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Abstract

Traditional machine vision assumes that the vision system recovers a complete, labeled de-
scription of the world [Marr, 1982]. Recently, several researchers have criticized this model
and proposed an alternative model which considers visual perception as a distributed col-
lection of task-specific, context-driven visual routines [Aloimonos, 1993, Ullman, 19841.
Some of these researchers have argued that in natural living systems these visual routines
are the product of natural selection [Ramachandran, 1985]. So far, researchers have hand-
coded task-specific visual routines for actual implementations (e.g. [Chapman, 19921). In
this paper we propose an alternative approach in which visual routines for simple tasks are
created using an artificial evolution approach. We present results from a series of runs on
actual camera images, in which simple routines were evolved using Genetic Programming
(GP) techniques [Koza, 1992]. The results obtained are promising: the evolved routines
are able to correctly process up to 98% of the test images, which is better than any algo-
rithm we were able to write by hand. In addition, the solutions generalize to problems
outside the training data. The fact that low-level, reuseable primitives can be composed
into visual task solutions implies that GP is a good way to automatically create multiple
visual routines.
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Chapter 1

Introduction

One of the hardest problems when building an intelligent agent situated in the real world

is the perception problem. Perception is the process which allows the agent to sense

its world. Within perception, computer vision is perhaps the most difficult due to the

vast quantity of data. Traditional machine vision as pioneered by Marr assumes that the

vision system produces a labeled, perfectly resolved model of the world, distinguishing

and representing all objects [Marr, 19821. This model, known as general vision, has been

shown to be intractible in practice.

Active vision is a new paradigm for machine vision that has received significant at-

tention recently [Ballard, 1989, Aloimonos, 1993]. One of the insights that active vision

applies to the problem is that most of the time an intelligent agent does not even need all

the information in a fully descriptive representation, since it is involved in a particular task

that only requires specific knowledge of certain objects. Several researchers have proposed

ways of allowing the agent's central control system to actively modulate what is processed

by the vision system in a task-dependent manner (e.g. [Ballard and Whitehead, 19901). For

example, if I want to pick up the coffee cup on my desk, I do not need to process and

represent all the paper clips, crumbs, every character on every paper, and all the rest of

the clutter usually on my desk. I just want information on my hand, the cup and anything

that might be in the way of my hand and the cup. Furthermore, that information will be

different information than I might extract if I were intent on drawing the cup.

To explain how task-dependent visual processing could be implemented, Shimon Ull-

man proposed the visual routines model [Ullman, 1984]. This model describes a set of



primitive operations that can be applied to an input image in order to find spatial relations

between objects as well as other useful information. The composition of these operations is

called a routine. Visual routines, Ullman argues, are useful for the inherently serial aspects

of vision, such as visual search. He suggests that given a specific task by the central control

system, the visual routines processor creates or "looks up" an appropriate visual routine

and applies it to a base representation of the input image, perhaps changing it in some way

or returning a result. It may then be requested to solve another visual task in response

to that answer, and so on. Ullman does not go into detail on how routines are developed

in the first place, how they are stored or how they are chosen and applied. One possible

answer is that the central system does some intelligent reasoning in order to determine

which routine will solve the task.

On the other hand, V. S. Ramachandran, a human vision researcher, suggests a "utilitar-

ian theory" of perception [Ramachandran, 19851. He argues that since many other systems

in the human body are collections of ad hoc pieces that all function in their own way but

tend to work together, perception is likely to be the same. He asserts that this is the manner

in which natural selection operates - anything that works will be exploited. Hence, he

concludes, perception may be like a "bag of tricks" selected by evolution to solve various

perceptual subproblems. Whichever trick has proven to work for a particular problem

will be the one used for that problem in the future.

In creating a computer vision system, we have at our disposal a powerful alternative

- the programmer. This person can design visual routines that solve a given task, test

them and refine them, hopefully reaching an optimal solution. This may be a reasonable

approach in limited cases, such as the Sonja system by David Chapman [Chapman, 19921,

which has a set of routines designed by Chapman for solving different visual tasks involved

in playing a particular video game. The set of routines is fairly small and fixed, allowing

a programmer to work them out by hand.

Another example (and the one on which we will focus) is the simple vision system

used by the ALIVE (Artificial Life Interactive Video Environment) virtual environment

project [Maes et al., 1995, Maes et al., 1993]. In this system, a user can interact in real-time

with a computer graphics creature using gestures which are interpreted by a vision system.

The system employs a set of hand-coded low-level heuristics for solving specific visual

tasks involved in processing live camera input of a person interacting with the system.



These tasks include perceptual problems such as "Find the hands," "Is the person sitting?"

and "Is the person pointing?".

The obvious problem with writing routines by hand is that it ties up a lot of programmer-

hours fiddling with parameters and conditions, trying to get a program that works well all

the time. In addition, if a new visual task needs to be solved, a whole new set of routines

has to be created.

An ideal solution would be to find an automatic method for creating appropriate

visual routines for a new task. This thesis describes one such method - evolutionary

computation - applied to the aforementioned ALIVE visual task. In particular, the Genetic

Programming (GP) paradigm described by John Koza [Koza, 19921 was chosen since it

meshes extremely well with the visual routines model. GP is a method for automatic

induction of computer programs using simulated evolution. Using visual routines as

primitives, GP can be used to compose them into programs which will solve a given visual

task.

The remainder of this thesis is organized as follows: Chapter 2 describes relevant back-

ground in active vision (particularly visual routines) and genetic programming. It also

describes related work in visual routines and using genetic programming for vision. Read-

ers unfamiliar with GP should glance minimally at Section 2.2. Readers unfamiliar with

the Visual Routines theory should skim Section 2.1.1. Chapter 3 presents the ALIVE prob-

lem domain and two implementations of visual primitives - functional and imperative.

Chapter 4 describes GP experiments performed using the two sets of visual primitives and

presents results. Chapter 5 answers questions raised by the results and evaluates them.

Chapter 6 presents conclusions and suggests future directions for the research. The best

imperative programs found are included in Appendix A since they were too large to be

included in the results chapter.



Chapter 2

Background and Related Work

This chapter describes relevant background for the work described in this thesis. It is

divided into three sections: Section 2.1 briefly presents the active vision paradigm and

serves mainly to introduce the unfamiliar reader to Ullman's Visual Routines theory on

which this research is based. Readers familar with the theory may skip the section.

Section 2.2 describes the Genetic Algorithm and basic Genetic Programming (GP). Readers

familiar with GP can skip this section. Finally, Section 2.3 surveys related work in automatic

creation of vision routines.

2.1 Active Vision

Active vision is a new paradigm for computer vision in embodied (situated) agents, such

as mobile robots. It consists of two main ideas, which are closely related:

" An embodied agent can actively control which perceptual inputs it receives over

time by performing actions and can use this temporal information in processing.

" The agent is almost always engaged in a particular task which only will require

perceptual processing relevant to that task.

These concepts are different from the traditional machine vision school as described by

Marr [Marr, 19821 and others. The traditional model, following the Artificial Intelligence

research of the time, assumed that the role of the vision system was to produce a labelled,

three-dimensional model of the scene. It also specified that this could be done in a bottom-

up, passive manner, with no control from the "higher-level" cognitive components, such



as the planning system. The vision system was given an image and had to create the scene

model from just that image. For example, it had to compute the shape, orientation, color

and identity of every object in the scene. In practice, creating this model efficiently has

proven intractible. Mobile robots using such vision systems were slow, unreactive and

often failed to solve their tasks.

The two active vision concepts can simplify the general computer vision problem in

many ways since the agent is embodied. For example, an agent which can move its head

side-to-side can much more easily extract depth information than an agent which is fixed

in place and has to use other cues such as shading. The second concept, also known as

task-dependent vision, allows the vision system to bypass the general problem of 3D scene

reconstruction and only extract the information which is required to solve the current task.

For example, a robot which is trying to navigate down a corridor does not need to process

the text of every sign posted in the corridor - it only needs to locate and avoid obstacles

and to keep moving forward. Such a robot can use both active vision concepts. First, it can

use optical flow to locate potential obstacles and stay centered in the hallway. This is an

example of using the fact that the camera is on a moving agent to extract useful information.

Second, it will only do this processing if the control system is currently trying to navigate,

as opposed to identifying an object. This is an example of using task-dependent routines

only when they are needed. Indeed, such active vision methods have been shown to be

successful in mobile robots. For example, Horswill's Polly [Horswill, 1993] robot was able

to navigate through the corridors of a building, avoid obstacles and give people tours, all

in real-time.

Active Vision is a young field which is evolving in many ways. Rather than go into

a detailed discussion of the various areas of research, the reader is referred to collections

such as [Aloimonos, 1993] and [Blake and Yuille, 19921. In the next section we describe

Ullman's visual routines model. The visual routines model was not originally designed as

an active vision theory, but many ideas from it have been incorporated into active vision

systems by researchers such as Chapman [Chapman, 19921 and Whitehead [Whitehead,

19921.



2.1.1 Visual Routines Theory

One example of a task-dependent theory of vision is Shimon Ullman's Visual Routines

theory of intermediate vision [Ullman, 1984, Ullman, 19871. The visual routines model

breaks the visual system into three main areas: the base representation, the visual routines

processor and the higher level components. The base representation is the result of initial,

parallel processing of the retinal image. It is bottom-up and uniform in the sense that

the same processing occurs across the whole image (which Ullman refers to as spatial

parallelism). This could involve resolution edge detection, color processing, etc. The

visual routines processor performs the tasks that require a more directed, specific or

inherently sequential set of processes. The higher level components consist of recognition

memory and task formulation.

Ullman also makes a distinction between universal routines and specific routines.

Universal routines are routines that are processed automatically in order to form a basis

for deciding which specific routines must be used. In the absence of a specific task,

universal routines operate. They might, he suggests, isolate prominent areas of the image,

do simple spatial relations tasks, and perform crude color and shape characterizations. An

example might be the process that leads to a saccade toward a pop-out area of the visual

field; that is, an area that is significantly different from its surroundings due to motion,

color, orientation or depth.

Finally, Ullman proposes the following set of specific routines which he admits is not

comprehensive, but seems to be useful for certain problems:

" Indexing involves shifting the focus of attention to important areas of the visual field.

For example, shifting focus to "pop-out" areas or in order to peform a visual search

for specific objects.

" Marking allows the system to remember a location or describe areas of processing for

other operations.

" Ray intersection involves tracing along a ray between two points (one may be "at

infinity," or out of the critical processing area) and count or place markers at intersec-

tions with boundaries. This is useful for inside-outside decision tasks (for example,

deciding if an indicated point lies inside or outside a closed contour).



" Bounded Activation or coloring fills in an area surrounding a marked point, stopping

at a boundary What constitutes a boundary is a function of the task, so must be

a parameter to the operation. For example, consider again the inside-outside task.

People can still tell if a point is inside a circle with a dashed line for a border (see

[Ullman, 19841). Thus, the boundary need not be solid.

" Boundary tracing is another sequential operation that traces a boundary (with the

same parameter as above to define a boundary), searching for various facts, such as

whether the curve is closed or not, or whether there are objects along it.

" Curvature Segmentation segments an object based on areas of high curvature on the

boundary. Ullman suggests that this could be useful for recognition tasks.

Other routines can be applied to the results of these computations. For example, a

point thought to be inside a closed curve could be marked and then the area around it

colored. Checking whether the color spread to some point known to be outside the curve

(using a bounding box of the curve, say), will tell us whether the point was inside a closed

contour or not.

Following Ullman, David Chapman applied similar operations to the domain of visual

attention in his Sonja video game playing system [Chapman, 1992]. For example, Sonja

can find gaps in a boundary (ostensibly doors), track moving pop-out objects (such as the

player's icon) with a marker, color a region and cast rays. In the game, characters move

around a two-dimensional world full of impenetrable walls. To move to a certain marked

point (say there is something desirable there) a ray is cast from the current location to the

desired location to detect any intersections with walls. If an intersection point is found,

a path around the obstacle is constructed using other routines. Chapman hand-coded

his visual routines to solve these problems using a circuit specification language. A large

amount of programming effort was required to get these to work correctly. An automated

technique for finding visual routines is thus quite desirable.

A major criticism of Chapman's research is that it does not provide a model of "low-

level" vision for Sonja; his primitives are actually implemented by directly referencing the

models which underly the screen representation. This is appropriate for a closed video

game system, but ignores issues such as how the primitives will perform in noisy and/or

unexpected situations that occur in real-world environments.



1. Let Pi be the population set of all individuals (genotypes) in generation i.

2. Initialize Po to n random individuals.

3. Loop until some stopping condition:

(a) For each p E Pi, express the phenotype of p and use it to calculate fitness(p)

(b) Pi+1 <- 0

(c) Until l|Pi+1|| = n

i. Select p1 and P2 from Pi roughly proportionate to fitness value.

ii. Create q1 and q2 from p1 and P2 using a random genetic operator from the
available set.

iii. Add q1 and q2 to Pi+1-

(d) Increment i.

Figure 2-1: The Abstract Genetic Algorithm Structure

2.2 Genetic Programming

Genetic Programming (GP) is a powerful new method for automatically inducing computer

programs to solve tasks [Koza, 1992]. GP evolved from the original Genetic Algorithm

(GA) invented by Holland [Holland, 1975]. Before discussing GP in particular, we start

with a brief discussion of the history of genetic algorithms and define terminology that

will be used throughout this thesis.

2.2.1 The Abstract Genetic Algorithm

The motivation behind GAs is the obvious power of evolution as seen in nature. GAs

take the Darwinian idea of natural selection, or "survival of the fittest," and apply it to

digital computation. The essence of the algorithm is that a population of individuals is

evolved over discrete generations by allowing the more "fit" individuals a higher chance

of reproduction, or passing on a piece of their genotype to the next generation. Starting

from a random population of individuals which are in general very unfit, simulated

evolution gradually culls unfit individuals and ideally creates progressively more and

more fit individuals.



Terminology

An individual is a discrete entity which can somehow be evaluated for fitness. Following

genetics scientists, GA researchers distinguish between the genotype and phenotype of an

individual. The genotype is a representation or encoding of the individual which can be

operated on by genetic operators. In biology, a creature's genotype is its particular DNA

encoding. The phenotype is the expression of the genotype in an environment. Looking to

biology again, the phenotype is the actual creature, which grows according to its genotype

and environment. In a GA system, the term "individual" can actually refer to either the

genotype or phenotype, depending on context. When speaking of genetic operators, it

refers to genotype. When referring to an individual's fitness it refers to the phenotype. In

simulated evolution, a phenotype can be an artificial creature, a graphic, or even a number

- it is purely up to the programmer to create a genotype encoding that describes all the

possible phenotypes desired. In Holland's original GA, a genotype was represented as a

fixed length string of characters or bits, much like DNA. For example, the genotype 01101

can be expressed as the phenotype 13, if the encoding were the binary representation of

integers. GA researchers have since realized that the genotype can actually be any structure

which can be expressed as a phenotype through some mapping and can be operated on

genetically.

A population is a collection of some number of individuals who are all said to be in the

same generation. Members of the population "compete" with each other to reproduce into

the next generation, based on fitness.

Fitness, which we have used loosely until now, is a real scalar value which defines how

well the individual deals with its environment or solves a problem. For example, if the

individual is an animal, a stronger or smarter animal will deal better with the environment

and thus presumably live longer and have a higher chance to breed. It is said to be more

fit. To simulate fitness calculation in a GA, the programmer usually specifies a fitness

function to calculate this value. An individual's phenotype is expressed and the resulting

individual is then tested according to that fitness function.

Finally, to create the next generation of individuals, members of the current population

are selected proportionate to their fitness. These members may be cloned directly into the

next generation or genetic operators may be applied to the genotypes to create new individ-

uals. Many genetic operators have been proposed, but there is a core set of two which are



often powerful enough: crossover and mutation. Crossover is a sexual reproduction which

creates a new individual by taking part of each parent's genotype and combining them. In

biology this is accomplished by combining one set of chromosomes from each parent. This

produces an individual with some of the traits of each parent, ideally producing a more fit

individual if both parents were fit. Finally, mutation is simply a small random change in

some part of the genotype.

This process of creating new generations is iterated until some stopping criterion is

reached. Some problems have obvious stopping points, such as when the program gets

the right answer, if it is known. In other cases, such as optimization, the evolution is usually

stopped when the best fitness stops changing, or reaches steady state. Some evolutions

will continue changing forever; this is particularly true if the fitness function changes over

time, as is the case in nature.

Algorithm description

Figure 2-1 shows pseudocode for the abstract GA. It is abstract in the sense that there

are many unspecified parameters, including stopping condition, population size, fitness

function, genetic operator set, how to choose a genetic operator (probability distribution),

and which fitness-proportionate selection algorithm to use. Although this may seem

overwhelming and more difficult than just solving the problem by hand, it has been

shown that often any choice of parameters will produce good results.

Although the algorithm as shown is serial for simplicity, an important point to notice is

the massive parallelism that the algorithm allows. Each individual can be expressed and

have its fitness evaluated in parallel. This allows for large populations of individuals to be

calculated quickly.

String-based GAs have been used to tackle many problems. In particular, they seem

well suited to machine learning and difficult function optimization problems. A full

discussion of string-based GAs is beyond the scope of this thesis. For a good discussion

of the use of string-based GAs for these types of problems, see [Goldberg, 1989].



2.2.2 Basic Genetic Programming

A tree genotype

Genetic Programming in its current form is attributed to John Koza. Koza decided that

using fixed strings of characters as a genotype was too limiting [Koza, 1992]. Instead,

he chose LISP S-expressions to create genotype encodings. S-expressions, also known

as forms, describe a function that can be evaluated in the LISP environment. Forms are

essentially trees in the mathematical sense. They contain a single root node, a number of

internal nodes, and a number of leaf nodes. Using a tree structure is more powerful than

a linear fixed-length string for three reasons:

" Trees can have arbitrary size

" Trees can "change shape" significantly in crossover

" Trees are much more natural for expressing computer programs

The first point is clearly an advantage since it reduces the amount of thought a pro-

grammer must put into designing a genotype representation since he need not worry that

he restrict the solutions too much be making the strings too short. The second point is

similar to the first, but focuses more on morphology - whereas a string can only crossover

in a small range of fixed space, a tree can add an arbitrary amount of new nodes between

any other two nodes due to its hierarchical shape. Intuitively, this makes crossover more

powerful. The final point is why GP is so useful - it can be used to automatically induce

computer programs which compute a desired function.

Phenotype expression

The phenotype of a LISP form genotype can be expressed in essentially two ways:

* As the genotype itself (the function it computes)

* By evaluating the genotype

The difference is subtle, so more explanation is required. In the first case, the genotype

does not encode some description for how to create a phenotype using some mapping

function - the form itself is the phenotype. The function it computes, in some sense, is its



phenotype. Another way to look at it is that the solution being sought by the evolution is

a function, not some other kind of entity. In contrast, the other way a LISP genotype can

be expressed is by considering it as the phenotype evaluation function itself. For example,

the LISP form could describe the shape of an artificial creature. The creature is created

from the genotype by evaluating it, and then the creature is tested for fitness. Here the

solution being sought is a creature that does something, not the function that describes

how to make the creature.

GP experiments often tend toward the former representation, since researchers are often

looking for functions that solve problems or optimize parameters. A noteworthy example

of the latter representation is Karl Sims's work on genetically created artwork [Sims, 1991],

where the genotype is a function that computes the pixel values on a computer image (the

phenotype) and where the fitness function is a person's aesthetic taste.

GP as search for computer programs

The goal of GP is to automatically find a computer program which solves a given problem or

task. Essentially it is a search of the entire space of computer programs (expressed as LISP

forms) that could be created using a set of allowable symbols. These symbols can be bound

to functions, variables and constants in the LISP environment. In general, this search space

is huge - it is hyperexponential in the maximum allowable depth of a program. That is, if

the deepest program allowed has a depth of d, there are 0 (a d) allowable programs, where

a is the number of symbols available and # is average branching factor of the program

trees. The search starts with a population of programs which mostly compute garbage,

but some of which might be useable as parts of a solution. Eventually, one hopes, a good

solution will be evolved. GP performs much better than random chance in searching this

space. This "nonrandomness" of GP is discussed in Chapter 9 of [Koza, 1992].

The GP algorithm

GP is an instance of the abstract GA algorithm described above. Pseudocode for the GP

algorithm is given in Figure 2-2. It is almost identical to the abstract GA algorithm with

one key difference - the genotype is a program and can be evaluated. In other words, its

function is computed by interpreting it in the LISP environment, assuming the symbols

appearing in the program reference functions, constants and variables.



1. Let Pi be the population set of all programs (genotypes) in generation i.

2. Initialize Po to n random programs.

3. Loop until some stopping condition:

(a) For each p E Pi, evaluate p and use its result to calculate fitness(p)

(b) Pi+1 <-- 0

(c) Until llPi+1|| = n:

i. Select p1 and P2 from Pi roughly proportionate to fitness value.

ii. Create q1 and q2 from p1 and P2 using a random genetic operator from the

available set.
iii. Add q1 and q2 to Pi+1-

(d) Increment i.

Figure 2-2: The Genetic Programming Algorithm

For example, consider the form:

(not (and a b)

(or a c))

When evaluated, this form will compute a boolean function of the symbols a, b and c,

assuming they can be interpreted as boolean values in the environment. Its answers, or

return value for various inputs (bindings of the symbols a, b and c), can be compared to

desired answers in order to calculate a fitness.

An important point is that these forms are often interpreted during a GP run. This is

not a limitation. For use in a real system, the programs can be compiled. They are often not

compiled during a GP run since compilation overhead is often higher than interpretation,

and most programs are simply thrown away after being evaluated.

Defining a GP experiment

In order to define a GP system to solve a particular problem, a programmer needs to select

the following elements:

9 A function set and terminal set.

* A fitness function.



* A fitness-proportionate selection function.

* A set of genetic operators.

* A stopping condition.

* Some numerical parameters.

Function and terminal set

The function and terminal sets specify which primitives the GP system can use to create a

solution. Terminals are symbols which evaluate to a single value without having to evaluate

arguments. They are often constants or variables, but can be zero-argument functions as

well. Functions are elements which operate on a fixed number of arguments. These

arguments can be terminals or functions themselves. The number of arguments a function

takes is fixed and must be specified. Thus, by composing these terminals and functions,

one creates trees, with functions being internal nodes and terminals being leaves.

According to Koza, these sets should be selected to have two properties - sufficiency

and closure under type [Koza, 19921. Sufficiency means that there exists some composition

of functions and terminals which are able to solve the problem. Sufficiency often cannot

be decided a priori and involves an iterative process of primitive selection. Type closure is

a rigid constraint that forces every function to be able to handle any type returned by any

other function or terminal. So if the system is of boolean type, all functions must accept

booleans and return booleans. We describe a method to relax the closure constraint using

syntactic struture in Section 3.2.1.

Fitness function

The most common method of defining a fitness function (and that which is used in this

research) is to create a set of fitness cases which are essentially examples for the programs

to be tested on. To compute a program's fitness, it is evaluated on each of the fitness cases.

It is assumed that the correct answer is known. If the program gets it right, this is called a

hit. A simple fitness function could be the number of hits the program gets, for example.

For real-valued problems, Euclidean and other error metrics can be used.

A GP task can be specified as either a supervised or unsupervised machine learning

problem. In the supervised case, given a set of inputs and desired outputs (training



data), generate a program which produces the desired outputs given the inputs. Thus, an

obvious choice of fitness function is the number of examples the program gets right. For

continuous data, an error function can be used. The unsupervised case usually interprets

the program as a controller of a robot or agent which acts in an environment which gives

it rewards and punishments in response to its actions. The program is used to control the

agent for some amount of time and the cumulative reward received is used as the fitness.

Another common addition to the fitness function is a parsimony constraint. This is often

an additive term which lowers a program's fitness proportional to its size, or complexity.

The motivation is Occam's Razor - shorter programs are usually better. There is often a

trade-off between how well a program performs and how complex it is. By using too strict

of a parsimony constraint it is possible to miss longer, better solutions.

Selection function

The selection function specifies how parents are to be selected, given each program has a

fitness value. All the methods are fitness-proportionate, meaning higher fitness individuals

have a higher chance of being selected for reproduction. Two types of selection functions

are in common use. The first is a simple partitioning of probability space based on the

relative fitness of an individual compared to the rest of the population. Given fitness

function fitness and population P, the probability of a program q being selected for

reproduction is:

fitness(q) (2.1)
Zp,.p fit ness(p)

Another common selection function is called tournament selection. A "tournament"

is held among k individuals by picking them uniformly at random, then selecting the

individual with the highest fitness. Tournament selection has the nice property that if

one program has an abnormally high fitness compared to the rest of the population (even

though it may not be that good in the grand scheme of things) , it does not utterly swamp

the next generation as might happen when using equation 2.1. Tournament selection

promotes more diversity, hopefully guarding against premature convergence to a local

maximum. k is often 3 or 5.



Genetic operators

Koza describes many operators that can be applied to LISP forms [Koza, 1992]. Only the

ones used in this research are described here. These are:

* Creation

* Copying (or cloning)

e Crossover

* Mutation

creation In order to create a random program tree, a random element is picked from the

union of the function and terminal set. If it is a terminal, that is the final program. If it is

a function, the arguments are chosen in like manner, recursively. The recursion bottoms

out at the maximum depth where only terminals are allowed to be picked. Koza describes

several methods for how to create an initial random population that is diverse. These

involve heuristics like picking random depths for each program, choosing only functions

until the maximum depth in order to produce full trees, etc. We again refer the reader to

his book for more details [Koza, 1992].

copying Copying is a straightforward operation. The program is copied as is directly

into the next generation.

crossover Crossover is a sexual operator - it takes two parents and produces two off-

spring. First, select two parents from the population using the selection criterion. Pick a

random subnode, or subtree, in each one and swap them to create two new offspring.

Often GP systems have a maximum depth constraint on programs to keep computation

time lower and avoid unbounded program sizes. If the newly created children violate this

constraint, the operation is cancelled and the parents copied directly. It is also possible to

choose the crossover nodes such that crossover only creates "legal" sized trees.

Koza and others also divide the crossover operator into two variants - internal and

entire. The internal crossover operator only can choose among non-leaf (hence internal)

nodes for crossover. The entire operator can choose any. The division is made since a



program's leaves make of a large percentage of the program's nodes (half, in a full binary

tree, for example). In order to ensure a more efficient search of the program space, it is

useful to encourage crossover on internal nodes, especially early in a run. Creating an

internal node crossover operator attempts to encourage this. Rosca argues that this may

not as useful later in a run, however, where smaller changes may be more beneficial [Rosca

and Ballard, 19951.

mutation First, select a subtree (which again could be a leaf). Replace it with a small,

newly created subtree made with the creation operator. Again, mutation is liable to depth

constraints and similar solutions as in crossover can be used.

Stopping condition

Usually some kind of stopping criterion is needed. Often, a maximum generation is

defined, after which the best program found during the run is returned. It is also possible

to stop the run when a program gets hits on every fitness case.

Parameters

Most GP systems have many parameters. Some of these include creation method, selection

method, probability distribution for each genetic operator, maximum depth constraints,

maximum generations, population size, parsimony constraint, and coefficients of the fit-

ness function. Although this may appear to be a disadvantage, it is often the case that the

algorithm is not very sensitive to their values. Many GP researchers use the values used

by Koza [Koza, 1992] for most of his experiments.

2.3 Related Work

Recently, several other researchers have been investigating automatic ways of creating

task-specific visual routines. Jeeves by Horswill [Horswill, 19951 and the Meliora system

by Whitehead [Whitehead, 19921 actually use the visual routines model, but neither uses

GP techniques. Other GP researchers have applied GP to visual recognition tasks, such

as Koza [Koza, 1994] and David Andre [Andre, 1994], who both evolved programs for

Optical Character Recognition, and Astro Teller [Teller and Veloso, 19951, who evolved



programs for classifying single objects from greyscale images. Finally, Harvery, Cliff and

Husbands used GP to perform visual tasks on a real robot. Each will be described in turn.

Jeeves, created by Ian Horswill, is the first demonstration of a real-time visual routines

processor which operates on real camera images rather than on hand-drawn bitmaps or

internal simulation structures [Horswill, 1995]. Jeeves processes the camera image into a set

of low-level maps and performs a pre-attentive segmentation step to divide the image into

distinct regions. Horswill presents an automata-theoretic analysis of the computational

power of the visual routines theory. His analysis assumes that visual routines are used to

solve Horn clauses, or simple logic statements, which refer to properties and relations in

the image (for an introduction to Horn clauses, see for example [Hogger and Kowalski,

1992]). He introduces enumeration oracles and explains how they can be used to solve

visual queries expressed as Horn clauses. He gives the following example query, which is

interpreted as a conjunction of Horn clauses:

(blue x)(above x y)(above y z)

This query asks the visual system if there is a blue block stacked on top of at least two

other blocks. The system performs a visual search to ascertain the truth value of the

statement. Horswill's work is interesting for two main reasons - it is one of the first

real-time, low-level implementations of the visual routines theory and it addresses the

issue of how queries are actually compiled into a search automatically rather than having

the programs being written by hand. Although his system is currently designed mainly

for visual search, he describes how it was integrated into a mobile robot platform which

utilizes the visual routines in its motor tasks, such as navigating down a corridor.

Steven D. Whitehead's dissertation research also tries to find a method for composing

visual routine primitives automatically to solve a task [Whitehead, 19921. Whitehead uses

a machine learning algorithm called Q-learning [Watkins, 1989]. He applies this system

to a simple block-stacking problem in which a robot arm must stack blocks in order to

make a duplicate of an example stack. An attention frame, similar to the attention marker

described in Section 3.4.3, can be moved to index blocks and query their properties. Q-

learning is used to find a policy, or mapping from world state to next action, which solves

the stacking problem. This policy can perform overt actions, in which the robot arm is



moved and external world state changed, or covert attention actions, in which the attention

frame and internal representation is changed. He discusses the significant problem of

perceptual aliasing in applying current machine learning algorithms to active vision and

presents a few ways to attempt to circumvent it. Many machine learning techniques

(including Q-learning) assume that an agent is able to extract the full state of the world on

every timestep. When these algorithms are applied to active perception systems, where

the agent only has access to small amount of local state every timestep, perceptual aliasing

can occur. Perceptual aliasing occurs when two actual, different states of the world are

perceived as the same state to the agent. For example, an agent in a maze sees an exit north

and east. Let's say this perceptual state can occur in two actual positions in the maze. In

one of these, there is a monster to the north and the east is clear. In the other the reverse is

true. The agent should perform a different action in each state, but has no way of telling

which real state he is in through just the current perceived state.

Several researchers have applied GP to computer vision, but mainly for object recog-

nition tasks. For example, Koza describes an experiment in character recognition [Koza,

19941. The goal is to classify four by six bitmaps as the letter "I," the letter "L," or "NIL,"

meaning neither. The system pretends there is a turtle which can crawl around the bitmap

and see the value of the nine bits in its neighborhood. Again this is similar to the atten-

tion marker used in this research (see Section 3.4.3). Koza admits this it is an expensive

computation and as usual only lets the evolution proceed for 51 generations. This did not

produce a solution. He also implemented a version of the problem which used Automati-

cally Defined Functions (ADFs) which managed to find a good solution (for a description

of ADFs, see [Koza, 1992]). Unfortunately, the perfect solutions were rare in the sense that

many runs did not find one and the population size was large, containing 8000 individuals.

David Andre performed similar but more in-depth research on the problem of character

recognition [Andre, 1994]. The most interesting facet of his work is that he performed

evolution of feature detectors and decision trees that utilized them by using a string-based

GA and GP simultaneously. The GA was used to evolve three by three feature detecting

templates. Simultaneously, these templates were used by the GP evolution in order to

classify a given five by five bitmap as an instance of a certain digit or not. Programs had

to be evolved for each digit to be classified.

Harvey, Husbands and Cliff used a genetic algorithm to evolve the morphology and



control of a vision system for a real robot [Harvey et al., 1994]. This is an extension of

research in [Cliff et al., 1993b] and [Cliff et al., 1993a]. The robot has a CCD camera which

digitizes the world in front of it. Control structures in the form of networks are evolved to

solve the task of moving the robot towards a set of targets of various sizes using the vision

system. The morphology of the visual receptors (their placement on the robot and response

rates) are evolved in parallel with the control networks which use the output of the vision

receptors. This research is ambitious since it used not only a real camera but a real robot

with the genetic algorithm. Since there was only one robot, the fitness function for each

individual in the GP population must be computed serially, a time-intensive undertaking.

Finally, Teller and Veloso used Genetic Programming for the PADO (Parallel Algorithm

Discovery and Orchestration) system [Teller and Veloso, 1995]. PADO performs object

recognition on real grayscale camera images. Genetic programming is used to induce

programs which operate on pixel values in the image and return a confidence value that

the image belongs to the class the program is evolved to recognize. The system was about

50% accurate at distinguishing between seven classes of objects. Due to the complexity of

the system, a detailed explanantion is not possible here. The interested reader is referred

to [Teller and Veloso, 1995].



Chapter 3

Evolving Visual Routines

This chapter describes the ALIVE hand-finding problem and the implementation of the

GP system and primitives used for this research. Two alternatives for visual primitives

were available for the hand-finding task:

Functional Compute the hand position purely functionally and return the answer as the

final value of the program.

Imperative 1 Perform a sequence of actions which side-effect a global representation and

leave a marker on the final answer.

Although the imperative approach is more in the spirit of Ullman's visual routines

theory, the functional approach was implemented first. The functional approach was

closer to how the ALIVE solution worked and it would allow us to sanity check the GP

system with a known hand-coded solution. It was also much simpler to implement. We

describe the set of primitives for each approach separately.

Section 3.1 gives a brief description of the ALIVE domain and the vision problem -

namely, finding features in the bitmap silhouette of a person. Section 3.2 describes the GP

system used for this research, which adds syntactic constraints to the basic GP paradigm.

Section 3.3 describes a purely functional set of GP primitives which were used in the first

experiments. Section 3.4 describes a side-effecting, or imperative, set of primitives which

are more in the spirit of Ullman's visual routines model.

'When I asked my friend, a SCHEME lover, what the term was for a non-functional, side-effecting style of

programming, he replied, "Wrong." Although I tend to agree, I decided that using imperative might be better

for this document.



Figure 3-1: The composite image seen by an ALIVE user. Here the
dog shakes hands because the user is sitting and holding out his
hand.

3.1 Problem Description (ALIVE)

The Artificial Life Interactive Video Environment (ALIVE) system allows a user to interact

with a virtual agent using a set of natural hand gestures. A video camera captures an image

of the user, which is both used for hand gesture recognition and is directly composited

in real-time with the graphical world. The composite image is displayed on a life-size

projection screen in front of the user. The effect is as if the user were looking into a "magic

mirror" - he sees a mirror image of himself composited with several graphical objects.

He can interact with the creatures in the virtual world by gestures that are appropriate for

the domain. For example, in Figure 3-1, the user is shaking hands with Silas T. Dog, the

star virtual character.

The gesture recognition system relies on knowing the position of the person's hands,

head and potentially feet every frame. To find these, the system first performs figure-

ground segmentation in order to separate the person interacting with the system from the

background. Segmentation produces a binary silhouette of the person. Specialized visual

routines then process this bitmap in order to locate the desired features. These routines



were written by hand and took many hours to debug and optimize; therefore, an automatic

method for generating them is desirable.

The original ALIVE system used single color background subtraction ("Chroma-keying"),

a method used commonly for video special effects. The user stands in front of a wall of

known color and is observed with a video camera. The algorithm then replaces pixels

matching the background color with computer graphics output and leaves the foreground

as live video, with the effect that the user is superimposed on the graphics world. This

is known as the "weatherman effect" since meteorologists use these systems for giving

weather reports. In addition, the algorithm returns a binary image mask which provides

a silhoutte of the foreground region.

The current ALIVE vision system actually uses a more sophisticated segmentation

algorithm utilizing color class statistics. This allows the background to be fairly abitrary,

rather than a single color. The only requirement is that the background is static. This new

system also returns a bitmap with a single connected blob which represents the user's

silhouette. The compositing in the new system is also more sophisticated, as is seen in

Figure 3-1. In this system, the creatures are superimposed onto the video image, producing

the visual effect that they are actually in the room with the user.

The fitness cases used in this research were silhouettes produced from the full-frame

images returned by the segmentation algorithm by finding the largest connected figure

component and then cropping the image to the bounding box of that component. The

figure-ground segmentation and cropping would be considered universal routines in the

visual routines theory. Figure 3-2 shows the full set of 46 fitness cases which were used.

Most were chosen randomly from several users interacting with the system in order to get

a range of cases. The first sixteen cases are a sequence of one user interacting with the

system for a few seconds. Only 46 cases were used to keep the Genetic Programming runs

from taking too long to compute since computational resources were limited. As will be

described in Chaper 4, most of the runs take about two or three hours. Ideally, the system

should be run on about 500 cases.

The "correct" hand locations, or answers to the fitness cases, were determined by man-

ual inspection. Since the images are silhouettes, several of the fitness cases are extremely

difficult to solve since part of the hand is in front of the body or is not easily locatable. For

these difficult cases, a best guess was given as a location near the waist. The hand on the
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Figure 3-2: The set of 46 fitness cases used.



left side of the image is called the left hand and the one on the right the right hand.2

3.2 GP Implementation Specifics

This section describes the specifics of the GP system used for this research. Section 3.2.1 dis-

cusses adding syntactic constraints to the GP system. Section 3.2.2 describes the evolution

of the fitness function which was used.

3.2.1 Typed GP

This research uses an implementation of the GP algorithm which is similar to Koza's

original system, but with the addition of a type system. This extension was made since

trying to make the primitive set closed under type proved impossible. For example, if

we want the program to return the point where the hand is, the program should return

a point object which consists of two coordinates (x, y). This led to problems, however,

since single valued numbers were also required as terminals. Although coercing a point

to a scalar could be done simply by taking the x-coordinate, say, this seemed inelegant.

It also made understanding the evolved programs much more difficult and hand-coded

solutions difficult to write.

In order to solve this, syntactic constraints were added to the system. The programmer

must specify a type for each terminal and a signature for each function. A signature is

comprised of a return type and a list of types for the arguments. The programmer must

also specify the top level return type, eliminating the problems of programs returning

incorrect data types. Only programs consistent with this type specification are allowed in

the evolution. Koza discusses syntactic constraints on certain nodes [Koza, 1992], but the

method described here is more general.

Typed creation

In order to create random trees consistent with the type constraints, the system starts by

picking a random node with the proper top level return type. If it is function, it recursively

fills in each argument slot by randomly choosing nodes with the type of that slot. This

2Note that this is the reverse of the user's perspective.



assumes that there always exists such a node. It would be invalid to have a signature

specifying an argument of type foo and then having no nodes with type foo to select.

Typed crossover

For typed crossover, the GP system uses the following approach: one of the two mating

programs is picked at random. Next it picks a random subtree within it and finds the

return type, t. It then chooses randomly among the subtrees with root type t in the other

mate. If there are none, no crossover occurs and the individuals are copied. The programs

are also copied if crossover will produce a program deeper than the maximum allowable

depth of a program.

Typed mutation

Mutation chooses a node at random and replaces it with a randomly generated subtree of

the same type as the original node. The depth of the created subtree is again limited by a

parameter.

Advantages

Constraining the syntax makes the space of unmeaningful programs smaller, as well as

allowing the primitives to be more specialized by not having to deal with arbitrary typed

input and performing extensive run-time type-checking. This in turn should make the GP

computation more efficient.

A significant advantage of the typed GP is that we can constrain the system in many

useful ways. By creating a function that returns a special type that exists nowhere else in

the terminal and function set and specifying that type as the root type, the programmer

can force the system to choose that function at the root. This trick can be used to optimize

the arguments of a particular top-level function. Another important advantage is that

the programmer can create special terminal types that only certain functions use. If the

programmer wants a function to take integers in a certain range, he makes a set of terminal

variables of a special type, say smallint, and restricts the values to lie within the range.

Thus, if larger integers are used elsewhere, the protected function won't get them.



3.2.2 Fitness Function

Koza describes the concept of a "hit." When a program returns a result close enough to the

answer on a fitness case, it is considered to get a hit. The GP system stops running when

it gets hits on all the cases or reaches a maximum generation. For our research we define a

hit to be returning an answer within three pixels of the correct hand position. The hands

are about five pixels wide, so this error margin is still usually within the area of the hand.

3.2.3 Sum of absolute errors

The first fitness function we tried was the most obvious - use the error between the

desired answer and the program's result. The simplest error function is just the Euclidean

distance between the two points:

liP - D1| = (P: - Dx) 2 + (Py - (3.1)

where P is the program result and D is the desired result. This error is found for each

fitness case and summed. More formally, if p is the routine, p(i) is the point returned by p

on fitness case i, answer(i) is the desired point for case i and C is the set of fitness cases,

we define our first fitness function as:

Fitiess(p) = ||p(i) - answer(i)| (3.2)
iEC

Notice that this is an error function, so that lower values are actually considered more

fit, with zero being optimal. Although "fitness" may seem like a misnomer since "high"

fitness implies low values, we will still call this the fitness function following others in the

GP field.

Pilot experiments using equation 3.2 for the fitness function did not perform well. The

system tended to reduce overall fitness, but didn't optimize the number of hits - that is, it

found only average results on all cases rather than trying to optimize accuracy. It seemed

that the system was missing potentially very good programs because they happened to be

way off on just a few hard-to-solve or impossible cases.



3.2.4 Misses plus absolute errors

In order to try and maximize hits, the number of misses was added onto a weighted sum

of absolute errors. Formally, the fitness function was:

Fitness(p) =

(N - Hits) + 7 E I1p(i) - answer(i)I
iEC

where

" N is the number of fitness cases.

" Hits is the number of hits that p gets.

This function was slightly better but still fared poorly. It still seemed that the evolution

was spending too much effort in trying to solve very hard cases and missing easy ones.

3.2.5 Logarithmic errors

In order to discourage the system from overfitting to outliers, a logarithm was applied to

the errors. Such a fitness function allows a program to be way off on one case and still be

considered fit. The final fitness equation became:

Fitness(p) =

(N - Hits) + 7 E log(|p(i) - answer(i)I + 1.0) + a Size(p)
iEC

where

* N is the number of fitness cases.

* Hits is the number of hits that p gets.

* Size(p) describes the complexity of p.



The Size term is called a parsimony constraint added to satisfy the Occam's Razor

impulse for simple-looking solutions - they are often more general and efficient, which

we desire since they are to be used in a real-time system. This term can be defined in many

ways based on complexity theory. The simple size function used for this research is just

the total number of nodes (internal and leaves) in the program.

3.3 Functional Approach

This section describes the functional system. The functional system description also ap-

pears in the Artificial Life journal [Johnson et al., 1995].

3.3.1 Types

There are only three types for the functional system:

point An ordered pair of integers, (x, y).

point-list An arbitrary length list of points, (P1, P2, - , Pn)-

percent A floating point value in the interval [0, 1].

3.3.2 Terminals

The terminals hide a significant amount of processing. We assume that the set of universal

routines as proposed by Ullman has already operated and that we have done figure-ground

segmentation and found the bounding box and centroid of the most salient component

(presumably the person). The terminal set is summarized in Table 3.1. The only terminals

which need explaining are the percentages, which are used in the point-between function

described below. They simply have the value of their floating point equivalents - 0.0, 0.1,

... ,11.0.

3.3.3 Functions

The function set is summarized in Table 3.2. The functions chosen were similar to the

operations used in the hand-coded ALIVE solutions.

The pt+ and pt- functions simply add their two arguments (points) together and return

the resulting point. A simple vector sum is used.



Name Type Description

centroid point Centroid of silhouette
ti point Top left point of silhouette bounding box
br point Bottom right point of bounding box
0%, 10%, . ., 100% percent Discrete floating point values

Table 3.1: Terminals Used in Functional Approach

Name [ Return type | Arguments
pt+ point (point p1, point p2)
pt- point (point p1, point p2)
point-between point (point p1, point p2, percentage ci, percentage c2)
find-bottom-edge point-list (point p1, point p2)
find-top-edge point-list (point p1, point p2)
leftmost-point point (point-list pl)
rightmost-point point (point-list pl)
average-point point (point-list pl)

Table 3.2: Functions Used in Functional Approach

TL

BR

Figure 3-3: The point-between function. Given points
P1 and p2 and percentages c1 and c2, the function
returns R, the point described by ci and c2 in the
normalized coordinate system defined by P1 and P2.
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The point-between function allows the system to select points within the area of the

image more easily than using the addition and subtraction operators, which often create

points outside the image in random programs. point-between has four arguments - two

points (p1 and P2) which define a rectangle and two percents (cl and c2) which describe

a point in the normalized coordinate system defined by that rectangle (see Figure 3-3).

cl defines the x-coordinate and c2 defines the y-coordinate. Explicitly, if we consider the

points p1 and P2 as the column vectors P1 and P 2, the return value equals

Pi + c1(P 2,x - P1,) (3.3)
L c2(P2,y - P1,y)

The find-bottom-edge and find-top-edge functions are similar to each other. They each

take two points, which define a rectangle in the image, and each return a list of points.

Specifically, find-top-edge returns all points pi in the specified rectangle which have the best

(not necessarily maximal) correlation with a top-edge template. A template is a small

bitmap which defines a pattern of bits. This template is conceptually layed over the image

bitmap, centered around a particular point p. The correlation at point p in the image is

defined as the number of pixels where the template and image match (see Figure 3-4).

The correlation is calculated at every point in the image by centering the template on each

point respectively. This operation of sliding a template around an image is also known as

a convolution.

Formally, the correlation at point (x, y) in the image given a template of width m and

height n indexed in the range [1, m] horizontally and [1, n] vertically is:

[ n 21 [2=n
corr~xy)= E E match(x + i, y + i, i + 1+ [ J,j+ +LJ (34

i=- L mT J3=-Ln2J

where match(x, y, i, j) is defined as

1 if image(x, y) = template(i, j)
mat ch(x, y, i, j) =

0 otherwise

and the image and template functions return the value of the bit at that location in the

image or template, respectively. If a point outside the image area is indexed, that point is
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Figure 3-4: The template is layed over the image, centered on a
point, and matching bits counted. The number of matches is the
correlation at that center point. Here the correlation is 8.

considered off, or to have a value of zero. Figure 3-5 shows the correlation of one of the

fitness cases with the top-edge template. Lighter areas are a better match for the template,

and dark areas are a negative match.

Once the correlation has been calculated at each point in the region, the maximum

correlation value is found over all the points. Finally, all points having that maximal value

are returned in a point-list. Note that this may not mean that the points are a perfect

match to the template, just the best match in the window of the image. For example, if

the maximum correlation was eight, and there were thirteen points having this value, all

thirteen points would be returned in the list. As a boundary condition, if the rectangle is

degenerate and contains no points, the top-left point of the rectangle is returned arbitrarily

since the function is required to return a point. The find-bottom-edge function is identical

except that it uses a bottom-edge template.

The actual templates used were four pixels by five pixels and defined a pattern which

corresponded to top and bottom edges (see Figure 3-6). The grey pixels match figure in

the silhouette and the blank pixels match background. The size of the edge templates was

chosen in the original ALIVE system because hands were about five pixels wide. Thus, the

maximal correlation in a subwindow that contained only an arm and a hand would often



5 utput of Figure 3-6: The top and bottom edge templates.

the correlation
function with a
4x5 top edge
template.

appear at only one point - the bottom of the hand. The hand-coded solutions relied on

this fact.

The leftmost-point, rightmost-point and average-point functions operate on lists of points.

They perform the obvious calculations - calculate the leftmost point in the set, the right-

most point or the average of all points in the set respectively.

3.3.4 Selection of Primitives

The primitives described in this section were chosen because they were similar to the

primitives used in the ALIVE hand-finding programs. They are a bit higher in level,

however. For example, the ALIVE hand-coded solutions had to implement the point filter

by looping over a list of points themselves rather than having a point filter primitive. Thus,

the primitives were chosen with a sketch of a solution using them in mind. This is a common

criticism of GP - that the selection of the primitive set essentially has already solved the

problem. We discuss this in greater depth in Section 5.10. However, even having a sketch

of a solution in mind with these primitives, it still was the case that it took a human a while

to find a good program. Additionally, GP found a better one. These results appear in 4.2.

MENEM

MENEM

MENEM

MENEM



3.3.5 Implementation Details

The original ALIVE implementation ran on a parallel vision system which made the

correlation function extremely fast to compute. Unfortunately, the parallel system was

unavailable for the GP runs. Instead, the correlation function was implemented serially,

which is computationally expensive. It must perform O(n -m) operations, where n is the

number of pixels in the image and m is the number of pixels in the template. If the actual

correlation function were computed each time an evolved individual was evaluated, the

GP would take days to run on even a blazing processor. Noticing that the template size

is fixed, however, the correlation map for each fitness case will be constant. The system

implementation takes advantage of this fact by caching the correlation map for each fitness

case before the GP run starts. During the GP run, the system only has to perform O(n)

calculations to calculate the maximum and return the points. This is a large savings (20

times since m = 20).

It is important to mention that using a serial implementation for the GP runs does

not reduce the real-time, on-line ability of the programs evolved. The programs can be

compiled onto a parallel machine for actual use in a real-time system.

These primitives, without conditionals, state or flow control, are sufficient to find

hands. Results of experiments using these primitives with GP are presented in Section 4.2.

The curious reader may skip ahead to that section, then return to this point to explore the

second approach to the problem.

3.4 Imperative Approach

A second approach, more in the spirit of Ullman's visual routines theory, is to have

a base representation and a set of intermediate objects which can be side-effected by

the primitive set. This section describes one such set of primitives which we will call

imperative primitives. The term imperative applies to programming languages and styles

which involve assignment to variables and side-effects to a global environment. This

is very different from a purely functional set of primitives, as described in Section 3.3.

Motivation for this particular choice of primitives will be presented in Section 5.10.



type description
boolean true or false
direction vector to describe a ray
property image property in the base representation
percent floating point value in interval [0, 1]
marker register that references an image location.

Table 3.3: Types used in the imperative approach.

3.4.1 Types

Table 3.3 summarizes the types created for use in the imperative system. Many of them

are labels or parameters to functions which affect the function's operation. For instance,

the property type describes base representation properties, such as top edges, bottom

edges and figure. It is used by functions which reference image properties. A property

essentially describes a boolean predicate which can be applied to an image location. The

location either "has" or "does not have" that property. These properties are described in

more detail in Sections 3.4.2 and 3.4.3. The boolean type is obvious. The direction type is

used to implement operations similar to Ullman's ray-scanning routines (see Section 2.1.1).

The percent type is like that described in the functional section - it describes real values

in the interval [0, 1]. The marker type is a marker as described by Ullman - a way to

remember or specify a location.

3.4.2 Terminals

Table 3.4 summarizes the set of terminals used in the imperative system. The only terminal

which needs some explanation is the null property, the last one. This was actually named

retroactively since it turned out that there was a bug in the first implementation of another

property finding function, which caused it to match no points. Rather than redo the

experiments, it was left in for the rest. Reasons why it may be useful are described in

Chapter 5.



name type description
true boolean boolean true for conditionals
false boolean boolean false for conditionals
M1, M2 marker marker (point) register with read/write ability.
up direction direction pointing up in imagespace.
down direction direction pointing down in imagespace.
left direction direction pointing left in imagespace.
right direction direction pointing right in imagespace.
top-edge property point has maximal match with top-edge template
bottom-edge property maximal match with bottom-edge template
left-edge property maximal match with left-edge template
right-edge property maximal match with right-edge template
figure property point is in figure of silhouette
null property no points match this property

Table 3.4: Imperative approach terminals

3.4.3 Visual Routine Environment: Base Representation and Intermediate Rep-

resentations

Following Ullman, the imperative system is divided into two different conceptual pieces

- the base representation and the incremental representations, or intermediate objects. The

base representation is created (conceptually at least) bottom-up in parallel and before

the specific serial visual routines are applied. These representations form an environment

which the visual operators will effect and refer to. The environment is essentially a set

of images (base representation) and annotations (intermediate objects). When we say an

object is "in the environment," we mean that is is accessible to visual operators.

Base Representation

In our implementation, the base representation consists of a set of bitmaps which contain

the output of the following property (or feature) detectors:

* Figure

* Top edges

* Bottom edges

* Right edges



Figure Property Maps
Map

Edge Dete ors

Right Left Bottom Top

Edge Edge Edge Edge
Map Map Map Map

L______--- - ____------ __--- ___---J

Figure 3-7: Base representation calculation.

* Left edges

* Null

To compute these maps, the figure-ground segmentation is performed first as described in

Section 3.1. Then images are cropped to the bounding box of the silhouette area. Finally

each of the edge detectors is applied to the segmented image (silhouette) (see Figure 3-7)

and all points with maximal correlation are turned on in the property map. The edge

detectors are similar to those discussed in Section 3.3.3, except that they are only two

pixels by two pixels (see Figure 3-8). The other difference is that the only points which

are considered as having the particular edge property are those which match the template

exactly at all four pixels. All of these property maps reside in the environment and can be

utilized by the visual routines.

Intermediate Objects

The intermediate representation consists of objects which can be created and effected in the

visual environment. Ullman mentions markers, rays, lines and activation regions (created

by the coloring operation). For our system, a slightly different set was chosen:



Top Bottom Left Right

Figure 3-8: Edge templates for the imperative approach.

* 3 Markers

* 1 Line

* 1 Ray

* 1 Iterator

The activation maps did not seem useful for this problem and were expensive to compute,

so they were left out.

Markers Markers are simply registers which contain the coordinates of a an image loca-

tion. Markers are read/write - they can be moved to new locations, or just referenced.

As shown above, we chose to have two markers available as terminals, or arguments to

functions. In addition, a special marker is used - the attention marker, A. The attention

marker is the most important intermediate object - it is implicitly effected by most of

the functions and is also considered the program's answer when it is finished evaluating.

Ullman does not mention an attention marker - it was added to this system following

Whitehead [Whitehead, 19921.

Lines Lines, like markers, closely follow Ullman's proposal. A line is defined by two

points and specifies the segment of locations between the two points. Since only one

line was allowed in the system at a time, it was not made explicit as a terminal. Rather,

functions which use a line object implicitly use the one line in the environment. If another

line were allowed, a terminal would have to be created for each one so that the program

could specify which one to use. Alternatively, a separate function could be created for

each one, say draw-line-i and draw-line-2. Each function would then implicitly reference

only its respective line.



Rays Rays are like lines, except that are defined by a point and a direction. A ray contains

all points along the direction vector from the endpoint. Conceptually, a ray is a line with

its second endpoint on the edge of the image. Also like lines, only one ray is allowed. This

ray object is implicitly effected by various functions.

Iterators Finally, an iterator is an object used in a visual search to keep track of previously

visited regions and points and to move the attention marker to the next point to be pro-

cessed. Iterators were created specifically for this research and therefore require detailed

explanation.

Iterators

An iterator is a special functional object that moves the attention point to successive points

having a certain property. It visits each such point only once, hence the name iterator.

Thus, iterators are guaranteed to terminate; that is, run out of points to visit. Iterators

were invented to circumvent early implementation problems with infinite and effectively-

infinite 3 loops in evolved programs using return-inhibition maps (see, for example, [Chap-

man, 19921). Return-inhibition maps keep track of which pixels have been visited so that

no pixel is visited twice. Chapman, for example, uses them to implement visual search

operators [Chapman, 1992]. The problem is that evolved programs tend to not use them

correctly, leading to infinite loops. Iterators were created to abstract the return-inhibition

maps so that they were useful with GP.

A short example will help prepare the reader for the discussion of iterators. Iterators

must be created and then invoked by a looping function. The imperative system has

several different functions which create iterators - we focus on one for this example:

(connected-regions-with-property <property>)

There is only one looping operator:

(while-element <body> <stopping-condition>)

The following piece of code:

3too darn long to compute



(progn

(connected-regions-with-property top-edge)

(while-element

false

(above-marker Ml)))

looks for the first area of top-edges that is above marker M1 or returns false to indicate

that there are none. Figure 3-9 shows pseudocode for the iterator's operation. First, the

iterator is created by connected-regions-with-property and placed in the environment. Next,

the loop is begun. The loop binds to the only iterator in the environment and invokes it,

which moves the attention marker to the first top-edge region, if there is one. If not, the

loop returns false and exits. If so, the body of the loop -false - is evaluated. This is a

no-operation and has no effect. Next the stopping condition is evaluated - (above-marker

Ml). If this is true, the loop terminates with value true. If false, it then invokes the iterator

again. This process is repeated until the iterator visits all valid points or the stopping

condition is met.

Iterators are used to implement the line-scanning, ray-scanning and visual search

indexing routines discussed by Ullman. Several of the function primitives described

below create and add iterators to the environment, and another one allows looping over

an iterator. Loop operators are in general dangerous to add to GP primitive sets, since

infinite loops are common in randomly created programs. These can be patched by placing

a maximum iteration count on each loop, but this is often inefficient, since most programs

will then use the maximum. Iterators were specifically designed to force the loops in our

system to be not just bounded, but efficiently bounded. In other words, it is still undesirable

if loops are bounded but that bound is four hundred quadrillion iterations. By efficient

bounding, we mean that any loop must be bounded by the number of pixels in the image.

This also implies that we cannot allow nested looping. Therefore, for this research, only

one iterator was allowed in the environment at a time. This is reasonable since it seems

unlikely that a system should need to perform two searches simultaneously.

iterator creation and state An iterator contains state which allows it to remember which

points it has visited and compute the next point it must visit. The iterator must remember

what line it is searching along and what property it is searching for on that line. It must



1. Iterator I is created and placed in environment.

2. A looping function (while-element) is called.

3. While still looping:

(a) Invoke iterator to move attention marker to next location.

(b) If no next location, exit loop and return false.

(c) Evaluate body of the loop, which is not allowed to call another loop function,
since the iterator is in use.

(d) Evaluate stopping condition.

(e) If stopping condition is true then destroy iterator and return true. Else, continue
loop.

Figure 3-9: Use of an iterator object by a loop.

also remember what points it has already visited on that line so that it does not return to

them. It also has a search state (pristine in this example) associated with it. A visual routine

can create an iterator with certain initial state, such as which line and which property, and

place it in the environment to be used by a loop. A newly created iterator is said to be

pristine.

invocation After an iterator is created, it can be invoked by a looping operator. A looping

operator invokes the iterator it is bound to once per loop iteration. Each time the loop

invokes the iterator, the iterator moves the attention marker A to the next valid location

as specified by its state, if any. It follows that iterators can be in three search states -

pristine, active, and exhausted. Pristine iterators have been created but not invoked. Active

iterators have been invoked at least once by a loop, implying that a search is in progress.

Exhausted iterators have visited all their valid locations and can index no other valid

points. Pseudocode for the use of an iterator is shown in Figure 3-9.

sneaky infinite loops One problem discovered with having only one iterator is that

infinite loops can still occur if a function creates a new iterator while another active iterator

exists. Since there can be only one iterator, one must be removed from the environment.

If the active iterator is removed, the search loop will then invoke the new iterator on the



next iteration. If a new iterator is created like this each iteration, the loop will be infinite

- each time through the loop the iterator state is reset by making a new one. The correct

answer is that the new iterator is not placed in the environment and the function trying to

create it fails.

preemptive looping Notice that although only one iterator can exist in the environment,

a program can have several calls to loop functions. Sometimes they bind to different

iterators (i.e. one loop call is not in the body of another) and sometimes they bind to

the same one (for example, when the body of one loop contains another loop). The final

problem with iterators was that a new loop function could be evaluated while another

was in effect - that is, in the body of the outermost loop. While this does not produce an

infinite loop, it would ruin the idea that the upper search loop was performing a sequential

search, since the lower search would preempt its authority and exhaust the iterator itself.

Although this is probably not catastrophic, it would make programs harder to analyze.

One solution is to bind an iterator to the instance of the looping operator that first invokes

it and then just ignore any other function's request to invoke the iterator, similarly to

above. For no particular reason, a different approach was taken: if an instance of any

other function besides the one that first activated the iterator attempts to use it, a signal

is raised which stops the computation at that point and causes its fitness to be calculated

immediately.

exception exploitation Exceptions can be exploited by the evolution in the following

manner: let us say that the current point (location of the attention marker) is the point

being looked for by the search - the answer. Normally, loops have stopping conditions

associated with them. Thus, the program at that point should stop the loop. Unfortunately,

it is very likely that code evaluated after the loop will then move the marker away from

the answer. If, however, the program intentionally calls a second search loop and causes

an exception, the program will be evaluated for fitness immediately, with no chance for

later code to break things. This is a surprising side-effect of the implementation which was

noticed after the fact.

3.4.4 Functions



Name Return type Arguments

predicates and booleans

not boolean (boolean)
has-property boolean (property)
is-on boolean ()
right-of-marker boolean (marker)
left-of-marker boolean (marker)
above-marker boolean (marker)
below-marker boolean (marker)

non-iterator environment effectors

move-attention boolean (direction)
move-attention-percent boolean (direction, percent)
attend-to boolean (marker)
place-marker boolean (marker)
draw-line boolean (marker)

iterator creators
scan-in-direction boolean (direction)
scan-along-line boolean 0
property-scan-in-direction boolean (property, direction)
property-scan-along-line boolean (property)
connected-regions-with-property boolean (property)

control flow
if-then-else boolean (boolean cond, boolean if, boolean then)

progn boolean (boolean al, boolean a2,..., boolean a1O)

while-element boolean (boolean body, boolean stopping)

Table 3.5: Imperative Functions

The imperative function set is summarized in Table 3.5 4. The table is divided into

sections which divide the functions conceptually. Notice that all functions return the same

type - boolean. This is possible since the "answer" of the program is considered to be

the value of the attention marker A when the program exits. The actual root return value

is ignored for fitness calculations. This does not mean the the system is closed under type,

since the arguments are not all boolean.

Predicates and booleans

First in the list are the predicates and boolean functions. Currently the only boolean

function is not. The and and or functions were left out since it is possible to use nested

if-then-else functions to emulate their behavior.

The has-property function returns whether or not the attention point has the property

4Notice that some "functions" have no arguments. Strictly, these should be called "terminals," since they

terminate the tree at that point. Since they perform computation, however, I choose to put them in the function

set. This makes it easier conceptually to describe the system. I use "terminals" to decribe variables and other

objects which perform no computation.



specified by the argument. The function queries the appropriate property map in the base

representation.

The is-on function is a redundant function which tells whether the attention point is

inside the figure (silhouette) or not and is identical in function to (has-propertyfigure).

The four relational predicates left-of-marker, right-of-marker, above-marker and below-

marker return whether or not the attention marker is left of, right of, above or below the

marker given in the argument.

Environment effectors

Next is the set of functions that effect the environment, but do not create iterators. All

of these functions return true arbitrarily. They all also implicitly reference the attention

marker.

The move-attention function moves the attention marker one pixel location in the direc-

tion specified by the argument. This is clamped to remain inside the image region - the

marker cannot move outside of it.

The move-attention-percent functioned was added in order to allow larger jumps of

the attention marker than one pixel. It moves the marker in the direction specified by

the direction argument by a percentage given by the percent argument. This percentage

specifies how far towards the edge of the image to move. That is, how far along the

remaining distance to the edge to move. For example, moving 100% to the right would

put the marker on the right edge of the image and moving 0% in any direction will not

move it at all.

The place-marker function sets the position of the marker argument to the current atten-

tion location in order to specify that point.

The attend-to function is the inverse of place-marker. It moves the attention marker to

the point indexed by the marker argument.

The draw-line function replaces the current line object in the environment with a new

line. The new line is specified as going from the attention marker to the marker given in

the argument.

There is no function to explicitly create a ray. Rays are created implicitly by the scan-

in-direction functions defined below.



Figure 3-10: The property-scan-along-line function

Iterator creators

The iterator creating functions do just that - create iterators. Much like draw-line, they

do not really perform any computation. To simplify the discussion, the operation of each

function's iterator will be described along with the function, since there is a one-to-one

correspondence between them - each function creates a special type of iterator.

The property-scan-along-line function creates an iterator that scans along a line for bound-

aries of regions composed of the given property. The function uses the line intermediate

object from the environment as the line to scan along, if one has been created already. If

no line exists, the function returns false and has no effect. If another iterator exists in

the environment already, the function also has no effect and returns false. If there are

no iterators in the environment, the function creates a pristine iterator with information

about the line and property contained within it and returns true to signify it succeeded.

An important point to mention here is that the line is stored by value in the iterator, not

by reference. In other words, if the line object in the environment is changed while the

iterator exists, the iterator's state will not change.

Figure 3-10 illustrates the property-scan-along-line iterator's operation. When first in-
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Figure 3-11: The connected-regions-with-property function

voked by a looping function (while-element, described below), the iterator scans along the

line from the first point toward the second point. If it finds any point along the way with

the property, it indexes that location, i.e. sets the attention marker to that location. It also

remembers which point it last indexed. Once it has already found a point with the prop-

erty, the next invocation will look for the next point along the line without the property, in

order to produce the boundary finding behavior desired. This behavior continues for each

call, alternating between looking for the next point with or without the property. When it

reaches the other end of the segment it informs the loop that it failed. It is then marked

exhausted and is destroyed. In Figure 3-10, the four points marked by crosshairs will be

returned in the the order shown, one for each subsequent invocation of the iterator. On the

fifth invocation, the iterator will reach the final point, inform the loop that it is exhausted

and will destroy itself.

The property-scan-in-direction function is very similar to property-scan-along-line. Instead

of creating an iterator than scans from one point to another, it creates an iterator that scans

from a point along a cardinal direction. An iterator it creates also indexes boundary points

in the order it encounters them, but does not exhaust itself until it hits the edge of the

Region with property

* Region centroid



image. When this occurs it informs failure and destroys itself.

The scan-in-direction and scan-along-line functions are both redundant convenience func-

tions which are equivalent to their property- counterparts withfigure as the property argu-

ment.

Finally, connected-regions-with-property creates an iterator that indexes successive points

which correspond to the centroids of all the connected components of a given property.

For example, consider Figure 3-11. The iterator will index each of the centroids, signified

by a crosshair, of the property components (blobs). Each blob will only be indexed once.

Also, points are indexed in an arbitrary order. These iterators contain an inhibition map

in order to only return each region once. Inhibition maps are described in [Ullman, 1984]

and [Chapman, 1992]. They are basically bitmaps which store whether a point is inhibited

or not. Points are inhibited when they are visited. Thus, an uninhibited point has not been

visited.

When invoked, the iterator looks for an uninhibited point in the property map specified.

It then grows a connected component by adding all uninhibited neighboring points with

the property to the component, recursively. Once the blob is grown, the entire blob is

inhibited, and the centroid of it is indexed. This procedure is repeated each invocation

until there are no uninhibited points with the property, at which time the iterator is

exhausted. An iterative connected components algorithm is described more formally in

Figure 3-12. The Neighbors function returns the set of points adjacent to the argument

point, regardless of property or inhibition. The neighbors of a point are defined as the

eight points surrounding the point, one for each of the principal eight compass directions.

Control flow functions

The last set of functions are used for program control flow. The progn operator is allows

a block of functions to be called where normally only a single function can be called. The

progn function evaluates each of its arguments in turn and returns as its value the value of

the last argument's evaluation. The GP system used for this research allowed functions to

have variable numbers of arguments, so progn can have from two to ten arguments. This

number is chosen when an instance of a progn primitive is created and remains fixed in the

future.

The if-then-else operator performs conditional evaluation. First it evaluates its first



1. Let C be the component and S a set which contains points being processed and p the

point to grow the component around.

2. Initialize C <- 0 and S +- 0.

3. Addp toS.

4. While Is E S:

(a) Remove s from S.

(b) If s has the property, is uninhibited, and is not already in C then:

i. Add s to C.

ii. Inhibit s.

iii. Add Neighbors(s) to S.

5. Return C.

Figure 3-12: A connected-component algorithm.

argument, a condition. If the condition is true, it evaluates only its second argument, the

then-clause. If it is false, it only evaluates its third argument, the else-clause. It is important

in an imperative system that the evaluation is conditional. In a normal LISP evaluator,

the arguments are all evaluated first, then the function is called on the arguments. This

behavior would be devastating in a side-effecting system, where only one argument should

be evaluated.

The last function is while-element:

(while-element body stopping-condition)

This is the loop function which was referred to in the discussion of iterators (see Sec-

tion 3.4.3). When evaluated, the while-element operator checks to see if there is an iterator

in the environment. If not, it returns false. If there is already an active iterator, a program-

terminating exception is raised as described earlier. If there is a pristine iterator, it begins

looping. A loop progresses as follows:

1. If the iterator is exhausted, destroy it and return false.

2. Otherwise, invoke the iterator to move the attention point to the next location.

3. Evaluate the body.



4. Evaluate the stopping condition.

5. If the stopping condition is false, go to 1. and continue.

6. If the stopping condition is true, destroy the iterator and return true.

The while-element function is designed to perform a visual search which evaluates code

at each indexed point and decides whether it has succeeded (via the stopping condition) or

not. Since iterators are guaranteed to be bounded and since an iterator cannot be replaced

or removed during a loop except when the loop exits, looping is guaranteed to be bounded.

3.4.5 Rationale and Motivation

Contrary to the method in which primitives were chosen in the functional case, the imper-

ative primitives that were chosen had two main properties:

* They were in the spirit of the visual routines theory, or taken directly from Ullman's

suggestions

* They seemed general and reuseable for other tasks

These properties are important if GP is to be useful for solving active vision problems in

general, since it is undesirable to have to write a new set of primitives for every new visual

task. We would prefer to throw a huge set of common primitives at each new problem and

have evolution figure out which ones to use. Ullman argued that visual routines theory

addresses this problem, which is the main reason it was chosen as a basis for this research.

We discuss this more in Section 5.10.

The original primitive set was created by considering the set of primitives proposed by

Ullman and Chapman. The original set also had a more general looping construct which

was later changed into an iterator after pilot tests failed due to infinite loops.

A hand-coded solution using the imperative primitives was actually not attempted

until after the GP runs were performed, so it was not clear whether the set was sufficient or

not at the time of its creation. In fact, it was difficult at first to find a hand-coded algorithm

using them that worked at all.



3.4.6 Implementation Details

Again, the implementation had be done using a serial machine. Caching of property maps

as discussed in Section 3.3.5 was also performed for the imperative system. In addition,

since the property maps did not change, the connected components could be cached.

Results for experiments with this set of primitives are discussed in Section 4.3.



Chapter 4

Experiments and Results

The genetic programming system described in Section 3.2.1 was used to evolve visual

routines with the functional primitives and with the imperative primitives. The main

objective of these experiments was to show that GP could automatically evolve programs

that were:

" Accurate

* Not catastrophic when inaccurate

" Able to generalize to cases outside the training set

Accuracy was defined as being at least as accurate as the best program a human could

create in about an hour. Catastrophic failure was defined as placing the answer someplace

not even close to the right answer, like on the head or the other hand. Inaccuracy can be

tolerated occasionally if the misses are near misses. The ability to generalize was defined

as also being able to solve cases not in the training set of fitness cases for the GP. This is an

important criterion to check in all machine learning algorithms to make sure the system is

not overfitting the samples. If these objectives could be satisfied by GP, the solutions could

be used in the real ALIVE system.

An important secondary objective was to show that fairly general, low-level visual

routines which seemed reusable could solve this task efficiently. This is important if the

claim that GP is a good way of solving multiple active vision tasks more efficiently than by

programming them by hand is to be demonstrated. We believe the operators are reusable

since Chapman successfully used them for many different visual tasks [Chapman, 19921.



This was the driving force behind performing the imperative tests even after the functional

tests were successful. This will be discussed in depth in Section 5.10.

This chapter is divided into three main sections - experimental methodology, func-

tional results and imperative results. Results will be presented - in-depth discussion and

interpretation of the results will be reserved for Chapter 5.

4.1 Methodology

The results for each series of runs are divided into seven main sections:

* Parameter values and primitives

9 Hand-coded solution

* GP run results

* Best program statistics

* Non-triviality tests

* Mirror case generalization tests

* Random subsampling generalization tests

4.1.1 Parameter setting

Except where noted otherwise, parameters were chosen intuitively and not tweaked.

Population size and maximum generation were chosen to make a run complete within

a few hours and were chosen after one pilot run.

4.1.2 Hand-coded solution

A hand-coded program was created for each hand and for each set of primitives in order

to compare with the evolved programs. These were tweaked until the author's attention

span waned, usually within a half hour to forty-five minutes.



4.1.3 GP run results

Multiple GP runs were performed for each hand and for each approach in order to collect

statistics on convergence rate and performance (best program found). These results are

shown mainly by three types of graphs. The first type shows the sample mean and

standard deviation over all the runs of the best of generation program's hits. This serves

to show on average how quickly the runs converge, to what average value they tend to

converge (asymptote of the mean curve) and how widely distributed the best program

found is (standard deviation from the mean curve). The second graph is similar to this,

but plots best of generation fitness rather than hits. Finally, some of the experiments have

a histogram showing the distribution of hits for the best of run program over all the runs.

This gives an idea of how likely it is that a run will produce a good program.

4.1.4 Best program statistics

The best program over all the runs is tested on the fitness cases and an accuracy assigned

to it based on the percentage of fitness cases it gets hits on. Its solutions are compared

graphically with the desired solutions using a picture showing each fitness case, the desired

location and the program's result. The program itself is either included in the text or is

referred to in the appendix if it was too long. If possible, the program is analyzed.

4.1.5 Non-triviality test

In order to show that the solution to the problem is not trivial given the primitives, a

solution was searched for using pure random search rather than GP. The distribution of

fitness for the random programs characterizes the hardness of the problem. The best results

for the random search and GP can then be compared in order to show that the GP is more

efficient than random search. In order to compare results, a number of random programs

equivalent to the number of programs evaluated in a GP run were created and evaluated

for fitness. In general, if a population of size p is run for n generations, n -p individuals

are evaluated.



4.1.6 Generalization tests

Since it is unfair in a sense to test the evolved solutions on the training set, generalization

tests were done to test whether the solutions were general or only worked on the fitness

cases (this is called overfitting the training data). This is done by evaluating the best

solutions on a test set which contains examples not in the training set. Two types of

generalization tests were performed - mirror case testing and random subsampling testing.

For some of the generalization tests, the hit constraint was relaxed from 3 pixels to 5 pixels

since many of generalization misses seemed to be really close visually.

Mirror cases

Mirror cases are created by reflecting the training cases through the vertical axis. These

are essentially "new" cases to the programs. This method of generalization testing has

the added advantage that it allows us to compare the generalization test results with the

programs specifically evolved to find the hands on the other side. In other words, testing

an evolved left hand program on mirror cases effectively is asking it to find right hands

in the image. Its generalization results can then be compared to the programs evolved to

find right hands.

Random Subsampling

Another common method for testing generalization of solutions in machine learning is

called random-subsampling [Weiss and Kulikowski, 19911. Random subsampling involves

dividing the full set of training samples into two sets at random - the training set and

the test set. Only the training set is used during evolution. Then, the best solution is

tested on the test set in order to see if it can generalize. This is done multiple times to get

a distribution of generalization ability. Random subsampling is a useful method since it

gives an idea of how much the training set matters in the learning - a high variance implies

the algorithm is sensitive to the training set. Random subsampling is often specified by

the percentage of programs used in the training set and the test set. In these experiments,

80% of the original 46 cases were randomly chosen as training examples and the remaining

20% were used as the test examples.



Experiment Hit Accuracy
Left Hand Runs

Best hand coded, fitness cases .87
Best evolved, fitness cases .93
Best evolved, mirrored generalization .57
Random subsampling, .8 /.2 random dataset split 0.77 t 0.21, N=35

Right Hand Runs
Best hand coded, fitness cases .57
Best evolved, fitness cases .70
Best evolved, mirrored generalization .59
Random subsampling, .8 /.2 random dataset split 1.267 i .163, N=17

Table 4.1: Summary of Results Over All Functional Runs

4.2 Functional Approach

A summary of the best results from all the runs using functional primitives appears in

Table 4.1. Hit accuracy is defined as the number of hits divided by the number of fitness

cases. For the random subsampling tests, the number of samples to calculate the mean and

standard deviation (N) is given. Runs took on average an hour each on a Silicon Graphics

Indigo2 R4400 machine.

4.2.1 Run parameters

The functional system was run on the fitness cases described above, using a population size

of 500. Copy percent was zero, internal crossover was 70%, global crossover was 15% and

mutation was 15%. The effective copy rate was still about 10% due to failed crossoversi,

however. The initial program maximum depth was five, the maximum program depth

after crossover or mutation was eleven, and the maximum mutation subtree depth was

four. The run parameters are summarized in Table 4.2. A parsimony constraint was added

for these runs as well - the value of a in the fitness function (Equation 3.3) was 0.1 and

the error coefficient -y was 1.0. All of these parameters were chosen intuitively and did

not need to be tweaked in order to get good results, which is important since the goal is

to avoid parameter tweaking. The entire set of primitives in Table 3.1 and Table 3.2 was

used.

'When crossover cannot be completed due to size restraints, it fails and the parents are copied.



Run Parameters
Population Size 500
Max generations 200
Parsimony constraint 0.1 * Size (added to fitness)

Probability of Genetic Operators
Copying 0%
Internal Node Crossover 70%
Any Node Crossover 15%
Mutation 15%

Selection Method
Tournament 3 programs

Creation Method
Ramped Half-and-half

Depth Constraints
Maximum depth of initial tree 5
Maximum depth of mutant subtree 4
Maximum depth of program after operator 11

Table 4.2: Functional Run Parameters

4.2.2 Left Hand Runs

Hand-coded solutions

We describe the progression of programs written for this task rather than given the final

program. The first hand-coded solution received only 4 hits and a standardized fitness of

78.6. It was:

(leftmost-point

(find-bottom-edge

ti

(point-between tl br 20% 90%)))

This just looks for a bottom edge in a window on the left side of the image. It returns

the leftmost maximal correlation point. Since the correct locations are defined as the center

of the hand, this doesn't often get close enough for a hit. The next hand-coded program

was better:

(point-between

(leftmost-point

(find-top-edge tl (point-between tl br 20% 90%)))

(leftmost-point



(find-bottom-edge tl (point-between tl br 20% 90%)))

50%

50%)

This finds a top and bottom edge and averages them, hoping to get the center of the hand.

This gets 12 hits and a fitness of 79.12. The best hand-coded left-hand program, which

took about an hour of tweaking, was:

(pt- (leftmost-point

(find-bottom-edge tl (point-between tl br 20% 90%)))

(pt- (point-between tl centroid 0% 10%) tl))

This gets 40 hits (87% accuracy) and a fitness of 26.64. It finds the bottom edge of the hand

and moves the answer up a little. A better solution could not be found after a half hour of

fiddling.

GP run convergence

Results for the left hand runs are summarized in Figures 4-1 and 4-2. These figures

represent the best of generation individual's hits and fitness, averaged over twelve separate

runs. The error bars show a sample standard deviation from the mean. 2

Best program statistics

The best evolved left-hand program found across all runs was:

(point-between

(leftmost-point

(find-bottom-edge

ti

(leftmost-point

(find-bottom-edge

(point-between tl br 20% 70%)

(leftmost-point

(find-bottom-edge

2Notice that the best evolved program's hits actually fall within the bars, suggesting that the error bars

do not give an perfectly accurate description of the distribution. This is probably due to the fact that only

twelve points are used to calculate the sample standard deviation, which is not enough to produce a normal

distribution.
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Figure 4-1: Best Functional Left-Hand Program in Each Generation
- Hits: Population: 500. Copy: 0%. Crossover: 85%. Mutate: 15%.
46 fitness cases. Mean and Std. Dev. over 12 trials.
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15%. 46 fitness cases. Mean and Std. Dev. over 12 trials.
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(point-between tl centroid 0% 90%)

(point-between tl br 0% 80%)))))))

tl 30% 10%)

which received 43 hits out of the possible 46, for an accuracy of 93%. Its predictions are

shown as the left-hand solutions in Figure 4-3. The program can be simplified by hand to:

(point-between

(leftmost-point

(find-bottom-edge

ti

(leftmost-point

(find-bottom-edge

(point-between tl br 20% 70%)

(point-between tl centroid 0% 90%)))))

tl 30% 10%)

This finds the leftmost bottom edge in a small window on the central left edge of the image.

It then finds the leftmost bottom edge between that point and the top left of the image.

Finally it moves that point slightly left and slightly up and returns it. Essentially, this is

performing a similar computation to the hand-coded solution, but with finer windows and

parameters. It is also unclear how the two-layer leftmost edge-finding helps.

Proof of nontriviality

Clearly most runs had converged by 100 generations. Since this is equivalent to evaluating

50,000 individuals, (500 per generation times 100 generations) we decided to compare

results against 50,000 randomly created programs (with no evolution). These results are

presented in Figures 4-4 and 4-5. Note that the y-axis is logarithmic scale. Most random

programs get zero hits. The best received 15 hits.

Mirror case generalization

Testing the best left-hand program on the 46 flipped cases produced 26 hits (57% accuracy)

and a fitness of 53.3. This is not as good as the evolved version for the right hand which

receives 32 hits (70%), but is still not bad. The program is performing some generalization.

Also, the right-hand fitness cases (which essentially are what the mirrored cases are) are

harder than the left-hand cases. This is discussed more in Chapter 5.
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Figure 4-5: Binned fitness histogram for 50,000 functional left-hand
programs generated randomly and not evolved. Note: y-axis is log
number of programs.



Random subsampling

Twenty-two random subsampling runs were done for the left hand GP search. Eighty

percent of the 46 fitness cases (30) were chosen randomly to serve as the fitness cases for

each separate run. A best solution was evolved for each of these sets of fitness cases and

tested against the remaining 10 cases. Results were promising: a mean accuracy of 77% i

21% was attained.

4.2.3 Right Hand Runs

Hand-coded solution

The best hand-written right-hand program was:

(pt-

(rightmost-point

(find-bottom-edge (point-between tl br 80% 0%) br))

(pt- (point-between tl centroid 0% 10%) tl))

which received 26 hits (57%) and a fitness of 54.67. This does the mirror image of the

left-hand program, looking in the right 20% of the bounding box for the rightmost bottom

edge and moving it up a little.

GP run convergence

Results for the right-hand runs are summarized in Figures 4-6 and 4-7, similarly to the left

hand runs.

Best program statistics

The best right-hand program evolved across all runs was:

(rightmost-point

(find-top-edge

(point-between

(rightmost-point

(find-top-edge

(rightmost-point

(find-bottom-edge
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Figure 4-6: Best Functional Right-Hand Program in Each Generation
- Hits: Population: 500. Copy: 0%. Crossover: 85%. Mutate: 15%.
46 fitness cases. Mean and Std. Dev. over 15 trials.
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Figure 4-7: Best Right-Hand Program in Each Generation - Fitness:
Population: 500. Copy: 0%. Crossover: 85%. Mutate: 15%. 46
fitness cases. Mean and Std. Dev. over 15 trials.
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(point-between br centroid 0% 60%)

(point-between

(point-between br centroid 0% 60%)

centroid

80% 90%)))

(point-between

(leftmost-point

(find-bottom-edge

(point-between tl centroid 80% 60%)

(point-between br centroid 0% 60%)))

(point-between tl tl 80% 10%)

0% 40%)))

(rightmost-point

(find-bottom-edge

(point-between br centroid 0% 60%)

(point-between tl centroid 80% 90%)))

100% 10%)

(point-between

centroid

(rightmost-point

(find-bottom-edge

(point-between tl br 80% 40%)

(point-between

centroid

(point-between br br 60% 30%)

100% 80%)))

100% 70%)))

which received 32 hits, for an accuracy of 70%. Its predictions are shown as the right hand

answers in Figure 4-3. A surprise was that it managed to get case 34 correct, where both

hands are on the same side of the body. It also failed to get seemingly easy ones, such as 6

and 25.

This program is large and thus harder to analyze. The fact that the topmost two

functions are rightmost-point andfind-top-edge implies that is it finding the rightmost top

edge in a window that it defines in a complex manner (i.e. the rest of the program).
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Figure 4-8: Hit histogram for 50,000 random functional right-hand
programs. Note: y-axis is log number of programs.

Proof of nontriviality

50,000 random programs were also created for the right-hand programs. The histograms

for these experiments are shown in Figure 4-8 and Figure 4-9. Once again, the random

solutions are much worse than the evolved solutions.

Mirror case generalization

As in the left hand program, the best right-hand program was tested on the mirrored

fitness cases as well. It gets 27 hits (59%) and a fitness of 54.5. This is not nearly as good

as the evolved programs for the left side, but is still much better than random. Clearly

some generalization is occurring. A reasonable explanation for the poor performance is

that there were less "good" fitness cases in the right hand set from which to learn, hobbling

the evolution. It also had to trade-off for solutions it could not solve.

Random subsampling

Seventeen random subsampling runs were performed. These resulted in a mean accuracy

of .266 (12 hits) and a standard deviation of .163 (6 hits) (.266 i .163, N = 17).
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Figure 4-9: Binned fitness histogram for 50,000 random functional
right-hand programs. Note: y-axis is log number of programs.

4.3 Imperative Approach

Experiments similar to those described above were done using the imperative primitives

as well. Programs were evolved separately for finding the left hand, right hand and

additionally for this section, the head. The results over all the runs are summarized in

Table 4.3. Runs took on average several hours each on a Silicon Graphics Indigo2 R4400

machine. In general, they took longer than the functional runs. This is almost definitely

due to the lack of parsimony constraint for these experiments - the imperative programs

tended to get very large towards the middle of the run.

4.3.1 Run parameters

The markers - including the attention point - were all initialized to (0, 0), the top left

corner of the image. Unless specifically mentioned, the parameters in the fitness function

(Equation 3.3) were fixed over all runs described in this section. The coefficient of the

error term, y, was 1.0 and the parsimony constraint coefficient, a, was set to 0.0. The

lack of parsimony constraint meant programs were allowed to grow as large as the depth

constraint allowed.



Experiment Hit Accuracy
Left Hand Runs

Best hand coded, training set (hit radius 3 pixels) .67
Best hand coded, training set (hit radius 5 pixels) .87
Best evolved, training set .98
Best evolved, mirrored generalization (hit radius 3 pixels) .48
Best evolved, mirrored generalization (hit radius 5 pixels) .63
Random subsampling, .8/.2 random dataset split 0.711 i 0.227, N=35

Right Hand Runs

Best hand coded, training set (hit radius 3 pixels) .39
Best hand coded, training set (hit radius 5 pixels) .52
Best evolved, training set .76
Best evolved, mirrored generalization (hit radius 3 pixels) .48
Best evolved, mirrored generalization (hit radius 5 pixels) .85
Random subsampling, .8/.2 random dataset split .314 ± .185, N=20

Head Runs
Best hand coded N/A
Best evolved, training set .98
Random subsampling, .8 /.2 random dataset split .740 i .111, N=10j

Table 4.3: Summary of Results Over All Imperative Runs

4.3.2 Left Hand Runs

Programs were evolved for finding the left hand using the set of primitives in Table 4.4.

Notably, the move-attention-percent was not used for these runs. It was created for the right

runs since it seemed that initializing the markers to the top left made it hard for the right

evolution to move the marker far enough to the right to solve the problem. Parameters for

the left hand runs are summarized in Table 4.5. No mutation was allowed mainly to see if

only crossover was powerful enough to solve the problem. Initial results were quite good,

so mutation was left at zero.

Hand-coded solution

Programming a solution using these primitives was not obvious. The primitives were not

selected with hand-finding in mind but were mainly taken from Ullman and Chapman,

so the author did not have a notion of how to use them. After about fifteen minutes, the

following program was written:

(progn



Functions [ Terminals
not
has-property
is-on
right-of-marker
left-of-marker
above-marker
below-marker
move-attention
while-element
attend-to
place-marker
draw-line
scan-in-direction
scan-along-line
property-scan-in-direction
property-scan-along-line
connected-regions-with-property
if-then-else
progn

true
false
M1, M2
up
down
left
right
top-edge
bottom-edge
left-edge
right-edge
figure
null

Table 4.4: Imperative Primitives For Left Hand

Run Parameters
Population Size 500
Max generations 200
Parsimony constraint None

Probability of Genetic Operators
Copying 0%
Internal Node Crossover 50%
Any Node Crossover 50%
Mutation 0%

Selection Method
Tournament 3 programs

Creation Method
Ramped Half-and-half

Depth Constraints
Maximum depth of initial tree 5
Maximum depth of mutant subtree 4
Maximum depth of program after operator 10

Table 4.5: Imperative Left Hand Run Parameters



(move-attention-percent right 100%)

(place-marker M1)

(connected-regions-with-property bottom-edge)

(while-element

(progn

(if-then-else (left-of-marker M1)

(place-marker Ml)

true))

false)

(attend-to M1)

(move-attention up)

(move-attention up)

(move-attention up))

Essentially, the function this program computes is "find the leftmost bottom-edge region,

then move up a little." It initializes M1 to the right edge and then loops on all bottom-edge

regions, updating M1 to always contain the leftmost of these regions. When the loop

finishes, it attends to M1 and moves up a little to center on the hand. This program got 31

out of 46 hits (67% accuracy) in a hit error radius of 3 pixels, and 40 hits for a hit radius

of 5 pixels (87%). Unfortunately, the program exhibits catastrophic failure on several hard

cases, where it places the answer on the left foot.

GP run convergence

Results for the left hand runs are shown in Figures 4-10 and 4-11. The main curve in each

graph shows the mean best of generation values - the best of generation program's hits

or fitness, averaged over all runs. The error bars show a sample standard deviation from

the mean. Notice that this is not necessarily an accurate measure since the maximum

possible number of hits falls within a standard deviation of the mean, but it gives an idea

of variation over runs. A better graph for showing performance over multiple runs is

Figure 4-12, which shows a histogram of the maximum number of hits for each run.

Best program statistics

The best program found over all runs received 45 hits. This is better than the best in the

functional runs, which received only 43. (A full comparison between the two styles can

be found in Chapter 5). It misses only one case, where the hand is completely invisible.
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Figure 4-10: Best Imperative Left-Hand Program in Each Generation
- Hits: Population: 500. Copy: 0%. Crossover: 100%. Mutate: 0%.
46 fitness cases. Mean and Std. Dev. over 19 trials.
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Figure 4-11: Best Imperative Left-Hand Program in Each Generation
- Fitness: Population: 500. Copy: 0%. Crossover: 100%. Mutate:
0%. 46 fitness cases. Mean and Std. Dev. over 19 trials.
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Figure 4-12: Histogram of Maximum Hits Received for Each Imper-
ative Left-Hand Run Over 19 Runs

Figure 4-13 shows the best program's solutions. The + is the program's answer and the

X shows the desired solution. The program is quite large and difficult to analyze; it is

included in Section A.1.

Proof of nontriviality

As in the functional experiments, random programs were also generated in order to ensure

that the problem was non-trivial and that GP was advantageous. Since the imperative runs

converged more slowly, 100,000 random programs were created in order to parallel the

computational expenditure of the GP - a population size of 500 times 200 generations

equals 100,000 evaluations. Results are shown in the logarithmic histogram in Figure 4-14.

The best found got only 16 hits. For these experiments in particular since only crossover

was allowed, GP is performing quite well.

Mirror case generalization

Mirror generalization tests were also done. The best program evolved receives 22 hits, or an

accuracy of 4 8%. Qualitatively, results are actually better than this, since the requirement
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Figure 4-14: Hit histogram for 100,000 imperative left-hand pro-
grams generated randomly and not evolved. Note: y-axis is log
number of programs. Maximum was 16 hits.

that a hit be within three pixels is very stringent. Testing was redone using 5 pixels as the

radius for a hit - the program receieved 29 hits, for an accuracy of 63%. Unfortunately,

this program misses many of the first cases, placing the marker on the foot.

Random subsampling

Over 35 random subsampling runs using 80% of the 46 fitness cases as training data and

the remaining 20% as test data, a mean accuracy of 0.711 with a sample standard deviation

of .227 was achieved (0.711 i .277, N = 35). This corresponds to 32.7 t 12.7 hits.

4.3.3 Right Hand Runs

For the right hand runs, the same primitives as in Table 4.4 were used, except move-

attention-percent was added since early runs could not easily move the attention marker to

the left side of the image, leading to poor initial results.
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Hand-coded solution

The mirror equivalent of the left-hand program was used for the right. Specifically:

(progn

(connected-regions-with-property bottom-edge)

(while-element

(progn

(if-then-else

(right-of-marker M1)

(place-marker M1)

true))

false)

(attend-to M1)

(move-attention up)

(move-attention up)

(move-attention up))

This program is not very good. It only gets 18 hits, or 39% accuracy.

GP Convergence

For the first series of runs, the same parameters as in Table 4.5 were used. Figure 4-16 is a

histogram of maximum hits over all 20 of those runs. Since the results were not as good

as expected, mutation was added hopefully to nudge the evolution out of local minima. It

helped only slightly - the histogram of maximum hits for runs with mutation at 10% is

shown in Figure 4-17. Plots of the mean best of generation hits and fitness for the second

set of runs are presented in Figure 4-18 and 4-19. As in the functional experiments, the

convergence is slower and with a wider variance.

Best program statistics

The best individual over all runs received 35 hits (76% accuracy), which is only slightly

higher than the functional maximum of 32 hits. This individual's results are shown in

Figure 4-20 and the actual program text is included in Section A.2.
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Figure 4-16: Histogram of Maximum Hits Received for Each Imper-
ative Right Run Over 20 Runs (no mutation)
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ative Right Run Over 20 Runs (with mutation)
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Figure 4-18: Best Imperative Right-Hand Program in Each Genera-
tion - Hits: Population: 500. Copy: 0%. Crossover: 90%. Mutate:
10%. 46 fitness cases. Mean and Std. Dev. over 20 trials.
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Figure 4-19: Best Imperative Right-Hand Programs - Fitness: Pop-
ulation: 500. Copy: 0%. Crossover: 90%. Mutate: 10%. 46 fitness
cases. Mean and Std. Dev. over 20 trials.
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Figure 4-21: Hit histogram for 100,000 imperative right-hand pro-
grams generated randomly and not evolved. Note: y-axis is log
number of programs. Maximum was 6 hits.

Proof of nontriviality

The results of evaluating 100,000 random programs are illustrated in Figure 4-21. Again,

the random programs are poor, getting a maximum of six hits.

Mirror case generalization

This program was also run on the mirrored fitness cases, as above, to test for generalization.

The results of this test are shown in Figure 4-22. Although it receives only 22 out of 46

hits (48% accuracy), the figure shows that it only misses the ones it misses by one or two

pixels, and never fails catastrophically. Indeed, when the hit constraint is relaxed to within

5 pixels (still often withing the area of the hand), the program gets 39 out of 46 hits, or 85%

accuracy.

Random subsampling

Finally, 20 random subsampling runs were done. The mean accuracy was 31% with a

sample standard deviation of 19% (.313 ± .185, N = 20). This is equivalent to 14 ± 9,
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Figure 4-23: Best Imperative Head Program in Each Generation -
Hits: Population: 500. Copy: 0%. Crossover: 100%. Mutate: 0%.
46 fitness cases. Mean and Std. Dev. over 20 trials.

which is not exceptional.

4.3.4 Head Runs

As an additional experiment with the imperative primitives, a set of runs was performed

to find the head of the person in the silhouette. The set of primitives is the same as in

Table 4.4. Parameters are identical to those in Table 4.5 - mutation was again not allowed.

GP run convergence

In the same style as the plots above, results from these runs are presented in Figures 4-23,

4-24 and 4-25.

Best program statistics

The best individual gets 45 out of 46 (98% accuracy) hits and is included in Section A.3. Its

solutions are depicted in Figure 4-26. The fact that the runs converge much more quickly

and with less variance implies that finding the head is an easier problem. This should
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Figure 4-24: Best Imperative Head Program in Each Generation -
Fitness: Population: 500. Copy: 0%. Crossover: 100%. Mutate: 0%.
46 fitness cases. Mean and Std. Dev. over 20 trials.
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Figure 4-25: Histogram of Maximum Hits Received for Each Imper-

ative Head Run Over 20 Runs
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actually be the case, since the head does not move nearly as much as the hands and it

cannot be obscured in from of the body.

Random subsampling

Mirrored cases were not possible for the head (at least for this set of people), so only

random subsampling generalization was performed. In 10 random subsampling runs,

again using 20% as the test set, 74% ± 11% accuracy (.740 ± .111, N = 10) was achieved.
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Chapter 5

Discussion

This chapter discusses questions raised by the results presented above. It also compares

the results of the two approaches. Table 5.1 contains the results from both approaches to

simplify comparisons. The chapter is arranged as a series of questions and answers.

5.1 Did it work?

This question really has two facets - the primary objective and the secondary objective.

The primary objective, as mentioned above, was whether good solutions could be found

at all using GP - a proof of concept. The secondary objective was whether using GP

was an efficient, practical way to create active vision routines. We address both issues

respectively.

5.1.1 Does GP find good solutions?

As mentioned previously, three criteria for good solutions were sought:

" Accuracy

" Non-catastrophic failure

* Generalization

Each is discussed in turn.



Experiment Hit Accuracy

Functional Runs

Left Hand Runs
Best hand coded, fitness cases .87
Best evolved, fitness cases .93
Best evolved, mirrored generalization .57
Random subsampling, .8/.2 random dataset split 0.77 ± 0.21, N=35

Right Hand Runs
Best hand coded .57
Best evolved, fitness cases .70
Best evolved, mirrored generalization .59
Random subsampling, .8/.2 random dataset split .267 t .223, N=35

Imperative Runs

Left Hand Runs

Best hand coded, fitness cases .67
Best evolved, fitness cases .98
Best evolved, mirrored generalization (hit radius 3 pixels) .48
Best evolved, mirrored generalization (hit radius 5 pixels) .63
Random subsampling, .8/.2 random dataset split 0.711 0.227, N=35

Right Hand Runs
Best hand coded, fitness cases .39
Best evolved, fitness cases .76
Best evolved, mirrored generalization (hit radius 3 pixels) .48
Best evolved, mirrored generalization (hit radius 5 pixels) .85
Random subsampling, .8 /.2 random dataset split .314 t .185, N=20

Head Runs
Best hand coded N/A
Best evolved, fitness cases .98
Random subsampling, .8 /.2 random dataset split .740 t .111, N=10

Table 5.1: Summary of Results Over All Runs



Accuracy

Referring to Table 5.1, one can see that the results are good in many cases, especially on

the left runs (functional and imperative), which get over 90% accuracy on the fitness cases

and around 50% on the mirror cases, and around 70% on the random subsampling runs.

Thus, the programs evolved were quite accurate, especially given such rigid constraints

on what constituted a hit (3 pixels). The cases on which "misses" were recorded in the

numerical data actually turned out to be only near misses upon inspection of the graphical

representation. The solutions were also better than human-programmed programs, which

is also an important result.

Catastrophe

Judging by the figures showing the output of the program and the desired result (for

example, Figure 4-3), in many cases the guesses were reasonable and were not off-the-wall

answers. Therefore, the number of catastrophic failures was low for most cases, except in

left-hand generalization runs, which are discussed later.

Generalization - Mirror cases

Referring to the table again, one can see that the programs do generalize. For example, the

best functional left program gets 57% accuracy on the mirror cases, whereas the evolved

program for finding that particular hand (i.e. the right hand program) gets 70%. These are

not that different, which implies generalization.

As another example, consider the imperative right hand evolved program, which

receives 85% generalization accuracy on the mirror cases when the hit constraint is relaxed

to 5 pixels. This is significant generalization. Refer to the graphical output of that program

in Figure 4-22 - none of the answers exhibit catastrophic failure. This is remarkable for a

generalization test.

Generalization - Random subsampling

The random subsampling runs did not exhibit nearly as good generalization results, as

is shown in Table 5.1. The best explanation for this is that the training set was not large

enough, having only 36 cases. Since some of the hard cases only have one example similar



to them, if this example ends up in the test set, the program will most likely miss it. This is

analogous to teaching a student algebra and then slipping a calculus question on the test.

The fairly wide variances on the random subsampling accuracies suggest that this kind of

problem is occuring. A larger set of fitness cases with many hard cases should be used in

future random subsampling runs to avoid this problem.

Generalization conclusions

It is difficult to make a solid conclusion about generalization since the random subsampling

runs did not do well and the mirror generalizations sometimes did remarkably well. It is

clear that some generalization is occurring or else the right hand programs would not have

done nearly as well on the mirrored cases. The failure at random subsampling, however,

suggests that the programs are overfitting the training set. It is the author's intuition that

a larger number of cases, with many hard ones, will tend to produce better generalization

results and overfitting will occur on small data sets. For example, for random subsampling,

only 36 cases were used, which is a fairly small number. Whether larger training and test

sets will increase generalization will have to be tested empirically.

5.1.2 Is GP a practical way to create visual routines?

Parameter tweaking

A main argument in this thesis was that we did not want the programmer to have to

tweak parameters. There is no savings if the tweaking is displaced from parameters in the

program being sought to the method for finding this program, GP. This is clearly a worry,

since GP appears to have many parameters to set. Although some early tweaking of the

fitness function was required, numerical parameters were basically chosen intuitively and

produced good results with few exceptions. This is important evidence for practicality.

Computation time

Most runs took on average several hours. Good results were usually found within ten

runs, which could be performed overnight on a serial Indigo2 R4400 machine. This is a

practical amount of computation. The author, for one, prefers to go home and sleep and

come back in the morning with some elves having done his work for him. Also, since GP



is massively parallel, runs can be spread out across as many processors as are available in

order to get results more quickly.

Preparation time

The final major issue, however, is preparation time for using GP. First of all, the answers

to the problems need to be found manually. This is actually fairly simple for humans to

do. For example, for this research the author wrote a simple program that allowed the

answers to be labelled by mouse clicks on a bitmap. Labelling the answers took only

several minutes for all 46 cases.

Finally, there is the large issue of primitive selection and programming. As this is

actually a very hairy problem in GP in general, we will only assert that it can be solved for

this domain and defer the argument to Section 5.10.

5.2 Why are the functional terminals weak?

In a GP system with a limited number of fitness cases and sufficiently powerful primitives,

it is likely that solutions will be too specific. For example, if there is some way to use

the primitives to recognize each fitness case and return the fixed answer for that case,

GP will tend to exploit it. Such solutions are often fragile and will not generalize to

new cases. Since we had a small number of fitness cases, we limited the power of our

primitives to hopefully force generalization. The primitives were carefully chosen to be

"weak" in the sense that they had little observational power. For instance, there are no

conditionals or predicates which could be used to recognize specific fitness cases. This is

very different from the primitives used in the imperative approach, which had predicates

and conditionals. These were allowed for those runs specifically to test whether overfitting

would occur.



5.3 Why are the right hand solutions less accurate than the left

solutions for both approaches, and similarly, why are the con-

vergence rates different between left and right?

The results for the right hand runs were less good than those obtained for the left hand

runs in both approaches. In addition, the GP algorithm converges more slowly and with

a wider variance in the right runs than in the left-hand cases.

The variation in accuracy is most likely due to the fact that the right hand cases are

on average more difficult; in many of these cases the hands are somewhere in front of the

body where our vision representation does not have enough information to find them (the

human answer oracle used a knowledge of anatomy to guess). This difference in difficulty

is probably due to the fact the "left" hand in the image is really the user's right hand. Since

most people are right-handed, they tend to use that hand more often so it sticks out from

their body more often and is easier to find. This accounts for the higher accuracy on the

left hand cases.

Even though they are not strictly possible given the primitives, we are implicitly forcing

the GP to perform well since we add the total error into the fitness function rather than

using just misses. This leads to a tradeoff - the GP has to make good guesses on impossible

cases in order to keep fitness low, even with the logarithmic error function. This tradeoff is

the best explanation for the slower convergence and wider variation in final solutions. It

is harder for the evolution, as it was for the human answer oracle, to solve the right hand

cases than the left cases. This is demonstrated by a slower convergence rate and a wider

variance.

5.4 Why were the imperative programs more accurate at the training

set?

In order to compare the results from both approaches, the result summaries from all

the runs is presented in Table 5.1. The functional primitives and imperative primitives

performed similarly, although the imperative primitives found a slightly better solution

to the training set (imperative 98% compared to functional 93% on the left cases, 76%

compared to 70% on the right).

100



The best explanation for the slightly better performance of the imperative functions in

solving the training examples is that the primitives were computationally more powerful.

For example, the imperative primitives can store state in markers and have conditionals for

performing branching whereas the functional primitives could only perform operations

on points. This extra power allows the imperative primitives to solve the hard cases better

than the functional primitives. For example, a conditional branch operator lets a program

realize it has failed with one attempt and try another method. The functional primitives

form a single answer based on functional combinations of the image points and do not

allow multiple methods to exist simultaneously in the same program.

5.5 Why did the functional primitives generalize slightly better

than the imperative primitives?

The functional primitives were slightly better at mirror generalization (functional 57%

compared to imperative 48% on the left, 59% compared to 48% on the right). On random

subsampling, however, there was a minor discrepancy on the right cases - the functional

primitives got 27% mean accuracy whereas the imperative got 31%. For the left, functional

did slightly better with 77% compared to the imperative 71%. As mentioned earlier, the

random subsampling runs seemed very sensitive to the fitness case set, so it is hard to

compare these results. Also, the means are within a standard deviation of each other,

so the difference is not that significant. Therefore, we will focus mainly on the mirror

generalization in this section.

The fact that the functional programs were better at generalization was expected, as the

functional primitives are weak observationally - there are no conditionals and primitives

that can detect particular bits. By making them weak, it is unlikely that the GP will find a

program that overfits the training set, which can occur with small numbers of fixed fitness

cases. For example, programs with powerful primitives are able to evolve solutions that

essentially perform pattern matching on each fitness case using some quirk specific to

that image. Once the case is recognized, the fixed answer to that case can be returned,

essentially making the program a lookup table. Therefore, it is much more likely that

programs with weak primitives will compute general solutions, since they are forced to

generalize.

101



Although the imperative primitives were stronger, the results indicate that programs

using them were also able to generalize, though perhaps not as well as the functional

programs. Even so, this is an important result, since it was believed that overfitting

would be very likely with the powerful primitives. One reason that special-casing did

not blatantly appear could be that the space required for a program that could recognize

46 cases and perform the appropriate absolute motions of the attention marker (using

primitives that just move it and do not reference image features) was larger than the size

of program allowed by the depth constraints. A more likely reason is that a generalizing

solution happened to be easier to find in the search space than a lookup-table solution.

The fact that the more powerful and (hopefully) more general Ullman-style primitives

were able to produce general solutions when discovered with GP is a promising result and

strong result. We discuss this more in Section 5.10.

5.6 Why did the right hand evolved imperative program fail catas-

trophically at mirror cases less often than the left-evolved?

The left-hand evolved program often labelled the foot as the left hand on the mirrored

generalization cases (see Figure 4-15). This is a catastrophic failure, since the answer is not

even close. The evolved right hand program did not exhibit this behavior on those cases,

which it was essentially evolved to find. Also, the evolved left hand programs did fine on

the training set (all 46 fitness cases). It has already been suggested that the right hand cases

were harder in the sense that the hand was much less visible and harder to classify for a

human as well. The better success at generalization of the right hand programs suggests

that by being trained on harder cases, better ability to generalize was evolved as well. The

fact that many of the left cases are "obvious" probably let the evolution slack off early and

not produce as general solutions as it could have.

Simple experiments could be designed to test this hypothesis on other domains using

GP in order to see if it is a common phenomenon. An experiment would only require a

way to divide a large pool of fitness cases into easy and hard. Then one series of runs would

train on the easy cases, another series on the hard cases. Finally the solutions would be

evaluated on the other set in order to see if the programs trained on the harder cases were

more general.
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5.7 How do the best evolved programs work?

The functional solutions were much easier to analyze for two reasons. First, they were

smaller due to the parsimony constraint. Second, they are pure functions. Side-effecting

programs are much harder to understand since the environment matters. As mentioned

above, the best functional programs basically look for a bottom or top edge in an appro-

priately sized window of the image and then move the point up or down a little to center

on the hand.

After looking through the imperative programs, it is still unclear how they work.

Stepping through the evaluation of the programs and displaying a graphical representation

of the environment might help to elucidate their behavior, but was not completed by the

time of this thesis. The programs certainly perform certain obvious inefficient or useless

steps, such as moving the attention left then immediately right or setting a marker right

off the bat when the marker is already initialized to the attention point.

5.8 Why are the final solutions in the imperative case so unwieldy

and inefficient?

Several GP researchers have noticed the idea of "bloating" [Tackett, 1995]. Bloating is the

tendency of useless code to collect toward the end of a GP run. Some research has shown

that this useless code (called introns after biology, or the unexpressed bits of DNA which

comprise some 90% of the genome) serves to protect the useful, important bits of code

from being broken apart by unfortunate (destructive) crossover [Nordin et al., 19951. It is

an artifact of the evolution and may serve a useful role. Parsimony constraints often keep

this bloating to a minimum, but tend to discourage diversity. Intuitively, high diversity

is desirable to search a larger space and not waste computation. The results in [Nordin et

al., 1995] are the main reason that the decision not to apply a parsimony constraint to the

imperative sections was made. It is also why the null property was left in the experimental

runs once the bug was discovered - it could potentially be the source of introns for the

evolution. Whether this is useful or not will need to be investigated further.
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5.9 If the obese programs are to be used in a real system, can they

be optimized?

Several methods could be used to prune out the introns after the main evolution is done.

One way is to apply dead-code removal algorithms to the programs. Examples of these

are common in compiler optimizers (see, for example, [Aho et al., 1986]). Unfortunately,

dead code removal can be tricky and inefficient for side-effecting code since much more

state must be examined.

Another method, suggested as a way of finding implicit introns in code in [Nordin et

al., 1995], is to simply try removing each node one by one and retesting the program on

the fitness cases each time. If the resulting answer or state is different, then the code is

performing calculation and should be left in. If not, it might be safe to remove it.

Finally, a simple approach is to just turn the parsimony constraint on in the GP system

after the run seems to have converged. Hopefully, the GP will start to reduce the size of the

programs without reducing the fitness. Intuitively, this should be a reasonable approach

since the GP's purpose is to find a subspace where good solutions exist. Once the subspace

has been found and the code bloated to imply that no better subspace will be found in

the run, the programs can be pruned. The hope is that the GP will remain in that good

subspace but find smaller programs in it. If not, the best program will still be available in

the GP history, large or not, to be used as is.

5.10 Don't you essentially solve the problem by picking the primi-

tives?

This is an important question. One of the most common and most valid criticisms of GP is

that the GP cannot help but find the solution since the primitives are chosen with an idea

of how they will solve the problem. They are often high-level, abstract and not reusable

for other problems. We argue here that at least in the domain of active vision, we can get

around this problem.

Claim: GP is practical for composing reusable, low-level, general vision primitives into

visual routines to solve various tasks.
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The imperative primitives were chosen to meet these criteria. First of all, the edge

detectors were made smaller so they were not perfectly suited for finding hands. Second,

the primitives were generally taken right from Ullman and Chapman, with only minor

changes (such as the creation of iterators to make them GP-friendly) and a few additions

such as the move-attention-percent. Ullman argues that the visual routine primitives will

have these properties. The fact that these primitives, which Chapman used for many

different tasks in Sonja [Chapman, 19921, can be composed to solve our task as well is an

important result. This implies that these general, low-levels primitives can be reused for

many different visual tasks. Although this is not explicitly shown here, the evidence for it

is strong. Thus, the overhead for the programmer is a one-time cost - once the primitives

are programmed, they can just be reused. It is evolution's job to cull out useless primitives

from the set and to find which ones are useful for the given problem. In order to strengthen

support for this claim, future work will use these primitives on other qualitatively different

tasks.

Another related point is that many industrial vision systems come with a wide set of

fixed primitives for doing correlation, pattern-matching, subsampling, etc. These primi-

tives can be called directly during the interpretation of a GP program, removing the entire

problem of writing, debugging and choosing the primitives. These primitives are used to

write vision programs for industrial vision, so are clearly general. The programmer will

still need to do some work in the integration, however. For example, GP does not deal

with potentially unbounded loops well.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Computer vision is still a difficult problem, even after years of research. The traditional

approach, consisting of creating and maintaining a fully-resolved model of the entire

visual field, has proven intractible in practice. Recently an alternative, active vision, has

been proposed. Active vision decomposes vision into context-driven, task-specific visual

routines. One disadvantage of this approach is that the visual routines are numerous and

must be rewritten for each task. They are also time-consuming to program and optimize.

To solve this problem, we applied Genetic Programming to the task of developing simple

visual routines from common, general primitives. Our system was able to evolve routines

which analyzed silhouettes of people extracted from real camera data. The programs

recovered salient information from the images, specifically the location of a person's hands.

The evolved routines performed better than those created by a human programmer and

were able to generalize to images outside of the training data, which is important for a

machine learning solution. The solutions were found within a short amount of time, with

practical computational resources and with virtually no parameter optimization in the GP

algorithm. These routines can been used as part of a larger system for interaction with

a virtual environment, which allows control of a virtual world and virtual agents with

simple hand gestures.

A common criticism of genetic programming is that most of the work is in selecting

and programming the primitives, which are then not general or reuseable for other tasks.

In this research, the primitives used for half of the experiments were chosen to be general
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and reuseable for other vision problems. The fact that GP was able to use them to solve

this task is strong evidence that GP is a practical approach to the problem of creating active

vision routines automatically without having to create a new set of primitives each time.

Our implementation used a typed paradigm for genetic programming, which restricts

the algorithm search space and speeds up fitness evaluation. We found empirically that in

our fitness domain, which considered the distance of a predicted hand location with the

actual hand location, the use of a "robust" fitness function that weighted errors logarith-

mically yielded considerably better results than a linear error function.

6.2 Limitations and Future Work

One of the main limitations of the experiments described in this thesis is that the primitives

were only used on one problem - evolving hand-finding programs. Ullman suggests

that the visual routines primitives should be useful for many various tasks. An obvious

extension to this research would be to take the set of more general imperative routines and

try to solve a problem qualitatively different with them, such as posture recognition. If the

primitives are very specific to one task and are not reuseable, the gain in efficiency from

the GP might be lost to finding new primitives to solve the task. At that point, it might

be easier to write the programs by hand, although GP could certainly be used to optimize

them.

A major criticism is that the number of fitness cases was low, so generalization results

were not strong. Future research will try runs using an order of magnitude more fitness

cases, especially for the random subsampling trials. The main reason the fitness case set

was small was due to computational limitations - it would take almost a month to run

twenty random subsampling runs with 500 fitness cases. Using parallel vision hardware

could speed up the evaluation. Also, since the algorithm is parallelizable, it is possible to

split the runs across multiple machines. Finally, a simple trick for having a large fitness

set but reducing computation time is to use a sampled fitness calculation - pick a small

fraction of the fitness cases at random each generation in order to estimate fitness.

Another minor limitation is that the algorithm as specified is a supervised learning

algorithm, which means that it requires an "answer oracle" to tell it the correct answers on

its training data in order to learn. This implies that there is a human in the loop specifying
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answers. Although it is in general much easier for a human to label the answers to cases

than to write and debug a program to do it, it would be desirable to get the human out

of the system entirely. Nature clearly has no oracle. One way to do this would be to

use an unsupervised learning method to decide fitness of a huge population of random

programs. For instance, one could use a different modality to produce a reward value

for the visual routine. A robot that needs to find an object that it knows the taste of, say,

can run around trying routines to find the object and constantly tasting things. When it

tastes the right thing, it rewards any visual routines which may have suggested the object

or helped in locating it. In this way, the system can bootstrap the fitness function. This is

clearly a highly contrived example, but serves to illustrate the idea.

Another idea to get the human out of the loop is to use the slow general vision algo-

rithms to produce answers to the various training tasks. Although the general systems

are not useful on-line in a real system, they could be useful for finding fast task-specific

routines to be included in the real-time system. For example, one method proposed to find

hands in a silhouette using classic techniques was to use a three-dimensional geometric

model of a human, complete with realistic joint constraints. An inverse projection could

be used to find a configuration of the 3D model which could produce the silhouette. Since

the hand locations are known in the model, their projection into the silhouette can be cal-

culated, giving the hand locations in the silhouette. This is a computationally expensive

method which is not currently viable in real-time, but it could be used on the fitness cases

as the answer oracle for the GP system.
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Appendix A

Evolved Programs

This appendix contains evolved programs too long to include in-text, just for readers to

have a feel for what the evolution produces.

A.1 Best Evolved Imperative Left Program

(progn (place-marker M2) (progn (move-attention right) (progn

(move-attention right) (progn (property-scan-in-direction figure down)

(progn (scan-in-direction down) (move-attention up) (progn

(move-attention up) (scan-along-line)) (is-on)) (attend-to M2)

(scan-in-direction down) (scan-along-line) (not

(property-scan-in-direction figure left)) (progn (progn (while-element

(move-attention right) (below-marker M2)) (move-attention up)

(property-scan-in-direction null left) true) (move-attention

up) (not (property-scan-in-direction figure down)) (attend-to M2)

(is-on) (move-attention down) (not (below-marker M2))) (progn

(while-element (is-on) (scan-along-line)) (not

(property-scan-in-direction figure down)) (place-marker M2) true)

(move-attention up) (scan-along-line)) (not (move-attention left))

(not (while-element (property-scan-in-direction figure down)

(property-scan-in-direction figure left))) (scan-along-line)

(property-scan-in-direction figure down) (progn (below-marker M2)

(property-scan-in-direction figure down) (progn (move-attention right)

(not (move-attention right)) (move-attention down) (scan-in-direction

down) (scan-along-line) (progn (right-of-marker M2) (move-attention

up) (property-scan-in-direction figure up) (while-element

(move-attention up) (property-scan-in-direction top-edge left))
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(scan-along-line) (below-marker M2) (scan-in-direction down)) (progn

(while-element (is-on) (scan-along-line)) (not

(property-scan-in-direction top-edge left)) (place-marker M2) true)

(progn (scan-in-direction down) (move-attention up) (progn

(move-attention up) (scan-along-line)) (is-on)) (scan-in-direction

down) (scan-along-line)) (move-attention right) (scan-along-line)

(below-marker M2) (not (while-element (move-attention up)

(move-attention left)))) (progn (while-element (move-attention up)

(property-scan-in-direction top-edge down)) (move-attention up)

(while-element (move-attention up) (move-attention left))

(while-element (move-attention up) (while-element

(property-scan-in-direction figure down) (not (below-marker M2))))

(is-on) (below-marker M2) (while-element (move-attention up)

(while-element (move-attention right) (move-attention up))))

(move-attention up) (scan-along-line)) (not

(property-scan-in-direction figure down)) (progn (move-attention up)

(attend-to M2) (is-on) (move-attention right) (progn (move-attention

right) (while-element (property-scan-in-direction figure down) (not

(property-scan-in-direction figure down))) (move-attention down)

(property-scan-in-direction figure down) (scan-along-line)

(property-scan-in-direction right-edge up) (progn (move-attention up)

(property-scan-in-direction figure down) (property-scan-in-direction

figure up) (while-element (move-attention up)

(property-scan-in-direction top-edge left)) (is-on) (below-marker M2)

(while-element (not (move-attention right)) (move-attention up)))

(progn (scan-in-direction down) (move-attention up) (progn

(move-attention up) (scan-along-line)) (is-on)) (progn (move-attention

right) (not (move-attention up)) (property-scan-in-direction figure

left) (scan-in-direction down) (scan-along-line) (move-attention left)

(progn (right-of-marker M2) (move-attention up)

(property-scan-in-direction figure up) (while-element (move-attention

up) (property-scan-in-direction top-edge left)) (scan-along-line)

(below-marker M2) (scan-in-direction down)) (progn (scan-in-direction

down) (move-attention up) (progn (move-attention up)

(scan-along-line)) (is-on)) (scan-in-direction down)

(scan-along-line)) (scan-along-line)))) (move-attention up)

(move-attention right))
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A.2 Best Evolved Imperative Right Program

(progn (move-attention-percent down 30%) false

(property-scan-in-direction null right)

(move-attention-percent up 70%) (move-attention-percent right 70%)

(while-element true (progn false (move-attention-percent down 30%)

(above-marker Ml) (above-marker M1) (move-attention-percent down 30%)

false false (not (property-scan-in-direction figure right)) (progn

(progn (move-attention up) (move-attention up) (progn false false

false (while-element (move-attention down) (scan-in-direction down))

false false true true) (progn (move-attention right)

(property-scan-in-direction figure right) (property-scan-along-line

bottom-edge) (not (below-marker M1)) (below-marker M1) (progn

(scan-along-line) false false (property-scan-in-direction

null right) false false false (scan-along-line))

(property-scan-in-direction null right)

(property-scan-in-direction null right))

(property-scan-in-direction null right) (left-of-marker M2)

(above-marker M1) (not (progn (scan-along-line) false false

(property-scan-in-direction null up) false false false

(scan-along-line)))) (scan-in-direction up) (move-attention up) false

(while-element (above-marker Ml) (property-scan-in-direction

null right)) (progn (move-attention up)

(property-scan-in-direction figure right) (scan-in-direction up)

(progn (move-attention down) (property-scan-in-direction figure right)

(property-scan-in-direction null right) (not

(property-scan-in-direction figure right)) (below-marker M1)

(above-marker M1) (property-scan-in-direction figure right)

(while-element (below-marker M1) (move-attention up))) (progn

(move-attention down) (property-scan-in-direction figure right)

(property-scan-in-direction figure right) (property-scan-along-line

null) (below-marker M1) (draw-line M2) (move-attention down)

(while-element (property-scan-along-line null)

(left-of-marker M2))) (move-attention-percent down 30%)

(move-attention up) (not (below-marker Ml))) (left-of-marker M1)

(above-marker M1) (above-marker M1) (property-scan-in-direction figure

right)) (scan-along-line))) (if-then-else (progn false (not

(move-attention-percent right 70%)) (property-scan-in-direction

bottom-edge right) (progn (scan-along-line) false false
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(property-scan-in-direction null right) false false false

(scan-along-line)) (move-attention-percent down 30%) false false

(property-scan-in-direction left-edge right) (progn (progn

(move-attention up) (move-attention up) (progn false false false

(while-element (move-attention down) (scan-in-direction down)) false

false true (property-scan-in-direction right-edge up)) (progn

(move-attention down) (property-scan-in-direction figure right)

(property-scan-in-direction figure right) (left-of-marker M2)

(below-marker Ml) (draw-line M2) (property-scan-in-direction figure

right) (while-element (property-scan-along-line null)

(move-attention-percent right 30%))) (move-attention down)

(move-attention-percent down 30%) (move-attention down) (not

(property-scan-in-direction figure right))) (scan-in-direction up)

(progn (scan-along-line) false false (property-scan-in-direction

left-edge right) false false false (scan-along-line)) false

(while-element (above-marker Ml) (property-scan-in-direction

null down)) (property-scan-in-direction null right)

(left-of-marker Ml) (right-of-marker Ml) (move-attention up)

(move-attention up)) (scan-along-line)) false (progn (move-attention

down) (property-scan-in-direction figure right)

(property-scan-in-direction null right) (not

(property-scan-in-direction null right)) (below-marker Ml)

(draw-line M2) (property-scan-in-direction figure right) (below-marker

Ml))))

A.3 Best Evolved Imperative Head Program

(progn (progn (progn (move-attention down) (while-element (is-on)

(move-attention right)) (if-then-else false true (progn (is-on)

(if-then-else false false (scan-along-line)) (not false) false true

false)) (property-scan-along-line right-edge) (progn false true

(scan-along-line) false true true true true false true)

(property-scan-along-line right-edge) (place-marker Ml) (while-element

(is-on) (progn (is-on) (if-then-else false false (scan-along-line))

(not (is-on)) false true false)) (progn (move-attention right) (progn

(is-on) (property-scan-along-line right-edge)

(property-scan-along-line right-edge) (is-on) false true) (not (progn

true (if-then-else true false false) (below-marker M2) true true
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true)) (above-marker Ml) (move-attention down)

(property-scan-along-line right-edge) (progn true (progn false

(move-attention down) (above-marker M2) true true true)

(property-scan-along-line right-edge) true true true) (progn true true

(scan-along-line) false true true true true false true) (progn (is-on)

(if-then-else false false (scan-along-line)) (progn (draw-line M2)

(progn true (move-attention right) (if-then-else true false true) true

true true) false (move-attention right) (if-then-else true false

false) (scan-in-direction right) true (above-marker M1)) false true

false))) (move-attention down) (scan-along-line)

(property-scan-along-line right-edge) (scan-in-direction right)

(while-element (is-on) (not (progn (progn (scan-along-line) true

(scan-along-line) false (is-on) true true (is-on) false true) (progn

true (move-attention down) (if-then-else true true false) false true

true) true (move-attention right) (move-attention down)

(property-scan-in-direction right-edge right) true (progn false false

(scan-along-line) false true false true true false true))))

(scan-along-line) (move-attention right)) (if-then-else false true

(progn true true)) (progn false true) (move-attention right)

(while-element (is-on) (not (progn (place-marker M1) (progn true

(progn (is-on) (property-scan-along-line right-edge) (progn (draw-line

M2) (progn true (progn false true) (if-then-else true false true) true

true true) false (progn true (move-attention down)

(property-scan-in-direction right-edge right) false false true) (progn

false true (scan-along-line) (is-on) true false true true false true)

(if-then-else false true (not (scan-along-line))) true (progn true

true)) false true false) (scan-in-direction right) true true true)

false (move-attention down) (move-attention down) (move-attention

down) true (property-scan-in-direction right-edge right))))

(move-attention right) (scan-along-line) (move-attention right))
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