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Varren M. Rohsenowit

SUMIARL
A method based on a logical explanation of the mechenism of heat trans-
fer sssociated with the boiling process is presented for correlating heat
transfer data for nucleate boiling of liquids for the case of pool bolling.
The suggested relation is ; .
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where the various fluid properties are evaluated at the saturation tempera-
ture corresponding to the local pressure and c“. ie & function of the particu-
lar heating surface-{luid combination.

Heat transfer data for forced convection flow without boiling is corre-
lated by the normal Nusselt number, Reynolds mmber based on pipe dismeter and
Prandtl number. For pool boiling with emsentially seaturated liquids, Jakob (1)
ghows that the heat transfer from the surface i1s for the most pert itransferred
direet.if to the 1iquid, the increased heat transfer rate smssociated with boil-
ing being sccounted for by the resuliing sgitation of the fluid by motian of
the liquid. flowing behind the woke of the bubble departing from the surface.
Rohsenow and Clark (2) showed a similar result in studying motion pictures of
McAdams (3) Tor subecooled liquids Piwug in forced convection with surface
hailiqg but no net generatien of vaper, Gunther and Kreith (i) snd Gunther(5)
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presented photographic evidence that in highly subcooled liquids in pool
boiling end in forced convection with aurft;co boiling, the bubbles could form
at the surface, grow, and then collapse while r-a:lning atﬁ&d to the sur-
face. Nevertheless the increased heat transfer in boiling was attributed to
the agitation of the liquid by the bubble motion,

As the rate of heat transfer is increased and bubble agitation becomes
more vigorous the effect of forced convection fluid velocity end hence Reynolds
number based on pipe diameter becomes less and less. This effect is shown
by the data of Rohsenow and Clark (6) reproduced here in figures 1 and 2.

This data is representative of date of others for surface boiling wvith forced
convection. In these figures the curves for various {luid yelocitien are seen
to' merge into one curve, showing that as the boiling becomes more vigorous,
the effect of fluid vel.-ity disappears. It seems reasonable then to seek a
correlation of the heat trensfer data by means of a bubble Reynolds mumber
based on bubble diameter and velocity.

For purposes of analysis one can visualize a number of streams of bubble
receding from the heating surface and a bubble Reynolds number defined by

N p— Gb[:ﬁ
Reb ™ g, el

based on the mass velocity of the bubbles and their diameter as they leavs
the surface. '!hia quantity is a measure of the local agitation of the fiuid
| at the heating surface and hence is analogous to the ordinary pipe Reynolds
nunber which is a measure of the turbulence in the stream.

To evaluate the bubble Reynoldes number, uhmcteriatics of bubbles in
pool boiling will be employed since there is more detailed visual evidence

available for this case than thers is for forced comvection surface boili:g.




w3¢-

Results of these bubble characterics are ooapiied by Jakob (1). The heat
transfer to the bubbles while attached to the surface can be written with

good approximation (2) as
(B} s F o

Frit® (8) presents a relation for the diameter of the bubble as it leaves
the surface, which may be written in the form

D= ¢ BY2aT
“Flgn
vhere @ is the angle of contact of the bubble as shcwm in figure 3.
Jakob (9) has shown for vapor bubbles of water and of carbon tetrachloride
a relation exists between the frequency of bubble formation at a favored
point on the surface and the diameter of the bubble when it leaves the sur-
face. This relation can be approximated by the equation

F-q = Gy, Comstant ----- W

without serious error. )
Inspecting the terms of equation (2) in the light of equations (3) and
(4) shows that (q/l)b is proportional to n for a given operating pressure, ¥
e ——— quantities sre functions
of saturation pressure alone or are constant. Experiments have shown that
bubbles form at selective points on surface forming swaying columns of bubbles.
Jakob (7) found that the mumber of columns or pointe of origin of bubbles was
very nearly directly proporticnal to the rate of heat transfer from the heating
surface for a given operating pressure, Therefore q/A ~s (q/A)b and can be



- -

written as

an T 3 :
% = g;#jf‘: 773-'@ ) (5).
where Cq may be & function of pressure,

The mass velocity of the vepor bubbles leaving the surface may be written as

Gé=27):‘ff}f/)7 4 oo

Equztions (3), (5) and (6) may be substituted into equation (1) to obtain en
exXpression for the bubble Reynolds number as

3 b i Fo (o )
Yo, = & My | JB-R)

whers I, G, end n have been eliminated, and Cp = /2 GJ/(_} . The tem
L (’7/)’/;{' ;,J{Za/'/j( g_ fp)] 7 is dimensionless and ﬁ hes the dimensions
radians of angle. :

In applying this reasoning to attempt to correlsve heat transfer data
in the boiling regime it would seem that a bubble Nusselt number would be
useful, defined as

22
o ———— | e ee e - 8
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This quantity has been defined and utilized by Jakob (1){16). Subetituting
equetion (3) into equation (8} results in
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were 3= ¥ C4 Here, too, the term (-‘5/,%)[ g“%()o?..fw)_} ™
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Sinze the postulated mechaniam of heat transfer indicates thet most of
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the heat trensfer goes directly from the well to the liquid, and since the
Prandtl oumber is significant in relatiomgfor hest transfer to & non-boiling
fluid, it should probebly be included in the correlation for heat transfer
to a boiling fluid, Then the correlation suggested is

Ny, = / (th,b ) NP,.) e s 40

vhere G, ,/a‘ ,&,nglf;m 8ll evaluated at the saturation tempers-
ture corresponding to the local pressure. The above relation applieS to the
reglon of vigorous boiling where the fluld velocity or pipe Reynolds mumber
doss not influence the heat trensfer rate. It would also apply to the case
of pool boiling., In the case of surface boiling with foreed convection and
not very vigorous boiling where the fluid velocity does influence the heat
trensfer rate, some form of a pipe Reynolds number might be sdded to the right
side of equation (10)., There 1s some doubt that the ordinary pipe Reynolds
number would be significent because the motion of .the bubbles might tend to
destroy the normal relationship between viscous snd inertie forces.

The bubble contact angle, § , showe io figure 3, 1s determined by the
velues of Ugy , §y ond OFc 5 hence it ie determined both by the kind of
fluid and the kind of lieating surface. ALl of the other properties in the
expressions- for bubble Reynolds mmber and bubble Nugselt numbers are functicns
of the fluid alone. The angle @ from figure 3 is seen to be relsted to the
various surface tension: by the ralatim

= =
cos @:: % PRSI 5 |
Ogv

For lack of svailable informstion the sffect of pressure on ® wae
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disregarded in epplying equation (10) to existing data. This essumption
is equivalent to sesuming that the effect of pressure on the values of Tv (.}‘“8
and t}:‘ of figure 3 is such that the angle /3 remains independent of
pressure, In applying equation (10) to the correlation of experimental data
the terms Cp, C, and /3 will be omitted.
Effeck of Liguld Subcooling

In pool boiling the primery region of interest is the cese in which
the licuid tempereture is essentially at the seturation temperature. Howevor,
in forced convection with surface boiling the liquid temperzture mey be greatly
subcooled, It has been shown by meny experimenters that the effect of sub-
cooling of the liquid may be eliminated if the dats 1s piotted as g/A vs ™
as shown in figures 1 and 2. Hence defining the film coefficient in the
bubble Nuseelt number as h, = (q/a)= T, eliminstes the necessity of includ-
‘ing 1iquid subcooling as & variable in a correlation.

Since both the bubble Reynolds number and the bubble Nusselt number

embody & (q/A) term, it will be desirable to employ the term

Negs Mor _ ST
Ny e M
Nu, b g
This dime sionless group is the ratio of liquid superheat enthalpy at the

surface temperature to the latent enthalpy of evaporation.
The equation (10) may be replaced by

. < %

Pool Boilings
The proposed correlation sguation (13) hee been spplied to the data of

varioua experimenters., It will be of intareat Lo obeerve in aome detai) 14s
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application to the data of Addoms (10) for pool boiling of water because of
the wide range of pressures covered =— 14.7 .paia to 2465 psia. In these
experiments degessed, distilled water was bolled by en electrically heated
horizontal platinum wire, Data for a wire diameter of 0.02/ inches is shown in
figure 4a. A plot of Eq/ﬁ)/,a‘ }:H][g.g— /g(ﬁ_ f:, ﬂ'fa vs g-rg /h £
418 shown in figure 4b. On this plot the position of the lines rises to & maxi-
mum with pressure and then falls again., At the pressure corresponding to the
highest line on this plot, the Prendtl mmber is very nearly et its minimum
value according to the data tabulated by Wellman (11). Hence this effect
appears to be a Prendtl number effect, which was anticipated in the analysis.

A cross-plot of 97;/ h' g vs NPP for eonstant values of bubble Reynolds
number shows the slope of the line on a log-log plot to be approximstely 1.7;
hence the final correlation ss shown in figure 4c results in an equation of

the form

c;;; » C“(/z,,: 2 I:,)) (‘Eu‘.‘r ..... (14)

where the value of G.‘. is 0,013 with a spread of date of approximately 2 20%.
This process was repeated for soms of the dats of Cichelll end Bonilla {iZ2)
who boiled various fluids on a polished chromiwseplated, horizontal piate
which wes electrically heated, The resulte of the preposed correistion :re
shown in figures 5 through 7. In each case the resulting equations are of ths
form of equation (14). Only the date for singi: component fluids cn eciesp
. surfaces were correlated,

The data of Cryder snd Finalborge (15} ie znown correlated in figure 8,
In every case the corrslation equation (14) was spplied end the resul txn; Vs lues

of C ¢ aTe listed in Teble I,



Reference Fluld-Heating Surface [

Addoms(10) ~ Water - Platimm ' 0.013
Cichelli-Bonilla(12) Bensene = Chromium 0,010
Cichelli-Bonilla(12) Ethyl Alchol - Chromiwm 0.0027
Cichelli-Bonilla(12) n-Pentane-Chromium 0,015
Cryder-!f_;lulborgo(ﬁ) water - Brass 0.0060

In order to show the effect of forced oonmtion flow on the boiling
process plots of th,b vs (C T/hﬂ) Np’. were made for the sur-
fece boiling data of Rohsenow and Clark (6)(13) for degassed distilled water
Boning G & vertfond nlokel tube 03000 ALsaster 9.4% Tong and 65 Gis Aeia
of Kreith end Summerfield (14) for degassed distilled water flowing in a
stainless steel tube 0.587" diameter 17.5% long. Superimposed on these plots,
figures 9 end 10, is the correlation line for the pooling boiling data for
w;ter from figure 4c.

Lines of constent ro:cod eonveotion velocity and pressure are seen to
merge toward s single line whieh would probably be parallel to this line for
pool boiling from figure 4o, When the boiling becomes more vigorous at the
bigher walues of 1:" the affest of forsed convection fluid velocity appareatly
disappesrs, In this region the motica of the bubbles seems to control ths

nechanism ¢f heat transfer due to fluid sgitetdon,

In these correlations the fluid properties have been evaluated as proper-
tiss of liquid at the ssturation temperature, This was done both for the case
qf pool bolling with saturated liquid and for the case of surface bolling in

forcad convection of a subcooled liguid. In =ach case the liguid near the



heating surfece is very nearly at saturation temperature or possib. y even at

a mestastable superheated temperature. Properties of the liquid were used for
the C, /Q » and k values in the bubble Nusselt number, the Priladtl number,
end the new ters C’T;/hfg because the heat transfer was found to occur
primarily by transfer of heat directly from the heating surface to the liquid.
The value of /{ of the bubble Reynolds number was evaluated as a property of
liquid because viscous forces acting to retard the motion of the bubble are
those of the liquid.
DISCUSSION OF RESULTS

The results shown in figures 4 through 10 are essentially plots of g/A
ve ©, each multiplied by a judicious combination of fluid properties thus
effecting the correlation. It is readily observed that q/A rises rapidly with
small changes in Tx‘ Further, the magnitude of Tx is rather small, being of
the order of 50 F for water at atmospheric pressure and of the order of 5 or

10 F for water &t 2000 psia. In all of the date correlated here the energy
was spupplied by electricity; hence ‘1'x became the dependent wvariable in each
case, It 1s difficult to measure the heating surface temperature directly when
electric heating is employed. It must be calculated from other measured values
such as outer tube surface temperature or resistance of the heating wire, The
value of T, 18 obtained by subtracting the ssturation temperature from this
determined heating surface temperature, Since the magnitude of Tx is emall,
any errors in the determined value of hesting surface tempersture will be sresntl
magnified in the resulting value of Tx‘ This can possibly sccount for same of
- the difference in the value of C of squation (14) as obtained by various
experimenters,

It isy; of course, essentizl in obleining a correlstion of data thst the

-

tizg of the fiuid employed bs correcta 4ny error in the wslues for il
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properties is directly reflected in the data correletion.

Probebly the most significent cause of the difference in the values of c
i1s the result of omitting, for lack of currently availsble information, the
term @ from the bubble Reynolds mumber and the bubble Nusselt mumber in
erriving at the correlation as epplied. The effect of this is to cause C to
be a function of (3 vhich is determined by the cherscter of and the kind of
heating surface and by the properties of the fluid as shown by equation (11).
There is then good reason to expect a different valus of C to result for every
ecmbination of kind of surface and kind of fluid., Additionzl information regard-
ing the values of § for various combinations of surfaces and fluids should
clarify this matter and produce a ulid correlation for all such combinations.

In arriving at (quation (5) and hence equations (7) md' (9), the expres-
sions for bubble Reynolds number and bubble Nusselt numbeyr, it was assumed that
@- did not vary with pressure for a perticular combination of fluid and °
heating surfece, This assumption may account for scme of the small spresd of
the final correlation for each surface-fluid combinstion. The usﬁnpt.ian
appears to be fairly good, nevertheless, since the data for a particuler fluid-
heating surface combination is correlated within about & 20% by equation (14).

It is not suggested that the expouénta 0033 and 1.7 of squation (14} ara
the true values nor that the form of equation [14) ie the best one, Rather 1%
is suggested that the dimensionless groups of squation (14) ere significant in
correlation bolling heat transfer data. Much more data waa correlated twran is
presented here, Only the data for single component fluids om cleen suriaces
are presented here, Tho.y seemed to be correlated quite adequately by equru.tiou"
{14) with the exponents of 0,33 and 1,7. The 0.33 expopent of the bubbie
Reynolds number appeared to be adequate for most of the data whether the heatl-
ing sv.rf#cu was cleen or not, but the 1.7 exponenti appeere! to ba wvalid only

for clean surfaces, With dirty surfaces the vilue of this exponent wes quiis
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erratic, varying between 0.8 and 2.0,
For purposes of co-parison the correlation equation (14) mey be re-written

in the form

' 667
7/A do- 74.4 e ‘_7- -
9055 Css Pyofacg-n) I&

01667 —a'

which may be oc-pu-od with the non-boiling forced convection expression
: m /3
Nvw = C2 Nge Npoo L. (26)

where fm is in the range of 0.5 to 0.7 when the flow area varies along the
direction of flow, e.g., for flow across tubes, around spheres or cylinders,
or across interrupted fins.
CQHCLUSIONS
Deta for pool boiling of a liquid on a cleen surface can be correlated

by an equation of the form:
0,33

Ce
2= Co W =) T)

Further experimental uork is needed to study the wvariation of bubble con-
tact angle F and coeff'icient C:.f with pressurs and with type of hesting sur-
face fluid ecombination.

Further experimentsl work is needsd ic study the validity of equatlons
(3), (4) and (5) which were used in obtalaing the terma | 97; ,,/}',*? Y

bubbls Reynolds number and bubble Nussslt punbers
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NOMENCLATURE

cd,cfd’ cq’ Coefficients m equations (3),(4) »o(5) »(9) ,(7), respectively.

Cns Cr
\ 0 Coofficient of equation (14), which depends upon the nature
of the heating surface-fluid combination.
i D, . Diemeter of the bubble s it leaves the heeting surface, ft.
: Gb m moﬁ:%:f f:.:t:bl“ at their departure from the heating
Nllu,b Bubble Nusselt mumber, defined by equations (8) and (9).
Npp Prandtl number = G4 ke
: Npe,b Bubble Reynolds number, defined by equaticns (1) and (7).
' 'l?x Heating surface tempersture minus seturation temperature, F.
¢y Specific heat of saturated liquid, Btu/1b F.
£ Frequency of bubble formatiom, 1/hr.
g Acceleration of gravity.
q Conversion factor, 4,17 x 10° {1b mese) (£t)/(hr?)(pouncs force.)
hrg Latent heat of evaporation, Btu/lb
hx o/A < T,, filn coefficient of heat transfer, Btu/br fi4F.
‘~ k& Thermal conductivity of saturated liquid, Btu/hr ft F.
| m Number of points of origin of bubble columns per ft2 of heating
surface.
(z‘i’&)b Bdt trensfer rate to bubble per unit heating surface srea

while bubble remains attached to the surface, Btu/hr 12,
Heet transfer rate per unit heating surface ares, Btu/hr i3,
Bubble contact angle, definsd in figure 3.

e Surface tension of liguid-vapor interface, 1by/ft

e/A

o

0 Surface tension of vepor-solid interface, Lbo/ 1%
a3, Surface tension of solid-liguid interface, b /1Y
o
5
A

Density of saturated liguid ;b‘,’i‘t%
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?v Density of saturated vapor 1b /ft3
/a" Viscosity of seturated liquid, lb'/ft hre
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