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BUBBLE GFDWTHI RATES IN BOILING

By

Peter Griffith

ABSTRACT

The conditions determining the growth rate of a bubble on a surface in

boiling are considered and a mathematical model framed in the light of these
conditions. The growth rate is then calculated for bubbles growing under a
range of conditions of pressure, wall superheat and bulk fluid temperature.
The average growth rate of a bubble is found to decrease with increasing
maximum size' and to decrease with increasing pressure. At high pressure the
maximum size of the bubble is found to be independent of pressure and primarily
a function of the thickness of the superheated layer near the surface. The
calculated bubble growth velocities are then used to correlate some burnout data
for a variety of fluids under a range of pressures in pool boiling. Bubble
growth pictures are presented for water at atmospheric pressure under a variety of
conditions.

* Assistant Professor of Mechanical Engineering, Massachusetts Institute of
Technology, Cabridge, Massachusetts.



Studies of the mechanisa of nucleate boiling indicate the principal mode of
heat transfer is from the surface to the liquid with the bubbles acting as tur.
bulence promoters (6, 3). Correlations for predicting both the heat flux.
teaperature difference relation and the maximum heat flux attainable in nucleate
boiling depend in part on the characteristic growth velocity for the bubbles.
Ellion (3) used a measured growth velocity for correlation. Forester and Zuber
(1, 2) calculated a growth velocity assuming the bubbles were growing in an
initially unifonmly superheated liquid. Under these conditions the bubbles
continue to grow without limit, while with subcooled liquid the bubbles grow
only to a maximum size. Rohsenow (8) and Rohsenow and Griffith (7) assumed that
the growth velocity was not an important variable in the correlation. Further
advances in the correlation of boiling heat transfer data and a better under-
standing of the boiling heat transfer process depend on obtaining the growth curves
for bubbles growing under nucleate boiling conditions. In particular, it is
desirable to know the effect of the system pressure and subcooling in the bulk of
the liquid on the maximum bubble size attained and the time it takes to attain
this size,

I j -LUOU -gg PBLE
Though the earliest stages of a bubble's life are important for a complete

understanding of bubble formation and growth (4, 2), the principal stirring in
the liquid is accomplished during the later, or asymptotic stages, of bubble
growth. This stage includes virtually the entire visible life of bubbles at
moderate and high pressures and most of the life of a bubble at low pressures.

The asymptotic stage of growth is characterized by negligible surface
tension and dynamic effects so that the growth rate of the bubble is dependent
essentially on the heat transfer in the liquid to the bubble wall. It is
therefore appropriate to begin by examining the conditions existing in the
liquid when the bubble starts to grow; then, on the basis of these conditions,
postulate a mathematical model -and finally solve for the bubble radius time
curve.

Bubble growth occurs as a result of evaporation at the bubble wall. The
heat for this evaporation is transferred by conduction from the surrounding
liquid. If a laminar flow field and constant properties are assumed in the
liquid surrounding the bubble, the equation governing the heat transfer process
is,



+T +V-VT (1)

If the bubble is assumed to consist of a spherical segstent, the heat transfer

at the bubble wall is

q = k ,(+) 1 dA()

The rate of evaporation can be related to the rate of growth of the bubble

through the First Law of Theimodynamics. Consider the system illustrated in

Figure 1. At time one it consists of a aall mass of superheated liquid, and

at time two it consists of the se mass evaporated into vapor. The shape has

been taken as hemispherical as a bubble in its early stages closely approximates

this shape. This is shown in Figure 1.0 and explained in greater detail in
Section III. In addition the fluid flow pattern around a hemispherical bubble on
a surface is simple and easy to handle analytically. If it is assumed the latent
heat of vaporisation is large compared to any superheat enthalpy in the original

liquid and that the growth occurs essentially at constant pressure, the First Law

of Thexmodynamics yields

Q = Uh f(3)

When the mass within the bubble is expressed in terms of the density and volume
and (3) is differentiated with respect to time

q = 21rR2 fg (4)

Eliminate q between Equations (2) and (4) and express the area in spherical
coordinates then

R sinig df (5)dt fyhf g f V r

Continuity considerations relate the velocity at any point to the velocity of

the bubble wall which is expressed in Equation (5).

V = -Z sin~dfd (6)

Together with the appropriate initial and boundary conditions, Equations (1) and

(6) specify the bubble growth problem.



IITIAL Li BOUNDARY CONDITIONS

As essentially all of the visible life of a bubble occurs during the
asymptotic stage of growth in which the surface tension and dynamic effects are
negligible, the pressure within the bubble is essentially the same as that
existing well outside the bubble. Therefore, the bubble wall temperature is very
close to saturation temperature for that pressure.

T = Ta at R = r (7)

The heater surface temperature has been taken as constant.

T =T, at 7/2 (8)

Actually, as the bubbles grow and depart, the surface varies in temperature, but
whether these fluctuations are significant compared to those experienced by the
liquid determines whether the surface can be considered at constant temperature,
A rough idea of the relative magnitude of these fluctuations can be obtained by
imagining a very simple ideal case. Consider a semi-infinite slab of heater
material at a high temperature brought in contact with another semi.infinite slab
of liquid at saturation temperature. What will be the temperature assumed by
the interface? For the combination water and copper temperature of the water at
the interface increases 23 times as much as that of the copper decreases. For
water and stainless steel the water, temperature increases 5 times as much.
These two surfaces represent the extremes in surface properties so the assumption
of constant surface temperature is probably quite good. The points common to
both the bubble and surface have been taken at saturation temperature because if
their temperature were significantly above it, there would be a very large evap-
oration rate at that point which would soon cool it down to close to saturation
temperature.

The initial conditions are fixed by considering the bubble's envirornment at
the instant it starts to grow. In general there is a thin layer of superheated
liquid in the vicinity of the wall whether there is pool boiling or boiling in the
presence of forced convection. The thickness of this layer would be determined

by the forced or natural convection in the fluid and the unsteady heat transfer
to the liquid rushing in when a bubble departs or collapses. Figure 2 illustrates
the likely temperature distribution along with the one assumed in these calculations.
Though this is not the best possible assumption, it is simple and is characterized
by one parameter "bN the distance from the wall to the point where the temperature



is constant at Tb. An initial radius is also assuned in order to start the solu-
tion. These initial conditions are

= (Tv - g T (I - r coo ) + T for r cosi <.b (9)

. T = Tb for r codI > 1 (10)

(3i)r = . 0

a radius -less than the thickness of the superheated layer near the surface and
nall enough so that the radius assumed will not materially affect the result.

In order to facilitate the solution of this problem it is convenient to
transfom it into dimensionless form.! For this the length Ubw is used as the
only significant length in the problem along with the fluid properties as they
are all invariant. These dimensionless quantities are defined in the list of
symbols. When Equation (6) is expressed in dimensionless form one gets

= ft( - T
v - -

0
Equation (1) expanded in dimensionless form becomes

Hir* Ja + Ya 4i(n
The initial conditions become

(1 - Y coslf)
G= 0

0
G =GO

for y cos yf<l
for y cos1jo l
for y = r
a small number

and the boundary conditions

a= &, for y = r
fory= 0.

There are two parameters of significance; a temperature parameter measuring the
degree of subcooling, T - T/T - Tb and a properties parameter which is the
ratio of the superheat enthalpy per unit volume to the latent heat enthalpy per

* Dimensionless symbols defined in Appendix C.

(12)

+ 1y (13)
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unit volume of the vapor

c (T, - . T)

Equations (12) and (13) have been put into finite difference form and placed
on Whirlwind computer for a variety of the paraeters.

The computer results are presented in Figures 4 through 8. The range of
parameters is sufficient to cover most liquids from 0.1 to 0.9 of the critical
pressure at a temperature difference corresponding to the maximum heat flux.

A check on the mathenatical solution was obtained by running a progrm for
an initially uniformly isothezmal field, then allowing the bubble to grow and
comparing the enthalpy defect in the liquid with the enthalpy gain in the bubble.
Most of the deviation is due to a first derivative truncation error which de-
creased as the temperature gradients in the liquid becane less. Therefore, the
errors would tend to be analler for the non-isothermal initial conditions as the
tenperature gradients tend to be less. The approximate deviations are presented
in Table 1.

Table 1
T (T - T

% error in !
Yh? yfg

10.6 124
5.3 10%
1.0 1%
0.35 1%

A check on the mathematical model is provided by the data of Dergarbedian (5)
which is presented in Figure 3, The dots are points measured from high speed
motion pictures and the curve is obtained by interpolation of computer results
presented in Figure 8. The interpolation is simple as these curves are parabolas.

The range covered by the computer results was limited by the validity of the
mathematical model. For very large values of the parameter "C1  the assumption
that the dynamic effects are unimportant is not valid while for anall values of
this paraneter the time the bubble takes to grow and the thickness of the cooled
layer surrounding the bubble are so large, the assumed laminar flow field is



probably seriously in error. It was for this last reason also that the course of
the bubble was not traced into the collapse region.

The results are in the form of plots of dimensionless radius versus dimen-
sionless time with dimensioaless velocity as a parameter. There are three sets
of these curves for different values of No,", the reciprocal of which is roughly
proportional to the thickness of the cooled layer surrounding the bubble. For
each value of "o, , there are three radius-time curves for different values of

the bulk temperature and the ends of all these curves are connected by the zero
velocity line. The radius of the bubble intersecting the zero velocity line is
the maximin radius attained by that bubble. When there is no subcooling in the
liquid the bubble radius continues to grow without limit so there is no inter-
section with the zero velocity line.

Several 'interesting conclusions can be drawn frum these calculations alone.

The temperature distributions obtained from the computer made it apparent that
for small values of 'No, the thickness of the cooled layer of liquid surrounding
the bubble is large compared to the radius of the bubble. This means that for
maU "c13 the plane approximation, used to solve the heat transfer problem by

other investigators (2, 4), is inadequate here. For o, = 5, the plane approxi-
mation error is 10%. For "01 less than this, the error would increase. It was
also apparent from these temperature distributions that for a, = 0.35 a signifi-
cant quantity of heat was transferred from the surface to the liquid and then to
the bubble wall while the bubble was growing. At higher values of 3c0U corres-
ponding to low pressure this does not happen. Under these conditions the bubble
grows primarily as a result of heat transfer frm liquid superheated before the

bubble ever started to grow.
The calculated growth curves showed that for snall N01* the maximum size

attained by the bubble is proportional to the thickness of the layer of superheated
liquid near the surface and is independent of Na1'. In part, this would account
for the relatively constant maximun bubble size which has been observed over a
wide range of pressure at elevated pressure. Finally, it is apparent from the

shape of the line where v = 0 on Figures 4, 5, and 6, that even at a constant
value of 01' the average velocity of growth for a bubble which is equal to
X/T at v = 0, decreases with decreasing maximum size. This checks with the
experimental observations of Ellion (3).

Though the calculated growth curves are of significance in correlating both

q/A vs &T data and burnout data only an application to pool boiling burnout will

be presented here. This is because it is necessary to have more infozmation about

bubble notions and departures, and about the temperatures existing in the vicinity
of the heater than is available at this time.



II POOL BOILING BURNOUT

If an electrically heated wire is immersed in a pool of liquid and the current

passing through it is slowly increased, the mode of heat transfer from the wire

will pass through several different phases. These various phases are illustrated

in Figure 11. The burnout point is the madimum on the curve. If the wire has a

low enough melting point, the temperature rise may be severe enough to cause melt-
ing of the wire or 'burnout 3 . This maximum in the heat flux occurs with all pure

liquids no matter what the shape or orientation of the heater surface.

Lot us begin by considering the physical conditions at burnout, then, on the
basis of these conditions, postulate a burnout criterion and finally check this
criterion against burnout data taken under a variety of pressures for different
fluids.

As the heat flux in boiling is increased the number of bubbles on the surface
also increases. Gunther (9) has a picture taken at 90% burnout heat flux which
shows a large glob of vapor at the hot end of a strip ith a number of Snall,
discrete bubbles on the rest of the strip. This picture would indicate that when

a sufficient number of bubbles are on the surface they are so closely packed, they
coalesce and burnout occurs. A criterion for burnout might be that it is necessary
for a certain critical packing of bubbles on the surface to exist or, what is equi-
valent, a critical fraction of wetted surface.

The fraction of wetted surface depends on the conditions in the vicinity of
the surface which are quite different for pool boiling, forced convective boiling
with sabcooled liquid, and forced convective boiling with net generation of vapor.
because of assumptions made in the formulation of the burnout criterion, the result
will only apply to regions where there are discrete bubbles present on the surface

and further assumptions will limit the application here to pool boiling.
Before beginning, however, one sweeping assumption implicit in the entire

analysis should be pointed out.' This assumption is that for clean surfaces the
surface conditions are not important variables and as such need not be included
in the formulation. In leaving the surface conditions out, it is assumed that
they are invariable for the data correlated. This assumption is justified, in
part, by the fact that all the liquids in contact with clean metal surfaces have
00 contact angles (10). Let us now formulate a burnout criterion. The derivation
presented here has also been presented in reference (7).

BU 0UT 00ELATION

Burnout can be visualized as occurring when the packing of bubbles on the



surface reaches some- critical fraction of the total area. Figure 12 shows a

section of a heater surface with bubbles of constant size packed on it. It is

apparent that the number of bubbles per unit area is

C
n = p (14)

where C b is a constant which would equal one for the condition illustrated but

might be greater or less than unity. We shall assume in any case that at most

it varies only with pressure. The heat transferred to the bubbles has been

shown (11) to be proportional to the boiling heat transfer so we can write

=C h n (7r/6)D f (15)A boiling q fg

where Cq is the fraction of heat transferred to the bubbles and f is the frequency

that bubbles form at a point. When Eq. (14) is substituted in (15) we get

A = } CqCyb (16)

The right side of this expression is a constant or. at most a function of pressure.

The problem still remains to evaluate b

The evaluation of (fDb) will depend on the system under consideration as the

frequency and diameter of the bubbles at the surface have been found to be de-

pendent to some extent on the system pressure and geometry.

EVALUATION OF (fD 1 ) IN SATURATED POOL BOILING FOM4 A HORIZONTAL SURFACE

In saturated pool boiling bubbles fonm on the surface and grow at a decreasing

rate until they depart. In order to predict the departure size it is necessary to

know the cause of departure. At this time it cannot be said that this is known

because departure can be affected by several factors. Perhaps the simplest expla-

nation is that the bubbles depart when the surface forces tending to hold them on

the surface are counter balanced by the boyancy forces tending to draw then off.

On this assumption Jakob (11) and his co-workers have calculated a criterion for

bubble departure which gives the diameter at departure as directly proportional

to the contact angle. At high heat fluxes not even approximately static conditions

are attained, and furthermore, if this simple static force balance were sufficient

to explain departure one would expect a strong dependence of bubble size on heater

orientation and contact angle.



An examination of the high speed motion pictures of Figure 10 shows that the

bubbles depart essentially perpendicularly from the vertical surface and then rise

dut to gravity. The most prmiaing explanation suggests that it is due to the
inertia of the surrounding liquid. The explanation of how it operates to draw the

bubble off the surface is as follows.

In the early stages of growth the velocities are quite high, but as the thick-
ness of the cooled layer of liquid surrounding the bubble becomes greater and as
the bubble penetrates into the cooler bulk liquid, its growth rate decreases and
the liquid moving away from the surface must be decelerated. In causing this de-
celeration, the liquid tends to draw the bubble off the surface. The pictures
show that when this occurs the bubble growth rate has decreased to a very low
value. In the light of this mechanism perhaps a different criterion for departure

might be framed. It would be reasonable to have this criterion dependent on the

reduction of the growth rate of the bubble to a certain value. Assume then that
the bubble will be unable to depart from the surface until its growth rate drops
below its rise velocity. This is a necessary condition, but if the contact angle
is large enough it may not be the determining one. This model still has the fault
that the departure size is sensitive to the strip orientation but the sensitive
dependence of the departure bubble size on contact angle is eliminated.

Examination of Figure 10 shows that for the large fraction of the bubble
growth period, the bubble has a shape which is well approximated by a hemisphere

on the surface. As this is true the calculated radius time curves can be used in
calculating the (fDb) if there were some method of specifying the 8bH. *b* is the
distance assumed for the original straight line temperature gradient. The thick-
ness that should be chosen for this is primarily a function of how long that section
of the surface has been free of the vapor. For lack of any better assumption th4s
time has been taken as equal to the life of the bubble on the surface, after Jacob.
Actually the pause should be calculable from the properties of the surface and
fluid and the temperatures in the surface and fluid after the bubble departs. Nov
let us collect the observations and assumptions and state them in mathematical
form in order to get an expression for (fd.

The assumption equating the pause between bubbles to the life of a bubble on
the surface allows us to calculate a thermal layer thickness "b". If the liquid
next to the surface is treated as an infinite stagnant slab with a step change in
temperature put on its surface at the instant the bubble departs, the temperature
distribution will follow the error function (11). This is illustrated in Figure 13.
The 'Nerf" curve can be approximated by the straight line drawn in and the inter-
section with the 0 = 1 line gives the value of the thenmal layer thickness "b".



Frmi the straight line on Figure 13 then

b = (1 7

From the definition of dimensionless time

and when 'b" is eliminated between Equations (17) and (18) we get

T = 0.25 (19

The range of bubble sizes encountered in this calculation is such that bubble

rise velocity is adequately represented by Stokes Law

g( -
Vrise = (20

From the definition of the dimensionless growth velocity

V (23.)growth b

The definition of I gives

R = bY (22)

The bubble as it grows on the surface is approximately hemispherical, but when it

departs, it is approximately spherical. Therefore the diameter of a spherical

bubble is waated which is equivalent in volume to the hemispherical one. This is

Db 1.59 bY (23)

When Equations (20) and (21) are equated and (23) substituted for Db, the result

can be solved for "b" as follows:

b =(24

The Ovu and the "YO appearing is this equation are evaluated from Figure 9 at the
c (T - T )

appropriate value of .. The (fDd then can be calculated without

further assumption from

(fDb) = b (25)
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When Equations (18), (19), (23), and (24) are substituted in (25) the final ex-

pression for (fDb) is obtained. Thus

fDb It 21.(6

(2)(0 25)

The factor 2 appearing in the denminator of (25) and (26) is a result of the

assumption that the pause between bubbles is equal to the bubble life on the

surface. If there were no pause, this factor would be unity.

Earlier the constants in Equation (16) were stated to be at most, functions

of pressure. The properties of importance which varied primarily with pressure are

those in the number 3P13. Why the constant "C q in (16) should be a function of

No,* can be seen most easily be considering the physical significance of Noq* and

then seeing how "C qmight be affected by it. The numerator of '013 is the super-

heat enthalpy of the liquid per unit volume, and the denominator the latent heat

of the vapor per unit volume. When 'c is large, a little superheated liquid
1A.L1 form a large volume of vapor, and when it is small only a saall volume will

be formed. Therefore, the layer of cooled liquid surrounding the bubble is much

thicker for anall o . This is illustrated in Figure 14.

For bubbles of the same size, the area significantly affected by the motion

of the bubble will be about the same. Because of the different thermal layer

thickness for the two bubbles, however, it is apparent that the fraction of the

heat transferred to the bubble will be quite different in comparison to the total

heat transfer. Therefore the "C q will be different. This suggests plotting the
q

biunout number against 'e'. This has been done in Figure 15 for three organic

liquids and wter. The calculations are tabulated in Table II in Appendix A.

For prediction purposes this curve is not useful, since (Tw - TS) at burnout

is generally unknown. Therefore a simplified dimensional plot of

(U/Amax
hfg v va

is presented in Figure 16. The range of variables is greater as there is no limit

imposed by the range of the computer results. The quantity (5g - f)/fj, is
primarily a function of pressure.
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III P?1TOGRAPHIC OBSERVATION$

In order to frame a satisfactory model for the bubble growth calculations and

to examine the cause of departure, it was necessary to get some unconfused motion

pictures of bubbles growing. It was decided a side view of a single bubble growing

and departing from a vertical surface was best.

For this purpose a wsall scale atmospheric pressure tank with two lucite sides

was built which had a 1/4' diameter heater surface at one end made of copper 3 mils

thick. A heater was pressed against this with a pressure just sufficient to cause

a single bubble to form. The pictures taken on this apparatus are presented in

Figure 17. No attempt was made to measure surface temperature as the localized

heating of the surface made such measurements both impractical and meaningless.

Several facts of importance can be obtained from these photographs.

In the earliest stages of growth the bubble shape is closely approximated by

a hemisphere with the edge tucked under. It can be seen that except for the amount

tucked under, this picture would be essentially unchanged for the entire range of

bubble sizes from 00 to 900. The shape of the bubble would be basically hemi-

spherical with only the amount tucked under changing. It is also apparent that

the major part of the bubble' s growth takes place while the bubble is still in

this approximately heisphevical shape. At the time the bubble departs its growth

rate has apparently decreased to a very low value. The cause for departure is notimmediately apparent from the photographs, as the surface from which the bubble
departs is vertical. What is the mechanism causing departure?

It cannot be said that there is a satisfactory answer to this problem at this

time. However, several possibilities have been eliminated and one promising one

remains. Gravity effects are not significant because the strip is vertical.

Another possibility is that when the bubble which is Ncompressed' into a hemisphere

on the surface is released, it tends to rebound into an elongated elipsoid under

the influence of surface tension. A check of this possibility indicated that the

time of rebound for bubbles of these sizes is too great by a factor of four. If

there is a streaming velocity past a bubble on a surface, the possibility exists

that aerodynamic lift can draw the bubble off. In this case, however, there is

only a very slight natural convection velocity and the departure velocity is far

too high to be accounted for by it. The most promising explanation seems to be

that the bubble is .drawn off the surface by the inertia of the surrounding liquid.

The following is a more detailed description of this process.

In the early stages of bubble growth, the growth rate is very large as the

liquid superheat is high in the vicinity of the wall and the thickness of the layer
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of cooled liquid surrounding the bubble is very sall. Therefore, the liquid in

front of the bubble has a high forward velocity. As the bubble penetrates into

the cooler liquid away from the surface, its growth rate decreases and the rapidly

moving liquid in front of the bubble must be decelerated. This creates a low

pressure area in front of the bubble which tends to elongate it, and under the

proper circumstances, to draw it off the surface. Whether this mechanism can be

effective in drawing the bubble off the surface depends in part on the contact

angle. From Figure 10 there seems to be a limit in the contact angle with which

it is possible to have a clean departure. Such a limit should exist for the

following reason.

A 900 contact angle bubble in the absence of gravity would always remain a

hemisphere on a plane surface no matter what its growth rate. This is because a

spherical bubble in an infinite field of liquid always remains spherical from

asumetry considerations, and working with a hemisphere does not alter this syimetry.

There is no way then, that the inertia of the liquid surrounding a perfect hemi-

spherical bubble can act to draw it off the surface. However, somewhere between

900 and 00 there is a limiting contact angle below which a bubble can depart

cleanly from the surface due to liquid inertia. The photographs indicate that

this limit is around 400. A good mathematical explanation of this departure

phenomenon would be welcome. At contact angles greater than this limit but less

than 90 # it seems that the bubble can be much elongated by the liquid inertia but,

the adeparture" is a result of an instability of the surface which pinches off

the bubble some distance from the heater. When this happens there is a smaller

bubble left on the surface which starts to grow immediately. If the boiling is

from a horizontal heater surface it can be expected that gravity will aid in

drawing the bubble off the surface and the limit of around 400 observed for bubbles

departing from a vertical surface would be raised.

These are the important experimental observations: first, in the most rapid

stages of growth the shape of a bubble can be approximated by a hemisphere;

second, a bubble with a sufficiently small contact angle can depart from a surface

independently of the effects of gravity when its growth rate becomes small enough.
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CONCLUSIONS

1. For increasing pressure and decreasing c the growth velocity decreases.

2. The maxim= size attained by bubbles for saall a, is independent of we a
and depends only on the thickness of the layer of superheated liquid near the
surface. (Compare Figures 5 and 6)

3. The average growth velocity of bubbles with a snall maximum size is
greater than those with a larger maximum size for the same value of c .

4. The increased heat flux for a given &T obtained with increasing sub-
cooling is in part accounted for by the increased average growth velocity of bubbles
with smaller maximum size, (Conclusion 3) This increased average growth velocity
causes a more powerful stirring action.

5. Pool boiling burnout data can be correlated using these bubble growth
Ourves.

6. Bubbles can depart frou a heater surface as a result of causes other than

gravity.
7. This departure occurs when the growth velocity has decreased to a very

low value.
8. In the early stages of growth the bubble s shape can be approximated by

a hemisphere.



APPENDIX A

Table II

Ethanol

Bensene

n-Pentane

Water

115

265
515
765

115

265

465

60

115

215

315

415

383
770

1205
1602
1985
2460

Fluid P b/

Ibm/ft3

(/A)M 10

hra

T -T -

'OF

270
330

330
170

216
240

200

.436

.284

.190

.153

.360

.237

.151

.354

.284

.215

.177

.142

.294

.249

.222

.207

.192

4172

fv
lb,/ft3

41.3
37.7

33.3
27.2

44.5
41.0

34.1

- c
BTU

hrft*OF

.730

1.785

4.01

7.85

1.186

2.87

6.18

.705
1.34

2.78

4.49
7.13

.818
1.69
2.88

3.94

5.29

7.46

.079

.072
4065

.055

.069

.060

.054

.073

.071

.068

.066

.060

.368
0340

.316

.287

.262

.220

34.8

32.4
29.0

25.9
22.6

52.0
48.4

44.9

41.9

39.0
35.4

1mF

1.009

1.175

1.387

1.532

.556
.P606
.647

.596
,614
.648
.666

.680

1.12

1.22

1.37

1.59

1.80

3.20'

37

33
24

9

46
29

14

46

37

26

18

8

60

55
38
35
25

14

140

165

170

123

72

1,350

10600
19550

1,450

1,280

900

am



Table .II cont.

b%105 DJ301+ t Y10 7 fDb

psia

Ethanol

Benzene

n-Pentane

Water

115
265
515
765

115

265
465.

60
3.15
215

315

415

383
770

1205

1602

1985-

2460

hr ft/hr

7.06

3.25
1.49

.475

6.9
2.18

.595

10.5
4.76
1.94

.935

.374

5.6
2.74

1.38

1.0o75
.719

.369

4

2.5
2.Z7
1.6

3.80

2.37
1.75

8.1
2.80

2.35
2.05
l.35

3.0

2.54

2.25
2.10

l.9

l.35-

3.9
2.32

1.49

.80

3.8
1.89

.90

5.6
2.95
1.75
1.15

.65

3.3
2.15

1.45

1.25
1.0

.65

4.49
4.75
5.49
7.67

5.05
6.44
'7.85

5.48
5.71
7.36
9.40

12.6

5.49
6.35
7.88
8.10
8.74
9.85

2.78
1.76
1.3
9.75

3.06

1.93

1.12

4.86
2.69.
2.O4

1.73
1.930

2.S8

2.17

1.82

1.61.

1.39
1.02

2.65
3.47
5.33-
7.73

2.39
4.25
6.23

2.13
2.29
3.76

3.83
10.2

1.21

1.735
3.06
3.64

5.1
8.3

524
254
122

63

640
227

90

1140

588
271

141

63.9

1190
625
297
222
137

61.5

Fluid

2.37

2.89
3.63
3.45

2.05

3.17

4.28

1.35
1.84

2.45
2.62
3.46

1.765
2.18

2.97-

3.08
3.77

5.30

"fe fv;I
--
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APENDIX C

A - Area

C - Defined by Equation 15
q

Cvb- Defined by Equation 14

Db - Bubble diameter

Q -Heat

R Bubble radius

T - Temperature

V - Velocity

Y -A Dimensionless bubble radiusb

b - Thickness of hot layer of liquid near the surface (Figure 2)

.P !(T - Ts)

Liquid specific heat

f Bubble frequency

hf- Latent heat of vaporization

-- Liquid thermal conductivity

n - number of bubbles/unit area

q Heat flux

r - Radius coordinate

t- Time

v Dimensionless velocity defined by Equation 12 = b

w - Mass

y - Dimensionless radius coordinate = r/b

- Dimensionless temperature T - Tb
- Tb

lJ .. Angular coordinate in spherical coordinates

- Dimensionless time
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f -Density

Subscripts

b -Bulk

- Liquid

- Saturation

v- Vapor

V- Wall
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FIGURE CAPTIONS

Figure 1. Original hemisphere of liquid and resulting bubble.
Figure 2. The assumed temperature distribution with the knee of the assumed

temperature distribution a distance "b" from the heater surface.

Figure 3. Comparison of measured and calculated rates of growth. Solid curve

is from interpolation on Figure .8.
Figures 4, 5, 6. Calculated bubble growth rates in dimensionless form.

Figure 7. Calculated bubble growth rates for saturated bulk temperature

08 = &b 0
Figure 8. Calculated bubble growth rates for initially uniformly superheated

liquid and a spherical bubble.
Figure 9. Cross plots of Figures 4, 5 and 6 for 0.25 and ab= 0.
Figure 10a. Bubble growing and departing cleanly.

10b. Bubble growing and departing cleanly.

10c. Bubble growing and departing with small bubble being left on surface.
This bubble etarts to grow immediately.

Conditions for Figure 10:
Fluid Water

Pressure - 1 atmosphere

T bl- 211*F

Tan - Unknown

Camera speed - 2500 frames/sec

Scale - 2.25 times actual size

Time increases down and to the right and gravity acts to make bubbles

rise on picture.
Figure 11. Plot showing burnout point.

Figure 12. Bubbles packed on the surface.
Figure 13. The assumed temperature distribution near the surface.
Figure 14. The effect of C on the thickness of the cooled layer surrounding the

bubble.
Figure 15. Dimensionless burnout correlation

Figure 16. Dimensional burnout correlation.
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