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Abstract

Hidden semi-Markov models (HSMMs) have been previously proposed as real-time
operator behavior prediction models that could be used by a supervisor to detect future
anomalous behaviors. Because of the disconnect between HSMM prediction results and
the data format anticipated by the decision support visualization (DSV) display designer,
an abstraction layer was developed to transform HSMM results into data in the
anticipated format. In order to transform the raw HSMM results, a model accuracy
scoring metric was created to assess HSMM prediction data and produce model
performance trend data with a graphical depiction of variance and lower bounds. A
prediction-generating (PG) algorithm was devised to utilize the model accuracy scoring
metric and the HSMM library functions to generate multi-step ahead predictions up to 3
minutes into the future.

In order to implement a responsive decision support system monitoring up to 10
operators simultaneously, original design requirements constrained maximum latency at
500ms, as suggested by previous research. However, the PG algorithm yielded significant
system latency, and thus, computational enhancements were put in place to speed up the
algorithm. Moreover, trade-offs were made between the length of input to the PG
algorithm and the length of predictions generated. Both parameters were linearly
proportional to latency. Other research has shown that a maximum latency of less than
200ms may be more desirable, and thus, the total number of operators supported would
be down to 4 per the given system.

The resulting proof-of-concept system operates in real-time, providing a team supervisor
the most up-to-date supervision of up to 4 UV operators simultaneously. A pilot study
was conducted to test the usability of the system where no major issues were found, and
the study proved that the system operates as per the design requirements.

Thesis Supervisor: Mary L. Cummings
Title: Associate Professor of Aeronautics and Astronautics
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1 Introduction

In future unmanned vehicle (UV) systems, increasingly robust automation will eventually

allow one operator to manage multiple vehicles in a supervisory control setting

(Cummings, Bruni, Mercier, & Mitchell, 2007). As computers automate low-level

sensory and piloting tasks, human operators can concentrate on higher-level decision

making like navigation and payload management. In addition, future UV systems will

most likely consist of a team of operators lead by a supervisor, much like present-day air

traffic control settings as seen in Figure 1.1.

Figure 1.1: A present-day air traffic control center (Hart, 1995)

As operators' responsibilities shift towards the higher-level tasks of controlling multiple

systems such as group schedule management instead of single vehicle navigation, a

mistake made by an operator could become more costly. Thus, the supervisor's ability to

monitor operator actions and limit the number of operator mistakes will be crucial factors

to the success of future UV operations in complex, time-critical settings. The supervisor

of such settings is likely to experience high workload while attempting to monitor both

operators and multiple unmanned vehicles, all while maintaining an appropriate level of

situation awareness of the ongoing operation.



Automation can be used to assist the supervisor in assessing operator performance, in that

it can provide automated detection, and perhaps prediction of possible problematic

behaviors. While automation is useful in monitoring specific current states of complex

systems such as nuclear power plants, one novel and recent application of automation for

supervisor support is through the use of learning algorithms trained to detect off-nominal

operator behavior given a set of known normal behaviors. Figure 1.2 illustrates a

conceptual future UV system with supervisor decision support.

Supervi s or

Visualization Display %
Automated Decision

Su pport %

UV Control UV Control UV Control
system. system sse

Operator Operator Operator

Figure 1.2: A conceptual future UV system with supervisor decision support

In this conceptual future UV system, each operator interacts with a UV control system to

supervise and direct the vehicles. These UV control systems are typically connected

through satellite signals. In these futuristic systems, the UV control systems could be

monitored by an Automated Monitoring System (AMS). The AMS samples interactions

between the operators and the UV control systems to assess operator behaviors. In

addition, the AMS generates predictions of future operator behaviors. Assessment and

predictions results are then presented via a visualization display, through which the

supervisor is able to monitor the operators (Figure 1.2).



The ability to detect deviations from normal operator behavior presupposes knowing

what "normal" behavior entails. Even for operators trained to follow specific operating

procedures, correct behavior is often difficult to define, especially in command and

control settings where uncertainty is significant and unanticipated events are typical.

Recent research has shown that pattern recognition and prediction techniques such as

hidden semi-Markov models (HSMMs) can be used to model the temporal behavior of

operators of multiple heterogeneous UV systems (Boussemart & Cummings, 2008). More

specifically, HSMMs provide the ability to generate predictions on future operator inputs

through statistical inference based on past operator inputs and resultant learned patterns

of operator-UV interaction. While such models can detect different patterns of behavior,

they cannot assess goodness of operator interactions, which is why a supervisor is needed

to assess if an anomalous pattern of behavior is good or bad.

A sequence of generated predictions from an HSMM represents the expected (i.e. most

likely) operator behaviors with respect to a training set. Thus, deviations from the

expected behavior can be detected as possible anomalous conditions and a supervisor of a

team of UV operators can be alerted to these possible deviations. A design of a user-

friendly graphical trend display has been proposed as a decision support tool with

embedded alerts to aid the supervisor (Castonia, 2009). The proposed graphical user

interface (GUI), which depicts operator behavior on a continuous spectrum, is designed

to help supervisors visualize behavioral deviations of operators as predicted by the

HSMMs, as well as historical trends of model accuracy.

There exists a disconnect between discrete data points generated by a HSMM and the

continuous flow of data stream that the GUI demands. In order to generate predictions,

the HSMM is queried upon the arrival of an operator-UV interaction event. These

predictions are represented as probability density functions and thus can be difficult to

comprehend for non-technical personnel, including team supervisors (Tversky &

Kahneman, 1974). Because these predictions are generated only when a new event

arrives, the data points are discrete. However, the GUI, which relies on a trend interface,

is designed to display continuous curves to represent model accuracy. Hence, an



abstraction layer that maps the discrete datasets from the HSMM to the continuous data

stream required by the GUI plays a vital role in linking the HSMM to the GUI from

which decisions are made.

This thesis describes the abstraction layer that links the underlying HSMMs with the

proposed graphical display. The product serves as a proof-of-concept for a real-time

HSMM-based decision support tool for a supervisor of multiple operators controlling

multiple UVs. The system also serves as a prototype reference for future development of

decision support tools for supervisors of UV system operators that embed learning

algorithms.

1.1 Problem Statement

Linking a user-friendly display to HSMMs is a challenging task because HSMMs are

based on sophisticated mathematical formalisms. This work devises a robust abstraction

layer to shield non-technical users from the mathematics of HSMMs, yet enable them

easy access to predictive data in order to make time-critical decisions. The abstraction

layer translates raw HSMM results into comprehendible expressions in real time for

graphical trend display visualizations.

1.2 Research Objectives

This thesis project creates a server application (SA) that resides between the decision

support visualization (DSV) (i.e., the GUI) and a multi-operator, multi-UV control

simulation. The SA houses the HSMMs, generates predictions based on libraries of

learned patterns, and calculates deviations from these patterns. The SA also keeps track

of model performance to alert the supervisor of the model's credibility. Most importantly,

the thesis project devises an abstraction layer on top of the raw prediction results from the

HSMMs so that the DSV can be properly populated in real time.

To accomplish the objectives mentioned above, the software architecture is designed to

meet the following specifications: 1) because future UV systems will likely consist of a



team of operators, the SA must be able to handle real-time analyses of more than one

stream of inputs from separate instances of the multi-UV control simulation concurrently,

which represents inputs from multiple operators, 2) the system must be fault tolerant in

the sense that anomalies in one UV simulation environment should not stall computations

on the SA for other UV simulations (so a single point failure will not fail the entire

system), and finally 3) the abstraction layer will enable the SA to provide understandable

outputs to a GUI over a network.

This research effort is novel because it represents the first-known such attempt to connect

HSMMs with real-time decision aiding tools. This is a difficult problem because raw

results output from HSMMs are probabilistic in nature and linking them to visualizations

which are understandable to operators with little technical background is a major hurdle

in the realization of this effort.

1.3 Thesis Organization

This thesis is organized into the following chapters:

* Chapter 1, Introduction, describes the motivation and research questions of this

thesis.

* Chapter 2, Background, introduces hidden Markov model (HMIM) fundamentals,

explains the differences and similarities between HMMs and hidden semi-Markov

models (HSMMs), and outlines how predictions can be generated from HSMMs.

This chapter also reviews previous work on time series analyses, decision making

under uncertainty, and visualization of anomaly detection in order to gain insights

on devising the abstraction layer for the HSMM.

* Chapter 3, Overview of System Architecture, highlights features of the multi-UV

control simulation used in this effort and describes the proposed design of the

graphical trend interface and the server application (SA). This chapter also

explains the difficulty of transforming outputs from the HSMM to usable DSV

inputs.



e Chapter 4, Server Application Design and Implementation, lists the design

decisions and specifications of the SA that houses the HSMMs and the abstraction

layer. It also details the communication protocols between the SA and the multi-

UV control simulation, and between the SA and the DSV's trend display.

* Chapter 5, Display Rendering and Usability Results, describes the implementation

details of the graphical trend display and the results from the pilot study for

usability testing. Specifically, this chapter defines how each section of the display

is populated in real time and how users react to the display after preliminary

testing.

" Chapter 6, Software Testing Results and Discussion, explains the results of

system testing and explores the boundary conditions of the system, including

latencies of the system, number of predictions generated, and number of operators

under supervision.

" Chapter 7, Conclusion, reviews the answers to the research questions, discusses

the contributions of this thesis work, presents design recommendations, and

suggests areas for future research.



2 Background

2.1 Hidden Markov Models (HMMs)

Hidden Markov models (HMvMs) were first formally defined by Baum et al. (1966), and

their application was popularized by Rabiner et al (1986). HMMs consist of stochastic

Markov chains based around a set of hidden states whose value cannot be directly

observed (Baum & Petrie, 1966). However, each state generates a set of observable

symbols with probabilities according to an emission function. In a supervisory control

setting, operator mental states are unobservable to the supervisor; however, operators'

inputs to a given control system can be observed (Boussemart & Cummings, 2008). Thus,

HMiMs can be used to model operators' behaviors, as the hidden human mental states can

be modeled by the hidden HMM states, and the operator-system interactions can be

represented by the observable symbols.

An HMM, H, can be defined mathematically as a four-tuple H=(S, V, A, B), where S is

the set of hidden states, and V is the set of observable symbols. A represents the state

transition matrix, where an entry in the matrix, ay, is the transition probability from state

S to state S. Lastly, B represents the observable emission matrix, where by, given the

model is currently in state S, represents the emission probability for observable symbol

V. Additionally, the sum of ay over j is equal to 1, and the sum of by over j is also equal

to 1 (Rabiner & Juang, 1986). Figure 2.1 illustrates an example of a three-state HMM.

a 1u 2 L3

si ' s2 a23 s3 Hidden States

P(oIsj P(o/% P(o/!

Observable States

Figure 2.1: A three-state hidden Markov model (Boussemart, Fargeas, Cummings, & Roy, 2009)



An HMM can infer a sequence of state transitions from a sequence of observed symbols.

For example, from a sequence of observed symbols, [VI, V3, V2, V2, V2, V4, V, Vs, Vi],

from a three-state five-symbol HMM, the sequence of state transitions, [Si, S2, S2, S2, S2,

S3, S3, S3, Si], can be inferred if Si is known to emit Vi, S2 is known to emit V2 and V3,

and S3 is known to emit V4 and Vs. Moreover, it can be seen that all states transitioned

back to themselves a number of times. This special transition is defined as self-transition.

After the sequence of state transitions is obtained, the HMM can use the sequence of state

transitions to predict future observable symbols. In the above example, Si is seen as the

last transitioned state, and since Si is known to emit Vi with high probability, the HMM

can predict that the next observable symbol could be Vi with high probability.

As will be discussed in more detail in the next section, a hidden semi-Markov model

(HSMM) is a modification of the HMM, where self-transitions are no longer necessary

due to each state having a duration property in addition to observables emission and state

transition. Each state is given a probabilistic distribution of its duration. An HSMM is a

specific sort of dynamic Bayesian network (Allanach, Tu, Singh, Willett, & Pattipati,

2004), and applications range from detecting terrorist networks to speech recognition

(Rabiner & Juang, 1986). It was used in the context of this multiple operator, multi-UV

supervisory control setting because of the critical temporal aspects, which are

fundamental to event-based supervisory control systems.

2.2 Time Series Analyses

Single operator supervisory control interaction events are inherently sequential, so it is

natural to use time series analysis techniques to model such data. Because this project

makes use of Bayesian models in order to model operator behaviors and flag possible

behavioral deviations as anomalies, given previously observed information in near real

time, it is critical that the temporal component of state transitions be accounted for in the

predictions.



To allow users of a decision support tool enough time to react to possible deviations of

expected operator behavior, it is essential that the system generates predictions of more

than one step ahead in time, i.e., supervisors need as much time as possible to intervene if

operator behavior could lead to negative consequences. Thus, any useful decision support

tool in time-critical supervisory control systems should be able to predict both that an

anomalous behavior could occur, and also when.

There is a vast selection of time series analysis techniques, including but not limited to

moving average models, autoregressive moving average models (ARMA), and dynamic

Bayesian networks (DBN) (Sykacek & Roberts, 2002). While moving average models

simply describe the smoothed average trend of the sequential data points, Bayesian

network models mimic random processes and have the ability to predict future data

points. For example, one study devised a Bayesian network-based algorithm to make

financial market forecasts (Shiqing & Dawei, 2004).

Even though moving average models are widely used in making financial market

predictions, they are too simplistic for modeling complex operator behavior. In contrast,

HSMMs, subsets of DBNs, are specifically designed and tailored to handle complex but

real-time sequential processes, i.e. time series data.

2.2.1 Time Series Analysis with HSMMs

HSMMs are similar to HMMs with the exception that each state has an associated

probability density function of the state's duration. The state duration effectively

eliminates the need for self-transition of the states. For a given state, instead of having

self-transitions, a state can have its duration extended. Consequently, each state in an

HSMM can emit a sequence of observations instead of emitting only a single observation,

as in an HMM.

For example, a sequence of observed symbols of a three-state five-observable HSMM

can also be [V1, V3, V2, V2, V2, V4, Vs, Vs, Vi], the same as the HMM sequence of



observed symbols in the earlier section. However, the inferred sequence of state

transitions is now [SI, S2, S3, Si] with no repeated state transitions. Instead of S2 and S3

experiencing self-transitions, the two states are defined to have longer durations.

An HSMM, H', can then be defined mathematically as a five-tuple H'=(S, V, A, B, D),

where S, V, A, and B are identical to those in an HMM, and D is the duration distribution

matrix. An entry, dy, in the duration distribution matrix represents the probability of state,

Si, having duration ofj units of time.

HSMMs can also be used to generate time-series predictions and in a computationally

tractable way (Bulla & Bulla, 2006; Dong & He, 2007; Parlos, Rais, & Atiya, 2000).

Most of the proposed methods generate predictions by using a dynamic programming

technique called the forward-backward algorithm (Rabiner & Juang, 1986). Based on this

algorithm, Guedon (2003) proposed the implementation of the Viterbi algorithm which

efficiently uses back-pointers in order to track the most likely transition path in the state

space. The Viterbi algorithm is therefore able to generate a series of predictions from an

HSMM along with associated probabilities of each possible transition path.

Although there have been many studies on using HSMMs to analyze time series data in

general (Bulla & Bulla, 2006; Hieronymus, McKelvie, & McInnes, 1992), there is

virtually no previous research on the subject of using HSMMs to model human behavior.

Moreover, since analysis and prediction results from an HSMM are represented as

sequences of probabilistic values, which are difficult to comprehend by non-technical

personnel (Tversky & Kahneman, 1974), they cannot be presented directly to the users.

As a result, there is a need for the development of an abstraction layer that makes sense

of these values for the users of an associated DSV.

2.3 Judgment under Uncertainty

Several experiments have shown that human perception of probabilistic values is often

subjective and biased (Tversky & Kahneman, 1974). Moreover, people can have overly



optimistic or pessimistic view of a same probabilistic value, depending on the context in

which it is presented (Tversky & Kahneman, 1981). For example, people tend to believe

they are not at risk for some health conditions, often ignoring the high probability of

getting a heart attack or diabetes, even in the presence of significant symptoms. This bias

proves to be difficult to remove (Weinstein & Klein, 1995). These different biases will

often have significant influence over a person's decision making process, so in time-

pressured high-risk settings like those in command and control, it is critical that these

biases be mitigated to greatest extent possible. Otherwise, a decision maker can

inaccurately interpret a probabilistic value and make the wrong decision.

In particular, supervisors of UV operations are likely to lack the right mathematical

training that allows them to interpret probabilistic information objectively. Displaying a

table of probabilities will likely confuse the supervisor and may result in bad decision

making. To avoid costly failures, any decision support tool should keep the amount of

probabilistic information presented to the supervisor at a minimum, and presented in a

manner that is intuitive which can be acted upon quickly. Hence, there is a need for an

abstraction layer that is able to transform probabilistic information into equivalent

certainty values or expected values.

2.3.1 Visualization of Anomaly Detections

In this effort, the supervisor of UV operators is notified when potentially abnormal

behavior of an operator is detected. For an HSMM, given the training set of known

patterns, there are two basic ways to detect an anomaly pattern: 1) show that the observed

pattern is similar to a known adversary pattern and 2) show that the observed pattern is

dissimilar to a known normal pattern (Singh, Tu, Donat, Pattipati, & Willet, 1996).

However, it can be impractical at times to train the models to recognize an exhaustive list

of adversary patterns because the number of them can grow indefinitely. Moreover,

because the degrees of freedom are large in command and control settings, it is not

practical (nor not possible) to identify every possible adversary state. As a result, only

known normal patterns made available by trained HSMMs are assumed in this work.



Therefore, abnormal operator behaviors are detected when an observed behavioral pattern

deviates from the norm (most expected behaviors).

The norm of operator behaviors is represented by all highly probable sequences of

operator-system interactions with associated probabilities of occurrence. To generate a

sequence of predictions, the HSMM infers the most likely future operator-system

interactions from a sequence of past operator-system interactions. An example of a set of

raw results from an HSMM is a matrix of probabilistic values, as shown in Figure 2.2.

Sequence of events as input

HSMMTime T-n ... T-5 T-4 T-3 T-2 T-1 T

Event El E39 ES1 E4 E4 E2E

El 0S
E2 0.01

.E3 0.03
E4 0.06
EC 04

HSMM Results

.t1=E1)

El 0.6
E2 0.01

El 0.04
E2 0.75

Figure 2.2: Examples of input to and output from an HSMM

In addition, deviation from the norm is also represented probabilistically. Without

sufficient explanation, it will be challenging for non-technical personnel to understand

these raw results. Indeed, it is often challenging for experts to interpret these results. One

established effective way to represent anomalous states for time-series data is the use of

trend graphs (Ware, 2000). Unfortunately, connecting HSMMs to trend graphs is difficult.

As can be seen in Figure 2.2, raw results from the HSMM contain many probabilistic

values representing likelihoods of occurrences of different events at various time



intervals. Yet, it is unclear which values are to be plotted on the trend graphs. In addition,

trend graphs assume continuous data and the probabilities in Figure 2.2, while interval in

nature, are matched to discrete events. Thus, there is a need for an abstraction layer to

transform discrete sets of probabilistic values into a continuous stream of date points.

2.4 Summary

This chapter established that an HSMM could be an appropriate time series analysis

model for supervisory control anomaly detection. However, there is no previous literature

on how to either use HSMMs to predict human behavior, or how to connect HSMMS to

real-time decision support tools. This research proposes that for an HSMM-based

predictive decision support system, there is a need for an abstraction layer that transforms

raw HSMM results into meaningful values to be displayed on a graphical trend display.

The next chapter will outline a proposed system architecture, and how the components of

the system are connected.
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3 Overview of System Architecture

As stated previously, the purpose of this thesis is to develop an abstraction layer between

a hidden semi-Markov model (HSMM) and a graphical decision support tool that can aid

a supervisor in real time to determine if personnel are behaving in an expected fashion.

To this end, this chapter describes a representative UV environment that an HSMM

models, as well as an actual decision support tool that provides alerts to a supervisor for

off-nominal supervisee behavior. While the abstraction layer developed to link the

HSMM with the decision support GUI is anchored in this specific case study, the

methodology used is applicable to any other command and control application where a

user interacts with a GUI in order to control automated remote systems, with a HSMM

predicting possible future behaviors.

Previous research in single operator-multiple UV control led to the creation of the

Research Environment for Supervisory Control of Heterogeneous Unmanned Vehicles

(RESCHU) simulator, a software system that provides representative simulations of

single operator control of multiple unmanned vehicles in an intelligence, surveillance,

and reconnaissance (ISR) setting (Nehme, Crandall, & Cummings, 2008). The RESCHU

environment serves as the representative single operator model upon which to build real-

time HSMM predictions, and is described in more detail below. Since RESCHU was

designed as a single operator model, the multiple representations in Figure 3.1 represent

multiple operators, each independently controlling their own set of UVs.

Figure 3.1 illustrates the general system architecture required to link an HSMM via the

abstraction layer to an actual system of humans controlling multiple UVs. This system is

comprised of a number of operators (denoted by the word RESCHU in Figure 3.1 which

represents the system they are controlling), a server application (SA) hosting the

behavioral models (HSMMs), and a client application (CA), which is a graphical user

interface (GUI).



For the purpose of this research, all the components in Figure 3.1 are designed to

communicate with each other through a network connection. As a result, the SA is

notified in real time when operators interact with RESCHU, and the SA then recognizes

the type of interaction that occurred, and generates predictions to send as text messages to

the CA over a network. Upon receiving the prediction message, the CA renders the

graphics to be displayed for the supervisor.

bCP~k I

Client
Application

(GUI)

Figure 3.1: An overview of all the components the supervisor decision support system

3.1 RESCHU

In RESCHU, an operator controls multiple UVs to perform surveillance tasks with the

ultimate goal of locating specific objects of interest in urban coastal and inland settings.

There are three types of unmanned vehicles that the operator can control in RESCHU:

Underwater UV (UUV), High Altitude Long Endurance Air UV (HALE), and Medium

Altitude Long Endurance Air UV (MALE). Moreover, the RESCHU simulator can be

loaded with different scenarios, where each scenario begins with five UVs of different

combinations of the three types.

Predictions



An operator's main objective is to conduct a visual search of as many target areas as

possible to identify a possible target. Each operator is presented with five sub-interfaces

in RESCHU: 1) Map Area, 2) Visual Task Panel, 3) Message Panel, 4) UV List, and 5)

Time Line. A snapshot of the RESCHU application is shown in Figure 3.2.

Visual
Task

Message
Panel

UV List
Sidebar _

Map
Area

Threat
Area

Under-
Water

UV

Target

Medium

LLj:Altitude
Air UV

High
Altitude
Air UVI

Figure 3.2: The RESCIU interface

3.1.1 Map Area

In the Map Area, the operator is free to interact with any of the five UVs. Threat areas on

the map are marked by yellow circles. UVs need to avoid the threat areas, as they can be

damaged while maneuvering through these areas. Operators can steer the UVs away from

these areas by setting way points for each individual UV. The UVs are pre-assigned by

the operator to various destinations or targets (i.e., goals) marked by red or gray

diamonds. Upon a UV reaching its assigned target, the RESCHU system either urges the

operator to reassign the UV to a different target or prompts the operator to engage in a

visual task, which is described in the next section.

............



3.1.2 Visual Task Panel and Message Panel

The operator begins performing visual tasks in the Visual Task Panel when prompted by

the system, which coincides with the arrival of a UV in a target area. A visual task

involves the operator examining a photo to identify a specific object in the photo, such as

searching for a fighter jet hidden among buildings. The Visual Task Panel provides the

operator with tools to pan or zoom on the image. The RESCHU system provides the

operator with the description of the object through displaying a message in the Message

Panel. The Message Panel also signals the operator by displaying a short message when a

UV reaches its target, as shown in Figure 3.3.

Object Found
on Visual

Task Panel

Object
Description

17 58A2 IMISd0N(5)]Find the yellow circle on the back of the tanker

I t A /I-V-- - - - - - --& ei2"

Figure 3.3: The Visual Task Panel

3.1.3 UV List

The UV List sidebar provides the operator with a quick overview of the status of the five

UVs and serves as a shortcut for the operator to select a UV or engage a UV in visual

task when appropriate. The operator can also monitor UVs' damage levels through this

sidebar.



3.1.4 Time Line

The Time Line in Figure 3.2 presents a graphical view of the estimated remaining time to

arrival of the UVs to their respective targets. This window also contains information on

the total time remaining of the current RESCHU scenario.

3.1.5 Event Parsing and Communication

An operator's interaction with the RESCHU is encoded into various user input events by

a grammatical parser (Boussemart & Cummings, 2008). The HSMM was trained to

recognize patterns of these event encodings, and thus, the HSMM generates event

predictions in the form of these event encodings as well. Each event is identified by a

unique number (Table 3.1). These events are recorded to a remote online database upon

each occurrence. For example, when the operator engages a HALE in visual task mode,

the event id number 5 is tagged with a timestamp of occurrence and recorded in the

database. For the purpose of this research, RESCHU is modified to also encode the

events into messages and send to the server application through a local area network

connection. There are a total of 19 possible events.

Table 3.1: Table of description for the 19 event types

Mode Select Select Waypoint Waypoint Goal Engage
Sidebar Map Edit Add/Delete Visual

UV Type Task

HALE 0 1 2 3 4 5
MALE 6 7 8 9 10 11

UUV 12 13 14 15 16 17

ALL 18

3.2 Server Application

The server application is capable of monitoring multiple instances of RESCHU

simultaneously and generates predictions for multiple operators independently. Thus, the

SA is required to be able to handle large amounts of complex calculations quickly to

minimize the latency between receiving a user-event message from RESCHU and



sending a respective prediction message to the CA. The HSMMs are embedded in the SA

for generating predictions. The detailed specifications of the SA and how the predictions

are generated are discussed in the next chapter.

3.3 Client Application

The client application is a graphical user interface that displays the visualization of

generated predictions. Upon receiving messages from the SA, the CA parses the

messages and render the graphics accordingly. The GUI (Figure 3.4) has four main

display regions: 1) a graphical trend display, 2) a bar graph, 3) a graphical history view,

and 4) an integrated title and alert bar.

Integrated Graphical
Title and Trend
Alert BarDipa fl I Display]

Bar
Graph

|GraphicalI istory
View

Figure 3.4: Annotated screenshot of the GUI

The graphical trend display provides a visualization for model accuracy prediction. The

bar graph illustrates the interaction frequency between a RESCHU system and the

operator. The graphical history view tracks the performances of model accuracy forecasts

for three different time intervals: one-minute ahead, two-minutes ahead, and three-

minutes ahead. The integrated title and alert bar is at the top of the display. The title bar

identifies the operator the display monitors, while the alert bar displays alert messages
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when they are made available by the system. The rendering technique for each of the four

regions is discussed further in Chapter 5.

The graphical trend display is composed of two trend lines. The top trend line represents

the model's expected accuracy trend for prediction generation, while the bottom trend

represents the lower bound for the accuracy. The horizontal axis is labeled with time

spanning from now to three minutes in the future. This time was chosen as the maximum

future prediction window since typical user test sessions in RESCHU last 10-20 minutes.

The vertical axis is labeled with the model's accuracy score from 50 to 100. This scoring

scheme is a result of the abstraction layer design, and is explained in more detailed in

Chapter 4.

Between the two trend lines for the Model Prediction Accuracy display is a shaded area

that illustrates to the supervisor the uncertainty involved in generating predictions. As can

be seen, trend lines are composed of segments that are smaller straight lines. Each trend

segment represents a single step of prediction, and the width of the segment is determined

by the expected duration of the prediction. In addition, each segment is color coded to

represent the expected level of deviation of the actual event from the forecasts for that

segment. The levels of expected deviation are marked high, medium, and low by red,

gray, and blue respectively. Such trend graphs have been shown to be useful for

supervisors of complex systems that need to understand possible system future states

(Guerlain, Jamieson, Bullemer, & Blair, 2002; Woods, 1995).

The bar graph in the upper left of Figure 3.4 is composed of 15 bars, each representing

the total number of mouse clicks performed by the operator in a 12-second interval. The

12-second was chosen as the time interval because previous data analysis suggested that

the average idle time between two user-input events was 12 seconds. The vertical axis

measures the number of clicks from 0 to 50, as previous data analysis for RESCHU

simulations suggested that operators rarely click more than 50 times within 12 seconds

during usual UV operations. The horizontal axis marks the time from three minutes ago

to the current time in order to provide the supervisor with a sense of past operator



performance. This display was provided in addition to the model accuracy display since

the underlying HSMM inherently relies on mouse-click data. Thus if an operator had a

sharp increase in rate of mouse clicks, this could be reflected in a sudden change in

model predictions.

The history view at the bottom of Figure 3.4 is composed of three horizontal bars. Each

of the three bottom bars represents the models performance as it predicted 1, 2, and 3

minutes into the future. In this view, red signals low accuracy, gray signals medium

accuracy, and blue signals high accuracy. The history view helps the supervisor gauge the

past performance of the model, which indicates the credibility of the predictions. If the

model's past predictions were mostly inaccurate, the supervisor might not want to rely on

the model so much when making decisions during operation.

Model historical performance, the bottom of Figure 3.4, is measured by comparing the

predicted accuracy score and the actual model accuracy score at the given time interval.

For example, if at time T, the model predicted that its accuracy score would be 85 at time

T+1, then at time T+l, this value is compared to the actual model accuracy. In this way,

the supervisor can determine how effective the model is performing based on prior

prediction accuracy. This display is distinctly different from the model perdiction

accuracy display in the upper right that is only providing future forecasting information.

3.4 Summary

To summarize, the proposed HSMM-based decision support system assists supervisors in

assessing operator performance by generating predictions on operator behavior and

marking possible anomalies. The system includes a server-side application (the SA) that

monitors multiple operators through sampling operator-RESCHU interactions, as well as

a client-side application (the GUI) for displaying the visualization of decision support.

The SA generates predictions on operator behavior using the HSMM developed by

Boussemart et al. (2009). Moreover, the SA relies on the abstraction layer to interpret and



transform raw probabilistic values into meaningful indicators on operator performance,

before the GUI can display understandable results. The next two chapters present the

implementation details of the SA and GUI. The abstraction layer is defined and discussed

in detail, and usability tests results are discussed as well as model robustness results.
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4 Server Application Design and Implementation

The main purpose of the server application (SA) is to generate predictions using hidden

semi-Markov models (HSMMs), and connect them to a decision support tool for a human

supervisor. The SA is designed to store user-event messages received from multiple

RESCHU simulators to represent multiple operators controlling multiple vehicles. The

SA also keeps the entire history of occurred events for each operator in order to generate

predictions throughout the duration of each UV operation.

4.1 Design Requirements

Castonia (2009) conducted a cognitive task analysis (CTA) of a team

a decision support tool during UV operations. This CTA resulted

requirements for two decision support visualization display (DSV)

Identification and Problem Solving (Table 4.1).

supervisor utilizing

in a set of design

functions, Problem

Table 4.1: Design requirements for a decision support visualization display

Type Requirement Description

1. Allow supervisor to alter user-initiated notification specifications (both the
9 value of prediction accuracy and within what time frame)
-E 2. Alert supervisor to utilize DST when user-initiated notification

specifications are met
* 3. Visualization of HMM prediction accuracy over time

4. Communication capability with operators (should be met with other
displays)

5. Future prediction boundaries (best worst case scenario) and most-probable
prediction accuracy

& 6. Ability for supervisor to alter time axis to obtain time-range specific data
- . 7. Display automation's prediction of what is causing the drop in prediction

accuracy
8. Alert supervisor if prediction accuracy drops at a steeper rate than a

supervisor set value

The DSV implemented as a graphical user interface (GUI) according to the above

requirements was detailed in Figure 3.4. Given the proposed interface design



requirements of the DSV (Table 4.1), additional system requirements need to be added to

Table 4.1 that are specific to the server application. These are detailed in Table 4.2.

Table 4.2: Additional system design requirements for the server application

Requirement Description
Reql The SA should operate in real time
Req2 The SA should monitor one or more UV operators
Req3 The system should implements a Client/Server architecture
Req4 The SA should utilize the HSMMs developed by Boussemart et al.

(2009) to perform calculations and generate predictions
Req5 The SA should communicate with RESCHU and DSV over a network

The requirements are discussed in more detail below.

Req. 1: The SA should operate in real time.

As a real time predictive decision support tool, the SA must be able to react quickly to

each operator-RESCHU interaction in order to allow the supervisor to monitor the

operators' most current behaviors. However, generating predictions is a computationally

intensive process, and as a result, there is an inherent time delay between detecting an

operator input and displaying predictions on the GUI. This time delay is defined as the

latency of the system. Due to the time-critical nature of UV operations, the decision

support tool must operate with minimal latency.

Previous research indicates that a system latency of under 500ms is imperceptible to

humans (Claypool, 2005). However, when latency is above 500ms, system users have to

make adjustments in their decision making process. In the case of this decision support

system, unnecessary stress is added to the supervisors if latency becomes higher than

500ms. Hence, there is a need to keep system latency to less than 500ms. Moreover,

system testing suggested that system latency grows linearly with the number of operators

monitored. Since the interface was designed to support up to 10 operators under

simultaneous supervision (Castonia, 2009), in order to maintain overall system latency

under the limit, latency contributed by a single RESCHU instance is kept under 50ms.



Figure 4.1 shows the maximum amount of computation time per user if the system is to

maintain sub-500ms system latency, and the figure is derived from dividing 500ms by the

number of operators under supervision.

Figure 4.1: Operator vs. latency contributed by a single RESCHU simulation

Req. 2: The SA should monitor one or more UV operators

Since the system aims to assist the supervisor in monitoring multiple operators

simultaneously, the SA needs to be able to monitor multiple RESCHU simulators at the

same time. Consequently, the server application needs to perform multiple

computationally intensive operations concurrently in order to generate predictions on the

behaviors of multiple RESCHU operators and still maintain real-time operation (Reql).

Possible challenges include keeping latencies under limit.

Req. 3: The system should implement the Client/Server architecture.

The Client/Server architecture is a common software system architecture that allows the

system to be built from modular client and server software as well as work independently
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and collaboratively. The level of independence between the components also allows the

system to continue operating in case of a single point failure and makes recovery

relatively simple. The architecture allows the system's components to be modified

independently when future requirements emerge. This is particularly important in this

design since the HSMM and GUI aspects of this system are also research projects, and

therefore have not achieved stability. Since both of these system components will likely

change with new experimental results, designing a modular and extensible system is

critical for this research and development phase of system design.

Req. 4: The SA should utilize HSMMs to generate predictions.

The decision support system leverages HSMM-based predictions, and the predictions

generated should maximize the supervisor's ability in assessing the performances of

multiple operators to avoid costly failures in operation. A Java HSMM library was

developed by Boussemart et al. (2009) for this project. The HSMM library is used to

learn the parameters of HSMMs modeling the behavior of a RESCHU operator, given

previously existing data sets. The resulting trained model is encoded into a text file. The

library also provides a number of key functionalities including parsing an encoded text

file into an HSMM Java object. The HSMM Java object can then be used to generate

predictions. Therefore, the SA was implemented in Java in order to facilitate the

integration with the Java HSMM library.

Req. 5: The SA should communicate with RESCHU and DSV over a network.

The only way to simultaneously monitor multiple UV operators on separate machines is

to connect these machines over a network. Moreover, the networking approach provides

the flexibility to scale the number of monitored RESCHU instances relatively easily.

Given the Department of Defense's stated policy to move towards network-centric

operations (Alberts, Garstka, & Stein, 2000), the use of a network for this kind of

command and control environment is also an operational necessity.



In summary, the HSMM-based predictive decision support system's scalability depends

on the speed and efficiency of the prediction-generating algorithm. Hence, during the

development process, design decisions were made to optimize the system for speed since

it is the only constraint to the system's scalability. How these requirements were fulfilled

is discussed in the next section.

4.2 Overall System Architecture

The server application is composed of three main modules: 1) the connection module and

2) message dispatch module, and 3) the abstraction layer module. These modules work

together to generate predictions and provide the client application with display data. An

overview of system architecture is shown in Figure 4.2.

7] Server Application
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Figure 4.2: Overview of system architecture

4.2.1 Connection Module

The connection module handles connection logistics for the server application. It creates

connections to the client application and to the RESCHU simulators by instantiating

socket objects provided by the Java Networking API library (Sun Microsystems, 2008).

Pooerawwr
r Intervention



Socket objects create point-to-point access between two machines over a network.

Connections are necessary because messages are passed from each RESCHU

instantiation to the SA and from the SA to the GUI during operation (Figure 4.2).

Both RESCHU and the SA utilize the DatagramSocket class for sending messages. The

SA and the GUI utilize the MulticastSocket class for receiving messages. The

DatagramSocket class is part of the Java Networking API (Sun Microsystems, 2008),

providing basic capabilities to send and receive data over a network. The MulticastSocket

class is a subclass of the DatagramSocket class, providing additional capabilities for

joining "groups" of other multicast hosts on the Internet. Joining a multicast group is

similar to tuning into a radio channel, where many listeners can receive the data from a

multicast group simultaneously. It allows multiple RESCHU programs to send messages

to the same multicast group, while the SA is waiting to receive data.

4.2.2 Message Dispatch Module

When a message is received by the SA, it first passes through the connection module and

then arrives at the message dispatch module. This module parses the messages and

determines the destination of each message. While some messages are quickly passed

back to the connection module after minimal processing, messages that carry operator-

RESCHU interaction information are routed to Session (Appendix A) objects residing in

the Abstraction Layer Module. The Session class is implemented as part of the SA API,

which is discussed further in section 4.3. The Message Dispatch module keeps a map of

usernames to Session objects for routing purposes. Moreover, Messages are formatted

according to a communication protocol, i.e. the definition of how each type of messages

should be formed, to ensure consistency.

4.2.2.1 Communication Protocol

Operators begin RESCHU simulations by first logging onto RESCHU with their unique

usernames. Because the SA monitors multiple operators simultaneously, messages

received from different RESCHU simulator must be routed individually according to the
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operator's username, and thus, each message begins with the operator's username. There

are four types of message sent from RESCHU to the SA:

e RESCHU-begin notice (RBEG)

" RESCHU-end notice (REND)
" Interaction notice (INT)

" User-event message (USER-EVT)

There are also four types of messages sent from the SA to the GUI as well:

" Session-begin notice (SBEG)
* Session-end notice (SEND)
" Click notice (CLK)
* Generated predictions (PREDICT)

The grammar of these messages is described in Table 4.3.

Table 4.3: Grammar of messages

Message Grammar
RBEG USER DELIM "BEGIN"
REND USER DELIM "END"

1NT USER DELIM "CLICKED"
USER-EVT USER DELIM TIME DELIM EVENT

SBEG RBEG DELIM TIME
SEND REND

CLK INT DELIM TIME
PREDICT HEADER SEP BODY

Variables Symbols
HEADER USER DELIM TIME DELIM ALRT

BODY PRED [DELIM2 PRED]*
PRED TIME DELIM SCORE DELIM CONF DELIM LOW
USER [A-Za-z]*

DELIM ":"

DELIM2 ";"

EVENT 011121...118
SEP "@"

SCORE 501511521...|100
LOW 501511521...I100
CONF [0-9]+
TIME [0-9]+
ALRT [0-9]*



The RBEG signals the SA that the current RESCHU simulation has begun, while the

REND marks the end of the current RESCHU session. The interaction notice includes a

short message that signals the SA that a mouse-click occurred. The user-event message

encrypts the time of occurrence, and the event identification number.

The SBEG signals the GUI that an operator session has been initiated on the server, and

the SEND signals that the session had ended. The CLK notifies the GUI that the operator

had clicked on RESCHU and the time it occurred. The prediction message (PREDICT)

encodes the generated predictions.

The SA tags the first three types of messages from RESCHU with time information and

then relays them to the GUI. Each prediction message is composed of a header and the

body. The header includes the name of the operator and the time that the prediction was

generated, while the body contains the generated predictions and added data to be

displayed by the GUI. The body can be further separated into multiple segments

delimited by semicolons, where each segment of the body encrypts the data required to

populate a segment of the trend line described in Chapter 3. Below is an example of a

PREDICT message and its corresponding trend graph. (Figure 4.3)

yves:1248894105224:0@14:86:0:86;14:84:128:79;11:82:128:72;2

8:80:128:64;11:78:128:57;28:76:128:50;11:74:128:42;28:72:12

8:35;11:75:128:33;28:78:128:30;11:80:128:27;28:80:128:27;

Figure 4.3: An example of a PREDICT message and its corresponding trend graph
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As shown, "yves:1248894105224: O" is the header of the message, where "yves" is the

operator's name. The first number is the difference, measured in milliseconds, between

when the prediction was sent from the SA and midnight, January 1, 1970 UTC, which is

Java's standard way of storing time. The second number encodes the alert type number,

where 0 means no alerts to be displayed. Following the "@" is the body of the message.

There are sets of four numbers separated by semicolons where each number is separated

by colons. These numbers result from the abstraction layer interpreting HSMM results,

and they represent the expected duration, expected accuracy, prediction confidence, and

the lower bound in order. For example, the second segment of the body,

"14:84:128:79," represents that the first prediction is expected to be valid for 14

seconds with an accuracy score of 84, lower bound for accuracy score of 79, and a

prediction confidence level of 128. These metrics will be explained in section 4.3.

While USER-EVT messages are routed to their corresponding Session objects, the other

three messages are directly returned to the connection module to be sent to the GUI after

slight transformations. More specifically, RBEG is transformed into SBEG by appending

a time tag, and INT transforms to CLK in the same way, while REND is kept unchanged

to form the SEND message. Figure 4.4 is a handshake diagram showing how messages

are passed among two instantiations of RESCHU (representing two different operators),

the SA and the GUI.

RESCHU1 RESCHU2 SA GUI

Time I

RBEG

SBEG-

REND
SEND

Figure 4.4: A handshake diagram showing the passing of messages
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4.2.3 Abstraction Layer Module

The abstraction layer is the key module that generates predictions. In the prediction

generation process, the HSMM library only provides the ability to calculate the

probabilities of occurrences for sequences of user-events, while the abstraction layer

interprets these probabilities to generate predictions and the PREDICT message. The

prediction-generating (PG) algorithm is based on these HSMM-based probabilistic

calculations. Examples of inputs and raw results of these probabilistic calculations are

illustrated by Figure 2.2. As stated previously, these raw results are difficult to

understand by non-technical personnel, and there is no obvious way to visualize these

raw results for easier user comprehension. As a result, the abstraction layer is created to

translate raw HSMM-generated prediction results into human-readable trend graph data.

Since the SA monitors multiple operators, the prediction-generation process for each

operator needs to be separated. The module contains a collection of Session objects to

keep track of the profiles of multiple operators. Each Session object is responsible for

generating predictions for the operator it monitors and for storing information relevant to

the operator. Moreover, the prediction generation process can be divided into three stages:

1) event aggregation, 2) probabilistic calculation, and 3) interpretation.

4.2.3.1 HSMM Library

The existing HSMM library (Appendix B) developed by Boussemart et al. (2009)

provides the functions listed in Table 4.4, and the functions are described in detail below.

Table 4.4: HSMM Library functions

Function Input Output

mostLikelyStateSequence int[] eventSequence int[] stateSequence
logProbability int[] eventSequence double logProb



mostLikelyStateSequence

This function takes a sequence of event IDs in the form of an integer array. The function

implements the Viterbi algorithm with forward-backward recursion and returns an integer

sequence of the mostly likely state number sequence. For example, for a three-state

HSMM, given a sequence of observable events [O, 03, 02, 02, 02, 04, 0 s, Os, Q1], the

method returns a most likely sequence of hidden state numbers, [S, S2, S2, S2, S2, S3, S3,

S3, Si].

logProbability

This function takes a sequence of event IDs in the form of an integer array and calculates

the probability of occurrence of that sequence of events. However, the probability of

seeing a sequence of events decays rapidly as the sequence gets longer, and thus, the

method returns the natural log of the probability. For example, given a sequence of events

[1,1,1,2,2,8,8,8,9,9], the method returns the probability of the sequence,

P(1)P(1|1)P(1|[1,1]) ... P(91[1,1,1,2,2,8,8,8,9,9) = P([1,1,1,2,2,8,8,8,9,9]), which is a

product of a series of conditional probabilities. Moreover, a longer chain of conditional

probabilities could cause computational underflows (i.e. the probability becomes too

small for a computer to store as a number'), which frequently occurs after just a few

minutes in a RESCHU simulation. For example, consider the worst case scenario where

each of the top five expected events is always equally likely to occur with probability 0.2

(i.e. 1 + 5), then P([1,1,1,2,2,8,8,8,9,9]) 5 1.024 x 10-. As the length of event

sequence grows larger than 500, the probability of the entire sequence drops

below 3.27 x 10-3s5 , a number that is equivalent to 0 to a computer. A common

computational work-around is to use the natural log of the probability instead. So, in the

previous example, ln(3.27 x 10-350) = -807.72.

As previously stated, the HSMM includes a state transition matrix, A, an observable

emission matrix, B, and a duration distribution matrix, D. Together, these provide state

'The smallest positive double for Java is 2.225e-308
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transition probabilities, emission probabilities, and probability distribution of durations,

for each state respectively. Additional Java functions are written to augment the HSMM

library. These functions provide basic calculations involving the matrices (Table 4.5), and

the functions are described in detail below.

Table 4.5: Additional functions supported by the HSMM library

Function Input Output

getNextState int currentStateNumber int nextStateNumber
getTopObservables int currentStateNumber List<EPPair> events
getExpectedDuration int currentStateNumber int expectedDuration

getNextState

This function takes an integer input, currentStateNumber, and returns an integer as an

output, nextStateNumber, representing the most likely next state following the current

state. This result is obtained from calculating the j index with the highest probability in

the ith column of the matrix A, where i is the currentStateNumber.

getTopObservables

Given the current state number, this function outputs the top five most likely observable

events for this state. The function only outputs the top five because the top five most

likely observables in combination usually cover more than 99% of the emission

probabilities, and therefore, the rest of the observables can be neglected as they are rarely

observed (on average, less than 0.01% probability each). This method accesses the

observable emission matrix described in section 2.1 and groups the j indices (event

numbers) with their probabilities in pairs. Only the top five events are recorded, and their

probabilities are renormalized to sum up to one. These event number and probability

pairs are stored as EPPair objects, which can be sorted by probabilities. The top five

EPPair objects in descending probabilities are grouped into a List object and returned as

output.



getExpectedDuration

Given the current state number, this function outputs the expected duration of the state,

calculated from the duration distribution matrix of the HSMM.

4.2.3.2 Session Object and Event Aggregation

The Session class implements functions and data structures that are responsible for

processing predictions and performance data of an operator. A Session object is

instantiated on the SA when a RBEG message is received, and it is discarded when the

SA receives the REND message. Upon receiving a USER-EVT message, the Session

object parses the remaining information from the message and stores the TIME-EVENT

pair in a List data structure. The collection of the TIME-EVENT pairs is used as input to

the HSMM for generating predictions on operator behavior. After predictions are

generated in the abstraction layer, the results are passed back to the Message Dispatch

Module. The Message Dispatch Module then formats the results into a PREDICT

message and passes the message to the Connection Module for transmission to the GUI.

As previously mentioned, the HSMM accepts inputs as an array of integers. For example,

[1,1,1,2,2,8,8,8,8,8,8,8,9,9,9,9] represents a sequence of events where there is a 3-time-

unit2 delay between event 1 and 2, a 2-time-unit delay between event 2 and 8, and a 7-

time-unit delay between event 8 and 9, while no new event occurred for 4 time units

since event 9 arrived. However, events are added to the list data structure in the Session

object only when a USER-EVT message is received. As a result, there are gaps between

events. To determine the amount of time passed since the last received event, the SA can

subtract the event time from the current system time. However, this adds unnecessary

computational stress to the SA each time a prediction sequence needs to be generated.

As a solution, the Session object performs the auto-filling process, which automatically

adds replicas of the last received event to the List data structure every second while not

receiving new events, as illustrated in Figure 4.5. As a result of the auto-filling process,

2 In this project, HSMMs were trained and built to use integer values of delays, which may represent sub-
second resolution.



the list of received events can be easily transformed into the integer array of event

numbers required by the HSMM library as input. Without the process, some events could

be lost during the transformation. As seen in Figure 4.5, the incorrect sequence generated

excludes the three most recent events (event 9's).

No Auto-Filling:

Time (s) 0 1 2 3 4 5 6 7 8 9 10 1 21 41

Event 1 2 8 9

jConvert

Incorrect sequence: [1, 1 1, 2, 2, 8, 8, 8, 8, 8, 8, 8, 9] Current Time

Auto-Filling:

Time (s) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Event I 1 1 2 2 8 8 8 8 8 8 8 9 9 9 9

4jJConvert

Correct sequence: [1, 11, 2, 2, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9]

Figure 4.5: Auto-filling vs. no auto-filling

4.3 HSMM-to-GUI Translation

Because of the difficulty involved in non-technical personnel deciphering HSMM raw

results, the abstraction layer is designed to translate the results for the supervisors. The

abstraction layer bridges the gap between probabilistic data and the information that the

supervisors need to assess operator behavior. Since the HSMM is trained to recognize

normal operator behavior patterns, it is generally desirable that the operator's behavior

follows the model's expected behavior closely.

In the original conception of the decision support visualization (Castonia, 2009), a GUI

was proposed to display the HSMM's prediction accuracy on the trend display. The

decision support GUI was originally designed to show a probability on the y axis, which

represents the probability that the HSMM will make a correct prediction (Figure 4.6).

However, this design illustrates a common disconnect between designers of interfaces
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and the designers of algorithms. An HSMM does not actually output the probability of

the model making a correct prediction in the way that designer of the GUI in Figure 4.6

anticipated. An HSMN4, instead, outputs the probabilities of candidates for the next

hidden state and next observable event, as well as the probability distribution of duration.

However, it is unclear which probabilities should be displayed and how. Thus, one

important aspect of the abstraction layer is to develop a methodology to make the desired

interface work with the actual output of an HSMM.

Figure 4.6: Original design of the trend display (Castonia, 2009)

As discussed previously, the HSMM can only be used to calculate the probability of

occurrence for an event, given a history of previous events (Figure 2.2). Because there

are different likelihoods for the different possible next events, there exist multiple

possible probabilities for next possible observable event. In order to address this fact, an

expected accuracy score can be calculated given that each predicted event is assigned an

accuracy score.

One novel contribution of this SA effort is the development of an HSMM model accuracy

scoring metric, which measures the HSMM's ability to predict operator behavior. This

metric, the Model Accuracy Score (MAS), ranges from 50 to 100 and is derived by

evaluating the moving average of the previous 10 sub-scores. Sub-score is a weighted

............... ..............................



average of two factors, 1) the quality of the last HSMM prediction, and 2) the timing of

the prediction, and is given in (1).

Subscore = 50 + a x Quality + (1 - a) x Timing (1)

Both quality score and timing score range from 0 to 50 to ensure that the sub-score ranges

from 50 to 100. Sub-scores are always rounded to the nearest integer, as integer scale is

required by the trend display. The moving average of 10 sub-scores is used to smooth the

accuracy trend and allows the abstraction layer to be more forgiving if a few predictions

do not perform as well. The moving average window is chosen to be 10 sub-scores

because it maintains a good balance sensitivity and tolerance to both good and bad

predictions.

4.3.1 Quality

Instead of prediction accuracy, a quality of prediction score is proposed to more

accurately represent an HSMM output. The quality of the prediction is measured by the

rank of the incoming event among the top five expected events in descending order of

their occurrence probabilities, and varies from 0 to 50, as illustrated by Table 4.6. For

example, if the incoming message encodes event 12 as the third expected event, then the

sub-score for this prediction is 40. This rubric is skewed to apply heuristic clustering

(Davis, 2003) for the top three expected events. While the top five expected events cover

more than 99% of the emission probabilities, the top three expected events often cover

more than 80% of the emission probabilities, and thus should be considered more heavily

than the bottom two in a supervisor's decision making process. To enforce this bias, the

top three scores are grouped within 5 points away from each other, while a more

significant drop in scoring is present between the third and forth ranks of scores (Table

4.2). It is important to note that the range of prediction accuracy scores is kept as 50 to

100, mimicking the 50% to 100%, as seen in Figure 4.6.



Table 4.6: Rubric for quality sub-scores

Event Rank Score
Is 50

2 nd 45

3 rd 40

4' 20

5h 10
Not in rank 0

4.3.2 Timing

When the list of top five expected events is generated, the HSMM also is expecting to

receive one of these five events within a certain amount of time. This time interval is

defined by the expected duration of the prediction. As a result, the timing of the received

event is also used to measure the accuracy of a set of predictions.

The prediction receives a timing score based on the number of standard deviations (SD)

away from the expected duration when the actual event arrives. If the actual event arrives

within one SD of the expected duration, the prediction receives full marks on timing. If

the actual event arrives between 1 and 2 SD away from the expected duration, the

prediction receives a 14 (i.e. 50 x 0.136 x 2) as the timing score, where 0.272 (i.e.,

0.136 x 2) is the probability of being between 1 and 2 SD in a Gaussian distribution

(Figure 4.7). Likewise, if the event arrives after 2 SD from the expected duration, the

prediction receives a 2 (i.e. 50 x 0.021 x 2). If the event arrives more than 3 SD away

from the expected duration, a timing score of 0 (i.e. 50 x 0.001 x 2 = 0) is assigned.

As a result of this timing consideration in the sub-score, the Model Accuracy Score is

penalized if events do not arrive in a timely fashion as predicted by the model. For this

project, the SA expects an event up to 1 SD (inclusive) before or after the expected time

of arrival (ETA). Beginning at 2 SD after ETA, the model is penalized at every SD

interval, and a new sub-score is assigned to reflect the penalty. The quality score of that

sub-score is always zero because no event is received, which is worse than receiving a



non-predicted event, while the timing score varies with the number of SD in terms of

time passed.

2.1%

13.60
-4 -3 -2

Fu) Score 0)

\. 2.1%

68.2% 13.6%
-1 0 1 2 3 4

x

Figure 4.7: Gaussian distribution (Heckert & Filiben, 2003)

Every time a new sub-score is assigned, the MAS is recalculated, and a new PREDICT

message is generated to notify the GUI client of the change in MAS. The Session object

is responsible for the timing of these penalties for every prediction of each operator.

These penalties begin at 2 SDs after ETA time, and are assessed at every 1 SD until a

new event is received. ETA is measured by the expected duration of the current state (i.e.

if the expected duration of the current state is 16 seconds, ETA is t+16 seconds).

In (1), the value of a, the weighing factor, is dependent on the time sensitivity of an

HSMM and the time sensitivity of the timing metric itself, and an a of 0.9 was found to

be appropriate for this work because the timing metric was designed to be more

punishing than the quality metric. While the quality metric has five tiers of scoring, the

timing metric has only three (based on the three standard deviations). Since time is

critical in these supervisory control domains, even if the next predicted event occurs, but

at the wrong time, this is counted as essentially a poor prediction.
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4.3.3 Expected MAS, Lower Bound, & Prediction Confidence

The expected MAS represents a prediction on the future Model Accuracy Score (MAS),

and the lower bound represents the expected minimum predicted MAS. The prediction

confidence indicates the credibility of a given prediction. These numbers form the trend

graph in the GUI.

The Model Accuracy Scoring metric is also applied to generated event predictions so as

to compute accuracy score predictions. The abstraction layer uses the scoring metric to

calculate the expected MAS from the generated predictions. The MAS and the expected

MAS form the trend lines that can be visualized on a graphical display and more easily

understood by the supervisors (Figure 4.8).

Expected
MAS

Region

Figure 4.8: MAS and expected MAS on trend lines

The expected MAS represents the expected predicted accuracy, and is calculated from 10

expected sub-scores, while the lower bound is calculated from 10 expected low-scores.

Heuristic clustering is also applied in that the expected sub-score is the expected value of

the top three prediction scores, and the lower bound is the expected value of the bottom

three prediction scores. Accordingly, both are derived from a list of expected events and

their probabilities. Moreover, expected sub-scores are calculated with the assumption that

I MAS I



the prediction receives perfect timing score (i.e., 50), and the opposite is assumed for

expected low-score (i.e. timing is 0). For example, given a list of five expected events [11,

10, 7, 4, 9] with probabilities [0.34, 0.28, 0.18, 0.11, 0.09], the expected sub-score is 88,

and the expected low-score is 60, calculated as below.

EV[subScore] = 0.9 x (0.34 x 50 + 0.28 x 45 + 0.18 x 40) + 0.1 x 50 + 50 ~ 88
EV[lowScore] = 0.9 x (0.18 x 40 + 0.11 x 20 + 0.09 x 10) + 0.1 x 0 + 50 = 60

The sub-score is then added to the current list of sub-scores, from which the new

expected MAS is calculated. Likewise, the low-score is added to the current list of low-

scores to calculate the lower bound.

Each prediction's confidence is derived from the top five most likely events. Confidence

in the events prediction is high if less variability is present in the prediction. Hence, the

confidence level is derived from the variability in the predictions, which is measured by

the variance of the prediction. Variance of the prediction is calculated as the expected

value of the squares minus the square of the expected value. In addition, only the

variance of the quality of the predictions is measured, and therefore, the timing score of

the predictions is set at 50, the maximum timing score, to be consistent. For the same

example as above, the resulting five possible scores are listed in Table 4.7.

Table 4.7: Sub-score table assuming perfect timing score

Event Quality Sub-score
Rank Score

1" 50 50+0.9x50+0.1x50=100

2nd 45 50 + 0.9 X 45 + 0.1 x 50 = 95.5
3rd 40 ... = 91

4* 20 ... =73

5 th 10 ... =64

Moreover, the value is always rounded to the nearest integer for simplicity, and the

variance of the example above is calculated as in (2).

Var(X) = E[X2] _ E[X]z



= (0.34 x 1002 + 0.28 x 95.52 + 0.18 x 912 + 0.11 x 732 + 0.09 x 642) - 90.912

= 8399.08 - 8264.6281

= 134.4519 ~ 134 (2)

E[X] is calculated as in (3).

E[X] = 0.34 x 100 + 0.28 x 95.5 + 0.18 x 91 + 0.11 x 73 + 0.09 x 64 = 90.91 (3)

4.3.4 Prediction Sequence Length

The DSV displays predictions up to three minutes (180 seconds) into the future on the

trend display. However, since the decision support tool operates in real-time, the trend

display is dynamic. The trend lines continuously shift to the left of the screen each second

by the width of one second (Figure 4.9).

T = 0:00

T T+1:00 T+2:00T = 0:30
T T+1:00 T+2:00

T = 0:01

T T+1:00 T+2:00

T = 1:00

T T+1:00 T+2:00

Figure 4.9: Shifting trend lines

To ensure the trend display remains populated the entire time between event arrivals, the

abstraction layer module generates 210-second long prediction sequences to provide a

30-second buffer for the trend graph, while the SA is waiting for the next event to occur

in RESCHU. Thirty seconds is chosen to be the length of the buffer because either the
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timing penalties begin at most after 48 seconds or on average, the next event arrives after

12 seconds, as this is the average time of user interactions (see section 3.3). Thus, the

average of 48 and 12 is 30.

4.3.5 Prediction-Generating Algorithms

The heart of the abstraction layer is the prediction-generating (PG) algorithm that

interprets raw HSMM outputs and combines these outputs to form the data required to

populate the trend graph. As introduced in section 4.2.2.1, a sequence of sets of four

numbers (expected duration, expected MAS, prediction confidence, and lower bound) is

required to populate each trend graph, which is updated when a new event occurs in

RESCHU.

Both a simple method and a more exhaustive method that generate the trend graph

sequence were investigated when developing the PG algorithm to connect the HSMM to

the GUI, and are discussed below.

4.3.5.1 Simple Method

The simplest way of generating predictions is simply to traverse the HSMM structure by

following state transitions and obtaining emitted observables:

1. Obtain the current state by using the mostLikelyStateSequence method given the

sequence of all of the received events.

2. Obtain the expected duration associated with the current state.

3. Obtain the top five most likely expected events by using the getTopObservables

method, with the current state number as input.

4. Calculate expected MAS given the top three of the five most likely events.

5. Calculate the lower bound given the bottom three of the five events.

6. Calculate the expected deviation from the five events.

7. Encode the four numbers into a PRED segment.

8. Append the top event to the sequence of received events.

9. Repeat 1-8 until desired number of predictions has been generated.



10. Append all PRED segments and format them into a PREDICT message.

To generate 210-second long sequences of predictions, steps 1-8 would be repeated until

the sum of the expected durations is greater than or equal to 210. The simple method

generates a 210-second long sequence of predictions in less than lOms. However, its

simplicity limits its predicting power: the method makes cumulative assumptions with

every predictions step, creating additional error. These assumptions are:

1) Most probable next state is always the next achieved state

2) The five most expected events of that state are the five most expected events in

general.

For example, during each iteration of prediction generation, once a most likely state is

obtained, that state is assumed as the next state with high certainty. As a result, the

method also assumes that the most expected events of that state are also the most

expected events among all of the candidate states for the next step. However, the second

most likely state could be almost as probable. Moreover, the list of most likely events is

generated using the assumed current state; however, the second most likely state could

also generate a list of events that are equally likely as the first list, as illustrated in Figure

4.10.

lime T

Time T+1
Event Probabety Renormalized

Combined List of
Top Events

(More correct)

Event Probabilty.495

11 0.34 5 0.54 5 0.33
10 0.28 8 0.26 11 0.21
7 0.18 6 0.12 10 0.18
4 0.11 1 0.07 8 0.16
9 0.09 13 0.01 7 0.11
Chosen List of Neglected List of

Top Events Top Events

Figure 4.10: Scenario where a combined list is more correct than the chosen list
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4.3.5.2 Exhaustive Method

The more rigorous method for generating predictions makes no assumptions about certain

states or events during the process. Instead, it considers the full extent of the probabilistic

distributions across hidden and observable states.

For this method, the top five most expected events are obtained by the following

procedures.

1. For event 0 to 18, append each event to the current list of occurred events, and

calculate the probability of seeing the new sequence of events using logProbability.

2. From the 19 probabilities calculated, sort and record the top five events with the

highest probabilities.

3. Convert the logs of probabilities to normal probabilities.

4. Normalize these five events so that their probabilities sum to one.

This set of procedures ensures that every event is considered as the next expected event

without designating a current state beforehand, and thus each event is considered without

bias. As illustrated in Figure 4.11, each possible event is appended to the current

sequence of events, and logProbability method is invoked for a total of 19 times on these

new sequences of events to obtain the log probabilities of these new events.

0e~ne fEet

logProbability
[1, 1, 1, 2, 2, 88, 8, 8, 8, 8, 8, 99, 9, 9, 0 -247.1

[1, 1, 1, 2, 2, 8, 8, 8, 8, 8, 8. 8, 9, 9, 9, 9, 1] -246.2

[1,1,1,2,2,8,8,8,8,8,8,8,9,9,9,9,2] -245.8

19 sequences total

[1, 1, 1, 2, 2, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 17] -246.4

[1, 1, 1, 2, 2, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 18] -246.7

Figure 4.11: logProbability is invoked 19 times per step of prediction generation.
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These events are then sorted by their probabilities, and the top 5 events are recorded as

the five most expected events. Moreover, the probabilities of the top 5 events are

renormalized to sum up to one. The expected MAS and the lower bound are then

calculated the same way using these five events. Prediction confidence can be derived

using the same technique stated previously. This method for generating predictions leaves

the element of probability distribution embedded in the predictions and therefore, is more

rigorous than the previous naive method.

Because this method does not assume a single state as the current state, the method

calculates the expected duration of a given prediction step by weighing every state's

expected duration by the state's probability, as illustrated in Figure 4.12. To obtain the

probabilities for all candidates for the current state, a variation to the

mostLikelyStateSequence method returns an array of probabilities indexed by the state

numbers for the last state in the state sequence, instead of returning the most likely state

sequence.

State Likelihood of being in State State Expected Duration

0 0.66 0 15s

1 0.19 1 28s

2 0.15 2 6s

Expected Duration = 0.66 x 15 + 0.19 x 28 + 0.15 x 6 = 16.12= 16 s

Figure 4.12: Calculating expected duration from probability and duration of each state

This method is more rigorous than the simple method because fewer assumptions are

made during prediction generation. As a result, every hidden state and every event is

considered and treated equally at each step of the prediction generation. Thus, this

method should in theory has a better predictive ability, and is more favorable than the

simple method. However, it requires a significant amount of computation due to the fact
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that logProbability method is called 19 times at every single step of prediction generation.

Moreover, the length of the input to the method grows at each subsequent step of the

process. It costs the abstraction layer much more time to generate a PREDICT message

than using the naive method. On average, a PREDICT message that predicts up to 210

seconds into the future takes more than five seconds to generate using the rigorous

method, and is unacceptable given the system requirements (see section 4.1).

Computational enhancements were implemented to solve the latency issue with this

method (discussed in Chapter 6). After implementing the enhancement, the rigorous

method is able to generate a 210-second long sequence of predictions in 50ms. Thus, this

method was chosen as the final prediction-generating method for its correctness without

sacrificing system performance (Appendix A).

To satisfy all of the system requirements described earlier while keeping the prediction

ability of the model high, compromises have to be made. As in all complex, multivariate

time pressured settings, there are inevitable trade-offs between speed and correctness of

the predictions. In order to promote the rapid computations needed for a real-time

decision support system, Chapter 6 will detail those trades that were made to generate

predictions both timely and accurately as well as the performance gain from making the

trades.

4.4 Alerts

The PREDICT messages have the capability to encode the type of alerts to be displayed

by the GUI client, discussed in the previous chapter. Although the library of alerts has

only been proposed but not developed (Castonia, 2009), the SA has the capability of

discerning the nature of an operator behavior anomaly. The SA can analyze the received

events to infer the exact event type or behavior pattern that caused the anomaly and can

alert the supervisor of the finding through the GUI display.



The alert library can be easily developed since each type of alert message is assigned an

alert code. This alert code is encoded into the PREDICT message so the SA can notify

the supervisor of a particular type of anomaly. Upon receiving the PREDICT message,

the GUI can extract the alert code from the PREDICT message and display the

appropriate alert message according to the code. While the GUI maps alert codes to alert

messages, the SA links the alert codes to various anomalous scenarios. Currently, alert

code 0 is reserved for the case of no alert to be displayed.

For example, a possible alert can be "High Interaction Frequency" with alert code 1. The

SA can trigger this alert on the GUI when a high number of clicks are detected. To trigger

the alert, the SA encodes the alert code 1 into the new PREDICT message and sends it to

the GUI. When the PREDICT message is parsed by the GUI, the GUI displays "High

Interaction Frequency" on the Title and Alert Bar (Figure 3.4).

4.5 Summary

This chapter described in detail how the SA was designed and implemented to link

HSMM results to the decision support visualization GUI. The disconnect between the

actual HSMM results and the designer's graphical representation of anticipated results

was pinpointed and addressed by the development of the abstraction layer. While the

abstraction layer module remains as the heart of the server application, the connection

module and the message dispatch module serve as supporting cast to allow timely and

consistent communication between the SA and other components of the decision support

system (RESCHU and GUI). In the next chapter, the implementation details of the GUI

will be explained, and the GUI usability testing results will be presented.
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5 Display Rendering and Usability Results

This chapter describes the techniques implemented to render the four regions of the GUI

client (Figure 5.1): the Model Accuracy Prediction Panel, the Model Performance History

Panel, the Interaction Frequency Panel, and the Title and Alert Bar. The GUI is

implemented using the Java Swing library, while the Java Graphics API is extensively

applied (Sun Microsystems, 2008). The GUI is designed to fit on a screen with resolution

of 1280 pixels (px) by 1024px.

Figure 5.1: Screenshot of the GUI

5.1 Model Accuracy Prediction Panel

The Model Accuracy Panel is on the top right of the GUI (Figure 5.1), displaying trend

lines representing future trends for the expected MAS, spanning the next 3 minutes. More

specifically, the top trend line represents the expected MAS if the top three predictions

match, and the bottom trend line represents the expected MAS if the bottom three
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predictions match the actual occurred event, as discussed in Chapter 4. The shaded gray

area between the two lines represents the uncertainty between the two (Figure 5.2).

It should be noted that the GUI designer anticipated both an upper and a lower bound of

prediction accuracy, as well as the most probable prediction accuracy (Table 4.1,

Requirement 5). However, the most probable prediction accuracy is the upper bound, by

definition. As a result, the original design (Figure 4.6) was modified to include only the

most probable prediction accuracy and the lower bound, cutting the number of trend lines

from three to two.

Top TrendLine
Uncertainty

Bottom
Trend Line

Figure 5.2: Model Accuracy Prediction Panel

The Model Accuracy Prediction Panel is implemented as a subclass of the standard Java

JComponent class. The paintComponent method is automatically invoked by the

JComponent class whenever the computer screen needs updating. It can also be triggered

by other methods to redraw the display. Hence, this method is overridden to render the

trend lines, which are updated every second.

The Model Accuracy Prediction Panel is designed to occupy an area of 630x460px on the

screen, 540x400px of which are designated as the trend line area. Thus, the axes are

drawn as a 540x400px rectangle with a thickness of 3px. Since the window displays three

minutes (180 seconds) of predictions ranging from 50 to 100 points, one second spans the

width of 3px (540px divided by 180), while a point occupies a height of 8px (400px

divided by 50).



Trend lines are rendered from parsed PREDICT messages (Appendix C). As defined

previously, a PRED clause in a PREDICT message contains information on expected

duration (ED), expected MAS (EMAS), prediction confidence (PC), and lower bound

(LB). Each PRED clause forms a single segment for both top and bottom trend line. The

widths of both trend line segments are determined by ED. The height of the top trend line

is determined by EMAS, while LB determines the height of the bottom trend line. PC

determines the color. For example, a PC value below the high confidence threshold (set

by the user) is represented in blue, a PC value above the low confidence threshold causes

the color to turn red, and a PC value between the two threshold values sets the color to

gray. However, further study is needed to investigate the appropriate values for the high

and low threshold, which is beyond the scope of this research project.

Direct rendering of the HSMM results in a number of disconnected horizontal lines.

However, an experiment showed that users are more confident in the model when the

trend lines are smooth (Castonia, 2009). To create smooth trend lines from disconnected

horizontal segments requires connecting the segments with diagonal lines. A graphical

illustration is shown in Figure 5.3.

2. Diagonal lines branch out
1. Horizontal lines from horizontal lines

T T+1:00 T+2:00 T T+1:00 T+2:00

3. Smooth by erasing the extra
part of the horizontal lines

T T+1:00 T+2:00

Figure 5.3: Trend line smoothing
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The diagonal lines branch out at 70% width of the original horizontal lines, and 70% was

chosen to balance the smoothness of the trend line and the truthfulness of the line's

information.

The shaded area is filled every time both a top and bottom segment of the trend lines are

drawn. The shaded area is composed of many translucent gray polygons bounded by the

top and bottom segments and two vertical lines connecting the beginning points and the

end points of the two segments (Figure 5.4).

Translucent
Gray

Polygon _

Top Trend
Line

Segment

Vertical
Line

Vertical
Line

Bottom
Segment

Figure 5.4: Rendering of shaded area of uncertainty

To summarize, to render the Model Accuracy Prediction Panel, a series of segments are

first drawn along with the gray polygons from the parsed PREDICT message, and then

the axes and labels are filled.

5.2 Model Performance History Panel

The Model Performance History Panel, the lower section of the decision support tool in

Figure 5.1, is a subclass of JPanel class. The panel is designed to occupy 1280x300px of

screen space on the bottom of the GUI display. It contains three HistoryBar objects, each

occupying 1200px by 36px. HistoryBar is a subclass of JComponent, and similar to



Model Accuracy Prediction Panel, the paintComponent method is overridden to render

the bar. Each bar is composed of a series of rectangles of different colors. Blue represents

high model performance, while gray represents medium performance, and red signals low

performance, given the previously discussed user-determined performance thresholds.

The colors were chosen to promote visual discrimination. These differ from the typical

red-orange-green color-set in order to accommodate most color-blind personnel.

Approximately 10% of the male population is color-blind, and 95% of all variations in

human color vision involve the red and green receptor in human eyes (Gegenfurtner &

Sharpe, 2001). Therefore, the significant number of people affected makes it necessary

for the interface's color scheme to be color-blind friendly, and the blue-gray-red color-

scheme was specifically chosen so as to be accessible to red-green color-blind personnel

who represent the vast majority of color-vision deficient personnel. Figure 5.5 shows how

the interface would be seen by red-green color-blind personnel (Gegenfurtner & Sharpe,

2001).

Figure 5.5: The GUI as seen by color-blind personnel (Dougherty & Wade, 2009)

As detailed in Chapter 3, the bottom three bars visualize the historical performance of the

model's predictions at 1, 2, and 3 minutes into the future, as shown in Figure 5.6.

... ....... ....... ....



Figure 5.6: Model Performance History Panel

The history bar for the one-minute prediction is rendered black before the 1 minute mark

on the mission timeline because the mission begins at time 0, and prediction history

cannot begin until 1 minute into the operation. Similarly, the history bars for two and

three-minute predictions are black before the 2 and 3 minute marks on the time line,

respectively.

The three bars are updated per second simultaneously. The GUI records the EMAS

values at the 1, 2, and 3-minute intervals when rendering the Model Accuracy Prediction

Panel. At time T, the 1-minute EMAS value is recorded and tagged with timestamp

T+60s, while 2 and 3-minute values are tagged with T+120s and T+180s respectively.

These values are compared to the MAS value when the time matches their timestamps.

The comparison results determine the color of the rectangles, and at each second, a

2x36px rectangle of the designated color is drawn and added to the end of each history

bar. The width of the new rectangle is 2px because that is the width of 1 second on the

mission timeline (1200px divided by 600 seconds).

The absolute difference between the predicted EMAS value and the actual MAS value

determines the color of the rectangle. For example, a difference below the high

confidence threshold sets the color blue, a difference above low confidence threshold sets

the color red, and a difference in between the two thresholds sets the color gray. Figures

5.7 and 5.8 illustrate how different threshold values affect the color rendering of the bars.



Figure 5.7: Lower threshold values as compared to Figure 5.6

Figure 5.8: Even lower threshold values render more red and gray rectangles

5.3 Interaction Frequency Panel

The Interaction Frequency Panel, the upper left panel in Figure 5.1, displays the

interaction frequency of the operator and RESCHU for the past three minutes. The panel

occupies 630x460px of screen space, and displays up to 15 histogram-style bars, each

representing the total number of mouse clicks within a 12-second interval. The height of

each bar is determined by the number of clicks, where one click amounts to 8px. The

width of each bar is 30px. It is less than 36px, which is the width of 12 seconds, because

it allows for spacing between bars, as shown in Figure 5.9.

Figure 5.9: Interaction Frequency Panel
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In order to render this window, the GUI client aggregates all CLK messages received and

sums up the total number of messages for each 12-second interval beginning at 3 minutes

prior to the current time. The timestamp included in each CLK message indicates the

timing of the click. This window is updated every 12 seconds to keep consistent with the

12-second interval.

5.4 Title and Alert Bar

The Title and Alert Bar displays the identity of the operator being monitored and alerts

the supervisor of possible operator failures, as shown in Figure 5.10.

Figure 5.10: Title and Alert Bar

The Title and Alert Bar resides on the top portion of the GUI client and occupies

1280x70px of screen space. At the beginning of each RESCHU operation, the SA

receives a RBEG message and in turn, sends the GUI a SBEG message to signal the

beginning of a session. Upon receiving the SBEG message, the GUI client displays the

operator's username on the left side of the Title and Alert Bar. As shown in Figure 5.10,

the operator being monitored is Yves.

As stated previously, the HEADER of each PREDICT message also encodes the type of

alert message to be displayed. While 0 indicates no alert, other numbers can trigger

different alerts. In the example shown in Figure 5.10, a Low Interaction Frequency alert

is triggered and displayed in the center portion of the Title and Alert Bar. The two

buttons on the left of the alert message allow the supervisor to acknowledge the alert

message in two ways. The Intervene button signals the GUI that the supervisor may wish

to take some action as a result of the predictions. The Reset button signals the GUI that

the supervisor sees the message but has no plan to communicate with an operator in the



near term. Both buttons erase the message from the screen, while the Reset button allows

the message to reappear after some delay, preset by the supervisor.

5.5 Usability Testing Results

A pilot study was conducted to evaluate the usability of the system. A total of 16 subjects

were asked to evaluate various aspects of the decision support display during and after a

10-minute testing session. During the testing session, the subjects were presented with a

10-minute long video clip of a RESCHU instance along side an instance of the DSV

display, both connected to the SA, while a simulated operator interacted with RESCHU.

The video clip was displayed across two computer monitors.

Four alert messages of various content were triggered and displayed in the video clip, and

the subjects were asked to make hypothetical decisions either to intervene with the

operator or to ignore the alert. Testing showed that subjects made decisions based on both

operator's actions in the RESCHU interface and the information presented on the

decision support display. Subjects were able to make the correct decision 60% of the time

in terms of whether intervention was needed.

Subjective comments included a few complaints about the layout of the DSV display, and

some subjects did not understand the Model Performance History Panel nor the Model

Accuracy Prediction Panel. Some subjects also reported that they ignored the DSV

display most of the time and focused only on RESCHU. As a result, the alert messages

were easily missed by these subjects. It is recommended that the designer re-design the

layout of the alert message area so as to increase the visability of the alert messages. The

color-scheme of the confidence level representation also seemed vague to some subjects.

These design recommendations are further discussed in Chapter 7.

No technical issues were revealed during testing, and subjects did not notice any lag

caused by system latency. Moreover, the system worked smoothly as a whole, and the



pilot testing proved that the concept of an HSMM-based decision support tool is feasible,

albeit with further refinements.

5.6 Summary

This chapter discussed how each region of the DSV display is populated. Detailed

implementation specifications of the DSV display were explained. Usability testing

results from a pilot study were also presented and discussed. The next chapter will

describe the system testing results and the computational enhancements implemented to

allow the system to work smoothly.



6 Software Testing Results and Discussion

This chapter documents the tests conducted to explore the boundary conditions of the

server application. The prediction-generating (PG) algorithm creates latencies, and

several parameters of the algorithm can be adjusted to increase or decrease the latency of

the system. Software testing was conducted to explore the upper limit for each parameter

while keeping system latency under 500ms. This chapter also discusses various

performance enhancements put in place to increase the speed of the system.

6.1 Testing Results

As previously stated, latency of the system is an important factor that governs both

usability and scalability of the system, and thus, it was a major area of testing. Adjustable

system parameters that affect latency for a single RESCHU operator are:

" Length of prediction sequence generated
" Length of event sequence input for the PG algorithm (or Event Window Width

(EWW))

The length of prediction sequence affects the latency of the system because the longer the

sequence of predictions, the more prediction steps need to be generated, and thus more

calculations are needed. However, as discussed in section 4.3.4, a minimum length of 210

seconds is required by the system to ensure the DSV trend graph remains populated for

enough time.

The length of event sequence also affects the latency of the system because the longer the

event sequence, more calculations are needed to compute the probability of the sequence,

and thus, more time is spent by the PG algorithm. Since the PG algorithm is based on the

Viterbi algorithm, the run-time of the PG algorithm is mainly governed by the run-time

of the Viterbi algorithm. Moreover, the run-time of the Viterbi algorithm is O(NK 2 T2 ),

where N is the length of the event sequence, K is the number of hidden states for the

HSMM, and T is the maximum duration of the hidden states (Mitchell, 1995). For a



particular HSMM, where K and T are both fixed, the Viterbi algorithm run-time scales

linearly with the length of the input event sequence, which is determined by the Event

Window Width (EWW). Thus, testing validates whether the PG algorithm preserves the

linearity property of the Viterbi algorithm.

When multiple user-event messages reach the SA one immediately following another,

they are processed sequentially (order is determined by the TCP/IP networking layer) by

the PG algorithm to generate predictions. Moreover, processing a single message results

in latency, and the overall maximum system latency is the sum of the latencies from

processing multiple user-event messages. Thus, the number of operators monitored

determines the overall maximum system latency. Hence, tests conducted include:

1) Single operator latency vs. length of prediction sequence generated

2) Single operator latency vs. EWW
3) Maximum overall system latency vs. number of operators monitored

Testing was conducted using computers with identical hardware specifications running

Windows Vista 64-bit operating system and Java Runtime Environment version 1.6.0

update 14. Hardware specifications of the computers are listed below.

0 Intel CoreTM 2 Duo CPU E6750 @ 2.66GHz (over-clocked to 3.00GHz)

0 4GB DDR2 RAM at 800MHz
e 1TB 7200rpm SATA Hard Drive

6.1.1 Single Operator Latency vs. EWW

The HSMM can provide the most likely future events predicated on a sequence of

previous events. The EWW determines the length of the sequence of events from which

the inferences of future states are made. A longer sequence of events requires more

computation to calculate the probability of that sequence of events. Testing was

conducted to investigate how system latency varies with the EWW when a single

RESCHU operator is under supervision.



For the RESCHU test bed used in this experiment, a testing session lasted 10 minutes.

When testing, the length of prediction sequence was kept constant at 210 seconds, which

is the required minimum temporal length of prediction sequence, while the EWW varied.

Figure 6.2 shows a corresponding graph to the testing result.

Figure 6.1: EWW vs. single operator latency

Results show that the latency is monotonically increasing with the EWW. A linear best fit

line was generated with R2 greater than 0.98, and the linear coefficient is significant (p <

0.001). Moreover, when the window width is 50, the average latency reaches 50 ms for a

single RESCHU operator. Fifty milliseconds was previously shown to be the maximum

allowable lag time for a system designed to support up to 10 operators. Hence, the size of

the largest window the system can handle is 50 events and was set to be the default EWW

for this project.

6.1.2 Single Operator Latency vs. Length of Prediction Sequence

The Model Accuracy Prediction panel displays predictions up to three minutes into the

future. As a result, at least a 180-second long sequence of predictions needs to be

generated each time a new event occurs. Moreover, since each prediction is time-
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sensitive, the panel updates every second by shifting the trend lines to the left by one

second. Hence, a 1-second part of the prediction sequence becomes invalid every second

and disappears off the screen (Figure 4.9).

To ensure the trend graph remains fully populated for a reasonable period of time, a

prediction sequence of longer than 180 seconds must be generated each time. As

discussed in section 4.3.4, a minimum length of 210 seconds is required for all generated

sequences of predictions because a buffer of 30 seconds is needed to ensure the trend line

region stays populated throughout operation. However, generating a longer sequence

increases single operator latency. Hence, tests were conducted to investigate how latency

varies with the length of prediction sequence. During testing, the EWW was fixed at 50

(see section 6.1.1), while the prediction sequence length varied. Testing results are

presented in Figure 6.1.
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Figure 6.2: Prediction sequence length vs. single operator latency

Testing results show that latency increases linearly with the length of prediction sequence

(Figure 6.1). Moreover, when the length of prediction sequence is 210 seconds, the single

operator latency reaches 50ms. A linear best fit line was generated with R2 greater than

0.99, and the linear coefficient is significant (p <0.001).
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6.1.3 Overall System Latency vs. Number of Operators Monitored

The interface designer envisioned that the decision support visualization discussed

previously would assist supervisors to monitor a team of maximally 10 operators

simultaneously. Testing was performed to investigate how the overall system latency

scales with each additional operator monitored.

During testing, the EWW was set to 50, while length of prediction sequence was set to

210 seconds. The system test evaluated system performance under the worst case

scenario by sending N (determined by number of operators monitored) user-event

messages to the SA at random time intervals over the RESCHU session course of 10

minutes (Poisson process with lambda of 12 seconds, which is the average interaction

time interval). The system was tested with the number of operators ranging from 1 to 15.

Figure 6.3 presents the testing results.
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Figure 6.3: Number of operators vs. system latency

Results show that system latency increases linearly with the number of operators

monitored and that when 10 operators are under simultaneous supervision, average

system latency begins to exceed 500 ms slightly (Figure 6.3). A linear best fit line was

generated with R2 greater than 0.99, and the linear coefficient is significant (p < 0.001).
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Due to the time-critical nature of UV operations, the system needs to be conservative in

terms of allowing latency. Thus, the maximum number of operators supported by the

representative RESCHU system should be reduced to 9 given the 500ms requirement.

However, while 500ms is an acceptable latency to most people (Claypool, 2005), other

research has shown that humans prefer to see latencies less than 200ms (Card, Moran, &

Newell, 1983). Should this lower latency be required, the maximum number of operators

supported by a single server application may need to be reduced to 4. In this situation,

one possible way to support up to 10 operators simultaneously would be to have multiple

SAs working in parallel in order to share and balance the computational load. Although

this feature is currently not implemented, the modular nature of the system architecture

supports such modification with minimal effort.

6.1.4 Testing Results Summary

The testing results provide insight on how single operator latency and overall system

latency vary with different system parameters. As stated in the original requirements, an

overall system latency of less than 500ms must be achieved to ensure system

responsiveness. Moreover, other research suggests that it might be more favorable to

keep the system latency under 200ms at all times. This limits the maximum number of

operators monitored by a single server application to 4, given that the EWW is 50 and

length of prediction sequence is 210 seconds.

However, future system designers have the freedom to make trade-offs between length of

prediction sequence and the EWW. A Pareto front of the system parameters was

generated to investigate how a future system designer could choose a different set of

system parameter values so as to minimize system latency while maximizing the number

of operators supported (Figure 6.4). Data points were generated by varying the EWW

from 30 events to 70 events with 10-event intervals, the length of prediction sequence

from 180 seconds to 300 seconds with 30-second intervals, and the number of operators

from 2 to 12. The y-axis denotes latency, and the x-axis denotes the inverse of the



number of operators so that the maximum number of operators is on the left-most end of

the axis in order to populate a classical view of the Pareto front graph.
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Figure 6.4: Pareto front graph of the system parameters

The left-most data points represent 12 operators, while the right-most data points

represent 2 operators monitored. Figure 6.5 shows a magnified view of the Pareto front.
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Given a maximum latency limit of 200ms, the current system can support up to a

maximum number of 6 operators by lowering the EWW and the length of prediction

sequence. Moreover, the set of Pareto-efficient system parameters is listed in Table 6.1.

Table 6.1: Pareto-efficient system parameters

EWW Length of Prediction Operators Latency (ms)
Sequence (s) Supported

30 180 7 204

30 210 6 194

40 180 6 193

30 180 6 173

50 180 5 188

30 240 5 180

30 210 5 164

40 180 5 161
30 180 5 142

The set of Pareto-efficient system parameters provides insights for the future system

designers on how system parameters can be varied in order to increase the maximum

number of operators supported while keeping latency acceptable. However, if a system

designer wishes to keep EWW at 50 events and the length of prediction sequence at 210

seconds, then future work is needed in order to support more than 4 operators. For

example, the server application can be improved so as to allow multiple server

applications working together, each monitoring up to 4 operators independently (given a

system similar to RESCHU).

6.2 Computational Enhancements

Over the course of the project, a number of computational issues emerged and were

resolved during the development phase of the PG algorithm. This section documents

these issues and the corresponding solutions.



As stated in Chapter 4, the rigorous prediction generation method computes the

probability of an event sequence with the logProbability function 19 times for each

prediction step. In addition, the top five most probable events out of the 19 are chosen as

the five only candidates for the next expected event, and their probabilities are

normalized to sum up to one. Two issues emerged during development: 1) the

logProbability function is computationally intensive, and 2) renormalizing small log

probabilities directly is challenging in Java.

6.2.1 Fast computation of the probability of sequences

The computational enhancement that had the largest impact on the system is the

implementation of a faster variant of the method used to compute the probability of a

sequence, logProbability. A new function was created, logProbability2, in order to

achieve a significant speed increase as compared to the original function. The original

logProbability function takes a sequence of events as input and calculates the log

probability of the sequence. To calculate the probability of observing each of the 19

events as the next event, this function must be called 19 times. The new variation of

logProbability takes a sequence of events and calculates the 19 log probabilities of seeing

all 19 event types as the next event. This variation eliminates redundancy in invoking the

original logProbability method 19 times on inputs that are, for the most part, identical

(Figure 6.5).
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The new variation of logProbability calculates the probabilities in two steps:

1. Calculate the probability of the event sequence

2. Calculate the additional transitional probability from the sequence to the next

event for all 19 event types.

As previously discussed, the Viterbi algorithm has run-time 0(N) given a particular

HSMM. Previously, the PG algorithm invokes the original logProbability 19 times,

which is based on the Viterbi algorithm. Given an input sequence of length, N, the total

time to compute the log probability of the input sequence plus the next event is N + 1

steps. Therefore, the total time spent in computation for the PG algorithm per step of

prediction is 19 (N + 1) steps. In the new variation of logProbability, the log probability

of the input sequence is first computed in N steps. Then, 19 lookups are performed to

calculate the log probabilities of the 19 candidates of next event all at once. Assuming

each lookup has computation cost c, the total time spent to compute the log probabilities

of the 19 sequences of input sequence plus next event is N + 19c. In addition, since c is

the time spent in looking up the probability for a single event instead of for a sequence of

events, c is negligible compared to N. Moreover, overhead between each subsequent call

of logProbability was avoided, and thus, the new method allows the prediction generation

process to run at least 2034% faster than the original method (Table 6.1).

Table 6.2: logProbability vs. logProbability2

Algorithm Using Using Performance Gain

Runtime logProbabiity logProbability2

Maximum (ms) 1546 76 2034%

Average (ms) 1124 50 2248%

6.2.2 Normalizing log probabilities

When generating predictions, the algorithm records the top five most probable events as

the candidates for the next event. The rationale behind this procedure is that the top five



most probable events in combination cover more than 99% of the total probabilities of the

19 events. Since only 5 out of the 19 events are selected as the exclusive candidates for

next event, their probabilities should also be normalized to sum up to one. The

normalized probability of an event is calculated as its probability divided by the sum of

the five probabilities, given in (4).

Normalize(Pi) = (4)

The probabilities output by logProbability2 are log probabilities, and in order to

normalize these probabilities, they must be converted into natural probabilities. However,

these probabilities are stored in log probability form because they may be too small for

Java, and converting them will result in zeroes. To resolve these issues, the normalization

procedure relies on simple mathematical rules listed below.

Log(xy) = Log(x) + Log(y) (5)

b axb
- __ - (6)

c axc

These rules allow the normalization procedure to increase the log probability values by a

common factor before normalizing them, which is actually multiplying the probabilities

by a common factor. Once these log probability values are large enough for Java, they are

normalized using (4). The common factor is determined by the integer value of the

absolute value of the largest log probability value. The common factor ensures that at

least one log probability will be large enough for Java after adding the common factor.

The following proof shows that the distribution of the probabilities is preserved after

applying the common factor.

Proof-

Let xi be the probability of a sequence, and let log(a) be the constant common factor



elog (xi )+log (a) )
We want to show that :og (x+og (a = Normalize(xi)

Zi elo (xi)+Iog (a) i. xi

log(xi) + log(a) = log( ax ) (7)

e log (xt)+log (a) = log (axi) axi (8)

elog (xi)+log (a) axi axi (9

Zi elg (x)+log(a) EF axi a x Fi xi x(

Thus, elog=(xi)+og (a) - = Normalize(xi), Q. E. D. (10)
Zi elog (x j)+log (a) L21xi

For example, consider five events of the following log probability: [-1245.9, -1246.57, -

1247.5, -1248.03, -1249.17]. The common factor is 1245. Table 6.2 shows the step-by-

step calculations for normalizing these log probabilities.

Table 6.3: Intermediate results of normalization of a typical case

Event Rank Log Probability After adding Probability value Normalized

common factor in Java

1 -1245.9 -0.9 0.406569 0.53

2 -2046.57 -1.57 0.208045 0.27

3 -2047.5 -2.5 0.082085 0.11

4 -2048.03 -3.03 0.048316 0.06

5 -2049.17 -4.17 0.015452 0.03

6.3 Summary

System testing results showed that system latency scales linearly with system parameters

of Event Window Width (EWW) and length of prediction sequence, as well as the

number of operators monitored. The Pareto front of the system parameters showed that

future system designers have the freedom to select other values for the system parameters

to increase the maximum supported number of operators, while keeping latency low.

Given the 500ms latency requirement and the default system parameter setting (EWW =

50 and length of prediction sequence at 210 seconds), up to a maximum of 9 operators

can be supported for the given RESCHU system. However, the maximum latency



requirement might need to be reduced to 200ms according to other research, in which

case, a maximum of 4 operators may be supported per server application. Computational

enhancements that produced performance gains were also discussed.
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7 Conclusion

This project connected a hidden semi-Markov model that predicts real-time operator

behavior in a command and control setting with a graphical decision support visualization

display. The resulting proof-of-concept system operates in real-time, providing a team

supervisor with behavior predictions for up to 4 UV operators simultaneously with

maximum latency of 200ms, and possibly up to 9 users if the latency requirement is

relaxed to 500ms. The heart of the system is a server-side application. It houses a

connection module to connect the application to RESCHU instances and the DSV display,

a message dispatch module that sends and receives messages, and an abstraction layer

module that transforms HSMM prediction results into data readable by the DSV display.

Through the use of this system, it is envisioned that supervisors could improve their

performances in monitoring teams of operators.

Although the system implemented in this project is not mature enough for real-world UV

operation, this research provides valuable insight into potential difficulties that might

arise during future related research and development; especially in situations where the

output of complex algorithms must be interpreted under operational time pressure by

non-technical personnel. Moreover, the research reveals the important disconnect

between actual mathematical formulations and an interface designer's anticipated output.

As the implementation of the current interface resulted in a set of new design

recommendations, this work further emphasizes the need for a feedback mechanism

between the design of the interface and the operation of the underlying model.

While the current system enables future research on the subject of using HSMMs to aid

supervisors of supervisory control operators in real-time, there remain many areas for

future works of improvements.



7.1 Design Recommendation

Two main issues involving the interface design were raised both during the development

phase of the project and after the pilot study for system usability. They are discussed

below.

7.1.1 Interface Labeling

As discussed in Chapter 4, the output of the HSMM cannot be directly displayed on the

trend display in its original design. An abstraction layer was created to transform the

output of the HSMM into data that can be rendered as trend lines. As a result, a model

accuracy scoring metric was devised to perform the transformation, which was not part of

the original intended design. This metric assigns various scores to the model according to

various level of its prediction performance as documented in Chapter 4. As a result, the

trend display no longer presents future predictions on the accuracy of the model, but

rather the projected performance score of the model. Thus, it is recommended that the

designer change the title of the trend display from Model Accuracy Prediction to

Performance Forecast. Moreover, the designer should assess whether this change

fundamentally changes supervisor understanding of the graph.

7.1.2 Interface Layout

As suggested by several subjects during the pilot study, both the intervene button and

reset button (Figure 5.10) should be larger. Subjects also suggested that the alert message

area should be resized to be larger and needed a change of color scheme to make the

messages more salient. Audio alerts should also be investigated.

7.2 Future Work

There remains room for improvement for several aspects of the server application: 1) the

model accuracy scoring metric could be dynamic, and 2) the alert library should be

implemented to complete the system.



7.2.1 Model Accuracy Scoring Metric

The model accuracy scoring metric currently considers only the five most probable

events regardless of their probability distribution. Although the top five events cover

more than 99% of the probability distribution of all of the 19 events most of the time,

there are still instances where less than or more than five events should be considered.

Thus, one way to improve the model accuracy metric would be to make it dynamically

adjust the number of events considered. For example, when the top two events have

probabilities 0.65 and 0.34, while the remaining 0.01 is evenly distributed among the

remaining 17 events, it may be more accurate to consider only the top two events.

However, when the top seven events are almost equally probable with probabilities of

around 0.14, then all seven events should be considered as candidates for next event

instead ofjust five.

As the metric changes from static to dynamic, the scoring of each rank of event should

also change. Currently, the ranks receive 50, 45, 40, 20, and 10 in order. A new scoring

system should be devised for the dynamic metric, while keeping the heuristic clustering

property of the current scoring system in play. The changes would necessitate further

human-in-the-loop testing.

7.2.2 Alert Library

An important feature of the system is its ability to display alerts to the supervisor. The

system is designed to display different alerts for different scenarios. Currently, the system

triggers an alert and sends the alert code in the PREDICT message, which then sends an

alert message to the GUI. However, only a default alert message and its corresponding

alert code are used by the SA. The library of the alert messages should be implemented

by the interface designer and the model builder to assess the full span of possible

problematic states. Moreover, the server application should also be augmented to detect

the exact event that triggers an alert.



The thresholds for triggering alerts can be set by the user. Further research conducted by

the HSMM designer and the interface designer should assess possible optimal threshold

schemes (set either by humans or automated agents) in order to alert the supervisor of the

exact cause for potential failures when anomalies arise.

7.3 Summary

Advances in technology will eventually allow a team of operators to manage fleets of

multiple heterogeneous UVs in a supervisory control setting (Cummings et al., 2007).

Under such scenarios, it is important that the team supervisor is provided with the most

updated status of each operator's performance, as well as possible predictions of

anomalous behaviors, so that costly mistakes can be avoided. This research explored the

possible implementation of such a decision tool powered by hidden semi-Markov models,

and successfully developed a proof-of-concept prototype. This project enables further

researches in the area of real-time supervisory control decision support, specifically for

unmanned vehicle systems. The project's major contribution is connecting an HSMM

with a decision support display in real-time via a server application with an embedded

abstraction hierarchy, which with more research, may one day be perfected to aid

supervisors in actual UV operations.
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Appendix A: Excerpts of Code from the Server Application

This appendix presents the important code excerpts that implement the server application.

The ConnectionModule class implements the Connection Module. The

MessageDispatcher class implements the Message Dispatch Module. The Session class

implements the Abstraction Layer Module with the PG algorithm.

* Tis clas imlem c rets C t e rrl C ionI mdule oI f th A. The

con ne ct on mo ule prvides
* t caeability a t r eeive da t fm RSCHU a n d end dat a to Le GUI.

public class ConnectionModule {
private int RECEIVEPORT = 4446;
private int BROADCASTPORT = 4447;

private String ADDRESS = "230.0.0.1";

private MulticastSocket rsocket;

private DatagramSocket s socket;

private InetAddress address;

k k

i A

public ConnectionModule()
boolean testing = true;
setAddress(testing);

try {
r socket = new MulticastSocket(RECEIVE PORT);
address = InetAddress.getByName(ADDRESS);
r socket.joinGroup(address);

System.out.println("Listening to port
"+RECEIVE PORT+" at "+ADDRESS+" . . .');

s socket = new DatagramSocket(;
System.out.println("Waiting to send to port

"+BROADCASTPORT+" at "+ADDRESS+" . . .");
catch (IOException e)



/*
A Prompts User fori the IP addrs and th p

* if not in t esting modkU.Il '0(1e, i . Ie false.

t lC - I 1U 1. t. C."',

public void setAddress(boolean testing)
if (testing) return;
try {

String port = JOptionPane.showlnputDialog("Please
enter server's listening port number","4446");

RECEIVE PORT = Integer.parselnt(port);
port = JOptionPane.showlnputDialog("Please enter

server's outgoing port number","4447");
BROADCAST PORT = Integer.parselnt(port);

} catch (Exception e)
e.printStackTrace (;

}
ADDRESS = JOptionPane.showlnputDialog("Please enter server

IP address","230.0.0.1");

* Closes all th connections.

public void close()

s socket.close(;

*isen to incomin datag1 r packet data,

*adfill-s thf-e er-py acket it dat-a if dataarrves
* iparamt r 1ake - an enpty /I da -g pa _ka wa in -ob fle

with i coming data

public void receive (DatagramPacket rPacket)
try {

r socket.receive(rPacket);
catch (IOException e) {

e.printStackTrace (;

. msg the essag to be en

public void send(String msg)
byte[] buf = msg.getBytes(;
try {

InetAddress group = InetAddress.getByName(ADDRESS);
DatagramPacket spacket = new DatagramPacket(buf,

buf.length, group, BROADCASTPORT);
s socket.send(s packet);
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} catch (UnknownHostException e)
e.printStackTrace (;

} catch (IOException e) {
e.printStackTrace (;

*~ ~~~ r h' c.)z.: i. nen-2 co ml-' ri q e r.Xa q h eJi~* ni T.4 f ~. 'i2

public class MessageDispatcher

private HashMap<StringSession> sessions;

private final String BEGIN TAG = "BEGIN";

private final String CLICK TAG = "CLICKED";
private final String ENDTAG "CLICKED";

*~~~ Cos ':csa Mesgs p :cer1

public MessageDispatcher()
sessions = new HashMap<String,Session>();

T .2' 1- C, nI r aa '-5t:n-' I
'n c e T:oT se y

public void processMessage(String incoingMessage) throws
IOException {

String msg = null;

String[] tokens = incomingMessage.split(":");
String user = tokens[O];
if (tokens[l].equals(BEGINTAG))

if (sessions.containsKey(user))
sessions.get(user).kill();

Session session = new
Session(user,Server.getServer() .getHSMM();

sessions.put(user, session);
msg = session.createBeginMessage();
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} else if (tokens[l].equals(CLICK TAG))

msg = sessions.get(user).createClickMessage();
} else if (tokens[l].equals(END_TAG)){

else {
msg = processUserEvent(user,incomingMessage);

if (msg!=null) Server.getServer().queueMessage(msg);

private String processUserEvent(String user, String s)
if (!sessions.containsKey(user))

Session session = new
Session(user,Server.getServer().getHSMM());

sessions.put(user, session);

Session currentSession = sessions.get(user);

even nt reonzdrt r rul

if (!currentSession.addUserEvent(s))
return null;

n t r gi ( );

String result currentSession.generatePredictions();

1ong1 trnd = rl (

r ltr ey =

Sy-vs tem. cmt .prnl rsl
return result;

cre

* The sssio c' s s i

o dr 
ga 

EC

*) s a Ti ca as prov

o aed it n R ESH T

the~ abilit togeer I

public class Session

private static final int SCORINGWINDOWWIDTH = 10;
private static final int EVENTSEQUENCE LENGTH = 50;

private static final int PREDICTIONLENGTH = 210;

private static final int[] subScores = {50,45,40,20,10};

static double A = 0.9;

static double B = 1 - A;
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private ArrayList<UserEvent> receivedEvents;

private List<EPPair> expectedEvents;

ArrayList<Integer> scores;

Con:t Icts a Sesior olject f om a us;ernare and the- HSM
* ob'ct fr.om ser:ver

public Session(String username, MyHSMM model)
start time = System.currentTimeMillis();
this.username = username;
this.model = model;

receivedEvents = new ArrayList<UserEvent>();
expectedEvents = new ArrayList<EPPair>();
scores = new ArrayList<Integer>();
for (int i = 0; i<SCORING WINDOW WIDTH; i++)

addScoreToWindow(100,scores);
}

currentScore = 100;

currentState = this.model.getInitialStateo;
expectedEvents = model.getTopEvents(currentState);
updateStateData();
currentStateBeginTime = -1;

timer = new Timer(true);

* 'Petur ns thie B DY f rEDC message composLd f series f

p''d t ionsC1 . 1

public String generatePredictions ()
String result =
String states =

ArrayList<Integer> scores = new ArrayList<Integer>(this.scores);
ArrayList<Integer> lowscores = new

ArrayList<Integer>(this.scores);

int[] evts = this.getEventSequence(EVENT SEQUENCE LENGTH);

int state = this.currentState;

105



int tcount = 0;
int score = 0;
int lowscore = 0;
int dev = 0;
int dt = 0;

dt = model.getExpectedDuration(state);
score = this.currentScore;
lowscore = this.currentScore;
dev = 100;
tcount += dt;

int eventduration = dt*model.timeResolution-1;
int[] temp = new int[evts.length+eventduration];

for (int i = 0; i<eventduration; i++)
temp[evts.length+i] = evts[evts.length-1];

evts = temp;

result+=String.valueOf(dt)+":"+String. valueOf(score)
+": "+String. valueOf(0) +": "+String. valueOf(score) +";";

while (tcount<PREDICTION LENGTH)
states +=state+"->";

List<EPPair> eps = model.getTopObservables(evts);
addScoreToWindow(calculateBestScore(eps), scores);
addScoreToWindow(calculateLowScore(eps), lowscores);

dt = model.getExpectedDuration(state);
score = calculateScore(scores);
lowscore = calculateScore(lowscores);
dev = calculateConfidence(eps);

eventduration = dt*2; i-
temp = new int[evts.length+eventduration];

System.arraycopy(evts, 0, temp, 0, evts.length);

for (int i = 0; i<eventduration; i++)
temp[evts.length+il = eps.get(0).eventtype;

evts = temp;

state = model.getNextState (state);

tcount += dt;

result+=String.valueOf(dt)+":"+String.valueOf(score)
+":"+String.value~f(dev)+":"+String.valueOf(lowscore)+";";

states+=state;
return username + ":" + System.currentTimeMillis()+"@"+result;
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Appendix B: Excerpts of Code from the HSMM Library

This appendix presents important code excerpts from the HSMM library, including the

five Java functions described in section 4.2.3.1, as well as the Viterbi algorithm

implementation.

* I stL i ke lyt e.eqtuence is a method that cal Cultes

iii TI (I:~ e ~ - ar r e r
* stt seugc gicnosevto euec sn

the motlikl- y
he Viter>bi

*~. ' V, - 3 i iC -ji('

public int[] mostLikelyStateSequence (int[] oseq)

c ulat th A os ikelv~ state seue'c usia itrb

Viterbi HSMM vh = new Viterbi HSMM();
return vh.viterbiCalc(oseq, this.clone());

* ViterbiCa c alculats t1e most lkely t seq"uence'-' given an
* r n 2eqenc i g v 0 0 'i thod as descibed by Guedn

* pr']a HSMix' HSMMSJ

public int[i] viterbiCalc (int[] x, HSMM HSMM)

a ' ''-': (1 + -) ,N i

'S~~~~~1 (J b W: 4 ~'-' C4

double[] [] b = HSMM.b;
double[] [] p = HSMM.p; msn
double[] [] d = HSMM.d; n- .
double[] pi = HSMM.pi;

int tau = x.length; //ent 'f obi-ai m aseuec
int J = p.length; / a of t
int[] M = new int[J]; //n d ae fr-> re e sent.

for(int j = O;j<J;j++)
M[j] = d[j].length-1;
ndc sansbein stb inpu*

double[] [] F = new double[J] [tau];
double Observ;
double[] N = new double[ tau];
double[][] D = Dfromd(d,tau);
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double[] [ State In= new double [J] [tau); / -e ablt

int[] stateSequence = new int[x.length];
double[] likelihoods = new double[x.length];
boolean Bfix = true;

for(int t = O;t<=tau-l;t++)

N[t] = 0;

for(int j = O;j<J;j++)

F[j][t] = 0;

Observ b[j] [x[t]];
if(t<tau-1)

for(int u =1;u<=Math.min(t+l, M[j));u++)

if(u<t+l)

double curVar =

Observ*d[j][u]*Stateln[j][t-u+l];
F[j][t] += curVar;
if(Bfix)

curVar *= b[j][x[t]];

if(curVar>likelihoods[t])

likelihoods[t] = curVar;
stateSequence[t] = j;

N[t] +=
Observ*D[j] [u]*StateIn[j][t-u+l];

Observ *= b[j][x[t-u]]/N[t-u];

else',// i f ( t.. au-+1

double curVar =

Observ*d[j][t+l]*pi[j];
F[j][t] += curVar;
if(Bfix)

curVar * [ j]x[t]];
if(curVar>likelihoods[t])

likelihoods[t] = curVar;
stateSequence[t] = j;

N[t] += Observ*D[j][t+1]*pi[j];

else,/ f =a

for(int u = l;u<=Math.min(tau, M[j]);u++)

if(u<tau)
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double curVar
Observ*D[j][u]*StateIn[j][tau-u];

F[j][tau-1] += curVar;

if(Bfix)
curVar *= b[j][x[t]];

if(curVar>likelihoods[t])

likelihoods[t] = curVar;
stateSequence[t] = j;

Observ *=b[j)[x[tau-1-u]]/N[tau-1-];

else,if u=tu

double curVar = Observ*D[j][tau]*pi[j];
F[j][tau-1] += curVar;

if(Bfix)
curVar *= b[j][x[t]];

if(curVar>likelihoods[t])

likelihoods[t] = curVar;
stateSequence[t] =j;

N[tau-1] += F[j][tau-1];

for(int j = O;j<J;j++)
F[j][t] /= N[t];

if(t<tau-1)

for(int j=;j<J;j++)

StateIn[j) [t+1] = 0;
for(int i =0;i<J;i++)

StateIn[j][t+l] += p[i][j)*F[i][t];

return stateSequence;

private double[] [] Dfromd(double[] []d, int tau) get surJ L'VI

int J = d.length;;
double[][] D = new double[J) [tau+1; ffUnn f

for(int i = 0;i<J;i++)
for(int j = 0;j<=tau;j++)

D[i][j] = 0;
for(int k = 0;k<d[0].length;k++)

109



if (k>=j)
D[i] [j] += d[i] [k];

return D;

Ak

SRe turns an array log probs crrsndg the n of iffernt

* poss ie final events

* paam x- thesequnc of ev ent

* r r ara o g pr) of reaching h fi Linal)j

* events from the segu-ence fe s x
* /

public double[] logProbability2(int[] x)

HSMM initHSMM = this;

double[][] b = initHSMM.b;
double[] [] p = initHSMM.p; /e v oes fo->t it

double [] [d = initHSMM. d; 'needo vu f- pa
disru iti o

double[] pi = initHSMM.pi;
int tau = x. length;//lengt (of Ebservaions
int J = p.length; //num er osat

int 0 = b[0] .length; /nurnber f bserva les
int d len = d[0] .length-l; 'ns'I.; fo r->

d fhti n in te j

double[][] F = new double[J][tau+l];
double Observ;
double[] N = new double[tau+l];
double[] [] D = forwardBackward.Dfromd(d,tau+l);

double[][] StateIn = new double[J) [tau+1];//shol be al to

double[] logProbs = new double[19];
Arrays.fill(logProbs, 0.0);

Arrays. fill (N, 0. 0)

for(int t = 0;t<=tau-l;t++)

for(int j = 0;j<J;j++)

F[j] [t] = 0;
Observ = b[j]x[t]];
for(int u =1;u<=Math.min(t+l, d len);u++)

if(u<t+l)
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F[j][t] += Observ*d[j][ul*StateIn[j][t-

N[t] += Observ*D[j][u]*StateIn[j][t-u+1];
Observ *=b[j)[x[t-u)]/N[t-u];

F[j][t] += Observ*d[j][t+1]*pi[j];
N[t] += Observ*D[j][t+1]*pi[j];

for(int j = 0;j<J;j++)
F[j][t] /= N[t];

for(int j=0;j<J;j++)

StateIn[j][t+1] = 0;
for(int i =0;i<J;i++)

StateIn[j][t+1]

for(int o = 0;o<o;o++)
if(!Double.isNaN(N[t]

logProbs[o] +=
else

+= p[i] [j] *F[i] [t];

&& !(N[t] <= 0))

Math.log(N[t]) ;

logProbs[o] += -100000000;

double[] Nlast = new double[O];

int t tau;
for(int j = 0;j<J;j++)

F[j] [t] = 0;
Observ = 1;

for(int u = 1;u<=Math.min(tau+1, d len);u++)

if(u<tau+1)

F[j][tau] += Observ*D[j][u]*Stateln[j][tau+1-u];
Observ *= b[j][x[tau-u]]/N[tau-u];

else." i. u

F[j][tau] += Observ*D[j][tau+1]*pi[j];

}
for(int o = 0;o<0;o++)

Nlast[o] += F[j][tau]*b[j][o];

}
for(int o = 0;o<o;o++)

if(!Double.isNaN(Nlast[o]) && !(Nlast[o] <= 0))
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logProbs[o] += Math.log(Nlast[o]);
else

logProbs[o] += -100000000;

return logProbs;

*
4,!

x fI

public int getNextState(int n)
double max = -1;
int nstate = -1;

for (int i=0; i<p[n].length; i++)
if (p[n] [i]>max) {

max = p[n][i];

nstate =i;

return nstate;

* turnrs th cexpected drtn f statr n

* ra eu i s e n'expectedd

public Integer getExpectedDuration(int n)
double[] timeDistr = dn];
double dt 0;
for (int i = 0; i<timeDistr.length; i++)

int x = i+1;
dt += x*timeDistr[i];

return (int)Math.round(dt/timeResolution);

* Rturs a list os Eairs rep resei the to 0

* events and the asscia el n 7rma lizd prb ity

* Farat evt s - an ar ofi the sequence,( o 1f6bsrvec events

* -retu c-r opObs - aist o 5 EPPaiis rpre sntig the top ms

Sik e v cent a1 ndt 1 the asso ci a te (--,d nraie aro b abily
* /

public List<EPPair> getTopObservables(int[] evts)
List<EPPair> results = new ArrayList<EPPair>();

List<EPPair> temp = new ArrayList<EPPair>();
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int[] tempevts = evts.clone(;

double[] logprobs = this.logProbability2 (tempevts);

for (int evt = 0; evt<logprobs.length; evt++)
double logprob = logprobs[evt];
int offset = (int)Math.ceil(logprob);
logprob -= offset - offset%500;
double prob = Math.exp(logprob);
temp.add(new EPPair(evt,prob));

Collections.sort(temp);
Collections.reverse(temp);

double benchmark = 0;
for (int i = 0; i<5; i++)

EPPair ep = temp.get(i);
benchmark += ep.prob;

results.add(ep);

this.normalize(benchmark, results);
return results;
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Appendix C: Excerpts of Code from the GUI

This appendix presents important code excerpts that implement the GUI, including a

HistoryBar that draws a single performance history bar on the Model Performance

History Panel and the drawStraightPaths function that draws the trend lines and the

shaded gray area on the Model Accuracy Prediction Panel.

I t

r "D

public class HistoryBar extends Jomponent implements DataListener

private static at PIXELPERSECOND 2;

private PerformanceHistory history;

public HistoryBar~int width)
setPreferredSize (new Dimension(width, -1));

public void setPerformanceHistory (PerformanceHistory
performanceHistory)

this.history * performanceHistory;
performanceHistory.setHistoryListener(this);
performanceHistory. starto;

public void paintomponent (Graphics g)
super.paintComponent (g);
Graphics2D g2 = (Graphics2D) g.createo;
g2.setRenderingHinto(RenderingHints .KEY ANTIALIASING,

RenderingHints.VALUE ANTIALIASON);

g. setColori(dColor.BLACK)
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if (history==nulll lhistory.isEmpty()) return;

int x = 0;
int y = 0;
int w = 0;
int h = 40;

for (int i=O; i<history.getLevels().size(; i++) {
int t = history.getCLevel(i).duration;
int 1 = history.getCLevel(i).devLevel;

w = t*PIXEL PER SECOND;

setColor(g,1);
g.fillRect(x, y, w, h);

x = x + w;

private void setColor(Graphics g, int level)
if (level <= SystemConstants.HIGHMIDCUTOFF)

g.setColor(SystemConstants.HIGH_CONFIDENCECOLOR);
else if (level <=

SystemConstants.HIGHMIDCUTOFF+SystemConstants.CUTOFFSPACING)

g.setColor(SystemConstants.MEDIUMCONFIDENCECOLOR);
else g.setColor(SystemConstants.LOW CONFIDENCE COLOR);

public void updateData()
try {

SwingUtilities.invokeAndWait(new Runnable(){
public void run() {repaint();}

});
} catch (InterruptedException e)

e.printStackTrace ();
} catch (InvocationTargetException e)

e.printStackTrace();

* Drawsc; the- re line can the shaded gray a re fo the

* Model ccucy anel, give a parsed P T mIesa qe

private synchronized void drawStraightPaths(Graphics g) throws

NullPointerException {
if (path==null 11 path.getEdges (==null) return;

int base score = path.getBaseScore();
int dwell time = path.getFirstDwelltimeo;
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g.setColor(SystemConstants.HIGH CONFIDENCE COLOR);

int start x = 60;
int next x = 60;

int start y = (100-base score)*pixelPerPoint+60;
int next y = start y;

int low start y = start y;
int low next y = start y;

int dx = dwell time*pixelPerSecond;
int decay x = start x + (int) (dx*decayPoint);

drawThickLine(g, start x, starty, decay x, next y, true);

next x += dx;

for (int i = 0; i<path.getEdges().size(; i++)
PredictionStep pe = path.getEdges().get(i);
int p = pe.getExpectedMAS(;
int 1 = pe.getLowerBound();
int conf = pe.getPredictionConfidence();

next y = (100-p)*pixelPerPoint+60;
low next y = (100-1)*pixelPerPoint+60;

drawThickLine(g,decay x, start y, next x, next y, true);

S te f rstlow r b un,;- sa r fro IT: St r x

if (i==0)
drawThickLine(g,start x, start y, next x,

low next y,false);

fillGrayArea(g, decay x, start y, next x, next y,
start x, start y, next x, low next y);

else {
drawThickLine(g,decay x, low start y, next x,

low next y,false);

fillGrayArea(g, decay x, starty, nextx, nexty,
decay x, low start y, next x, low next y);

dwell time = pe.getExpectedDuration(;

start y = next y;

low start y = lownexty;

if (start y > 460) return;

dx = dwell time*pixelPerSecond;
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decay x = next x + (int) (dx*decayPoint);

if (decay x > 600)
draw at e n wihin 1,A

drawThickLine(g, next x, start y, 600, start y,true);
drawThickLine(g, next x, low start y, 600,

low start y,false);

fillGrayArea(g, next x, start y, 600, start y,
next x, low start y, 600, low start y);

return;

setColor(g,conf);

drawThickLine(g, next x, start y, decay x, start y, true);
drawThickLine(g, nextx, lowstarty, decayx, lowstart-y,

false);

fillGrayArea(g, next x, starty, decayx, starty,
next x, low start y, decay x,

low start y);

start x = next x;
next x += dx;

drawThickLine(g, decayx, starty, 600, starty, true);
drawThickLine(g, decayx, lowstarty, 600, low start-y, false);
fillGrayArea(g, decay x, start-y, 600, start_y,

decay_x, low start y, 600, low start_y);
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