN LOGICAL DATABASES

Transactions, runs, and records referenced v. time
August 19, 1975

t = transactions

R = runs

r = records referenced

tRtR
tR

tRtR
tRtRr r

tRtRr r

t tR
tRR

tRtR
tRtR

tRtR
r r

r r r
r r

t t t
t t t R R

t t tRR R R
tRR R

t tR
t tRR
tRR

t tR
tRR

tRtR
tR

r r r r r
r r r

r r r

r r

0 +tRtRtRr
-- +--

14

Time (hours)

Figure 12.

- 79 -

5000 +

4000 +

3000 +

2000 +

1000 +

LOCALITY IN LOGICAL DATABASES

From the above figure we see that after 10 hours of

operation, approximately 3,000 transactions resulted in

2,800 runs and 1,400 referenced records. Apparently there

were very few instances of consecutive references to the

same record. This was an interesting result, especially in

view of the previous findings (one record referenced per two

transactions on average). It is indicative of a lower

degree of temporal locality than otherwise indicated. At a

second glance; however, it can be explained by the

operating environment of the database system. This is a

multiprogramming system. There are many users operating on

the database at a particular moment. Thus, it is unlikely

that any particular user will be able to push two

transactions through the system before- another user's

transaction is interleaved.

4.2.4 Number of references per record

To characterize the temporal locality in this database,

the number of transactions per record was profiled. The

profile for August 19, 1975 is presented in Table 18 (i.e.

1277 records were only used in one transaction, 394 records

were used twice, 75 records were referenced thrice, etc.).

- 80 -

LOCALITY IN LOGICAL DATABASES

Number of transactions per record
August 19, 1975

number of number
transactions records

1 1277
2 394
3 75
4 64
5 20
6 4
7 1
8 1

10 1
18 1

416 1
435 1
450 1

Table 18.

Note that a substantial number of records were the subject

of two or more transactions. A statistical test was

performed on the actual v. the expected number of records

referenced once, twice, etc.

In particular, Equation 2 (page 48) in section 3.2.4

yields the expected number of records referenced as a

function of j. If n = 4014 (the number of trials) and p =

1/400000 (the probability of picking one record) then Table

19 has the expected number of items referenced j times.

- 81 -

LOCALITY IN LOGICAL DATABASES

Expected number of records referenced j times
N = 400000, n = 4014, p = 0.0000025

E (x (i) =_j)

0 396006.070
1 3973.921
2 19.939
3 0.067
4 0.000
5 0.000

Table 19.

A simple chi-squared test for goodness of fit can be

used to test the hypothesis that the records were randomly

selected. The chi-squared statistic is computed by taking

the sum of the squares of the differences between the actual

and expected number of observations in each category and

dividing by the expected number of observations. (23)

Subsequently, this statistic is compared with those found in

a table indexed by probability and degrees of freedom.

Let's divide the actual and expected number of records

referenced into two groups, those records referenced two or

more times and those referenced one or zero times. Since

there are two categories and the underlying distribution is

(23) Each category must have an expected number of five or
more observations. Several of the original categories may
be combined to meet this criterion.

- 82 -

LOCALITY IN LOGICAL DATABASES

known, we have one degree of freedom. E(x(i) > 2) = 20.006,

but the actual number is 564. The chi-squared statistic for

this data is 14,792, which indicates that the actual number

is many thousand standard deviations removed from the

expected number. This would lead me to reject the

hypothesis that records are selected at random.

4.2.5 Distances between successive references to the same

record

These tests have not yet distinguished the case where

items are referenced in some initialization state and not

referenced again until considerably later. By examining

those records referenced two or more times, it is possible

to see how much intervening activity there is between

successive references to the same record.

From section 3.2.5, we saw that given a large number of

records and a reasonable number of picks, that Pr(d = j I d

< n) 1/n. In this database with its 400,000 records and

thousands of picks, we would expect that assumption would

hold and that the density function for Pr(d) would be

uniform. What we observe in this database is something

completely different. In this database references to the

same item occur very close to one another (i.e.

- 83 -

LOCALITY IN LOGICAL DATABASES

approximately 75 pairs of references to the same record were

separated by exactly 10 transactions to the database). In

particular the distribution of Pr(d) observed is:

Pairs of references to the same record-
August 19, 1975

n = number of pairs of references

250 + n

In
In

200 +

n

150 +
n n

n
100 +

n
n
n

50 + n
n

n n
n n n n

0+ n n n n n n
---------- +------------------------------------

0 10 20 30

Distance between successive references
(records)

Figure 13.

- 84 -

LOCALITY IN LOGICAL DATABASES

From section 4.2.4, we know that there were 2,183 pairs

of references. (Each record referenced more than once

generates N-1 pairs of references, where N is the number of

transactions that referenced that record.) A count~ of the

number of pairs reveals that 75% had a distance of 11 or

fewer. Thus in 1,637 cases out of 2,183, successive

references to the same record occurred within the space of

11 transactions to the database. This indicates that there

is a high degree of temporal locality in the database.

4.2.6 SLRUM

The observed number of references at each stack

distance was computed for each day's transactions. Figure

14 shows the data for August 19, 1975.

- 85 -

LOCALITY IN LOGICAL DATABASES

Number of references v. stack distance
August 19, 1975

n = number of references

300 +

200 +

100 +

n n n

0 +

n n
n n n n

n n n
-------------------------- ----------

10

Stack distance (records)

Figure 14.

In the course of the 4,014 transactions on August 19,

approximately 70 transactions referenced the 10th most

- 86 -

LOCALITY IN LOGICAL DATABASES

recently referenced record. Note that this measure differs

from the previous one in that if there were two intervening

transactions between references to the record in question,

that measure would show a distance of two but this measure

would treat it as one reference.

This figure also indicates that there is a high degree

of temporal locality in the database. The next figure gives

us an indication of the kind of performance benefits we are

talking about. In particular, Figure 15 shows that if we

held the last 10 records in memory and were using an LRU

algorithm we could reduce the number of I/Os required to

fetch the records in the reference string from 4,104 (no

records in memory) to approximately 2,400.

- 87 -

LOCALITY IN LOGICAL DATABASES

Number of record I/Os v. stack distance
August 19, 1975

n = numbe of record I/Os

4500 +

4000 +

3500 +

3000 +

2500 +

2000 +

n n
n nn fn n

n n n n n n
-------------------------- ----------

20

Stack distance (records)

Figure 15.

4.3 Spatial locality measures

The measures outlined in section 3.3 were applied to

- 88 -

LOCALITY IN LOGICAL DATABASES

this property database. As noted above, they generated a

large number of points (even though we excluded those

records from the reference string that were referenced two

or fewer times). For example, on August 19 there were 170

records referenced three or more times. These records

generated 14,365 points for each trial (using different

block or window sizes).

In this section, the values of a measure for a

particular experiment are categorized into 100 intervals of

equal length. The number of values in each category was

tabulated. Finally, the number of values in each category

was plotted against the value of the category.

For example, in the experiment that produced Figure 16

there were 14,365 values. (One value for each pair of

records referenced.) These values ranged from 0 to 1. Thus

the interval length was 0.01. The number of values in each

interval was counted. (i.e. How many values were between

0.00 and 0.01, between 0.01 and 0.02, between 0.02 and 0.03,

etc.?) Approximately 12,670 values fell between 0.00 and

0.01 for that figure. This plot conveys a rough idea of the

distribution of the values.

- 89 -

LOCALITY IN LOGICAL DATABASES

4.3.1 Cobccurrences

As outlined in section 3.3.1, the cooccurrences measure

was evaluated for the reference string of August 19, 1975.

Figure 16 displays the distribution of the values for a

block size of 50 references.

Cooccurrences - block size = 50 records
August 19, 1975

n = number of points

1.4000 +
*10** 4 1

In
1.2000 +

*10** 4

1.0000 +
*10** 4 I

0.8000 +
*10** 4

0.6000 +
*10** 4 I

0.4000 +
*10** 4

0.2000 +
*10** 4 1

I . n n
0.0000 +n n

*10** 4 -+-------+-----------+------------------------

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

Cooccurrence measure

Figure 16.

- 90 -

LOCALITY IN LOGICAL DATABASES

The mean of the values was 0.0426. The standard deviation

was 0.157. As you can see, a substantial number of the

values (approximately 12,670) were in the interval from 0.00

to 0.01. To examine the points outside the 0.00 to 0.05

interval it was necessary to exclude those points inside

that interval. Figure 17 displays the distribution for the

remaining points on an expanded ordinate.

- 91 -

LOCALITY IN LOGICAL DATABASES

Cooccurrences - block size = 50 records
Minimum x value plotted = 0.05

August 19, 1975

n = number

400 +

of points

300 +

200 +

100 +

I n
I n

0 + n
-------------- +-----------------------------

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

Cooccurrence measure

Figure 17.

As shown on the expanded plot, there are few values greater

than 0.05.

The effect of a larger block size was evaluated by

using block sizes of 100 and 200. Figure 18 presents the

- 92 -

LOCALITY IN LOGICAL DATABASES

results for block size = 100.

Cooccurrences - block Size = 100 records
August 19, 1975

n = number of points

1.4000 +
*10** 4

1.2000 +n
*10** 4 |

1.0000 +
*10** 4 I

0.8000 +
*10** 4 I

0.6000 +
*10** 4 I

0.4000 +
*10** 4 I

0.2000 +
*10** 4 1

1 n n n n
0.0000 +n n

*10** 4 -+-------+-----------+-----------------------

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

Cooccurrence measure

Figure 18.

The mean of the values was 0.066. The standard deviation

was 0.202. The expanded plot looked like:

- 93 -

LOCALITY IN LOGICAL DATABASES

Cooccurrences - block size = 100 records
Minimum x value plotted = 0.05

August 19, 1975

n = number of points

800 +

n
600 +

400 +

200 +

0 + n n n n nnn nnnnnn n n n nn
----- +---------------------------------------

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

Cooccurrence measure

Figure 19.

When the block size was 200, the results remained the same.

- 94 -

LOCALITY IN LOGICAL DATABASES

Cooccurrences - block size = 200 records
August 19, 1975

n = number of points

1.2000 +
*10** 4 In

1.0000 +
*10** 4

0.8000 +
*10** 4

0.6000 +
*10** 4

0.4000 +
*10** 4

0.2000 +
*10** 4 1 n

I n n
0.0000 +n n

*10** 4 -+---- ------------------------------------ +--- --

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

Cooccurrence measure

Figure 20.

The mean of the values was 0.124. The standard deviation

was 0.279. The expanded plot looks like:

- 95 -

LOCALITY IN LOGICAL DATABASES

Cooccurrences - block size = 200 records
Minimum x value plotted = 0.05

August 19, 1975

n = number

1400 +

of points

1200 +

1000

800 +

600 +

400 +

200 +
n

0 + n
------ +-------------------------------

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000

Cooccurrence measure

Figure 21.

As we increase the block size, the mean and the

standard deviation increase; but, the distribution har

remained essentially unchanged. Since the vast majority of

the values are in the interval from 0.00 to 0.05, this

- 96 -

LOCALITY IN LOGICAL DATABASES

database displays little spatial locality.

4.3.2 Weighted cooccurrences

This measure was also evaluated

reference string of August 19, 1975.

distribution of the values for

references.

by applying it to the

Figure 22 displays the

a window size of 50

- 97 -

LOCALITY IN LOGICAL DATABASES

- Weighted cooccurrence - window size = 50
August 19, 1975

n = number of points

1.6000 +
*10** 4 |

1.4000 +n
*10** 4

1.2000 +
*10** 4

1.0000 +
*10** 4 I

0.8000 +
*10** 4 I

0.6000 +
*10** 4 I

0.4000 +
*10** 4 I

0.2000 +
*10** 4 I

0.0000 +n n
*10** 4 ---

0.0000 0.2000 0.4000 0.6000 0.8000 1.0000
*10** 4 *10** 4 *10** 4 *10** 4 *10** 4 *10** 4

Weighted cooccurrence measure

Figure 22.

The mean of the values was 5.58. The standard deviation was

152. Most of the values here are clustered in the first

interval. The expanded plot (excluding the first interval)

- 98 -

LOCALITY IN LOGICAL DATABASES

shows that an inconsequential number of values fell outside

the first interval.

Weighted cooccurrence - window size = 50
Minimum x value olotted = 100

August 19, 1975

n = number of points

50 +

In
40 +

30 +

20 +

10 +

In

0 +n n n n n n n n n n n n n n n n n
------------------------- +--------------

0.0000 0.4000 0.8000 1.2000
*10** 4 *10** 4 *10** 4 *10** 4

0.2000 0.6000 1.0000
*10** 4 *10** 4 *10** 4

Weighted cooccurrence measure

Figure 23.

- 99 -

LOCALITY IN LOGICAL DATABASES

The effect of a larger window size on the distribution

was evalueated by using window sizes of 100 and 200. Figure

24 displays the results for window size = 100.

Weighted cooccurrence - window size = 100
August 19, 1975

n number of points

1.4000 +n
*10** 4

1.2000 +
*10** 4

1.0000 +
*10** 4

0.8000 +
*10** 4

0.6000 +
*10** 4

0.4000 +
*10** 4 1

0.2000 +
*10** 4

0.0000 +n n
*10** 4 - --- +------

0 5000 10000 15000 20000

Weighted cooccurrence measure

Figure 24.

- 100 -

LOCALITY IN LOGICAL DATABASES

The mean of the values was 11.1. The standard deviation was

291. The expanded plot looks like:

Weighted cooccurrence - window size 100
Minimum x value plotted = 100

August 19, 1975

n = number of points

80 +

In
n

60 +

40 +

20 +

In n
0 + n n n n n n n n n n n n n n n n n

0 5000 10000 15000 20000 25000

Weighted cooccurrence measure

Figure 25.

When the window size was 200, the result was:

- 101 -

LOCALITY IN LOGICAL DATABASES

Weighted cooccurrence - window size = 200
August 19, 1975

n = numbe of points

1.6000 +
*10** 4 |

1.4000 +n
*10** 4 1

1.2000 +
*10** 4 1

1.0000 +
*10** 4 1
0.8000 +

*10** 4 1
0.6000 +

*10** 4 1
0.4000 +

*10** 4 1

0.2000 +
*10** 4 1
0.0000 +n n n n n n n n n n n n n n n n n n n n

*10** 4 -+----------+----------------------------

n1

+-

0 10000 20000 30000 40000

Weighted cooccurrence measure

Figure 26.

The mean of the values was 21.7. The standard deviation was

551. The expanded plot looks like:

- 102 -

LOCALITY IN LOGICAL DATABASES

Weighted cooccurrence - window size = 200
Minimum x value olotted = 100

August 19, 1975

n = number of points

100 +

n

80 +

60 +

40 +

20 +

In n
0 + n

10000 20000 30000 40000

Weighted cooccurrence measure

Figure 27.

Once again, the distribution of the values suggests

that there is little temporal locality in the database.

- 103 -

LOCALITY IN LOGICAL DATABASES

Chapter 5.

Discussion and conclusions

5.1 Introduction

In the course of this research we have investigated a

series of measures for analysing database locality. These

measures were broken into two groups. In this chapter we

will discuss the results of the experiments for the groups

and offer some guidance for the reader interested in

pursuing this work.

5.2 Summary

The first group of measures, the temporal locality

measures, proved to be equal to the task at hand. They

identified the presence and degree of temporal locality in

the database.

The second group of measures, the spatial locality

measures, encountered a number of problems in their

application. The most significant problem was in the

interpretation of the measures. Other than noting the

character of the- distributions and the shift with the

increase in block size and window size, few courses of

action suggested themselves to the author.

- 104 -

LOCALITY IN LOGICAL DATABASES

5.3 Further work

Several extensions to the work reported here seem

worthwhile to this researcher. Particularly important work

can be done by:

- Applying the measures defined here to other series

of reference strings. One of the objectives of this

research has been to separate the measures from the

implementation of the database system. Identifying

and validating the locality in another environment

would serve this purpose.

- Defining new measures that retain the distinction

between temporal and spatial locality. Other

measures, especially for spatial locality, are

needed.

The most vexing problem for the researcher in this area

is the spatial locality measure. As mentioned in section

3.3 the number of values increases rapidly as the size of

the database grows. Not only does this pose cognitive

problems for the person interpreting these measures, but the

computational work required to evaluate these measures can

be excessive. The solution mey be a combination of

intrinsic and extrinsic measures (e.g. couple what we know

about the application to some external measure).

- 105 -

LOCALITY IN LOGICAL DATABASES

BIBLIOGRAPHY

Anderberg, Michael R., Cluster Analysis for Applications,

Academic Press, pp. 359 (1973).

Batson, Alan, Program Behavior at the Symbolic Level,

Computer 9, 11, 21-26 (1976).

Brawn, Barbara S. and Frances G. Gustavson, Program Behavior

in a Paging Environment, FJCC 33, 1019-1032 (1968).

Chou, Ya-lun, Statistical Analysis with Business

Economic Applications, Holt, Rinehart, and Winston, pp.

844 (1975).

Crow, Edwin L., Frances A. Davis, and Margaret W. Maxfield,

Statistics Manual with Examples Taken from Ordnance

Development, Dover Publications, pp. 258 (1960).

Denning, Peter J., On Modeling Program Behavior, SJCC 40,

937-944 (1972).

Denning, Peter J., Resource Allocation in Multiprocess

Computer Systems, Project MAC TR-50, MIT, pp. 285

(1968).

Denning, Peter J., Thrashing: Its Causes and Prevention,

FJCC 33, 915-922 (1968).

- 106 -

and

LOCALITY IN LOGICAL DATABASES

Denning, Peter J., Virtual Memory, Computing Surveys 2, 3,

153-189 (1970).

Easton, Malcom C., Model for Database Reference Strinqs

Based on Behavior of Reference Clusters, IBM Journal of

Research and Development 22, 2, 197-202 (1978).

Easton, Malcom C., Model for Interactive Data Base reference

String, IBM Journal of research and Development 19, 6,

550-556 (1975).

Ferrari, Domenico, The Improvement of Program Behavior,

Computer 9, 11, 39-47 (1976).

Fotheringham, John, Dynamic Storage Allocation in the Atlas

Computer, Including an Automatic Use of a Backing

Store, CACM 4, 10, 435-436 (1961).

Hackathorn, Richard Dale, Activity Analysis: A Methodology

for the Discrete Process Modeling of Information

Systems in Organizations, with an Application to a

Government Database, Unpublished Ph.D. thesis,

University of California at Irvine, Information

Science, pp. 245 (1976).

Hatfield, D. J., Experiments on Page Size, Program Access

Patterns, and Virtual Memory Performance, IBM Journal

- 107 -

LOCALITY IN LOGICAL DATABASES

of Research and Development 16, 1, 58-66 (1972).

Hatfield, D. J. and J. Gerald, Program Restructuring fer

Virtual Memory, IBM Systems Journal 10, 3, 168-192

(1971).

Hedges, Robert Lewis, An Analysis of Locality in Paged

Computer Memory Hierarchies, Unpublished Ph.D. thesis,

Texas A&M University, Computer Science, pp. 145 (1974).

Johnson, Jerry W., Program Restructuring for Virtual Memory

Systems, Project MAC TR-148, MIT, pp. 213 (1975).

Knuth, Donald E., The Art of Computer Programming, Vol. 3,

Addison-Welsey, pp. 722 (1973).

Kuehner, C. J. and B. Randell, Demand Paging in Perspective,

FJCC 33, 1011-1018 (1968).

Madnick, Stuart Eliot, INFOPLEX - Hierarchical Decomposition

of a Large Information Management System Using a

Microprocessor Complex, NCC 44, 581-586 (1975).

Madnick, Stuart Eliot, Storage Hierarchy Systems, Project

MAC TR-107, MIT, pp. 153 (1973).

Mattson, R. L., J. Gecsei, D. R. Slutz, and I. L. Traiger,

Evaluation Techniques for Storage Hierarchies, IBM

- 108 -

LOCALITY IN LOGICAL DATABASES

Systems Journal 9, 2, 78-117 (1970).

Rodriguez-Rosell, Juan, Empirical Data Reference Behavior in

Data Base Systems, Computer 9, 11, 9-13 (1976).

Spirn, Jeffrey R., Distance String Models for Program

Behavior, Computer 9, 11, 14-20 (1976).

Spirn, Jeffrey R. and Peter J. Denning, Experiments with

Program Locality, FJCC 41, 611-621 (1972).

Williams, John G., Experiments in Page Activity

Determination, SJCC 40, 739-747 (1972).

Wimbrow, J. H., A Large-Scale Interactive Administrative

System, IBM Systems Journal 10, 4, 261-282 (1971).

Wonnacott, Thomas H. and Ronald J. Wonnacott, Introductory

Statistics for Business and Economics, John Wiley and

Sons, 2nd edition, pp. 753 (1977).

Zipf, George Kingsley, Human Behavior and the Principle of

Least Effort, Addison-Wesley Press, pp. 573 (1949).

- 109 -

Data from transactions of August 19, 1975

250

225 -- -

200

175

r 150-

* 125- - - - -- -

Le

7S

so

25-

0 10 20 30 40 so
5 15 25 35 45

dist. bet. refs to same item

Parachor curve for August 19, 197S

4250

4000

37S0

3500

3250

3000

2750

2500

2250

2000

1750
0 10 2 30 40

5 15 25 35

Memorg size (in records)

45

Parachor curve for August, 19, 1975

4250

4000

3750

3500

3250

3000

2750

2500

2250

2000

1750
I 2 3

0.5 1.5 2.5 3.5
log10(Memory size (in records)

