
Customizable Application for Personal Information

Management

by

Jamie Liu

S.B., Massachusetts Institute of Technology (2005)

MASSACHUSETTS INSTlIJTE
OF TECHNOLOGY

AUG 2 4 2010

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the
ARCHIVES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

@ Massachusetts Institute of Technology 2010. All rights reserved.

Author
Depa ent of Electrical Engineering and Computer Science

May 17, 2010

Certified by..

Professor, Department of

Accepted by

avi arger
Electrical ngineering and Computer Science

Thesis Supervisor

A\j kJ NDr. Christopher J. Terman
Chairman, Department Committee on Graduate Theses

Customizable Application for Personal Information

Management

by

Jamie Liu

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2010, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

As digital content becomes increasingly pervasive in our daily lives, next-generation
organizational tools must be developed to help end users curate that information.
The information management tools available today are limited in several ways. They
are either restrictive in how users define and organize their data, or they offer few
options in how users can view and interact with that data. In this thesis, we introduce
a new application geared toward the layman end user to help resolve this lack of
personalization when managing data. With this tool, users can store any collection
of information (ie. to do lists, address book, DVD collection), customize how they
want to view and browse that data, and create any number of visualizations for the
same data set or overlapping sets of data. For example, a user might want to manage
an address book for a collection of all contacts, and manage a different set of items
involving all research-related items, including colleagues, in another visualization.
This tool allows her to do this without duplicating the overlapping data set for contact
information of colleagues, enabling her to make changes to an item in one visualization
and see that change applied to any other visualization that includes the same item.
Moreover, users can import data from other sources, as well as share their data
with others either with a visualization, such that the receiver can interact with the
visualization the user has already created, or as raw data, such that the receiver can
create his or her own visualization of the data.

Thesis Supervisor: David R. Karger
Title: Professor, Department of Electrical Engineering and Computer Science

4

Contents

1 Introduction 9

1.1 Related Work . 10

1.1.1 Persona . 10

1.1.2 Data-Specific Applications . 10

1.1.3 Generic Data Applications . 12

1.1.4 Summary . 17

1.2 Thesis Contributions . 19

1.3 Thesis Outline . 20

2 Background 21

2.1 Exhibit. 21

2.2 Dido 26

2.2.1 Overview . 26

2.2.2 Limitations . 28

3 Dido Enhancements 31

3.1 Dido Controls . 31

3.2 W izard and Updated Dialogs . 32

3.3 Editor Enhancements . 41

4 Central Storage Support 47

4.1 Data Store . 47

4.2 Terminology . 50

4.3 High Level Design . 51

4.3.1 Storage Interface . 51

4.3.2 Utility M odules . 53

4.4 User Interface Features . 53

4.4.1 Dido M anager . 54

4.4.2 Dido Data Selector . 55

4.4.3 Plug-ins to Dido . 60

4.5 Summary . 63

5 Evaluation 65

5.1 Usability Results . 65

5.1.1 Dido Enhancements. 66

5.1.2 Central Storage Support . 70

5.1.3 Summary . 73

5.2 User Study Results . 74

5.2.1 Use cases . 75

5.2.2 Barriers . 76

5.2.3 Summary . 77

6 Conclusion 79

6.1 Contributions . 79

6.2 Future W ork . 80

6.2.1 Database . 80

6.2.2 Advanced Lens support. 81

6.2.3 Anchored Dido and Standalone Dido 82

List of Figures

1-1 Google Does spreadsheet

1-2 Bento's item input form

1-3 Bento view options

1-4 Exhibit of US Presidents

1-5 Dido file

2-1 Exhibit Map view

2-2 Exhibit Timeline view

2-3 Exhibit lens used in Figure 2-1. . . .

2-4 List facet for "People" in use

,2-5 User is changing Feynman's name whil

from 1965.

2-6 Dido's WYSIWYG editor

. 13

. 15

..... 16

..... 17

..... 18

.... 23

.... 24

.... 24

.... 25

.e browsing Nobel prize winners

3-1 Control Panel vs Menu Bar UI .

3-2 Getting Started wizard launched for new Dido

3-3 View configuration dialogs .

3-4 Edit View dialog changes .

3-5 Dialog after user has added a view, allowing user to add another one

or continue. .

3-6 Facet Location Picker dialog

3-7 Edit Facet dialog .

3-8 Lens Template Picker, with empty lens editor behind the dialog. . . .

3-9 When landscape or portrait options are selected in the Lens Template

Picker, the user can enter an image property.

3-10 After the user selects a lens template, the lens is created and the user

is prompted to save changes. .

3-11 If the user chooses to save changes, he or she is brought to the Exhibit

Viewer to view the new exhibit. .

3-12 Original display editor .

3-13 New display editors .

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

Dependencies for Standalone Dido and Anchored Dido

Home Page .

Dido Creator .

Dido Creator - Select type

Dido Creator - Refine type

New Type dialog .

Import dialog .

Data Picker .

Export options .

44

45

. 52

. 55

. 57

. 58

. 58

. 59

. 61

. 62

. 63

Chapter 1

Introduction

The scope and quantity of digital information has increased dramatically over the

past several decades. The internet gave users access to more data, first as static con-

tent contained in linked documents, followed by larger quantities of dynamic content

displayed in scalable, interactive, database-backed websites, and now in more cases

as raw data[16], where information is provided sans presentation. Further, the emer-

gence of "Web 2.0" technologies has given rise to improved social media sharing and

organizational tools, and the ability to sort, search, and filter data sets became the

status quo.

With the growing amount of accessible data, and the expanding feature set with

which software applications enable users find content quickly, people are becoming in-

creasingly reliant on software to manage more of their information. However, existing

tools for managing one's own personal data remain limited. Current applications pro-

vide inflexible structures for storing and saving information, and/or provide limited

means of visualizing and browsing that information, such that users cannot curate

their content in a manner most appropriate for their personal needs. We try to resolve

this by creating a customizable tool to allow layman end users to visualize the data

they care about in ways that are most effective for them. With this tool, users can

store any collection of information (ie. to do lists, address book, DVD collection),

specify the properties of that data, choose how they want to visualize their collection,

and decide what type of filter widgets to add to best browse and retrieve their data.

Users can also safely create any number of visualizations for the same data set or

overlapping sets of data.

1.1 Related Work

Today, people must use different software applications to manage their different types

of information1 . We consider two classes of information management tools: applica-

tions designed for specific data types ("Data-specific applications") and those de-

signed for a generic set of data ("Generic data applications"). We describe the ben-

efits and limitations of these two categories of applications in this section. However,

before we dive into existing applications, let us first first define a persona to help us

illustrate possible use cases.

1.1.1 Persona

Graduate Student Sally is a multifaceted person with information to manage for

both her professional and personal life, including contacts, tasks, papers and books

read. For example, Sally needs to maintain a contact list for everyone she knows. It is

not only important for her to be able to retrieve contact information for a particular

person, but she also wants to get a better sense for groups of people in her network.

She may need to look up all people in her research group if she has a question, or she

may want to see all the people who live in a city she is about to visit.

1.1.2 Data-Specific Applications

Examples of "data-specific" applications include Apple's Address Book for managing

contact information, iTunes[8] for organizing digital music files, and Picasa[15] for

displaying photos. All of these applications are designed specifically for a type of

data (ie. Person/Contact), assume that users care about a specific set of attributes

or properties that define the data item (ie. Name, Address, Phone, etc), and define

'In this thesis, the term "type" in association with information or data is used to describe any
set of data items that share a common "schema" or set of attributes or properties.

how users want to visualize and browse the data items (ie. List view). Moreover,

these applications assume that all users organize and manage their data the same

way. This can be powerful if they offer exactly what a user wants and needs, but

otherwise can be quite limiting. In either case, users are dependent on the third party

application developers for deciding how they want to manage their data.

Sally tries to use Apple's Address Book to manage these contacts. Address Book

is a CRUD[10] application that allows users to Create, Read/browse, Update, and

Delete people's contact information, including phone numbers, email addresses, and

physical addresses. Its user interface reflects that of a traditional physical address

book; the application sorts all the Person items alphabetically and users can categorize

their contacts by manually creating "directories" and adding Person entries to each

directory. It also has a search field that incrementally searches all text stored in the

application. While this application offers the basic features of a CRUD application,

Sally is limited in how she can visualize the entire collection, how she can interact

with the collection, and exactly what item properties she can save. If Sally is going

to a conference in the Bay area and wants to view all contacts who live in that area

whom she can visit, the best she can do is manually create a directory for all Bay

area contacts. She cannot view her contacts on a map based on home location and

zoom into the Bay area, nor can she use faceted search to first filter contacts to all

those who live in California, followed by those who live in any of the cities in the

area. In addition, if someone moves, she must manually change that person's address

as well as manually add or remove that person from any directory that may be based

on home location.

Another drawback in using an inflexible third party application is that while she

is able to add custom labels for fields, all field types are for names, phone numbers,

email addresses, or physical addresses, with the exception of a catch-all "Notes" field.

If Sally wanted to add additional information about a person, such as "profession,"

"hobbies," or "papers-written," she has to add it to the catch-all "Notes" field. As a

result, she cannot sort or filter on these custom properties. With this lack of custom

support, Sally is severely limited in how she can interact with her data.

1.1.3 Generic Data Applications

Generic data applications, such as Excel[12] or Google Docs[41, are what we consider

to be the second class of information management applications. They resolve the issue

of allowing users to define the properties of their data, such that Sally can specify

the "profession," "hobbies," "papers-written" and any other specific details she finds

relevant. In addition, she can use such applications to manage more obscure data,

where a specialized solution does not already exist. For example, she can manage

information about "Trips" taken or "Inventory." However, despite supporting data

customization, these applications still have their drawbacks. We discuss four generic

data applications and their limitations in this section.

Spreadsheets

Spreadsheet applications such as Microsoft Excel[12] and Google Docs[4] offer a simple

interface for entering and organizing data in a table format (see Figure 1-1). With

these applications, Sally can choose to specify what type of data to save and any

custom fields (or column headers) she may want to store for each item. For the

Contacts example, she can now save the additional properties, such as "profession"

and "papers written." She can sort her data on any column when browsing, but she is

still limited in visualizations and browsing capabilities. Spreadsheets were originally

designed to handle numeric data, and thus offer rich analyses to view and handle

those data types. As a result, aside from sorting and viewing numeric data in charts

and graphs, Sally can only visualize her data in a tabular view. She cannot view her

data with an entirely different visualization, such as a Map view, nor can she use

faceted browsing to filter her list of items to those with certain property values. This

can be very restricting for someone who is trying to work with a multi-faceted data

set.

Figure 1-1: Google Docs spreadsheet

Bento

Filemaker, Inc.[3] offers a software application for Mac OS called Bento, which pro-

vides a few more advantages over spreadsheets in managing data, but remains lim-

ited in visualization and browsing options. Bento allows users to create a personal

database without having to deal with configuring tables, designing a schema, and issu-

ing query calls to retrieve data. Instead, users are given a nice graphical user interface

to add, view, modify, and delete items. Unlike spreadsheets, Bento allows users to

customize an input form by specifying what fields a given item should have (see Fig-

ure 1-2(a)). The input form supports certain media types, such as photos and video,

rather than just text, and it can be viewed as either the main content or alongside the

collection as a preview of the selected item (see Figure 1-2(b)). While spreadsheets

offer a static table view, Bento provides that as well as a thumbnail view, shown in

Figure 1-3. This, however, is the extent of how users can view their information. As

with spreadsheets, a user cannot filter items by different facets of the information nor

view the content with a customized or completely different visualization.

Exhibit

A publishing framework called Exhibit [7] helps overcome the visualization limitations

mentioned when describing the other applications. Exhibit provides a framework that

supports text search, faceted browsing, and several visualizations, including tabular,

list, timeline and map views. Figure 1-4 shows a sample Exhibit of US presidents

visualized on a map, with a search field and facets to filter the items based on religion

and political party. This framework greatly reduces the barrier to entry for creating

rich visualizations for a collection of information. Rather than designing a database

and writing server-side scripts to retrieve information, authors only need to write

HTML markup. However, despite this great improvement, users are still required

to look at code and write the lines of HTML markup, which is not an appropriate

solution for the layman end user.

Dido

While the official release of Exhibit did not support data editing, additional work

has been done to add that capability to Exhibit such that users can now add new

entries and modify existing ones. The resulting application is known as Dido (Data-

Interactive DOcument)[9] and can be seen in Figure 1-5. Dido is a lightweight data

management application and editor in a single HTML file. It offers a WYSIWYG

editor for modifying the UI of an Exhibit, such that a user never needs to look at

source code. One drawback, however, is that Dido stores all the data in the file itself.

While this is beneficial in that all information is contained in a single file, it has its

limitations. Creating multiple visualizations from the same data set entails duplicat-

ing data, and thus maintaining that data becomes error-prone as modifications for

a single item will need to manually be made in multiple places. Overall, this work

makes for a good foundation for the features desired in a customizable information

manager, but more work needs to be done to support all the goals of this thesis. This

will be discussed in more detail in Chapter 2.

(a) Bento - Input form

(b) Bento - Preview

Figure 1-2: Bento's item input form

(a) List view

(b) Thumbnail view

Figure 1-3: Bento view options

Figure 1-4: Exhibit of US Presidents

1.1.4 Summary

Data-specific solutions are restrictive in how users can describe and browse their

data, while generic data tools such as spreadsheets and Filemaker Inc.'s Bento are

limited in how users can visualize and interact with their data. On the other hand,

other applications, such as Exhibit and Dido, offer rich visualizations and browsing

capabilities, but are not appropriate for the layman end user. Further, all these

applications force a user to separate her data into different locations. Decentralized

data becomes a big limitation when a user wants to visualize the same set of data

or overlapping sets of data in different ways for different purposes. With existing

applications, the user must save the same data in multiple places, which can lead to

errors and inconsistencies in the data. We discuss this in more detail in Chapter 2.

(a) Dido - data manager

(b) Dido - WYSIWYG editor

Figure 1-5: Dido file

In summary, there are three main problems with these existing solutions:

" Users cannot define the data types or properties they find relevant

" Users are limited in how they visualize and browse their data.

" Users cannot easily visualize the same set of data or overlapping sets of data in

different ways without saving the same data in multiple places.

1.2 Thesis Contributions

The research described here aims to provide an end-user application that addresses

the aforementioned issues. It gives users the flexibility desired to customize the way

they manage their personal collections of information. In particular, the features

contributed in this thesis include:

" A local central data store for all items, allowing for multiple visualizations of

the same data without risking data integrity.

" An interface for creating new visualizations and managing existing ones.

" A wizard and WYSIWYG editor for customizing the visualizations.

" Multiple ways to add or import data to the system, including adding new data

from scratch and importing existing data from familiar formats used in spread-

sheets.

" Multiple formats in which to export data to share with others, with and without

the visualization.

With these features in mind, there are four different areas that garner attention:

data storage, user interaction when creating a new visualization, user interaction

when editing and interacting with the visualization, and the transfer of data to and

from the application.

1.3 Thesis Outline

This thesis is divided into six chapters. The first chapter has outlined the motivations

for this research and discusses existing applications that accomplish similar goals but

remain as incomplete solutions. Chapter 2 describes existing tools that are leveraged

and/or modified as part of the contributions made in this thesis project. Chapter 3

walks through the enhancements made to the user interface of Dido, one of the tools

that is leveraged, to improve its usability. Chapter 4 describes the back-end design

decisions made regarding the system architecture, as well as changes to the user

interface that help accommodate performance issues. An evaluation of the system

based on usability testing is presented in Chapter 5, and finally, Chapter 6 summarizes

the contributions made in this thesis and identifies areas that can be pursued in future

work.

Chapter 2

Background

Exhibit and Dido are powerful frameworks for creating rich and interactive websites

on potentially dynamic sets of data. These tools are described in detail here, including

benefits and limitations with respect to the goals and desired features of this thesis.

2.1 Exhibit

Exhibit[7] is a Javascript framework that makes it easy for website authors to create

a dynamic, rich browsing experience for their end users without having to write any

server-side code. With only a few lines of HTML, website authors can quickly create

an interactive website that allows users to search, sort, or use faceted browsing to

view and interact with data on the site.

Traditionally, if a website author wanted to create a web page that displayed some

set of data, they had a few options based on their skill set. With only knowledge

of HTML markup, they could create a static webpage that included the data along

with the presentation. This was simple for the author to create, but gave end users

a very limited viewing experience since they could only interact with a static list.

This becomes unusable as the data set increases in size. To provide a more effective

interface that allows users to sort, filter, and search the data, the website authors

need to install and configure a database, add server-side scripting to issue queries to

the database to retrieve the appropriate data, and create templates to specify how

that data should be presented. With Exhibit, website authors only need to write a

few lines of HTML and create a data source file that contains the structured data in

a readable format, such as JSON[2). This greatly decreases the barrier to entry for

creating active websites, and authors are able to focus on what user interface (UI)

components to include rather than how to support the backend.

The Exhibit data model is based on an array of "items," each of which has a set

of "properties" that define the relationship between the item and the property value.

Property values can be primitive data types, such as strings, dates, and URLs, but

they can also be arrays of values or refer to other items in the database. Each item

must have four properties: a label that is used to represent the item in a readable

format, an id that uniquely defines the item, a uri for referring to the item in RDF[11}

format, and a type for categorizing the item. All items of the same type share the

same set of properties. Comparing this data model to that of a traditional relational

database, each "item" can be seen as a database record, each "type" can represent

a table, and the "properties" correlate to column or field names in a given table's

schema.

Exhibit uses specific terminology for each UI component, primarily "views," "lenses,"

and "facets." Views are the visualization for the entire collection. The type of view

used determines how all the items in the data set are laid out. For example, a Map

view displays each item on a Google map (Figure 2-1), while a Timeline view places

each item on a timeline (Figure 2-2). Simply adding a few lines of HTML markup

with the attribute ex:role="view" allows the author to specify what type of view

to add. For example, the following block adds the markup needed to create the map

view seen in Figure 2-1.

<div ex:role="view" ex:viewClass="Map"

ex:latlng=".latlng"

ex:icon=".thumbnail"

ex:shapeWidth="60"

ex:shapeHeight="60">

</div>

MAP - TILES -THUMBNAILS - TABLE - TIMELINE

co-workers
4 farmly

frienda

I holiday

10 vacati

Figure 2-1: Exhibit Map view

Lenses, defined with the attribute ex:role="lens", describe how each item in the

collection is rendered. It defines the layout of the item's properties. Each property

can be added with the custom ex: content tag. For example, an item's label can be

added to the lens with the following markup:

In Figure 2-3, this corresponds to the bolded "Turkey 2008" text.

Links and images can also be added to the lens. The underlined "Istanbul, Turkey"

link in Figure 2-3 can be added with the ex: href -content attribute as follows:

<a ex:href-content=".locationlink">

while an image can be added with the ex: src-content attribute:

<div ex:if-exists=".thumbnail" class="thumbnail">

</div>

My Trips

MAP TILES - THUMBNAILS - TABLE - TIMELINE
...- .- ., , e........er...

1urKV 4UU5

vacation
Istanbul. Turkey

enople
co-workers

4 family
6 friends

i birthday
2 busines

holiday
I reunion

1. vacation
1 volunteering
2 wedding

Figure 2-2: Exhibit Timeline view

Turkey 2008
Sat, Jul 5, 2008, 12:00 am to Sun, Jul 13, 2008,
12:00am
Istanbul, Turkey
Traveled with friends

Purpose: vacaion

Figure 2-3: Exhibit lens used in Figure 2-1

sl

Finally, the last major UI component in an Exhibit is the facet. Facets are filter

widgets that allow a user to search or filter on any item property in their collection.

There are several different types of facets to handle different ways a user may want to

filter on a particular property of their data. Popular examples include a Text Search

facet, which adds an incremental search field to the display, and a List facet, which

allows users to filter their collection to show only items with the selected values. For

example, Figure 2-4 filters the 12 trips down to only 6 involving "friends."

People 103

tie://Ues/aiei/Dc mnswap hasete exh b 4 a mil Cogl

a Purpose

Figure 2-4: List facet for "People" in use

For further customization, the author can control the layout and style of any of

the components by using HTML and CSS. This gives website authors much expres-

sive power to create highly customized interactive websites without any server-side

scripting.

Aside from the user interface components, website authors also have a lot of flexi-

bility in how they organize their data. They decide how to separate items into different

data types, including what properties each type of item can have. Since the data is

stored in a format inspired by the Web Consortium's Resource Description Frame-

work (RDF) standard [11], the website authors can also easily change the schema

they are using for each type (ie. add a new property or remove an existing one) at

any time, without making any changes to Exhibit's underlying database structure.

By offering a highly customizable visualization and rich browsing experience, Ex-

hibit provides a good foundation for allowing application authors to create customized

visualizations of their information. However, it still has limitations as an information

manager for end users. while Exhibit decreases the barrier to entry by not requir-

ing authors to do any database programming or server-side scripting, it still requires

authors to write lines of markup using Exhibit's custom HTML attributes to specify

what type of views to use, what properties to be displayed, etc. Asking a casual

end-user to specify this information in the markup language is not reasonable. In

addition, Exhibit was created to work with a static set of data. Once that data was

loaded, users could interact with that set of information but could not modify or add

new items to the collection. Support is needed for both of these issues such that an

end user like Graduate Student Sally can customize her visualization and browsing

preferences, as well as edit her data, without writing any code.

2.2 Dido

Dido addresses Exhibit's limitations by providing a WYSIWYG editor for modifying

the Exhibit's visualization, as well as offering a data editing mode to allow users to

modify the Exhibit's data[14}. Dido is a lightweight data management application

and application editor in a single HTML file. It offers many useful features, including

the aforementioned editing features, but it also has its limitations. These benefits

and drawbacks are described in this section.

2.2.1 Overview

Dido provides capabilities for an end user to visualize and edit their data, as well as

modify any part of the overall visualization, without writing any code. Using Exhibit's

framework, Dido allows users to browse and interact with data as they would with

any Exhibit. By using the data editing enhancements added to Exhibit, Dido is able

to provide an interface that allows users to modify the data contents in the Exhibit

while viewing and interacting with it. For example, if a user is filtering the data and

notices that an item's contents need to be updated, the user can simply turn on the

data editing mode and modify the item in place. He or she does not need to switch

to an entirely different editing view that resets the items currently on display in order

to edit the data. For example, as seen in Figure 2-5, a user can edit data in place

after filtering contents to show only Nobel Prize winners from 1965.

MIT Nobel Prize Winners

User browses to Nobel Prize winners from
3 Nobelisl965, and can edit data in place.

sorted by: bel; then by... grouped as sorted

Julian Schwinger
Physics , 1965
Co-winners: Richard P ynan

TrRmatontb WWII(deeasd)

E3obel-year
1 1944

1 1951
1 1952
11956
1 1964

r3 1965
1 1966L

IRichard P. Feynrnan|

Co-winners: Julian Schwinger

2. MIT S B. 1939 (deceased)

Robert Burns Woodward
Chemistry , 1965

3. MIT SB. 1936 (deceased)

Figure 2-5: User is changing Feynman's name while browsing Nobel prize winners
from 1965.

In addition, Dido uses the tinyMCE[17] WYSIWYG editor to allow users to edit

the visualization with which they are currently viewing and interacting (see Figure 2-

6). Rather than write any code or markup to customize the application's display, a

user can simply use the editor and immediately view the results of his or her changes.

Sju U A55 = ;Format

Path

[Double-click here to edit view panel
[Double-click to edfrfoe}
nobel-year

[Double-cick to edit view] 944

61 Nobelist 1951
1952

sorted by: labels; then b-... grouped as sorted 1956
..... 9 6 4

Aaron Ciechanover
31965Chemistry , 2004

MIT postdoctoral researcher 1981-84 966

Andrew Fire
ine/Physiology ,2006

2 CMITPhD. 1983

Burton Richter
Physics , 1976
Co-winners: Samel C.C. Ting

Figure 2-6: Dido's WYSIWYG editor

2.2.2 Limitations

While Dido provides an effective interface for creating a customizable data manage-

ment application for the casual end-user, it also has its limitations. First, the data

for a Dido exhibit is stored in the file itself. This decentralized data model can lead

to the loss of data integrity, as mentioned in Chapter 1. If a user wanted to reuse the

same set of data for multiple visualizations, he or she would need to copy the data

over to a new Dido file. As with redundant information in any database[1], this du-

plicate data leads to an unnecessary use of resources to maintain the accuracy of the

information. Modifying an item that is used in n number of visualizations requires n

number of modifications. This can cause errors and inconsistencies in the data when

updates are not made to all copies.

To demonstrate this with a more concrete example, let us use our Grad Student

Sally persona from Chapter 1. Sally wants to maintain a collection of all people

she knows, as well as a collection dedicated to researchers and publications in her

field. Let us assume that the set of researchers whom she follows is a subset of the

larger collection of people whom she knows, and that the properties relevant when

viewing general contact information for all people is different from those relevant

when viewing researchers in particular. For example, Sally may want to see the

papers written by the researchers she pays attention to, but not those written by her

friends and family. Using Dido files alone, she would need to do dual maintenance on

those researchers, which increases the risk of data errors and inconsistencies. If she

meets a new colleague at a conference, she must remember to add that colleague's

information to both visualizations, possibly adding an inconsistency in what data

items are present in each visualization. If a researcher changes his email address,

Sally needs to manually update that information in two places. If she makes a typo

in one, it will be ambiguous which email address is correct, adding an inconsistency

within the item's properties themselves. This problem worsens for each visualization

created for a given set of data.

Because of these limitations in Dido's data store, modifications were necessary

to leverage Dido's editing capabilities while also utilizing a more centralized storage

system. The resulting system would give users the flexibility of creating any number

of visualizations for the same set of data while maintaining data integrity. In addition,

changes were needed to make Dido more usable and to help new users get acquainted

with the UI more easily. Support for importing and exporting data to be shared with

others were important additions to the system, as well.

30

Chapter 3

Dido Enhancements

Dido provides the core functionality needed for a customizable end-user information

management system, but it has some drawbacks with respect to usability. This section

describes the enhancements made directly to Dido to help improve its usability and

help users get started using it, while Chapter 4 describes features added to the system

to support Dido files backed by a centralized data store.

3.1 Dido Controls

Standalone Dido originally had a control panel in the top right with a few buttons for

the "Edit Display," "Edit Data," "Save," and "Help" actions (see Figure 3-1). When

extending Dido to support a centralized data store (as described in Chapter 4), more

actions were available and/or necessary to include. Adding more actions to the control

panel would increase the amount of space it took up, add to the clutter of buttons,

and make each specific action harder to find for the user. By switching from a control

panel metaphor to a standard menu bar at the top of the page, we could add more

actions without cluttering the interface and confusing a user. Adding a menu bar also

increases the consistency of Dido with other desktop applications, thereby creating a

more familiar interface for the user.

MIT Nobel Prize Winners

(a) Original Control Panel

File Edit View Help
Data

Mill New Item (ize Winners

(b) Menu Bar

Figure 3-1: Control Panel vs Menu Bar UI

3.2 Wizard and Updated Dialogs

When first launching the editor mode of a Dido file, a new user may not know where

to begin to create a custom visualization. In order to improve the learnability of this

application, a Getting Started wizard was added to guide users, such as our persona

Sally, through the different steps of creating an exhibit. If no visualization exists for

the Dido file, the Editor view is opened and the wizard is launched immediately. The

wizard takes Sally through the steps of creating a visualization from scratch. Once

she is done with the wizard, she can be reopen the wizard by launching an action in

the Help menu. If a visualization already exists when Sally launches the wizard, she

has the option to keep the existing UI or overwrite/modify it.

Welcome

A welcome screen, shown in Figure 3-2, is the first dialog of the Getting Started

wizard. It outlines the next steps to be shown in the wizard, and more importantly,

introduces a new user to the different UI components that can be modified in the

editors. This is especially important for users unfamiliar with Exhibit terminology.

Figure 3-2: Getting Started wizard launched for new Dido

33

View Picker

An exhibit can have multiple views. A view panel is a container for views, and

provides an interface to allow end users to switch between the views within the view

panel. If a view panel does not already exist, a new one is created and the first step

in the wizard asks the user to choose what type of view to use. Sally is a new user

who is unfamiliar with Exhibit and does not know what types of view options are

available to visualize her collection of items. Therefore, we added a view picker dialog

with image and text descriptions for each type of view to help her better understand

the different options and make a choice. Once she has selected a view, she is taken to

the standard Edit View dialog to configure the view's properties. Figure 3-3 shows

the dialogs. If a view panel already exists, the system opens the Edit View Panel

dialog instead. This allows the user to either add a new view or modify view panel

properties, including what the initial view should be.

The view dialogs were modified from the original Dido to be more readable for an

end user. Originally, a list of all properties for a particular view type (see Figure 3-

4(a)) were shown to the user at once, most of which were optional. With the addition

of Basic and Advanced tabs (Figure 3-4(b)), Sally can see the most important prop-

erties for the basic case, including required properties that must be set, without being

overloaded with all possible configuration options. Advanced users who are more fa-

miliar with creating exhibits can proceed to click on the Advanced tab for the rest of

the available settings. In addition, for views where the user needs to specify a list of

multiple expressions and properties for each expression (ie. ascending or descending

sort order), we replaced the text fields that require manual input of expression val-

ues and properties with dropdown controls. This increases the efficiency with which

users can enter values, and decreases the risk of errors arising when manually typing

in values.

When Sally is done adding a view, a preview of it populates in the editor behind

the wizard dialog (see Figure 3-5). The user is prompted to either add another view

or continue by pressing "Next." Choosing the "Add another view" option will launch

List Thumbnail Table
items laid out vertically. Items laid out horizontally, Items laid out In a table.

then verticalty. 0

Map Timeline
Items laid out on a Google Items laid out on a timeline.

Map. 0
0

Back Next Cancel

(a) View Picker dialog

Label:

Order by:

f iew Refred)e

TWe View Reference

Back Next Cancel

(b) Edit View dialog with type preselected with se-
lection from View Picker dialog.

Figure 3-3: View configuration dialogs

id

4

J

Type:

Label:

Orders:

OK Old Cancel De ete

(a) Old Edit View dialog

BaS C

{ Tle

AvaiLable ordering properties:
co-winner (forward)
country (forward)
deceased (forward)

I10

Figure 3-4: Edit View dialog changes

the view picker dialog again.

Facet Picker

If Sally chooses to continue, a location picker dialog is shown to allow her to choose

where to put a facet, or filter widget, relative to the view: Right, Left, Top, and

Bottom (see Figure 3-6). This gives users some customization abilities from within

the wizard. We provide basic layout options that a new user may want to help them

get started. Advanced users can further customize the layout of their visualizations

by directly using the editors themselves.

After choosing where to add the facet, Sally is prompted with the Edit Facet

dialog (see Figure 3-7). Here, she can specify what type of facet to add, with options

including List, Text Search, and Range. Similar to the Basic and Advanced tabs

added for the view dialogs, the same concept for tabs were applied to the Edit Facet

dialogs. This allows her to quickly create a facet without getting caught up or confused

Type: (Lst

Label,

Order by:

Sabel (forward) Ascendng

Tile View Reference

(b) New Edit View dialog

Directions:

Possible orders,

Passible directions

Show summary:

Show header:

Show footer:

Show toolbox:

Show controls:

Show all:

Grouped:

Show duplicates:

Abbreviated count

Tile View Reference

Figure 3-5: Dialog after user has added a view, allowing user to add another one or
continue.

or

Where do you want to add the fitter widget relative to the main
Sview?

Riht A==

Left
Top

Next Cancel

Figure 3-6: Facet Location Picker dialog

looking at optional properties.

Figure 3-7: Edit Facet dialog

After adding the facet, Sally is prompted in the next step of the wizard with

the choice to add another one before continuing. Under the assumption that users

typically want to create more than one facet to help browse their data, this provides

a convenient method to add multiple facets quickly.

Lens Picker

Finally, after Sally is done adding facets (and therefore done specifying UI compo-

nents for the overall display), she is taken to the Lens editor to specify how each item

should be rendered. New users unfamiliar with the lens editor may not know how to

add lens content to their visualization. Among existing Exhibits1 , a few layouts are

seen repeatedly. Under the assumption that users prefer similar layouts or can tweak

such layouts to suit their needs, we created a lens template picker with a few basic

layouts to help users get started. These options are shown in Figure 3-8. We give

'Some examples can be seen at http://simile.mit.edu/wiki/Exhibit/Examples.

users four options:

" Existing or Blank: Whether a new exhibit or not, this option allows users to

continue without creating a new lens. For a new exhibit, this option leaves the

lens editor empty and for an existing exhibit that already has a lens defined,

this option keeps the existing lens(es).

" Labels: This lines up property labels and values side by side.

" Landscape: This option, common in Tile view layouts, allows users to specify

an image on the left, and show property values on the right.

" Portrait: This option, common in Thumbnail view layouts, allows users to

specify an image on top, and show property values below it.

If Sally selects either the landscape or portrait templates, she is given the option

to choose a property that refers to the image she wants to display, as well as the ability

to specify a width and/or height for the image (see Figure 3-9). Because a user may

be gathering images from different resources, the images may vary in size. This offers

a way to ensure that they are uniformly displayed, creating a neater, cleaner-looking

visualization. If either of the size attributes are left blank, the default values for the

image are used.

Once Sally selects a template and clicks Next, a lens is created dynamically based

on the properties of the data items in the exhibit and it is added to the Lens Editor.

Another assumption made when designing the dynamic lens picker is that it is easier

for new users to modify or delete lens content already in the editor than it is to create

lens content from scratch. Thus, we populate the lens with all properties available

for the given types in the exhibit. This provides a starting point for the user, who

can then add text and rearrange, delete, or otherwise modify any lens content while

working with the actual Lens editor. Figure 3-10 shows the lens added to the editor

behind the wizard dialog.

Figure 3-8: Lens Template Picker, with empty lens editor behind the dialog.

Landscape Portrait
Image and text laid out horizontally. Image and text Laid out verticaly.

Im foed

Property for image:

Image Widthb lieave blnk for default)

Image H~eight leave b~ank for det)

When landscape or portrait options are selected in the Lens Template
user can enter an image property.

Back Next Cance

Figure 3-9:
Picker, the

1 1

Figure 3-10: After the user selects a lens template, the lens is created and the user is
prompted to save changes.

End of Getting Started

After Sally adds a lens, she is prompted to save all changes made during the course of

the Getting Started wizard. Choosing to save writes the changes to disk and switches

to the view pane to allow Sally to view the new exhibit (see Figure 3-11). Choosing

not to save keeps her on the editor pane.

3.3 Editor Enhancements

The original Dido file placed all editing controls in one editor. This is a bit confusing

to Sally for a few reasons. First, with the lens at the top of the editor content, the

views and facets are obscured when initially opening the editor (see Figure 3-12). As

a result, Sally may not get any immediate feedback on changes to either the view or

editor when working with the Edit View and Edit Facet dialogs. While one solution

may be to simply scroll down to the view and facet area when the user is making

Figure 3-11: If the user chooses to save changes, he or she is brought to the Exhibit
Viewer to view the new exhibit.

42

changes to those regions, a second and more important issue prompted the change to

use two editors in two view panes instead.

There is a difference in mental model when working with lenses versus views and

facets. Views and facets represent what the user will see in the resulting overall

visualization. Adding a column of facets on the left and a view on the right results in

a visualization that reflects that. On the other hand, lenses represent how each item

will be rendered. Adding a single lens to the editor does not result in a single lens in

the resulting display. Instead, the lens represents the visualization for each item that

is repeated in the exhibit. With lenses appearing in the same editor as views and

facets, it can be unclear that they have different effects on the resulting display. By

separating them into two different editors, we clarify the purpose of the different UI

components and Sally is less likely to be confused. In addition, the obscuring issue

mentioned previously is resolved and the user gets instant feedback on any changes

made without having to manually scroll past lenses to see the views and facets (see

Figure 3-13).

A drawback to this design is that lenses are generic for all views. They cannot be

scoped for specific views like they can in the original Exhibits described in Chapter 2.

More work can be done to make this better, and this is described in Chapter 6 for

future work.

(a) When first opened, only lens is displayed

(b) User must scroll down to see any views and facets

Figure 3-12: Original display editor

(a) New Lens editor

(b) New View and Facet editor

Figure 3-13: New display editors

46

Chapter 4

Central Storage Support

In Section 2.2.2, we described the limitations of having a decentralized data store for

each visualization a user may want to create with a given set of data. In this chapter,

we describe the design and implementation of a central store, including the UI features

necessary to support it. This central database gives users the opportunity to view the

same data with multiple visualizations, without requiring maintenance of duplicate

data. This eliminates the errors and inconsistencies that can arise when making

changes to that duplicated information, and replicating those changes wherever the

data is stored.

4.1 Data Store

There were several decisions made when considering how to store the data. In partic-

ular, we needed to decide where the storage system should be located - local versus

on a server, what type of database to use, and the format in which to store the data.

There are benefits and drawbacks for having a data store on a user's machine

versus having it hosted on a server. Over the years, an increasing number of server-

based applications have gained popularity, with advantages of being able to access

data from any machine with an internet connection and not having to install and

maintain a desktop client application. However, local applications have the advantage

of not requiring users to rely on an internet connection to access their information,

and being generally faster at retrieving data because no calls need to be made to a

server. In addition, users can safely store sensitive information locally without risking

security flaws that may exist when storing data on a server. Dual storage options

also exist that synchronize local data to a database on a server to allow users to

access their data from both a desktop application and web application, and server-

based applications have started to offer "offline" modes which allow users to save

their data to their local machine for offline access. While offering both local and

secure server-based storage is ideal, due to time constraints, only one storage option

could be implemented during the time frame of this thesis project. Because the goals

of this thesis involve helping users store any personal information, the advantages of

accessing information securely and quickly with and without an internet connection

outweighed the benefits of using a hosted database. Thus, the decision was made to

first implement a local data store.

Because we wanted to leverage the features of Dido, we needed a way to save data

accessed by a Dido HTML file. HTML5[6] plans to provide such capabilities with

a local database that can be used to persist data, but it has not yet been officially

specified nor implemented by modern web browsers. Thus, in the meantime, an al-

ternative solution is needed. Of the leading open source database options available

today, including SQLite, MySQL, and PosgreSQL, SQLite was the optimal choice

for a local client application designed with a single user in mind because of its size

and lack of configuration costs. In addition, Firefox already has installed a SQLite

database wrapped in their Storage object[13], available to Firefox extensions. Google

Gears[5], a browser extension compatible with most modern browsers, including Fire-

fox, Internet Explorer and Safari1 , also offers SQLite database support in an add-on

that the user can install. Because of the cross platform support that Google Gears

offers and that Firefox's Storage lacks, Gears was the better solution for this project.

Using a browser's storage had the additional benefit of allowing users to get started

using the application with as few barriers to entry as possible. Since all users who

'As of 2/19/10, the Google Gears team declared it would no longer be supporting Safari on OS
X Snow Leopard and later (http://gearsblog.blogspot.com/2010/02/hello-html5.html).

have internet access already have a web browser installed, integrating the application

with a browser's SQLite database would allow a user to avoid installing an additional

desktop client application for the graphical user interface. Instead, users can use their

existing web browser as the containing desktop client. Further, since users are already

accustomed to browsing web-based applications, launching the system's interface in

a browser would be a familiar experience.

Another important design decision was what data model to use. This thesis project

gives users full control over what type of data is saved, as well as what specific

properties of a data item are saved. For example, Graduate Student Sally can create

a "Book" type to save off information about books read or books on her to-read list,

and include any relevant properties, such as "title," "author," or "date read" vs "to-

read." In addition to authoring the content, Sally can change the schema, or set of

properties for an item, at any given time. As a result, there is never a pre-defined,

concrete schema.

Supporting this dynamic data model can be done with either a standard relational

database model or a Semantic Web[18] supported format, such as RDF[11]. The Se-

mantic Web evangelizes a web where data is available free from presentation. This

promotes the sharing and spreading of information, because all information is repre-

sented in a standard format. When using this data model, information is viewed as a

network of objects and relationships. Each property can be saved as a "triple" con-

taining subject, predicate, and object values, where the "subject" uniquely identifies

the particular item, and the "predicate" and "object" respectively describe the rela-

tionship between the subject and the object, and the object value itself. Using this

format, data can be combined from multiple sources without the distress of merging

different schemas.

Alternatively, the standard relational database model uses tables for each type of

item sharing a set of properties or schema. This model has the advantage of easily

retrieving property values for a given item because all values exist in a single row of a

table. When using an RDF model, the same query requires several JOIN statements.

However, the RDF model has the advantage of more easily supporting the flexibility

of not having a concrete schema while still saving structured information. With a

triple store, a table does not need to be recreated each time the schema for a set of

types changes. Because this application involves a dynamic set of data authored by

the user, RDF was the chosen format.

Using a relational database, we can save the data in a three-column table with

columns for subject, predicate, and object values. Each row is a "triple" representing

one relationship between two objects. We create such a table in the Gears relational

database to store all the data for the user's items. Because this type of data storage

requires several relational database JOIN operations when aggregating all rows that

pertain to a single subject, this type of data storage may not be practical when dealing

with very large sets of data. However, for the purposes of this application, the data

set was not expected to be large enough to impact the performance of the system.

A "meta" table was also created in the database to store the information about each

visualization created in the system. Such information includes the Dido file's URL,

title, description, and date created.

4.2 Terminology

Before describing the system architecture of this application, we must first clarify the

usage of the following terms:

* Exhibit: "Exhibit" with a capital "E" will be used to refer to the Exhibit

project described in Section 2.1. With a lowercase "e," "exhibit" is used loosely

to refer to any visualization produced by Exhibit. This includes the exhibits in

standalone and anchored Dido files.

" Dido or Dido file: Dido and Dido file are used interchangeably to refer to

the active document described in Section 2.2 that leverages Exhibit and offers

a WYSIWYG editor to modify the visualization and data. These terms are

used generally to describe the basic framework, and thus are used both when

referring to standalone Dido files and an anchored Dido file.

" Standalone Dido: This term is used to refer to a traditional Dido file, which

has its data stored in the file itself.

" Anchored Dido: This term is used to describe a Dido file that is not self-

contained. Instead, the visualization is "anchored" to a central data store.

4.3 High Level Design

In this system, users can create any number of visualizations for data stored in a

central repository. As described in Chapter 2, Dido's framework for allowing users

to view and modify the data and display of an exhibit with a WYSIWYG editor is

very applicable to this system. It gives the general end user the ability to change an

exhibit without looking at any code. A goal of our system is to provide end users

with such an interface for each visualization they create. However, before Dido can

be leveraged, changes are necessary to make it work with the Google Gears backend.

Figure 4-1 shows the dependency relationship between the standalone Dido file

and the anchored ones. The standalone, self-contained Dido file requires the modules

depicted with sharp corners and tan background. These modules allow for the data

to be stored in the file itself. The anchored Dido requires all modules depicted in the

diagram. While primarily using the Gears storage, anchored Dido files still depend

on the Self storage module to support export cabilities to standalone Dido files.

4.3.1 Storage Interface

Based on the architecture of Dido files, a generic Storage interface was created to

associate different data stores with the rest of the Dido framework. This interface has

two required functions, getItems 0 and saveItems 0. For the case of a standalone

Dido file, the SelfStorage object is used to retrieve items from and save items to the

file itself. For an anchored Dido, a GearsStorage object is used to retrieve items from

the Gears database based on a query associated with the file and save items back to

the database. This pluggable Storage model was designed to be extensible, such that

EJ Standalone Dido Gears-backed Dido

Figure 4-1: Dependencies for Standalone Dido and Anchored Dido

if other Storage objects are created in the future, they can easily be plugged into the

Dido framework.

4.3.2 Utility Modules

In order for standalone Dido files and anchored Dido files to coexist, a plug-in ap-

proach is needed to ensure that the necessary functionality is added to the Gears

version without interfering with the standalone version. As a result, two utility ob-

jects are created to support initializing an anchored Dido file, as well as an exported

standalone file. These utility modules ensure that the file is properly initialized with

the correct Storage object, and injects necessary functionality specific to the respec-

tive file types. For example, for an anchored Dido file, the Gears utility inserts a user

interface to allow users to modify the query associated with the file. Such a UI would

not make sense in the case of the standalone Dido, and thus gets "plugged in" only

for the anchored Dido case.

4.4 User Interface Features

This chapter describes the design decisions behind all the user interface components

added to this system to support the centralized data store. The primary features

include giving users the ability to add data to the information repository and create

visualizations to view that data. In addition, as mentioned in Section 4.3, in order to

leverage Dido, work still needed to be done to integrate it with the Gears backend.

As part of that work, users needed to be able to select what data to include in each

visualization and be able to modify that selection.

Based on the goals of the system, there are three different areas that required

development. These areas are described in detail in the subsequent sections of this

chapter.

1. Dido Manager: The user interface that allows users to manage existing ex-

hibits.

2. Dido Creator: The user interface that gives users the ability to create a new

visualization by specifying what data should be included.

3. Plug-ins to Dido: Features necessary to add to Dido to support the Gears

backend.

4.4.1 Dido Manager

Users of this system can create any number of visualizations. For each visualization

they create, a new Dido file is created to provide them with the appropriate manage-

ment capabilities. Graduate Student Sally, our persona from Chapter 1, needs to be

able to manage all the visualizations she creates. We introduce a home page to allow

her to view in one place all the visualizations she has already created. This home

page is simply another web page with an Exhibit that allows Sally to interact with

her Dido files.

When first getting started, Sally will either want to open an existing visualization

or create a new one. Because creating a visualization is a one time process, Sally is

more likely going to be working with an existing one. Thus, we have created a home

page (Figure 4-2) that lists the existing exhibits with links to launch them.

There are a few features of the home page worth noting. First, a prominent "New

Exhibit" button exists in the top left to allow Sally to immediately click and create

a new exhibit if that is her desired action. Next, because this application encourages

Sally to create any number of visualizations for any number of data types, it has the

potential to house many exhibits. When this is the case, Sally needs a mechanism to

quickly find a particular visualization. A visually familiar navigator is added to the

left of the list to help her filter the exhibits based on tags, and an incremental search

text field is added above the navigator to allow her to search by any text in the title

or description of the exhibit. The exhibits are initially sorted by the descending order

of creation date, so Sally can see the most recent documents first.

Each exhibit title links to the Dido file. When designing the system, it was

considered whether to launch the visualization in a new tab in the browser or to

Figure 4-2: Home Page

launch the visualization in a new tab within the application. We chose the former

approach for a few reasons. First, it reduces the amount of management needed

to be done within our application itself. Second, the browser's management of files

provides features that could be useful for an end user, including opening tabs in

new windows and bookmarking URLs to return to a particular visualization later.

Further, launching documents in new tabs is a familiar concept for anyone who has

used web applications such as the popular application suite for Google Docs 2 .

4.4.2 Dido Data Selector

When creating a new Dido, Sally needs to choose what items to include from the

data repository. In this section, we explain the necessity for adding a query creator

to represent the items Sally wants in her visualization, as well as the query creator's

user interface. We also describe the new features for adding and importing new data

to the system.

2http://docs.google.com

Performance Issues

Because there is only one data repository to store all items, the repository has the

potential for being very large as the user adds more information for various types

of items. Because Exhibit manages all the data in javascript in the client's browser,
it becomes slow when thousands of items are added to its database. To handle this

scaling issue, we introduce a "query" associated with each Dido that allows users to

specify a subset of the repository data to include in the resulting visualization. This

allows the visualization to continue to perform well, while still retrieving data from

a central store.

Despite only being able to view a subset of the data at a time, users still have

the advantage of creating multiple visualizations for the same or overlapping set of

data without maintaining the same information in multiple places. This decreases

inconsistencies and errors that can arise when maintaining changes to the same data

duplicated in different places. With a central store, Sally can change a colleague's

name in her "All Contacts" Dido file, and see the modification reflected in her visual-

ization for "All researchers." Moreover, users generally manage different information

types with different visualizations, therefore specifying such a query does not severely

detract from the usability of the system. For example, Sally typically will want to

separate her management of media items (DVDs, Books, etc) from her list of contacts.

To support the query, we add an interface for users to specify what items to

include in the visualization when they create a new Dido, as well as an interface in

the resulting Dido file that allows users to modify that query after the visualization

has been created.

Query Creator

A basic and common use case for specifying which items to include in a visualization

is the set of all items of a certain type. For example, Sally may want to create a

visualization of all Person items or of all Book items. This is generally how people

organize their information, therefore we optimize the user interface for this case, but

provide additional functionality for specifying a more complex set of data.

As shown in Figure 4-3, a list of checkboxes is populated for the various types

of items in the database. Users can select one or more types. In addition, once the

user has selected a type, it appears in a sidebar on the left. The type has a "refine"

link. Clicking on that link will expand the type and show all properties for that type

given the items in the database. Each of the properties can be expanded to reveal

the possible values. Sally can refine the data set by selecting any of those values (see

Figures 4-4 and 4-5). This gives users the power to be as specific as they'd like in

deciding what data they want to include in their visualization. For example, Sally

can create an exhibit of all films, or an exhibit specific to Foreign dramatic films.

Figure 4-3: Dido Creator

When Sally clicks "Next", a query object is saved to the file, representing the

selection of objects that she has chosen. This query object saves off which types are

selected, and for each type, any facet values that are selected. When the anchored

Dido opens, it loads items from the gears storage, using the query created based on

this information.

Figure 4-4: Dido Creator - Select type

Film hfde
actors
awards
country
director
genre

acton
bollywood
drama

4 foreign
musical l

id
1mg
label

Figure 4-5: Dido Creator - Refine type

Adding Data

Sally, as a new user, needs a way to add data to the system in order to visualize that

data. There are two possible scenarios in which she would need to add data: the data

is already stored somewhere or she is adding new data from scratch. In the former

case, Sally will want a mechanism to import the existing data into the system. In the

latter case, she will need to be able to specify what type of object she is adding and

what properties it has. We provide solutions for both.

When defining a new type, users can specify the type label, plural label, and any

properties they want to associate with the type (see Figure 4-6). This information is

added to the Exhibit types repository for users to then add items for that type once

they are working with the anchored Dido file.

Type: Iex. Book

Plural Label: ex. Books

Define the properties for your type. If a property refers to another type of item in your
data repository, you can specify a value type of Item."

Property Name: Value Type:

label text (default) __

Ex. gtle

number
dateEx. genre dt
boolean
image URL
URL
item

OK Cancel

Figure 4-6: New Type dialog

Users can also import data from another source. In designing this application,

it was important that users had a means of importing information that they may

have stored elsewhere. Users may want to jump-start or supplement their collections

of information by scouring existing data sets available on the web or in local files.

Existing Exhibits are associated with a JSON data file that users could simply point

to. However, because the typical end user may not have data already in JSON

format, importing other formats was a necessary feature. Since spreadsheets are a

common tool that people use to store information, it was important to provide import

mechanisms for the two data formats frequently used when exporting or copying data

from a spreadsheet: CSV (comma separated values) and TSV (tab separated values).

Currently, the system supports copying any JSON, CSV, or TSV formatted text

to be imported to the system, as well as importing data from remote JSON or TSV

files. Users can specify a type label and plural type label (ie. "Book" and "Books")

for all items being imported at a given time if none exists, or override the existing

value. In addition, for CSV and TSV formats, users can override any column headers

and specify property value types, such as text, url, or number. A sample import form

can be seen in Figure 4-7.

Once Sally has a visualization already in the system, she can add new items to

the collection directly from the data editing interface. That is, if she wants to add

a new book to her Book collection, she can simply use the "Add New Item" option

available in Dido.

4.4.3 Plug-ins to Dido

The primary difference between a standalone Dido file and an anchored Dido file is

that data is no longer stored in the file itself. Instead, data is retrieved directly from

the central database (Google Gears) that is the repository for all anchored Didos. As

a result, there are several places where we plug into the existing Dido framework to

provide functionality now available or necessary for this model. These changes are

described in this section.

Data format:
JSON (JavaScript Object Notation)

ripti n csv (comma separated values)
OTSV (tab separated values)

(ser Data source:
0 URL 0 Pasted text

ty http:/f

Specify/Override 1pe? (Yes @No
Does the data include column titles? @Yes Q No

You can override the column header or specify value types by providing a comma-separated list of property
tonames and value types. more

OK Cancel

Figure 4-7: Import dialog

Query Support

As mentioned in Section 4.4.2, each anchored Dido is associated with a query that

describes what items from the database should be added to the anchored Dido. This

query is generated after Sally selects which items to add to her visualization when

creating a new exhibit. Sally may forget to refine her data selection or choose to do

so after creating a visualization. To support this, we provide another viewer in the

resulting Dido file for modifying the query. This query editor, known to end users as

the "Data Picker," is shown in Figure 4-8.

The UI controls are loaded when the user selects the "Data Picker" from the View

menu dropdown, and is refreshed each time such that it always reflects the state of

the exhibit. The controls displayed are laid out in the same manner as those on the

initial anchored Dido creator page to allow users to immediately understand what

they need to do to make changes.

Figure 4-8: Data Picker

Exporting Data

Once Sally has created a visualization for her collection of items, she may need to

share it or display it for others to see. In some cases, she will want to share her data

along with presentation, but in other cases, Sally may want to share only the raw

data. Thus, the application must support both exporting an anchored Dido to both

a standalone Dido file as well as raw JSON, CSV, or TSV data.

An Export menu (Figure 4-9) has been added to the global File menu to provide

this functionality. All anchored Dido files can be exported as a standalone Dido file

in which a new Dido is created with the data stored in the file itself. As a result, the

file is self-contained and can be emailed or hosted on a server for others to view. The

menu also provides the actions to export the raw data as JSON, CSV, or TSV data

for users to copy and save to a file or paste elsewhere.

... Fi. ..tems..

File Eddt View Help
New

Open FilmsSave

Export As JSON

4 Films As CSV
As TSV

As Dido

Figure 4-9: Export options

Links Back

Finally, the following actions have been added to the File menu to take users back to

the other UI areas:

" File - Open launches the Home page in a new tab.

" File - New opens the New Exhibit form in a new tab.

4.5 Summary

In this chapter, we discussed the various design decisions made for both the back-end

and front-end of the system in order to support the Dido framework with a central-

ized storage system. A "query" specifying what data should be included with each

visualization was required for performance reasons, and thus the necessary UI for

creating and modifying that query were crucial components added to the system.

Finally, a plug-in architecture is needed because the user interface changes described

in Section 4.4.3 do not make sense in a standalone Dido file. As a result, we dynami-

cally inject the additional UI components to the standalone Dido at runtime without

modifying the core code.

64

Chapter 5

Evaluation

The application described in this thesis is designed for the layman end user, who may

or may not have any programming experience. Users of this system should be able

to create visualizations with their own data, customize how to view and browse their

information, and share their information with others without writing a single line of

code or HTML. We evaluate this system through usability and user study tests. The

usability test informs us of how effective the system's user interface is in terms of

the features it is designed to support, while the user study evaluation indicates the

system's potential viability as a solution for the problems addressed in this thesis.

In this chapter, we discuss the system's successes and failures for each respective

assessment.

5.1 Usability Results

Five sit-down usability testing sessions were conducted, followed by a survey and

interview. Users were asked to perform the following tasks:

1. From the home page, launch an exhibit.

2. Create a new exhibit from data already in the system. Filter the data (ie. Select

Academy Award winning films rather than all Films).

3. Customize the visualization by specifying what type of view to use and what

facets to add. This is open-ended; there are no restrictions or guidelines about

what the end result should be.

4. If the user did not add a facet, ask them to add facets to filter by genre and

country.

5. Modify the label for an item.

6. Add a new item to the exhibit.

7. Create a new exhibit from imported data.

8. Export the exhibit as a standalone Dido file and send it to a friend.

The testing confirmed that we had taken the right approach in helping users

manage their different visualizations and get started using the Dido editors, but also

exposed some areas where getting the correct design proved to be a difficult task.

There were several challenges in designing the user interface for this application,

primarily because the system is a hybrid between a document and application editor.

Since it does not fit a single mold, creating an interface familiar and natural to users

was not trivial. In the end, the greatest strengths of this system were in areas where

our application was able to maintain UI consistency with other applications, as well

as places where the user did not have to "think" to perform the desired task. In

this section, we walk through the key user interface components that make up this

system, and describe what did and did not work, as well as what was learned about

the design space during the process.

5.1.1 Dido Enhancements

In this section, we discuss the usability of the enhancements made to all Dido files,

including the menu bar, getting started wizard, dialogs, and editors.

Menus

Overall, the switch to using a menu bar over a control panel was successful, but

the location of some menu items can be reevaluated. Users were familiar with the

menu interface, which had common global menu items, File, Edit, View, and Help.

Standard menu items, such as Open, New, Save, and Export were found immediately,

while others, such as the various Edit-related items, sometimes took a few tries. When

performing a task, users almost always first looked for actions in the menu bar before

looking in the toolbars. In fact, multiple users commented that it would be useful to

have the custom toolbar actions (for modifying the visualization) duplicated in the

menu bar for better discovery.

The location of the menu items for showing the editor panes appeared to be

natural for most users, but some expected those menu items to be under a "Tools" or

"Edit" global menu because those are more likely to have actions that correspond to

the task the user is trying to accomplish. In other words, when the user wants to edit

the visualization, he expects to find a tool to help him do so, rather than look for a

different "view" to display. Having the editor panes under the "View" menu reflected

the model behind the system. In order to edit the visualization, the user must switch

to view the editor panes. However, if a user formed a different mental model for how

the system works, he or she may not think to "go" to a different "view" in order to

perform those actions.

The "Edit Data" and "New Item" actions were found immediately, but three

users tried to edit the data in the View and Facet editor first. They had mistaken the

preview of the view, which displayed the actual data, to be an area that they could

edit. Further, when in the editor panes, the data editing menu items are disabled,

and it took some users a few tries to realize they needed to be in "view mode" for

those actions to be enabled. This is another case where the mental model of the users

is different from the system model. If users thought that all editing could be done

in the editor pane, they would not think to switch views to edit the data. Adding

better feedback, such as enabling the action when in an editor view and showing

text explaining that the user needs to switch views in order to edit the data, can

help users understand the system better. Alternatively, we can enable the action and

automatically switch views for the user when he or she tries to access it.

Getting Started wizard

The Getting Started wizard was successful at guiding users in the process of creating a

complete visualization of the data. While producing an exhibit based on a particular

design was not tested in this exercise, we observed that the wizard allowed users to

add each necessary component for the resulting visualization, starting with choosing

a view, followed by adding any number of facets, and concluding with picking a lens

template.

In initial user testing, it was clear that users did not know what some configuration

options meant, primarily when creating a view. Many of them went to the reference

page or used the default options and hoped that they could proceed smoothly. Some

minor enhancements were made to ameliorate this issue, such as adding a "view

picker" to help users quickly see what the available types of views were, as well as

providing better UI controls for entering values. Hover help for all configuration

options would further improve a user's understanding of the different settings, and

would make the technical (non-user-friendly) reference page obsolete.

The lens template picker allowed users to specify an initial layout for the relevant

properties associated with the data types involved in the exhibit. Although the default

option was the existing or blank lens template, all users chose an option that actually

generated a pre-populated lens. This indicates that the lens template picker was a

useful addition, because users did not want to start with the blank slate. Most users

chose the "Landscape" option, which allowed them to specify an image property.

Once selected, most users hesitated when looking at what to enter when given the

property dropdown list for selecting an image. This may be due to the fact that for

this task, we were creating a visualization for data already in the system, and thus

users were unfamiliar with the properties listed in the dropdown and did not know

which value they should pick. This could also be due to lack of text explaining what

type of value they should select. In any case, this was certainly an area where the

user had to hesitate before continuing, and thus can be improved in the future.

Overall, the wizard created a flow of dialogs such that all users were able to

successfully create a visualization. With improved UI controls for setting different

configuration values, as well as ensuring that proper default values were set, users

were able to proceed through the wizard successfully.

Editors

We had separated the editors into two different editor panes, one for modifying the

lens and one for modifying the overall visualization, including views and facets. While

we did not test the initial editor, which contained both the Lens and View and Facet

editors, this modification seemed to be a good decision because users knew which

editor to go to when making changes to the overall visualization (ie. they knew

to use the View and Facet editor when adding a facet). The original editor would

have made the user spend more time thinking about where to insert different UI

components, and from general observations during the user testing, it was clear that

users wanted to do the least amount of "thinking" during the process of creating the

visualization.

While the wizard helped users add views, facets, and lenses initially, once outside

the wizard, users had trouble finding the equivalent actions. Some users took an

extensive amount of time to find the toolbar buttons that allowed them to add the

various UI components, and needed assistance along the way. Two users ignored the

toolbars entirely because at quick glance, they appeared to be standard toolbars and

they did not realize custom toolbar items existed. Conversely, one user immediately

noticed the custom toolbar items because the toolbars were standard and the custom

actions stood out. However, this last user is most likely the exception because he was

already familiar with tinyMCE[17] editors. The discoverability of these actions may

be improved by lowering the toolbar items on the toolbar to the last row, where users

first look for custom actions. In addition, multiple users suggested duplicating the

actions in the menus. Finally, most users were able to figure out that they must first

place focus in the display before clicking on an action to add a UI component, but

some required assistance with this, as well. One way to respond to this is to allow

the UI edit actions to be available at all times, such that if the user tries to add a UI

component before placing focus anywhere, he or she is warned and given instructions

on how to proceed.

We did not explicitly test the lens editor - the main interaction with it was the

dynamic creation of a lens based on the user's selection during the wizard - however,

based on users who did spend some time playing around with it, it appeared that they

had trouble understanding how to use it. This is due to the fact that the lens editor

model was unique. The content behaved like text at times, but had some "variables"

that are replaced in the rendering of the visualization. Users did not immediately

suspect that they could edit existing lens content (ie. the variables) by double clicking

on it. Some users appeared to discover this functionality accidentally. In addition,

users did not realize that by selecting content in the editor, they could drag it around.

One user expected that clicking on the yellow lens content and dragging would allow

them to rearrange the content, rather than selecting the content first. While typically,

user feedback gestures can help guide a user in understanding how items can be

manipulated, the standard practices are already applied in this case. The cursor is

an I-beam to indicate that the contents can be treated like text, and there are no

"gripper" or "texture" marks to indicate that the lens content can be "clicked and

dragged." Because standard feedback is already used, better help text may be the

best approach at describing what users can and cannot do in the editor. In addition,

a preview pane that shows a sample rendered item may give users the proper feedback

to understand how changes to the lens affect the actual rendering of an item.

Overall, users were able to modify the overall visualization once they figured out

they needed to place focus in the editor and where to find the toolbar items, but most

required guidance at some point. As mentioned earlier, duplicating some actions in

the menus and additional help text would improve the discoverability of available

actions. This area should be explored further in future design iterations and testing.

5.1.2 Central Storage Support

In this section, we will review the usability of the features added to specifically support

anchored Dido files. This includes the Dido manager, creator, and query editor (aka.

"Data Picker").

Dido Manager

The Dido Manager was straightforward for all users. They were able to launch exhibits

from the home page and bringing up the New Exhibit form. This is likely because

the home page was similar to typical list view interfaces, such as that for an inbox or

the home page of Google Docs[4].

Dido Creator

The Dido creator interface, which allows users to specify basic Exhibit properties,

including the title and any tags, as well as which data types to add to the visualiza-

tion, appeared to be mostly straightforward, as well, because all users were able to

successfully create an exhibit for "Film" items. Some users did not realize "types"

were required, in which case they were shown error text explaining that they must

select a type in order to continue. Perhaps separating these input options into two

steps, one for filling out basic information and one for selecting data types, would

help clarify the necessity for selecting types.

An early implementation of this interface gave users the ability to first choose

which properties they wanted to use to filter the data, followed by an interface to

select values for those properties. For example, users could select "type" and "city"

as properties on which to refine the data, and later specify particular values (ie. type

values of "Restaurant" and "Place" types, and a city value of "Boston"). Being given

all properties for all items of different types was evaluated as too confusing for layman

end users, and thus the interface was changed to allow users to first consider what

type of items to add, followed by any filtering. This was the right decision, because

users understood the concept of having different "types" of items without feeling

overwhelmed by too much data.

Some users did not notice the "refine items" area that appeared in a left sidebar

once the user selected a type. This area provided a summary of what items were

selected, and gave users the opportunity to further filter the selection based on facet

values for the type. In our testing, we asked users to create an exhibit for "Academy

Award-winning films." The left sidebar provided an area for the user to refine the

selection appropriately. All users who noticed the area were able to refine the data

properly. Other users ignored the section entirely. The sidebar was designed to appear

once the user made a selection in order to draw attention to the sidebar. It was also

designed to handle the typical case of creating an exhibit for all items of a certain

type, by hiding the facet options by default. It is possible that the collapsing of the

facet values contributed to users ignoring the area all together, thinking that it did

not offer any additional functionality aside from deselecting a type that had been

selected. Better UI feedback can help with this, perhaps by showing a "+" sign to

indicate the section can be expanded, rather than the "Refine" link.

While the import dialog was clear for some, for others it was a bit unclear what

was expected in the properties. As a result, users often went with the default values.

For example, users are able to import CSV or TSV data, and are given the option

to overwrite the "type" and column headings for the items. All users left this blank

because they did not know what it meant. This was an issue because it was never

pointed out that the term, "type", as well as "label," had special meaning in Exhibits.

As a result, it did not occur to users that there would be a problem if their data did not

have a "label" column header or that all items would be categorized as generic "Item"

types if no "type" column header was specified. This was immediately understood

after an explanation, therefore additional error checking and more precise, instructive

help text will likely help resolve this issue. In addition, a more descriptive import

"wizard," as opposed to a single dialog, would help guide the user in specifying the

data properly. The wizard could parse the data and prompt the user to specify a

"type" if none existed. It could also ask the user to specify a column that represents

an item's "label" if such a column did not exist. Further, if the user is importing

data types that already exist in the system, the import wizard can display the existing

properties associated with that type and help the user align mismatched schemas.

Anchored Dido Features

In the actual Dido file, there were a few UI components added specifically for the

anchored Dido. These include the "Data Picker," which allowed users to modify their

initial selection of types, as well as menu items to bring the user back to the Dido

manager home page and the Dido creator page.

Those who used the Dido data picker were able to change their selection success-

fully. The users who did not initially filter the data when creating the exhibit were

able to do so properly with the Data Picker. Thus, the addition of this UI was impor-

tant for anyone who did not initially specify the correct data set. Some users confused

the Data Picker with the facet editor, when asked to add a facet to the visualization

that filters Films based on "genre." This confusion was somewhat understandable,

given that both UI components involve filtering the data. All users who made this

mistake eventually realized they were in the wrong place to accomplish the task at

hand, but some took longer than others to realize this. More help text explaining

what the Data Picker UI does, along with a reference to the View and Facet editor,

might help prevent this issue from happening in the future.

Exporting data was clear to users, again due to the consistency with external

applications. Similarly, the "Open" and "New" links back to the Dido Manager and

Dido Creator were self explanatory for the same reasons. Users are simply accustomed

to seeing these menu items under the File menu, and thus immediately knew where

to look for these actions.

5.1.3 Summary

The system was able to successfully guide users in creating a visualization for data.

The strengths of the system were in places where users did not need to "think" to get

the job done. This was often in areas that were consistent with external applications,

as well as areas that provided enough UI guidance. Standard menu items were found

immediately, and the Getting Started wizard gave users clear enough choices or proper

default values to allow them to quickly create visualizations.

Weaknesses of the system were primarily in areas where our application differed

from standard applications, and there existed a disconnect in the system's model and

a user's mental model of the system. In fact, the user who was able to complete

all tasks successfully and quickly attributed it to being able to form a correct men-

tal model about how the system worked. This user was also already familiar with

faceted browsing and tinyMCE, which may have influenced his thought process. Our

application differs from typical ones, primarily because it contains many "editable"

properties - users can edit the data values themselves, the visualization that displays

the data, as well as what data types are shown. As a result, providing an interface

that is learnable and usable is a challenging design space. When continuing to design

UI components, we must put more emphasis on what a user is thinking when they

want to accomplish a task over how the system is designed.

The structure of the usability testing conducted here focused primarily on the

learnability of the system. Overall, the issues found here seem fixable given more

time and resources to perform more design iterations, implementation, and usability

testing. In addition, a more involved user study should be done in the future, based

on actual usage of the system over a period of time. More details on how the system is

used in a "real world" setting, including which features are most commonly accessed

and any usability issues that may be revealed after frequent use of the system, are

some factors that will govern how this application evolves and improves in the future.

5.2 User Study Results

After users gained experience using the system during the usability session, we inter-

viewed them to collect information on possible applications of the system, including

what information they might store and any limitations that would prevent them from

using the tool. Overall, it was clear that there was an interest and necessity for such

an application. Users gave several personal use cases for why this application would

be an effective tool. However, despite the desire for such a system, there were also

features that stand in the way of users adopting it.

5.2.1 Use cases

All users stated that they could imagine using such a system. While this question

may have been "leading," evaluating their response time for providing a sample use

case showed that most users were able to think of examples immediately (hesitation

of less than 1 second). The most noteworthy potential use cases were the following:

1. Startup Companies A graduate student wanted to track startup companies

in which she was interested. She currently used a spreadsheet to manage the

information and found the faceted browsing and visualization options of our

application to be a useful feature to help her navigate the data more effec-

tively. With faceted browsing, she can quickly view the companies by location

or product.

2. Classical Music collection A post-doc interviewed wanted to use this ap-

plication for her classical music collection. She found iTunes to be limited in

the metadata fields it provided for each file. She wanted to specify more precise

fields for her CDs, such as specifying a "Conductor" for orchestral pieces, rather

than forcing that information into the "Artist" field for iTunes.

3. Sports Statistics A young professional thought the faceted browsing would

be quite useful for maintaining sports statistics. In particular, by storing all

the context information for a given play, the faceted browsing would help in

viewing the most frequent causes for bad plays.

4. Biomolecular Sequences A graduate student in bioengineering wanted to

organize the DNA sequences he commonly works with, and found existing tools

to be restrictive. Currently using LabLife to organize his data, he appreciated

the customizability of our system for giving him control over what values to

store that LabLife did not provide. However, since LabLife offered more tools

out of the box, it would take more for him to migrate to using this application.

This is discussed further in Section 5.2.2.

lhttp://www.lablife.org

5.2.2 Barriers

When exploring what limitations the application currently has, it was clear that

there were some features that users wanted before they would transition to using the

system.

1. Automatic Import of Metadata Despite supporting the importing of data

from popular formats used in spreadsheets and Exhibits, a popular request was

to have a better automatic import system. Files that already have metadata

associated with them, such as documents, photos, and music files, should have

that data automatically added to the system. For example, in the classical music

example, the user wanted to be able to insert a CD and import all information

about the album and music files to the system. In addition, importing data to

this system from others needed to be better supported. Currently we provide

migration from spreadsheets and Exhibit JSON files, but users can be organizing

their data with other tools. As one user phrased it, "having a good import

feature is important to get users to convert to one system from another, because

people who tend to use these [organizational} tools often already have their own

system."

2. Analytical Tools Adding support for calculations based on property values

was another request. Currently, the system allows users to sort, search, and

filter on any given property, but it does not allow for the same rich interactions

based on analyses of the data. For example, while users can specify location

information, there is no facet to allow them to search for all items within a

certain distance of a given address. Another example is with DNA sequencing.

Some properties can be determined based on analyses of the data, such as the

melting temperature. Such information is provided by third party applications

that specialize on managing this information. Thus, while the user sees the ad-

ditional flexibility of this customizable system, without the ability to do similar

analyses, he would not want to migrate. There may already exist some analytics

support in Exhibit, and this should be investigated and better exposed in the

future.

3. Community Another major demand was to have a system on a 'server that

could support contributions from multiple people, along with the appropriate

access control moderations. In this case, the user wanted to manage data he

himself could not be the sole content author, but wanted the shared data to

be somewhat moderated. More work can be done to further explore this space,

including looking into the possibility of leveraging existing tools such as Google

Docs or Semantic Media Wiki. With a shared Google Doc, users can create

their own Dido file for visualizing the data, while leveraging the compiled data.

5.2.3 Summary

The interviews conducted were designed to gauge initial thoughts on the utility of

such a system. This assessment confirmed that this application helps solve a real

need for end users, who want more effective ways of managing and browsing their

data. However, it also indicated that some limitations do exist which may prevent

users from migrating to the system. These barriers to entry should be looked at in

the future to help encourage adoption of this application.

78

Chapter 6

Conclusion

In this thesis, we've introduced a new tool that enables end users to more effectively

organize their collections of information by creating personalized and interactive in-

terfaces for managing their data. We describe the motivation behind creating such

an application, the design and implementation details of our system, and an evalu-

ation of our tool's usability, potential viability, and current limitations. A summary

of the contributions made in this thesis are presented in this chapter, as well as a few

directions in which this project can be pursued further with future work.

6.1 Contributions

The system developed here offers an improved end-user driven customizable informa-

tion management tool. We introduced a central data store on the user's local machine

for saving the user's data, an interface for creating and managing visualizations for

that data, and a wizard and editors for customizing the visualization and editing the

data. The system provides a means of importing data to help users migrate existing

data from other applications, as well as gives users the opportunity to define new

data objects. Our application also encourages the sharing of data either as raw data

or with an accompanying visualization.

As a first iteration for such a tool, more enhancements can be made to improve

the tool's usability, as discussed in Chapter 5. However, in its current state, this tool

is successful at conveying the ideas behind the system and allowing users to create

more effective interfaces for curating their data.

6.2 Future Work

There are several areas related to this project that can be explored further. Some are

described in detail in Section 5.2.2, and will not be repeated here. Additional areas

that are especially noteworthy are discussed below.

6.2.1 Database

There are two specific database enhancements that can be looked at in the future.

The first is a replacement of the current local database storage implementation as a

result of the evolution of web standards, while the second is the addition of a server

side database.

HTML5

During the course of work on this thesis, the Google Gears team declared that it would

no longer support future enhancements of Gears in an effort to focus on the adoption of

the HTML5 standard[6]. HTML5 has specifications to support a local database, such

that the functionality offered by Gears will become obsolete. Once that specification

is stable and web browsers fully support the local database, implementation of the

database wrapper for this system should be moved to using the HTML5 local database

API instead of that for Gears.

The Cloud

While using a local database has its benefits, it has its disadvantages, as well. First,

the information can only be accessed from a user's local machine. By adding a server

side database, users could have a back up of their data and be able to access their

data and visualizations from any computer that has internet access. As mentioned in

Chapter 4, an ideal system would synchronize the data on the user's local machine

with the one in the cloud such that when a user does not have internet access, he

or she can work with locally stored data, and when the user does have access, any

changes made locally while offline are synchronized with the data on the server.

Adding support for cloud storage may go hand-in-hand with the changes needed to

support HTML5.

In addition, as mentioned in Chapter 5, support for a server-based storage facility

that can manage different users and access controls may be required for certain use

cases. Thus, when implementing server support, this should be taken into considera-

tion.

6.2.2 Advanced Lens support

The lens of a resulting visualization is a critical part of this application, as it is a

template rendered repeatedly for each item. Better support can be added to make

the customization of lenses easier and more powerful for end users.

Scoped Lenses

In the traditional exhibits described in Chapter 2, lenses can be scoped for specific

views. In other words, an exhibit that has multiple views can use a different lens for

each view. This functionality was removed in Dido, which limits the expressive power

of the visualizations.

Data Editing support

With the current system, when users edit or add new data, they are only given text

fields to work with. This can limit a user's efficiency of using the system, and is

more prone to typos, as well. Offering other types of form fields, such as drop down

lists with existing values for a property or radio and checkboxes for selecting options,

would be more effective for the end user. This is also an interface more familiar to

users for data entry.

Manipulation and styling of lens content

As discovered in user testing, manipulating the arrangement of lens content and

styling the overall lens was not the most straightforward task. Work can be done to

investigate tinyMCE capabilities more to improve these actions.

6.2.3 Anchored Dido and Standalone Dido

Finally, in this thesis we talk extensively about the support for two types of Dido

files: Anchored (with a central storage) and Standalone. There is currently limited

support for transitioning between the two. While users can import and export data

to migrate data between the two, there is no concept of automatic synchronization.

Should all files store information in both the file itself and Gears? Should Standalone

files automatically import data to Gears if the user has it installed? This can be an

area to explore further to create a better ecosystem in which the two types of files

can coexist.

Bibliography

[1] E. F. Codd. A relational model of data for large shared data banks. Commun.

ACM, 13(6):377-387, 1970.

[2] Douglas Crockford. The application/json media type for javascript object nota-

tion (json), July 2006. http: //www. ietf . org/rf c/rf c4627. txt.

[3] Filemaker, Inc. http: //www. f ilemaker. com.

[4] Google Docs. http://docs.google. com.

[5] Google Gears. http://gears.google.com.

[6] Ian Hickson. HTML5: A vocabulary and associated APIs for HTML and

XHTML. http://dev.w3.org/html5/spec/Overview.html, April 2010.

[7] David F. Huynh, David R. Karger, and Robert C. Miller. Exhibit: lightweight

structured data publishing. In Proceedings of the 16th international conference

on World Wide Web, pages 737-746, Banff, Alberta, Canada, 2007. ACM.

[8] iTunes. http://www.apple.com/itunes/overview/.

[9] David R. Karger, Scott Ostler, and Ryan Lee. The web page as a WYSIWYG

end-user customizable database-backed information management application. In

Proceedings of the 22nd annual ACM symposium on User interface software and

technology, pages 257-260, Victoria, BC, Canada, 2009. ACM.

[10] H. Kilov. From semantic to object-oriented data modeling. In Systems Integration

'90. Proceedings of the First International Conference on Systems Integration,

pages 385-393, Morristown, NJ, USA, 1990.

Manola and Eric Miller. Rdf primer.

h t tp://www. w3. org/TR/rdfprimer/, 2003.

[12] Microsoft Excel. http: //of f ice.microsof t. com/excel.

[131 Mozilla Storage. https: //developer.mozilla. org/en/Storage.

[14] Scott B. Ostler. Mutable data representations for lightweight publishing and

curation. Master's thesis, MIT, 2007.

[15] Picasa. http://www.google. com/picasa.

Berners-Lee on the

http: //www. ted. com/talks/tim-berners-lee-on-the-next-web. html.

[17] TinyMCE: Javascript WYSIWYG Editor. http://tinymce.moxiecode.com/.

[18] W3C semantic web. http://www.w3.org/2001/sw/.

[11] Frank

[16] Tim next Web, 2009.

