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ABSTRACT

The mechanism of collapse of forced cnnvection annular vertical

flow film boiling, with liquid core, is investigated using liquid nitro-

gen at low pressures. The report includes the effect of heat flux from

the buss bar.

Tests include runs with mass fluxes varying from 44,000 lbm/hr-ft2

2 2to 186,000 lbm/hr-ft , and buss bar heat fluxes from 0 to 107,000 BTU/hr-ft

The channel was a 0.4 inch I. D. by 0.5 inch O.D. by 8 feet long

Inconel 600 tube.

Two modes of collapse were isolated, in the absence of rewet by

dispersed cooling within the mist flow region. These were axial conduc-

tion controlled collapse originating at the entrance to the test section

for zero or negative buss bar heat flux; and impulse cooling collapse

originating downstream of the entrance for heat into the test section from

the buss bar. Collapse heat flux was found to be a function of mass flux,

but the collapse wall temperature difference (T - T ) was independent
w S

of mass flux and could be successfully predicted within 6% by pool boiling

minimum transition correlation (e.g. Berenson [5]).
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NOMENCIATURE

h heat transfer coefficient BTU/hr-ft 2F

D cylinder diameter ft

as defined in eq. (lb)

thermal conductivity BTU/hr-ft*F

0.4 CTb)
hfg (1 + hfg b)2 BTU/lbm

(Ts - Tb) *R

h heat of evaporation BTU/lbm

C specific heat BTU/lbm*F

density lbm/ft3

viscosity

surface tension

H oscillating component of heat transfer coefficient

vapor film thickness

time

temperature *R

film thickness

heat-up layer thickness

temperature at y*

t time at y*

saturation pressure at T*

pressure

C thermal diffusivity



Wart

h

X

C..

(T t T )

(T -Ts); i = 1, nucleate boiling side

i = 2, film boiling side

mean heat transfer coefficient

heat flux BTU/hr-ft2

heat flux BTU/hr-ft2

distance along insulator section

radial dimension

insulator thickness

test section wall thickness

distance along test section

buss bar thickness



SUBSCRIPTS

L or f liquid

V vapor

Vf at vapor film temperature = 1/2(T + T )w S

cb contact boundary

Lo initial liquid state

w wall

e2 start of collapse

el end of collapse

mean value

wet at wetting conditions

c thermodynamic critical state

s or sat at saturation conditions

wo initial wall state

< > time averaged value

BB or bb buss bar

TS or ts test section

* corresponding to collapse



INTRODUCTION

A most important feature of film boiling is the characteristic low

heat transfer coefficient compared with the heat transfer coefficients

obtained in nucleate boiling. The ratio of forced convection nucleate

boiling to film boiling heat transfer coefficients is of the order of

500 to 1000. The low coefficient is given rise to by the presence of a

vapor film adjacent to the wall, with a heat transport mechanism less

efficient than that for pool boiling.

In certain applications, as in nuclear reactors and once-through

boilers, conditions of film boiling cause unusually high temperatures with

likely metallurgical failure of the tubes. Both this fact and the low

heat transfer coefficients demand that nucleate boiling be maintained, and

regained should a power surge accident or coolant blockage cause burn-out.

In order to incorporate this necessity into design and operational proced-

ures, it is necessary that the mechanism of collapse be understood and the

conditions be predictable.

In other applications, as in the transport of cryogenic liquids, it

is desirable to maintain film boiling, with the film acting as an insulation

to the liquid core.

Recent film boiling investigations [1] identified two regimes of film

boiling: (a) Type I film boiling with dry wall starting from tube entrance;

(b) Type II film boiling consisting of normal boiling with wet wall upstream.

The report of reference [1] had indicated a strong effect of heat input from

the electrical supply lead on the film boiling transition or collapse. This



report is concerned with the investigation of the mechanism of collapse

of Type I film boiling, and the effect of heat flux from the buss bar,

using liquid nitrogen in forced vertical flow.

The transition from film boiling to necleate boiling in forced flow

has not been widely investigated, in contrast to the abundance of litera-

ture on the reverse problem of burn-out. Two major works are mentioned in

this thesis - those of Kalinin [2], and Simon and Simoneau [3]. Their

reports dealt with different theories of film boiling transition.

Finally, this report concludes with the statement that the temperature

difference (Tw - Tsat) at collapse of film boiling in forced flow is not

affected by mass flux. This suggests that it could be predicted by a pool

boiling correlation, e.g. Berenson's [5], while collapse heat flux is a

function of mass flux.
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CHAPTER I

THEORIES OF FLOW FILM BOILING AND FILM BOILING COLLAPSE

1.1 Regimes of Film Boiling

1.1.1 Type I Film Boiling

The visual observations of Dougal [4] and others have established

the existence of statistically stable annular film boiling starting from

the heated tube entrance. Examination of the boiling curve (Figure 1)

indicates that the heat flux and wall temperature levels must be set

beyond the Leidenfrost (minimum heat flux) point before the passage of the

liquid. The vapor flow within the annulus starts off initially laminar but

quickly transits into turbulent flow within a short distance. Both within

the laminar and turbulent regions, the vapor/liquid interface is wavy

(Figure 2), possessing both transverse and time dependent large and small

scale oscillations. A method of successful prediction of the amplitude

of these oscillations does not as yet exist, and since the heat transfer

coefficient depends on the film thickness, theoretical analysis for the

prediction of the heat transfer coefficient, using various assumptions,

have only met with limited success. Figures 3(a) and 3(b) illustrate the

flow regime and a typical wall temperature profile.

Annular film boiling with a central liquid core can be assured with

subcooled, saturated, or very low quality inlet for high Reynolds numbers

at inlet, and low heat fluxes. It may be obtained at high heat fluxes, but

the liquid Reynolds number will have to be low. It is easy to see that

depending on the inlet subcool, flow rate, system pressure, and heat flux



level, the effect of the interfacial shear between the higher mean velocity

and accelerating vapor, and the liquid, penetrates into the liquid core and

changes the flow from fully separated to a dispersed mixture of vapor and

liquid droplets of non-uniform sizes. The change of regime is expected to

occur at a quality of about 10%. The liquid droplets, particularly the

larger ones, are immediately projected towards the wall where they evaporate

and cool the wall in the process. The dispersed boiling process is accom-

panied by the formation of a vapor film which is initially unstable, but

evantually becomes stable as the droplet sizes decrease.

1.1.2 Assumptions in the heat transfer analysis of annular vapor film boiling

1.1.2(a)

The first partially successful analysis of film boiling from horizontal

cylinders was by Bromley [6]. Interfacial waves were not accounted for,

and a laminar film was assumed. The resulting expression was of the form:

h a.62 (a)

where C_(_g_--__ (lb)

1.1.2(b)

Berenson [5] applied the Taylor instability concept to a horizontal

plate. The resulting expression for heat transfer coefficient at collapse

was of the form:

h o.~2(~C)j (2)
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1.1.2 (c)

Dougal and Rohsenow [4] analyzed the vapor film, assuming it to be

a two-dimensional flow between a plane wall and a plane liquid/vapor

interface, although film thickness at any given position varied.

The universal velocity distribution was used to solve the maomentum

and heat transfer equations in turbulent flow. He found that his data for

Nusselt numbers could be correlated better by assuming the thermal resist-

ance of the interface half of the vapor film to be that due to a fully

turbulent vapor layer, particularly at high vapor Reynolds numbers. This

was an indirect way of accounting for the increased heat transfer which

would be obtained in an analysis incorporating interface oscillations,

instead of using a mean film thickness.

1.1.2(d)

G. E. Coury and A. E. Dukler [7] performed a vapor film analysis

that attempted to take account of the large scale interface oscillations.

The motion of the interface was modelled as a quasistatic wavy profile

upon which was superimposed a time dependent local variation in film thick-

ness. A non-symmetric velocity profile (Figure 4) was assumed, and the

turbulent momentum and energy equations were solved numerically by a matching

process. From this, local quasistatic Nusselt numbers were found as functions

of film Reynolds numbers. Then the Nusselt numbers were assumed constant

with time so that

(3)

= quasistatic local heat transfer coefficient

h(:t) = time dependent heat transfer coefficient



Also t) was assumed to be sinusoidal and equal to 4- N(t)

so that

<H )
The ratio was determined from experiment. Thus the effect of

interface oscillations still requires to be experimentally found.

1.1.3 Type II film boiling

For this case, normal nucleate boiling incorporating the various regimes

up to dryout exists upstream, side by side with dispersed film boiling

downstream. This regime is not of central interest to the thesis, for it

can be argued that nucleate boiling occurring side by side with dispersed

film boiling in the same uniformly heated tube implies that collapse had

already occurred. If the vapor/liquid interface was in equilibrium at any

set of conditions of heat flux and wall temperature profile, such an equilib-

rium is very unstable, as mathematically demonstrated by Semeria and Martinet [3],

(Experiment showed that a small reduction in heat flux, for example, was

sufficient to cause the interface to propagate downstream. Figures 5(a) and

5(b) indicate the flow regime and a typical wall temperature profile.)

1.2 Theories of Collapse

1.2.1 Impulse Cooling Collapse

Liquid in contact with a hot wall at a temperature T > T willw wet

remain in film boiling until the wall temperature has been cooled to or below

the wetting temperature. It has been postulated that Twet is equal to the



maximum superheat of a liquid and hence is a unique function of the thermo-

dynamic state. Using van der Waals' equation of state, Spiegler et al. [9]

obtained an expression for the minimum film boiling temperature as a function

of the critical state and liquid pressure.

TO, 1 3 L 4- o..f P (5)T_- 7 O, 07 (
C_ "C

Merte and Clark [10] have reported a wetting temperature difference

(Twet - T s) for liquid nitrogen of 33.4*K at 1 atmosphere. Kalinin

et al. [11] used a value of T for liquid nitrogen at 5 atmospheres
wet

of 1140K.

The postulate for collapse used in [2] and [11] envisaged that as the

wall temperature fell, the film thickness decreased and would eventually

become small enough that crests of the liquid/vapor wavy interface would

start to hit the surface. As the liquid hit the surface, the contact

boundary would immediately attain a temperature Tcb given by

S TL . 0 C-) W,(6)

One of three things would occur. If T cb> Tmax , the temperature of

maximum metastable superheat of the liquid, a very rapid and vigorous evapo-

ration would occur. If T < T , the liquid would remain in contact with

the wall for a period t*, sufficient to heat up a layer of fluid of thickness

y , equal to the minimum diameter of equilibrium vapor nucleus, given by

t T*.

to its superheat temperature T%.



Vapor may then nucleate. If To is not achieved, the liquid will

remain in contact with the wall and collapse would have occurred. Usually

it will take repeated contacts of crests of liquid waves before collapse

can occur.

In reference [2], Kalinin et al. performed a conduction analysis to

obtain the liquid temperature as a function of distance y into the liquid,

and time, treating the liquid at a semi-infinite stationary medium at an

initial uniform temperature TLO and the wall as a flat, unheated plate of

thickness S and initial temperature, T . The result wasw wo

T. T. ' I r 7  er 8 2- ev _ _+

TL ~It +T~ _______ d Z (8)

Using eq. (7) and (8) and the condition that at t* and the corresponding

values ot y* and T* , the rate of change of temperature with time is a

minimum and equal to zero,

CATC (9)

It is possible to graphically solve for y*, t*, T*. With these the liquid

temperature T(O, t*) can be found from eq. (8). This also equals the wall

temperature. However, in order that the solution may be directly useful, the

number of collisions before collapse - in effect the interfacial wave structure

as well as the temperature recovery magnitude of the wall after each collapse -

need to be known. The lack of such information would appear to make eq. (8)

useless. However, it served the purpose of indicating the dependence of the

temperature at start of collapse on the ratio

"PC )L



As the film thickness fell, the frequency of liquid contact increases

and the contact period also increases with the result that the rate of change

of wall temperature with time would experience a minimum. This corresponds

to the start of collapse. The end of collapse is characterized by the point

at which the rate of fall of temperature with time is maximum, and shows as

an inflection point in the temperature-time plot. The corresponding tempera-

tures are denoted by Te2  and Tel.

Curves of T VS. gave the following empirical
T - T, C)

relationships for both free and forced convection

(To, -T7.. ('c Ck ) L .15 6P (Pc IL-- O.) + 5- 46
T -TPC m C (10)(Tek --s\_

for 0.03 p/pc < 0.65 and contact angles approximately equal to zero.

The terms above used in plotting the graphs do not derive logically

from their solution of the conduction model.

1.2.2 Axial conduction controlled collapse

Nucleate boiling occurring side by side with film boiling creates an

axial temperature gradient within the walls of the material. Semeria and

Martinet {8] performed an analysis on the propagation, stability, and resorption

of a calefaction spot on a heated wall. By assuming constant heat transfer

coefficients and temperatures on the film boiling and nucleate boiling sides

they arrived at the relation

B 2= ( B B (12)
WET 1 2



for the condition that yelocity of propagation of the interface is zero.

This would correspond to the instant of formation of the spot at some

equilibrium state.

The theory and analysis of Simon and Simoneau [3] is based on the

assumption that for a constant heat flux wall, when nucleate and film boiling

occur side by side, the transition heat flux is governed by axial condiction

within the wall, from the film to the nucleate boiling sides. The control

is effected by the conduction process being able to cool down the leading

edge of the film to a value which will permit liquid wetting of the metal

surface. They made a slight modification to eq. (12). B and B2 were

defined as the average heat transfer coefficients for nucleate and film

boiling.

B Z. (13)

Eq. (5) gave a relation for Bwet *

The forced convection component of nucleate boiling heat transfer was

ignored so that using Kutaleladze correlation for pool boiling heat transfer

1.- 9 X t" .6 (14)
Pb he G~

they eventually obtained for B1 , that

1-- (15)

B is obtained from pool boiling data or correlation.



Using eq. (13) and (15), J2, may be found for various values of heat

flux, from which can be plotted curve EF in Figure 1. An expression

for the boiling curve region CD was obtained by assuming laminar film

boiling with additional correction for the waviness of the interface.

This was given by

~ \~ q (~4~ ~ G3 3 93( 1~I

(16)

wri

The a Is are constants depending on heat flux, saturation temperature,

pressure, thermophysical properties of liquid and vapor, and 6. defined

as - (see Figure 2). A graphical solution of eq. (13), (15), and (16),

i.e. intersection of CD and EF on the boiling curve, was deemed to give

the dry wall temperature difference and the corresponding heat flux.

They concluded that by the use of values of e between 0.6 and 0.3

in a matching process for various velocities between 1 m/s and 2.5 m/s

they were able to make the analysis fit the experiment, for the (T - T )w S

profile. Prediction for the variation of the transition heat flux with

velocity at various pressures was not successful, but only indicated the

expected trend.

The model they used did not take into account the discontinuity in

heating in the power inlet rod/test section combination. The most likely

position of the liquid/vapor/wall interface prior to collapse, with Type I

film boiling and no radial buss bar heat flux, is just upstream of the point

of discontinuity and not within the uniformly heated test section, as their

model assumed. The latter case would imply that collapse had already occurred.

The justification of using mean film boiling and nucleate boiling heat



transfer coefficients to describe the local phenomenon of annular film

' boiling collapse is not very attractive. The results they obtained

could not therefore have been expected to agree with the data.

1.2.3 Dispersed cooling rewet

Within the region of dispersed flow boiling the droplets hitting

the wall at various angles of attack may by repeated cooling impulses

reduce the wall temperature to just below the wetting temperature, thereby

causing rewet. For the case of the uniformly heated tube, such a mode of

rewet was not observed. Keeys et al. [12] observed the rewet mode of

collapse with a cosine heat flux distribution. The controlling process here

will be heat transfer to a drop projected against the wall from the free

stream, as well as the frequency of drop arrival at the wall and drop contact

time. This mode of collapse is expected to hold for qualities of about 10%

and over.



CHAPTER II

EXPERIMENTAL PROGRAM

2.1 Description of Apparatus

The experimental apparatus for this program was originally constructed

by Laverty, later modified first by Forslund then Hynek. A schematic

diagram of the apparatus is given in Figure 6. Liquid nitrogen is forced

out of either one or two 160 liter Dewars (Linde LS-160) by a constant

pressure head of 100 PSIG supplied by a regulated high pressure gaseous

nitrogen supply. The liquid nitrogen is then led by means of 3/8 in copper

tubing through two precoolers, through a flow control valve into the test

section. The standard 22 PSIG relief valve of the Dewars had to be

replaced with a 100 PSIG relief valve. The higher pressure in the flow

line allowed the capacity of severe throttling at the inlet, thus helping

to control one type of flow oscillation. The precoolers allowed the variation

of inlet subcool and also prevented flashing at the flow control valve.

In the vertical test section, consisting of a circular insulated tube,

direct resistance heated, the pressure is monitored by five pressure taps in

conjunction with a manometer board. The tube wall temperatures were measured

by copper-constantan thermocouples spot-welded to the tube. The fluid inlet

temperature was measured by a shielded thermocouple in the liquid stream.

The thermocouple was specially calibrated for liquid nitrogen temperatures

as the standard thermocouple tables are not accurate at these low temperatures.

This was done by placing a vessel containing liquid nitrogen in a bell jar



and reducing the pressure incrementally. When the liquid nitrogen boiled,

the output of the thermocouple immersed in the liquid was recorded and plotted

as saturation temperature for the particular pressure in the system (Figure 7).

The flow once through the test section is led through either one or two

heat exchangers to evaporate the remaining liquid and to raise the gas tem-

perature to around room temperature before entering the flow measuring

device (rotometer). The gas is then exhausted into the atmosphere. More

detailed discussion of the apparatus can be found in [13] and [1].

2.2 Modification and Improvements

2.2.1 Test section

The test section was the same tube used by Hynek [1] and consisted of

an inconel 600 tube 0.4 inch I.D. by 0.5 inch 0.D. and 8 feet long.

The major modifications in the test eection consisted of rearranging the

spacings of the wall thermocouples, modifying the type of insulation, and

redesigning the lower buss bar. The last modification will be discussed in

the next section. As for the thermocouple positions, Hynek spaced the thermo-

couples at four-inch intervals over the length of the tube. In this program

it was supposed that collapse would occur at or near the entrance of the test

section. To record the phenomenon more fully, it was necessary to space

thermocouples at approximately one-inch intervals for the first ten inches,

at the same four-inch intervals for the remaining length of the tube. The

thermocouple positions are shown in Figure 8.



In the first stages of assembling the test section, it was found that

Hynek had a converging nozzle coupler that allowed him to attach the test

section to the delivery tube which was of slightly larger diameter. As it

was felt that having this nozzle type flow pattern at the inlet to the test

section might have an effect on the collapse mechanism, an inlet length of

stainless steel tubing of the same I.D. as the test section was added to the

delivery tube before the test section inlet. The test section was insulated

electrically and thermally from the delivery tube by a micarta spacing. For

a AT drop of 400*F across the spacer, the heat loss was calculated to be

1 BTU/hr, allowing the assumption of zero heat loss from the test section

inlet down through the delivery tube.

The Santocel insulation that Hynek used was discarded for safety reasons.

Frequent disassemblies of the test section caused large amounts of the very

fine Santocel dust to float into the air, thereby making it unsafe to breathe

without a filter mask. Instead, blown mica called vermiculite was placed in

the plexiglass shell surrounding the test section. As an added heat loss

shield, layers of fiberglass blanket insulation known as aircraft insulation

were wrapped around the outside of the plexiglass shell. Tests were run

to determine heat loss (see Appendix A).

2.2.2 Buss Bar Heat Exchanger

Hynek in his experiment noted that there was a large heat flux into the

test section through the electric power leads. To negate this flux he installed

a guard cooler to the buss bar. The cooler, due to lack of control, succeeded



only in reversing the flow of heat from in to out of the test section.

Therefore a redesign of the buss bar was necessary due to the assumption

that axial conduction is a prime variable in the collapse mechanism.

Incorporating into the design as much control versatility as possible

meant being able to control heat into and out of the test section. The

magnitude of the heat flux as well as the control capability had to be such

that zero heat flux conditions as well as specified heat flux in or out through

the buss bar could be maintained during the data run.

The resulting heat exchanger-buss bar combination that was used is

shown in Figure 9. It was constructed from solid copper rod 2 inches in

diameter by 7 inches long. The system provides a means of piping liquid

nitrogen from the main Dewar through a control valve into the main cylindrical

area of the buss bar in which twenty 3/16 inch holes were axially drilled.

The fluid was then exhausted into the vacuum system. As an extra control

device, a second valve was placed between the heat exchanger exit port and

the vacuum line. This part of the design allows heat outflow.

To affect heat flux into the test section, 1.1 ohm Cromel resistance

wire electrically insulated with glass sleeving was tightly wrapped around

the cylindrical section to form the heater element. This layer of wire was

then coated with a liquid porcelain. This coating keeps the resistance heater

in place. The heater was regulated with a 110 Volt ac variable auto-transformer.

To measure the heat flux, four copper-constantan thermocouples were

inserted into four holes the size of a thermocouple bead spaced 0.25 inches

apart along the axis of the bar as shown in Figure 9. The two thermocouples

spaced near the test section were used to determine zero heat flux. The buss



bar apparatus was then silver soldered into place at the test section

inlet as shown in Figure 8. The three bolts used to anchor the test section

to the delivery tube were insulated from the buss bar with micarta sleeves.

The entire buss bar assembly was insulated in the same manner as the test

section.

The maximum heat flux into the test section from buss bar was on the

order of 100,000 BTU/hr-ft2 . The buss bar temperature necessary to give

this heat flux is near the melting point of the glass sleeving used to

insulate the wire. In one data run the heater did fail as the temperature

reached 600*F . The full capacity of the cooler to draw heat out was never

used as a very small valve setting was more. than enough to cool the buss bar.

In fact, most runs had to employ both the heater and the cooler when small

heat fluxes out or zero heat flux conditions were desired.

2.3 Instrumentation and Accuracy

2.3.1 Thermocouple measurement

The first eleven thermocouples on the test section were recorded on a

Honeywell Speedomax W 24 point recorder. This instrument was selected for

its high cycle time of 1.2 seconds per point. The recorder was modified to

read only 12 channels which gave a total time to read 12 thermocouples of

14.4 seconds. As the collapse mechanism occurred in a time period of about

one minute, this instrument was well capable of recording wall temperature-

time history of the collapse.



The specified accuracy of the instrument by the company is at least

+ 0.3% of full scale, which for this set-up was 24 millivolts. Therefore

the millivolt output was accurate to +0.07 my or + 4*F . The instrument

was calibrated and found to be much better than the instrument specifications.

The largest error came from the interpolation of the data points from the

recording charts. The chart can be read only to + 0.05 my which gives a

+ 3*F error for wall temperature. The inner wall temperature formula is

derived in Appendix A.

The inlet fluid temperature thermocouple was read on a Leeds and

Northrup Precision Potentiometer, which could be read to + 0.005 my, or

+ 1/4*F. The instrument was calibrated to within these limits.

The remaining twenty thermocouples were connected through a switching

network to a Brown 16-channel recorder (Minneapolis Honeywell Model 153X52U16).

This instrument was calibrated to + 0.05 mv. The data taken from these

thermocouples were only to indicate if the collapse occurred at a position

away from the inlet. As this never occurred for the uniform heat flux test

section, the data was not used.

The six thermocouples on the buss bar were monitored through the

Brown recorder. All data points used to calculate buss bar heat flux were

recorded from the precision potentiometer. The accuracy is estimated to be

2
of the order of + 500 BTU/hr-ft

2.3.2 Test section heat flux

The test section voltage was measured by a standard a-c panel voltmeter

0-15 volt scale. The secondary current was measured by a standard a-c panel

ammeter 0-5 amperes scale. The combined calibration and interpolation error



for the voltmeter and the ammeter is + 0.25 volts and + 0.05 amperes,

respectively.

The heat loss from insulation was experimentally obtained by a method

described in Appendix A. The heat addition through the insulation at

2
collapse was determined to be approximately equal to 300 BTU/hr ft The

total uncertainty of the minimum heat flux is approximately + 100 BTU/hr-ft2

2.3.3 Flow rate

The flow rate was measured by two rotameters in parallel. The flow

meters were calibrated using water as the calibration fluid. Assuming that

the flow meter is independent of viscosity, the readings can be corrected for

gaseous nitrogen through a flowmeter equation that is a function of geometry

and density. The procedure is given in Appendix C. The calibration curve

is given in Figure 10 and for the purpose of data reduction a least square

curve fit was applied to the data points.

The error in mass flux comes mainly from the flow oscillations. This

was generally + 2% of full scale reading or a mass flux deviation of

2
+ 200 lbm/hr-ft2. As the data represents the mean of the fluctuations, the

error in mass flux is less than this.

2.4 Method of Experiment

The central points in the experimental procedure were to insure that

film boiling started from the entrance to the test section and that heat

flux from the buss bar was controlled to the desired value, up to the point

of collapse. The initial step therefore was to pass some current through



the test section to warm up before opening the liquid nitrogen supply

lines. The auxiliary vacuum pump was started and run for a short while to

pull down the auxiliary system to a vacuum commensurate with the pump

capacity. It was observed that the test section need not be heated up to

much beyond 400*F above saturation temperature before opening the liquid

supply valves since with a test section initially at room temperature and

a freshly delivered liquid nitrogen tank, there was sufficient heat in the

supply manifold to insure that only vapor flowed into the test section for

about twenty minutes from the start of the flow. The auxiliary circuit

was also open to flow. During this period the wall temperature continued

to rise to about 650*F above saturation temperature, sufficient to insure

that film boiling was maintained when the liquid began to flow. During

this initial pure vapor flow period, the air contained in the test section

and any non-condensibles contained in the nitrogen tank would have been

flushed out.

As the inlet manifold cooled down, an inlet thermocouple inserted

inside the entrance steel tubing, fitted between the throttle valve and the

test section, recorded the fluid temperature, which fell gradually to a

steady value when saturated and then subcooled liquid began to flow through.

The primary and secondary liquid subcoolers, fed with cooling fluid through

the vacuum line, were maintained at about 5 in. Hg vacuum. The main fluid

flowed through the heat exchangers at 97 psig thus insuring sufficient

temperature difference to achieve liquid subcool. The subcool was obtained

by reading the inlet thermocouple and the inlet pressure.



As the inlet temperature approached saturation, the test section current

was increased gradually, and was brought up to 240 amperes or above depending

on the flow rate, as the liquid began to flow. This corresponded to a heat

2
flux of 12,000 BTU/hr-ft2. The flow rate and exhaust heat exchangers were

adjusted, ensuring that the pump suction gas temperature was above 50*F.

The inlet pressure and liquid subcool were set to desired initial values.

These changed gradually during the experiment, as the test section heat flux

was lowered, but they were continually read until just before transition.

Having set the initial conditions, the system was allowed to operate

until these as well as the wall temperatures assumed a steady value. Tests

were run under conditions of zero heat flux from the buss bar and varying

mass fluxes, two levels of constant mass flux at varying buss bar heat

fluxes into the test section. An attempt was made to obtain runs for heat

flux out of the test section through the buss bar, but it was discovered

that the minimum temperature gradient out of the test section possible with

the equipment was sufficient to progressively cool down the test section

entrance until the film collapsed without the test section heat flux being

altered. The stability of these tests were too poor to allow for reliable

readings.

At each set of conditions, the heat flux into the test section was

reduced in steps until collapse occurred. At high heat flux levels, further

away from collapse, the reduction was in steps of 1.6 ampere, reducing to

0.8 amp and 0.4 amp as the collapse point was approached. At each step, the



system was allowed to run for 6 minutes or more to stabilize before the

next reduction was effected. The heat flux from the buss bar was controlled

by adjusting the liquid nitrogen supply rate through the heat exchanger and

the current supplied to its heater. At each steady state, values of test

section current and voltage, flow rate and exhaust temperatures were taken,

and the buss bar temperature profile as well as the test section manometers

were recorded just prior to collapse. To indicate zero heat flux into the

test section from the buss bar, the last two thermocouples on the buss bar,

radially spaced from the test section 1/4 inch apart and 1/4 inch from the

test section outside surface, were set to indicate the same readings.

The onset of collapse, for the case of zero heat flux into the test

section, was taken to be the last heat flux level prior to No. 1 thermo-

couple (3/4 inch from entrance) starting to experience a very rapid change

in temperature with time, tracing out the typical transient profiles shown

in Figures lla and lb. For the case of heat input into the test section

the heat flux was lowered until a thermocouple not necessarily No. 1 thermo-

couple) began to show the same trend. After transition had occurred the heat

flux level and the setting for every other controllable parameter were left

as they were at collapse, and the collapse was allowed to propagate over the

test section.

2.5 Important Observations

At a given mass flux setting and initial heat flux level, it is important

to note that a finite reduction in the heat flux, sometimes considerable even

with zero buss bar heat input, had to be made before collapse occurred.



Moreover, after collapse had occurred, no further reduction in heat flux was

necessary to allow the interface to propagate itself over the test section.

The propagation was usually arrested by turning off the flow before the

entire tube was wetted.

When collapse occurred with zero heat flux, the first thermocouple

to be observed to indicate wetting was always No. 1 thermocouple, indicating

that collapse started from the tube entrance and propagated downstream..

With heat input into the test section from the buss bar, including the

smallest value of buss bar heating tested, transition always occurred at

about 3.5 inches from the entrance. For all the buss bar heat flux levels

tested, the first thermocouple to indicate collapse was always No. 4,

indicating that the region of influence of buss bar heat input approached

a limit asymptotically.

In the case of heat imput into the test section from the buss bar, the

liquid/vapor/solid interface which can be identified as corresponding to the

burnout point, propagated itself more rapidly downstream than upstream.

Buss bar heat addition was sufficient to arrest the advance of the interface

upstream at least 3/4 inch from the entrance, keeping No. 1 thermocouple

consistently in film boiling.

At low inlet pressures below 5 psig, rapid evaporation rate and increased

test section pressure gradient helped to amplify oscillations in the flow.

It was necessary therefore to throttle the exhaust flow, raising the test

section pressure level and minimizing the oscillations. The primary effect

of the oscillations observed in the flow meter (+ 2%) was to reduce the accuracy

of the flow rate readings. It was not expected to affect the mechanism of



collapse very seriously. Very close to transition, particularly with buss

bar heat flow into the test section, the intermittent evaporation, corres-

ponding to the times when liquid wave crests washed the wall, gave rise to

oscillations in flow which in a few cases caused transition prematurely

2
than expected, by a heat flux difference of about 500 BTU/hr-ft

The effect of changes in inlet pressure on the wall temperatures

was very significant. It was observed that an increase in pressure of 2 psi

was capable of lowering the wall temperatures by a value of the order of

30*F. A fall in pressure caused a more gradual migration of wall temperatures

to higher values. At the operating pressures, 2 psi change was equivalent

to a change in saturation temperature of approximately 2*F , and a change

in subcool (increase for increasing pressure) slightly less than that

value. The pressure effect gave rise to a combined effect of change in

subcool and in the thermophysical properties of the fluid, but more

particularly to the change in subcool since the percentage change in

properties corresponding to a 2 psi change would be very small.

Though with high mass flux runs, the wall temperatures within the

dispersed flow region, before collapse, were lower than at some upstream

region within annular film boiling, collapse always originated as described

earlier and propagated downstream and upstream.

Very close to collapse with buss bar heating, No. 4 thermocouple,

initially at a higher level of temperatures than No. 5 and higher numbers,

due to the effect of buss bar heating, would start to experience the effect

of the falling film thickness more strongly than others and be reduced to

a lower level of temperature.



The transient temperature profile at each station, over the collapse

period (Figure 11), experienced an initial minimum in , an inflectionat
aT

point, and a second minimum in -. For the case in which transition

coincidentally occurred by impulse cooling at a given thermocouple station,

the first minimum was taken to be equivalent to the onset of transition,

Te2 corresponding to the minimum heat flux. For the case in which such a

minimum was due to the propagation of the burn-out point, the point was not

particularly unique for each thermocouple for any given run. It depended

on the initial temperature level before the advancing liquid interface came

close to it. It could not therefore be given a unique interpretation.

For the case of collapse at the entrance, the first minimum of No. 1

thermocouple would correspond to a value slightly higher than the burn-out

temperature. The inflection point during propagation was observed to be

unique at stations removed from the entrance. This point corresponded to

the burn-out temperature.



CHAPTER III

THE TRANSITION PROCESSES

3.1 Transition Model

It was observed that for zero or finite heat into the test section

from the buss bar, a finite reduction in test section heat flux, starting

from a given initial state of stable film boiling, was necessary before

collapse occurred. It is conventionally assumed that the film thickness

profile starts from zero thickness at the transition point, increasing

with distance with the liquid/vapor interface structured in a wavy form.

The assumption has experimental verification. It is also assumed that the

film thickness profile has a finite positive gradient at the transition

point and that liquid exists on the uniformly heated surface while annular

film boiling is maintained. (See for example [3]).

If this were to be the case, the wall temperature at an infinitesimal

distance away from the wetting point will be infinitesimally higher than

Twet * Therefore a correspondingly infinitesimal decrease in test section

heat flux would be required to reduce the temperature to Twet , thereby

permitting the interface to propagate at least up to that point. The

problem is therefore not a question of collapse of film boiling but

extension of nucleate boiling and rate of propagation of the burn-out

interface over the rest of the tube. The model cannot therefore explain the

observation stated in the first sentence of this chapter as well as the fact

that once collapse had occurred no further decrease of heat flux was necessary

to allow nucleate boiling to extend over the rest of the test section, with

uniform heating.



It is presented here that the start of the liquid/vapor film inter-

face in annular film boiling, at a condition of constant test section heat

flux and temperatures above collapse point, does not exist on the uniformly

heated test section itself but on the unheated endpiece supporting the

test section (Figure 12). Moreover, the initial slope is not necessarily

positive, particularly if there is radial heat addition from a buss bar or

support member. For the latter case the film thickness, except for the

singular point at the origin, decreases to a minimum at some distance further

removed into the test section.

Two models are necessary to describe the possible modes of collapse

with annular film boiling starting from the entrance, if the possibility of

collapse by dispersed rewet is excluded.

3.1.1 Collapse originating from entrance of test section

This mode of collapse is axial conduction controlled and will occur

in the cases of heat conduction out of the test section via an end piece

or a buss bar, or for zero heat flux into the test section from the buss bar.

The heating along the flow channel is discontinuous at the entrance and

hence the temperature profile, and this discontinuity is particularly

sharp if the end piece is an electrical and thermal insulator. This dis-

continuity in the temperature profile is necessary in order to start annular

film boiling at the entrance, and a discontinuity in the heat flux distri-

bution is necessary to maintain the film boiling. The shape of the liquid/

vapor interface will depend on the evaporation rate, system pressure, surface

tension, and velocity profile at the wall.



The temperature gradient on the unheated end piece as the point of

discontinuity is approached is very high (Figure 13a). Thus it is possible

for the wall temperature only a small distance upstream of the point to be

equal to the wetting temperature and allow contact of liquid and boundary.

For a given decrease in heat flux, the migration distance of the wetting

point, on account of this high temperature gradient, will be of a much

smaller order of magnitude, with the result that it will take a sizeable

decrease in heat flux to permit the wetting interface to migrate to the

test section. The migration is controlled chiefly by axial conduction.

The wetting interface is sufficiently near the end of the test section that

temperature equilibrium between it and the test section end will be immediately

achieved as soon as conditions allow. Thus wetting of the test section,

and hence transition, will occur as soon as the heat flux is lowered to such

a level that the combined effect of heat transfer through the film into the

liquid, axial conduction from the test section into the end piece, and

intermittent cooling by the oscillating advancing liquid/wall contact point,

of the test section end, permit the test section end to attain the wetting

temperature.

A mathematical model for the solution of the above situation is given

below (see Figure 13b).

Energy equation for the insulator (wall temperature = T').

(T' (17)
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h may be taken as approximately equal to forced convection heat transfer

coefficient. h2 may be approximately given by a laminar analysis of the

vapor film layer since the film may be considered to be in laminar flow

within a short distance of the entrance.

An approximate analytic solution of the above problem will be very

difficult on account of the discontinuous boundary conditions. A numerical

solution will be more appropriate. Work on the subject of this thesis is

still in progress, and the results of such a solution is expected to be one

of the final outputs.

3.1.2 Impulse cooling collapse

For the case of radial heat input from a buss bar or end connection,

collapse at the entrance is prevented. The mechanism of collapse is deemed

to be as given by Kalinin et al. [2] and presented earlier. The occurrence

of hydrodynamic instability of the liquid/vapor interface is no guarantee

that transition to nucleate boiling will occur. When the liquid hits the

wall after such an instability, the wall temperature may be still too high

to sustain liquid contact.

The heat transfer on impact of a wave is controlled not only by conduc-

tion through the liquid but also by a probable turbulent diffusivity of the

liquid, at least during the initial period of contact. However, it would

be a justifiable approximation to ignore the turbulent contribution, though

a more appropriate approximation would be to replace the laminar diffusivity

of heat by a sum of the laminar and eddy diffusivities of heat. Starting

from a given set of initial conditions, before the first wave hits the wall,

the effect of repeated waves hitting the wall until collapse occurred



can only be completely solved if the impact duration, the wall temperature

recovery factor between waves, and the wave distribution are known.

3.1.2.1 Effect of heat flux

Reference [2] treated the case of a quenched tube with no heat addition.

For a heated test section the start of collapse would occur at a lower wall

temperature since the heat addition would reduce the contact time of each

wave crest, reduce the wall temperature decrease at each impulse cooling,

and increase the overall contact period from first contact to collapse. It

was thought probable that for a test section at a given initial temperature

the heat generated and transferred during the contact period could be a

negligible proportion of the heat that would be transferred during an impulse

quenching process from the same initial temperature. This would make

eq. (10) and (11) applicable for a given pair of highly wetting liquid and

tube material. To correlate with these equations would give just one point

on the curve since the tests in this thesis were for a single liquid/tube

combination.

Choosing a typical initial wall temperature of 420*R , liquid subcool

of 7*R , system pressure of 21 psia , eq. (7), (8), and (9) were solved

graphically for the heat-up time t

Heat transferred by quenching during this time is given by

.. -T (32)
C, oT0~7
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The results of the solution are given in Appendix B. With a typical

2
heat flux at collapse of 4,500 BTU/hr-ft , the ratio of resistance heating

flux to quenching flux was approximately 20%. This would indicate a

negligible effect of test section resistance heating at collapse. A modified

conduction model solution indicated an additive effect of test section

heating to that of a quenched wall, on the collapse temperature. The

additive term, however, was a function of an undetermined contact time.



CHAPTER IV

RESULTS AND DISCUSSION

As the collapse interface propagates downstream and upstream of the

tube, depending on the position at which collapse originated, each thermo-

couple traces out a transient profile as indicated in Figure 11. The point

of minimum slope at the higher temperature level corresponds to point of

minimum heat flux in the boiling curve and the point of inflection corres-

ponds to the burn-out point.

Figures 14a, b, c, and d are plots of wall temperature profiles shortly

before collapse for the first 15 inches from the entrance. The lowest

temperature points indicate the regions of eventual collapse from which

nucleate boiling would spread to the rest of the test section. Figures

14a, b, and c are for heat addition from the buss bar into the test section,

at various (q/A)BB levels and various mass fluxes. The first thermocouple

position to collapse for these runs and for other runs with heat flux into

the test section was No. 4, located 3.5 inches from the entrance, and the

temperature profiles clearly indicate this. A change of buss bar heat flux

from 36,600 BTU/hr-ft2 (Figur.e 14a) to 107,400 BTU/hr-ft2 (Figure 14b)

only moves the collapse point by less than 0.5 inches into the test section.

Figure 14d is for zero buss bar heat flux and the collapse originated from

the test section entrance.

It was observed that the collapse interface advanced at constant speed

at least for some initial period. Figures 15a, b, c, and d are plots of the

time at which each thermocouple transient profile indicates an inflection
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point, vs. the position of the thermocouple, and these graphs correspond

in that order to the runs of Figure 14. After an accelerating period, the

propagation rate definitely attains a constant value. Comparing Figures

10 and 11, it would appear that the velocity will remain constant at a

value determined by the mass flux, test section heat flux, and initial

level of wall temperatures over approximately constant wall temperatures

just before collapse. In the theory of the spread and resorption of a

calefaction spot on a heated wall, Semeria and Martinet [8] assumed that the

wall/liquid/vapor interface would advance at a constant temperature.

According to the above observation, the assumption is expected to hold if

the initial wall temperatures were constant over the film boiling region

slightly removed from the interface.

Figures 16a and b are plots of minimum heat flux just prior to collapse

vs. the buss bar heat flux into the test section, and at mass flux levels

2 2
of 62,500 lbm/hr-ft and 98,000 lbm/hr-ft . At zero buss bar heat flux,

the wetting interface prior to collapse is at the unheated insulating piece

at the end of the test section but close to the heated tube at some

equilibrium temperature. As a result of this proximity, the wall temperature

at the entrance is kept as close as possible to the liquid temperature, due

to axial end conduction, and the liquid is immediately available to wet the

surface as soon as the heating condition allows. Moreover, the film tempera-

ture profile is at a minimum at the entrance and hence the wall temperature

is at a minimum there.



With radial heat flux into the test section from the buss bar, the

effect of the buss bar is maximum at the entrance, where the boiling rate

and the film thickness are higher than, for example, 3.5 inches downstream.

Figures 15a, b, and c indicate the resulting temperature profile, Collapse

point is shifted downstream and a different collapse mechanism, as explained

earlier, becomes effective. The experimental evidence indicates that the

resulting minimum heat flux at collapse is lower than for collapse originating

at the end. Moreover, at a buss bar heat flux close to or greater than

40,000 BTU/hr-ft2 , the collapse heat flux is unaffected by buss bar heating,

and for a given mass flux occurs at a constant heat flux.

Within the asymptotic regions of the plots of collapse test section

heat flux vs. buss bar heat flux, Figure 16 does not show a mass flux

effect. Figure 17, however, shows the slight but definite effect of mass

2
flux at a constant buss bar heat flux of 41,000 BTU/hr-ft . At increased

mass flux, the heat transfer coefficient of the vapor film prior to collapse

is higher. Hence, wall temperatures are lower for the same heat flux and

closer to the collapse value. Moreover, as the wave crests sweep along the

tube surface at a higher velocity, the heat transfer coefficient is higher

and the wall temperatures lowered by a higher amount at each impulse. Thus

it is to be expected that the temperature conditions for collapse will be

satisfied at a higher heat flux with a higher mass flux. Hence the observed

increase in collapse heat flux with mass flux. Figure 18 is a similar plot

2
but with varying buss bar heat fluxes greater than or close to 40,000 BTU/hr-ft

At a given mass flux, the collapse heat flux is within 5% of the value given

by Figure 17, at the worst deviation, indicating the degree of repeatability



of the results, since within this range of buss bar heat flux, the buss

bar heating is not expected to influence the collapse.

The explanation given above for the observed increase in collapse

heat flux with mass flux tacitly implies that the satisfaction of the

temperature condition for collapse is more critical than for the heat

flux. Figure 19 supports this argument. For a constant (q/A)BB >

41,000 BTU/hr-ft 2, (T - T ) at collapse was constant within experimental
w S

errors at a value of 244*R . A plot of (Tw - T s) at collapse vs. mass

flux, for (q/A)BB greater than 40,000 BTU/hr-ft2 is shown in Figure 20.

The points are within scatter of + 10% about a mean constant value of 228*R.

As a result of this, a calculation for the collapse temperature in

pool boiling using Berenson's expression [5]
z/3 I2X1.13

gAr*1 (33)

was made at a film temperature of 180*R and a pressure of 1 atmosphere.

They predicted A T m was 243*R . The measured value of 228*R from

Figure 20 is within 6% of the prediction. Heat flux calculated with the

corresponding minimum pool boiling heat flux correlation was lower than the

-measured value as expected (Figure 23).

It may be concluded that within the range of mass fluxes tested, the

film boiling collapse temperature is independent of mass flux and is correlated

within 6% by the pool boiling correlation of Berenson [5]. The collapse heat

flux is, however, dependent on mass flux.



Figures 21a and 21b are plots of (T - T ) vs. (q/A)BB atw S

collapse, and at constant mass fluxes. A similar effect of buss bar heat

flux is observed, as for the effect on collapse heat flux.

Figure 22 shows the effect of mass flux on collapse heat flux at

zero buss bar heat input. The expected trend is indicated but the data

scatter is very high, indicating the difficulty of controlling buss bar

heat input to a zero value.

4.1 Conclusion

(a) Collapse mechanism of annular film boiling to nucleate boiling is

either axial conduction controlled or impulse cooling controlled.

(b) Axial conduction controlled collapse occurs at the entrance to

the test section of a uniformly heated wall. The discontinuity in

the heating and temperature profiles, starting from the entrance,

are necessary to start and maintain the film boiling.

(c) Impulse cooling controlled collapse occurs downstream of the test

section, with heat addition from an upstream buss bar. Within this

region, the collapse heat flux and temperatures are unaffected by

buss bar heating.

(d) Once collapse occurred, no further reduction in heat flux was necessary

to cause the collapsed interface to propagate through the test section.

(e) The propagation velocity, starting from collapse, builds up to a

constant value as long as the wall temperatures across which the inter-

face propagates, were fairly at a uniform value just prior to collapse.



(f) Hydrodynamic instability of the vapor/liquid interface may occur,

permitting the liquid to hit the wall. However, the wall temperature

may be so high that rapid evaporation occurs, forcing the interface off

the heated surface. It may of course be low enough to sustain liquid

contact. This leads to the conclusion that hydrodynamic instability

is no guarantee of collapse in film boiling, but is not an excluded

criterion.

(g) The collapse heat flux was a function of mass flux, but the collapse

temperature difference (T - T ) was independent of mass flux. Thisw S

led to two conclusions. First, that the collapse condition is more

likely to be thermodynamically determined, i.e. the wall temperature

must be low enough to permit liquid/solid contact. Second, that the

collapse temperature difference (T - T ) could possibly bew s

predicted by the pool boiling correlation. Using Berenson's expression

[5], the calculated value was 243*R , and the average experimental

value was 228*R , giving an error of 6% which is quite satisfactory.

(h) There are three as yet inconclusive propositions now existing in the

literature for the calculation of AT min

(a) e= . C 10 (Spiegler et al. [9])

(b) C+ (Kalinin [2])
Te - T L PC )W

(c) Berenson's pool boiling ATmin (this report)

All these apply to forced flow impulse cooling collapse of subcooled

or very low quality liquid.
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4.2 Suggestions for Future Research

Work on the subject of this thesis is still in progress. The main

areas of future concentration are:

(i) The formulation of a criterion for impulse cooling collapse and

the solution of the resulting model.

(ii) The solution of the problem for end conduction controlled collapse.

(iii) Extension of the research to saturated and quality inlet.

(iv) Effects of twisted tape and of wall surface material on collapse.

Test sections with bends in the flow direction should also be

considered.

(v) It would also be very informative to obtain a visual evidence

of the predominance of thermodynamical instability in controlling

collapse. This may be obtained by observing for the occurrence

of repeated hitting of the boiling surface by the liquid, and its

re-evaporation without causing collapse.

(vi) The equipment is much too bulky for some very finely controlled

experiments that need to be made. The buss bar heat flux control

needs to be changed so as to be able to maintain stable conditions

under heat flow out of the test section from the buss bar.
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APPENDIX A

DERIVATION OF TEMPERATURE DIFFERENCE ACROSS TUBE WALL

Let W be the geat generation per unit volume of the tube. Let LA

be the thermal resistance of the insulation around the test section in

(BTU/hr-ft2*F) . Let , I , , and ra be the length, conductivity,
inside and outside radii respectively of the tube. In observing the

effect of a small temperature change on the physical properties of Inconel 600,

it is a good assumption that the properties are constant.

With a uniform W and if , the solution to the conductance equation

in cylindrical coordinates gives

T~~ -- L- 2- + C,fA Y- -t- C7

with boundary conditions

T = T0

and

Equation (A-2) gives

Equation (A-3) gives for Tambient = 80*F

Ct o - -To

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)
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Equations (A-4) and (A-5) give

LA K -IK(A-6)

[ A %b1J (A-7)

Substituting (A-6) and (A-7) into (A-1) and evaluating the resulting

equation at V gives

T, 4 ( -4 (A-8)

The final step in the solution is the determination of t4 for the

apparatus. This was accomplished by applying a small fraction of the normal

power to the test section with no flow through the tube. When equilibrium

is achieved, the wall temperature is recorded along with the power level.

This was done for several power levels. Assuming all heat generated passes

through the insulation gives one a means of calculating the thermal

resistance using the following equation:

INT
LA = (A-9)

where

(A-10)

The data resulting from this experiment is plotted in Figure 24. As

(Tw - 80) at collapse is about 300*F, LA is taken to be 0.95 (BTU/hr-ft 2 F)-

for the data reduction.



APPENDIX B

EFFECT OF HEAT GENERATION IN TEST SECTION ON COLLAPSE

For the solution of eq. (8), a typical set of wall temperature,

system pressure, and liquid temperature was chosen.

,= 21 psia = 1.43 atmospheres

TL

Tsat

T subcool

P
c

Tc

= 770K

= 80.6 0 K

= 3.6 0K

- 33.54 atmospheres Thermodynamic Critical

= 126 0K State of Nitrogen

(q/A) t5

( WI u'0CL-

(opCC-LLO

4ITvPC.X

(T.S)

= 420 0R 234 0K

= 4,500 BTU/hr-ft2

/ )~ o,(O~j
= . a 60'% (B-1)

(B-2)

' C 3 (B-3)

I/ -- O.0 9 *Zv7

= 0.127 cm

= 8.2 x 10 cm2/s

(B-4)

44 5, &-t



-2 2
a= 4.02 x 10 cm /s
w

(T - T )= 157 0K
wo Lo

Substituting these values into eq. (8), we have

T (3t) -77 T t B5

The equation is plotted in Figure 25 for the following values of y

y 0.05 x 10~4 cm

0.10 x 10~4 cm

0.50 x 10~4 cm

1.00 x 10~4 cm

It is seen that the maximum temperatures occurred at t' 10-2 sec.

Since the order of magnitude of the contact time was what was desired, it

was not necessary to solve the complete set of equations (7), (8), and (9).

The contact time was taken as 10-2 seconds.

From eq. (32) heat transfer due to quenching in 10-2 seconds is

2
0.68 BTU/ft2. Heat generated and transferred during this period from the

2
test section was 0.128 BTU/ft . Percentage ratio is then equal to 20%

approximately.



APPENDIX C

CORRECTION OF FLOWMETER CALIBRATION FOR DENSITY CHANGE

In reference [14] there is presented a flowmeter equation in the form

9 A., j~V -z (C-1)

where A is just a function of flowmeter geometry and equal

to a constant called c( for each particular flowmeter. This reduces

eq. (C-1) to the following form:

(C-2)

where = density of flowmeter float

= density of fluid to be measured

Knowing the flow rate and densities in the above relations allows

the solution for c( which is constant for any density fluid that is used

in conjunction with the particular flowmeter.

FLOWmETF- _ _- _(C-3)

Therefore, the correction for density change at the specific flow

rate that <( flowmeter was calculated for is given as

Qqovy O0S usrry ::= O(F- (C-4)
PLU. D0*ET"

L FWIb J
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