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Abstract

The security of systems can often be expressed as ensuring that some property is maintained at every

step of a distributed computation conducted by untrusted parties. Special cases include integrity of

programs running on untrusted platforms, various forms of confidentiality and side-channel resilience,

and domain-specific invariants.

We propose a new approach, proof-carrying data (PCD), which sidesteps the threat of faults and leakage

by reasoning about properties of a computation's output data, regardless of the process that produced it.

In PCD, the system designer prescribes the desired properties of a computation's outputs. Corresponding

proofs are attached to every message flowing through the system, and are mutually verified by the system's

components. Each such proof attests that the message's data and all of its history comply with the

prescribed properties.

We construct a general protocol compiler that generates, propagates, and verifies such proofs of compli-

ance, while preserving the dynamics and efficiency of the original computation. Our main technical tool

is the cryptographic construction of short non-interactive arguments (computationally-sound proofs) for

statements whose truth depends on "hearsay evidence": previous arguments about other statements. To

this end, we attain a particularly strong proof-of-knowledge property.

We realize the above, under standard cryptographic assumptions, in a model where the prover has black-

box access to some simple functionality - essentially, a signature card.
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Chapter 1

Introduction

Proof systems lie at the heart of modern cryptography and complexity theory; they have demonstrated

tremendous expressive power and flexibility, yielding both surprising theoretical results and finding pow-

erful applications. In this thesis, we give evidence that, when three particular properties of proof systems

come together (low communication complexity, non-interactivity, and aggregability of proofs), proof sys-

tems acquire a new level of expressiveness and flexibility.

Our main technical contribution is a proof system with these three properties. Specifically, we realize short

non-interactive computationally-sound proofs for statements whose truth depends on "hearsay evidence"

(previous proofs of other statements), under standard cryptographic assumptions, in a model where the

prover has black-box access to some simple functionality. We call a proof system with these properties

an assisted-prover hearsay argument. The main ingredient of the construction is achieving a particularly

strong proof-of-knowledge property in a model that allows for "aggregation of proofs".

As the main implication, we show how assisted-prover hearsay arguments imply the existence of a protocol

compiler that can "magically" enforce invariant properties on a distributed computation. The given

invariant is encoded as an efficiently computable predicate called the compliance predicate, which takes

as input a party's incoming messages, local program, and outgoing messages; the predicate is required to

hold for every party that takes part in the distributed computation. The protocol compiler enforces the

invariant by enabling parties to generate and attach to each message flowing through the computation

a concise proof attesting to the message's "compliance"; these proofs are dynamically composed and

propagated, while preserving the dynamics and efficiency of the original distributed computation. We

call our protocol compiler a proof-carrying data system.

Finally, we argue that a proof-carrying data system enables a new solution approach to solving problems

in security. We observe that the security of systems can often be expressed as ensuring that some property

is maintained at every step of a distributed computation conducted by untrusted parties. Special cases

include integrity of programs running on untrusted platforms, various forms of confidentiality and side-

channel resilience, and domain-specific invariants. We thus propose a new approach, proof-carrying data,
which sidesteps the threat of faults and leakage by reasoning about properties of a computation's output

data, regardless of the process that produced it. The system designer prescribes the desired properties

of a computation's outputs by specifying the compliance predicate for the proof-carrying data system.

Then, corresponding proofs are attached to every message flowing through the system, and are mutually

verified by the system's components. Each such proof attests that the message's data and all of its history

comply with the prescribed properties.

1.1 Motivation

An important motivation for our work is exploring the power of proof systems. We show that, under

plausible cryptographic and setup assumptions, efficient distributed theorem proving is possible. Roughly,
our results imply that every NP statement has a very concise proof string for its correctness, and this
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proof string can be used "at no cost" as a "lemma" in a concise proof string for any other NP statement
(which did not have to be known when the proof string to the first NP statement was generated). As a
result, we learn that proof systems for NP can be essentially as efficient and as flexible as one could hope
for. Further details about this interpretation of our results can be found in Chapter 6.

However, the primary motivation for our work originates from its main application: using a proof system
to provide a new solution approach to security problems where the idea is to enforce an invariant through
a distributed computation.

Indeed, security in distributed systems typically requires maintaining properties across the computation
of multiple, potentially malicious, parties. Even when human participants are honest, the computational
devices they use may be faulty (due to bugs or transient errors [22]), leaky (e.g., suffering from covert
and side channels [99]) or adversarial (e.g., due to components from untrusted sources [23]).

Let us consider a few examples of security properties whose attainment, in the general case and under
minimal assumptions, is a major open problem - and how they can be approached using our framework
of proof-carrying data (PCD).

- Integrity. Consider parties engaged in a distributed computation. Each party receives input messages
from other parties, executes some program on his own local inputs and the input messages, and then
produces some output messages to be sent out to other parties.

Can we obtain evidence that the distributed computation's final output is indeed the result of correctly
following a prescribed program in the aforementioned process? For example, if the computation consists
of a physics simulation (whether realistic or that of an online virtual world), can we obtain evidence
that all parties have "obeyed the laws of physics"?

- Information flow control. Confidentiality and privacy are typically expressed as negative conditions
forbidding certain effects. However, following the approach of information flow control (IFC) [47] [111],
one may instead reason about what computation is allowed and on what inputs.

Thus, within a distributed computation, we can define the security property of intermediate results as
being "consistent with a distributed computation that follows the IFC rules". In IFC, intermediate
results are labeled according to their confidentiality; PCD augments these with a proof string attesting
to the validity of the label. Ultimately, a censor at the system perimeter lets through only the "non-
secret" outputs, by verifying their associated label and proof string. Because verification inspects only
the (augmented) output, it is inherently unaffected by anomalies (faults and leakage) in the preceding
computation; only the censor needs to be trusted to properly verify proof strings.

- Fault isolation and accountability. Consider a distributed system consisting of numerous unreliable
components. Let any communication across component boundaries carry a concise proof of correctness,
and let each component verify the proofs of its inputs and generate proofs for its outputs. Whenever
verification of a proof fails, the computation is locally aborted and outputs a proof of the wrongdoing.
Damage is thus controlled and attributed. In principle this may be realized at any scale, from individual
chips to whole organizational units.

Many applications involve multiple such goals. For example, in cloud computing, clients are typically
interested in both integrity [77] and confidentiality [125]. Further details and proposed examples appear
in Chapter 6.

Thus, the framework of proof-carrying data is based on augmenting every message passed in the dis-
tributed computation with a short proof string attesting to the fact that the message's data, along with
all of the distributed computation leading to that message, satisfies the desired property. These proofs
are efficiently produced, verified and aggregated at every node. Ultimately, the proof string attached to
the system's final output attests that the whole computation satisfied the desired property.

1.2 Goals

Generalizing the discussion in the previous section, we address the general problem of secure distributed
computation when all parties are mutually untrusting and potentially malicious. Computation may be
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dynamic and interactive, and "secure" may be any property that is expressible as a predicate that

efficiently checks each party's actions.

We thus wish to construct a compiler that, given a protocol for a distributed computation, and a security

property (in the form of a predicate to be verified at every node of the computation), yields an augmented

protocol that enforces the security property. We wish this compiler to respect the original distributed

computation, i.e., it should preserve communication, dynamics and efficiency:

- Preserve the communication graph. Parties should not be required to engage in additional com-

munication channels beyond those of the original distributed computation. For example: protecting

the distributed computation carried out by a system of hardware components should not require each

chip to continuously communicate with all other chips; agents executing in the "cloud" should remain

trustworthy even when their owners are offline; and parties should be able to conduct joint computation

on a remote island and later re-join a larger multi-party computation.

- Allow dynamic computations. The compiler should allow for inputs that are provided on the fly

(e.g., determined by human interaction, random processes, or nondeterministic choices).

- Minimize the blowup in communication and computation. The induced overhead in commu-

nication between parties, and computation within parties, should be kept at a minimum (e.g., at most

a local polynomial blowup).

The above properties imply, for example, that scalability is preserved: if the original computation can

be jointly conducted by numerous parties, then the compiler produces a secure distributed computation

that has the same property.

1.3 Our approach

Use a proof system. In our approach, proof-carrying data, every piece of data flowing through a
distributed computation is augmented by a short proof string that certifies the data as compliant with
some desired property. These proofs can be propagated and aggregated "on the fly", as the computation
proceeds.

Let us illustrate our approach by a simple scenario. Alice has some input x and a function F. She

computes y := F(x) at a great expense, along with a proof string 7ry for the claim "y = F(x)", and then

publishes the pair ("y = F(x)", 7ry) on her webpage. A week later, Bob comes across Alice's webpage,
notices the usefulness of y, and wants to use it as part of his computations: he picks a function G and

computes z := G(y). To convince others that the combined result is correct, Bob also generates a new

proof string 7rz for the claim "z = G(F(x))", using both the transcript of his own computation of G on y,
and Alice's proof string 7ry. (See Figure 1-1 for a diagram.) Crucially, Bob does not have to recompute

F(x). The size of 7rz is merely polylogarithmic in Bob's own work (i.e., the time to compute G on y and

the size of the statement "z = G(F(x))"), and is essentially independent of the past work by Alice.

Alice Bob

y z
x, F G - >

7ry for 7rzfor
"y = F(x)" "z = G(Flx))"

Figure 1-1: The "F and G" example.

We generalize the above scenario to any distributed computation. Also, we generalize "correctness" to be

any property that should hold at every node of the computation. More precisely, we consider properties

that can be expressed as a requirement that every step in the computation satisfies some compliance

predicate C computable in polynomial time; we call this notion C-compliance. Thus, each party receives

inputs that are augmented with proof strings, computes some outputs, and augments each of the outputs
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with a new proof string that will convince the next party (or the verifier of the ultimate output) that
the output is consistent with a C-compliant computation. We stress that each party does not have to
commit in advance to what computation it will have to perform; rather, parties may decide what do to
in real time (as if they were not computing any proof strings) and will generate proof strings based on
their decision of what computation to perform. See Figure 1-2 for a high-level diagram of this idea.1 We
thus define and construct a proof-carrying data (PCD) system primitive that fully encapsulates the proof
system machinery, and provides a simple but very general "interface" to be used in applications.

-'' efinal
--. #' r verifier

mn3, 7r3

Figure 1-2: A distributed computation in which parties send messages mi that are augmented
by proof strings -r7. The distributed computation does not have to be known in advance, i.e.,
parties may decide (possibly based on their input messages) which computation to perform and
to whom send messages - in other words, the graph representing the distributed computation
through time is allowed to be completely dynamic.

PCD generalizes the "incrementally-verifiable computation" of Valiant [134]. The latter compiles a (pos-
sibly super-polynomial-time) machine into a new machine that always maintains a proof for the correct-
ness of its internal state. PCD extends this in several essential ways: allowing for the computation to be
dynamic (interactive and nondeterministic); allowing for multiple parties and arbitrary communication
graphs; and allowing for an arbitrary compliance predicate, instead of considering only the special case of
correctness. These greatly expand expressibility, but entail significant technical challenges (for example,
dynamic computation forces us to recursively aggregate proofs in polynomially-long chains, instead of the
logarithmically-deep trees of [134], and this requires a much stronger knowledge extractor). Crucially,
our construction circumvents a major barrier which precluded a satisfying proof of security even for the
simpler functionality of incrementally verifiable computation. 2

Construction and tools. Our main technical tool, potentially of independent interest, is assisted-prover
hearsay-argument (APHA) systems. These are short non-interactive arguments (computationally-sound
proofs) for statements whose truth depends on "hearsay evidence" from previous arguments, in the sense
of the above "F and G" example. As pointed out by Valiant [134], this is not implied by standard
soundness: the latter merely says that if the verifier for a statement "z = G(F(x))" is convinced then
there exists a witness for that statement. But if the witness is supposed to contain a proof string 7ry
for another statement y = F(x), the mere existence of 7ry (that would be accepted by the verifier) is
useless: such 7ry may exist regardless of the truth of the statement "y = F(x)", since the soundness of the
argument is merely computational. We actually need to show that if the proof string for "z = G(F(x))"
was generated efficiently, then a valid proof string for "y = F(x)" can be generated with essentially the
same efficiency (and acceptance probability) and is thus also convincing. Technically, this is captured by
a particularly strong proof-of-knowledge property.

Our construction of APHA systems is built on argument systems [76][26]. Specifically, we use universal
arguments [15] which (following [92] and computationally-sound proofs [107]) invoke the PCP theorem [12]
to achieve concise proofs and efficient verification.

' In addition, we obtain a proof-of-knowledge property (see Goldreich [60, Sec. 4.7] for the definition), which implies
that not only does there exist a C-compliant computation consistent with the output, but moreover this computation was
actually "known" to whoever produced the proof. This is essential for applications that employ cryptographic functionality
that is secure only against computationally-bounded adversaries, since an efficient cheating prover can only "know" efficient
C-compliant computation.

2 Valiant [134] offers two constructions: one that assumes the existence of a cryptographic primitive that is nonstandard
and arguably implausible [134, Theorem 1], and one whose overall security is conjectured directly without any reduction [134,
Sec. 1.3 under "The Noninteractive CS Knowledge Assumption"]. The difficulty seems inherent; see Section 4.1. In our
model, we attain provable security under standard generic cryptographic assumptions.
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However, such argument systems do not by themselves suffice: where they offer a strong proof-of-

knowledge property [53] [134], they do so by relying on random oracles, which precludes nesting of proofs

since the underlying PCP system does not relativize [54] [33]. Even in the restricted case of incrementally-

verifiable computation [134], this difficulty precluded a satisfying proof of security.

We address this problem, both in general and for the special case of [134], by extending the model with

a new assumption: an oracle that is invoked by the prover, but not by the verifier. The former facilitates

knowledge extraction, while the latter allows for aggregation of proof strings. The oracle provides a

simple signed-input- and-randomness functionality: for every invocation, it augments the input x with

some fresh randomness r, and outputs r along with a signature on (x, r) under a secret key sk embedded

in the oracle. This is discussed next.

1.4 Model and trust

We assume that all parties have black-box access to the aforementioned signed-input-and-randomness

functionality. Concretely, we think of this oracle as realized by hardware tokens, such as existing signature

cards, TPM chips or smartcards. It can also be implemented by a trusted Internet service (see [35] for a

demonstration). Alternative realizations include obfuscation and multi-party computation; see Section 4.5

for further discussion.

Comparable assumptions have been used in previous works, as setup assumptions to achieve universally-

composable functionality that is otherwise impossible [29]. In this context, Hofheinz et al. [83] assume

signature cards similar to ours. The main differences in the requisite functionality is that we require the

card to generate random strings and include them in its output and signature (a pseudorandom function

suffices - see Section 4.5), and to use signature schemes where the signature length can only depend on

the security parameter (see Section 2.3.5).

The more general result of Katz [90] assumes that parties can embed functionality of their choice in

secure tokens and send it to each other; follow-up works in similar models include [110] [32] [45]. However,
in our case we cannot afford a model where parties generate tokens and send them to all other parties,
since this does not preserve the communication graph of the original computation. Thus, our model is

closer to that of [83].

For simplicity, we assume the following setup and trust model. A trusted party generates a signature

key pair (vk, sk) and many signed-input-and-randomness tokens containing sk. Each party is told vk and

receives a token. All parties trust the manufacturer and the tokens, in the sense that each party, upon

seeing a signature on some (x, r) that verifies under vk, believes that the signature was produced by some

token queried on (x, rl).

One can easily adapt this to a certificate-authority model where each token uses its own secret key sk,
and publishes the corresponding public key vk along with a certificate for vk (i.e., a signature under the

key of a trusted certificate authority). 3

universal
arguments _....................

collision-resistant APHA PCD
hashing systems systems

signature - - --- - - - --J
schemes assisted-prover model

(SIR oracle)

Figure 1-3: Collision-resistant hashing schemes imply public-coin constant-round universal ar-

guments and secure concise signature schemes. From these two, we derive APHA systems, and

then PCD systems, in the model where provers are assisted with signed-input-and-randomness

(SIR) oracles.

3 Technically, this variant is realized by tweaking the PCD machine of Section 5.3 to verify the authority's signature on
this vk.
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1.5 Contributions of this thesis

In summary, we present the following results, discussed in the indicated chapters:

An argument system for hearsay. (Chapter 4) We define assisted-prover hearsay-argument (APHA)
systems: non-interactive arguments for NP that can efficiently prove statements that recursively rely on
earlier APHA proof strings, using a very strong proof-of-knowledge property. We construct these in a
model where the prover has black-box access to a simple stateless functionality, namely signing (under
a secret key) every input along with fresh randomness. Our construction relies on public-coin constant-
round universal arguments [15] and concise4 secure signature schemes. Both exist under the standard
generic assumption that collision-resistant hashing schemes exist. See Figure 1-3.

Distributed computations and proof-carrying data. (Chapter 5) We propose proof-carrying data
(PCD) as a framework for expressing and enforcing security properties, and formally define proof-carrying
data (PCD) systems that capture the requisite protocol compiler and computationally-sound proof sys-
tem. We construct this primitive under the same assumptions as above (in fact, we present a generic
transformation from APHA systems to PCD systems). See Figure 1-3.

Proposed applications. (Chapter 6) We discuss a number of open problems in the security of real-
world applications, where PCD potentially offers a powerful solution approach by circumventing current
difficulties.

Also, in Chapter 2 we introduce the basic notation, notions, and cryptographic primitives used throughout
this thesis, and in Chapter 3 we discuss prior work relating to our main technical tool, i.e., proof systems.

1.6 Previous approaches to security design

Security design has been approached from a variety of perspectives. We review here the most important
of those approaches.

Distributed algorithms. Distributed algorithms [104] typically address achieving specific properties
of a global nature (e.g., consensus). By contrast, we offer a general protocol compiler for ensuring local
properties of individual steps in the distributed computation. In this sense the problems are complemen-
tary. Indeed, trusted tokens turn out to be a powerful tool for global properties as well, as shown by
A2M [37] and TrInc [101].

Platforms, languages, and static analysis. Integrity can be achieved by running on suitable fault-
tolerant systems. Confidentiality can be achieved by platforms with suitable information flow control
mechanisms [47] [111], e.g., at the operating-system level [98] [136]. Various invariants can be achieved
by statically analyzing programs, and by programming language mechanisms such as type systems
[122][3][46].

The inherent limitations of these approaches (beside their difficulty) is that the output of such computa-
tion can be trusted only if one trusts the whole platform that executed it; this renders them ineffective
in the setting of mutually-untrusting distributed parties.

Cryptographic approaches. Proof systems with certain properties can be used to achieve a variety
of goals in security design. We discuss proof systems at length in Chapter 3, as the results in this thesis
are attained through tools that fall in this category.

Proof-carrying code. Proof-carrying code (PCC) [114][123, Ch. 5] addresses scenarios in which a
host wishes to execute code received from untrusted producers, and would like to ascertain that the
code adheres to some rules (e.g., because the execution environment is not inherently confining). In the
PCC approach, the producer augments the code with formal, efficiently-checkable proofs of the desired

4 The signature length should depend only on the security parameter.
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properties - typically, using the aforementioned language or static analysis techniques. Such systems

have been built for scenarios such as packet filter code [115], mobile agents [116] and compiled Java

programs [39].

Indeed, PCC inspired the name of our approach, "proof-carrying data" (PCD). The difference lies in

that we reason about properties of data, as opposed to properties of code. PCC and PCD thus address

disjoint scenarios, by different techniques (see Table 1.1 for a summary). However, the two approaches

can be composed: a potentially powerful way to express security properties is to require messages to be

correctly produced by some program prg that has desired properties (e.g., type safety), and then prove

these properties of prg using proof-carrying code. Here, the PCD compliance predicate C consists of

running the PCC verifier on prg and then executing prg.

Proof-carrying data Proof-carrying code

Message data executable code

Statement about specific past history all future executions

Proof method cryptography + formal methods
compliance predicate

Main computation prover verifier
executed by (sender) (host)

Recursively aggregatable yes n/a

Table 1.1: Comparison between proof-carrying data and proof-carrying code.

Dynamic analysis. Dynamic analysis monitors the properties of a program's execution at run time

(e.g., [117][131][95]). Our approach can be interpreted as extending dynamic analysis to the distributed

setting, by allowing parties to (implicitly) monitor the program execution of all prior parties without

actually being present during the executions.

Fabric. The Fabric system [102] is similar to PCD in motivation, but takes a very different approach.

Fabric addresses execution in a network of nodes which have partial trust in each other. Nodes express

their information flow and trust policies, and the Fabric platform (through a combination of static and

runtime techniques) ensures that computation and data will be delegated across nodes only when requisite

trust relations exist for preserving the information flow policy. Thus, Fabric is a practical system that

allows "as much delegation as we are sure is safe" across a system of partially-trusting nodes (where a

violated trust relation will undermine security). In contrast, PCD allows (somewhat different) security

properties to be preserved across an arbitrary network of fully-mistrustful nodes, but with a much higher

overhead.
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Chapter 2

Preliminaries

We review basic notation, notions, and cryptographic primitives. An excellent comprehensive treatment
of all of these can be found in Goldreich [60] and Goldreich [61].

2.1 Basic notation

We use standard notation for functions, algorithms, and machines, as summarized in the next few sub-

sections.

2.1.1 Strings, relations, and functions

We take all strings to be over the binary alphabet {0, 1}; the empty string is denoted e. Often we will
talk about objects that are not binary strings or tuples of strings, however all are easy to encode in some
canonical way as binary strings, so we assume throughout that such an encoding has been fixed. The set
of positive integers is denoted N; all integers are presented in binary; an integer k presented in unary will
be specially denoted as 1 k; for n E N, we denote by [n] the set {1,... , n}.

Let R c {0, 1}* x {0, 1}* be a binary relation. The language of a relation R, denoted L(R), is defined to

be the set {x E {0, 1}* : I y s.t. (x, y) E R}. The witness set of a string x in R, denoted R(x), is defined
to be the set {y E {0, 1}* : (x, y) E R}; a string y E R(x) is called a witness for x in R. We say that a
relation R is polynomially bounded if there exists a positive polynomial such that for all (x, y) it holds

that Iy| < p(x). The familiar case of an NP relation R requires that the relation be both polynomially
bounded and there exists a (deterministic) polynomial-time algorithm for deciding membership in L(R).

A function f with domain D and co-domain C is denoted f : C -+ D. For a subset S of D, the restriction
of f to S is denoted f Is. For an element y in C, the (possibly empty) subset of elements in D that map
to y is denoted f-1(y).

Definition 2.1.1 (Function Ensemble). Let f: N -+ N. An f-bit function ensemble is a sequence of

random variables F = {Fk}kEN, where Fk takes on values that are functions from f(k)-bit strings to

£(k)-bit strings. The uniform -bit function ensemble, denoted ' = {Hk}kEN is the ensemble where Hk

is uniform over all functions from £(k) -bit strings to £(k) -bit strings.

2.1.2 Distributions

If A is a probabilistic algorithm, then for any input x to A we let A(x) denote the probability space that

assigns to any string o- the probability that A(x) outputs o-. If we want to specify the random tape of A,
then we will write A(x; r) to denote the output of the (now deterministic) algorithm A on input x and

random tape r. If S is a probability space, then x +- S denotes that x is randomly chosen from S; if S
is a finite set, then x +- S denotes that x is randomly chosen from the set S.
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An experiment is a probability distribution over strings that are the result of an ordered execution of
probabilistic algorithms. For example,

(x, y, z) x <- A; y <- B(x) ; z <- C(x, y)}

denotes the probability distribution over the triples (x, y, z) as generated by first running algorithm A
to obtain x, then running algorithm B on input x to obtain y, and then running algorithm C on inputs
x and y to obtain z. Similarly, for a predicate II on strings, the probability that the above experiment
yields a triple (x, y, z) that satisfies II is denoted as

Pr [I(x, y, z) = 1 x +- A; y <- B(x) ; z <- C(x, y)]

2.1.3 Computational models

We use the standard notions of Turing machines and circuits. (Details such as how many tapes a Turing
machine has or which universal set of gates is allowed in a circuit are inconsequential for the results
in this thesis.) If M is a Turing machine, then (M) is its description (on occasion identified with M)
and timeM(x) is the time that M takes to halt on input a string x. If C is a circuit, then (C) is its
representation and |CI is its size. For a more detailed discussion of Turing machines and circuits, see any
introductory textbook on complexity theory, such as Papadimitriou [119], Sipser [130], Goldreich [62], or
Arora and Barak [5].

An interactive Turing machine is a Turing machine that has additional tapes for the purpose of "com-
municating" with other Turing machines. For a formal definition, see Goldwasser, Micali, and Rackoff
[74] [76]. More generally, we can consider the notion of interactive circuits. For two interactive machines
(or circuits) A and B, we denote the output of A, after interacting with B on common input x, and each
with private inputs y and z, by (A(y), B(z))(x).

2.1.4 Feasible and infeasible computation

We adopt the standard postulate that feasible computations correspond to those that can be performed
by probabilistic polynomial-time Turing machines. Thus, infeasible computations correspond to those
that require a super-polynomial amount of probabilistic time to perform.

The adversarial model should then include at least all feasible strategies (i.e., those which are imple-
mentable in probabilistic polynomial-time). In this thesis, we will use the stronger (and overly cautious)
adversarial model that allows adversaries to be of non-uniform polynomial-time, i.e., to be of probabilistic
polynomial-time with access to a polynomial-size "advice" string for each input length (these are simply
families of polynomial-size circuits).

We will often need to show that certain events "never happen". The standard way to capture that is
to require that they occur with a probability that vanishes faster than the inverse of any polynomial;
in particular, that implies that these events would "never" be noticed by any polynomial-time strategy.
Such a probability, and, more in general, such a function, is said to be negligible.

Definition 2.1.2 (Negligible Function). A function f: N -+ R is said to be negligible if for every positive
constant c there exists an ko in N such that for every k > ko it holds that f(k) < k-c.

Functions that are not negligible are said to be non-negligible.

Definition 2.1.3 (Non-Negligible Function). A function f : N -+ R is said to be non-negligible if it is not
negligible, i.e., there is a positive constant c such that for infinitely many k in N it holds that f(k) ;> k-c.

We warn that in some works the terminology "non-negligible" is reserved for a "strong negation" of
negligible, i.e., for functions f for which there is a positive constant c such that, for all sufficiently large
k, f(k) > k-c; in those works, functions defined as in Definition 2.1.3 are instead called not negligible.
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2.2 Basic notions

We review basic notions that often appear in cryptography.

2.2.1 Computational indistinguishability

We will often be concerned with asymptotic behavior of random variables.

Definition 2.2.1 (Probability Ensemble). Let S be a subset of {0, 1}*. A probability ensemble indexed

by S is a sequence of random variables {Xg},6S-

Goldwasser and Micali [72] first suggested (in the context of defining security for encryption schemes)

that the notion of equivalence between probability ensembles can be usefully relaxed from a requirement

of equality to a requirement of indistinguishability under any probabilistic polynomial-time test. Yao [135]
first independently considered and formulated this notion, which is called computational indistinguisha-

bility.

Definition 2.2.2 (Computational Indistinguishability). We say that two ensembles X = {XI},Es and

Y = {Y.}cES are computationally indistinguishable if for every family of polynomial-size distinguisher
circuits {Dk}keN, every positive constant c, and all sufficiently large k and every o, E S n {0, 1}k,

Pr Dk(a) = 1 a <- X,- Pr Dk(a) = 1 a -- Y, < .

We note that the above definition would not have been stronger if we were to provide Dk with the index

o- of the distribution being tested; in fact, it would not have been stronger even if we were to consider

a different distinguisher D, for each index o-. Finally, the above definition refers only to distinguishing

distributions by a single sample, but it is equivalent to distinguishing distributions by any polynomial-

number of samples [60, Ch. 3, Ex. 9].'

We also recall the basic fact that computational indistinguishability is preserved under efficient transfor-

mations [60, Ch. 3, Ex. 2].

2.2.2 Black-box subroutines and oracles

We often use a machine A as a subroutine of a second machine B: the description of machine B contains

the description of machine A in order to enable B to run A on inputs of its choice. In particular, B uses

the description of A only for the purpose of running A, and in this case we say that A is a black-box

subroutine of B, i.e., the functionality of B could have been similarly achieved by restricting B to have

only oracle access to the functionality of A.

We note that, in most occasions, results are established with techniques that involve only the use of

black-box subroutines. Notable exceptions are the results of Canetti, Goldreich, and Halevi [30][31] and

Barak, Goldreich, Impagliazzo, Rudich, Sahai, Vadhan, and Yang [16] who used the code of the adversary

to obtain certain negative results, and the results of Barak [13] and Barak [14] who used the code of the

adversary as part of a proof of security.

When we want to enforce black-box access of a machine B to a certain functionality A, we will say that

B is an oracle machine (or circuit) with oracle access to A. We denote the transcript of B on input x

and oracle access to A by [B(x), A . For two (possibly) probabilistic machines or circuits A and B, we

use BIA to denote that B has black-box rewinding access to A, i.e., B can run A multiple times, each

time choosing A's random tape; moreover, if both A and B are interactive machines, then B can also

choose the messages that it sends to A.

'The same equivalence does not hold when considering computational indistinguishability against probabilistic
polynomial-time Turing machines [65].
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2.3 Basic cryptographic primitives

Modern cryptography captures cryptographic tasks and their security requirements as cryptographic prim-
itives; these are tuples of algorithms that satisfy certain conditions expressing how these algorithms should
be used (i.e., expressing their functionality) and what adversarial manipulations are almost impossible
to achieve (i.e., expressing their security guarantees).

The cryptographic notions defined in this section are defined to be secure against families of polynomial-
size circuits, as that is the adversarial model that we consider in this work. (See Section 2.1.4.) Analogous
notions definitions can be obtained for different adversarial models (e.g., probabilistic polynomial-time
Turing machines, families of subexponential-size circuits).

2.3.1 One-way functions

The ability to easily sample hard instances of an efficiently-verifiable problem, along with a solution to
the problem instance, is one of the simplest and most basic notions in modern cryptography. Formally,
this ability is captured by a cryptographic primitive called a one-way function (see Diffie and Hellman
[49] and Yao [135] for its origins).

Definition 2.3.1 (One-Way Function). A function f: {0, 1}* -4 {0, 1}* is said to be one-way if it
satisfies the following two conditions:

1. Easy to compute: There exists a deterministic polynomial-time evaluator Turing machine E such
that E(x) = f(x) for every string x.

2. Hard to invert: For every family of polynomial-size inverter circuits {Ik }kEN, every positive constant
c, and for all sufficiently large k,

Pr [Ik(y) (E f -1(x) x - {0, I}k ; y f(X)] <
kc

Additionally, we will say that f is a one-way permutation if f is one-way and fl{o,1}k is a permutation
of {0, I}k to itself for each k in N.

2.3.2 Pseudo-random generators

The notion of a randomness amplifier is what is formally captured by a pseudo-random generator. Loosely
speaking, on input a random seed that is kept secret, a pseudo-random generator is a deterministic
algorithm that outputs a longer string that "looks" random: no polynomial-time procedure is able to tell
whether a given string is truly random or only a random output of a pseudo-random generator.

Definition 2.3.2 (Pseudo-Random Generator). A function f : {0, 1}* -+ {0, 1}* is said to be a pseudo-
random generator if it satisfies the following two conditions:

1. Easy to compute: There exists a deterministic polynomial-time evaluator Turing machine E such
that E(x) = f(x) for every string x.

2. Expansion: There exists a function e: N -+ N such that £(k) > k for all k in N and If(x)I = f(\x|)
for all strings x. The function £ is called the expansion factor of f.

3. Pseudo-randomness: The probability ensembles {f(Uk)}kEN and {Ui(k)}kEN are computationally
indistinguishable.

Blum and Micali [24] originally considered unpredictable sequences of bits, and showed how to construct
them assuming the difficulty of taking discrete logarithms. Yao [135] then proved that unpredictable
sequences of bits are in fact pseudo-random (i.e., are computationally indistinguishable from truly ran-
dom strings), thus showing that Blum and Micali had in fact constructed a pseudo-random generator;
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Yao further showed how to construct pseudo-random generators assuming the existence of one-way per-

mutations. His results were later improved, and eventually Histad, Impagliazzo, Levin, and Luby [84]

proved that pseudo-random generators exist if (and only if) one-way functions exist; this last result is

not an efficient construction, so most practical pseudo-random generators are based on specific number-

theoretic assumptions and follow the paradigm of Yao's construction. For more details on pseudo-random

generators, see Goldreich [59, Ch. 3] or Goldreich [60, Ch. 3].

2.3.3 Pseudo-random functions

The property of "looking" random can be meaningfully defined for functions as well. Indeed, if a pseudo-

random string is one that cannot be distinguished by any polynomial-time procedure form a truly random

string, then it is natural to define a pseudo-random function as one that cannot be distinguished from

a truly-random function. However, while for strings the distinguisher is a probabilistic polynomial-time

algorithm that takes a string as input, for functions the distinguisher is a statistical test: a probabilistic

polynomial time oracle machine that adaptively queries its oracle in an attempt to figure out if the oracle

was drawn from the pseudo-random function ensemble or the uniform ensemble (see Definition 2.1.1). Of

course, pseudo-random functions are further required to be efficiently computable.

Definition 2.3.3 (Pseudo-Random Function Ensemble). We say that F = {F}kEN is a pseudo-random

function ensemble if it satisfies the following conditions:

1. Indexing: Each function in Fk has a unique k-bit seed s associated with it:

Fk {fs: { 0 , }k -+ { 0 , I}k s E { 0 , 1 }.k

Thus drawing a function from Fk is easy: simply toss k coins.

2. Efficiently computable: There is an efficient algorithm E (the "evaluator") such that E(s, x) =

f,(x) for all x, s E {0, 1 }k.

3. Pseudo-randomness: For all efficient statistical tests T and all positive constants c, for all suffi-
ciently large k,

Pr [T(1k) = 1 1f +- Fk] - Pr [Tf(1k) = 1 f +- Hk <

In other words, pseudo-random function families "look like" truly random functions to any efficient
statistical test. (Note that in the experiment the outputs of the oracle are consistent, i.e., they belong

to the same function.)

Pseudo-random function families constitute a very powerful tool in cryptographic settings: the functions

in such families are easy to select and compute, and yet retain all the desired statistical properties of

truly random functions (with respect to polynomial-time algorithms).

Goldreich, Goldwasser, and Micali [67] introduced the notion of a pseudo-random function ensembles,
and showed how to construct them using any pseudo-random generator. Naor and Reingold [112] exhibit

more practical constructions based on number-theoretic assumptions.

2.3.4 Collision-resistant hashing schemes

The notion of a collection of functions for which it is hard to find collisions was first introduced by

Damgird [44]. Formally, such a collection is captured by a pair of machines (GCRH, ECRH), the hashing-

key generator and the evaluator. On input a security parameter 1 k, GcRH(1k) outputs a hashing key hk

that identifies a function Hhk: {0, 1}* -* {0, lIhkI that can be computed efficiently using EcRH(hk, .)
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Definition 2.3.4 (Collision-Resistant Hashing Scheme). A pair of polynomial-time machines (GCRH,
ECRH), where GCRH is probabilistic and ECRH is deterministic, is said to be a collision-resistant hashing
scheme if it satisfies the following two conditions:

1. Shrinking: For each hk E GcRH(lk), EcRH(hk, -) is a function that maps {0, 1}* to {0, 1}|hkI.

2. Hard to find collisions: For every family of polynomial-size collision-finding circuits {Ck}kEN, every
positive constant c, and for all sufficiently large k,

Pr [(x y) A (EcRH(hk,x) = EcRH(hk,y)) hk <- GCRH(1k) ; (x, y) 4- Ck(hk) <

Collision-resistant hashing schemes are known to be implied by claw-free collections of permutations [44] [75],
or length-restricted collision-free hashing schemes [43] [105]; they easily imply one-way functions, but un-
fortunately they are not known to follow from the existence of one-way functions, one-way permutations,
or even trapdoor permutations - they remain a strong and powerful existential assumption. See Gol-
dreich [61, Sec. 6.2.2.2] for more details.

2.3.5 Signature schemes

Signature schemes [61, Sec. 6.1] capture the notion of a public-key authentication scheme. Suppose that
some party wants to "sign" a message of his choice, in a way that enables anyone to verify his signature
and thus be sure that the message originated from him. Signing the message would be meaningless if
anyone could do it, so it is required that no one (other than the party who knows some secret) is able to
produce valid-looking signatures (for any message).

More precisely, a signature scheme SIG is a triple of polynomial-time machines (GsIG, SSIG, VSIG) with the
following syntactic properties:

- The key generator algorithm GSIG, on input a security parameter 1 k, outputs a key pair (vk, sk)
where vk is known as the verification key and sk as the signing key.

- The signing algorithm SSIG, on input a signing key sk and a message m E (0, 1}*, outputs a signature
a of m with respect to the verification key vk corresponding to sk.

- The signature verification algorithm VSIG, on input a verification key vk, a message m E {0, 11* and
a signature a E {0, 1}*, decides whether o- is valid for m with respect to vk.

The basic requirement is that the verification algorithm recognize as valid all signatures that are legiti-
mately generated by the signing algorithm. Namely, the triple (GSIG, SSIG, VSIG) is required to satisfy the
following completeness property: for any k E N and m E {0, 1}*,

Pr VsIG (vk, m, a) = 1 (vk, sk) <- GsIG (1k) ; 0 - ssIG(sk, m)= 1

The security requirement is that no efficient adversary should be able to generate a valid signature for
any message, after adaptively querying a signing oracle on messages of his choice (the message output by
the adversary should of course be different than every message that was queried to the signing oracle).
This security notion is known as existential unforgeability against chosen-message attack.

Definition 2.3.5 (Existential Unforgeability against Chosen-Message Attack). A signature scheme (GSIG,
SSIG, VSIG) is said to be existentially unforgeable against chosen-message attack if for every family of
polynomial-size circuits {Ak}kEN, for every positive constant c, and for all sufficiently large k,

Pr [(VSIG (vk, m, o-) = 1) \ (Ak did not query m) (vk, sk) <- GsIc (1k) ; (m, a) <- ASI(sk,-) (vk) < .

The notion of existential unforgeability against chosen-message attack was introduced by Goldwasser,
Micali, and Rivest [75], who first exhibited a signature scheme secure under this definition, using the
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assumption that claw-free collections of permutations2 exist. The result was improved by Bellare and

Micali [18], who showed how to construct secure signature schemes using any trapdoor permutation. The

assumption was further weakened by Naor and Yung [113] to any universal one-way hash function, 3 which

they showed how to obtain using any one-to-one one-way function. Finally, Rompel [126] showed how to

construct universal one-way hash functions using any one-way function (Katz and Koo [91] provide a full

proof of this result, as the original conference paper had some errors).

In this thesis, we use an existentially-unforgeable signature scheme SIG = (GsIG, SSIG, VSIG) that has "con-

cise" signatures, i.e., the length of signatures is polynomial in the security parameter (and, in particular,
is independent of the message length). This can be achieved by using a "hash-then-sign" approach [61,
Sec. 6.2.2.2], using collision-resistant hashing schemes. This is without loss of generality, because our

constructions already assume the existence of collision-resistant hashing schemes (e.g., to obtain universal

arguments, see Section 3.3.4 under the paragraph entitled "Universal arguments").

2 See Goldreich [60, Sec. 2.4.5] for a definition of claw-free collections of permutations; they are known to exist under

number-theoretic assumptions such as the difficulty of factoring or the difficulty of taking discrete logarithms.
3 See Goldreich [61, Sec. 6.4.3] for a definition of universal one-way hash functions.
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Chapter 3

Related Work

In this chapter we review prior works that are most related to our results. See the Complexity Zoo [40]

for definitions of the complexity classes that we use.

3.1 Proof systems

Central to modern cryptography and complexity theory is the notion of a proof system. Traditionally, a

proof system is a finite alphabet (e.g., {0, 1}), together with a finite set of axioms and inference rules.

Statements are strings of symbols from the alphabet; true statements are strings for which there exists

a proof, i.e., a finite sequence of strings each of which is either an axiom or a string obtained via an

inference rule from previous strings.

To put it another way, given some statement x (e.g., "the graph G has a Hamiltonian cycle", "the Boolean

formula # is satisfiable", or "the two graphs G and H are not isomorphic"), a prover writes down a proof

7r in some canonical format; a verifier can examine 7r and decide whether it is a convincing proof for the

fact that x is true.

To demonstrate our notation, let us define, using the above "proof system" setting, the standard com-

plexity class NP:

Definition 3.1.1 (Class NP). The complexity class NP is the set of all languages L for which there

exists a deterministic polynomial-time verifier VL and an all-powerful prover PL, as well as a positive

polynomial qL, that satisfy the following two conditions:

1. Completeness: For every x in L, the prover PL can write a proof ir of length at most qL(|x|) that

the verifier VL will accept as a valid proof for x.

2. Soundness: For every x not in L, no (possibly cheating) prover P can write down a proof F of

length at most qL(|xj) that the verifier VL will accept as a valid proof for x.

Thus, NP captures all statements whose proofs are efficiently verifiable by a deterministic procedure, i.e.,
all statements that have a short and easy to verify proof - in essence, all true statements that are relevant

to us in practice. Nonetheless, other interpretations of the notion of "proof system" have been studied,
yielding a very rich, and often surprising, set of results. We discuss one interpretation, probabilistically-

checkable proofs, in Section 3.2, and another interpretation, interactive proofs, in Section 3.3.

3.2 Probabilistically-checkable proofs

Suppose that a prover writes down a short (i.e., polynomial-size) proof 7 for some statement x. Instead

of considering a deterministic verifier that must read the whole proof 7r in order to decide whether he is
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convinced or not of the veracity of x, let us consider a probabilistic verifier with bounded randomness and
"attention", i.e., the verifier tosses at most r coins and reads at most q bits of 7r. We say that a language
L has a probabilistically-checkable proof if statements in L have proof 7r that can be checked by the kind
of verifiers we just described.

Definition 3.2.1 (Class PCP). Given functions r, s: N - R, the complexity class PCP[r, q] consists of
those languages L for which there is a probabilistic polynomial-time verifier VL that satisfies the following
conditions:

1. Verifier restrictions: On input a string x and with oracle access to another string 7r, the verifier VL
tosses at most r(JxJ) coins and reads at most q(|x|) bits of 7r.

2. Completeness: For every x in L there is a proof 7r, called a PCP oracle, such that VZ(x) accepts
with probability one.

3. Soundness: For every x not in L and every proof 7r, VL7(x) accepts with probability at most 1/2.

Arora and Safra [6] and Arora, Lund, Motwani, Sudan, and Szegedy [7] showed all of NP has a prob-
abilistically checkable proof where the verifier tosses logarithmically many coins and queries a constant
number of bits of the PCP oracle; this result is known as the PCP Theorem.

Theorem 3.2.1 (PCP Theorem). NP PCP[O(log n), O(1)].

There is a long sequence of results leading up to the PCP theorem [118], as well as a large and thriving area
of research born out of it, especially in light of the surprising connection between PCPs and hardness
of approximation [51]. Even a brief overview of the many results in this area is beyond the scope of
this thesis, 1 so we will only mention that: Arora [4] provides an accessible survey to the main results;
references and treatment of more recent results can be found in the book of Arora and Barak [5] or, e.g.,
in the scribed notes of classes taught by Guruswami and O'Donnell [78] and Ben-Sasson [21].

3.2.1 Alternative models of PCP

An important efficiency measure in the area of PCPs is the length of the PCP oracle. For example, can
the satisfiability of a size-n formula in k variables be proved by a PCP oracle of size poly(k), rather than
poly(n)? The existence PCP oracles of size polynomial in the number of variables would be very useful
in a variety of cryptographic applications, as discussed by Harnik and Naor [82]. Unfortunately, Fortnow
and Santhanam [55] show that such PCP oracles do not exist unless NP c coNP/poly.

Interactive PCP. Kalai and Raz [88] consider the alternative setting where a verifier is given access
to a PCP oracle and an interactive proof (and not just a PCP oracle); the resulting model is called
interactive PCP. In other words, an interactive PCP is a proof that can be verified by reading only a
small number of its bits, with the help of an interactive proof (see Section 3.3). In this new model, they
show the following:

Theorem 3.2.2 ([88]). For any constant e, the satisfiability of a constant-depth formula can be proved
by an interactive PCP, where one query is made to a PCP oracle that is polynomial in the number of
variables and is followed by an interactive proof that has communication complexity that is polylogarithmic
in the formula size, with completeness 1 - e and soundness 1/2 + F.

The above theorem finds several cryptographic applications, including succinct zero-knowledge proofs.

Probabilistically-checkable arguments. Kalai and Raz [89] consider another alternative setting,
this time by relaxing the soundness property of PCPs to only hold computationally; the resulting model
is called probabilistically-checkable argument (PCA). Specifically, they consider "one-round arguments"
where the verifier sends a message depending on his private coins (but not the statement to be proved)

'The results in this thesis only use the PCP theorem implicitly, through the universal arguments of Barak and Goldreich
[15], which form one of the building blocks of one of our constructions.
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to the prover; at a later time, the prover uses the verifier's message to generate an oracle string, which

the verifier will access only at a few bits.

Kalai and Raz [89] give a general reduction from any efficient interactive PCP into a short PCA oracle.

Hence, using their result on interactive PCPs (improved by Goldwasser, Kalai, and Rothblum [77]), they

show the following:

Theorem 3.2.3 ([89]). For any security parameter t, any formula of size n and depth d in k > log n

variables can be proved by a PCA oracle (with an efficient prover) of size poly(k, d, t) by querying a
number of queries that is poly(d, t), achieving completeness 1 - 2- and soundness 2-1.

Hence, at least in the model of PCA, succinct oracle proof strings can be achieved.

3.3 Interactive proofs

Goldwasser, Micali, and Rackoff [74][76] first extended the traditional notion of a "written-down" proof

to the interactive setting, where the action of proving a theorem is an interactive protocol between an

all-powerful prover and a probabilistic polynomial-time verifier.

Definition 3.3.1 (Interactive Proofs and Class IP). A pair of interactive Turing machines (P, V) is

called an interactive proof system for a language L C {0, 1}* if the following conditions hold:

1. Efficient verification: The verifier V is a probabilistic polynomial-time machine. (In particular, the
number of messages and the total length of all messages exchanged between the prover P and the
verifier V are polynomially bounded in the length of the common input.)

2. Completeness: For every string x in L, the verifier V always accepts after interacting with the
prover P on common input x.

3. Soundness: There exists some positive polynomial p such that, for every x not in L and every

(possibly cheating) prover strategy P, the verifier V rejects with probability at least p(|x|)-' after

interacting with P on common input x.

The complexity class IP denotes the set of all languages L that have an interactive proof system. (At
times, we consider the subset of IP induced by restricting the number of messages between the prover and
the verifier to be bounded by some polynomial r: N -* N in the length of the common input; this subset is
denoted by IP[r].)

Interactive proof systems thus integrate both interaction and randomness into the notion of a proof.

Note that no complexity requirement is placed on the honest prover P or any cheating prover P.

The power of interactive proofs. When Goldwasser, Micali, and Rackoff [74] [76] first introduced

interactive proof systems, they observed that NISO, the language of pairs of non-isomorphic graphs, is

in IP (recall that NISO is not known, nor believed, to be in NP); indeed, Lund, Fortnow, Karloff, and

Noam [103] then gave interactive proof systems for all of coNP. Later, Shamir [129] proved that every

language that can be decided in polynomial-time by a Turing machine is also in IP, i.e., that PSPACE C IP

(the other inclusion is trivial, so that IP = PSPACE - in particular, this shows that IP is closed under

complementation, as PSPACE is); recently, Jain, Ji, Upadhyay, and Watrous [87] showed that QIP = IP,
i.e., that quantum interactive proof systems are no more powerful than classical ones. Indeed, the class

IP has shown extraordinary expressive power. (Also, Flirer, Goldreich, Mansour, Sipser, and Zachos

[56] observe that allowing two-sided error probability does not increase the power of interactive proof

systems.)

We note that both interaction and randomness seem essential to the power of interactive proofs: indeed,
any language with an interactive proof in which the verifier is deterministic is in NP, and non-interactive

proofs in which the verifier may toss coins are conjectured to be contained in NP (see the discussion

below in the paragraph entitled "Non-interactive proofs") - if one removes all interaction then we get
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BPP. Finally, Goldreich, Mansour, and Sipser [68] showed that the soundness error is essential for the
expressive power of interactive proofs: if the verifier never accepts when the common input x is not in L,
then L is in NP; that is, interactive proofs with perfect soundness exist only for languages in NP.

Public coins. A special case of interactive proof system is when all of the verifier's messages are random
strings; we refer to such a protocol as a pubic-coin (or Arthur-Merlin [11]) interactive proof system. Such
protocols were first considered by Babai [10], and were shown by Goldwasser and Sipser [73] to have
essentially the same power as the general case (where the verifier may send any kind of message, and, in
particular, toss coins and not reveal their outcomes to the prover). An interactive proof system that is
not of the public-coin type is of the private-coin type.

Arguments (computationally-sound proofs). An important relaxation of the definition of inter-
active proof systems, first considered by Brassard, Chaum, and Crepeau [26], is to only require that
soundness hold against efficient prover strategies, i.e., the quantification is only over feasible strategies
for P rather than over all strategies. The resulting condition is called computational soundness and is as
follows

Computational soundness: There exists some positive polynomial p such that, for every family
of polynomial-size circuits {Pk}kEN and for all sufficiently large k, for all x E {0, 1}k n L, the
verifier V rejects with probability at least p(x|)-' after interacting with PI on common
input x.

An interactive protocol that is a computationally-sound proof system is called an interactive argument
system.

Non-interactive proofs. An important special case of an interactive proof system is when the inter-
action between the prover and the verifier consists of only one message from the prover to the verifier; we
call such a proof system a non-interactive proof system. Non-interactive argument systems are similarly
defined for the analogous special case of interactive argument systems. Non-interactive proof systems are
also known as Merlin-Arthur protocols, and the complexity class of languages solved by such protocols is
denoted by MA, which contains NP and BPP and is contained in AM. Impagliazzo and Wigderson [85]
proved that, assuming that DTIM E(2 0 (n)) requires exponential-size circuits, PromiseBPP = PromiseP, im-
plying that MA = NP. Boppana, Histad, and Zachos [25] proved that if coNP c AM then the polynomial
hierarchy collapses, implying that if coNP C MA then the same conclusion holds.

Decreasing the soundness error probability. The soundness error of both interactive proof systems
and interactive argument systems can always be reduced to a negligible amount by sequential repetition
of the interactive protocol.2 Parallel repetition always reduces the soundness error of interactive proof
systems [59, Appendix C.1], but that is not always the case for interactive argument systems (see Bellare,
Impagliazzo, and Naor [19], Haitner [81], and Chung and Liu [38]).

Efficient prover strategies. For a language L in NP, we say that (P, V) is an interactive proof system
(resp., interactive argument system) with efficient prover strategy if the completeness condition can be
satisfied by a probabilistic polynomial-time algorithm that, beyond getting x E L as input, also gets a
witness for x as an auxiliary input. When specifically constructing interactive proof systems for languages
in NP, this property follows naturally in most occasions.

Additional properties. Some prover strategies satisfy the additional property that, while they are
able to convince the prescribed verifier that some statement is true, they do not "leak" to any verifier
any information beyond the fact that the statement is true; this property is called zero knowledge, and
we discuss it in Section 3.3.1. Some verifier strategies satisfy the additional property that whenever they
are convinced by a prover that some statement is true, they also have the confidence that not only there

2 Indeed, as Goldwasser and Sipser [73] observed, the class IP does not change if the completeness condition is modified
to require that the the acceptance probability of the verifier is bounded below by some function c: N -* [0,1] and the
soundness condition is modified to require that the acceptance probability is bounded above by some function r: N -* [0, 1],
as long as the function c - s is bounded below by the inverse of some positive polynomial.
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exists a valid proof for the statement, but the particular prover that convinced them knows a valid proof;

this property is called proof of knowledge, and we discuss it in Section 3.3.2.

Efficiency measures. When studying interactive proof systems (and interactive argument systems),
parameters of special interest often include:

1. Round complexity: The number of rounds of an interactive protocol is the total number of messages

sent between the two parties during the interaction. Of course, since the verifier is required to run

in probabilistic polynomial-time, the round complexity is always polynomial in the common input

to the prover and verifier. Nonetheless, one can still ask the question what happens if the number

of rounds is required to be very low, e.g., constant - the class of languages having constant-round

interactive proofs is denoted AM. In Section 3.3.3, we discuss the known results about this efficiency

measure.

2. Communication complexity: Interactive proofs may be performed across a channel with costly

communication, so it becomes important to find interactive proofs where the number of bits sent

between the prover and the verifier is very low. In Section 3.3.4, we discuss the known results about

this efficiency measure.

3. Verifier complexity: In certain settings, the computational power of a verifier taking part in an

interactive proof may be severely bounded, so it becomes important to find interactive proofs where

the effort required of a verifier to take part in an interactive proof is minimal. In Section 3.3.5, we

discuss the known results about weak verifiers.

3.3.1 Zero knowledge

Goldwasser, Micali, and Rackoff [74] introduced the notion of zero knowledge. Informally, given a proof

system (P, V) for a language L, zero-knowledge is a property of the honest prover P that guarantees

that any feasible (possibly cheating) verifier strategy, by interacting with P, learns nothing about the

common input x beyond the fact that x E L. This intuition is captured by a simulation-based definition

where it is required that the view of a (possibly cheating) verifier can be re-constructed by an efficient

algorithm, called the simulator, that is given as inputs only the string x, the verifier's strategy, and the

verifier's private inputs.3

Definition 3.3.2 (Zero Knowledge). A prover strategy P is (auxiliary-input) zero knowledge for a

language L if for every probabilistic polynomial-time (possibly cheating) verifier strategy V and every
positive polynomial p there exists a probabilistic polynomial-time simulator algorithm S such that the
following two probability ensembles are computationally indistinguishable:

1. {(P,V(z))(x)}x1L,zE{0,1}jP1Y( , i.e., the output of V, given auxiliary input z, after interacting with

P on common input x in L; and

2. {S(x, z)}xELZE{0,1P xoYI-, i.e., the output of the simulator S on input x E L and the verifier's
auxiliary input z.

We will say that an interactive proof system (resp., interactive argument system) for a language L is

auxiliary-input zero knowledge if the honest prover strategy is auxiliary-input zero knowledge for the
language L.

There is a vast literature on zero-knowledge, whose main results we do not discuss in this thesis as our

constructions do not make use of it. An excellent introductory tutorial to the research directions and

open questions in zero-knowledge is by Goldreich [63].

3The definition that we present here is not the original one of Goldwasser, Micali, and Rackoff [74]; the alternative (and
stronger) "auxiliary-input" definition proposed by Goldreich and Oren [66] is required in most practical applications. For
example, zero knowledge of the latter kind is sequentially composable, while zero knowledge of the former kind is not.
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3.3.2 Proof of knowledge

The proof-of-knowledge property is a property possessed by some verifiers that, roughly, says that when-
ever the verifier is convinced then the prover responsible for convincing the verifier "knows" something
- that something is usually taken to be a witness for membership of some common input in some NP
language.

Goldwasser, Micali, and Rackoff [74] first informally suggested an outline for a definition that could
capture the above intuition: a prover "knows" something (e.g., the witness to an NP statement) if
there is some polynomial-time Turing machine, called the knowledge extractor, with complete control
over the prover, that prints that something as a result of interacting with it. In other words, a prover
knows something if it can be easily modified so that it outputs the satisfying assignment; and by "easily
modified" it is meant any efficient algorithm that uses the prover as an oracle.

Feige, Fiat, and Shamir [50] proposed a formalization of proofs of knowledge by defining interactive proof
systems of knowledge, for which they proved the following results:

Theorem 3.3.1 ([50, Theorem 1]). If secure public-key encryption schemes exist, every language in NP
has a zero-knowledge interactive proof system of knowledge.

Theorem 3.3.2 ([50, Theorem 2]). If secure public-key encryption schemes exist, every language in
N P n coN P has an unrestricted-input zero-knowledge interactive proof system of knowledge. (Unrestricted
input refers to the simulator works on all inputs, and not just inputs in the language.)

In addition, Feige, Fiat, and Shamir [50] noted that possession of knowledge may be non-trivial even for
trivial languages. (For example, deciding the language for the relation "(x, y) G {0, 1}* such that y is the
prime factorization of x" is easy, because one only has to check that x is an integer. However, proving
knowledge of the prime factorization of x is non-trivial, as finding said factorization is believed hard.)
They then show how to use the above results to construct efficient identification schemes.

Tompa and Woll [132], using a definition of interactive proof systems of knowledge similar to that of
Feige, Fiat, and Shamir [50], proved that:

Theorem 3.3.3 ([132, Theorem 4]). Random self-reducible languages have zero-knowledge interactive
proof system of knowledge.

Both definitions by Feige et al. [50] and Tompa and Woll [132] follow the intuitive definition of Goldwasser
et al. [74].

The definition that we state here (and which is nowadays regarded as the "correct" one) is that of Bellare
and Goldreich [17], who first noted that the definitions adopted by Feige et al. [50] and Tompa and Woll
[132] are inadequate, both for some of the applications in which they ended up being used (e.g., see
Haber and Pinkas [80] and Haber [79]) and also at the intuitive level. For example, Bellare and Goldreich
[17] observe that the lack of any requirements of provers that convince the verifier with non-negligible
probability is problematic; moreover, at the conceptual level, Feige et al. [50] and Tompa and Woll [132]
carelessly combined the (independent) notions of soundness and knowledge, and consider only the case
of efficient prover strategies.

Thus, the definition of Bellare and Goldreich [17] refers to all provers, independently of their complexity or
their probability of convincing the verifier; moreover it makes no distinction between provers that convince
the verifier with non-negligible probability or not, but, rather, the knowledge extractor is required to have
a running time that is polynomially inversely related to the the probability that the prover convinces the
verifier.

Definition 3.3.3 (Proof of Knowledge). Let R C {0, 1}* x {0, 1}* be a binary relation and K: {0, 1}* -

[0, 1] a function. We say that (P, V) is an interactive proof system of knowledge for the relation R with
knowledge error K if the following two conditions hold:

1. Completeness: For every x G L(R), the verifier V always accepts after interacting with the prover
P on common input x.
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2. Knowledge with error K: There exists a probabilistic oracle machine E, the knowledge extractor,
and a positive constant c such that for every (possibly cheating) interactive prover strategy P and

every x e L(R): if

p(x) = Pr 9,V) (x) = 1] > nrx) ,

then, on input x and with oracle access to P, the knowledge extractor E outputs a witness for
x c L(R) within an expected number of steps that is bounded by |x~c . (p(x) - -.(x)) .'

Bellare and Goldreich [17] showed how to reduce the knowledge error with sequential repetition (and by
parallel repetition in a special case); also, if the knowledge error is sufficiently small, it can be eliminated.

In this thesis, we depart from the above definition: we loosely follow Barak and Goldreich [15] in that

we consider various forms of proof of knowledge that always imply (computational) soundness. In other

words, we will not be concerned with uniformly treating the knowledge of all provers, but will only

be concerned with characterizing the knowledge of sufficiently convincing ones. (See Section 4.2.3 and

Section 5.2.3 for our two definitions that consider proof of knowledge properties.)

3.3.3 Round efficiency

Adopting a similar notation as was done for IP, we let AM [r] denote the class of languages with r-round
public-coin interactive proofs, and let AM denote the class of languages with constant-round public-coin
interactive proofs.

Goldwasser and Sipser [73] proved that every interactive proof can always be transformed into a public-
coin interactive proof at the cost of adding two extra messages:

Theorem 3.3.4 ([73]). For every positive polynomial r, IP[r] C AM[r + 2].

In other words, allowing the verifier to toss private coins does not give additional power to interactive
proofs. Babai [10] proved a "collapse" theorem for constant-round interactive proofs:

Theorem 3.3.5 ([10]). For every constant c, AM[c] C AM[2]. (I e., AM = AM[2].)

The above result was later strengthened by Babai and Moran [11] into a "speed-up" theorem:

Theorem 3.3.6. For every positive polynomial r, AM[2r] C AM[r + 1].

Thus, the round complexity of interactive proofs can always be reduced by a constant factor, so that

constant-round interactive proofs can always be transformed into two-message interactive proofs.

However, interactive proofs with any polynomial number of rounds are believed to be much more powerful

than constant-round interactive proofs. Indeed, all of PSPACE has an interactive proof [129], but constant-

round interactive proofs are contained in the second level of the polynomial-time hierarchy. In fact,
Boppana, Histad, and Zachos [25] show that coNP does not have constant-round interactive proofs

unless the polynomial-hierarchy collapses:

Theorem 3.3.7 ([25]). If coNP c AM, then PH = IIS.

Moreover, languages with constant-round interactive proofs are contained in NP under plausible circuit

complexity assumptions. (See Arvind and Kbbler [8], Klivans and van Melkebeek [96] [97], and Miltersen
and Vinodchandran [108][109].)

In summary, constant-round interactive proofs are known (and probably exist only) for NP.

4 Equivalently [17], there exists a probabilistic expected polynomial-time oracle machine E such that for every (possibly

cheating) interactive prover strategy P and every x E L(R) it holds that Pr [EP(x) E R(x)] > Pr [(P, V)(x) = 1] - n(x).
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3.3.4 Communication efficiency

The communication complexity of an interactive proof system is a natural efficiency measure. One can
therefore ask the question: how low can the communication complexity of proof systems and argument
systems be?

Specifically, suppose that a language L is in NTIME(t(n)) for some function t: N -+ N. Then, if t
is bounded by a polynomial (i.e., L E NP), there is a natural interactive proof system for L with
communication complexity t(n): the prover sends to the verifier the t(Ix|)-bit witness for the common
input x E L. How much better than t(n) can the communication complexity of an interactive proof
system or argument system for L be?

Negative results for interactive proofs

Unfortunately, several conditional results indicate that it is unlikely that one can do much better. Gol-
dreich and Haistad [64] proved the following:

Theorem 3.3.8 ([64, Theorem 2]). If a language L has an interactive proof with communication com-
plexity c(n), then L is in BPTIME(2 0 (c(n)) - poly(n)).

In particular, if we let c(n) = polylog(n), then we obtain that NP C QP, where QP is Quasi-Polynomial
Time; however, QP is widely believed not to contain NP. In fact, Goldreich and Histad [64] also show
that, if we only require a bound on the prover-to-verifier communication complexity (thus considering
what are called laconic provers), a similar result holds for public-coin interactive proofs:

Theorem 3.3.9 ([64, Theorem 3]). If a language L has a public-coin interactive proof with prover-to-
verifier communication complexity c(n), then L is in BPTIME(20(c(n)-logc(n)) . poly(n)).

Goldreich and Hastad [64] also obtain another result that characterizes languages "just outside of NP",
such as Quadratic Non-Residuosity and Graph Non-Isomorphism:

Theorem 3.3.10 ([64, Theorem 4]). If a language L has an interactive proof with prover-to-verifier
communication complexity c(n), then L is in BPTIME(2o(c(n)-logc(n)) . poly(n))NP

In a subsequent paper, Goldreich, Vadhan, and Wigderson [70] provide the first evidence that NP-
complete languages cannot have low communication complexity interactive proofs, by showing that if NP
has constant-round interactive proofs with logarithmic prover-to-verifier communication complexity, then
coNP c AM, which is believed to be unlikely. Recently, Pavan, Selman, Sengupta, and Vinodchandran
[121] proved that if coNP has interactive proofs with a polylogarithmic number of rounds, then the
exponential-time hierarchy collapses to the second level.

Positive results for interactive arguments

On the other hand, if one relaxes the soundness condition to only hold computationally, the situation
dramatically changes: unlike for interactive proof systems, interactive argument systems with very low
communication complexity for languages in NP have been constructed, and all such constructions are
based on the PCP theorem (see Section 3.2).

How does one use the PCP theorem to construct efficient arguments? In a PCP system (with an efficient
prover strategy) the PCP prover, on input a witness to the NP statement under consideration, outputs a
polynomially long string, called the PCP oracle; the PCP verifier is then given oracle access to the PCP
oracle, which he will query at a few places (usually, polylogarithmically many for negligible soundness).
Here is a naive scheme to use the PCP system: the verifier runs the PCP verifier and then sends the
queries it produces to the prover; the prover runs the PCP prover on input those queries and replies
with the answers. However, note that such a scheme will not work: the soundness of the PCP system is
guaranteed only if the PCP oracle is fixed in advance (independent of the coin tosses of the PCP verifier);
in the scheme we just described, a malicious prover may easily cheat by choosing the replies depending
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on the queries he receives. (Also, the PCP oracle is longer than the NP witness, so if the prover simply

sends to the verifier the whole PCP oracle, then the communication complexity will not be low!)

A construction that works was first invented by Kilian [93] and, since its main idea is essentially preserved

in all later works, we will call it a Kilian-type construction; it works as follows: 5

Kilian-type construction: The prover first commits to a PCP oracle by sending a com-

mitment to the verifier. Then, the verifier runs the PCP verifier and sends to the prover
the queries for the PCP oracle. The prover sends to the verifier the de-commitments for the

requested bits of the PCP oracle. Finally, the verifier checks that the PCP verifier accepts on

input these bits.

In order for the communication complexity to be low, the construction cannot use an arbitrary commit-

ment scheme;6 rather, the commitment scheme must satisfy two properties: it should be concise, so that

the commitment to the PCP oracle is much smaller than the PCP oracle itself; and it should allow for

local de-commitment, so that the prover does not have to send the whole PCP oracle as a de-commitment,
when the verifier is only interested in the de-commitments of a few of its bits. Assuming that collision-

resistant hashing schemes exist, it is easy to construct such a commitment scheme: use the tree hashing

technique of Merkle [105]. (See Section 2.3.4.)

Thus, Kilian [93] shows the following:

Theorem 3.3.11 ([93]). If strong (i.e., sub-exponentially secure) collision-resistant hash functions exist,
then NP has a public-coin (zero-knowledge) argument system where the verifier tosses polylogarithmically
many coins and the communication complexity (in both directions) is polylogarithmic.

The above result, when combined with the results of Goldreich and Hfistad [64] and Goldreich, Vadhan,
and Wigderson [70], implies that, under a quite plausible cryptographic assumption, there is a strong sep-

aration between the communication-efficiency of interactive arguments for NP and interactive proofs for

NP; the separation still holds even if the requirement of public coin and verifier-to-prover communication

are dropped, and only the prover-to-verifier communication is counted.

Computationally-sound proofs. Micali [106] [107] generalizes the ideas of Kilian [93] and defines the

notion of a computationally-sound proof (CS proof). Loosely speaking, a CS proof attempts to capture

the notion of a certificate for a computation's correctness, as well as the efficiency requirement that

convincing someone else that a computation is correct should be much easier than convincing yourself in

the first place (as evidenced by the results of Kilian [93]).

In order to be able to "talk" about all computations, he defines a language that can handle all compu-

tations in a uniform manner.

Definition 3.3.4 (CS Language). The CS language, denoted £cs, is the set of all quadruples q =

(M, x, y, t) such that M is (the description of) a Thring machine, x and y are binary strings, and t is a
binary integer such that lx, jyj <; t, M(x) = y, and timeM(x) = t.

Thus, a CS proof is an interactive proof system for the CS language.

Definition 3.3.5 (Interactive CS Proof). Let Lcs be the CS language. A pair of machines (Pcs, Vcs) is
said to be an interactive CS proof system if the following conditions hold:

1. Efficient verification: There exists a polynomial p such that for any k G N and q = (M, x, y, t),
the total time spent by the (probabilistic) verifier strategy VcS, on common input (1k, q), is at most

p(k+ q) = p(k Ml + x + y +log t). In particular, all messages exchanged during the interaction
have length that is at most p(k + IqI).

5We disregard here the zero-knowledge aspect, which was one of the goals of Kilian [93].
6Note that we are using the terminology "commitment" somewhat loosely, because we do not require that the commitment

be hiding (but, of course, it should be computationally binding).
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2. Completeness via a relatively-efficient prover: For every k E N and q = (M, x, y, t) E Ecs,

Pr [(Pcs, VCS) (1k, q) = 1 = 1 .

Furthermore, there exists a positive constant c such that for every q = (M, x, y, t) E Lcs the total
time spent by P, on common input (1k,q), is at most (|qjkt)c.

3. Computational soundness: There exist positive constants b, c, d such that for every q V Lcs, every
k with 2 k > qjb, and every prover circuit P of size at most 2ck,

Pr ,CS) (1k, q) = 1] < 21

Using a Kilian-type construction, Micali [106][107] showed the following:

Theorem 3.3.12 ([106] [107]). If strong (i.e., sub-exponentially secure) collision-resistant hashing schemes
exist, then there exist (four-message, public coin) interactive CS proof systems. Moreover, under a plau-
sible number-theoretic assumption (the <b-Hiding Assumption introduced by Cachin, Micali, and Stadler
[28]), there exist two-message interactive CS proof systems.

The above theorem, when combined with the Fiat-Shamir heuristic [52], one obtains the following:

Theorem 3.3.13. In the random-oracle model, there exist non-interactive CS proof systems.

It is an open problem how to construct non-interactive CS proof systems in the plain model, or even in
the common random string model.

Universal arguments. Barak and Goldreich [15] relax the computational soundness condition of the
(interactive) CS proofs of Micali [106][107], and show how to construct universal arguments under the
assumption that standard collision-resistant hashing schemes exist (improving over the results of Kilian
[93] and Micali [106] [107], where strong collision-resistant hashing schemes were needed instead).

Specifically, Barak and Goldreich [15] consider a language analogous to the CS language Lcs, defined as
follows:

Definition 3.3.6 (Universal Set). The universal set, denoted Su, is the set of all triples y = (M, x, t)
such that M is (the description of) a non-deterministic Turing machine, x is a binary string, and t is
a binary integer such that M accepts x within t steps. We denote by Ru the witness relation of the
universal set Su, and by Ru(y) the set of valid witnesses for a given triple y.

The name "universal" comes from the fact that every language L in NP is linear-time reducible to Su by
mapping every instance x to the triple (ML, x, 21xl), where ML a non-deterministic Turing machine that
decides L, so Su can uniformly handle all NP statements. Moreover, Su is in NE; also, any language in
NE is linear-time reducible to Su by mapping an instance x E L, with L in NTIME(2cn), to the instance
(ML, x, 1, 2clx1); thus, so that Su is NE-complete. In fact, every language in NEXP is polynomial-time
reducible to Su.

A universal argument is then an efficient interactive argument system (with a weak proof of knowledge)
for the universal set.

Definition 3.3.7 (Universal Arguments). A universal argument system is a pair of machines (PUA, VUA)
that satisfies the following conditions:

1. Efficient verification: There exists a polynomial p such that for any y = (M, x, t), the total time spent
by the (probabilistic) verifier strategy VUA, on common inputy, is at most p(|y|) = p(|M|+|x|+logt).
In particular, all messages exchanged during the interaction have length that is at most p(|y|).

2. Completeness via a relatively-efficient prover: For every ((M, x, t), w) E Ru,

Pr [(PUA (w), VUA)(M, x, t) = 11 = 1 .
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Furthermore, there exists a polynomial p such that for every ((M, x, t), w) E Ru the total time spent
by PUA(W), on common input (M,x,t), is at most

p(|MI +x + timeM(x, w)) < p(|Mi xI + t)

3. Computational soundness: For every family of polynomial-size prover circuits {Pk}kEN and every
positive constant c, for all sufficiently large k E N, for every (M, x, t) c {o, 1}k - Su,

Pr [ ig, VUA) W, X, -[ 1

4. Weak proof of knowledge: 7 For every positive polynomial p, there exists a positive polynomial p'
and a probabilistic polynomial-time knowledge extractor EUA such that the following holds: for every
family of polynomial-size prover circuits {Pk}kEN, for all sufficiently large k G N, for every instance

y = (M, x, t) E {0, 1}k, if Pk convinces VUA with non-negligible probability,

Pr [ Pk, VUA) (Y) > p

(where probability is taken over the internal randomness of VUA), then EUA, with oracle access to Pk
and on input y, is an implicit representation of a valid witness for y with non-negligible probability,

1 1
Pr [3w = wi -.. wt E Ru(y) : Vi c [t], EUw = > p'(k)

(where the probability is taken over the internal randomness of EUA).

Note that, in the definition of the weak proof-of-knowledge property, the knowledge extractor EUA is

required to run in probabilistic polynomial-time, while, on the other hand, the size of the witness for a

particular instance y = (M, x, t) may be exponential; therefore, we can only require that the knowledge

extractor is an "implicit representation" of a valid witness. Moreover, both EUA and p' may depend on p,
so that the proof of knowledge is "weak" in the sense that it does not imply the standard (or, "strong")

proof of knowledge, as defined in Section 3.3.2.

Barak and Goldreich [15] use a Kilian-type construction to prove the following:

Theorem 3.3.14 ([15]). If (standard) collision-resistant hashing schemes exist, then there exist (four-

message, public coin) universal arguments.

Incrementally-verifiable computation. Valiant [134] introduces the notion of incrementally-verifiable
computation (IVC), in the common random string model. Roughly, IVC is a compiler Civc, together with
a verifier VIvc, that works as follows. Given a security parameter k E N, for any (possibly superpolynomial-
time) Turing machine M with MI < k, C(1k, M) outputs another Turing machine M' that carries out

the same computation as M does, and, moreover, it is incrementally verifiable, i.e., every poly(k) steps
outputs a proof string attesting to the correctness of its computation so far - the verifier Vjvc can verify
these proof strings.

In order to argue the existence of IVC in the common random string model, Valiant [134] first considers
the random oracle model. In the random oracle model, he exhibits an online knowledge extractor for
non-interactive CS proofs; then, he uses the resulting proof of knowledge property of non-interactive CS
proofs to show that non-interactive CS proofs can be "composed" (roughly, a non-interactive CS proof

can be used as a witness to an NP statement that will be itself made into a CS proof); such composition
easily yields a construction for IVC in the random oracle model.

Unfortunately, the construction for IVC in the random oracle model does not quite carry through, because
the PCP theorem does not relativize [54], not even with respect to a random oracle [33]. Therefore, one

7 The weak proof-of-knowledge property implies computational soundness.
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cannot prove statements that are decided by a procedure that accesses an oracle; in particular, including a
non-interactive CS proof as part of a witness to an NP statement (whose truth depends on the verification
of the CS proof) and then make a CS proof out of that is an ill-defined operation.

Thus, Valiant [134] is forced to assume the existence of IVC in the common random string model, and
argue that the flawed construction of the random oracle model can be taken as evidence for its existence
in the common random string model. Nonetheless, the plausibility of such evidence is limited by the fact
that the construction of the knowledge extractor for non-interactive CS proofs seems to depend quite
essentially on the random oracle, and it is unclear that a knowledge extractor would exist in the common
random string model as well.

PCP theorem and efficient arguments. Thus, the PCP theorem has allowed the construction of
the asymptotically most efficient way of proving NP statements. The resulting efficient argument systems
have immediate applications to delegation of computation, but have also found unexpected applications,
as found by Canetti, Goldreich, and Halevi [30][31] and Barak [13].

On the necessity of PCPs in efficient arguments

Observing that all known constructions of efficient arguments make use of a polynomial-size PCP, Ishai,
Kushilevitz, and Ostrovsky [86] raised the question of whether the use of such PCPs is inherent to efficient
arguments. Constructions of polynomial-size PCPs are often complex, and it seems unlikely that they
could be used in practice.

Ishai, Kushilevitz, and Ostrovsky [86] show that, if one is interested only in the efficiency of the prover-
to-verifier communication, then, assuming the stronger assumption of the existence of homomorphic
encryption, the full machinery of polynomial-size PCPs is not needed. Using the idea of commitment
with linear de-commitment, they show:

Theorem 3.3.15 ([86]). There is a compiler that, on input a linear PCP and an additively homomorphic
encryption scheme, constructs an argument system where the prover-to-verifier communication consists
of only a constant-number of encrypted field elements.

For example, the exponential-size linear PCP based on Hadamard codes of Arora, Lund, Motwani, Sudan,
and Szegedy [7] and a homomorphic encryption such as the one of Goldwasser and Micali [72] could be
plugged into the compiler. We stress that the verifier-to-prover communication complexity is polynomial,
and that additively homomorphic encryption is a stronger assumption than collision-resistant hashing
schemes. Moreover, the protocol is not public-coin (as the interaction includes a commit phase and a
de-commit phase).

Nonetheless, Rothblum and Vadhan [127] provide evidence that suggests that PCPs are inherent to
efficient arguments. Roughly, they show that any argument system whose soundness follows from a
black-box reduction to the security of a cryptographic primitive yields a PCP with parameters that are
related to the efficiency of the argument system. In particular, they show that argument systems base
on collision-resistant hashing schemes, the RSA assumption, and homomorphic encryption (all of which
have been used to construct efficient argument systems) yield related PCP systems.

3.3.5 Verifier efficiency

While the verifier in an interactive proof is always efficient (i.e., must run in probabilistic polynomial time),
there remains the question of studying the power of certain classes of verifiers with severe complexity
restrictions.

Goldwasser, Kalai, and Rothblum [77] study public-coin interactive proofs with space-bounded verifiers.
They prove the existence of public-coin interactive proofs for the setting in which the verifier is very
weak, i.e., the verifier is allowed only a logarithmic amount of space. Their main result is the following.

Theorem 3.3.16 ([77]). Let s and d be functions from positive integers to reals. If a language L is
decided by a O(log s)-space uniform circuit of size s and depth d, then it has a public-coin interactive
proof with completeness equal to 1 and soundness equal to 1/2, with the following additional properties:
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the prover runs in time poly(s);
- the verifier runs in time (n + d) -polylog(s) and space O(log s); and

- the communication complexity is d - polylog(s).

Note that the result puts no requirements on the complexity of cheating provers, as opposed to com-

putationally sounds proofs (and related work discussed in Section 3.3.4) where soundness holds only

computationally. On the other hand, the result is particularly interesting only for shallow circuits (i.e.,
when d is much smaller than s, for example d = O(log s)) because the verifier complexity is much smaller

than the size of the circuit; computationally sound proofs instead yield very efficient verifiers for all of

NP (and, in fact, for all languages in the CS language £cs).

3.4 Secure multi-party computation

Secure multi-party computation [69] [20][34] considers the problem of secure function evaluation: given a

function f with n inputs, how can n parties in the real world realize the ideal setting in which they each

send to a trusted party their respective inputs and the trusted party returns the correct evaluation of f
on these inputs?

Realizing this ideal setting is usually stated as ensuring a property of correctness (each party learns the

correct evaluation of f) and one of secrecy (each party learns nothing about other parties' inputs, other

than what can be learned from f's output), and these properties should be achieved even under some

kind of adversarial behavior (e.g., there is an honest majority).

A survey of the results in this area is beyond the scope of this thesis; an overview of the main theoretical

results is offered by Goldwasser [71]; for more details, see the recent set of notes from Cramer, Damgird,
and Nielsen [42].

Proof-carrying data vs. secure multi-party computation. Recall that proof-carrying data con-

siders the problem of secure distributed computations: given a compliance predicate C, how can parties

in the real world compute and exchange messages in a way that realizes the ideal setting in which the

only allowed messages are ones that are consistent with C-compliant computations?

Unlike secure multi-party computation, proof-carrying data is only concerned with correctness, i.e., mes-

sages sent between parties are forced to be consistent with C-compliant computations; indeed, secrecy as

understood in secure multi-party computation does not hold - later parties are expected to choose their

inputs based on messages received from previous parties. 8 Our setting is not one function evaluation,
but ensuring a single invariant (i.e., C-compliance) through many interactions -and computations between

parties.

With regard to techniques, our approach follows that of [69] in that parties prove to each other, by

cryptographic means, that they have been behaving correctly.

Finally, we remark that secure multi-party computation protocols are unscalable in the sense of not

preserving the communication graph of the original computation: even the simple "F and G" example of

Section 1.3 would require everyone on the Internet to talk to each other. By contrast, in our approach,
parties perform only local computation to produce proof strings "on the fly", and attach them to outgoing

data packets.

8We note that zero-knowledge PCD systems are naturally defined (and necessary for some of our suggested applications).

The secrecy guarantees that they would provide is to ensure that the proof string attached to the output of a party leaks no

information about the local inputs of that party. We stress that this notion of secrecy is different than the notion of secrecy

considered in secure multi-party computation. We do not see fundamental barriers to the existence of zero-knowledge PCD
systems, and their efficient construction is a subject of present investigation.
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Chapter 4

An Argument System for Hearsay

We introduce a new argument system for NP, which can prove statements based on "hearsay evidence",
i.e., statements expressed by a decision procedure that itself relies on proofs generated by earlier, recursive

invocations of the proof system (as in the "F and G" example of Section 1.3).

At a high level, our goal is a proof system with the following features:

- Non-interactive, so that (i) its proof strings can be forwarded and included as part of the "hearsay

evidence" for subsequent proofs, and so that (ii) its proof strings can be used to augment unidirec-

tional communication in proof-carrying data.

- Efficient, so that proof strings (and their verification) are much shorter than the time to decide

statements they attest to.

- Aggregatable, which means that it can generate an argument for a statement decided by a procedure

that verifies "hearsay evidence" that is the aggregation of at most polynomially many arguments.

We call an argument system that satisfies the above set of properties a hearsay-argument system. In

our construction the prover is assisted by an oracle, so we define and obtain an assisted-prover hearsay-

argument system (APHA system).

The following sections are organized as follows:

Section 4.1 Discussion of a fundamental difficulty in achieving the above properties, and of how

we resolve it by introducing an assisted prover.

Section 4.2 Definition of APHA systems and discussion of their properties.

Section 4.3 Generic construction of APHA systems, based on collision-resistant hashing schemes.

Section 4.4 Proof sketch of the construction's correctness (for full proof see Appendix A).

Section 4.5 Discussion of the realizability of an assisted prover.

4.1 Difficulties and our solution

In constructing an argument system that satisfies the properties discussed above, two opposing require-

ments arise:

- We must not use oracles. While we know how to construct efficient argument systems using

different approaches (using a short PCP and a Merkle tree [93] [107] [15], or using a long PCP and

homomorphic encryption [86]), all known efficient argument system constructions are based on the
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PCP theorem, and there is some evidence that this is inherent [127]. Since the PCP theorem
does not relativize [54] (not even with respect to a random oracle [33]), these systems cannot
prove statements that are decided by a procedure that accesses an oracle. Thus, to allow recursive
aggregation of proofs, it seems the system cannot rely on oracles.

- We must use oracles. Efficient non-interactive argument systems for NP are only known to exist
in the random oracle model, where the verifier needs access to the random oracle. Moreover and
more fundamentally, in order to prove statements involving "hearsay evidence", we need a proof-
of-knowledge property - as discussed in Section 1.3, mere soundness does not suffice. To support
repeated aggregation of such proofs, the proof-of-knowledge must be of a very strong form: a very
efficient online [120][53] knowledge extractor with a tight success probability. The only known
approach to such knowledge extraction is to force the prover to expose the witness in queries to an
oracle.

Prior attempts to aggregate proofs. The tension between the above two requirements arises already
in Valiant's work [134] (see preliminary discussion on Valiant's incrementally-verifiable computation in
Section 1.3). On one hand, he uses CS proofs as non-interactive arguments. Hence, his construction is
ill-defined: it requires generating (PCP-based) CS proofs for statements decided by a procedure that uses
oracle access, which, as discussed above, is impossible in general. Therefore, one can at best conjecture
(as done in [134]) that the construction, once the random oracle has been instantiated by an appropriate
function ensemble, is secure.

Moreover, in order to prove the existence of an efficient knowledge extractor with a tight success proba-
bility, Valiant exhibits a procedure that examines a prover's calls to the random oracle. However, once
the random oracle has been instantiated by an efficient hash function, the procedure fails since there are
no oracle calls to examine.

This difficulty seems inherent: Valiant's construction uses an online knowledge extractor that observes
an execution of a prover only through its inputs, outputs, and oracle calls (of which there are none after
instantiation), and the online knowledge extractor must be able to extract a witness of size 3n given a
proof string of size only n. The existence of such a procedure would imply that for any NP language, the
witnesses can be compressed by a factor of 3, which seems unlikely.

Lastly, note that the proof-of-knowledge property we require is even stronger than [134] aimed for, in
terms of the knowledge extractor's tightness. This is because incrementally verifiable computation allows
proofs to be aggregated in a logarithmically-deep tree, so a multiplicative blowup can be tolerated at
every extraction step. Conversely, PCD systems must handle polynomially-long chains of proofs, and can
thus tolerate an additive blowup per extraction step; hence the knowledge extractor can do little more
than merely run the prover.

Our solution. We manage to simultaneously satisfy the above requirements, by requiring the prover
to access an oracle but not requiring the verifier to do so. A high-level description of our construction
follows.

We start with the interactive protocol for public-coin, constant-round universal arguments. By granting
the prover access to a signed-input-and-randomness oracle (informally defined in Section 1.5 and to be
formally defined in Section 4.3), we turn this into a non-interactive protocol: the prover obtains the
public-coin challenges from the oracle instead of the verifier (in a way that also enforces the proper
temporal dependence).

The oracle signs its answers using a public-key signature scheme, so that the oracle's random answers
are verifiable without access to the oracle. This asymmetry breaks the tension of the two requirements
above, i.e., it breaks the "PCP vs. oracles" tension.

Additionally, we require the prover to obtain a signature for the witness that he uses to generate an
argument, thus forcing the prover to query the oracle with the witness. This yields a very strong form of
proof-of-knowledge property.

We exploit two (related) properties of the oracle: explicitness and temporal dependence. Seeing the
oracle's signature on (x, r) implies that r was drawn at random after x was explicitly written down. In
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the construction, x will be (for example) a purported prover message in an interactive argument, and

r will be the verifier's (public-coin) response. Such forcing of temporal ordering is reminiscent of the

Fiat-Shamir heuristic [52]. Extraction of witnesses from oracle queries was used by Pass [120], Fischlin

[53] and Valiant [134]. Our approach of using signatures to force oracle queries is similar in spirit to that

of Chandran et al. [32].

The introduction of an oracle accessible by the prover is, of course, an extra requirement of our model.

Yet given the discussion above, it seems inevitable. In Section 4.5, we argue that the specific oracle that

we choose, a signed-input-and-randomness oracle, is reasonable in practice.

4.2 Definition of APHA systems

We proceed to define assisted-prover hearsay-argument (APHA) systems, starting with their structure

and an informal description of their properties, and then following with a formal definition. Throughout,
we will uniformly handle all NP instances by considering theorems about membership into the universal

set Su, introduced in Section 3.3.4 under the paragraph entitled "Universal arguments".

4.2.1 Structure of APHA systems

An APHA system is a triple of machines (GAPHA, PAPHA, VAPHA) that works as follows:

- The oracle generator GAPHA: for a security parameter k E N, GAPHA(1k) outputs the description of

a probabilistici stateless oracle 0 to assist the prover, together with O's verification key vk;

- The prover PAPHA: for a verification key vk, an instance y = (M, x, t), and a string w such that

(y, w) is in the witness relation Ru of the universal set Su (i.e., the machine M, on input x and w,
accepts within t steps), PAPHA(vk, y, w) outputs a proof string 7 for the claim that y E Su; and

- The verifier VAPHA: for a verification key vk, an instance y, and a proof string 7r, VAPHA(Vk, y, 7r)

accepts if 7r convinces him that y E Su.

4.2.2 Properties of APHA systems (intuitive)

The triple (GAPHA, PAPHA, VAPHA) must satisfy three properties - the first two are essentially the verifying

and proving complexity requirements of computationally-sound proofs and universal arguments, and the
third one is a form of proof-of-knowledge property (that is strictly stronger than the regular one [60, Sec.
4.7]).

First, proof strings generated by the prover should be efficiently verifiable by the verifier: VAPHA halts in
time that is polynomial in the security parameter k and the length of the instance y; in particular, the
length of a proof string 7r is also so bounded.

Second, the prover should be able to prove true theorems using a reasonable amount of resources: when-

ever it is indeed the case that (y, w) E Ru, PPHA(Vk, y, w) always convinces VAPHA; moreover, PAPHA

halts in time that is polynomial in the security parameter k, the size of the description of M, the length
of x, and timeM(x,w). (Note that timeM(x, w) is the actual time it takes for M to halt on input x and
w, and not the upper bound t.)

Third, there exists a fixed list extractor circuit LE of size poly(k) such that, for any (possibly cheating)

prover circuit P of size poly(k) that outputs an instance y and proof 7r that convince VAPHA, LE produces a

valid witness for y in the following sense. By examining only the oracle query-answer transcript [P(vk), 0]

of P, LE produces a list of triples {(yi, 7ri, wj)} with the property that there exists some triple (yj, 7rj, wj)

for which yj = y, iry = 7r, and for every such triple wg is a valid witness for y. This implication holds

1 While our constructions are given for a probabilistic oracle, in Section 4.5 we discuss how to "derandomize" the oracle

and make it deterministic.
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with all but negligible probability (over the output of GAPHA). Note that LE is not explicitly told which
y or 7r to look for.

4.2.3 Properties of APHA systems (formal)

Capturing the above definition more formally, we define APHA systems as follows:

Definition 4.2.1 (APHA System). An assisted-prover hearsay-argument system with security parameter
k is a triple of polynomial-time machines (GAPHA, PAPHA, VAPHA), where GAPHA is a probabilistic, PAPHA
is deterministic with oracle access, and VAPHA is a deterministic, that satisfies the following conditions:

- Efficient verification: There exists a polynomial p such that for any k E N, (0, vk) E GAPHA(1k),
instance y = (M, x, t), and proof string 7r,

timeVAPHA (vk, y, 7r) p(k + y )

In particular, |x| < p(k + jyj), i.e., the proof string length is poly(k + (M) I+ xI) + polylog(t).

- Completeness via a relatively-efficient prover: For every k E N and (y, w) E Ru,

Pr [VAPHA (vk, y, 7) 1 (0, vk) +- GAPHA (k) ; r +_ PAPHA (vk, y, w) = 1

(where the probability is taken over the internal randomness of GAPHA and 0). Furthermore, there
exists a polynomial p such that for every k E N, (0, vk) E GAPHA(1k), and ((M, x, t), w) E Ru,

timep (vk,(M,x,t),w) p(kI (M)I+Ix| timeM(x,w))

Note that timeM(x,w) < t.

- List extraction: There exists a list extractor circuit LE such that for every (possibly cheating) prover
circuit P of size poly(k), for all sufficiently large k, if P convinces VAPHA then LE extracts a list
containing a witness:

Pr [VAPHA(vk, y, 7r) 1 ( (yi, 7ri, wi) E extlist s. t. yj = y, 7ri = ) and

(V (yi, 7ri, wi) E extlist s.t. yj = y, 7ri = 7r : (yi, wi) E Ru)

(0, vk) +- GAPHA(1k) ; (y,O) - P0 (vk) ; extlist +- LE ([P(vk), O)1 > 1 - p(k)

(where the probability is taken over the internal randomness of GAPHA and 0), for some negligible
function pt. Furthermore, ILE| is poly(k).

Proof of knowledge. Note that the list-extraction property implies a proof-of-knowledge property,
in which a knowledge extractor directly outputs a witness corresponding to an instance-proof pair that
convinces the verifier. More precisely, the APHA proof-of-knowledge property is given by the following
definition:

Definition 4.2.2 (APHA Proof-of-Knowledge Property). Let k E N. For every (possibly cheating) prover
circuit P of size poly(k), there exists a knowledge extractor circuit EAPHA of size poly(k) such that, for
every polynomial p, and for sufficiently large k: if P convinces VAPHA with non-negligible probability,

Pr VAPHA(vk, y, 7r) = 1 (0, vk) +- GAPHA(1k) ; (y,_r) p-O(vk)J > pk
r tp(k)

(where the probability is taken over the internal randomness of GAPH A and 0), then EAPH A extracts a
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valid witness from P with almost the same probability,

Pr [(y, w) E Ru (0, vk,) <-GAPHA(1'); (y,r) - 0 (vk) ; (y, w) <-- EAPHA (P,v -p(k)

(where the probability is taken over the internal randomness of GAPHA and 0), for some negligible function

P.

Indeed, it is easy to use the list extractor circuit to define the circuit of the knowledge extractor: the

knowledge extractor need only run the list extractor and locate the relevant triple in the list. Specifically,
the knowledge extractor EAPHA, with oracle access to 0 and on input (P, vk), does the following:

1. Run P0 (vk) to obtain its output (y, 7r) and its oracle query-answer transcript [P(vk), O .

2. Run LE([P(vk),O]) to obtain its output extlist {(yi, 7ri, wi)}i.

3. Search extlist for a pair (yi, iri, wi) such that y= y i = 7r, and, if such a pair is found, output wi.

4. If Step 3 is unsuccessful, output I.

Correctness of EAPHA easily follows from the list-extraction property.

Adaptive soundness. As always, proof-of-knowledge implies computational soundness: if a (possibly

cheating) efficient prover convinces the verifier with probability better than 1/p(k), then a witness can
be extracted with nonzero probability and thus exists. Moreover, APHA systems are adaptively sound,
i.e., soundness holds even when the prover chooses the instance for which he wishes to produce a proof
string. In particular, the instance may depend on the oracle 0 and the verification key vk.

4.3 Construction of an APHA system

We now construct an APHA system. In the assisted-prover model, every party has black-box access to a

certain functionality and, in our case, the black-box functionality is defined as follows: 2

Definition 4.3.1 (Signed-Input-and-Randomness functionality). Let SIG = (GSIG, SSIG, VsIG) be a sig-

nature scheme with security parameter k E N.3 Given sk1 and sk2 (generated by GsIG(1k)), the signed-
input-and-randomness (SIR) functionality with respect to ski and sk 2, denoted Oswk,sk2, is given by the

probabilistic machine defined as follows.

On input (x, s) where x E {0, 11* and s > 0, Osk1,sk2 does the following:

1. If s > 0, - +- SsIG (sk1, (x, r)), where r +- (0, 1 s.

2. If s = 0, o -SsIG(sk 2 , (x, C))-
3. Output (r, o).

Our main technical result is constructing APHA systems from constant-round public-coin universal ar-
guments and signature schemes:

Theorem 4.3.1 (APHA from universal arguments and signatures). APHA systems whose oracle is

signed-input-and-randomness can be built from any signature scheme and (public-coin, constant-round)

universal arguments.

Such public-coin, constant-round universal arguments are known to exist if collision-resistant hashing

schemes exist [15, Theorem 1.1], and likewise for signatures schemes (see Section 2.3.5). We thus deduce
the existence of APHA systems under a mild, generic assumption:

2The need for two separate keys arises for technical reasons of avoiding thorny dependencies across the transitions in

the proof; see Section 4.4 and Appendix A.
3 As mentioned in Section 2.3.5, in this thesis we always consider signature schemes where the signature length depends

only on the security parameter.
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Figure 4-1: Diagram for the construction of PAPHA; recall that -r (ai, wi, a 2 , W2 ) and 7r' = (a, T).

Corollary 1 (Existence of APHA systems). Assuming the existence of collision-resistant hashing schemes,
there exist APHA systems whose oracle is signed-input-and-randomness.

Let us proceed to prove Theorem 4.3.1 by constructing an APHA system, following the intuition presented
in Section 4.1. The oracle generator GAPHA is constructed as follows.

Construction 4.3.2 (GAPHA). The oracle generator GAPHA, on input a security parameter k E N, does
the following:

1. (vki, ski) <- sG(1k).

2. (vk2, sk2 ) +- GsIG (1k)
3. vk (vki, vk2 ).
4. 0 Osi,sk2, where Oski,sk 2 is (the description of) the SIR functionality with respect to ski and sk2.
5. Output (0, vk).

To prove y E Su, we will not invoke universal arguments directly on the instance y = (M, x, t), but rather
on an a slightly larger augmented instance yaug = (Maug, xaug, taug). The augmented decider machine
Maug invokes M to check an (alleged) witness w for y, and also verifies an (alleged) signature on y and
w. (The prover will be forced to query the oracle on w in order to obtain such a signature, and this will
facilitate extraction of the witness.) Let us define the subroutine AUG that maps y to yaug:

Construction 4.3.3 (AUG). Let p(k, m) be a polynomial that bounds the running time of VSIG with
security parameter k on messages of length at most m. Fix a security parameter k E N and let (0, vk) e
GAPHA(Ik) and parse vk as (vki, vk 2). Let y = (M, x, t) be an instance, and let a be an (alleged) signature
on a witness for y. The subroutine AUG, on input (vk 2 , a, y), does the following:

1. xaug (vk 2, o, y).
2. taug t + p(k, m) where m (("inst-wit", y, 1t), e)
3. Define Maug to be the machine that, on input (xaug, w), works as follows

(a) Let bi be the output of VIG (vk 2 , (("inst-wit", y, w), e), a).
(b) Let b2 be the output of M(x, w) after running for t steps.
(c) Output bi A b2.

4. Output Yaug = (Maugxaugtaug).

We proceed to describe the construction of the prover PAPHA and verifier VAPHA, given a universal-
argument system (PUA, VUA). Let pi and P2 be polynomials such that, given an instance y of length
n, the first message of VUA has length p1(n) and the second message of VUA has length p 2(n). (For
convenience, the construction here is specialized to the 4-message universal arguments protocol of Barak
and Goldreich [15]. It naturally generalizes to any constant-round public-coin protocol.)



4.4. CORRECTNESS OF THE APHA CONSTRUCTION

Construction 4.3.4 (PAPHA). Fix a security parameter k and let (0, vk) E GAPHA(1k). Let y = (M, x, t)

be an instance and w be a string, supposedly such that (y, w) E Ru. The prover PPHA(vk, y, w) does the

following:

1. Obtain a signature of the witness. Call 0 with query q0  (("inst-wit", y, w), 0) to obtain answer

ao = (e, a).
2. Compute the augmented instance. Parse vk as (vki, vk2); compute yaug <- AUG(vk2, o, y).
3. Simulate VUA 's first message. Call 0 with query qi = (yaug,p10(yaugD) to obtain answer ai

(ri, a-).
4. Compute PUA 's first message. Execute the first step of PUA(Yaug, w), using r1 as the verifier's first

message, to obtain wi, the prover's first response.

5. Simulate VUA's second message. Call 0 with query q2 = ((w1,ai),p2(lyaug)) to obtain answer

a2 = (r2 , 0-2).
6. Compute PUA 's second message. Continue the above execution of PUA(Yaug, w), using r2 as the

verifier's second message, to obtain W2 , the prover's second (and last) response.

7. Package the signature and (part of) the transcript into a preliminary proof string. Define 7r' (a,,),
where T = (ai, wi, a2 , W 2).

8. Obtain a signature on the instance and preliminary proof. Call 0 with query q3 (("proof", ''), 0)
to obtain answer a3 = (e, ').

9. Output the signed proof. Output 7r (7', a').

Construction 4.3.5 (VAPHA). Fix a security parameter k and let (O,vk) E GAPHA(1k). Let y = (M, x, t)

be an instance and let 7r be an (alleged) proof string for the claim "y E Su". The verifier VAPHA(vk, y, 7r)

does the following:

1. Parse vk as (vki, vk 2 ).
2. Parse 7r as (7r', o'), where 7r' = (o-, r), -r = (ai, wi, a2 , W2), ai = (ri, a-), and a 2 = (r2, -2).

3. Verify that the proof signature is valid. Check that VsIG(vk2, (("proof", 7r'), e), a') 1.

4. Compute the augmented instance. Compute yaug <- AUG(vk 2 , a, y).
5. Verify that the transcript is consistent. Check that:

(a) VSIG (vkl, (aug, r1), a) = 1 and |jI = pi(yaugl);
(b) VsG (vki, ((w, a1), r2), 0-2) = 1 and Ir2 | = p2(Iyaug|)-

6. Verify that the transcript is convincing. Check that the third step of VUA(yaug), using r1 and r2
as the verifier's first and second messages, and using wi and W2 as the prover's first and second

messages, accepts.

4.4 Correctness of the APHA construction

We complete the proof of Theorem 4.3.1 by showing that the constructions presented in Section 4.3 indeed

constitute an APHA system.

The properties of efficient verifiability and completeness via a relatively-efficient prover easily follow by

construction. The remaining property, list extraction, is fulfilled by the following list extractor LE:

Construction 4.4.1 (LE). The list extractor LE, on input a prover-oracle transcript [P(vk), O, does

the following:

1. Create an empty list extlist.

2. In the transcript [P(vk), O , let (qi, a1 )... (qj, a,) be the query-answer pairs for which the query

is of the form qj = (("proof", r), 0).

3. For each i E [1], do the following:
(a) Parse 7r' as (a-, r) and ai as (e, o').
(b) Find some (q, a) in [P(vk), 0] such that a = (e, a-) and q = (("inst-wit", y, w), 0).

(If none exists, abort and output I.)
(c) Add (y, (7r , o,), w) to extlist.
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4. Output extlist.

Claim 4.4.2. The list extractor LE from Construction 4.4.1 fulfills the list-extraction property for the
triple (GAPHA, PAPHA, VAPHA) constructed in Section 4.3.

The following is an overview of the proof structure; the full proof is given in Appendix A.

Proof sketch. To prove the success of LE, we define a sequence of intermediate constructions of increasing
power, starting from universal-argument systems (with a weak proof-of-knowledge property) and ending
at APHA systems (with a full-fledged list-extraction property). Each construction is built via black-box
access to the functionality proved for the preceding one.

First construction: adaptivity. Starting from a universal-argument system (PUA, VUA), which has
a weak proof-of-knowledge (PoK) property, we show how to construct a pair of machines (P, V) for
which the weak PoK property holds even when the prover itself adaptively chooses the claimed instance
y. The prover has oracle access to a functionality 0' that outputs random strings upon request; the
prover interacts with 0', and then outputs an instance y and a proof string ro for the claim "y E Su".
When verifying the output of the prover, we allow Vo to see all the query-answer pairs of the prover to
the functionality 0'.

Vo works by requiring a (possibly cheating) prover P0 to produce a transcript of the universal-argument
protocol which VUA would have accepted, and, moreover, by verifying that the public-coin challenges in
the transcript were obtained by P, in the right order, as answers from 0'.

We show that whenever a prover P convinces V on some instance y of its choice, Po can be converted
into a cheating prover PUA that convinces VUA on y, from which a witness for "y E Su" can be extracted
using the universal-argument knowledge extractor EUA. We thus obtain a knowledge extractor E0 for
(Po, Vo).

Second step: stateless oracle. Starting from the pair of machines (Po, V), we show how to construct
a triple of machines (G 1, P1, V1 ) for which the weak PoK property still holds. This time, the prover has
oracle access to a stateless probabilistic oracle 0" generated by G1 , instead of the aforementioned stateful
oracle 0'. On input x, 0" outputs a random string r together with a signature on (x, r). When verifying
the output of the prover, this time V does not see the query-answer pairs of the prover to 0". Instead,
it verifies the signatures in the transcript provided by the prover, to be convinced that the queries were
indeed made to 0".

That is, V requires a (possibly cheating) prover P1 to produce a proof string that V would have accepted,
along with corresponding signatures that are valid under the verification key of 0".

As before (but by a different technique), we show that whenever a prover P1 convinces V1 on some instance
y of its choice, P1 can be converted into a prover Po that convinces Vo on y, from which a witness for
"y E Su" can be extracted using the knowledge extractor E0 . We thus obtain a knowledge extractor E1
for (G1 , P1, V1 ).

Third step: list extraction. Starting from (G 1, P1, V), we show how to construct a triple of machines
(GAPHA, PAPHA, VAPHA) that is an APHA system. Similarly to the previous step, provers for VAPHA have
access to a stateless signed-input-and-randomness oracle 0 (following Definition 4.3.1), generated by
GAPHA; however, (GAPHA, PAPHA, VAPHA) satisfies a PoK property in a much stronger sense, specified by
the APHA list-extraction property and its list-extractor LE. This "knowledge boosting" relies on forcing
the prover to explicitly state its witness in some query to 0.

VAPHA works by requiring a (possibly cheating) prover P to produce a proof string that V1 would have
accepted; however, the proof string should not be about the claim "y E Su" (for some instance y chosen
by the prover), but about some related claim "yaug E Su", where yaug is derived from y. Essentially, the
prover can convince V that "yaug E Su" only if it knows a signature, that verifies under the verification
key of 0, for a valid witness that "y E Su". Thus, the prover is forced to explicitly query 0 on such a
witness - and this query can be found by the list extractor.
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Crucially, the knowledge extractor E1 is not invoked by the APHA list extractor LE; rather, E1 is used

just in the proof of correctness of LE, in a reduction from failure of LE to forgeability of signatures. 4

Since signatures are forgeable with negligible probability, the polynomial loss of the weak PoK amounts

to just a small increase in the security parameter.

Thus, we show that whenever VAPHA accepts the output of P we can (with all but for negligible probability)

efficiently find a valid witness for the instance output by P among the queries of P to 0, which is the

main ingredient of the proof of correctness of the list extractor LE. D

4.5 Realizability of an assisted prover

Our construction of APHA systems (and eventually PCD systems) assumes black-box access to a single,
fixed functionality: signed-input-and-randomness. This functionality is stateless, and is parametrized by

a single concise secret (the signing key sk).

Communication. The communication between the prover and the oracle 0 is as low as one could

hope for given our approach to knowledge extraction (see Section 4.1): linear in the witness size |wI,
and polynomial in the instance Iyj and security parameter k. Moreover, only four queries are needed.

Note that the total communication is linear in the length of the original witness w for the statement

y = (M, x, t) E Su, rather than (as in non-interactive CS proofs) a much longer PCP witness, whose

length is polynomial in the halting time of M(x, w).

Computation. Using the hash-then-sign approach, and typical hash function constructions, the com-

putational complexity of the signed-input-and-randomness functionality is essentially linear in its com-

munication complexity size and polynomial in the security parameter.

Realization. How would such an oracle be provided in reality? As noted earlier, similar requisites arose

in related works [83] [90] [110] [32] [45] [101]. One well-studied option is to use a secure hardware token that is

tamper-proof and leak-proof. Indeed, similar signing tokens are already prescribed by German law [48].

Similarly, the functionality can be embedded in cryptographic coprocessors, TPM chips, and general-

purpose smartcard such as TEMs [41]. Alternatively, one may hope that this specific functionality can be

obfuscated, either in the strict virtual-box-box sense [16] or (for real-world security applications) in some

heuristic sense. Lastly, the functionality can be realized via standard MPC techniques between multiple

parties, tokens, or services, if the requisite fraction of honest participants is available.

Removing randomness. The randomness of the signed-input-and-randomness functionality is not

essential: one could replace the fresh random bits with pseudorandom bits obtained by a pseudorandom

function (whose seed is kept secret) applied to the input. In this way, one only has to trust the token to

hide its secret bits (the signing key and the seed) and to operate correctly, but not to also generate random

bits. Indeed, our constructions do not require the randomness from the token to be fresh for repeated

queries with the same input, and security holds even if the randomness comes from a pseudorandom

function. (Intuitively, this holds because, even with a truly randomized oracle, adversaries can always

replay old answers.)

4 This is similar in spirit to the extractor abort lemma of Chandran et al. [32].
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Chapter 5

Proof-Carrying Data Systems

We define and construct proof-carrying data (PCD) systems, the cryptographic primitive that realizes
the framework of proof-carrying data.

This chapter is organized as follows:

Section 5.1 Formal definition of compliance for distributed computations.

Section 5.2 Definition of PCD systems and discussion of their properties.

Section 5.3 Generic construction of PCD systems from APHA systems.

Section 5.4 Proof sketch of the construction's correctness (for full proof see Appendix B).

5.1 Compliance of computation

We begin by specifying our notion of a distributed computation, which we call a distributed computation
transcript.

For a directed graph G = (V, E), and vertex v E V, in(v) denotes the incoming edges of v, out(v) denotes
its outgoing edges, parents(v) denotes its neighbors across in(v), and children(v) denotes its neighbors
across out(v).

Definition 5.1.1 (Distributed computation transcript). A distributed computation transcript (abbrevi-
ated transcript) is a triple DC = (G, code, data) representing a directed acyclic multi-graph G = (V, E)
with labels code on the vertices and labels data on the edges.

Vertices represent the computation of programs, and edges represent messages sent between these pro-
grams. Each non-source vertex v is labeled by code(v), which is the code of the program at v. Each
edge (u, v) is labeled by data(u, v), which is the data that is (allegedly) output by the program of u and is
sent by u to v as one of the inputs to the program of v. Each source vertex has a single outgoing edge,
carrying an input to the distributed computation; there are no programs at sources, so we set their label
to I. The final outputs of the distributed computation is the data carried along edges going into sinks.

(See Figure 5-1 for an illustration.)

A transcript captures the propagation of information via messages in the distributed computation, and
thus the graph is acyclic by definition. A party performing several steps of computations on different
inputs at different times is represented by corresponding distinct vertices.

A transcript where messages are augmented by proof strings is called an augmented distributed compu-
tation transcript.

Definition 5.1.2 (Augmented distributed computation transcript). An augmented distributed compu-
tation transcript (abbreviated augmented transcript) is a quadruple ADC = (G, code, data, proof) such
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that (G, code, data) is a transcript, and proof is an additional labeling on the edges of G, specifying proof
strings carried along those edges. (See Figure 5-1 for an illustration.)

Zd, 7rd

in p t rgj ~ prgb Zb , 7rb prg ~ Zd, d prg f
input 10 pre zb, Irb

O~~d z- 7r zd ga
_' prZa ze, 7re Zf, Trf

177-~ Z~ C prc Ze, W 7e' pg out, 7Woutc , r prge zej, vrout, ro

output

Figure 5-1: Example of an augmented distributed computation transcript. Programs are denoted
by prg's, data by z's, and proof strings by r's. The corresponding (non-augmented) distributed
computation transcript is given by the same illustration, with the proof strings omitted.

Given a distributed computation transcript DC = (G, code, data), at times we need to consider the part
of the transcript up to a certain edge.

Definition 5.1.3. For an edge (u, v) E E, we define the transcript of DC up to (u, v), denoted DCI(uv)
(G', code', data'), to be the labeled subgraph induced by the subset of vertices consisting of v, u, and all
ancestors of u.

Next, we define what we mean for a distributed computation to be compliant, which is our notion of
"correctness with respect to a given specification". We capture compliance via an efficiently computable
predicate C that is required to hold true at each vertex, when given the program of the vertex together
with its inputs and (alleged) outputs.

Definition 5.1.4 (C-compliance). A compliance predicate C is a polynomial-time computable predicate
on strings (we will abuse notation and identify C with the polynomial-time Turing machine that computes
it). A distributed computation transcript DC = (G, code, data) is C-compliant if, for every vertex v c V,
it holds that

C (data (in(v)), code(v), data (out(v))) = 1

where data(in(v)) denotes the list of data labels on v's parents, and analogously for data(out(v)).

Alternatives. One may consider stronger forms of compliance. For example, the compliance predicate
could get as extra inputs the graph G and the identity of the vertex v (so that the compliance predicate
"knows" which vertex in the graph it is examining). Stronger still, the compliance predicate could be
global, and get as input the whole transcript DC = (G, code, data).
However, our goal is to realize PCD in a dynamic setting, where future computations have not happened
yet (and might even be unknown) and past computations have been long forgotten, so that compliance
must indeed be decided locally. Therefore, we choose a local compliance predicate, which only gets as
input the information that is locally available at a vertex, i.e., the program of the vertex together with its
inputs and (alleged) outputs. (Of course, the preceding discussion does not prevent one from choosing a
compliance predicate C that forces vertices to keep track of certain information, such as history of past
computations or network topology, for the purpose of deciding compliance. Such additional information
would be appended as "meta-data" to the messages sent between vertices.)

5.2 Definition of PCD systems

We proceed to define proof-carrying data systems, starting with their structure and an informal descrip-
tion of their properties, and then following with a formal definition.
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5.2.1 Structure of PCD systems

A PCD system is a triple of machines (GPCD, PPCD, VPCD) that works as follows:

- The PCD oracle generator GPCD: for a security parameter k, GPcD(lk) outputs the description of a

probabilistici stateless oracle 0, together with O's verification key vk.

- The PCD prover PPCD: let vk be a verification key, let C be a compliance predicate, and let prg be

a program with (alleged) output zot and two inputs zi1,1 and zi, 2 with corresponding proof strings 7ri, 1

and ri, 2 (see Figure 5-2); then PcD(vk, C, zout, prg, zin i7rin, zin 2, 7rin 2 ) outputs a proof string 7root for

the claim that zout is an output consistent with a C-compliant transcript.

- The PCD verifier VPCD: for a verification key Vk, a compliance predicate C, an output zout, and a

proof string 7rout, VPCD(vk, C, zout, 7rout) accepts if 7rout convinces him that zout is an output consistent

with a C-compliant transcript.

verification compliance
key predicate

vk C /

prg -. 00
Zin2 7rout

0 Win 2

Figure 5-2: The new proof string groot for the output data zout is computed using the PCD prover

PPCD, with oracle access to 0 and input (vk, C, zout, prg, zin, 7rin, zin2 ,7rin 2 )-

Using these algorithms, a distributed computation transcript DC is dynamically compiled into an aug-

mented distributed computation transcript ADC by generating and adding "on the fly" a proof string to

each edge (see Figure 5-1). The process of generating proof strings is defined inductively, by having each

(internal) vertex v in the transcript DC use the PCD prover PPCD to produce a new proof string 7root

for its output zout (given its inputs, their inductively generated proof strings, its program, and output).
The proof strings generated in this way form the additional label proof on the edges in the resulting

augmented transcript ADC.

More precisely, focusing on a particular edge (u, v) E E in the transcript DC = (G, code, data), we recur-

sively define the process of computing proof strings in DC up to (u, v), and informally denote this process

by PROOFGEN(DCI(u,,)) (or PROOFGEN 0 (vk, C, DCI(u,v)) when being precise); this process generates

the proof string label proof': E' -4 {0, 1}* for DC' = DCI(u,,), the transcript of DC up to (u, v).

Specifically, the process PROOFGEN(DC') is defined as follows. Initially, proof strings on the outgoing

edges of sources are set to _. Then, taking each non-source non-sink vertex w E V' in some topological

order,3 let wi,1 and win2 be the two parents of w, and let wout be its single child in DC'. Let zin =

data'(win,w), 7rin, = proof'(win,w), zin2 - data'(win2 ,w), 7rin2 = proof'(win2 , w), prg = code'(w), and

zout = data'(w, wout). Then, recursively compute

gru -PCD( Czotprzini, 7rini, zin2,7 7rin2) I

and define 7rout = proof'(w, wout). The final output z of DC' = DCI(u,o) has the proof string 7r =

proof'(u, v), and now all the values of proof' have been assigned.

'The oracle can be derandomized; see Section 4.5.
2 Without loss of generality, we restrict our attention to transcripts for which programs have exactly two inputs and one

output.
3 Formally, since G is acyclic, we are oblivious to the choice of temporal order. In reality the proof strings are computed

on-the-fly according to the temporal order by which the data messages are generated; by causality, this order is topological.
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5.2.2 Properties of PCD systems (intuitive)

The triple (GPCD, PPCD, VPCD) must satisfy three properties. Analogously to APHA systems, the first two
bound the complexity of proving and verifying, and the third is a strong proof-of-knowledge property
(which, in particular, implies computational soundness). These are adapted to the context of distributed
computation transcripts.

First, proof strings generated by the PCD prover should be efficiently verifiable by the PCD verifier:
VPcD halts in time that is polynomial in the security parameter k, the size of the description of C, the
length of z, and the logarithm of the time it took to generate 7r. (Our parameters are even better; see
Definition 5.2.1.)

Second, the PCD prover should be able to prove true statements using a reasonable amount of time.
Whenever it is indeed the case that a transcript DC is C-compliant, if the above recursive process
repeatedly uses PPcD to generate a proof string ir for the data z on some edge, then (z, 7r) are indeed
accepted by VPCD. Moreover, the above recursive step runs in time that is polynomial in the security
parameter k, the size of the description of C, and the time it took to to verify C-compliance at each
node.

Third, no efficient prover should be able to prove false statements: given a compliance predicate C and
an output string z that is not consistent with any C-compliant transcript, no cheating prover circuit P
of size poly(k) can generate a convincing proof string 7r for z (except with negligible probability, over the
randomness of the oracle and its verification key).

In order to preserve security for distributed computations that use cryptographic functionality that is
only computationally secure, we actually require a stronger property: a proof-of-knowledge property. A
proof string 7r augmenting a piece of data z not only attests to the fact that zogt is consistent with the
output of some C-compliant transcript, but also guarantees the following. For any (possibly cheating)
prover circuit P of size poly(k), there exists a knowledge extractor EpcD circuit of size poly(k) such that,
for any output string z, if P produces a sufficiently convincing proof string 7r for z, then EpcD can extract
from P a C-compliant transcript DC that has final output z. 4

5.2.3 Properties of PCD systems (formal)

We proceed to capture the above intuition more formally.

First, we discuss how to characterize the PCD prover's complexity. Recall that PCD provers are invoked
in a recursive structure that follows a given distributed computation transcript. At any given vertex in
the transcript, the PCD prover's complexity essentially depends (polynomially) only in the size of the
local inputs (i.e., the vertex's input data, program's code, and alleged output data) and the time it takes
to verify compliance of these local inputs.

However, the exact complexity of the PCD prover does depend on the particular computation leading
up to the input data (and the data's proof strings) to the given vertex. 5 Therefore, in order to precisely
quantify the PCD prover's complexity at that vertex, we define a recursive function over the history
preceding the vertex. The recursive function is defined as follows:

Definition 5.2.1 (Recursive Time up to an Edge). Let p be a positive polynomial, k a security parameter,
C a compliance predicate, and DC a transcript. Given (u, v) z E, we define the recursive time of DC|(, ,
denoted Tp(k, C, DCI(uv)), to be the following recursively-defined function:

- If u is a source vertex,
T, (k, C, DCl (U,o)) = p (k +|I(C)).

4 Our construction attains a stronger definition, where a fixed knowledge extractor can extract from any convincing
prover by observing only its output and its interaction with the oracle (analogously to the APHA list extraction property).
We use the above weaker definition for convenience of presentation.

5 The PCD prover's complexity at a given vertex depends on the length of the (concise) proof strings received from the
parent vertices (besides depending on the time needed to check compliance). The length of these proof strings will itself
essentially depend (this time logarithmically) on the time it took to locally check compliance at the previous vertices.
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- Otherwise,

T, (k, C, DCl(U,o)) = timec (data(in(u)), code(u), data(out(u)))

+ E p(k +(C)I + Idata(u',u)+ ±log T, (k,C,DC(u',u)))
u' E parents(u)

Roughly, T, (k, C, DCI(u,v)) indicates the time that the node u spends to locally verify compliance (corre-

sponding to the timec term in Definition 5.2.1) and the time necessary to verify the proof strings received

from previous vertices (corresponding to the summation term in Definition 5.2.1).

Note that since the PCD prover's complexity will be phrased in terms of the above recursive function,
the PCD verifier's complexity will also be, because the PCD verifier is supposed to examine proof strings

output by PCD provers. See below in Definition 5.2.2 for how exactly the above recursive function affects

the complexity of the PCD prover and PCD verifier.

We observe that the essential property of the above recursive function is that the cost of past computation

decays as an iterated logarithm at every aggregation step, and thus converges very quickly. This means

that the time it takes to generate a proof 7root is indeed essentially polynomial in the time it takes to

merely locally check compliance, i.e., to compute C((zini, zin2), prg, (zout)); and the verification time of a

proof 7rout is logarithmic in that.

We can now state the definition of PCD systems.

Definition 5.2.2 (PCD System). A proof-carrying data system with security parameter k is a triple

of polynomial-time machines (GPCD, PPCD, VPCD), where GPCD is probabilistic, PPCD is deterministic with
oracle access, and VPCD is deterministic, that satisfies the following conditions:

- Efficient verification: There exists a positive polynomial p such that for every k G N, (0, vk) G
GPcD(1k), compliance predicate C, transcript DC, edge (u,v) E E with label z data(u,v), and
proof string 7r,

timevPCD(vk,C,z,7r) p(k+ I(C)I + Iz +logTp (k,C,DCI(u,v)))

In particular, the proof string is short: |7rl 5p(k+ (C) + l +ogT, (k,C,DC(U,V)))-
- Completeness via a relatively-efficient prover: For every k E N, compliance predicate C, C-compliant

transcript DC, and edge (u,v) E E with label z data(u, v),

Pr IVPc(vk, C, z, 7r) = 1 (0, vk) <-GPcD(1k)

proof' <- PROOFGEN 0 (vk, C, DCI(u,)) ; z +- proof'(u, v)] = 1

(where the probability is taken over the internal randomness of GPCD and 0); recall that PROOFGEN
is the process of computing proof strings in DC up to (u, v), described above. Furthermore, there exists

a positive polynomial p such that for every k E N, (0, vk) E GPcD(lk), C-compliant computation DC,
and edge (u,v) c E with label z = data(u,v), letting u1 and u2 be the two parents of u, proof' +-

PCD 0 (vk,C,DC(u,o)), z1 = data(ui,u), z2 = data(u 2 ,u), i = proof'(ui,u), 7r2 = proof'(u 2,u), and
prg = code(u),

timer (vk, C, z, prg, zirz 2 , 72) 5 p (k + I(C) + zl + T (k, C, DCI(u,)))

- Proof-of-knowledge property: Let k G N. For every (possibly cheating) prover circuit P of size poly(k),
there exists a knowledge extractor circuit EPcD of size poly(k) such that, for every polynomial p,

compliance predicate C, output string z G {0, 1}*, and for sufficiently large k: if P convinces VPCD to

accept z with non-negligible probability,

Pr VPcD(vk, C, z, 7r) = 1 (0, vk) +- GPcD( 1k) ; +- PO(vk,C,z) > p
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(where the probability is taken over the internal randomness of GPCD and 0), then EPCD extracts a C-
compliant distributed computation transcript DC consistent with the final output z (i.e., z = data(u, v)
and (u, v) is the unique incoming edge to the unique sink vertex v) with almost the same probability,

Pr [DC is C-compliant A u, v E V A DC = DCl(uv) A z data(u, v)

(O,vk) +- GPcD (1k) ; DC +- EPcD(vk, C, z)] > A(k)
p(k)

(where the probability is taken over the internal randomness of GPCD and 0), for some negligible
function p.

5.2.4 More on recursive time and PCD prover's complexity

When using a proof-carrying data system to enforce a compliance predicate C, parties in the distributed
computation incur in the computational overhead of having to generate proof strings. We briefly discuss
this overhead.

From Definition 5.2.2, we know that the PCD prover's complexity is:

timep. (vk, C, z, prg,zi,rz 2 ,r 2) <p(k +(C)I+Izl +T, (k,C,DC(u,v)))

But how does a party that uses the PCD prover at some vertex u actually know how much work it will
have to do? After all, the that party may not have been present throughout the computation leading up
to vertex u, and therefore will not know the exact value of T, (k, C, DCl(u,v)). Definition 5.2.1 already
tells us that T, (k, C, DCI(u,v)) "essentially" depends only on the time it takes to check compliance at u,
because the effect of the past decays quickly. However, can we get a better handle on what "essentially"
concretely means for a party a vertex u?

In general, it is hard to quantify "essentially" in simpler terms than what is already captured by Def-
inition 5.2.1, because even asymptotic behavior of T, (k, C, DCI(u,v)) really depends on the particular
distributed computation transcript DCI(u,v) under consideration.

Nonetheless, we can consider situations in which we do have some partial information about the com-
putation preceding vertex u; using that information, we can then derive concrete upper bounds on the
overhead required of the party at vertex u to generate proof strings. Specifically, we consider the following
two scenarios:

- Bound on total verification time is known: We know that the total amount of time that it would
take to verify the C-compliance of all nodes in the computation preceding vertex u is at most S.

- Bound on each party's verification time is known: We know that all parties that took part in the
computation preceding vertex u each performed a computation that can be verifier by C in time
at most s (however, we may not know of an upper bound on the number of such parties) and,
moreover, we know that the in-degree of messages to any vertex is at most d.

We derive an upper bound on T (k, C, DCI(u,,)) for each of the above.

Bound on total verification time is known. Suppose that we know that the C-compliance of the whole
preceding computation can be verified in time at most S.' Then, we can derive an upper bound on
T, (k, C, DCI(U,V)) by computing an upper bound for it when DCI(u,v) is chosen to yield the worst asymp-
totic behavior.

First, note that we are actually only concerned with upper bounding T, (k, C, DC(,' ,u)) for every parent
u' of u, because timec ((zi, z 2), prg, (z)), which is the first term of T (k, C, DCI(u,o)), will be known only
at computation time, and will depend on what the party at vertex u decides to do. Furthermore, without

6This, assuming that the compliance predicate C has complexity that is at least linear. If C has sublinear complexity,
then the bound S would have to account for the sum of the lengths of all parties' messages and programs as well.
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loss of generality, we can assume that u has a single parent u' that carries a proof string (and the other

parent is a "base case").

We observe that T, (k, C, DCI(u',u)) is largest when the graph DCI(u',u) is the graph with edges {(u", u'),

(u', u)} (i.e., u' has as its single parent a source vertex, so that the data along (u", u') is an input to the

distributed computation transcript) and u performs a single computation that takes time S. Intuitively,
this is because of the iterated logarithm. In this case, T, (k, C, DCI(u',u)) = poly(k + CI + S), and we

deduce that the PCD prover's complexity at vertex u is:

t (vk, C, z, prg,ziri,z2,7r2) p(k+I(C)+Izjzi l-+Iz21+timec((zi,z 2 ),prg,(z)) +IlogS)

which is the upper bound on the computational overhead incurred by the party at vertex u by generating

the proof string.

Moreover, if we also know that vertex u can be verified to be C-compliant in time at most Su, then we

are guaranteed to spend time at most

timeVPCD(vk, C, z, 7r) < p (k + I(C)I + jzl + log zil + log Iz 2 | + logtimec ((zi, z 2 ), prg, (z)) + loglog S)

:5p(k+I-(C)|+ zl+logSu+loglogS) -

in order to verify the proof string for message z along edge (u, v).

Bound on each party's verification time is known. Suppose that we know that all parties that took part

in the computation preceding vertex u each performed a computation that can be verified by C in time

at most s,7 and that any vertex received at most d messages.

Similarly to the above discussion, we are only concerned with upper bounding T, (k, C, DCI(u',u)) for

every parent u' of u. By induction on the graph DCI(u',u), we prove that, for sufficiently large k,

T, (k, C, DCI(U',U)) < q(k + ds)

for some polynomial q such that

q(k+sd) > s+d -p(k+s+log(q(k+ds)))

So now consider any given parent u' of u. If u' is a source vertex, then T, (k, C, DCI(u',u)) = p(k+I (C)|) <

p(k + s) 5 q(k + ds). If u' is not a source vertex, then let w1 ,.. . , Wd be its parents. Then,

T, (k, C, DCl(U',U)) = timec {data(in(u')), code(u'), data(out(u')))

d

+ Zp(k + |(C)| + Idata(wi, u')+ logTp(k, C, DCl(Wm,U/)))
i=1

d

< s + p(k + s + log T (k, , DCl(wu)))
i=1

< s + p(k + s + log (q(k + ds))) (by the inductive assumption)
i=1

s + d -p(k + s + log (q(k + ds))

q(k + sd)

7 Again, if C has sublinear complexity, the bound s must account for a party's input messages, local program, and output

messages as well.
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Therefore, we deduce that

T, (k, C, DC|(Uy) < timec (data(in(u)), code(u), data(out(u)))

+ (k + I(C)| + data(u', u) + log T, (k, C, DCl(U/,U)))
u' E parents(u)

<timec (data(in(u)), code(u), data(out(u))) + d -p(k + s + log (q(k + ds)))

< timec (data(in(u)), code(u), data(out(u))) + q(k + ds)

Thus, the PCD prover's complexity at vertex u is at most

poly (k + jzj + ds + timec (data(in(u)), code(u), data(out(u))))

Moreover, if we also know that the bound s applies to vertex u as well, then we are guaranteed to spend
time at most

poly (k + Iz| + log(ds) + log timec (data(in(u)), code(u), data(out(u))))

in order to verify the proof string for message z along edge (u, v).

Practicality. We recall the bounds on the PCD prover's computational complexity are only asymptotic.
As the construction of the PCD prover involves the use of a PCP system, it is an open problem to
investigate the extent to which the PCD prover can be made practical.

5.3 Construction of a PCD system

We show how to use APHA systems to construct PCD systems, thus obtaining the following result:

Theorem 5.3.1 (PCD from APHA). PCD systems can be built from APHA systems (using the same
oracle).

Combining the above with Corollary 1, our result that gives sufficient conditions for the existence of
APHA systems, we deduce the existence of PCD systems under mild standard assumptions:

Corollary 2 (Existence of PCD systems). Assuming the existence of collision-resistant hashing schemes,
there exist PCD systems whose oracle is signed-input-and-randomness.

We now show how to construct a PCD system (GPcD, PPCD, VPcD) using any given APHA system (GAPHA,
PAPHA, VAPHA), as defined in Section 4.2.

First, we define the PCD oracle generator to be the APHA oracle generator, i.e., GPCD = GAPHA-

Next, we discuss the construction of the PCD prover and PCD verifier. Intuitively, the PCD prover (resp.,
verifier) will invoke the APHA prover (resp., verifier) on specially-crafted instances "(MPcD, X, t) E Su",8
where MPCD is a fixed machine (depending only on the compliance predicate C and the verification key
vk) called the PCD machine; this machines specifies how to aggregate proof strings and locally check C.
We discuss the PCD machine next.

At high level, MPcD(*, *) gets as input a string x = (zout, dout), where zout is the alleged output of the
current vertex and dout is the depth of proof aggregation, and a witness w = (prg, zin,77rini, zin2,7rin 2 ),
containing the program prg of the current vertex together with its inputs and their corresponding proof
strings. The PCD machine will accept only if

- it verifies, by invoking VAPHA, that the proof strings of the inputs are valid, and

8Recall that Su is the universal set, introduced by Barak and Goldreich [15]. See Section 3.3.4 under the paragraph
entitled "Universal arguments" for details.



5.3. CONSTRUCTION OF A PCD SYSTEM

- C-compliance holds, i.e., C ((zin, zin2), prg, (zout)) 1.

For the "base case" dout = 1, MPCD does not have previous proof strings to verify, so it will only have to

check that C-compliance holds. Formally, the PCD machine is defined as follows:

Construction 5.3.2 (MPcD). Fix k E N and let (0,vk) E GPcD(1k). Let C be a compliance predicate,
zout the (alleged) output of a program prg with inputs zin, and zin2 , and irin, and 7rin 2 proof strings. Define

x = (zout, dout) and w = (prg, zin1,7rin, ,zin 2 ,7rin 2)-

The PCD machine with respect to C and vk, denoted Mvk C on input (x, w), does the following:

1. Base case. If 7rin, =I, verify that dout = 1 and C(I, I, zin) = 1, otherwise reject.

2. Recursive case. If 7rin, , 1 , parse 7rin, as (7r!, din, tin), and do the following:

(a) Verify that dout > din, > 0.

(b) Define yin, (M v, (zini di ), tin.

(c) Verify that VAPHA(Vk, Yj,,7r,) = 1, otherwise reject.

3. Repeat Step 1 and Step 2 for zin2 and rin 2 -

4. Accept if and only if C((zin, zin2), prg, (zout)) accepts.

Having defined the PCD machine, we may now proceed to describe the PCD prover and PCD ver-

ifier. We do so first at high level. The PCD prover PPCD, with oracle access to 0 and on input

(vk, C, zout, prg, zini , 7rin, zin 2, 7in 2 ), does the following:

1. Construct an instance y = (MPCD, (zout, dout), tout) for some appropriate numbers dout and tout-

2. Construct a witness w = (prg, zin, 7rin, zin 2, 7rEin2)-

3. Use the APHA prover P0APHA(vk, y, w) to generate a proof string 7r'.

4. Output the proof string 7r (7r', dout tout).

Then, the PCD verifier VPCD, on input (vk, z, 7r), does the following:

1. Parse 7r as the triple (7r', d, t).

2. Construct an instance y = (MPCD, (z, d), t).

3. Run the APHA verifier VAPHA(Vk, y, 7r') and accept if it accepts.

Formally, the PCD prover and verifier are constructed as follows.

Construction 5.3.3 (PPcD). Fix k E N and let (0,vk) E GPcD(1k). Let C be a compliance predicate,
zout the (alleged) output of a program prg with inputs zi, and zi, 2 (and corresponding proof strings 7rin,
and 7ri 12 )-

The PCD prover PcD(vk, C, z prg, zin,, 7rin,, zin2 , 7rin 2) does the following:

1. If 7rin, =1, run C(I, I, zi) and let tin, be the time C takes to halt; else, parse Irin, as (7r! 1, din,, tin,).
2. If 7rin 2 =1, run C(I, I, Zin2) and let tin2 be the time C takes to halt; else, parse 7ri, 2 as (7r! 2 , d tin2).

3. Run C((zin,, zin2), u, (zout)) and let to be the time C takes to halt.

4. Define tout = tc + tin, + tin2 and dout = max{din,, din2} + 1.

5. Define y (M ,z ) and w (prg,ziIrn1 ,zin2 ,rin2 )-

6. Compute 7r' +- P0PHA

7. Define 7r = (7r', dout, tout).

8. Output Ir.
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Construction 5.3.4 (VPCD). Fix k E N and let (O,vk) E GPcD(1k). Let C be a compliance predicate,
z an output string, and 7r a proof string.

The PCD verifier VPCD(vk, C, z, 7r) does the following:

1. If 7r =l, output C(I, I, z).

2. If 7r = (7r', d, t), define y (MP 1D, (z, d), t) , and output VAPHA(vk, y, 7r').

5.4 Correctness of the PCD construction

To complete the proof of Theorem 5.3.1, we must show that the construction given above is indeed a
PCD system, according to Definition 5.2.2.

The two properties of efficient verifiability and completeness via a relatively-efficient prover easily follow
from the construction. In the following, we sketch the proof of the PCD proof-of-knowledge property,
while the full proof is given in Appendix B.

Proof sketch of the PCD proof-of-knowledge property. Let P be a (possibly cheating) efficient prover. We
need to exhibit a knowledge extractor with the requisite properties. Hence, consider the PCD knowledge
extractor EPCD that, with oracle access to 0 and on input (vk, C, z), does the following:

1. Run the prover P 0 (vk, C, z) to record its oracle queries and answers [P(vk, C, z), O] and to get its
output (z,7r).

2. Apply the APHA list extractor LE to the recorded interaction [P(vk, C, z), O] to extract a list,
extlist, of triples (yi, 7ri, wi); each triple contains an instance yi, a proof string 7ri, and a witness wi.

3. Apply an offline reconstruction procedure which builds a transcript of the "past" distributed com-
putation by examining only extlist and (z, 7r). (See below.)

All our work thus far was aimed at making such an offline reconstruction possible. The fact that the
transcript can be reconstructed from a single invocation of P is essential: had we used a recursive approach
requiring multiple invocations, we would have experienced an exponential blowup as aggregated proofs
are recursively extracted.

Specifically, the offline reconstruction procedure performs a depth-first traversal of the implicit history
represented by extlist, starting from the root implied by the prover's output (z, 7r). It maintains the
following data structures:

- An augmented distributed computation transcript ADC, initially containing just the output edge.

- An exploration stack expstack, containing the set of edges in the distributed computation that we
have discovered but not yet explored.

At a high level, the procedure operates iteratively as follows. At every iteration, we pop the next edge e
to explore from expstack (initialized with the final output edge). Then, we check ADC to see what is the
APHA instance and proof string pair (ye, 7re) on the edge e, and look for a corresponding triple of the
form (ye, 7re, w) in the extracted list extlist. (From the APHA list-extraction property, this succeeds, and,
moreover, w is a valid witness with all but negligible probability.) If we have already seen the instance-
witness pair (Ye, w) on some edge edge e', we grow the graph of ADC by making the (hitherto unknown)
source vertex of e the same as the source of e'. Otherwise, we grow ADC by making the source of e a new
vertex v. If w is a witness that uses the base case of the PCD machine, then v is a source vertex and we
are done for this iteration. Otherwise v is a new internal vertex, and we add the edges leading to its (yet
unknown) parents to expstack. The labels on ADC are updated accordingly. Termination is ensured by
the monotonicity of the counters tracking the depth of proof aggregation.
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Applications and Design Patterns

Proof-carrying data is a flexible and powerful framework that can be applied to security goals in many
problem domains. Below are some examples of domains where we envision applicability. We stress that

the following discussion is intended to give a glimpse of things to come; full realizations, and evaluation
of concrete practicality, exceed the scope of the present thesis.

Distributed theorem proving. Proof-carrying data can be interpreted as a new result in the theory of

proofs: "distributed theorem proving" is feasible. It was previously known, via probabilistically-checkable
proofs [12] and CS proofs [107], that one can be convinced of a theorem much quicker than by inspecting

the theorem's proof. However, consider a theorem whose proof is built on various (possibly nested)
lemmas proved by different people. In order to quickly convince a verifier of the theorem's truth, in

previous techniques, we would have to obtain and concatenate the full (long) proofs of all the lemmas,
and only then use (for example) CS proofs to compress them. PCD implies that compressed proofs for
the lemmas can be directly used to obtain a compressed proof of the reliant theorem, and moreover the

latter's length is essentially independent of the length of the lemmas' proofs.

Multilevel security. As mentioned in Section 1.1, PCD may be used for information flow control. For

example, consider enforcing multilevel security [2, Chap. 8.6] in a room full of data-processing machines.
We want to publish outputs labeled "non-secret", but are concerned that they may have been tainted

by "secret" information (e.g., due to bugs, via software side channel attacks [27], or perhaps via literal
eavesdropping [100][9][133]).

Suppose every "non-secret" input entering the system is digitally signed as such, by some classifier, under

a verification key vk,,. Suppose moreover (for simplicity) that the scheduling of which-program-to-apply-
on-what-data is fully specified in advance and that the prescribed programs are deterministic. Then we

can define the compliance predicate C as verifying that, in the distributed computation transcript, the
output of every vertex is either properly signed under vk, or is the result of correctly executing some
program prg on the vertex's inputs and this is indeed the prescribed program according to the schedule.
Then, every C-compliant distributed computation transcript consists of applying the scheduled programs
to "non-secret" inputs. Thus, its final output is independent of secret inputs.

The PCD system augments every message in the system with a proof string that attests this C-compliance.
Eventually, a censor at the system perimeter inspects the final output by verifying its associated proof,
and lets out only properly-verified messages (as in Figure 1-2). Because verification is concerned with

properties of the output per se, security is unaffected by anomalies (faults and leakage) in the preceding

computation.

Bug attacks and IT supply chain. Faults can be devastating to security [22]. However, hardware and

software components are often produced in far-away lands from parts of uncertain origin. This information

technology (IT) supply chain issue forms risks to users and organizations [1] [23] [94] [128]. Using PCD, one

can achieve fault isolation and accountability at the level of system components, e.g., chips or software
modules, by having each component augment every output with a proof that its computation, including all
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history it relied on, were correct. This requires the components to have a trusted functional specification
(to be encoded into the compliance predicate), but their actual realization need not be trusted.

Simulations and MMO. Consider a simulation such as massively multiplayer online (MMO) worlds.
These typically entail certain invariants ("laws of physics"), together with inputs chosen at human users'
discretion. A common security goal is to ensure that a particular player does not cheat (e.g., by modifying
the game code). Today, this is typically enforced by a centralized server, which is unscalable. Attempts
at secure peer-to-peer architectures have seen very limited success [124][58]. PCD offers a potential
solution approach when the underlying information flow has sufficient locality (as is it the case for most
simulations): start with a naive (insecure) peer-to-peer system, and enforce the invariants by augmenting
every message with a proof of the requisite properties.

Financial systems. As a special case of the above, one can think of financial systems as a "game"
where parties perform local transactions subject to certain rules. For example, in any transaction, the
total amount of currency held by the parties must not increase (unless the government is involved). We
conjecture that interesting financial settings can be thus captured and allowed to proceed in a secure
distributed fashion. Potentially, this may capture financial processes that are much richer than the
consumer-vendor relations of traditional e-cash.

Distributed dynamic program analysis. Consider, for example, taint propagation - a popular
dynamic program analysis technique which tracks propagation of information inside programs. Current
systems (e.g., [117]) cannot securely span mutually untrusting platforms. Since tainting rules are easily
expressed by a compliance predicate that observes the computation of a program, PCD can maintain
tainting across a distributed computation.

Distributed type safety. Language-based type-safety mechanisms have tremendous expressive power
[122] [123], but are targeted at the case where the underlying execution platform can be trusted to enforce
type rules. Thus, they typically cannot be applied across distributed systems consisting of multiple
mutually-untrusting execution platforms. This barrier can be surmounted by using PCD to augment
typed values passing between systems with proofs for the correctness of the type.

Generalizing: design patterns. The PCD approach allows a system designer to "program in" the
security requirement into a compliance predicate, and have it "magically" enforced by the PCD system.
As gleaned from the above examples, this programming can be nontrivial and requires various tricks.
This is somewhat similar to the world of software engineering, and indeed we can borrow some meta-
techniques from that world. In particular, design patterns [57] are a very useful method for capturing
common problems and solution techniques in a loosely-structured way. A number of such design patterns
are already evident in the above examples (e.g., using signatures to designate parties or properties). We
envision, and are exploring, a library of such patterns to aid system designers.
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Conclusions and Open Problems

Conclusions. We showed how to construct assisted-prover hearsay arguments: concise non-interactive

arguments that allow for "aggregability" of proof strings. Our construction assumes only the existence

of collision-resistant hashing schemes, and is in a model where parties have black-box access to a simple

stateless trusted functionality.

Using these, we showed how to construct a proof-carrying data system, i.e., a protocol compiler that

can enforce any efficiently-computable local invariant, called the compliance predicate, on distributed

computations performed by mutually-untrusting parties.

Such a protocol compiler enables a new solution approach to security design that we call proof-carrying

data. This solution approach provides a framework for achieving certain security properties in a non-

conventional way, which circumvents many difficulties with current approaches. In proof-carrying data,
faults and leakage are acknowledged as an expected occurrence, and rendered inconsequential by reason-

ing about properties of data that are independent of the preceding computation. The system designer

prescribes the desired properties of the computation's output by choosing a compliance predicate; proofs

of these properties are attached to the data flowing through the system, and are mutually verified by the

system's components. We believe that in this way many security engineering problems are reduced to

compliance engineering, the task of choosing a "good" compliance predicate for the given problem; this

task is significantly simpler because it enables the system designer to only reason about properties of

data, and not worry about which components of a possibly large and complex system may be untrusted,
faulty, or leaky.

Open problems. The work of this thesis leaves open several future research directions:

- Assumptions. We showed how to construct a proof-carrying data system in a model where par-

ties have black-box access to some functionality (e.g., a simple hardware token). The problem of
weakening this requirement, or formally proving that it is (in some sense) necessary, remains open.

- Practicality. Of particular interest is surmounting the current inefficiency of the underlying argu-

ment systems and obtaining a fully practical realization.

- Applications. In this work we briefly touched upon potential applications; this leaves many op-

portunities for fleshing out the details, devising design patterns, and implementing real systems.

- Extensions. A proof-carrying data system with the additional property of zero-knowledge would

be useful in many applications.
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Appendix A

Full Proof of Security for APHA

Systems

We now give the details for the proof of Claim 4.4.2; a sketch of the proof was already given in Section 4.4.
Recall that we need to prove the list-extraction property of APHA systems, which will complete the proof
of Theorem 4.3.1 (i.e., that APHA systems whose oracle is signed-input-and-randomness can be built from
any signature scheme and public-coin constant-round universal arguments).

In order to show that the list-extractor LE given in Section 4.4 works, we define a sequence of intermediate
constructions of increasing power, starting from universal-argument systems, and ending with APHA
systems. Throughout, we will make use of the notion of black-box rewinding access, which is defined in
Section 2.2.2 and denoted AIB

As a preliminary, we prove a (standard) probability lemma that we will use throughout our proofs.

A.1 A probability lemma

Roughly, we prove that any predicate over a product probability distribution can be usefully decomposed
into two predicates over the two probability distributions of the product probability distribution.

Lemma A.1.1. Let A and B be sets. If X is a predicate over A x B such that

Pr [X(pi, p2)] > 2e
(p1,p 2)EAXB

then

Pr Pr [X(p 1, p2)] > > 6 . (A.1)
p 16A [p2EB

Proof. Let S be the set of "good" pi, i.e.,

S pi E A: Pr [X(pi, p2)] > -
p2 EB

Suppose (A.1) is violated. Then the premise is contradicted:

Pr [X(p1 , p2)] = Pr [pi E S] - Pr [X(pi, p 2)] + Pr [pi ( S] - Pr [X(p1, p 2)]
(p 1 ,p2 )EAxB p1 EA p2EB p 16A p2EB

<e- 1 + 1 -E= 2E .
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The above lemma will be useful to us in the case of e = 1/poly(k), because it tells us that if we randomly
condition a predicate with non-negligible support size 2e, then, with non-negligible probability 6, we
obtain a conditional predicate whose support size is e, which is still non-negligible.

A.2 Universal arguments with adaptive provers

First, starting from a universal argument system (PUA, VUA), which satisfies a weak proof-of-knowledge
(PoK) property,1 we show how to construct a pair of machines (P, V) for which the weak PoK holds
even when the prover itself adaptively chooses a claimed instance y. The prover has oracle access to a
functionality 0' (informally called a "query box", and denoted O' when specifying its randomness) that
outputs random strings upon request; the prover interacts with 0', and then outputs an instance y and
a proof string r0 for the claim "y E Su". When verifying the output of the prover, we allow Vo to see
all the query-answer pairs contained in the transcript trans' between the prover and 0'. The weak PoK
property in this setting is as follows:

Claim A.2.1. Let k E N. For every (possibly cheating) prover circuit Po of size poly(k) and every positive
polynomial p, there exists a positive polynomial p' and a probabilistic polynomial-time knowledge extractor
E0 (which can be efficiently found) such that the following holds: if Po convinces V with non-negligible
probability,

Pr [Vo (trans', y, wro) 1 (y, 7ro) +- P1 ; trans' - , >pEt1 } Ipoly(k) p(k)

then Eo, with input the randomness p used by 0' and with rewinding oracle access to Po, extracts a valid
witness w for y with non-negligible probability,

r ~o 1Pr [(y, w) E Ru (y, 1ro) +- P ; w +- E> (1t, p)>
pE{o,1}PolY(k) p(k)

(The input 1 to E0 is a technical requirement to ensure that E0 is able to output a full witness for y.)

We now construct (P, V) from (PUA, VUA). The idea of the construction is to make V accept any (y, 7ro)

for which 7ro is an accepting universal-argument transcript (ri, wi, r2 , W2) for y, as long as V confirms, by
looking at the query-answers pairs of a prover to 0', that indeed r1 and r 2 are random and that indeed
w1 had been "committed to" before r 2 was generated. Then, P is constructed from PUA in the obvious
way. More precisely, the machines of P and V are as follows:

Construction A.2.2 (Po). The prover Po0'(y, w) is defined as follows:

1. Query 0' with qi = (y,p1(y|)) to obtain random string ri.
2. Run PUA(y, w; ri), the universal-argument prover with r1 as VUA'S first message, and let w, be its

output (which is the first message that would have been sent to VUA)-
3. Query 0' with q2 = ((y,W1),P 2(jy|)) to obtain random string r 2 -
4. Run PUA (y, w; ri, r 2), the universal-argument prover with r1 and r 2 as VUA's first and second mes-

sages, and let W2 be its output (which is the second message that would have been sent to VUA)-
5. Define 7ro = (ri, wi, r 2, W2 ), and output 7ro .

Construction A.2.3 (V). The verifier Vo(trans', y, 7ro) is defined as follows:

1. Parse 7ro as (ri,wi,r2 ,W2 ).
2. Verify that |ril =p1(lyl) and Ir2 l =P2(lyl).
3. Verify that trans' contains the query-answer pairs (y, ri) and ((y, wi), r2 ).
4. Verify that VUA (y; rl, wl, r2, W2) = 1.

We now prove that the pair of machines (Po, V) from Construction A.2.2 and Construction A.2.3 satisfies
the weak proof-of-knowledge property of Claim A.2.1.

'See Section 3.3.4, under paragraph entitled "Universal arguments", for the definition of universal arguments.
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Proof of Claim A.2.1. Let P0 be a (possibly cheating) prover circuit of size poly(k) that, with oracle

access to a query box 0', convinces the verifier V (to accept some instance and proof string of his

choosing) with some non-negligible probability 6.

First, we exhibit a procedure makeUAprover that uses Po to probabilistically generate an instance y
and a universal-argument prover PUA; moreover, we prove that with non-negligible probability (over the

generation of PUA), PUA convinces VUA that y E Su with non-negligible probability.

Fix some topological order on the gates of PO, and note that P0 always makes at most 1 _ |Pol queries.

The procedure makeUAprover, on input the randomness p of the query box, is defined as follows:

1. Compute (y, iro) <- P0 A, by simulating the query box O'.

2. Draw query indices i, j +- [1] such that i < j.

3. Parse p as answers to the 1 queries of Po. Define p[i,jj as p with the i-th and j-th answers omitted.

4. Run P0 with query box 0' until Po's i-th query qj.

5. Verify that qj = (y,p1(lyI)); otherwise, abort.

6. Define PUA = PUA(Y, i, j, P[ij]) to be the following (universal-argument) prover:

PUA 1. Run P0 until its i-th query, using p[ij] to answer queries.

2. Upon receiving VUA's first message r, give r1 as answer to the i-th query of Po.
3. Continue running Po until its j-th query qj, using p[jj] to answer queries.
4. Verify that qj = ((y,wi),P2(yI)), for some wi, and send w1 to VUA; otherwise, abort.

5. Upon receiving VUA'S second message r2, give r 2 as answer to the j-th query of P.
6. Continue running Po using p[ij] to answer queries, until it outputs (y', 7ro).
7. If y' # y or 7ro is not of the form (ri, wi, r2 , w 2 ), abort.
8. Send w2 to VUA-

7. Output (y, (PUA)) -

By construction, whenever V accepts some instance y and proof ro = (ri, w1, r2 , W2) from some prover

Po, it is the case that P0 queried 0' with queries (y, ri) and ((y, wi), r2), in this order. If on query answers

p the prover Po, using query box O', outputs (y, 7ro) and its i-th and j-th queries are of the above form,
we say that (i, j) are good indices for p (if there are multiple such good indices, always choose the least
such indices). Intuitively, the good indices are those that contain the relevant public-coin challenges from

the UA verifier, and the procedure makeUAprover tries to guess these good indices (i, j) for p.

Consider the event ( (over i and j drawn by makeUAprover and over a random choice of its input p) that

Vo accepts the output of P0 (when using query box O') and (i, j) are good indices for p. This event has

non-negligible probability, at least 6/12.

Then, invoking Lemma A.1.1 with e = 6/(212), X =, A consisting of possible values of (i, j, p[ijj), and

B consisting of possible values of (pi, pj), we get:

Pr Pr [(i, j, p[i,]pi, p,)] > E > 6
(i~J,Psiji) I(Pi,Pj)

and thus

Pr Pr Vo accepts OP and (i, j) are good indices for p[jj, pi, pj > E > .

By construction, the innermost event implies that when VUA produces challenges (ri, r2) = (pi, pj), it is
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convinced by PUA(y, i,j, P[ij]) that y E Su. Hence,

Pr Pr VUA is convinced by PUA that y E Su > E (y, (PUA)) <- makeUAprover(p) > e

Next, we exhibit a strategy for the knowledge extractor Eo. Essentially, Eo invokes the procedure
makeUAprover as a subroutine, and then uses the universal-argument knowledge extractor EUA to recover

a witness for the given instance. The knowledge extractor EPO (1t, y, p) is defined as follows:

E P(1*, p) = 1 (Y, (PUA )) <-- makeUA prover p)
0 t( (p))

2. For i E [t], wi <- ET(F"^(Y i).
3. Output w = Wi ... wt.

We have shown above that, with non-negligible probability, makeUAprover generates a PUA that convinces
VUA that y E Su with non-negligible probability. We can now invoke the weak proof-of-knowledge
property of universal arguments, to deduce that, with non-negligible probability, EUA(y, -) is an implicit
representation of a valid witness for y. Thus, with non-negligible probability, we can recover a valid
witness w for y by asking each bit wi of the witness to EUA-

We observe that the proof above still holds for any prover P that has oracle access to a uniformly-
generated polynomial-time oracle. This fact is used implicitly in the proofs of the constructions that
follow.

A.3 Achieving non-interaction through a SIR oracle

Next, we show how to replace the (stateful and probabilistic) query box 0' with a (stateless and proba-
bilistic) oracle 0", and obtain another argument system. In doing so, we avoid the need for the verifier
to know the transcript between the prover and 0' (as was the case for Vo); instead, we use signatures
to force the prover to include a genuine transcript in its proof string. The resulting proof system is
non-interactive in the assisted prover model, where the oracle is 0" (as opposed to a SIR oracle, which
will appear in the next construction).

The new argument system is a triple (G 1 , P1 , V), because this time we need an oracle generator G1 that
outputs 0" together with its corresponding verification key vki. The weak PoK property in this new
setting takes the following form:

Claim A.3.1. Let k e N. For every (possibly cheating) prover circuit P1 of size poly(k) and every positive
polynomial p, there exists a positive polynomial p' and a probabilistic knowledge extractor E1 (which can
be efficiently found) such that the following holds: if P1 convinces V1 with non-negligible probability,

Pr [V(vki, y, ri) = 1 (Og,,vki, Sk) <- G1(1, p) ; (y, 7ri) p-- pskj (vki) > ,
pE{o,1}poly(k) L I p(k)

then E1 , on input the verification key vk1 and the randomness p used by 0", with rewinding oracle access
to P1 , and with oracle access to the signing oracle SsIG, extracts a valid witness w for y with non-negligible
probability,

Pr [(y, w) E Ru (O/ 1, vkiSa) +- G1(1kp
pe ,1POly(k)

(y, i1) +- P pski (vki); w +- El 1 ' , vki, p) > p'(k)

(The input I to E1 is a technical requirement to ensure that E1 is able to output a full witness for y.)
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Starting from (Po, Vo), and using the signature scheme SIG defined in Section 2.3.5, we construct (G 1,
P1 , V1 ) in the following way:

Construction A.3.2 (G1 ). The oracle generator G1 (1k, p) is defined as follows:

1. (vki, ski) <- GsIG(1k).

2. Let OSk1 be the oracle that, on input (x, s), does the following:

(a) r <- {0, 1}s, using the next s bits of the random string p.
(b) - +- SSIG(ski, (x, r)).

(c) Output (r, -).

3. Define 5Sk = SsIG(sk1, )-
4. Output (O,,kl, vki,Sk,).

Construction A.3.3 (P1). The prover Pf"(y, w) is defined as follows:

1. Run Pod'(y, w) by simulating its query box 0' as follows: for each query q = (x, s), query the oracle

0" with q to obtain a = (r, a), and return r as answer.
2. Let iro be the output of Po(y, w) and let trans" {(qi, a%)} be the transcript of its interaction with

the oracle 0".
3. Output 7ri = (trans", 7ro).

Construction A.3.4 (VI). The verifier Vi(vki, y, 7ri) is defined as follows:

1. Parse 7ri as (trans",7ro).
2. Verify that trans" = {(qi, a%)}% is of the correct form and has valid signatures, i.e., that qj = (xi, di),

ai = (ri, a), di = Iri 1, and VSIG(vk1, ((xi, di), ri), a) = 1, for some strings xi and ri.

3. Define the query-answer set trans' to be the set {(xi, rb)}%.
4. Verify that Vo(trans',y,7ro) = 1.

We now prove that the construction for (G 1, P1 , V1) given above satisfies the required weak PoK property.

Proof of Claim A..1. Let P1 be a (possibly cheating) prover circuit that, with oracle access to 0",
convinces the verifier V1 with non-negligible probability.

By construction, whenever V is convinced by P1, it holds that the transcript trans" contained in the

proof 7r1 output by Pi is of the correct form with valid signatures (as specified in Step 2 of V1). By the

existential unforgeability property of the signature scheme SIG = (GSIG, SSIG, VSIG), except with negligible

probability, every query-answer pair (qj, aj) contained in trans" is genuine, i.e., Pi did query 0" with

query qj and received a corresponding answer ai; 2 so condition on this event happening.

First, we exhibit a procedure make0prover that uses P1 to generate a prover P0 for V. The procedure

make0prover, on input vki, outputs the prover Po = Po(vki) defined as follows:

1. Run Pf'"(vki) by simulating 0" as follows: for each query q = (x, s), query 0' with q to obtain

randomness r, then query Ssk with query (x, r) to obtain signature a, and return (r, a).

2. Let the output of Pf"(vki) be (y,7r1 ) and parse 7ri as (trans",7ro).

3. Output (y,7 0 ).

(Note P0 will be given oracle access to 0' when challenged to convince a verifier V; also, it will be given

oracle access to SIk by the extractor Ei that will use it.)

Now consider the event ( (over the random string p and key pairs (vki, ski) <- GsIG(lk)) that V1 accepts

the output of P ',l(vki). By assumption, this event has non-negligible probability 6. Then, invoking

Lemma A.1.1 with e = 6/2, X = (, A consisting of possible values of (vki,ski), and B consisting of

possible values of p, we get:

Pr [Pr [((ski, vki, p)] > E > e
(vki,ski) P I

2 This argument can be made more precise by considering a forger for each query-answer pair of the transcript; each such

forger attempts to forge by outputting his corresponding query-answer pair; then, unforgeability implies that the probability

of success of each such forger is negligible.
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and thus

Pr Pr V accepts P, (vki) > E > E
(vki,ski) _ P II I

By construction, the innermost event is equal to the event that P0 convinces the verifier V when having
oracle access to a query box 0. Hence,

Pr Pr Vo accepts P0 > E >
(Po)<-makeOprover . P I

Next, we exhibit a strategy for the knowledge extractor E1 . Essentially, E1 invokes the procedure
make0prover as a subroutine, and then uses the knowledge extractor E0 to recover a witness for the given

IFi Sskl
instance. The knowledge extractor E 1 sl I (I, vki, y, p) is defined as follows:

El (1, vki, p) 1. (Po) < makeOproverT 1(vki).

2. w <-- E (1,p).
3. Output w.

By now invoking the weak PoK property of (PO, V), we deduce that E0 outputs, with non-negligible
~'ofprobability, a valid witness w for the instance y in the output of Pi ' (which is the same instance as the

one in the output of Pi "''kl (vki)), and this witness is output by E1 , as desired. D

A.4 Forcing a prover to query the witness

Finally, we show how we can "boost" the weak PoK property of (C 1 , P1, V) into the much stronger
APHA list-extraction property, thereby obtaining an APHA system (GAPHA, PAPHA, VAPHA). The main
idea is to require any prover to provide a convincing proof string to V1, with the modification that the
proof string should not refer to the instance y, but instead to some augmented instance yaug; this new
instance Yaug is constructed in a way that "forces" the prover to explicitly include the instance and the
witness in a query to a signing oracle in order to obtain a signature oi.. Intuitively, to see a witness, an
extractor would not need to rewind, but would just need to look at the prover's oracle queries and find
the one resulting in ui.

Consider the following constructions for (GAPHA, PAPHA, VAPHA), equivalent to those that we presented in
Section 4.3.

Construction A.4.1 (GAPHA). The oracle generator GAPHA(1k) is defined as follows:

1. (O"1, vki, Sin <-G(1k).

2. (vk2, sk 2 ) +- GsIG(1k).
3. Define Sg SsIG(sk2,')
4. Define vk (vki, vk2 ).
5. Define 0 = O(sk2 , 0") to be the following:

O(x, s) 1. If s > 0, then output O"(x, s);
2. If s = 0, then output (e, Sj(x, e)).

6. Output (0, vk, Ssk2).
SIG

Construction A.4.2 (PAPHA). The prover PAPHA(vk, y, w) is defined as follows:

1. Parse vk as (vki, vk 2).
2. iw +- O(("inst-wit", y, w), 0).
3. Yaug <AUG(vk2 , , y).
4. 7r1 +- Pi (Yaug, W).
5. Define 7r' = (o, gr1 ).
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6. o-' +- O(("proof", '), 0).
7. Output 7r -- (7r', a-').

Construction A.4.3 (VAPHA). The verifier VAPHA(vk, y, 7r) is defined as follows:

1. Parse vk as (vki, vk 2).
2. Parse 7r as (7r', o-') and 7r' as (-i, ri).

3. Verify that VsIG (vk2, (("proof ",r'), c), c-') 1.

4. yaug +- AUG(vk 2 , -iw, y).
5. Verify that V1(vki, yaug,ri) = 1.

We now prove the APHA list-extraction property, thereby completing the proof of Theorem 4.3.1.

Proof of APHA list-extraction property. Fix a prover circuit P. First, we present a strategy for the
APHA list extractor LE. For (0, vk) e GAPHA(1k), consider the following strategy:

LE, on input [P(vk), 0, does the following:

1. Create an empty list extlist.
2. Let (qi, a1),..., (qj, al) be the oracle query-answer pairs in [P(vk), O] for which qj is of the

form (("proof", 7r), 0).

3. For each i E [1], do the following:

(a) Parse 7r' as (o-i ), Ari)) and ai as (e, o), and find some query-answer pair (q, a) in [P(vk), O

such that a = (e, o-i) and q is of the form q = (("inst-wit", y, w), 0).
(b) Add (y, (7r', o'), w) to extlist.

4. Output extlist.

Note that, indeed, | LEI = poly(|I[P(vk), O]|) = poly(k).

Now we prove that the list extractor LE fulfills the list-extraction property. Note that, whenever VAPHA ac-
cepts some proof string 7r = (7r', o-') for some claim "y E Su", it holds that VsIG (vk2, (("proof", 7r'), 6), 0-') =
1 (see Step 3 in VAPHA); hence, by the existential unforgeability property of SIG, with all but negligible
probability, there is at least one query-answer pair (q, a) where q is of the form (("proof", 7r'), 0) and a
is of the form (e, o-'). Let S be the set of those coin tosses (of the oracle 0) for which this is the case and

for which the (possibly cheating) prover circuit P convinces the verifier VAPHA-

Recalling that 7r' is parsed as (o-i, 7 1) (see Step 2 in VAPHA), let Me denote the (possibly empty) subset

of [P(vk), O of those oracle query-answer pairs whose signature contained in the oracle answer is equal
to -i, i.e.,

M.A { (q, a) E [P(vk), 01: a (r, oiw) for some string r}

Given some query q to the oracle and some instance g, we will say that q is valid with respect to 5 if q is
of the form (("inst-wit", , i), 0) and ( , @) E Su for some string @.

We now split S into different subsets. For oracle coin tosses in S, it is the case that 7r convinces VAPHA

that y E Su, so, in particular, it holds that V(vki, yaug, 7r) = 1 (see Step 5 in VAPHA). We will show that
most of the probability mass in S goes into a "good" subset, for which the list extractor LE described
above succeeds. For each "bad" subset, we prove that it has negligible probability mass.

Case 1: A C S is the set of those coin tosses for which yaug = AUG(vk 2, -iw, y) # Su. This set has
negligible probability mass by the adaptive computational soundness of (G1 , P1, V1), which is implied by
its weak proof-of-knowledge property (see Claim A.3.1).

Case 2: B C S is the set of those coin tosses for which yaug = AUG(vk 2 , c-iw, y) E Su and in (possibly
empty) M,,= {(q,ai),... ,(qd, ad)} all the qj's are not valid with respect to y. Suppose by way of
contradiction that the probability mass of B is non-negligible. In such a case, we show how to construct
a prover P1 that convinces V1 with non-negligible probability, so that, using E1 , we can extract (with
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non-negligible probability) a valid witness w for yaug; the message-signature pair

(("inst-wit", y, W), e), O-iw) (A.2)

will then contradict the existential unforgeability property of SIG.

We exhibit a procedure makelprover that uses P to generate a prover P1 for V1. The procedure
makelprovertp, on input vk2 , outputs the prover P1 = P 1 (vk 2 ) that, on input vki and with oracles
0" and Ssk, does the following:0"adSSIG'

1. Define vk = (vki, vk2).
2. Run P0 (vk) by simulating its oracle 0 as follows: for each query q - (x, s), if s = 0 then return

the answer (e, Sik2(X, e)); if s > 0, then give the circuit the answer O"(q).
3. Let (y, 7r) be the output of P0 (vk).
4. Parse 7r = (7r', o-') and 7r' as (o-i, 7ri).
5. youg <- AUG(vk 2 , t-iw, y).
6. Output (Yaug,7rl).

(Note P1 will be given oracle access to 0" when challenged to convince a verifier V; also, it will be given
oracle access to Sk by the extractor WEAPHA that will use it.)

By the same kind of argument made in the proof of Claim A.3.1, we deduce that P1, with non-negligible
probability, convinces the verifier V1 with non-negligible probability. Hence, similarly, we can construct

a weak proof-of-knowledge extractor WE ' that, on input (1t, vk, 7r, p) is defined as follows:

W Ts, IG(1t,vk,7r,p)a= 1. (P) <- makelprovertP (vk).
2. Parse vk as (vki,vk2).
3. Parse 7r = (7r', o') and 7r' as (o-i, 7ri).

4. yaug <- AUG(vk 2, Ui,, y).

5. w - E SIG(t, vki, yaug, p).
6. Output w.

By the weak PoK property of (P1, Vi), the knowledge extractor Ei outputs a valid witness w for yaug
with non-negligible probability, and thus (A.2) contradicts the existential unforgeability of SIG. 3

Case 3: C C S is the set of those coin tosses for which M i, = {(qi, ai), . . . , (qd, ad)} and there exist
two different pairs (qi, ai) f (qj, aj). This set has negligible probability mass, because the existential
unforgeability property of SIG implies that no efficient adversary can find two messages with the same
signature:

Lemma A.4.4. Let F be a poly(k)-size circuit that is given oracle access to a signing oracle from SIG.
Then, with all but negligible probability, the transcript of interaction of F with the signing oracle contains
no two different queries qi and qj that have as answer the same signature.

Proof. Take i < j and let both be the least such indices. Let h be a bound on the number of queries of
F. (Note that h is polynomial in k.) Consider the circuit F' that, on input a signature verification key
and with oracle access to a signing oracle, does the following:

1. Draw i, j E [h] as guesses for i and j. (If j > i abort.)
2. Run F on input the signature verification key, forwarding its queries to the signing oracle, until F

queries its j-th query qj. Let -i be the answer to the i-th query qi of F.
3. Output (qj, o-).

The circuit F' forges a valid signature for an unqueried message with success probability that is at least
1/h 2 times the probability that F's transcript contains two different queries with the same signature.

3The argument in this section needs adjusting to correct for the potential (anti)correlation between the success of WEAPHA
and the failure of LE, since forgery is achieved only in the intersection of the two events. Unfortunately, this gap in the
argument was discovered after the thesis text was finalized. Please contact the author directly to obtain a revised discussion
of this point.
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Therefore, since SIG is existentially unforgeable, F's transcript contains two different queries with the
same signature with negligible probability. O

Case 4: D C S is the set of those coin tosses for which M,,, = {(qi, ai)} and all the qi is valid
with respect to y. This is the good subset, the above a1 would be identified in Step 3a of LE, and the
corresponding triple will be added to extlist in Step 3b.

We conclude that the coin tosses for which the extractor works, i.e., those in the subset D of S, have

most of the probability mass in S, thus proving the list extraction property. El

We remark that we actually proved a slightly stronger property than the APHA list-extraction property,
because the query answered with the signature as is unique. However, this additional requirement is
not needed for constructing PCD systems using APHA systems, so we do not incorporate it into the
definition of APHA systems.
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Appendix B

Full Proof of Security for PCD
Systems

We prove the PCD proof-of-knowledge property for the PCD system (GPCD, PPCD, VPCD) constructed in
Section 5.3, thus completing the proof of Theorem 5.3.1, which was sketched in Section 5.4.

We briefly review the property that we want to prove, and then give the details of the proof. As before,
we restrict our attention to distributed computation transcripts for which programs have exactly two
inputs and one (alleged) output.

B.1 Review of goals

Given a compliance predicate C and an output string z, consider a (possibly cheating) prover circuit P

that, on input (vk, C, z) and with oracle access to 0, outputs a convincing proof string 7r for z with some
non-negligible probability 6(k) in the security parameter k. The probability is taken over the internal
coin tosses of the PCD oracle generator GPCD and oracle 0.

Our goal is to construct a knowledge extractor circuit EpcD that, on input (P, vk, C, z) and with oracle
access to 0, outputs a C-compliant distributed computation transcript DC with final output z, with
probability equal to 6(k) - p(k), for some negligible function p(k). Moreover, the size of EPCD should be
poly(k).

B.2 Details of proof

Fix a prover circuit P, a compliance predicate C, and an output string z. We give the strategy for the
PCD knowledge extractor EPCD, and then prove that the strategy works. Note that, as we describe the
strategy, we assume that it is possible to perform the prescribed steps; if ever the strategy cannot perform
one of the steps as indicated, it simply aborts and outputs I.

Following the intuition sketched in Section 5.4, the PCD knowledge extractor EPCD, on input (P, vk, C, z)
and with oracle access to 0, does the following:

1. Run P 0 (vk, C, z) to get its output (z, 7r) and the query-answer transcript of its oracle accesses

[P5(vk, C, z), O .

2. Make a new augmented distributed computation transcript ADC = (G, code, data, proof) by defining
the following quantities:

(a) V := {1, 2} and E := {(2, 1)}.
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(b) code(1) :=1 and code(2) :=1.
(c) data(2, 1):= z.

(d) proof(2, 1) := 7r.

3. Make a new exploration stack and push on it the "first" edge:

(a) Create an empty stack expstack.
(b) Add the edge (2, 1) to expstack.

4. Make a new vertex label counter: i +- 2.

5. Make a new cache cache. (Its entries will be the instance-witness pairs that we found, together with
their corresponding edges.)

6. Using the APHA list extractor, extract the list from the prover circuit: extlist <- LE ( P(vk, C, z), O).

7. while expstack is not empty do:

(a) Pop off the next edge from the exploration stack: (j, k) <- expstack.popo.
(b) Construct the instance Y(j,k) and the APHA proof string 7r'Jk) corresponding to the edge (j, k):

i. Z(j,k) +-data(j, k).
ii. 7(j,k) <-proof (j, k).

PC
iii. Parse 7r(j,k) as (7r',k), d(j,k), t(j,k)) and define y =(MPVC, (z(jk), d(jky), t(jk))

(c) Find a triple (y, 7r', w) in extlist such that y = Y(j,k) and 7r' = 7r'yJ); if there is none, abort.

(d) If (Y(j,k), w) already appears in cache as some entry ((Y(,,k), w), (j', k')), then add an edge from
vertex j' to vertex k with data(j', k) = Z(j,k) and proof(j', k) = 7r(j,k), and then delete vertex
j from the graph.

(e) If (y(j,k), w) does not appear in cache as part of any entry, then:

i. Put (y(j,k), w) in cache as entry ((Y(,,k), w), (j, k)).
ii. Parse the witness w as (prg, zin,7rin1 , zin2,7rin 2 )-
iii. Extend the augmented transcript ADC with the two newly discovered edges and their

labels:
A. V:=VU{i+1,i+2} and E:=EU{(i+1,j),(i+2,j)}.
B. code(j) := prg.
C. data(i + 1, j) := zinj and data(i + 2,j) := Zin2 .
D. proof(i + 1, j) := 7rin, and proof(i + 2, j) := 7rin2.

iv. if 7rin 2 #1, do:
A. Parse 7tin 2 as (7r, din2, tin2 )-
B. If din2 < d, add the new edge (i + 2, j) to the exploration stack expstack.

v. if 7rin 1, do:
A. Parse 7rin, as (7r;!, dini,tinl).
B. If din, < d, add the new edge (i + 1, j) to the exploration stack expstack.

vi. Increase the vertex label counter by two: i <- i + 2.

8. Strip from ADC the label proof, to obtain a distributed computation transcript DC, and output DC.

We now argue that EPcD, defined as the strategy above converted to a circuit, works. First, we show
that we can usefully bound the number of loop iterations.

Lemma B.2.1. The number of while loop iterations is poly(k).

Proof. In every iteration of the while loop, an edge is popped off from expstack (Step 7a), a corresponding
witness w is found in the extracted list extlist from the APHA list extractor LE (Step 7c), and then either:



B.2. DETAILS OF PROOF

- the corresponding instance-witness pair already appears in cache (Step 7d), so that an additional

edge is added to ADC to reflect that; in this case, the size of expstack decreases by one while the

size of cache remains unchanged;

- the corresponding instance-witness pair is not in cache (Step 7e), so it is added there and then some

more work is done, which also involves pushing on expstack two new edges; in this case, the size of

expstack increases by one (one pop and two pushes) while the size of cache increases by one.

In summary, in every iteration of the while loop, either the size of expstack decreases by one, or the sizes

of both expstack and cache increase by one.

However, every instance-witness pair (y, w) that is added to cache comes from some triple (y, r', w) in

extlist, and extlist is a list of at most I triples, where l is at most |LE([P(vk, C, z),.O])j = poly(k). Hence,
cache has at most l entries. Therefore, there are at most 21 = poly(k) iterations before expstack becomes

empty, and the strategy halts. D

Next, we observe that each iteration does not take up too much work.

Lemma B.2.2. Every iteration of the while loop takes poly(k) time to complete.

Proof. Before the first iteration of the while loop, all the data structures have size that is poly(k). In

each iteration, the sizes of all the data structures increase by only an additive factor that is poly(k). By

Lemma B.2.1, there are at most poly(k) iterations of the while loop. We conclude that all data structures

have size bounded by poly(k). All steps, being (polynomial-time) operations on the data structures, take

time that is poly(k).

Hence, we can now deduce that the size of EPcD is indeed what we want.

Corollary 3. |EpcDI is poly(k).

Finally, we prove that EPcD extracts a C-compliant augmented transcript from any sufficiently convincing

prover circuit, except with negligible probability.

Lemma B.2.3. If

Pr [VPcD(vk, C, z, 7r) 1 (0, vk) +- GPcD(1k) ; 7r - 50 (vk, C, z)] 6(k)

(where the probability is taken over the internal randomness of GPCD and 0) for some non-negligible
function 6, then

Pr [DC is C-compliant A u, v E V A DC = DCI(u,,) A z = data(u, v)

(0, vk) +- GPcD(1k) ; DC +-- E0D(P, vk, C, Z)] =(k) - A(k)

(where the probability is taken over the internal randomness of GPCD and 0) for some negligible function

p.

Proof. We want to show that, whenever P convinces VPcD to accept some output z and proof string 7r,
except with negligible probability, EPcD successfully extracts a C-compliant transcript with output z. By
construction of EPcD, this holds if every time Step 7c is executed, the desired triple (y, 7r', w) is found in

extlist and the witness w is such that (y(j,k), w) E Ru. We now argue that, whenever P convinces VPcD,
this is the case, except with negligible probability.

Define P' to be the following circuit:

P' on input vk and with oracle access to 0, does the following:

1. 7r <- P(vk, C, z).
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2. Parse 7r as (w', d, t) and define y (Mfc'k, (z, d), t).
3. Output (y, i').

Observe that, whenever P convinces a PCD verifier VPCD, P' convinces an APHA verifier, because P'
is simply an interface around P that "peels off" the PCD layer to expose the APHA layer underneath.
Moreover, observe that, for any (0, vk) E GPcD(1k), it holds that [P'(vk), O = [P(vk, C, z), O and

I|[P(vk, C, z), 0]|I < m _= |(P)|1.

Next, for i E [m], consider the circuit Ci defined as follows:

Ci, on input vk and oracle access to 0, does the following:

1. Run P'0(vk) to obtain [P'(vk), O .
2. extlist - L E ([f'(vk), 0]).
3. Let (yi, 7r, wi) be the i-th entry of extlist, and output (yi, 7r, wi).

By the APHA list-extraction property, whenever (yi, ir) convinces VAPHA, then (yi, wi) is a valid instance-
witness pair, except with negligible probability. Thus, by a simple union bound, we obtain:

Pr Vi E [m], (VAPHA(vk, yi, 7r') = 1) -+ ((yi, wi) E Ru)

(0, vk) <- GPcD(1k) ; (yi, 7r', wi) <- C (vk)] > 1 - 1 (k)

i.e., except with negligible probability, for every i E [m], whenever (yi, 7r ) convinces VAPHA, it holds that
(yi, wi) is a valid instance-witness pair.

Next, for i 6 [m] and b E {1, 2}, consider the circuit Di,b defined as follows:

Di,b, on input vk and oracle access to 0, does the following:

1. Run P'0 (vk) to obtain [P'(vk), O .
2. extlist <- L E (EP'1(vk), 0]).
3. Let (yi, 7r', wi) be the i-th entry of extlist.
4. Parse wi as (prg, zini, 7rini, zin2 ,7rin 2)-
5. Parse rin as (r!b, dinb, tinb) and define Yinb - (MPcv', (zin, din),I tinb).
6. Output (yin,ri',b)

By the APHA list-extraction property, whenever (Yinb, 'mb) convinces VAPHA, then (Yinb, 7;'b) appears as

part of a triple in extlist (output by LE(['(vk), Of)), except with negligible probability. Similarly to
above, by a simple union bound, we obtain:

Pr [Vi E [m], b E {1, 2}, (VAPHA(vk, Yinb, )-- ((Yinb, Win) is part of some triple in extlist)

(0, vk) <- GPcD(1k) ; (yin, In7r) <- Dob(vk) ; extlist <- LE(P'(vk), 0]) > 1 - p(k)

i.e., except with negligible probability, for every i E [m] and b E {1, 2}, whenever (Yinb, ri'b) convinces
VAPHA, it holds that (Yinb, 7ri'nb) can be found as some triple in extlist.

We can put the above two arguments together, to obtain the for every i E [m] and b E {1, 2}, except
with negligible probability, whenever (yi, 7rf) convinces VAPHA, it holds that (yi, wi) E Ru and, moreover,
each of the two pairs (yin,, 7ri') and (Yin2, 7rin 2 ), which can be obtained from wi, are convincing (because
the PCD machine Mfc in instance yj verifies them, and wi is a valid witness for yi) and can be found
in extlist.

Hence, by an inductive argument, it follows that, except with negligible probability, every time Step 7c
is executed, a valid witness is found for the instance.



Statement of Originality

The results contained in this thesis (specifically, Chapter 4, Chapter 5, and Chapter 6) are original
research that is joint work with Eran Tromer, and are contained in the following paper:

- Alessandro Chiesa and Eran Tromer, Proof-Carrying Data and Hearsay Arguments from Signature
Cards. Proceedings of the 1st Symposium on Innovations in Computer Science, 310-331, Tsinghua
University Press, 2010. [36]
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