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Abstract

Ion traps provide an excellent tool for controlling and observing the state of a single
trapped ion. For this reason, ion traps have been proposed as a possible system for
large-scale quantum computation. However, many obstacles must be overcome before
quantum computing can become a reality. In particular, perturbations in the electric
field due to noise and electrode charging must be reduced to increase coherence of the
motional quantum state. Gold has been a popular choice in the past due to its inert
properties; however, it is undesireable due its incompatibility with CMOS technology.
This has led to increased research into alternative CMOS-compatible materials, such
as aluminum and copper.

This thesis presents measurements of electric field noise and light-induced charging
in aluminum, copper, and gold surface electrode traps. In addition, the effect of oxide
growth on field noise and electrode charging is explored by controlling the thickness
of aluminum oxide on several aluminum traps. The measurements show that electric
field noise can be suppressed in aluminum traps to approximately 10-18 V2 cm-2 Hz-1,
matching the noise exhibited in gold traps, and that copper traps exhibit noise within
an order of magnitude of that in aluminum and gold. However, the natural oxide of
aluminum poses many problems towards high-performance aluminum ion traps. The
electric field noise is shown to be strongly dependent on the oxide thickness, increasing
the noise by a factor of about 10 until saturation at a thickness of 13 nm. Charging of
surface electrodes is shown to be highly dependent upon the material, but the model
presented does not match the experimental data and is found to be incomplete. These
results indicate that ion traps made out of CMOS-compatible materials can perform
as well as more traditional traps fabricated from gold with respect to heating and
charging as long as methods are developed for controlling oxide growth.

Thesis Supervisor: Isaac L. Chuang
Title: Professor of Physics
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Chapter 1

Introduction

1.1 Background

In recent years high-precision atomic physics experiments have found many uses,

making ion traps an extremely important technology. Atomic clocks have been cre-

ated from trapped Al+ and Be+ ions with 17 digits of precision[RHS+08], and quan-

tum information science has opened up the possibility of solving computationally in-

tractable problems using precision control of quantum systems [Fey82]. Arrays of ion

traps have been proposed as a possible architecture for scalable quantum computing

[CZ95], which would allow the speedup of many important and useful algorithms for

problems such as solving linear systems [Ara09] and factoring large numbers [Sho97].

An often overlooked fact of trapped ions is that the precise control over the atomic

state and its interactions allows for them to be used to make exceedingly precise mea-

surements of thermal fluctuations, surface properties, and other quantum properties

of solids. Using the trapped ion as a probe, the fundamental processes behind ob-

served macroscopic phenomena can be examined to extremely high precision. By

using the electronic and motional states of a trapped ion to probe the electric field,

fluctuations on the order of 10-19 V2 cm- 2 Hz- 1 can be detected with a trapped ion

located at distances which are tens to hundreds of microns from the metallic surface.

These measurements can in turn be correlated to various surface properties of solids,

including grain size, structure, composition, and texture. In addition, the electric



field noise can be measured to this level at unprecedentedly high frequencies - previ-

ous measurements of this precision could only be achieved at low frequencies (on the

order of single Hertz) [DH81][Ray02].

This thesis presents the application of ion traps to studying two such phenomena:

electric field noise and the effect of surface physics on the metallic work function. Ap-

plications of the suppression of electric field noise and charging of metallic surfaces has

found applications in many scientific fields. These physical phenomena are related to

the heating of the motional modes in trapped ions and the perturbing of the trapping

potential due to trapped surface charges, making the study of such phenomena an im-

portant obstacle to surpass in quantum information science [DOS+06]. Electric field

noise due to fluctuating surface potentials has been determined to be one of the least

understood and highest risk noise sources in the LIGO/LISA Scientific Collaboration,

placing a limit on precision measurements of gravitational waves[RBB+06]. Tests of

quantum electrodynamics measuring the Casimir-Polder force require measurements

on the order of 10-11 V m- 1, making electric field noise an increasingly important

consideration in this field [SBC+93].

Past experiments have successfully determined both the distance and temperature

dependence of anomalous noise (noise in excess of the Johnson and shot noise) at high

(> 150 K) [DOS+06] and cryogenic [LGA+08] [LGL+08] temperatures with tungsten,

silver, and gold traps. Similarly, the effects of electrode charging on trap parameters

has been studied before in gold electrode multipole traps [MDW08]. However, very

few studies have been performed that made comparisons between different electrode

materials. Gold has become standard for ion trap electrodes given its high electrical

conductivity and resistance to oxidation, but is incompatible with current CMOS

fabrication technology. CMOS-compatible metals such as aluminum and copper have

been proposed as potential electrode materials to allow for integration with CMOS

control electronics to improve scalability of ion traps. This thesis explores the effects

that electrode choice has on the performance of ion traps, as characterized by electric

field noise and electrode charging. In particular, ion traps are microfabricated with

aluminum, copper, and gold as electrode materials, including a set of traps with



additional oxide layers on them to measure the performance of oxidized traps. The

majority of original work in this thesis is the development of fabrication methods for

these traps, resulting in a procedure that takes 12-15 man-hours (typically spread

over the course of a few days) to manufacture a cryogenic surface electrode trap from

raw materials. The electric field noise and electrode charging rates are then measured

for each trap as a measure of its performance; the goal is to find materials that are

CMOS-compatible yet maintain the performance of gold electrode traps.

This thesis is not considered a comprehensive work by any stretch of the imagina-

tion. This document focuses on the fabrication and characterization of several series

of ion traps; therefore this work does not seek exhaustively characterize the electric

field fluctuations. No systematic measurements are made of the temperature or fre-

quency dependence of electric field noise, and the measurements of electrode charging

are by no means exhaustive. As a result, no attempt is made at the formulation of

a comprehensive model that explains the experimental results. However, this work

serves as a starting point for any of these endeavors, laying down the groundwork

such that they can be achieved in the future.

1.2 Overview

The scope of this manuscript is twofold. First, the properties of bulk materials are

probed using trapped ions as a high-precision instrument for taking data. In addition

to measuring the absolute values of these properties, the goal is to fully characterize

their dependencies and trends. Second, the goal is to look at these results from a

device fabrication standpoint, and to determine which materials are good candidates

for use towards scalable quantum information. Throughout this entire thesis, the

results of these experiments will be examined through both the physics standpoint

and the device standpoint.

Chapter 2 presents the theory of how to trap ions using an oscillating electric

field. In this chapter the geometry of the planar Paul Trap is introduced, as are

methods by which the stable equilibrium in the field and the motion of the ion can



be modeled. This concludes the theoretical background for this work.

Chapter 3 details the electronic structure of strontium, the atom of choice in this

experiment. The electronic and motional structure of strontium is presented, along

with methods for coherently manipulating these states. Methods for the detection,

cooling, and measurement of strontium ions are presented, providing a way to measure

electric field fluctuations in the electrode surface.

Chapter 4 introduces the reader to the theory behind fluctuations in the electric

field due to noise and electrode charging. The first half of this chapter derives the

spectral densities of the common types of noise in solids, and explains how such

noise can be measured in ion traps. The second half begins with an explanation

of photoemission in metal-oxide systems, and presents a method for measuring the

light-induced electrode charging.

Chapter 5 describes microfabrication techniques used for manufacturing pla-

nar ion traps. The entire process is summarized from freshly cut quartz wafers to

the packaging of the final trap. In addition, alternative fabrication approaches are

discussed, as are modifications to the trap morphology, such as annealing and the

thickening of the oxide layer.

Chapter 6 presents experimental results. Using the apparatus described in Chap-

ter 5 and the theory in Chapters 2 and 3, the details of measurements of photoemission

and anomalous noise in various materials is presented. In addition, the results of the

experiment are compared with the ones predicted by theory in Chapter 2.

Chapter 7 concludes with a discussion of our experimental results, and an outlook

on future experiments in this field.

1.3 Contributions

The work described in this document was performed in Professor Isaac Chuang's

laboratory at the MIT-Harvard Center of Ultracold Atoms and Research Laboratory

for Electronics. Jaroslaw Labaziewicz and Kenneth Brown, former students in the

laboratory, led the construction of the apparatus used to take the measurements in



this thesis. Shannon Wang and Yufei Ge oversaw my work directly, which consisted of

the fabrication of the ion traps in this thesis. The measurements were performed by

Shannon Wang, assisted by Peter Herskind and Jeffrey Russom. Yufei Ge oversaw my

work in fabrication, both teaching and assisting me in the process of manufacturing

ion traps.



18



Chapter 2

Ion Trapping

In this chapter, the theory of ion dynamics in a linear Paul trap is presented. The

chapter begins with motivation for the Paul trap, followed by the full solution to

atomic motion in the potential field using the Mathieu Equation and Floquet Theory.

The Secular Approximation is then introduced to reformulate the equations of motion

into a form that proves to be much more intuitive. The chapter closes with the

introduction of the surface electrode geometry, and how the theory built up for the

linear quadrupole trap can be applied to it.

2.1 Linear Quadrupole Traps

A static electric field cannot trap an ion, as dictated by Earnshaw's Theorem [Ear42].

Any minimum in a potential can be expanded as a harmonic potential V(x, y, z) =

ax 2 + #3y2 + _yz 2 for small displacements. By Laplace's Theorem (V 2 V(x, y, z) = 0),

we find that a+3+#+y = 0 - there is no purely attractive or purely repulsive minimum.

It wasn't until the discoveries by Penning (using magnetic fields) and Paul (using

oscillating electric fields) that a method for creating a trapping potential was formu-

lated [PS53] [Pau90]. Paul's method used electric fields oscillating a radio frequencies

to create a quadrupole potential; the original trap has been modified several times

for ease of production, with one of the simpler Paul traps shown in Figure 2-1. This

trap (called the linear quadrupole trap) has four rods; two of them are grounded



+ 
+

0" 0

Figure 2-1: Demonstration of how the oscillating potentials in a linear quadrupole
trap can trap a positively charge particle.

and the remaining two hold a voltage that oscillates at radio frequencies. The entire

line down the center of the four rod configuration is a stable equilibrium; however,

positive static voltages are needed at the ends to prevent the trapped particles from

leaking out axially.

2.2 The Mathieu Equation

The most general time-independent quadrupole potential takes the form of:

# = ax 2 + fly 2  (2.1)

By Laplace's Theorem, we find that a = -0; the potential must be attractive

in one direction and repulsive in the other direction, as shown in Figure 2-2. If the

potential oscillates at a high enough frequency, an ion can be trapped in the center

of the potential.

The full time-dependent potential is given in Equation 2.2, such that V is a DC

bias, V is the amplitude of the radio frequency potential, ro is the distance from the

center of the quadrupole to the conducting rods, and Q is the frequency of oscillation.

(x, y, t) = 2r (V - V cos Qt) (2.2)

20



Linear Quadrupole Potential at t = 0 Linear Quadrupole Potential at t = n

Figure 2-2: Equipotential Surfaces of the linear quadrupole trap for times t = 0 and
t = 7r.

We can solve for the equations of motion in the i- and s-directions separately; due

to symmetry we can assume that the solutions in the ±- and Q-directions are related

by a factor of -1. We solve for the equation of motion using

mz = -QV#(x, t) (2.3)

Here, Q and m are the charge and mass of the particle and #(x, t) is the potential

with the y-component set to zero. Plugging in the potential:

SQ V0 + V1 cos Qt
mrT (2.4)

Making the equation dimensionless, it takes the form of the canonical Mathieu

Equation1 [Mat68]:

d2X
+ (a-- 2qcos(2))x = 0 (25

With dimensionless Mathieu parameters

1If this equation was solved for y rather than x, the substitutions x = y, a = -a, q = -q would
be made.

(2.5)



q = (2.6)
mQ 2r20
4QV

a = mQ 2r2  (2.7)
m ~0
Qt

= 2 (2.8)

Here, a is the dimensionless DC voltage, q is the dimensionless RF voltage, and

( is the dimensionless time. The solutions to this equation are well-known; using

Floquet Theory we find that the solutions take the form [Flo83]:

x(() = coeA A'() + cie-A P(-) (2.9)

with integration constants ci and c2. In Floquet's solution, 0(() is a function that is

periodic in (, and A is a characteristic exponent dependent upon the particular values

of a and q. This solution can be simplified further using Fourier's Theorem to expand

00 
00

X( ) = coeA >] c2ne 2in + cie-A E c2ne 2in (2.10)
n=-oo n=-oo

Making the simplification A =+ i6 and absorbing the real part into the integra-

tion constants:

00 
00

x(() =c c2ne3 i"~ + c' c 2ne i" J4 (2.11)
n=-OOc n=-oo

Using Euler's Relation 2 to simplify this further:

00 00

x(() = (c' + c') c2n cos ((2n - 6)() + i(c' - c') E c2n sin ((2n - 6)() (2.12)
f=-00 n=-oo

These functions are called Mathieu functions of integral order [Mac47]. This

2e io=cos6+isinG



simplification highlights how the stability of solutions is dependent upon the value of

6 - if 6 is an integer value, then the solutions are unstable; if it is non-integer valued,

then our solutions are stable. Thus, the stability is purely a function of a and q.

There should exist regions of the a-q parameter space for which stable solutions exist,

and other areas for which the solutions are unstable. In the case of no DC voltages

(V = 0), it can be shown that the maximum stable q is 0.908 [Mac47]. In other

words:

2Q V < 0.908 (2.13)2rQ2

Therefore, the stability of the trapped ion can be entirely determined by the free

parameters V1 and Q - the amplitude and frequency of our AC potential.

2.3 The Secular Approximation

The Floquet solution to the Mathieu Equation fully describes the motion of atoms in

a quadrupole potential, though it provides very little intuition about ion dynamics.

By applying an appropriate approximation, the solutions take a much more intuitive

form - this approximation is called the Secular Approximation.

Depending on the chosen time scale, an ion trapped in a potential field oscillating

at frequency Q experiences two qualitatively different phenomena. For time scales on

the order of Q- 1, the ion experiences a force proportional to sin Qt. Treating this as a

driven oscillator, the ion will oscillate with a drive frequency Q with a small amplitude

(also proportional to the drive frequency). This motion is called the micromotion of

the ion. For time scales such that t > - 1, the ion will see a time-averaged potential

field; therefore the ion effectively experiences a two-dimensional harmonic potential.

An ion in this potential will undergo simple harmonic motion at a frequency w, which

we will define as the secular frequency, w,ec. The total motion of the ion can be

approximated as a superposition of these two modes.

Referring back to Equation 2.4, we can write the two-dimensional equations of

motion as:



1= cos (Qt) (2.14)
2

In the Secular Approximation, it is assumed that the secular motion is much

larger than the micromotion (Xsec > x,,) and that the drive frequency governs the

acceleration in the potential (2, > zsec) [Kap51][Ric06]. Assuming the Secular Ap-

proximation and no DC voltages, the equations of motion become:

Q QV, -xsee[ 1 2 cos (Qt) (2.15)
mo[ Ysec

Integrating twice, the equation for micromotion becomes:

X1 = cos (t) [ Xsec (2.16)
[mr2 YsecJ

As predicted, the micromotion oscillates about the secular motion with a frequency

Q. Rewriting the prefactor as q/2, where q is the Mathieu parameter, the restriction

that x. < 0.4 54xsec is enforced - the micromotion's amplitude must be smaller than

that of the secular motion. Using Equations 2.15 and 2.16, the secular motion can be

solved for:

isee Q2v2_
X secl 1___ 2

= - 4 cos2 (Qt) (2.17)
msec 0 Ysec

The secular potential is essentially a time-averaged one (looking at the potential

over large time scales such that it becomes harmonic). Time-averaging the cosine

term ((cos 2 (Qt)) = 1/2):

EscQ2v2 _XeS -sec 2 2  [ (2.18)
Ysec 0 Ysec

The secular motion can now be found easily by integration. The secular motion

in the potential becomes:



X = CO COS (sect + 4o) (2.19)

y = Ci COS (Wsect + 4)1) (2.20)

such that co and ci are integration constants and %o and I1 are phase factors. The

secular frequency is given by:

QV1
Wsec = (2.21)

Having found the secular frequency, the pseudopotential of the trap can be written

as

1 
(Q2v2 

2

V(x) -mW,2c( 2 2  (2 +y 2 ) (2.22)
2 +4mroQ (

giving the full pseudopotential.

2.4 Surface Electrode Traps

In 2005, Chiaverini et al. proposed a surface electrode version of the linear quadrupole

trap, shown in Figure 2-3 [CBB+05]. In this planar trap, all of the electrodes lie in

a single plane and the ion is trapped above the surface, opening up the possibility

of using microfabrication techniques for production of these surface electrode traps.

The techniques used are explained in depth in Chapter 4. The surface electrode Paul

trap is used in the rest of this thesis.

While the surface electrode geometry is conceptually similar to the linear Paul trap

geometry (as shown in Figure 2-3), the mathematics are significantly more difficult to

solve analytically. The pseudopotential approximation still holds (the approximation

was made independent of geometry), but the analytic forms of the trap parameters

are now altered. For a surface electrode trap with dimensions as given in Figure 2-4,

the analytic form of the potential in the xz plane is given by [Hou08]:



Figure 2-3: A linear quadrupole trap (left) and a planar Paul trap (right). Red indi-
cates ground and blue indicates oscillating voltages. Note how the linear quadrupole
trap can be "unfolded" into the planar trap by orientating the electrodes in a plane
rather than a cylinder.

V 1a+b-x a-x c+xD(xz, t) = [tan-( ) - tan-( ) - tan-'(x) + tan- cos Qt

(2.23)

For the surface electrode design, the Mathieu parameter q becomes a matrix with

elements

-4QV a2(b2 - 6bc + c2) + a(b+ c)(b 2 - 6bc + c 2) - bc(b+ C)2 (2.24)
11= -2= (.4rmQ 2  (a + b) 2(a + c) 2 V/abc(a + b + c)

8QV (b - c)(2a + b + c) (2.25)q12 = 921 = (.57rmQ 2 (a + b) 2 (a+ c)2

The stability of the trap can then be computed using this Mathieu parameter.

An important concept for the operation of surface electrode traps is that of com-

pensation. The geometry of the trap creates a nodal line down the axis of the center

electrodes. Nonzero micromotion amplitudes due to trap defects and stray fields make

it difficult to hold the trapped ion in the center of the potential; in addition, increased

micromotion may cause Doppler shifts in atomic transitions, making it highly unde-

sirable [BMB+98]. By applying DC voltages to the outer electrodes, the trapped ion

can be pushed back into the center of the well, eliminating its micromotion.
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Figure 2-4: The geometry of the surface electrode traps used in this thesis. "a", "b",
and "c" indicate the widths of the radio frequency driven electrodes and the ground
electrodes. The four remaining electrodes (V2 through V5) surrounding the central
ones are held at DC voltages used for compensation. The entire trap is typically 1
cm x 1 cm, with a typical electrode width of 150 pm.

One of the disadvantages of the surface electrode design is that it restricts optical

access to a hemisphere. Therefore, laser access is constrained to be in only the plane

of the trap. For laser cooling, the laser must have a non-zero projection onto the axis

to be cooled - the radial mode cannot be cooled with this scheme. This problem is

resolved by introducing asymmetry to the trap design, tilting the radial mode slightly

such that it has a nonzero axial component (see Figure 2-4).

2.5 Summary

This chapter described the theoretical foundations of ion dynamics within a linear

Paul trap (and, by extension, a planar Paul trap). Starting from an oscillating linear

V2

I



quadrupole potential, the equations of motion were solved in their exact form using

Floquet Theory and the Mathieu Equation. Next, the Secular Approximation was

introduced to provide a more intuitive view of ion dynamics. Using this model, the

secular potential was derived and along with it the two components of the ion's motion

- the secular motion and the micromotion. Section 2.4 discusses the transition from

a three-dimensional quadrupole trap to a planar surface electrode trap, and how the

change in geometry influences the relevant trapping parameters. The theory that we

have developed here will be revisited in later chapters when experimentally trapping

ions is discussed.



Chapter 3

The 88Sr+ Ion

All experiments in this thesis utilize the "8Sr+ ion as the trapped species. The singly-

ionized species has no nuclear spin and a single valence electron, giving it a very simple

hydrogenic energy structure. All of the relevant transitions (shown in Figure 3-1) are

available as diode lasers, reducing the cost and complexity of the laser systems used

to coherently manipulate the ion. In addition, all of the relevant transitions are also

within the transparency spectrum of common optical glasses and optical fibers, allow-

ing for easy integration of optics. Our desired isotope, the "8Sr isotope, is the most

abundant isotope (83% abundancy), removing the need for an isotopically selective

ion source. From a quantum information standpoint, the long lifetime (390 ms) of the

5S1/2 -* 4D5 / 2 transition makes it an compelling candidate for information storage.

For these reasons, SSSr+ is an appealing candidate for a trapped ion. This chapter

describes the energy structure of the SSSr+ ion and how basic operations (detection,

state preparation, and state measurement) are performed on the trapped ion.

3.1 Detection

The first step is to detect the ion and then prepare it into a known energy state. The

422 nm transition is used for both detection and cooling of the ion. When irradiated

with 422 nm light, the strontium ion will absorb the photon and its single electron

will become excited from the 5S 1/2 state to the 5P/ 2 state (See Figure 3-1). The
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Figure 3-1: The relevant electronic structure of the SSSr+ ion. All transitions are
labeled with their wavelengths in air and the lifetimes of the transitions.

electron will then decay back into the ground state and emit a 422 nm photon in a

random direction after 7.9 ns (the lifetime of the transition) on average. This provides

a straightforward method for detection - the 5S1/ 2 -* 5P1/2 transition can be used to

induce fluorescence of the ion, and the emitted photons can be detected to determine

if an ion has been trapped.

Once the ion is detected within the trap, the next step is to prepare the ion into a

known motional state. A trapped ion begins in a completely unknown motional state,

and therefore the ion must be cooled to its ground state before any experiments can

be performed. This is accomplished through two processes - Doppler cooling and

sideband cooling.



3.2 Doppler Cooling

The Doppler cooling process uses the 5S1/ 2 - 5Pi/ 2 transition to cool the trapped ion.

By tuning the 422 nm laser off-resonance to the red, atoms can be selectively targeted.

The vibrating atom will see a Doppler-shifted frequency for the incident light; only

atoms that are moving towards the laser will see resonant light. Upon absorption of

the resonant photon, the atom is imparted momentum hk in the opposite direction

to its motion. The atom subsequently emits a 422 nm photon in a random direction,

and experiences a recoil of hk in the direction opposite to the emission. Averaged

over multiple absorptions and emissions, the emission recoil is negligible, so the atom

loses a net momentum of hk per scattering event. Through repeated iterations with

a decreasing frequency shift, the total energy of the atom can be decreased.

The cooling process can be interrupted by the 5P1/ 2 --+ 4D 3/2 transition. With

1/14 probability, the 5P/ 2 state will decay to the 4D 3/2 state instead of the 5S 1/ 2

state. The 4D 3/2 state is metastable and has a lifetime approximately 5 x 10' longer

than that of the 5P/ 2 state and prevents further cooling. The addition of a 1091 nm

laser allows the atom to be re-excited into the 5Pi/ 2 state such that the cooling process

can continue.

The nonzero recoil with each emitted photon imposes a limit on how much the

atom can be cooled. Each emission heats the atom back up, creating a temperature

limit of T = E, where F is the linewidth of the atomic transition and kB is Boltz-2kB'

mann's constant [YCD89]. Assuming Doppler cooling in all three directions using

the 422 nm transition, the Doppler limit is T = 76pK. This is not sufficient to cool

the ion to the ground state, so different cooling methods must be utilized in order to

achieve a controlled state.

3.3 Sideband Cooling

In order to cool below the Doppler Limit, the full energy structure of the trapped

ion, shown in Figure 3-2, must be used. Chapter 2 derived the external potential
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Figure 3-2: (a) The energy spectrum of a trapped ion in a harmonic oscillator with
frequency hwsec (b) The electronic structure relevant to any transition can be modeled
as a two-state system with energy separation Eo (c) A trapped ion exhibits an overall
energy structure that is the coupling of the two separate energy spectra.

that traps the ion in great detail. As described in Chapter 2, the potential can

be approximated as a harmonic potential near the trap's center (See Figure 3-2a).

The ion vibrates in the potential with quantized motional modes separated by energy

hwsec. Combined with the simple two-state electronic structure of the relevant optical

transition (shown in Figures 3-1,3-2b), the overall energy structure of the ion is the

product of the two energy spectra as shown in Figure 3-2c.

After Doppler cooling, the ion is cold enough that the thermal broadening of the

5S1/2 - 4D 5 / 2 transition is negligible and the motional sidebands can be resolved.

This allows what is called sideband cooling. As with Doppler cooling, light that is

resonant with the atomic transition will be absorbed by the ion. The coupling of the

internal and external states allows many more optical resonances for the ion than are

available for Doppler cooling - any light of frequency wo ± nwse will be absorbed,

where n is an integer. These motional sidebands can be used to precisely control the

motional state of the ion using optical interactions.

An ion that is in the electronic ground state and mth motional mode (|5S1/ 2 , M))

can be excited to the 14D 5 /2 , M-1) state by an off-resonance laser pulse with frequency
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Figure 3-3: Sideband cooling

WS--+D - Wsec. The 4D5 / 2 state has a long lifetime, so the 1033 nm laser is used to

pump the ion into the rapidly decaying 5P3/2 state, which will spontaneously decay

into the |5Su/2 , M), 15S 1/2, M - 1), or 15S 1/2 , m - 2) state with equal probability. Thus

a full cycle results in the loss of, on average, a single motional quanta. This process

can be iterated as many times as necessary to reach the 15S1/ 2 , 0) ground state, which

is realized when the lower (red) sideband (the wo - Wsec resonance) disappears because

no lower energy motional states are available.

3.4 Measurements

3.4.1 Heating Rate Measurements

The motional sidebands can also be used to precisely measure the rate at which

thermal occupation changes, which is linked to anomalous noise in Chapter 4. By



measuring the transition probabilities on the red (lower) and blue (upper) sidebands

using appropriately detuned laser pulses, the exact thermal occupation number can

be determined.

The trapped ion is first sideband cooled on the 5S 1 / 2 - 4D 5 / 2 transition, and

then the motional state of the ion is measured via scattering on the 5S 1 / 2 - 4Py2

transition. This is repeated many times (on the order of 100) to determine a transition

amplitude for the blue and red sidebands. The thermal occupation number can then

be determined as a ratio of the transition amplitudes [WIBH87]:

Ablue _(n) + 1 (3.1)
Ared (n)

Rearranging terms, (n) is given by:

Ared
(n) Ared (3.2)

Abiue - Ared

Thus the thermal occupation number can be determined coherently by simply

measuring the ratio of the blue and red sideband transition amplitudes. This allows

highly accurate measurements of the occupation number to be made without dis-

turbing the trapped ion. The heating rate (n) is determined by stopping the cooling

process for a known amount of time to and then measuring the thermal occupation

number at a time to + At. Thus the heating rate is given by:

(n(to + At)) - (n(to))
(n) = A (3.3)

3.4.2 Micromotion Measurements

The micromotion amplitude of a trapped ion can be measured using the "cross-

correlation" technique [BMB+98]. This method detects the excess micromotion by

observing the change in the atom's fluorescence due the first-order Doppler shift

induced by the oscillations. The micromotion oscillates at the drive frequency Q

about the secular motion; by observing photons at the drive frequency, the amplitude

of the micromotion can be determined. The DC voltages can then be manipulated



until the micromotion amplitude goes to zero and the ion is fully compensated.

3.5 Summary

This chapter detailed the electronic and motional structure of the strontium ion and

how this energy structure can be used to perform high-precision experiments. The

theory of cooling ions to their motional ground state was explained, and then a method

for measuring the change in thermal occupation number was presented. Now that

the ability to make precision measurements of the heating rate of trapped strontium

ions has been presented, the next chapter explores the cause of these heating rates.
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Chapter 4

Anomalous Noise and

Light-Induced Charging

For scalable quantum computation to be realized, the qubit candidate must have ex-

tremely long lifetimes for the proposed qubit. For 8 8Sr+, the 5S 112 - 4D 5/ 2 transition

has been offered as an appealing candidate for a electronic qubit, with its motional

state as a qubit. In practice, the motional qubit is highly susceptible to heating out

of the ground state from a variety of sources, including collisions with background gas

and noise in the trapping potential. In a vacuum environment, the primary source of

heating of the motional mode is due to electric field noise from nearby electrodes.

Electric field noise has many proposed causes, such as changing grain sizes in

the bulk [GGJM+06], adsorbates introducing new surface energy states [R092], and

charge traps creating excess surface charging [OCK+06]. Fluctuations in any of these

parameters could potentially change the local charge on the surface or scatter con-

ducting electrons, perturbing the electric field as seen by the ion. In addition, these

parameters should exhibit some material-dependence. This chapter introduces the

theory of noise in solids, and then introduces how the noise can be coupled to the

motional modes of the trapped ion.

In addition, the use of optical interactions to coherently manipulate trapped ions

poses a problem as ion traps are scaled down. As the ion is held closer and closer to

the electrode surface, the surface physics become much more significant. In particular,



charging of the surface electrodes due to photoemission of electrons can disturb the

trapping potential. This chapter elaborates on the relevant surface physics and how

such charging of the surface electrodes can be measured.

4.1 Noise in Solids

4.1.1 Introduction to Noise

In electronic circuits, noise is a random fluctuation in the electrical signal (either

voltage or current) with time. Given a quantity A(t) that fluctuates with time, it is

common to describe the noise in the frequency domain rather than the time domain;

this is known as the power spectrum or power spectral density:

S(w) = IA(w)12  (4.1)

such that A(w) is the Fourier transform of the time-domain quantity A(t), given by

A(w) = A(t)e-'Wt dt (4.2)

For noise that is a time-independent fluctuating quantity (such as Johnson noise

or shot noise), the power spectrum is frequency-independent. Figure 4-1 shows a

cosine function with noise and the associated power spectrum. The noise is fairly flat

for all frequencies, and exhibits no power law-like behavior.

The power spectrum acquires a frequency dependence when the fluctuating vari-

able can be associated with a finite relaxation time, ir(t). Assuming a relaxation

function of the form -r(t) oc e-t/r with a constant relaxation time T, it can be shown

that the power spectral density takes the Lorentzian form[Ray02]:

S(w) oc (4.3)
1 + (fr)2

For low frequencies (f < r- 1 ), S(w) shows a white power spectrum, independent

of the frequency. As the frequency increases past f = T- 1 , the noise begins to exhibit
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Figure 4-1: Top: A cosine voltage source with randomly generated noise added.

Middle: The isolated noise from the circuit. Bottom: The power spectrum of the

noisy cosine function. Note that the power spectrum is independent of frequency,
implying a random source of noise.

a f-2-type form.

Assuming that there exist a variety of relaxation phenomena that are correlated

to the noise, with a distribution of relaxation times r, the power spectrum can be

described by:

S(w) oc dTF(T) 2-)
O 1 + (f-r)2

(4.4)

such that F(r) represents the distribution of relaxation times.

Figure 4-2 demonstrates how a distribution of relaxation phenomena can give rise

to a 1/f-type noise. Similarly, specific distributions of noise can give rise to inverse

power law-type noise. In general, it has been observed that a distribution of the form

T-a gives rise to a f-2+a-type power spectra.

..... ... . ..... ..... ..... ... . .. . -
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Figure 4-2: Left: The power spectrum of a variable whose fluctuations are associated
with a single relaxation phenomena. Right: The power spectrum of a variable whose
fluctuations are associated with multiple relaxation phenomena. Here, it is demon-
strated how a variety of relaxation phenomena could lead to 1/f-type spectra (shown
in yellow).

Another useful measure of the noise is the root mean squared fluctations of the

time-dependent value. This gives us the value of averaged value of the fluctations,

and is given by:

((JA(t)) 2) = - S(w)df (4.5)

where fo and fi define the limits of the frequency band the measurement is taken in.

4.1.2 Types of noise

Three types of electronic noise are commonly observed in solids: shot noise, Johnson-

Nyquist noise, and anomalous (excess) noise.

Shot noise, discovered by Schottky in 1918, is the noise due to the discretization of

charge carriers in a conductor [Sch18]. The current in a solid is proportional to nQv,

where n is the number of electrons, Q is the electron charge, and v is the velocity of

the electrons. Therefore, noise can be observed as fluctations in both n and v. shot

noise is the former. The macroscopic current observed is the sum of many electrons

each contributing Q towards the total current - the fluctations in n from one moment

in time to another is the shot noise. It has the voltage power spectrum



Sv(w) = 2Q(I)R(w)2  (4.6)

where R(w) is the resistance of the conductor being driven by an oscillating voltage of

frequency w. This power spectrum indicates that the shot noise is both frequency- and

temperature-independent. However, shot noise is typically so small that it can only

be observed when both Johnson noise and anomalous noise have been suppressed.

Johnson noise, discovered in 1928 by H. Nyquist and J. Johnson, is best described

as fluctuations in the velocities of electrons in a conductor [Joh28]. The kinetic ener-

gies of electrons in a conductor can be described by the Maxwell-Boltzmann Distribu-

tion; therefore there exists a variance of velocities that corresponds to temperature.

The power spectrum of Johnson noise is [Nyq28]:

Sv(w) = 4kBTR(w) (4.7)

such that kB is Boltzmann's Constant, and T is the temperature. The power spectrum

indicates that Johnson noise is dependent upon the temperature of the solid, but is

not dependent upon any inherent material properties or the frequency. Therefore,

this noise is expected to decrease with temperature and be an approximate measure

of the electron temperature.

The final type of noise is the excess noise - any noise in excess of the shot and

Johnson noise. This is also called anomalous noise. The exact causes of anomalous

noise is currently unknown, but many phenomenological models exist to describe the

experimental data [DH81] [Wei87]. However, decades of experiment have resulted in

many qualitative observations about this type of noise.

Anomalous noise possesses a power spectrum S(w) oc f -0, such that a is typically

small and negative1 . In an ion trap, the magnitude of the anomalous noise can only be

observed at low frequencies (< 1 KHz) or low temperature such that it is larger than

the Johnson noise; in addition, it has been found to be related to some thermally-

activated process [LGL+08]. The power-law nature of anomalous noise is most likely

'When a = 1, the anomalous noise becomes the ubiquitous "1/f noise"



to be a result of a distribution of relaxation phenomena that are related to the bulk

material; a greater understanding of this noise would give a clearer picture of what

sorts of relaxation phenomena and defect kinetics occur in a solid.

For such a noise that is derived from thermally-activated relaxation phenomena,

the materials-dependence is unclear. Without knowing the exact processes which

give rise to noise in a particular solid, appropriate scaling laws cannot be developed.

However, the general classes of relaxation phenomena should give rise to conductivity

fluctuations through scattering, carrier diffusion, and other such kinetic processes.

Therefore most materials should exhibit the same relaxation phenomena, but with

variations in the activation energies and relaxation times. It is unlikely that there

is more than an order of magnitude variation in these parameters, so the materials

dependence should be small if it exists.

A complete theory of noise would possess three components [Ray02]:

" A clear identification of the fluctuating value and mechanism

" A coupling between the fluctuating mechanism and electron motion in the solid,

leading to conductivity fluctuations

e Appropriate characterization of the fluctuation dynamics such that a relaxation

function ir(t) can be found and the spectral power S(w) can be calculated.

Such a theory of noise would make noise spectroscopy an invaluable tool in the

characterization of the quality of metallic films. Currently, the models for anomalous

noise can be categorized into two classes: phenomenological models and fluctuation

models. The first category of models, such as the Dutta-Horn Model, do not deal

with specific defects or coupling mechanisms; instead, they attempt to describe the

power spectrum of anomalous noise. The Dutta-Horn model is based on a distribu-

tion of activation energies for thermally-activated phenomena, such that a 1/f-type

spectrum is obtained. Using the Arrhenius-type equation with activation energy E

r = Toe -Ea/kt to describe the relaxation time, the spectral power can be written

[DH81]:



S(w) c if D(E) 2roeEa/kBT dE (4.8)
J0 1 + (wroeEa/kBT)

2

with the distribution of activation energies D(E) representing the multiple responsible

phenomena. Note that this model makes zero claims about the source of the noise,

and only attempts to mathematically describe the functional form of the noise.

The second category of models, such as the Universal Conductance Fluctuation

(UCF) or Local Interference model, propose physical processes that could generate

fluctuations in the conductivity (such as fluctuations in mobility or the resistivity

tensor) [SF86] [JP87]. However, such models do not give a clear mathematical model

for the magnitude of these fluctuations, nor do they attempt to characterize the power

spectra that such fluctuations would cause.

4.1.3 Electric Field Noise Observed in Ion Trapping

The previous two sections introduced the mathematical language of noise and then

the forms of noise in solids. This section represents the culmination of the previous

three chapters - how noise can be detected and measured within an ion trap.

Chapter 2 introduced the secular approximation, in which the oscillating electric

field can be approximated as a two-dimensional harmonic oscillator with frequency

Wsec. The Hamiltonian for such a particle trapped in such a pseudopotential would

be

p W2 X 2
Ho - - mwsec (49

2m 2

Assume that we introduce a fluctuating electric field E to the system with frac-

tional fluctuations E(t) = (E(t) - (E(t)))/(E(t))) to the system. The Hamiltonian of

the particle can now be modeled as [TKK+00]:

2_ 2

H(t) = + mwsec - Qxc(t) (4.10)
2m 2

By separating the Hamiltonian into a stationary component, H0 , and a time-



dependent perturbation H(t) = Qxe(t), time-dependent perturbation theory can be

used to calculate the transition rate from the ground state to the first motional state

1o-1. Adopting a simple one-dimensional model [TST97]:

01= 1 dT H(T)oleiWr (4.11)

0-1= dTeis-r (c(t)c(t + T)) (01 QX 11)12 (4.12)

such that (c(t)c(t + T)) is the correlation function for fractional fluctuations in the

field:

(e(t)e(t + T)) = dtc(t) c (t + T) (4.13)

Evaluating the matrix element H(t)oi, the transition amplitude is found to be:

Q2
Fo-1 = 4mQ _ SE (Jsec) (4.14)

4mhwsec

where SE(Wsec) is the Fourier transform of the fractional fluctuation correlation func-

tion and the spectral density of electric-field fluctuations. For an ion trapped by both

static and oscillating electric fields, the change in thermal occupation number is found

to be [WMI+98]:

(Q) = 4mhosec (SE(Wsec + ± Wsec) (4.15)

However, due to the radio frequency oscillations being larger and faster than

the secular oscillations (by several orders of magnitude), the second term can be

approximated as zero and ignored.

For the average metal at room temperature, the resistivity is approximately 1 x

10- Ohm-meters; therefore each electrode in a planar Paul trap has a resistance of

approximately 2 Ohms. Noting the fact that the electric field will fall as 1/r 2 for

a distance d above the trap's surface, the voltage noise can be transformed into the



Table 4.1: The motional heating rate (n) and electric field power spectrum SE(w) for
the three sources of noise present in solids. No general analytical form is known for the
power spectrum of anomalous noise, so no theoretical calculation can be performed.

electric field noise. Using wsec ~ 0.8 MHz, m = 1.455 x 10~22 grams, d = 150Pm, and

V1 -~ 200 Volts, the relative sizes of electric field noise can be computed as in Table

4.1

The analytical form of the power spectrum of anomalous noise is the general form

for any noise - given the change of thermal occupation number in the trapped ion,

the power spectrum can be computed. This is important because it allows the power

spectrum to be measured to incredibly high precision - in single thermal quanta

per second (on the order of 10-18 V2 cm- 2 Hz- 1 ). This makes trapped ions an

unprecedentedly precise tool for measuring noise in solids.

4.2 Theory of Light-Induced Charging

As presented in Chapter 3, a variety of lasers spanning the entire energy spectrum

from near-ultraviolet to the infrared is necessary for precise control of the trapped

ion's state. Due to the small trapping distance between the ion and the electrodes,

interaction of this light with the electrode material becomes very important. For the

relatively low-energy wavelengths and electrode materials used in this experiment,

the dominant surface-light interaction is predicted to be the photoelectric effect. The

passivating oxide layers on the surface of aluminum and copper electrodes complicate

the surface physics, trapping charges that are produced by photoemission and altering

the trapping potential.
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Figure 4-3: Examples of band structure for a single wave vector. On the left, the
energy bands touch, making the material a metal. On the right there exists an
energy gap, making the material an insulator or semiconductor based on the size of
the gap. The dotted line represents the Fermi energy, EF, and the filled in bands
represent occupied energy states.

4.2.1 Band Structure of Metal-Oxide Systems

The complex band structure of solids gives rise to various types of materials depending

on the size of the energy gap. When there is no energy gap (or a negative one such

that the bands overlap), the material is a conductor. When there is a positive energy

gap, the material is classified as a semiconductor (if the energy gap is on the order of

a few eV) or an insulator (for large energy gaps). A simplified example of the band

structure of a conductor and insulator for a single wavevector is shown in Figure 4-3.

There are two relevant characteristics given by the band structure of a metal:

the Fermi energy EF, and the work function <D. The Fermi energy of any material

represents the kinetic energy of the most energetic electron. A band diagram shows

the allowed wave vectors; for nonmetals the Fermi energy lies in the forbidden region,
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Figure 4-4: (a) The band structure of a metal and its corresponding oxide before con-
tact is made. Circles represent electrons in the valence band. (b) The two materials
are brought into contact, aligning their Fermi levels through charge transfer. This
creates a new positive charge on the oxide and a voltage VF is generate between the
metal and oxide. (c) The addition of surface states (through adsorbates) can further
alter the energy structure, "bending" the bands. The surface states can be filled via

electron tunnelling through the oxide layer, and create a net negative charge on the
electrode surface, creating a barrier between the electrons and the vacuum. In this

diagram, 1 is the work function of the metal, Eg is the energy gap, y is the electron
affinity, and VF is the difference in Fermi energies.

and the most energetic electron is in the most energetic allowed state in the valence

band. The work function is the energy difference between the vacuum energy (the

energy of the vacuum outside of the solid) and the Fermi energy. If an electron is

imparted energy equal to its work function, then it will become free of the solid. For

a nonmetal, the Fermi energy lies in the band gap, so the work function is equal to

= Eg + y, where x i the electron affinity.

When two different materials come into contact, their band structures must form

a continuum of energy states. This is achieved by aligning the Fermi levels (see Figure

4-4b), accomplished by moving charge the material with the higher Fermi energy to



the material with the lower Fermi energy until the two are aligned. Figure 4-4a shows

the band structure of a metal (left) and its oxide (right), assuming the oxide has a

smaller work function (larger Fermi energy) than the metal. When the two materials

come into contact, the Fermi energies align (Figure 4-4b) by transferring electrons

from the oxide to the metal. In the case of passivated oxides, the metal's density

of states is sufficiently large that the charge transfer does not alter the Fermi levels;

however, the oxide layer is thin enough (and has a small enough density of states)

that the oxide's Fermi level can change dramatically from the same charge transfer.

The transfer of electrons from oxide to bulk metal creates a positive charge on the

oxide in the process of aligning Fermi levels. This alters the work function of the

oxide-metal system drastically due to the addition of the potential VF. The total

work function becomes

T = ) - VF (4.16)

due to the lowering of the vacuum energy in the oxide relative to the metal. The po-

tential VF can be calculated easily as the difference in Fermi energies AEF. However,

in practice, the work function of the overall system is between (DT and 4. This can

be accounted for by the addition of surface states, as shown in Figure 4-4c. These en-

ergy states can be created by adsorbates, which are then filled by electron tunnelling

through the oxide[Sem69], or by trapped charges in the oxide. The filling of these

surface states creates a net negative charge on the surface on the oxide, creating a

barrier for electron emission Vs. The total work function of the metal-oxide system,

including surface states, is then given by:

s=4 -VF + VS (4.17)

By equating vacuum energies at the top of the band diagram, VF can be found

to be equal to 4 - Eg/ 2 ) - x, assuming a band gap centered around the Fermi level.

Substituting this into Equation 4.17, the metal-oxide work function can be written



(o = Eg+ X +Vs (4.18)

If the number of adsorbates is small (creating a small Vs on the surface) and the

Fermi energy of the oxide is larger than the Fermi energy of the metal (such that VF

is positive), then the overall work function of the metal-oxide system is decreased. If

the oxide has a lower Fermi energy than that of the metal, then the work function is

increased.

4.2.2 Charging and Charge Dissipation on Metal Surfaces

Oxides are famous in the semiconductor industry for their ability to trap and hold

charges for extremely long time periods. Therefore, electrons that are photoemitted

from the bulk material can easily become trapped in the oxide before escaping. Over

a finite period of time the charge will accumulate and build up on the surface, giving

rise to a negative static surface charge that can perturb the trapping potential.

Charge accumulation and dissipation in a surface electrode ion trap can be mod-

eled as a RC circuit with the metal's oxide as the dielectric layer in the capacitor.

The equation for charge on a capacitor is given by

Q =(4.19)
RC

where R and C are the resistance and capacitance of the conducting material. The

charges on the surface are created by photoemission in the metal induced by one of

the lasers; let the rate of charge creation be K, where K is some constant rate that

is a function of the laser and material parameters. Equation 4.19 can be modified to

give

Q=K- (4.20)
RC

The electrode begins with zero surface charge (Q(t = 0) = 0), so the equation can

be solved to give the total surface charge as a function of time



Q(t) = Kr(1 - e-) (4.21)

with time constant T = RC. For a slab of material with thickness L, area dA,

dielectric constant er, and resistivity p, these are given by R = pL/dA and C =

ECOErdA/L where co is the permittivity of free space. For these values, the time constant

is given by 7 = coEp. Due to the highly material-dependent nature of p and co, this

should be a highly material-dependent property. For typical values in an aluminum

oxide surface layer (p = 10 4 Qcm and er = 10), r is found to be approximately 100

seconds.

For the experimental setup used in this thesis, the laser that induces photoemission

lies along the axial direction. Any charge that is created will become trapped along

this line, creating a potential field given by

Q L + x 2 -F y2 + L2

Vine (X, Y) = Q In ) (4.22)
2TrLeo VIx 2 +y y2

where L is the length of the line of charge (the length of the ground electrode in this

particular setup). Such a potential is shown in red in Figure 4-5. The total potential

near the trap minimum is given by the sum of the pseudopotential and the sum of

line potentials Vine(X, y) created from all photoemitted charges

Q2 V2 1\2 2 Q (L + V/(x + dx) 2 + (y + dy) 2 + L2

4mro4Q (X 2L n(x+dx) 2 + (y + dy)2  )
(4.23)

such that dx and dy are the displacements of the line of charge from the charge center

and n is the total amount of charge in the line. The superposition of the two potentials

will shift the trap center (as shown in Figure 4-5, and the ion will be displaced. The

displacement will cause micromotion with amplitude

x

Amm = qrl (4.24)
2
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Figure 4-5: The trapping potential for a charged trap. The pseudopotential is shown
in blue, and the potential due to the addition of a line of charge at x = 30pm from
the trap center is shown in red. The superposition of the two is shown in purple, with
the black dot showing the new center of the trapping potential.

where q is the Mathieu parameter and r is the displacement of the bottom of the

potential well. Such micromotion can be detected as described in Section 3.4.2.

As charges continues to collect on the surface oxide, each charge contributes to

the potential barrier Vs. As more charges accumulate, the barrier grows so large that

photoemission can no longer continue. Therefore the process is self-limiting, and the

charging of the surface electrodes is expect to converge towards a constant value.

4.3 Summary

This chapter introduced two important experiments that can be performed with

trapped ions: measurements of heating rates and charging rates of the surface elec-

trode trap. The relevant physics for each was discussed, followed with a methodology

for how each measurement could be made using the theory from Chapters 2 and

3. In addition, theory was laid out for linking these measurements to much more

fundamental physical phenomena - electric field noise and metallic work functions,



respectively. This concludes the theory portion of this thesis, and the rest of this

document will detail the experimental apparatus used and the measurements that

were taken.



Chapter 5

Fabrication

The surface-electrode architecture for ion traps introduced by Chiaverini et al. demon-

strated many improvements upon the original linear quadrupole ion traps suggested

by Paul [CBB+05]. The two-dimensional design allows for greater optical access and

improves the scalability of the design. Perhaps the single greatest advantage of the

planar design over the linear quadrupole one is the ability to apply the same mi-

crofabrication principles used in modern microelectronics to the manufacture of ion

traps.

This chapter details the entire process of fabricating a planar ion trap from raw

materials to the final packaging on the trap.

5.1 Wafer Preparation

The first step in microfabrication is the choice of a substrate. There are many possible

choices for a substrate material, given that the only prerequisites for microfabrication

are a relatively flat surface morphology and good adhesion to metal films. Possible

substrates include fused silica, quartz, aluminum nitride, alumina, and diamond. Due

to its high thermal conductivity and low dielectric constant (and therefore low RF

loss), single crystal quartz was chosen as the substrate for the planar traps in this

thesis. Beginning with a 3 inch single crystal quartz wafer, NR9-3000 photoresist is

spun onto the wafer at 3000 rpm to protect the surface during the cutting process.



Using a diesaw, the wafer is cut into 1 cm by 1 cm squares. The photoresist is removed

with acetone, and then the wafer proceeds to cleaning.

In the process of turning bulk quartz into wafers for distribution, the wafer is

cut, polished, and packaged in a variety of steps. Inevitably, the wafer is exposed

to a variety of unknown contaminants in this process. Organic contaminants include

airborne bacteria, grease and oil from physical handling and cutting, abrasive particu-

lates from cutting and polishing, and a variety of plastic particulates from the various

packaging steps. In addition to organic contaminants, a variety of ionic impurities

are also present. Improper cleaning and contaminated etchants can result in light

ions (such as sodium and potassium) and heavy ions (such as gold, silver, copper,

and nickel) contaminating the surface. The introduction of these ionic impurities can

create electron traps and mid-gap states in the band structure of the bulk solid. In

addition to the affecting the electronic properties, cleanliness is related to the adhesive

properties of the film, and a dirty wafer can lead to a poor lithographic pattern. The

chemical removal of these contaminants is the first step in the fabrication process.

The first step is a basic degreasing in sequential baths of acetone, isopropanol,

and deionized water. The solvents remove any oils and greases remaining on the

surface from handling. Acetone is used first because it is a much stronger solvent,

and isopropanol is used second due to its lower volatility (resulting in fewer streaks

of dissolved greases). The wafers are then rinsed in deionized water and blown dry

with nitrogen gas.

The next step is to remove the large particulates on the surface. These include

remaining abrasives used in polishing, and fractured quartz particulates left from cut-

ting the wafers. Hydrofluoric acid cannot be used to remove these silica particulates

because it will dissolve the quartz substrate; the uneven distribution of particulates

on the surface would result in a highly uneven surface. The best solution is to use

a simple mixture of soap and deionized water. The soap forms micelles around the

particulates, which are easily removed with a rinse in deionized water.

The wafer is then cleaned using a solution of concentrated sulfuric acid (H2SO 4)

and 30% hydrogen peroxide (H2 0 2) in a 3:1 volumetric ratio. The wafer is submerged



in the solution at room temperature for 15-20 minutes before being removed, rinsed

with deionized water, and blown dry with nitrogen gas. This solution is used pri-

marily to remove organic residue and photoresist from the wafers. The sulfuric acid

dehydrates organic substances by stripping them of their hydrogens and oxygens to

create water molecules. The sulfuric acid converts hydrogen peroxide to hydronium,

which acts as a strong oxidizing agent to create CO2 gas, which bubbles out of the

solution.

The final step in cleaning is immersion in a solution of ammonium hydroxide

(NH 40H), hydrogen peroxide (H20 2), and deionized water (H 2 0) in a 1:1:5 volumet-

ric ratio. The solution is heated to 800 C, and then the wafer is left in the solution for

15-20 minutes. The wafer is then removed, rinsed with deionized water, and blown

dry with nitrogen gas. The hydrogen peroxide acts as an oxidizing agent, oxidizing

any light metals or remaining organic contaminants. The ammonium hydroxide re-

moves heavy metals from the substrate by reacting with them to form complex -amine

groups, which then fall into solution from the substrate surface.

5.2 Lithography

Once a clean wafer is achieved, the next step is the print the desired pattern on the

metal. The basic premise is to apply photoresist to a substrate, and then expose the

photoresist through a mask to ultraviolet light. The ultraviolet radiation denatures

the photoresist where there are gaps in the mask, leaving the remaining photoresist

unaffected. The remaining photoresist is then immersed in a developing agent (as

specified by the photoresist manufacturer), which dissolves the denatured photoresist

but leaves the unexposed regions unaffected. Finally, the patterned resist is used to

either additively or subtractively print metal on the substrate. The remaining resist

can then be dissolved in acetone and removed from the completed wafer. In this

thesis, two photolithographic processes are explored - a subtractive process involving

the chemical etching of material from the wafer, and an additive process known as

the lift-off technique.



Figure 5-1: The pattern on the chrome optical mask used for photolithography.

The etching technique begins with the physical vapor deposition of the desired

electrode material onto the clean substrate. Using electron beam evaporation, 400

nm of the desired material is evaporated onto the substrate. For copper and gold

electrodes, a 10 nm layer of Ti is evaporated first as an adhesion layer. Following

evaporation, the wafers are placed on a hotplate at 1500 C for 5-10 minutes to drive

out any moisture that may have accumulated in storage. This drying process ensures

that the photoresist is applied evenly and that the pattern transfers well. Next, NR9-

3000P photoresist is spun onto the electrode material at 3000 rpm for 60 seconds, and

then baked for 60 seconds at 1500 C to harden the resist. The resist is then exposed

with a 3400 [pW cm- 2 source for 120 seconds through a mask with the desired pattern

on it. The pattern used is shown in Figure 5-1. The wafer is then baked again at 90'

for 120-180 seconds. The patterned wafer is then developed in RD-6 Developer for

17 seconds or until the pattern is completely visible, and then rinsed with deionized

water and dried with nitrogen gas. The wafer is baked one final time for 120 seconds

at 90' to complete the pattern transfer.

After the pattern has been successfully transferred, the next step is to acid etch

the exposed metal away. For aluminum, a phosphoric acid-based etchant was used

(H3 PO4 , HNO 3 , CH 3COOH, and H2 0 in a 16:1:1:2 ratio) to remove the exposed



Figure 5-2: A comparison of the edge quality for etched traps (left) and a trap

fabricated using the liftoff technique (right).

material. This etch also etches away the A12 0 3 passivation layer, meaning that no

other etchant is necessary. For copper, a solution of Aqua Regia was used (HCl,

HNO 3, and H20 in a 3:1:2 ratio). For all etchants, the wafer was left in the solution

until all electrode material had dissolved into the etchant and the gaps were visibly

defined.

In past traps the edge quality has been found to be extremely important to trap

performance. During use, the electrodes may have a potential as high as 200 V

applied across a 10 pm gap; the electric field easily exceeds the breakdown voltage,

dielectric breakdown commences, and the trap is rendered useless. For the silver and

gold traps used in past experiments, the solution was found to be thermal treatment

of the traps. By annealing the traps, the bulk material would recrystallize and the

electrode edges would become smooth again. However, aluminum and copper are not

nearly as inert as gold and silver and form thick oxide layers quickly, making thermal

treatment counterproductive. Lift-off patterning was used instead in order to create

smoother edges between the electrodes.

The lift-off technique is an additive process where material is selectively added

to the wafer in the desired areas. The same pattern transfer is utilized as before

with the exception of no final bake and that in the lift-off technique the pattern is

transferred directly to the clean quartz wafer. The electrode material is then directly

evaporated onto patterned photoresist, filling in the gaps in the pattern with metal.
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Figure 5-3: A comparison of the photolithographic processes for the etching process
(left) and the liftoff process (right). In both images, the quartz substrate is white,
the metal is black, and the photoresist is grey. The narrowest part of the middle
electrode on the left is 150 pm.

A different mask is needed due to the additive nature of this process; a negative of

the previous mask was made for this purpose. The wafer is then soaked in acetone

for 10-20 minutes; this dissolves the photoresist, and "lifts off" the metal evaporated

onto the photoresist. Any metal deposited directly onto the wafer is left unaltered.

It was found that the lift-off method gave a much higher edge quality, and avoided

the issues of overetching the material. In addition, the surface of the metal was found

to be much cleaner due to less exposure to organic contaminants in the photoresist.

Both the lift-off process and the etching process are summarized in Figure 5-3.

The gold trap was fabricated using a separate method that involved using a quartz

wafer with titanium and silver evaporated onto it used as the substrate for gold. The

gold layer itself was patterned using the above lift-off method, and then electroplated.

The adhesion layers were removed with appropriate etchants.



Figure 5-4: Examples of completely patterned traps mounted in a Ceramic Pin Grid
Array. From top left to bottom right, the traps are made out of aluminum, aluminum
oxide, copper, and gold. Each microfabricated trap is 1 cm x 1 cm. The packaging
process is discussed in Section 5.3

5.3 Packaging

The final stage of the fabrication process is that of turning the patterned heterostruc-

ture into a full-fledged microelectronic device. The wafer is placed in a ceramic pin

grid array (CPGA) as the substrate for packaging. The CPGA and a niobium spacer

are soaked and agitated by ultrasonication in baths of soap and deionized water (to

remove dust and particulates) and acetone (to dissolve organic contaminants). The

niobium spacer is then epoxied with Torrseal (Variac, Inc) to the center of the CPGA

to elevate the surface of the trap such that it is flush with the surface of the CPGA.

The quartz wafer is bonded to the niobium spacer with epoxy, and the entire CPGA

is then heated at 700 C for an hour to cure the epoxy.



Figure 5-5: A completely packaged copper trap mounted on CPGA. The trap size is
1 cm x 1 cm

1 nF capacitors (AVX GH0358102KN6N) are then secured to the ceramic surface

of the CPGA using cyanoacrylate (SuperGlue). These capacitors serve as low-pass

filters, reducing RF pickup and noise on the electrodes. Each of the capacitors is

wirebonded using gold (for gold and copper traps) or aluminum (for aluminum traps)

wires to the CPGA pads. Then each electrode on the trap is wirebonded to two pads

on the CPGA (to allow for redundancy in case one of the wirebonds fails).

5.4 Summary

This chapter summarized the entire fabrication process starting from a single crystal

quartz wafer to a finished product. After an extensive cleaning regimen, the traps are

patterned and electrode material is added via physical vapor deposition techniques to

the quartz wafer. Tests demonstrated that the lift-off technique for pattern transfer

resulted in a much higher resolution pattern on the finished wafer, so the lift-off

method was used for the traps fabricated as part of this thesis. The fully patterned

wafer is then packaged in a CPGA in order to make the device compatible with

preexisting electronics. The result is a CMOS-compatible microfabricated ion trap.



Chapter 6

Electric Field Noise and

Light-Induced Charging:

Measurements

The focus of this work is to explore material alternatives to gold ion traps, due to

gold's incompatibility with CMOS-based technology. However, in order for any mate-

rial to supplant gold as a frontrunner for an electrode material, it must exhibit a sim-

ilar performance to gold. So far this work has explored the dynamics and fabrication

of ion traps, the energy structure of trapped strontium ions, and the characterization

of noise and charging effects on metallic surfaces. The culmination of this work is

to use the measurement methods detailed in this document to compare the electric

field noise and surface electrode charging in various materials. Previous work has

demonstrated the gold surface electrode traps exhibit electric field noise on the order

of 10-18 V2 cm- 2 Hz- 1, which should approach the Johnson noise as demonstrated

in Section 4.1.3[LGA+08]; this thesis seeks to determine whether aluminum and cop-

per surface electrodes can exhibit similar performance. If such performance can be

achieved, then aluminum and copper may be even more ideal candidates for surface

electrode ion traps due to their compatibility to CMOS technology.

Eleven traps were tested as part of this thesis. In total, nine traps were made

with aluminum as the electrode material; out of these nine traps three had aluminum



oxide deposited on the electrodes to measure the effects of the oxide layer on the

measurement. In addition to the aluminum traps, two final traps were fabricated

that used copper and gold as their electrodes, respectively. This chapter presents

the measurements of electric field noise and electrode charging rates in these traps

at cryogenic temperatures. For each experiment, the setup is described in detail and

the results are presented, followed by an interpretation of the measurements taken.

6.1 Heating Rates in Trapped Ions

6.1.1 Heating Rate Measurements

At the cryogenic temperatures used in this experiment, the electric field noise spectral

power due to Johnson noise is on the order of 10-1' V2 cm- 2 Hz- 1 [LabO8]. Shot

noise should not exist because the surface electrodes do not draw current. Therefore,

any noise measured larger than the Johnson noise should be of anomalous nature;

if the anomalous noise is completely suppressed then only the Johnson noise should

remain.

The measured noise in the electrodes should be independent of material to within

an order of magnitude, as described in Section 4.1.2. However, without a clear idea

of what processes are the source of anomalous noise, it is unclear how the existence

of a surface oxide will affect heating rates. Unoxidized aluminum and copper should

behave similar to gold to first order, while the exact behavior of oxidized electrodes

in unclear.

The first measurement taken for each trap was a measurement of the heating

rate of the motional mode. Each trap was mounted in the cryostat, which was then

evacuated to 10-5 torr and cooled to liquid helium temperature with cryogens. After

cooling, the cryostat pressure is expected to be better than 10-10 torr. The cryostat

is described in much more detail in Chapter A. Typical trap operating parameters

were approximately 190 Volts at 36 MHz with compensation voltages V2 = V3 = -V 4

= 10 V and V5 = -13 V. Single "SSr+ ions were loaded via evaporation of neutral



strontium and photoionization (as described in Section A.2 and Doppler cooled to

< 1 mK. The ion was then sideband cooled on the SI/ 2 -- 4D 5 /2 transition to the

motional ground state within about 150 cycles.

Once the ground state was reached, heating rates were determined by measuring

the transition amplitudes for the red and blue sidebands after a delay time. A typical

delay was on the order of 1-5 milliseconds, with delays reaching as high as 25 millisec-

onds for some of the longer measurements. The heating rates (measured in quanta

per second) were then converted into electric field noise spectral density SE(W) as

shown in Table 4.1 to remove dependencies on the ion mass and secular frequency

and allow for better comparison to values from the literature. The data is shown in

Table 6.1.2.

6.1.2 Results and Discussion

The first two generations of aluminum traps exhibited poor ion lifetimes (on the order

of seconds), making it exceedingly difficult to measure the heating rates. These traps

were fabricated using a trap geometry that trapped the ion 75 pm above the trap

surface and the chemical etching technique discussed in Chapter 5. The extensive

use of chemical etchants could easily contaminate the surface and contribute to short

ion lifetimes. The ineffectiveness of the first two trap generations led to the use of

a larger trap geometry (with a trap height of 100 pm). Electric field noise has been

found to follow an inverse power-law relationship with ion-electrode distance (d- 4 ),

so an increase in trap size should result in a more stable trap [DOS+06].

Section 4.1.2 suggested that anomalous noise should exhibit little to no materials

dependence; the data supports this claim. Earlier heating rate experiments with this

setup used gold and silver traps and found the heating rates to be on the order of

10-18 V2 cm- 2 Hz- 1 [Lab08]. The lowest measurements from Al-IlIb and Al-IIc

are on par with the smallest observed heating rates in the previous work, with Cu-I

performing on par with the hotter traps in the same work. Despite thin passivation

layers of oxide on the surface, both aluminum and copper electrodes performed as

well as gold and silver in cryogenic surface electrode traps.
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Figure 6-1: Sample plot of occupation number versus delay time. The heating rate
can be extracted as the slope of the fit line (black), which is then converted in an
electric field noise SE(w). Error bars signify one standard deviation from the mean
value.

The data indicates that the presence of an oxide layer is correlated to the electric

field noise. With as little as 5 nm of deposited oxide, the electric field noise increased

by an order of magnitude. This suggests an exponential dependence upon oxide

thickness; a factor of two in oxide thickness corresponds to over a factor of 10 in

electric field noise. The noise in A120 3-10 was abnormally high compared to the

A120 3-20; however, the measurements only provide an upper bound on the minimum

heating rate, so it is still possible that 10 nm of deposited oxide has a lower possible

heating rate given appropriate trapping parameters. In addition, variables introduced

during the processing (cleanliness of the substrate, purity of the film) and handling

may be responsible for high heating rates.

The data appears to approach a limit as the oxide layer increases; therefore the

.. .................



Material [ SE(W) (10-18 sec [ Trap Size Thickness I Oxide

Al-I - 0.896 MHz 75 pm 1.5 pum Native
Al-Iha - 75 pm 1.2 pm Native

Al-1Ib - 75 pm 1.2 pum Native

Al-Ila 9.32 + 1.4 0.750 MHz 100 pm 400 nm Native
Al-IIb 1.33 t 0.16 0.796 MHz 100 pm 400 nm Native

Al-IIc 1.31 0.16 0.816 MHz 100 prm 400 nm Native
A120 3-5 67.5 5.5 0.800 MHz 100 pm 400 nm 5nm
A12 0 3 -10 197 ± 22 0.788 MHz 100 prm 400 nm 10 nm
A120 3-20 176 ± 12 0.836 MHz 100 pm 400 nm 20 nm

Cu-I 16.5 ± 1.7 1.006 MHz 100 pm 400 nm Native

Table 6.1: The lowest electric field noise SE(w) observed for each trap tested. The
roman numeral after the material name indicates the generation number of the trap;
all traps with the same roman numeral were fabricated simultaneously using the same
procedure. The letter following the numeral is a unique identifier for the trap within
the generation. A representative plot of the raw heating rate data is shown in Figure
6-1.

data was fit to a do(1 - e-6) type function, such that do is the saturation noise and

6 is the characteristic lengthscale of the noise. Fitting to this type of curve (shown

in Figure 6-2, the saturation noise is found to be 2.4 ± 0.4 x 10-16 V2 cm- 2 Hz- 1.

The characteristic lengthscale is 6 = 13 ± 3 nm; therefore the thickness dependence

should be strongest for oxide layers thinner than 13 nm.

6.2 Light-Induced Charging

6.2.1 Electrode Charging Measurements

The second experiment measured the light-induced charging of the surface electrodes

of each ion trap. After the trapped ion was cooled to its motional ground state

as described in Section 6.1.1, micromotion was observed using the cross-correlation

method described in Section 3.4.2. Typical observed micromotion was sensitive to

0.01 V change in compensation voltages. Three different lasers were lowered along

the axial direction on the trap until the beam grazed the surface. The laser was held

there for up to 20 minutes while the micromotion was measured as a function of time.

From the micromotion amplitude, the time constant and charging rate were extracted
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Figure 6-2: The heating rate of aluminum traps with aluminum oxide deposited on
the surface of the electrodes. The heating rate appears to follow a do(1 - e~-6) type
relationship. For this data set, do = 236 t 39 x 10-18 V2 cm- 2 Hz- 1 and 6 = 13 t
3 nm. Note that traps with zero deposited oxide still possess a surface oxide of ~ 2-3
nm. The half-width of the error bars signify one standard deviation from the mean.

using the theory presented in Section 4.2. The key parameters of the three lasers used

in these measurements are listed in Table 6.2.

The work functions of the materials used as electrodes are 4.26 eV (aluminum),
5.10 eV (copper), and 5.47 eV (gold); therefore, photoemission would not be expected

in any of these materials. However, as discussed in Section 4.2.1, the presence of a

metal oxide can perturb the work function in a material. Therefore it is possible that

aluminum and copper will emit photoelectrons if an oxide is present. The electron

affinity of aluminum is 1.95 eV and the band gap is 6.95 eV [MiyOl]; using these

values in Equation 4.18 the metal-oxide work function is found to be <kAl2O3 = 5.5 eV.

This is larger than the work function of aluminum; therefore electrons will charge the



Wavelength Beam Waist Power Photon Flux (P O"ns) Energy

405 nm 170 pW 100 Pm 1.9 x 1035 3.06 eV
460 nm 100 pW 100 Pm 1.3 x 1035 2.72 eV
674 nm 300 pW 34 pm 4.7 x 1036 2.08 eV

Table 6.2: Relevant laser parameters for the optics used in the charging experiment.
The above assumes a geometry with a 10 angle of incidence onto the electrode surface
and an electrode length of 5 mm.

oxide and the oxide will serve as a barrier for photoemission.

Copper oxides, however, have a Fermi energy higher than that of coppper, there-

fore the oxides lower the work function. For the first oxide of copper, copper (I)

oxide, the electron affinity is 1.10 eV and the energy gap is 2.13 eV. Performing the

same computation as for aluminum, the new work function of the metal-oxide system

should be S 0Cu20 = 2.16 eV. The second oxidation state, copper (II) oxide, possesses

an electron affinity of 2.12 eV and an energy gap of 1.2 eV, resulting in a work func-

tion of 0 CuO = 2.72 eV. In reality copper oxidizes into a mixture of the two, so the

observed work function should lie between these two extrema. From the computed

metal-oxide work functions, it is predicted that the 405 nm and 460 nm laser will

cause electrons to be photoemitted and trapped in the oxide; however, the 674 nm

laser should not.

The measurement was taken by lowering a laser in the axial direction until the

laser grazed the surface of the trap (as shown in the CCD camera). The micromotion

was then measured using the cross-correlation technique described in Section 3.4.2 to

provide a measure of the charging on the electrode surface over a period of several

minutes (typically between 10 and 20 minutes). Ion traps Al-IlIc, Cu-I, and Au-I were

used for the charging experiment. In addition, charging was measured in A12 0 3-10

to measure the influence of oxide thickness.

6.2.2 Results and Discussion

The results are shown in Table 6.3. Aluminum electrodes exhibited charging when

irradiated with the 405 nm laser, but did not exhibit charging due to any of the



Trap 405 nm 460 nm 674 nm

Al-IIc r = 600 s -

Al-10 T= 500s -

Au-I - -

Cu-I - - r=140s

Table 6.3: Results of light-induced charging of surface electrodes for four different
traps. Both of the aluminum traps charged when irradiated with 405 nm light, while
the copper trap only charged when exposed to 674 nm light. The gold electrodes did
not charge during any of the experiments. The characteristic timescale for saturation
of electrode charge is shown for all traps that exhibited any charging behavior to
within approximately 20%.

higher wavelength lasers. Figure 6-3 shows the raw data collected for the aluminum

trap. Copper did not exhibit any charging for the lower wavelength lasers, and in-

stead charged when the 674 nm laser was incident on the surface. Gold exhibited no

charging for any wavelength of laser, for up to 10 minutes of exposure time.

The existence of charging on the surface electrodes of Al-IIc is highly unexpected.

However, Section 4.2.1 predicted that the presence of surface states (via adsorbates

or metal-induced gap states) could potentially allow for photoemission. Using Equa-

tion 4.18, the surface charge must be between 3.5 eV and 3.85 eV to produce the

observed photoemission in aluminum metal. Applying the same equation to copper,

the surface charge on the copper electrodes must be between 0.32 eV and 0.88 eV.

The surface charge would need to be positive in order to cause the indicated voltage

drop, suggesting that adsorbed strontium ions or metallic contaminants would be the

source of the charge.

Assuming a material-independent adsorbate, the measurements indicate that the

total voltage drop due to adsorbates on the surface would need to be at least 3.5 eV to

induce photoemission in aluminum. This is more than sufficient for copper, and would

decrease the effective work function such that very little energy would be necessary

to remove electrons from the bulk metal. This is in agreement with the extremely

fast charging rate observed in copper (Tco = 140 s) relative to aluminum (TAI = 600

s). The lack of photoemission due to the higher energy photons could potentially

be described by some absorption-driven phenomena, as copper is well-known for its
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Figure 6-3: Sample plot of micromotion versus exposure time for an aluminum surface
electrode exposed to a laser. The total charge on the electrode can be deduced from
this change in micromotion, and the charging rate T can be determined. Only the 405
nm (purple) laser caused an increase in micromotion amplitude; 460 nm (blue) and
674 nm (red) lasers did not exhibit any change in micromotion. The time constant
was determined to be T ~ 600 seconds, of the same order of magnitude as predicted.

absorption of blue and ultra-violet radiation.

Solving for the charge creation rate K from the experimentally determined time

constants, it is found to be approximately 104 charges per second for the tested traps.

According to the model presented in Section 4.2, all charges are due to photoemission

in the bulk material; therefore the charge creation rate should be related to the

incident photon flux. The values in Table 6.2 indicate a photon flux on the order

of 1032 photons per second; a discrepancy of over 28 orders of magnitude. However,

the density of atoms on a given surface is only on the order of 1012 for all materials

tested, indicating that the discrepancy is closer to 8 orders of magnitude. The large

discrepancy between the incident photons, absorption sites, and charge creation rate



implies that there is some type of efficiency in conversion from photons to charges

that must be accounted for.

A possible mechanism for the discrepancy between charge creation and the the-

oretical yield for photoemitted electrons is tunneling through the oxide layer. If the

oxide layer was treated like a potential barrier, then the photon must tunnel through

the barrier to reach the surface. In order to see 10-8 fewer electrons than photons,

the oxide barrier would need to be 6 nm thick. A typical passivation layer is ap-

proximately 2-3 nm thick, so tunneling would initially seem plausible. However, the

transmission coefficient should decrease exponentially with barrier size; this behavior

is not consistent with the observations of charging rate in A120 3-10, which has nearly

the same charging rate and a significantly thicker oxide layer. This model has inspired

similar models which use the band-bending length (on the order of 1-3 nm) as the

barrier heights; such models show much more promise for accurately describing the

observed data.

When the incident laser beam was blocked, both aluminum and aluminum oxide

traps exhibited constant micromotion at the increased rate for several minutes. This

suggests that the discharge rate is significantly longer than the charging rate, implying

that the discharge rate is not the limiting factor to the charge rate. Thus it is likely

that a surplus of trapped negative charge in the oxide layer is responsible for the

saturation of charging rate in aluminum traps, and that the charging mechanism is

due to trapped charges in the oxide.

6.3 Summary

This chapter presented the results of heating rate measurements and photoelectric

charging in aluminum, copper, and gold surface electrode traps. The former set

of measurements demonstrated that heating rates approaching the Johnson noise

limit are possible with aluminum traps, and suggests that it may be possible to

achieve similar results with other materials. Additionally, it was demonstrated that

the growth of oxide layers on the electrodes has a significant effect on heating rates



in trapped ions.

The latter experiment demonstrated that aluminum and copper ion traps exhibit

charging phenomena for specific wavelengths, but gold electrodes are immune to the

same phenomena. Inconsistencies were seen in both the photoemission spectrum

of copper and aluminum and in the charging rates. A negative surface charge on

the order of 3.3 eV would be necessary to explain the data with the current model,

suggesting an error with our model. The charging rate was determined to be several

order of magnitudes smaller than the postulated mechanism predicted, suggesting

that much more complex phenomena other than photoemission may be involved.

Further work is needed to quantify and fully understand the mechanism behind light-

induced charging.
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Chapter 7

Conclusions

7.1 Summary

This thesis documents the fabrication of several series of surface electrode traps for

use in ultra high vacuum environments at cryogenic temperatures. Initial experi-

ments demonstrated that surface electrode traps made from aluminum and copper

can have comparable performance to gold traps while maintaining the advantage of

being CMOS-compatible metals. This helps support the case for using CMOS fab-

rication techniques to fabricate arrays of surface electrode ion traps for large-scale

quantum computing.

Using microfabrication techniques, a procedure for the rapid production of sur-

face electrode ion traps was formulated, resulting in the complete fabrication of an

ion trap in 12-15 man-hours. A thorough yet efficient cleaning regimen was deter-

mined to provide a clean surface for electrode deposition, and several lithographic

processes were explored. The best method was found to be the lift-off technique,

which created smooth enough edge finishes that electrostatic breakdown was not a

problem at operating voltages and further processing was not necessary. At least one

generation of each trap was fabricated that successfully trapped single SSSr+ ions at

cryogenic temperatures, demonstrating that it is possible to make effective ion traps

out of metals with passivating oxides.

Each of these ion traps was then characterized by making a series of heating rate



and charging rate measurements. By observing the dynamics of a trapped ion over

time, fluctuations in the electric field could be measured. Each ion trap was used to

trap single SSSr+ ions, and the ions were cooled to their motional ground state by

a combination of Doppler cooling and sideband cooling. Once fully cooled, electric

field noise was measured by observing the change in thermal occupation number over

a chosen time period. The rate of electrode charging was measured by observing the

micromotion amplitude change with respect to time as the electrodes were irradiated

with laser light.

7.1.1 Electric Field Noise

Anomalous noise was not expected to have any dependencies on chemical composi-

tion at cryogenic temperatures; the measured electric field noise supports this claim.

Electric field noise in aluminum traps was on the order of the Johnson noise, demon-

strating that the anomalous noise had been fully suppressed in these traps. These

heating rates matched rates observed in gold traps in prior work, demonstrating that

aluminum traps could match the performance of gold traps. The copper ion trap ex-

hibited heating rates an order of magnitude larger than the predicted Johnson noise,

suggesting that anomalous noise had not been completely suppressed. Further work

is required to determine if the noise can be further reduced in copper traps.

Aluminum traps were prepared with 5, 10, and 20 nm of aluminum oxide deposited

onto the electrode surface to measure the effects of oxide growth on electric field noise.

Heating rate measurements suggest that the electric field noise is highly dependent

upon oxide thickness. Measurements appeared to indicate that the noise saturates

with a characteristic distance of 6 = 13 ± 3 nm. The trap with 10 nm of deposited

oxide had unusually large noise; the trends indicate that it should be possible to

further reduce the anomalous noise in this trap. If anomalous noise is significantly

reduced, it is possible that the heating rate would exhibit linearly growth with oxide

thickness rather than exponential. More careful measurements of electric field noise

in aluminum oxide coated traps should be taken in the future to further characterize

this noise.



7.1.2 Light-Induced Charging

The lasers used in this experiment were not expected to charge any electrode surfaces

due to their relatively low photon energies. Experimental data contradicted this

prediction, with aluminum and aluminum oxide electrodes charging when irradiated

with 405 nm light and copper electrodes charged when exposed to 674 nm light. The

time constants for electrode charging before saturation was approximately T = 600

seconds for aluminum and T = 140 seconds for copper. The addition of aluminum

oxide to the aluminum electrodes changed the time constant to T = 500 seconds;

however, the existence of a native oxide layer on typical aluminum surfaces (including

the aluminum trap tested) indicates that this is more likely to be a function of a

different fabrication method used for the aluminum oxide traps.

The electrode charging was described within the framework of the theory pre-

sented in Chapter 4; unfortunately this proved insufficient to fully describe the data.

While the concepts of band bending sufficiently described the charging seen in cop-

per traps, it did not explain the absence of charging due to the 405 nm and 460 nm

light; a preliminary hypothesis is the existence of absorption-based phenomena. Band

bending did not provide an explanation for the charging of aluminum electrode, but

the required charge density on the surface of the electrodes to induce photoemission

was calculated to be on the order of 3.5 eV from the band bending model. The pres-

ence of such a surface charge would completely explain the phenomena observed in

aluminum electrodes; however, the theory presented in this thesis is insufficient to

describe a mechanism for such charge.

Increased micromotion was observed in trapped ions even after the incident laser

beam was removed, indicating that the charge dissipation rate is much slower than the

charge creation rate. This would indicate that the charge dissipation mechanism is not

the rate-limiting factor, otherwise the charge dissipation rate would be significantly

faster in order to create a saturation of charge on the surface. Such data suggests

that the surface charge is due to trapped charges on the oxide, and that an increase

in surface charge creates a barrier for photoelectrons to overcome. This is consistent



with the theory presented in this document.

The final inconsistency observed is the difference between incident photon flux,

lattice sites, and charge creation. If photoemission was the true source of surface

electrode charging, then the charging rate should be rate-limited by photon flux or

the number of available lattice sites on the surface. A charging rate on the order of 104

charges per second was observed; this is 8 orders of magnitude lower than the number

of available lattice sites on the surface layer and 28 orders of magnitude smaller than

the incident photon flux on the irradiated surface. These results imply some efficiency

ratio that determines how many incident photons truly induce photoemission.

7.2 Future Work

This thesis has laid down the groundwork for a variety of future experiments. The

ion trap fabrication process described in this thesis has proven to be robust and

versatile, opening up the possibility of fabricating ion traps out of a host of interesting

and novel materials. Potential electrode materials include semiconductors to provide

finer control over conductivity and electron mobility and further compatibility with

current integrated circuit technology and superconductors so that the surfaces can

be shielded from internal defect structure. The theorized dependence of anomalous

noise on defect structure also provides a convincing argument for more post-processing

techniques being incorporated into the microfabrication in order to more finely control

the microstructure.

In addition to these studies in noise, further work is required to characterize and

understand the full mechanism behind light-induced charging. In particular, more

quantitative data is needed on the effects of surface physics on photoemission. Both

oxide layer thickness and potential adsorbates have been proposed as causes for the

unexpected photoemissivity of aluminum and copper, but neither mechanism is fully

satisfying. The observed results suggest that surface physics will become increasingly

important in ion trapping as traps scale down and irradiation of the electrodes by

control optics becomes more common, indicating the necessity of further research into



this charging phenomena.
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Appendix A

Experimental Setup

After an ion trap has been fabricated, several factors must be addressed before it

can be successfully operated. Collisions with background gas can prevent ions from

being trapped, and such interactions can disturb the precision control that is desired;

therefore a vacuum environment is desired. Once a vacuum environment is achieved,

the ions must be sourced and trapped within the confining potential. Finally, there

must be sufficient optical access in the trapping apparatus to allow for cooling of the

trapped ions, and eventually for measurements to be taken.

This chapter details the practical aspects of ion trapping, from the operation of

a cryogenic vacuum environment to the implementation of ion measurements. This

section details enough about the apparatus such that the experiments described in

this thesis may be understood; for a more complete reference on the design and

operation of the apparatus, see Reference [Lab08].

A.1 Experimental Apparatus

A.1.1 Cryostat

The ion trap is operated inside of a bath cryostat consisting of a vacuum enclosure and

insulated tanks of cryogens. The addition of cryogens allows a sufficient experimental

vacuum pressure (10-10 Torr) to be reached much more easily; at cryogenic tempera-



tures outgassing is suppressed, allowing the use of a wider of range of materials while

still maintaining an ultra high vacuum (UHV) environment.

The inside of the cryostat holds a 1.4 L tank for liquid nitrogen and a 1.75 L

tank for liquid helium. The liquid helium tank is surrounded by a 77K thermal shield

(cooled by the liquid nitrogen tank) in order to reduce the thermal load on the liquid

helium. Between the bottom of the liquid helium tank and the thermal shield is the

experimental work space, shown in Figure A-1. The trap (center) is mounted to the

base plate of the liquid helium tank, where it is held at 4 Kelvin. In addition, the trap

is sandwiched between two superconducting niobium rings, which both stabilize the

magnetic field in the trapping area and prevent Zeeman splitting of the 5S1/ 2 - 4D5 /2

transition. The entire chamber is pumped down to a vacuum using a turbo pump.

The outer shell of the cryostat has 4 symmetrically spaced 50 mm openings (shown

in Figure A-1); three of these provide optical access to the vacuum chamber and the

last (right in Figure A-1) provides access for all of the experiment's electrical connec-

tions. There is a final opening on the bottom of the cryostat which provides access

for the camera, photomultiplier tube (PMT), and imaging optics. The entire cryostat

is mounted in a support structure surrounded by three breadboards to provide space

for optics.

A.1.2 Optics

The experiment uses six lasers - the four covered in Chapter 3 plus 405 nm and 460

nm lasers to ionize neutral strontium. The first five lasers are all available as laser

diodes; the sixth, 460 nm, is produced by frequency-doubling a 920 nm laser. After

frequency stabilization, the lasers are coupled into optical fibers - the 405 nm and

460 nm lasers are coupled into the same fiber, as are the infrared lasers. The optical

fibers deliver the lasers to the optics table surrounding the cryostat, shown in Figure

A-2.

The 422 nm is used for Doppler cooling the trapped ion; in order to fully cool the

ion, the ion must be cooled in three axes. The 422 nm is split into two orthogonal

components which then recombine at the trap center, providing projections onto two



Figure A-1: The experimental work space underneath the liquid helium tank. The
fully packaged trap lies in the center of the trap. Windows on the top, left, and
bottom of the shell provides optical access, and to the right is the radiofrequency
resonator that drives the trap potential and provides access for the electronics that
control the trap.

of the three axes. The asymmetry of the trapping potential provides a projection

onto the third axis, so all three axes can be cooled simultaneously. Sideband cooling

is an isotropic process, so cooling is only needed in one axis.

The lasers must be aligned with the trap to ensure that the trapped ion receives

light. The height of the trapped ion can be computed numerically, and the beamwidth

of the laser allows for some error in this placement. Therefore the lasers only need

to be aligned in the radial and axial directions (perpendicular and parallel to the

ground electrode, respectively). This is accomplished by lowering the lasers until

light is scattering off of the trap electrodes, as in Figure A-3. The lasers can then be

aligned in the x-y plane and then raised to the appropriate height.
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Figure A-2: The laser optics setup surrounding the cryostat. The 405 nm and 460

nm laser are coupled together into the same fiber, as are the 1033 nm and 1091 nm

lasers.

The final component of the optics is the imaging system. Imaging and photon

detection is accomplished by focusing scattered light through the bottom opening of

the cryostat. The scattered light goes through a notch filter that blocks all lights

except 422 i 5 nm; this reduces noise from the environment and allows only the 422

transition to be seen. The remaining light goes through a 70/30 beamsplitter that

delivers 70% of the light to a photomultiplier tube for photon counting, and the re-

maining 30% to a CCD camera. The CCD camera allows for detection of fluorescence

and scattering of the lasers on the electrode surface, while the photomultiplier tube

provides a more sensitive tool for detecting fluorescence during cooling. The images

in Figures A-3 and A-4 were taken using the CCD camera.



Figure A-3: Demonstration of aligning the radial (left) and axial (right) lasers by scat-
tering light directly off the trap surface. The narrowest part of the middle electrode
is 150 pm wide.

A.2 Trapping Ions

A.2.1 Loading

The first step in trapping ions is providing a source of ions. This experiment uses

evaporation of strontium in a resistive oven as a source of neutral atoms in the vapor

phase. Strontium metal is placed inside a stainless tube with two strips of stainless

foil as a heating element. Approximately 5 Amps of current is passed through the foil

to heat up the strontium until it evaporates. The entire oven is mounted in a copper

enclosure to act as a heat sync, and this is heat sunk to 77 K to reduce the thermal

load on the helium tank.

The neutral strontium is then photoionized in a two step process. First the 460

nm laser is used to excite a transition to the 4P orbital, and then any laser with

wavelength lower than 413 nm can be used to remove the excited electron from elec-

tronic confinement. Alternatively, there is a 405 nm transition that is autoionizing

[MBK95]; therefore the ionization process can be optimized by using a 405 nm laser as

the second ionizing laser. The ionizing lasers are aligned to the trap's center such that



Figure A-4: An image of a trapped ion fluorescing, as taken by the CCD camera.

the ionized strontium atoms can be immediately trapped and cooled post-ionization.

Trapped ions are detected using the 422 nm transition, as shown in Figure A-

4. Any ions that remain trapped within the potential field will fluoresce due to the

presence of the 422 nm laser; the emitted photons are then captured by the CCD

camera and the PMT. It is possible to trap multiple ions simultaneously; this can be

dealt with by manipulating the compensation voltages until an ion "falls" out of the

potential.

A.2.2 Compensation

Compensation, outlined in Section 3.4.2, is used to minimize the micromotion of

trapped ions. Properly compensating the trapped ion is performed using fluorescence

from the 5S1/ 2 -+ 4Pi/2 and the imaging optics outlined in Section A.1.2. Micromotion

is observed as a smearing of the ion on the CCD camera due its fast motion, and as

a periodic fluctuation in the fluorescence on the photon counter. Using the imaging

optics as visual cues, appropriate compensation voltages can be determined. Typical

compensation voltages are 5 to 10 Volts for the endcaps and -5 to -13 Volts for the

middle electrodes.
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