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Abstract

In this work, we examine video retrieval from a synthesis perspective in co-operation with the
more common analysis perspective. Specifically, we target our algorithms for one particular
domain- unstructured video material. The goal is to make this unstructured video available
for manipulation in interesting ways. I.e, take video that may have been shot with no
specific intent and use it in different settings. For example, we build a set of interfaces that
will enable taking a collection of home videos and making Christmas cards, Refrigerator
magnets, family dramas etc out of them.

The work is divided into three parts. First, we study features and models for characteri-
zation of video. Examples are VideoBook with its extensions and Hidden Markov Models
for video analysis. Secondly, we examine clustering as an approach for characterization
of unstructured video. Clustering alleviates some of the common problems with "query-
by-example" and presents groupings that rely on the user's abilities to make relevant con-
nections. The clustering techniques we employ operate in the probability density space.
One of our goals is to employ these techniques with sophisticated models such as Bayesian
Networks and HMMs, which give similar descriptions. The clustering techniques we employ
are shown to be optimal in an information theoretic and Gibbs Free Energy sense.

Finally, we present a set of interfaces that use these features and groupings to enable brows-
ing and editing of unstructured video content.
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This research was supported by the Digital Life consortium.
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Chapter 1

Introduction and Motivation

1.1 The Problem Statement

Understanding the structure of video (more generally, media) is a fundamental problem

that is worthy of research without any underlying application in mind. There are things

that we simply cannot glean from a microphone or camera, and they cross all potential

uses. For example, we cannot yet place a microphone in front of an orchestra and deduce

the score. Similarly, we cannot yet meaningfully quantify the relationship between two

video sequences; we neither know the elements that we are comparing nor do we have

strong metrics for evaluating our conclusions. These are long-term research issues marked

by incremental steps peppered with occasional breakthroughs.

It is of considerable value to proceed by solving particular and useful real-world problems,

especially if they can help us understand the larger issue better. For example, we learn

about biology and life by trying to treat a disease. We may wish to remove the sound of

a cough from a concert very specifically, or we may wish to match a face before a camera

with one in a database. These problems have been posed by questions of surveillance but a

good solution both helps and teaches. In other words, these issues meet specific needs and



at the same time enhance our ability to build structure out of media.

In this thesis we choose one such specific domain: unscripted and casually recorded video

and one solution: a representation that permits it to be catalogued, searched and assembled

into a variety of motion and still presentations. This material is what often fills the reels

of consumer camcorders. I argue that this is a useful situation for the following reasons: It

is looking at video retrieval from a synthesis point of view as opposed to the analysis view.

Also, such video has no scripted structure to facilitate its navigation and therefore makes

the problem more interesting. Further, it can be solved by using the machine to help sort,

manipulate and select images that support or suggest an idea.

The focus of the thesis is therefore, making video useful. The idea is to build a set of tools

that analyze, characterize, and prepare footage shot with a camera for unanticipated uses.

We are targeting fun as the utility of the material. The idea is to take this ensemble of

raw stuff and use it in interesting ways that are not just making a sequence out of them.

Some of the possible uses of such unscripted/unstructured video are: Make a time slice of a

person or a series of events, select a group of shots and make a postcard out of them, make

a collage of shots, make a Salient Still, storyboard etc. Some of these outputs may be used

to guide other constructions of the material. For example, the storyboard may form the

basis of a family drama. The construction process may suggest ways to efficiently encode

and transmit the resulting sequence.

1.2 Motivation

Recently, the technology of transmitting and storing high-bandwidth media such as video

has far outpaced our ability to meaningfully manipulate it. This situation is going to

worsen in the near future. For example, NASA's Earth Observing System will generate 1

Terabyte of image data per day when fully operational. A content-based system is required

to effectively navigate and retrieve information from such immense repositories. In addition,



video is becoming the medium of choice for recording human experience, both personal and

collective. This position occupied by video will only be strengthened with the availability

of future high-bandwidth smart networks. Moreover, a promise of digital technology is that

bits of one kind can be converted to bits of another kind. I.e, a still image can be created

from a video sequence or a collage can be made from a collection of stills. This thesis derives

its motivation from these facts and strives to make day-to-day communication using video

simple and intuitive.

1.3 Questions raised and addressed in this thesis

Unlike scripted video (such as movies and commercials), video that has been shot for the

simple purpose of recording an event or place has no structure or meta-data to facilitate

its access. Frequently, the only method of access is a linear navigation through the entire

contents. While this may be acceptable for passive watching of video, the paucity of struc-

tural information renders it useless for later retrieval and reuse. Moreover, the commercially

available non-linear editing systems are oriented towards structured video. They are good

for editing but not useful for navigating and creation of structure where none was present to

begin with. Further, such systems take video sequences and create another sequence out of

them and are not geared towards other types of outputs. In contrast, content-based retrieval

systems hold the promise to wade through large repositories of imagery. Media Streams [8]

is a video representation language with special attention to the issue of creating a global,

reusable video archive. It amply illustrates the usefulness of having structure in video for

retrieval and reuse. However, it relies on manual annotation to add structure to video.

The work done by Bobick, Iyengar, and others [2, 20, 21, 23] characterizes video based on

the action in addition to the content. Once the video has been characterized using these

techniques, retrieval becomes feasible albeit possibly imprecise. However, precision is not a

problem as long as the retrieval is useful. With useful retrieval, comes reusability of video

and transformation to other types of representations (such as stills, collages, storyboards

etc).



These uses require two things: a mechanism to characterize and classify the content and a

suitable navigational aid through the content. In addition, each output format requires a

dedicated composer/editor. The characterization techniques developed by us may be well

suited for the first task since they analyze both content and action [20, 21, 231. Since

the underlying content is going to be used in unanticipated ways, the task of building a

browser to navigate through the content is formidable. Some of the traditional approaches

towards indexing and annotation are ill-suited for this purpose. Annotation is time and

labor-intensive, and may not be usable for all types of applications. Moreover, annotation

based systems have to deal with operator subjectivity [43]. Systems that explicitly model

video and permit browsing using simple language (such as the Vasconcelos' plain English

browser [62]) often have a limited vocabulary by design and therefore cannot support any

unintended query. When the video is structured, we can rely on editing artifacts and

other structural cues to characterize the video. For example, see Ref. [23] for examples of

using hidden markov models to analyze newscasts and sports and to classify movie trailers

either as character or action movies. Ref. [64] exploits the script information present in

television situational comedies to characterize content. These systems, make reasonable

structural assumptions about the nature of particular types of video and exploit them in

their classification. Such assumptions will not be valid for unstructured video in general.

In contrast, query-by-example systems coupled with user-feedback are better suited to this

task since they do not make any assumptions of the nature of use of the content. However,

these systems suffer a couple of limitations. In order to provide flexibility, such systems

frequently permit direct access to the features and their weighting in the query-retrieval

process. This is non-intuitive and often counter-productive. Another limitation is that

query-by-example systems start by presenting a random sampling of the database and then

tune themselves with user interaction. Presenting a useful first page is a difficult problem

since it has to be representative of the database. This is particularly important as the

size of the database increases. Any small set of samples cannot meaningfully represent the

database well. Sclaroff et al. [6] refer to this as the page-zero problem. The notion of

serendipitous discovery of the "right" image/video in the query-by-example paradigm gets



weak if the initial subset that is presented is not representative. Moreover, such systems

typically search over the entire database before returning the results. This implies that

the computational requirements grows with the database size. In addition, we also need

to examine issues such as the right feature set and the minimum number of features to

guarantee good retrieval. This thesis does not address this issue of feature space selection,
but it does address the page-zero problem by employing clustering for browsing.

Query-by-example pays the price by relying on lower-level features. The gap between the

machine representation and the human perception is wider compared with model-based

approaches. Another important problem with query-by-example is that it has not charac-

terized or abstracted the database in any particular way. It searches the entire database

every time a query is presented. While there are efficient search techniques to reduce this

search complexity, the problem of not having generalized and abstracted the data remains.

The abstraction problem can be addressed by allowing the system to learn via user iteraction

and propagate newly learned labels. This can be viewed as the system having the ability

of "short term memory". This system achieves the happy middle ground between pure

query-by-example with no assumptions at one end and Bayesian modeling with structural

assumptions at the other extreme.

Our approach to tackling the unstructured video problem has been to use clustering tech-

niques to create multiple groupings of the video. Clustering is a natural way to organize

massive quantities of data and to take advantage of the cognitive abilities of the user. For

example, let us suppose that the user presents a video collection that is made up of shots

from a typical home video. It is reasonable to expect that good clustering algorithms will

group all shots that have similar features together. For example, most shots taken indoors

will be in one cluster and most shots taken outdoors will be in another cluster, purely from

the color features. The user views these clusters and attaches labels. The clustering algo-

rithm relied on the user's ability to make inferences and attach cognitive meaning. This is

not to say that it will work all the time. Some clusters may be such that we cannot provide

clean labels. The interesting point is that from the perspective of extracting alternative



outputs from the video (like collages, storyboards, still pictures and video dramas), it is not

important that all clusters make cognitive sense to the user.

In addition, these groupings can also be augmented by specifically designed higher-level

model-based approaches such as the ones in [23, 62]. Once video is thus clustered, we

manipulate and access it via a set of specialized application modules that enable us to

synthesize alternate outputs from video. In order to achieve these, we choose a common

framework that supports these different techniques: probabilistic descriptions derived from

extracted features. These probabilistic descriptions range from simple histograms of fea-

tures at one end to joint density estimates from a Bayesian network at the other extreme.

Using probabilistic descriptions provides us with some advantages apart from being able to

combine descriptions with differing levels of complexity.

" They are robust to missing/corrupted data. That is, they can handle dropped frames,

corrupted blocks etc. Their performance degradation is gradual.

" They can be multimodal. That is, an image and a video sequence can be treated

similarly. An image can be used to query for video and vice-versa.

" They enable multiple groupings. For example, a picture of a crowd taken outdoors can

be categorized both as a picture of a crowd and as an outdoors picture. Probabilistic

descriptions provide confidence estimates for each type of categorization which is then

used for multiple groupings.

" They are well understood and provide intuitive explanations and reasoning similar to

the way humans relate to data.

1.4 Thesis contributions

In this thesis, we group the contributions into three distinct sections. We first present tech-

niques for classification of video by content. These techniques range from simple features-



based approaches most suited for unstructured video to semantics-based models most suited

to classification of structured video such as newscasts and sportscasts. We then examine a

clustering technique in the probability density space. This technique treats video sequences

as a probability density along a specific feature or groups of features and partitions all the

video sequences in the database along these groups of features. The final part is the applica-

tion front-end that combines the features and models with the density clustering to enable

access into unstructured video and permits the kinds of manipulations that we envisaged

earlier.

To summarize, the contributions of this thesis are:

9 A suite of (expandable) classification techniques that analyze video by action/content

etc.

9 A clustering approach that takes as inputs probability density models of images and

video sequences and groups them in this density space. This approach is not lim-

ited to image and video but is generally applicable to all domains that model data

as probability densities. We present 3 different clustering algorithms based on this

approach.

e A browser to search through the video content. This browser comprises a set of dis-

plays to enable users to create and view possible outputs of such a system. Examples

include a movie display, a stills display, and a collage display.

Figure 1.1 shows the outline of the proposed system.

1.4.1 Content Clustering Engine

Under the proposed model, when a video is entered into the system, it is analyzed and a set

of features are extracted from it. These features are stored as indices associated with the

video. For each such extracted feature, a probability density representation is computed.



Raw Video

Archive Features

Still Editor

Collage Editor

Movie editor

Browser

Figure 1.1: Outline of proposed system

The clustering engine groups this collection of density functions using the distributional

clustering algorithms presented in Chapter 4. Thesc groupings are made available to the

browser and are the starting point for enabling structure in unstructured video.

1.4.2 Browser

The browser provides direct, low level access to the content. It is a framework for molding

video into new packages. It is extensible in the different tools and metrics that it offers to

search through the content. The browser supports multiple output formats, each with a

specialized display module.

Stills module

The stills module provides the user with an interface to search the database and locate a

particular still image. This image then can be used a regular still image - it can be printed,

manipulated using tools such as Photoshop.



Collage module

The collage module is an extension of the stills module. It permits constructions such as

a storyboard or a collage from the material. This storyboard can be used by the Movie

module to put together a video sequence.

Movie module

The Movie module suggests movies by piecing together a storyboard from the clustered video

shots. This storyboard can be seen as an alternative to summarization and a launching pad

for movie constructions.

1.5 Road map

The rest of the thesis is organized as follows. Chapter 2 reviews some of the current work in

video and image characterization. Chapter 3 presents my work in video characterization and

makes the case for probabilistic descriptions. Chapter 4 motivates the relative entropy based

clustering algorithms that constitute the primarily technical contribution of this thesis. The

next chapter details the application that uses these clustering techniques for constructing

interesting alternate outputs from video. Summary and future work are detailed in 6

This thesis can be read in multiple ways. If you accept the argument of clustering for

unstructured video, you can skip directly to Chapter 5. For more details on the clustering

algorithms used, it is recommended that you read Chapter 4. For a broad overview of

content-based retrieval and reasons why we selected probabilistic representations for clus-

tering, please read Chapters 2 and 3.



Chapter 2

Related Work in Content-based

Retrieval of Images and Video

In this chapter, we categorize some of the major work in image and video retrieval. Content-

based retrieval is motivated by the ever-increasing availability of images and video sequences

in our information networks. Ideally, we want to be able to specify arbitrarily complex

queries and yet expect meaningful answers.

Image and Video retrieval techniques can be roughly categorized as

" Annotation based approaches. These emphasize the usage of textual annotation

for retrieval of similar images. They either use textual databases modified to handle

images or guide a visual query by weighting the image features with contextual text.

* Feature similarity based approaches. These extract features from images and

video and define similarity in this feature representation.

" Video event detection based techniques. These extract significant events in a

sequence such as cuts, fades and dissolves and use this description to summarize the



video content. In addition, the extracted key frames are represented using features

and the problem of video retrieval is often turned into one of image retrieval on these

extracted key frames. This approach can be seen as decomposing video retrieval into

a two stage process - extraction & representation of significant events in video as still

images and constrained retrieval of these still images.

e Bayesian Inference based approaches. These approaches impose prior knowledge

about the feature content for particular classes of images and video (such as outdoors,

closeups, sports, action movie) and turn the task of detecting similarity into Bayesian

Inference.

We will study illustrative examples from each approach. In addition, we will review some

complete system perspectives.

2.1 Annotation based approaches

2.1.1 Relational database extended with image features

The Chabot/Cypress [38] system integrates relational database retrieval concepts with color

analysis techniques. This system was initiated to study storage and retrieval of vast collec-

tions of digitized images at the Department of Water Resources, State of California. Each

image is accompanied by extensive meta data (including the date of the photograph, photog-

rapher, location and format of the original image). The goal of this system was to augment

an entirely manual operation that was in place prior to Chabot. The queries on this system

ranged from highly specific, asking for images of a particular location at specified times

to generically arbitrary such as "sunsets". Chabot was built on top of an object-oriented

database called Postgres which permits SQL-like queries. In addition, simple functions

written by the user can be registered into the database and be used on images at query

time. For example, the Chabot system had functions written to compute color histograms.



In addition, Chabot permitted creation of new "concepts" using these functions and SQL

constructs. The shortcoming with Chabot (and its later variation, Cypress) is that it relied

primarily on the metadata for its queries. If a user had to search on "concepts", they had to

specify it in terms of metadata and/or in terms of simple primitives (such as range of color

values). The system did not attempt to connect the annotation with visual primitives.

2.1.2 Text-assisted image features based systems

In contrast, the Piction system [55] adopted the approach of assisted vision. It focused on a

computational model for understanding pictures based on accompanying descriptive text. In

their approach, "understanding" is defined as identifying relevant people and objects. They

use the caption information to prime a vision system by providing a context. Similarity

between query and captioned images is based on 4 distinct sources of information:

" Inexact text content (from descriptive caption,-).

" Exact objective text (from manually entered keywords).

" Inexact image similarity (based on extracted image features).

" Exact image-based objective term (objects/people identified by the vision system via

descriptive captions).

Reliance on multiple sources of information can counter the problems with a purely textual

system. E.g, "Four aircrafts performing daredevil stunts at the Air Show. President Clinton

took part in the celebrations ..." implies to the human user that the picture will not contain

President Clinton but a purely textual system will bring this as a match for a query on Bill

Clinton. However, a vision system (if it works) will be unable to identify a face in the picture

and therefore return lower similarity for this caption. The limitation with this approach is

that even simple descriptive captions need a good natural language processing capabilities

to properly guide a vision system. At present, our understanding of both computer vision



and natural language processing is far from the level of sophistication needed to make

this system work effectively. The authors report 65% performance on a small database of

newspaper caption images.

LaCascia et al [6] combine visual features with textual statistics into a single index vector for

content-based searches of a WWW image database. Latent Semantic Indexing (LSI) is used

to capture the textual statistics in the HTML document. They assign importance to the

text surrounding an image in the HTML document based on its proximity and the HTML

tag type. A weighted term-image matrix is created for each such image in the document.

Singular value decomposition (SVD) is then used to decompose the term-image relationships

into a set of linearly independent vectors. This resultant LSI vector provides the context

associated with an image and is combined with the computed visual feature vectors. The

extracted visual statistics are the color histogram and the dominant orientation histogram.

To reduce the dimensionality of feature vectors, they perform principal component analysis

(PCA) and select a smaller subspace. The global feature vector consists of the LSI textual

vector and the PCA color and directionality vectors. They then use a k-nearest neighbors

algorithm to match the query with the images. In addition, relevance feedback is used to

select the appropriate weighting functions for the various similarity values (text, color and

directionality). The authors use this combined approach to mitigate the page-zero problem

associated with query-by-example systems. Since this approach does not rely on such a close

connection between the image features and textual features as the Piction system, a simpler

text retrieval technique such as LSI works fairly well. However, this system relies on the

extensive textual annotation that is typical in HTML documents with embedded images.

For systems where there is no access to contextual text (such as unstructured video, as in

our problem) this approach is not suitable. We next examine image retrieval systems that

rely primarily on image features (such as color and texture) for retrieval.



2.2 Feature similarity based approaches

In these systems, the problem of retrieval is phrased as finding appropriate features that

can be extracted from images and defining similarity functions in these feature spaces such

that two images whose features are "close" are visually similar to humans as well.

2.2.1 Color based techniques

One of the most commonly used feature for content-based retrieval is the color histogram

of the image. It is reasonable to expect that visually similar images will have similar color

compositions and therefore histograms are expected to be revealing. Color histograms have

several other advantages - invariance to size, scale and rotation of images that makes them

attractive for content-based retrieval. Also, they are compact relative to the size of the

image. They have been shown to perform very well. Once the image is described as a

histogram in the colorspace, we can choose one of many different similarity measures to

rank images. Swain and Ballard [57] introduced Histogram Intersection, which is equivalent

to the Manhattan distance (L 1 norm )for normalized histograms. Other commonly used

measures are all the L, norms, with L 2 and L1 being the most common[27, 50], the x2

estimate[3] and the KL divergence[25]'. One of the problems using color histograms directly

is that a slight shift in the feature values can result in large differences using any of these

commonly used similarity measures. The QBIC system [12] attempts to counter for that by

using a quadratic distance measure that quantified the similarity between bins. However,

the quadratic distance similarity results in a significantly higher computation at the retrieval

stage. Jain and Vailaya [27] proposed an image smoothing approach to relate the histogram

bins. A similar approach has been proposed by Zabih et al [41]. In this thesis, we will present

another general approach to quantify the inter-bin similarity [22, 25]. This technique, along

with [27] and [41] can be viewed as a preprocessing step in the computation of the histogram.

'We note here that the X' estimate is related to the KL divergence. It can be shown that it is the
expansion to two terms of the Taylor series of the KL divergence [7].



Unlike the quadratic distance, these techniques result in an efficient computation during

the retrieval stage.

While histograms are compact and very good for image retrieval, a major shortcoming

with them is the lack of local information. It is easy to pick example images with similar

histograms that are visually very different. For example, consider an image of a fabric that

has alternate stripes of blue and green. This image will most likely have a histogram similar

to a landscape image of a lawn and sky. This is because the histogram does not record the

local structure of colors but only the global composition. The color coherence vector [41, 40]

is a refinement of the histogram where the colors are split into two components: coherent

and incoherent. Coherent component of a color are defined as those color pixels occuring

in a neighbourhood of the same color pixels. Now the histogram distance is dependent on

both these components. This will differentiate the images in the above example since the

coherence vector encodes the composition along with the count. A further refinement on the

histogram is the Color Correlogram [18] which records the probability of a color occuring in

a specified neighbourhood of another color. As one would expect, each description increases

in complexity and requires higher computation both for characterization and retrieval. A

commonly adopted approach is to use the histogram first to select a set of candidates, and

then refine further with color coherence vectors or correlograms on this smaller set to bound

the computational requirements.

2.2.2 Approaches based on Texture, Shape and other features

While histograms are compact and efficient, in some particular domains they are not as

useful. For example, in grey scale image retrieval, the illumination histogram is not very

discriminating. In specific domains, other features have been explored for retrieval with

better performance than using color histograms. The Photobook system [42] was used to

query and identify frontal face images in a database of about 6000 images. It computed

the eigenvector decomposition for this face space. Then, the face images in the database



are represented in terms of projections onto these eigenfaces. Distance between two faces

is the distance between the projection coefficients. In later variations, Photobook was

extended to handle textures, shapes and faces, each with its separate representation. For

shape representation, the objects were modeled by building a finite element representation.

The stiffness matrix that results from FEM is used to create the eigenvectors in this shape

space. This representation is used for query and retrieval of objects. For textured images,

Photobook uses a Wold decomposition based representation which decomposes textures

along directionality, periodicity and randomness. For each category of images, Photobook

creates a semantics-preserving representation. This is a very powerful idea. However, one

drawback is that for each class of images, a new set of features have to be extracted that

best describe that class. In specific domains, such as face retrieval, this is not a problem

and this technique works very well. However, for general images such as the Corel database,

a single semantics-preserving representation may not exist.

The FourEyes system [37] extended the Photobook by incorporating a collection of models

(they term it the society of models) and learning the pertinent weighting scheme between

models for a particular query using relevance feedback. They employed this approach to

counter any systematic bias the features might have introduced and at the same time to

incorporate any bias that the user might want to introduce for a particular task. One

mode of interaction of this system is to learn labelling from a small collection of samples

by getting feedback from the user and then propagating this labelling usefully across the

entire database. This learning can be viewed as "short term memory" where the learning of

a concept lasts a particular session. In contrast, a Hidden Markov or a Bayesian Network

approach that we review later can be seen as a mechanism of incorporating "long term

memory" where the concepts are learned and used over the life of the system. Human-in-

the-loop is a very useful idea, especially because it permits optimization of queries based

on the particular task at hand.

In [53], Smith and Chang presented a general framework for spatial and feature based

queries. The general approach is to parse the picture into a collection of regions or objects



and perform queries that are constrained both spatially and in features. For example, a

sunset image on the ocean can be specified as an orange colored circular region spatially

located above a rectangular blue region. A similar region-based approach was presented by

Carson et. al [5, 13] for querying images of animals and highly textured objects. The region-

based approach was motivated in part by the need to move away from low-level descriptors

to something closer to human reasoning. It is desirable to extract descriptors from imagery

that can enable higher-level reasoning. However, it is unclear if such combined spatial-

feature approaches provide that since they require the query to be broken down into a

description in terms separable regions. A particular query might have multiple descriptions

in terms of these simple regions. For example, there can be many kinds of sunsets over ocean

being just one of them. Another problem is that many images from unrelated categories

might have similar descriptions in terms of such spatial regions.

For texture image retrieval, Liu and Picard [32] proposed the retrieval of the Brodatz

texture images using Wold decomposition for characterization of texture. Each texture

image is decomposed into the three axes of periodicity, directionality and randomness. A

probability model along these axes is built to characterize images. Ma and Manjunath

[35] proposed using Gabor decomposition for texture image representation and retrieval.

Gabor filters have compact support both in frequency and time and and can be tuned to

different orientations and scales. Statistics over a range of scales and orientation forms a

representation of texture and this is used for retrieval of textured images. The authors

use a distance function similar to the Mahalanobis distance to compute similarity between

images.

Jain and Vailaya [27] use edge histogram as a representation of shape in images. A Canny

edge detector provides local orientation information which is used to build an edge his-

togram. This is used for content-based retrieval of trademark images, where shape is a very

relevant feature. In order to account for rotations, they shift the histogram bins and define

similarity between two shape histograms as the smallest distance across all shifts. However,

even in these images where shape is quite relevant, the authors claim better performance



with color histograms. A combined shape and color histogram based approach has the ad-

vantages (and the computational complexity) of the two techniques and it results in better

performance than either color or shape alone.

2.2.3 Apriori classification to improve performance

Visual features based techniques such as histograms, coherency vectors etc do not account

for semantic similarity in the content. In many cases, if the class labels are known apriori,

visually better retrieval can be achieved. For example, if the query image belongs to the class

of man-made objects, visually better matches can be obtained using color histograms if we

restrict the search to the subset of the database containing man-made objects. Szummer

and Picard [58] proposed a technique of classification of pictures as Indoor vs Outdoor

images. This technique extracts a collection of features from images (color histograms,

MSAR and DCT coefficients) and performs a k-nearest neighbor classification to identify

images as indoor/outdoor. An incoming query image can then be classified into one of

these two categories and then queried on a subset of the database. This process can be

repeated to limit the database further and thereby get both computational savings and

better results. This approach was employed by Vailaya et al [1] where they hand-labeled

a collection of images into a hierarchy. A probability model for each class in the hierarchy

is estimated using sample images and Vector Quantization. The query image is sent to the

appropriate branch in the hierarchy based on these probability models and then a retrieval

based on color histograms and coherency vectors is attempted on the subset. One of the

problems with this approach is that the creation of hierarchy and the class labels by hand

can be a laborious task. However, this can be countered by performing the labeling on

a representative subset and then using an automated procedure to label the rest of the

database. More importantly, the assumption of the hierarchy requires that the classes be

mutually exclusive and that is not true in general. For example, an image can belong to

both the sunset and forest classes. In reality, each image will more likely belong to many

classes and can be associated with multiple labels. A better solution is to attach a certainity



for each label for each image. For example, with 80% certainity, the image is a sunset and

with 70% certainity, the image is a forest etc.

Liu and Dellaert [34] present a similar classification approach for retrieval of 3D neurora-

diological CT images. They exploit the fact that CT images of normal human brains are

fairly symmetrical compared to the pathological ones. As opposed to apriori classification,

their approach is to use a similarity function that is useful for classification as well. The

intuition is that a function that classifies well will probably retrieve similar images. They

estimate a probability model over the extracted features and use this to both classify and

retrieve images.

2.3 Video event detection and representation

The examples in the previous two sections are primarily still image representation and

retrieval systems. These techniques have been extended to handle video sequences with

limited success. The field of video retrieval is nascent. Some the pecularities of video that

make it harder are - more data to handle, the concept of similarity is harder to specify since

there is the added dimension of time.

One of the commonly adopted approaches to video retrieval is to extract significant events

from video, such as shots. The intuition behind such a description is that a shot is a single

camera stream and therefore can be represented with a still image. Once a video sequence is

represented in terms of shots, still image techniques can be employed for query and retrieval.

The two additional orthogonal tasks that result from such a decomposition are - video shot

detection and key frame selection. The video sequence is then summarized by a collection

of key frames with associated features for every key frame.

In addition to content-based retrieval, browsing is an important application for video. The

rationale for browsing is that in interactive applications, it is useful to provide a quick sum-



mary before committing the extensive network resources required to send the full rate video

to the consumer. If a storyboard or a summary representation is sufficient to distinguish

between video sequences, then only those video sequences that are desired need to be sent

at full rate. In this thesis, we make use of browsing as the interaction paradigm with video.

Browsing can be seen as an alternative (even a complement) to query-by-example. Instead

of specifying queries in terms of possibly non-intuitive primitives, browsing presents a view

into the video database and enables identification and selection of material.

2.3.1 Video shot/scene detection and key frame extraction

Shot detection in a video sequence can be performed either in the compressed representation

of video such as MPEG or in the uncompressed form. A shot is often the most easy to extract

unit of video information. It represents a single camera viewpoint and therefore color,

motion etc are expected to be revealing. In uncompressed domain the popular techniques

use color histograms, dominant motion, motion compensated pixel differences to detect

shot changes [4]. These shot change detection algorithms exploit the lack of continuity that

accompanies a change in camera viewpoint and editing. For example, it is reasonable to

expect that the dominant motion in a video shot, which represents the camera's action,

changes from shot to shot. Similarly, the colorimetry of the scene changes with camera

viewpoint change. Therefore, there is lack of continuity in the color values of a sequence at

the shot boundary. Shahraray [51] proposes a shot change detection technique where the

two adjacent frames that are compared are divided into rectangular blocks and a motion

and intensity values from these blocks are used to determine a match. If two blocks have

similar motion and intensity values, a value of 0 is returned and a 1 indicates a severe

mismatch. The cumulative similarity (or dissimilarity) is the sum of similarities over these

blocks. A shot change is flagged if this dissimilarity rises above a threshold. A gradual

transition is similarly flagged when the dissimilarity rises above a smaller threshold and

stays above this smaller threshold for a set of frames before falling below the plateau. The

main advantage of this technique is that it combines both intensity and motion parameters



in evaluating a shot change and therefore this technique is quite robust. Zabih et al [69]

propose a technique using edge information to detect shot transitions. The intuition behind

this technique is that during cuts and dissolves, new intensity edges appear far from the

location of old edges and old edges disappear far from the location of new edges. They

use this to classify a set of edge pixels as incoming or outgoing. Scene cuts are located

by looking for local peaks in the maxima between incoming and outgoing pixels. Prior

to computing the edge pixels, the authors compensate for the motion by computing the

dominant motion. This is ensure that camera operations such as pan and zooms do not

contribute to false shot detections. Shot change detection algorithms in the uncompressed

domain can be computationally expensive. Moreover, such changes in color and motion etc

can be extracted directly from the compressed representation.

Shot change detection in MPEG compressed video is based on statistics of the DCT co-

efficients or motion estimation parameters. Some examples are inner product of DCT

coefficients of I frames as a measure of frame similarity, number of intra coded P frame

blocks versus the number of inter coded blocks, number of forward predicted B frame blocks

versus the number of backward predicted blocks, variance of DCT coefficients etc. Some

approaches also partially reconstruct the frame from the DC coefficients and use histograms

on these frames to perform scene cut detection. For a comprehensive comparison of some

of the popular techniques for shot change detection please refer to [15]. Yeo and Liu [65]

propose a technique of extracting a DC frame from the compressed stream. This DC frame

is created by inverting the 1st DCT coefficient of each block. In a sense, this is equivalent

to creating a low pass version of the frame. Since only one coefficient is used, the inverse

transform operation can be done in real-time or faster. The authors show that this low

pass image is adequate for performing shot change detection. This technique is more robust

than relying on the transform parameters completely and yet retains the advantage of the

significant computational savings offered by not decoding the entire compressed stream.

A key characteristic of all shot change detection algorithms is the assumption about the

effect the shot change has on the extracted features. Most of these assumptions are valid

for abrupt shot changes but gradual changes such as dissolves are especially hard for all



algorithms [15]. Moreover the compressed domain techniques are highly dependent on the

specific encoder and the output quality [15].

Once the video events have been detected using a shot change algorithm, the next task is

to represent these shots by key frames. These key frames are both used for browsing and

for content-based retrieval. For key frame selection, many proposals have been suggested

first frame, last frame, middle frame, closest to average frame, the two furthest frames

etc. One of the most sophisticated technique for key-frame extraction is presented in [71]

where the authors use unsupervised clustering to group frames in a shot and select frames

from these clusters. There is no clear evidence that any of the proposed set of techniques

have a significant advantage over the others, once a video sequence has been parsed into a

collection of shots.

2.3.2 Browsing and summarization of video

Zhong et al [70] propose a hierarchical clustering technique for video. Representative shots

from each level in the hierarchy form the icons at that level. These icons enable browsing

into the video content. The input to their system is a contiguous video presentation (such

as a news broadcast). They begin by performing a shot detection to extract shots from

the video sequence. A representative frame for each shot is chosen and features associated

with this frame are used for the hierarchical clustering process. The features they use for

clustering are the color histogram, motion orientation histogram and motion mean and

variances. They employ a fuzzy K-Means algorithm for clustering. This is an interesting

technique for browsing into the video content and related to our work. However, relying

on features from a single representative frame may not capture the temporal import of the

event. Also, the motivation for the fuzzy cost function that they employ is unclear.

Yeung et al [66, 68, 67] proposed the Scene Transit"ion Graph (STG) as a model for orga-

nizing and browsing video. The STG is a representation where the component shots of the

video are organized into related groups and the transitions between the shots is indicative



of the video content. For example, assume that a video sequence is made up of a dialog

scene, an action scene followed by another dialog scene. Each of these component scenes

is made up of many shots. For example, the dialog scene will typically have two or three

camera viewpoints, each representing a shot. A simple parsing of the video sequence into

shots does not convey the presence of a dialog. Whereas, if the representative images from

each shot is examined, the dialog scene might cluster into two/three groups of shots (one

for each camera viewpoint). The authors use this intuition to cluster related shots and

create a scene transition graph where each node represents a group of related shots. Exam-

ination of this graph makes it more apparent that the underlying event is a dialog/action

scene etc and thereby provides a better summary of the video content. This works well for

structured content. For unstructured video, the premise on which the STG rests is invalid

and therefore cannot be applied. Interestingly, the authors also argue against using a single

representative frame per shot [66] as it loses key temporal structure and can potentially

classify related shots as different because of bad choice of the key frame. The authors,

instead, use multiple key frames selected on the basis of the amount of activity within the

shot. A shot with more action will have more key frames to represent it. This is a mecha-

nism to compromise between the computational complexity of using the full rate video and

the lack of information in a single key frame.

Pope et al [45] describe a scheme for summarizing video content using mosaics. The mosaic

is a static snapshot built from aggregating the frames in a video shot. Moving objects

are then placed into the mosaic to create an alternative video representation. In their

scheme, the incoming video is segmented into shots and the static content of each shot

is used to create the mosaic. The dynamic content is segmented, tracked and overlaid

onto this mosaic to provide a mechanism for semantic event detection (such as collisions,

chases, suspicious activity). This approach is targetted towards aerial surveillance and

reconnaissance missions. The mosaicing process works well for relatively static shots with

significant overlaps to ensure quality registration. In addition, since sensor inputs (such

as GPS co-ordinates) are frequently available, an orthorectified mosaic using a physical

model of the region surveyed is also used. Once the images comprising a shot are registered



and compensated for camera motion, pixels of significant coherent residual motion are

marked as dynamic objects. Each such contiguous region of moving pixels is modeled by it

size, velocity, overall shape and color in order to track it over multiple frames. A typical

representation of each object is extracted from these model parameters and overlaid into the

mosaic. This technique of tracking objects relies on the fact that they occupy a relatively

small fraction of the overall size of the frame.

2.3.3 Content-based video retrieval

Content-based retrieval of video, as we mentioned earlier, is often turned into the simpler

problem of image retrieval on extracted key frames. The basic idea is to extract a collection

of shots from a video sequence, represent each shot by a key frame. Once the key frames

are selected, a set of features for each key frame are extracted and used for queries and

retrieval.

Dimitrova and Abdel-Mottaleb [11] present a technique for extraction of signatures from

MPEG and MJPEG compressed video sequences. These signatures are extracted from the

DC coefficients and motion information of representative blocks in a video frame. The

authors extract signatures from video clips (a clip is a small sequence, possibly made up of

a few shots) using two techniques: a signature for every I frame in the clip or a signature

for every key frame in the clip. The I-frame only signatures tend to be longer because there

can be potentially many more I-frames than shots in a video clip. A set of window pairs are

selected apriori. These window pairs are arbitrarily chosen macro blocks within the frame.

For each window pair, the DC coefficients and the block motion vector form the signature.

The frame signature is the concatenation of the set of window pair signatures. Similarity

between two video clips is expressed in terms of similarity between these signatures. A

major advantage with this representation is that the signature is fast to compute (since no

decompression is required) and search. However, the signature seems highly dependent on

the MPEG encoding parameters used. For example, the same video sequence which has



been encoded using two different MPEG parameters will not necessarily result in signatures

that are proximal. In contrast, a color histogram might be more revealing in this case.

Because of its computational simplicity, it might be useful to use this technique as a filter

to select candidate matches and then refine the smaller subset further with a more expensive

approach.

Vailaya et al [61] propose a similar approach for query by video clip (once again a clip is

defined as a small video sequence). They use both a key frame based approach and a uniform

subsampling approach for content-based retrieval. In the key frame based approach, a set

of key frames are extracted from the query clip using shot change detection. In the uniform

subsampling approach, the query and the database are temporally subsampled identically.

Both the clip and the database are represented by the set of these subsampled frames. For

the purposes of further discussion, these subsampled frames can be called "key frames".

For each key frame the color, texture and motion associated with it are used to compute

similarity between the the query key frame and the database key frames. For color, euclidean

distance between histograms is used for similarity. For texture, the euclidean distance

between the edge direction histograms (edges computed using a Canny edge detector) is

used. For motion, the euclidean distance between the optical flow histograms is used as the

similarity measure.

Similar video clips are the ones whose consecutive key frames are similar to the key frames of

the query clip. In the case where the query and the database sample have the same number

of key frames, the dissimilarity between the two is the cumulative dissimilarity between the

features of the key frames. Because the query clip and the database clips are likely to have

different number of key frames, they define a similarity measure that depends on the closest

key frames in the query and sample and also on the difference in the number of key frames

between them.

The general problem with key-frame based techniques for video retrieval is that such tech-

niques lose important information that is present in the evolution of video. For example,



in the above key-frame based approach, two clips which have similar key frames but in

different temporal order will be classified as being similar. This may not be desirable since

in structured content sources such as movies, the information is revealed in a particular

temporal order (chosen by the director/editor) and usually semantic meanings are attached

to the order in which information is revealed. Also, because of the particular algorithm

used to select key frames, two key frames from very similar shots can look visually very

different. This can be fairly common when there is significant camera movement within a

shot. The sub-sampling approach or the I-frame approach (which is a particular case of

sub-sampling) do not suffer from these problems with key frames. Interesting classifications

of video that rely on their temporal evolutions cannot be made in a static representation.

For example, we have presented some work [23] (presented in detail in Chapter 3) where

we use Hidden Markov Models to classify video sequences. These models rely purely on the

temporal characteristics of video and make useful inferences. In [24], such a temporal rep-

resentation is coupled with a features based representation of video for improved retrieval

performance. Deng and Manjunath [10] present retrieval work on MPEG video streams.

Once this stream is parsed into video shots, color and texture features are averaged over all

the I frames that make up the shot. For motion, the P and B frames are used to to extract

motion information. In this representation, data from all the frames in a shot is used to

characterize the shot, as in [20]. Our techniques will be presented in detail in Chapter 3.

In an approach to extract interesting temporal structures from video, Liu and Picard [33]

proposed using Wold models for characterizing periodic movements. Just as in the case of

spatial texture, temporal movements is quantified similarly in terms of their Wold compo-

nents. This approach can be used to characterize and identify related temporal evolutions.

2.4 Bayesian Networks for Content Characterization

Hidden Markov Models, which are a special class of Bayesian Networks, have been used suc-

cessfully in speech analysis [46, 47] and in gesture recognition [56]. The usage of Bayesian



Networks for image and video content characterization is a relatively new topic of research.

Most current work in image content filtering, browsing and retrieval rely on low-level de-

scriptors such as color, texture and motion that can be unintuitive to most users. In this

framework, the goal is to provide an alternative that exploits the structured nature of

content sources to achieve a semantically meaningful characterization, and a useful user

interaction.

The fundamental assumption in Bayesian content characterization is that the bulk of the

content that one would care to store in, or retrieve from video databases exhibits a sig-

nificant amount of structure which can be exploited. This assumption is certainly valid

in biological and other evolutionary systems and been talked about in terms of organiz-

ing principles, natural modes, and non-accidental properties. For traditional media, such

as movies and structured news/sports programs, struture is very commonly used since it

provides a standard framework in which the content producers and content consumers can

share information. For example, Hollywood producers typically show action movies and

suspense with specialized editing techniques. For example, an easy way to embody action

is to pace the video with short cuts from different shots and rely on the content consumers'

cognitive ability to bridge the gap between the shots and build the narrative2 . Similarly,

character oriented movies typically use close-ups and dialogue scenes since they are effec-

tive conveyors of the actors' emotions. These fairly common principles can be effectively

exploited in the design of content-characterizers. For example, it is reasonable to expect

that an action movie will have a very different cut pattern compared to a character movie.

An action movie will consist of more shots with a shorter time interval between shots. In

addition, the activity within each shot will also be high on an average. In contrast, a char-

acter movie will tend to have longer duration shots and lesser activity within each shot.

A computational model such as a Bayesian Network or a Hidden Markov Model can be

trained on these features and be used for classification. We present an approach for this in

Chapter 3.

2Alfred Hitchcock's Psycho shower murder scene is a paramount example of montage editing



Bayesian Inference can then be posed as a problem in sensor fusion where a set of targeted

sensors gather observations on relevant patterns and an architecture combines multiple sen-

sor inputs to provide a useful inference. For an excellent article on content characterization

using Bayesian Networks see Ref. [62], where the authors present a Bayesian network that

use a motion energy sensor, a skin-tone detector and a texture energy sensor to characterize

a video shot. The types of labels associated with the shot are - close ups, crowd, natural

vs man-made setting, action vs character oriented. The rationale behind the classification

from the sensor outputs are as follows: For action oriented shots, the motion energy will

be high based on our expectation of typical stuctures present in the movies. The texture

sensor gives a high value whenever it finds significant horizontal or vertical structures which

fits well with typical man-made structures. Similarly, if a significant portion of the shot

contains skin tone, it is either a closeup or a crowd scene. However, a crowd scene would

also have a high textured output. So, the network by integrating these multiple sensors

achieves a content characterization that is more semantically meaningful. We note here

that this characterization can also be used to perform queries as in the query-by-example

paradigm. In Chapter 3, we will study two Hidden Markov Models that make structural

assumptions about video and use them for useful inference.



Chapter 3

Video Content Characterization

This work is divided into three parts: We first examine a query-by-example system for

video where each sequence is divided into a collection of spatio-temporal chunks. Each such

chunk is represented by a feature vector derived from the colorimetry, motion and texture

of the chunk. We then examine a template based approach for categorizing video. This

uses Genetic programming to evolve rules for the chunk representation and can be viewed

as an exercise in supervised classification. Finally, we examine two Hidden Markov Models

that exploit the editing artifacts present in video to categorize them. This work is then

extended to be incorporated with the chunk approach for a semantically controlled video

retrieval.

As opposed to the image retrieval examples presented in the previous chapter, all the

techniques presented in this chapter are used for content-based retrieval of video sequences.

A key difference between these approaches and some of the video retrieval approaches

presented earlier is that these feature representations use the temporal aspects of video.

See Refs. [64] and [34] for other temporal representations of video. The Hidden Markov

models and the probabilistic modeling of shot statistics rely primarily on the temporal

dynamics of video for characterization. We believe that for video characterization, much



can be accomplished by analyzing the temporal dynamics. Content producers (such as

Hollywood directors and editors) structure a narration in terms of montage and mise-en-

scene. Roughly speaking, montage relates to the temporal juxtaposition of scenes and

mise-en-scene refers to the spatial arrangements. Features such as colorimetry capture the

mise-en-scene better and features targetting the temporal dynamics capture the notions of

montage better. Extracting a semantic description from colorimetry and shapes of objects

in the scene is a hard problem. Comparatively, extracting temporal events is a simpler task

and we can make useful higher-level inferences from the temporal statistics.

3.1 VideoBook: An experiment in characterization of video

This experiment was motivated by the need for a representation of video in which time was

an integral part. In addition, image based techniques can be computationally expensive

if directly applied to video. Using key frames to reduce the computational loads sacrifices

the temporal information. By combining spatial and temporal representations, we hope to

capture aspects of both mise-en-scene and montage.

3.1.1 Feature extraction and representation

VideoBook [20] is a query-by-example system which has a compact feature representation

of video sequences. This enables fast searching over large collections. In VideoBook, every

sequence is split into spatio-temporal chunks as shown in Figure 3.1.

The advantage that we get using a chunk representation of video as opposed to global

histograms of features is that it preserves the spatial and temporal relationships between

the individual features, much like the color correlogram or the color coherency vectors

[41, 40, 183. In addition, the number of chunks and number of features per chunk is very

small compared to the number of pixels in a video frame. This enables fast query and



Figure 3.1: Spatio-temporal chunk representation of video

retrieval for interactive applications. For each chunk a number of features are extracted

from motion, color and texture of these chunks. In the pattern recognition literature,

the correlation function is a frequently used quantity to measure dependence. It is now

better understood that while the correlation function captures linear dependence, mutual

information is a general dependence measure [30]. In the VideoBook, we use motion, texture

and color along with their respective mutual information functions as the feature vector as

opposed to using the correlation function. This results in representative feature vectors that

work quite well for video retrieval.

Specifically, in VideoBook the chunk dimensions are 64 x 64 x 16 pixels in x, y&t respectively.

8 features are extracted from each chunk - 3 for color, 3 for motion and 2 for texture

respectively. For color, we represent each chunk by the weighted averages of the luminance

(Y) and the two color differences (Cb and Cr). Along motion, weighted averages of the

optical flow vectors and the mutual information of flow vectors over this chunk are extracted.

Texture energy is estimated using a local Laplacian operator. This Laplacian measure along



with its mutual information averaged over the extent of the chunk form the next 2 features.

A 320 x 240 pixel video sequence at 30 frames per second is therefore represented by a

5 x 4 x 1 array of spatio-temporal blocks. Thus 160 features are used to represent 1, 228, 800

pixels, which provides a compact representation for fast query and retrieval.

3.1.2 Query and Retrieval Experiments

We digitized 165 video clips, each 15 seconds long from television and laser disc movies.

These clips form the test database for our experiments.

Once the entire database is characterized along these 8 features, searching and querying

experiments can then be performed using these feature vectors. Searching and querying are

done in real-time because of the extremely compact representation space. In the present

version of the VideoBook, the search mechanism is euclidean and all parameters are uni-

formly weighted. We note here that this a basic and simplistic search mechanism. One of

the reasons we implement this search mechanism is to illustrate the usefulness of the fea-

ture vectors. This search mechanism also ensures real-time performance using software only

methods. The distance criterion we use is Mean Square Error (MSE) between the feature

vectors. The clip with the least MSE distance is the best matching clip to the search cue.

We now detail the different experiments that were performed using these feature vectors to

characterize the video and using MSE as the distance metric.

In the first set of experiments, we split each digitized video sequence into two parts: The first

10 seconds and the last 5 seconds. We thus have two groups of video clips, each consisting

of 165 clips. We randomly pick a clip from the second group (last 5 seconds) and use it to

query amongst the first group. The distance metric used to determine the closest match

is the MSE as explained earlier. If the feature vectors capture any higher level structure

about video, we would expect the search cue (which was extracted from the last 5 seconds)

to match with the counterpart (first 10 seconds) in the exact same sequence from which

it was extracted. The similarity between two clips of different lengths (the search cue is 5



seconds long and the database contains 10 second long clips) is determined by sliding the

cue feature vectors over the database feature vectors and returning the smallest distance

between them. This is as shown below.

D(s, d) = min [s(i) - d(k + i)]2  (3.1)
kE[0,n-l] j~)-dk+i]

where s is the search cue, d is the database sample, n is the length of the database sample,

1 the length of the cue. We compute the mean square error between feature vectors at the

specified indicies. In addition to returning the matching clip, this process also identifies the

time index within which the cue matches the database clip the best.

We performed 50 random trials and in 46 of them the closest match was the corresponding

part from the same sequence. In two trials where the search cue matched with another

sequence, the other sequence belonged to the same content source. Therefore, we can

conclude that the feature vectors that we used for characterizing video are useful for fast

content based retrieval. In addition to giving the closest match, the VideoBook returns the

next two closest matches to the search cue. Here we find more evidence that the feature

vectors perform very robustly. In one of the trials performed, the system was given a news

clip as the search cue. A key frame from that sequence is shown in Fig. 3.2. The VideoBook

identifies correctly the closest match as belonging to the same video sequence. Also, the

next two matches were also news sequences. The key frames from the closest two matches

are shown in Figs. 3.3 - 3.4.

In the second set of experiments, the database is made up of the 15 second clips. We

randomly pick a search cue as a 5 second subset from these clips. We performed 50 such

trials. The system searches the entire database and returns the three closest matches as

before. Since there will always be an exact match in this case, the system rejects the match

if the distance value is 0. Therefore, the three returned matches represent are guaranteed

to be different from the search cue. We find that the first match is always another segment

from the same video sequence from which the search cue was derived. Moreover, the next



Figure 3.2: Key frame from the last five seconds of the Television news sequence

best matches are visually similar. Fig 3.5 shows a query from a sports broadcast and Fig

3.6 shows the next closest match.

We have noticed instances where the VideoBook goes into orbits1 , with the user ending

up in a collection of the same few video sequences over and over. However, this is not a

problem. It is entirely possible that some video sequences form a closely clustered group

in the 8-dimensional representation space. In reality, such a grouping is desired for it

implies that similar content forms a cluster in this parameter space. Formation of such

clusters implies that we may be able to perform higher level searches (such as querying

using natural language as opposed to using image sequences) for these clusters. In the next

section we exploit existence of such orbits and derive templates for characterizing video.

'in the non-group theory sense



Figure 3.3: Key frame from the closest match for the above query sequence

3.2 Evolving discriminators for video sequences

In order to exploit these natural groupings in the feature space, we use genetic programming

(GP) to form templates. The primary motivation for using GP is that it is a useful technique

for automatically extracting rules from a collection of related observations.

Genetic Programming is an evolutionary technique belonging to the general class of Genetic

Algorithms (GA). GAs are highly parallel mathematical algorithms that transform popu-

lations of individual mathematical objects (typically represented as fixed length character

strings) into new populations using natural genetic operations such as sexual re-combination

(crossover) and fitness proportionate recreation. GAs start with randomly selected initial

population and evolve new members using these various genetic operations to iteratively

produce better fit populations. They can thus be viewed as an optimization procedure like

K-means. Representation is a key issue in Genetic Algorithms since the algorithms directly

manipulate these coded representations. Moreover, fixed length character strings are not

particularly suited for a variety of problems. Genetic Programming [28] strives to mitigate



Figure 3.4: Key frame from the next closest matching sequence

this problem by offering greater flexibility of representation.

In GP, the main notion is that of an expression comprised of a set of operators and terminals.

For example, { +,-, *} constitute operators and combined with {X, Y} form expressions of the

kind (+(*XY)(-Y1)) in postfix notation. Such a notation can also be viewed as a binary

tree. Crossover operation can be defined as a swapping of two randomly chosen subtrees of

two expressions. Similarly, mutation can be defined as an operation where either a terminal

or an operator in a random subtree of an expression is replaced with another valid terminal

or operator, resulting in another valid expression. Figs. 3.7, 3.8 and 3.9 illustrate the tree

representation and these genetic operators. The expression represented by Fig 3.7 is

((A5 x Al) - A3) + ((A4 + A1) * (A3 + A2)) (3.2)

These reproductive operators, combined with a fitness function form the basic primitives

of a GP simulation. Important parameters are crossover rates, mutation rates, population

size. The form of the fitness function determines the problem that the GP is attempting



Figure 3.5: Key frame from the sports query sequence

to address. Another important issue is that of type closure which we will explain when we

discuss the specifics of the evolution that we attempted. While GP is a powerful technique,

its application to pattern recognition problems is not yet widespread. This is because

formulating a pattern recognition problem in a GP framework is not always simple. We

now examine an approach to formulate the supervised learning problem in a GP framework.

3.2.1 Evolution of VideoBook discriminators

Using GP, we attempt to build discriminators that distinguish video sequences into two

broad categories: News and Action. News represents a head and shoulder sequence of a

newscaster with occasional mixing of other shots. Action scenes comprise of sequences from

car chases, horse chases etc.

The incoming video sequence is first parameterized as detailed in section 3.1. The terminal

set is therefore the space of these features. If we treat each feature of the VideoBook



Figure 3.6: Key frame from the next closest matching sports sequence

representation as a variable, we have 160 different variables for every segment of a video

sequence since there are 20 chunks per segment of video and 8 features are extracted per

chunk. Hence, we have 161 different terminals, with the one special terminal randomly set

to a number between 0.0 and 1.0. We normalize the feature vectors to lie in the range

between 0.0 and 1.0. We choose the following operators to evolve a decision tree to help

us build templates for various classes of video. They "guarantee" the space of all Boolean

functions and also all real valued polynomial functions. By guarantee, we mean that the

space of all these functions is achievable by combinations of these terminals and operators.

Operator set: = >, <, AND, OR, +, *, -, NOT

The operator set includes both Boolean and Real operators. This presents a problem

known as type closure where we have to ensure that these two inherently different data

types are combined in a logical and mathematically tractable manner. Type closure can

be implemented in many ways [28]; we choose to implement it by requiring the boolean

operators to return either a 0.0 or a 1.0. When the boolean operators are presented with



Figure 3.7: Tree representation of an expression

real valued inputs, their behavior is as follows. The AND operator becomes a modified

MIN operator. It takes the minimum of the two real valued inputs and returns a 1.0 if this

minimum value is greater than 1.0 else it returns a 0.0. The OR operator is a similarly

modified MAX operator. This ensures that for boolean input values they work correctly

and for non-boolean values, they act as gated MIN or MAX operators. Other ways of

implementing type closure include changing all data types to a common third data type

(e.g. integers) or replacing boolean units with neural network type sigmoidal activation

functions. An interesting technique for type-closure would be to permit only "correct"

expressions. That is, the simulation can be made to permit only those expressions that

make algebraic sense without permitting loose interpretations of the boolean operators. It

is not immediately apparent if such an approach has clear benefits given that the purpose of

genetic programming is to evolve useful expressions. If a loose boolean expression is useful

as demonstrated by its fitness over the test population, the argument that expressions must

conform to a strict algebraic grammar becomes weak.

For the fitness function, we have a special requirement. We are evolving two class discrim-



Figure 3.8: Example of a crossover operation. Two subtrees are exchanged

inators: hence, the evolved functions must be good for class A and bad for class B and

vice versa. We thus have our fitness score as a sum of two fitness scores, fitness for and

fitness against. Each instance of a correct decision by the discriminator over the training

set receives a score of 1. In this paper, we use 200 training samples (100 examples of news

sequences and 100 examples of action sequences). We can therefore view this evolution of

discriminators as performing supervised learning.

Selection of the next generation can be performed in multiple ways. Perhaps the simplest

method of selecting the next generation of the population in the GP iteration is to perform

fitness weighted selection. This is akin to spinning a roulette wheel where the sector of

the wheel is distributed according to the fitness of each member. Thus, a member with

a higher fitness occupies a larger sector and hence is more probable in being selected in

the next generation. However, this simple method has the following problem: If in one

generation, one of the members dominates in fitness. this member overshadows the next

generation and the simulation has the risk of being caught in a local minima. To counter

this effect, we implement a tournament selection procedure where we pick two members from

the population at random and select the member with higher fitness amongst the two as the



Figure 3.9: Example of a mutation operation. The top operator is changed

winner. This is repeated till the entire new population is selected. The stopping criterion for

the GP simulation is when an entire generation achieves a target average fitness. The chosen

discriminator is the individual with the maximum fitness in the terminating iteration. An

alternative choice would be the individual with the best performance over the held out data.

Such a strategy would be akin to cross-validation. In our implementation, we adopt the

simpler technique of selecting the best individual at the terminating iteration. The plot of

average fitness of the test population over time is shown in Figure 3.10.
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Figure 3.10: Plot of average fitness versus log time (number of iterations)

3.2.2 Performance of the evolved discriminators

With the two discriminators evolved as specified in the previous section, we tested them

together on 100 video sequences (50 News sequences and 50 Action sequences). We note

here that all these 100 samples were from out of the training set used to evolve the template

expressions using GP. The classification was considered correct if both the discriminators

gave the correct answer. If only one discriminator gave a positive response and the other

discriminator gave a negative response, it was considered a false reject. The performance of

evolved discriminators is shown below in Table 3.1. This is a lower bound on the performance

of the discriminators, since there are cases where one of the discriminators would give

the correct answer and the other discriminator's answer is unreliable. However, since the

discriminators do not give out probabilities but just a classification, we are not able to

exploit this. This is a limitation of our technique.



Test class Number of sequences Positive False Reject False Alarm
News (train) 100 97 3 0
Action (train) 100 98 2 0
News (test) 50 47 3 0
Action (test) 50 46 4 0

Table 3.1: Performance of the evolved discriminators

The first two rows indicate the performance on the training set. Test set results follow in the

next two rows of the table. It is interesting to note that both the discriminators performed

well and that the false alarm rate where the News sequence was classified as Action or vice

versa is zero.

We note some problems with GP. The decision trees that it produces tend to be redundant.

This problem can be mitigated by adding a penalty term for redundant and deep trees, akin

to the Minimum Description Length principle. Another problem we did not address is that

of novelty detection. That is, if a video sequence neither belongs to News nor to Action

but to a third class, the behavior of these two discriminators is not clear. Ideally, we want

the class of discriminators to identify not only the correct class to which examples belong

but also instances where examples belong to none of the known classes. In the particular

way we posed this problem, it is unclear if Genetic Programming based techniques have the

capability to perform novelty detection. Probabilistic approaches such as Bayesian Networks

and Hidden Markov Models have this additional advantage of being able to perform novelty

detection. Content characterization examples using Hidden Markov Models are presented

in the next section.

3.3 HMMs for characterizing video sequences

Hidden Markov Models are types of Bayesian Networks that have been used rather success-

fully in speech analysis applications [46, 47] and in gesture recognition [56]. These models



attempt to learn the underlying probability density function that was responsible for creat-

ing a particular sample. The task of classification now becomes one of Bayesian Inference

where the model that explains the occurence of a particular sample the best wins. The

definition of best is usually either maximum likelihood or maximum aposteriori probability.

Hidden Markov Models are particularly useful for modelling temporal events such as ges-

tures, speech etc. To our knowledge, using Hidden Markov Models for content-based re-

trieval of video has not been attempted prior to our work [23]. Sahouria and Zakhor [49] use

Hidden Markov Models for classification of sports video sequences. Both these approaches

exploit the temporal nature of video to make interesting inferences. In contrast with query-

by-example approaches for image and video retrieval, both these approaches rely on the

temporal evolution of video rather than its visual characteristics to classify. In our work,

we design two Hidden Markov Models for classification of television programs and full length

movie trailers.

3.3.1 Television Sports/News classifier

We begin by presenting models for classifying TV sequences as News or Sports. The next

section (Section 3.3.2) presents models for movie trailer classification. Combining many

such approaches, we can build a language for automatic parsing of video sequences where

many such small, specialized classifiers are connected together in a Bayesian framework.

There are two interesting problems that make video characterization unique. The first one

is that unlike spoken word classification for example, there is much more variation among

classes in video sequences and the class boundaries are not very clear. For example, if

you see a small sports clip as a part of a television newscast, is it considered news or is it

a sporting event? The second problem is that of dimensionality and appropriate feature

selection. Video can be extremely voluminous and it imposes severe restrictions on the sizes

of the test and training sets.



In order to deal with these two problems, we made the following assumption: We assumed

that TV news usually has relatively static shots of one or two people talking interspersed

with bursts of activity such as a field shot, some action detail where the camera is usually

mobile. Similarly, the sports sequence was assumed to be high action interspersed with

relatively quiet shots of the coach, a player or the scoreboard etc. With this assumption,

using optical flow or some similar motion information seems to be a likely candidate for

features. We initially chose optical flow as the input to our models. Later experiments with

simple frame differences also achieved similar performance as optical flow (see section 3.3.1).

We digitized 50 random television broadcasts, with 25 Sports events (mostly soccer, football

and basketball) and 25 Newscasts. These broadcasts were mainly derived from network news

(ABS, NBC, CBS) programs and specific sports stations such as ESPN. These sequences

were split into training and test sets of 24 and 26 sequences each, respectively.

Each digitized sequence is between 5 and 15 seconds long and at 15 frames/second. Based

on our assumptions, we expect to see two types of flow fields: High energy and low energy

fields. Thus, the sequence classification problem is turned into a time-series analysis problem

with the feature being the flow energy. In a typical news sequence, we expect to see mainly

low energy flow fields with occasional high energy fields whenever there is a camera cut to

a field shot. Similarly, we expect the sports sequences to be the other way around with

respect to these flow fields.

2-class feature extraction

Since this is a two class discrimination task, we do not need the entire optical flow field but

rather can work with a projection of this optical flow information into a single dimension.

From the training set of 12 News sequences and 12 Sports sequences, we isolated 24 single

frames (template frames) and used the optical flow information at these frames to compute

an optimal projection. The procedure for computing the projection is outlined next. For

futher details on this two-class feature selection, see Ref. [14].



Consider two correlation matrices R 1 and R 2 , one for each class.

Ri = E[(x - mi) x (x - mj)'] (3.3)

where x is a vector belonging to class wi and mi is the mean of class w. Let Q be a matrix

such that Q = R1 + R 2 with its eigenvalues Ak and eigenvectors, Vk. Let S be a linear

transformation such that STQS I. We know that one such S is

1  0

1

S = I V1v2 ... Vn v1(3.4)

0

The transformation S does not diagonalize either Ri or R 2. It however transforms the

input X to X' = STx and the new correlation matrices are given by R' S TfR1 S and

R' = ST R2S

We know that R' + R' = I by the construction of S. Therefore R'e = (I - R')e for any

vector e. Now, if e were an eigenvector of R'1, then we see that e is also an eigenvector

of R'2 . Moreover, if A is an eigenvalue of R', then (1 - A) is an eigenvalue of R'2. Since

the correlation matrices R' and R'2 are both positive semidefinite, the eigenvalues must be

non-negative. As a result, the largest eigenvalue of R' is the smallest eigenvalue of R , and

vice versa. So, the eigenvectors e that are best for representation of class 1 are the worst for

class 2. We can now choose a subset of these eigenvectors e and define a new transformation

of the original data x such that

T

cT
y= Tx = S T (3.5)

+- eTM -



Figure 3.11: One of the 12 Low Action training templates

As part of the training, we used the 24 static frames and computed a projection vector (by

selecting eji, corresponding to the largest eigenvalue of R'). The input to our HMM models

is this projected data. The task that the HMMs have to perform is to analyze a sequence

of projection data and compute the likelihood for both the classes. These likelihoods are

then used for discrimination between classes.

Figure 3.11 shows one of the "Low Action" templates and Figure 3.12 shows one of the "High

Action" templates. Figure 3.13 shows the histogram for the projections for the 24 template

frames. These projections are representative projections for fast and slow action frames.

We note here that we cannot use the projections directly to decide the classification of the

incoming video. News sequences can (and do) contain fast action as well as slow action

frames. Similarly a sports sequence will contain both kinds of action. Hence, using just

this projection will result in a classification that may change from frame to frame which

is clearly incorrect. Moreover, since there is significant overlap between the two types of

templates, a direct classification will (and does) have a very low accuracy.



Figure 3.12: One of the 12 High Action training templates

We then trained two HMMs, one on each of the 12 training sequences to build the two

HMM models. The next section discusses the experiments and the results obtained.

Sports/News classifier experiments

As mentioned earlier, we trained the 2 HMM models on the 12 video sequences each. The

input sequence was the projection values of the optical flow of each frame in the training

set. We implemented the HMM training algorithm as mentioned in Rabiner and Juang

[47], incorporating scaling to prevent numerical underflow. In addition, we incorporated

simple checks to prevent the state transition (A) and the state probability (B) matrices

from having 0 values. This is partly because of the small size of the training set. This is in

effect stating that there are no illegal transitions but only highly unlikely ones in our HMM

model. The HMMs were fully connected with two states each, reflecting our belief that

these sequences have two "modes" - low action and high action and spend varying times

in these modes. In addition, we perform maximum likelihood classification by associating
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Figure 3.13: Histograms of the two projections for the 24 training template frames

equal priors to both the models.

Once the models are trained, for a given test sequence, the models compute the likelihood

for that test sequence given that particular model. Once these likelihoods are computed,

the sequence is classified per the model with the higher likelihood. Typically the likelihood

computed by the chosen models is orders of magnitude larger than the rest. In the case

where the two models in our set produce likelihoods in the same order, we conclude that

the observed data is a novel category, belonging to neither of the models. Thus, such

a framework gives us the capability of "none-of-the-above" classifications which was not

possible in the Genetic Programming templates.

The confusion matrix for the training set is given in Table 3.2 and for the test set, it is

given in Table 3.3. We see that the HMM models perform well, with correct classification

rate of 90%. We then replaced the computationally expensive optical flow calculation with

a much simpler frame difference operator. We similarly trained the feature extractor to



True I Labeled as
News Sports

News 11 1
Sports 0 12

Table 3.2: Confusion matrix for training set

True 4 Labeled as
News Sports

News 11 2

Sports 0 13

Table 3.3: Confusion matrix for test set

compute new optimal projections from these frame differences. Building HMMs from these

projections results in similar good performance. For our final system, we therefore rely

on simple frame differences rather than computationally expensive optical flow estimation.

This has the added advantage of low computational expense, an important requirement for

on-line systems.

3.3.2 Action/Character movie trailer classifier

This technique analyzes the shot duration and motion energy of the movie trailers to de-

termine their placing along an Action-Character axis. Modern film theory contends that

movies follow a formula A x C = k [36]. For example, emphasis on action in an adventure

movie leaves little time or place for the development of complexity of character. Similarly,

everyday incidents become interesting when complex characters participate in them. We

can say that an action oriented movie spends less time developing characters and the oppo-

site is true in character-oriented movies. This is a reasonable assumption for the following

reasons - Both the audience and the narrator rely on socially agreed upon structures to

present and imbibe movies. Without such structures, it becomes impossible to understand

movies (which is the primary motivation of the audience). For the creators, lack of such



common structures has both economic and narration ramifications. It is to the creators

benefit if they can rely on standard structures to set up the audiences' expectations and

weave the narration. Presence of such production codes makes the task of editing simpler

(and therefore less expensive) and the narration more coherent (and therefore engaging the

audience).

Our assumption is that action emphasis manifests in movies as high energy in shots and

frequent shot changes and character emphasis is the exact opposite. These are reasonable

assumptions because there are only a few ways in which character/action developments can

be shown. Emphasis on action in an adventure movie leaves little time or place for the

development of complexity of character. Similarly, everyday incidents become interesting

when complex characters participate in them. It is extremely difficult to quantify features

such as emphasis on action or complexity of character because of their qualitative nature.

However, character developments are frequently shown using dialogs and closeups. Fast cuts

during dialogs and closeups is distracting. So, character movies can be expected to have

long scenes and similarly, a popular way to embody action is to use fast scene cuts 2 and

high action in scenes to create the illusion of action. We can predict reasonably that action

movies will have a very busy imagery - for example high speed chases, explosions etc and

similarly character movies will have long duration shots - dialogues, closeups on emotional

moments etc. This bias comes from the requirements of typical shots that comprise the

narration. For example, you cannot have a meaningful dialogue in a shot lasting just a few

seconds. Similarly, when an explosion occurs, it lasts just a few seconds and a common

way to capture it is to show flying debris (translates to high motion in the corresponding

frames). Features such as shot length and motion energy are therefore expected to be

revealing about the content of the movie albiet in a limited way. These shot durations,

together with the activity in these shots are used to train the Hidden Markov Models to

classify movie trailers.

For shot detection, we used the Kullback-Liebler (KL) distance between histograms in rgb

2See the famous shower murder in Psycho by Alfred Hitchcock



space to determine transitions. The rgb space is defined as follows:

If R, G and B represents the pixel values, then

R
r- R+G+B

G

9 R+G+B

b- Bb (3.6)R+G+B

This transformation renders the pixel values invariant to changes in illumination intensity

(but not illumination color) [16]. To account for variation between shots, an adaptive

threshold was chosen for shot change detection. The threshold is a constant factor times

the average of past KL distances. While this technique cannot accurately detect gradual

transitions such as dissolves, it is acceptable for the purposes of this work. This work relies

on an approximate shot duration and motion energy and is not sensitive to small errors

shot lengths. Once the shots were extracted, the shot duration in number of frames and the

average optical flow energy in each shot was computed. For each trailer, we therefore have a

series of shot durations and corresponding average flow energies. Table 3.4 shows the average

shot duration, motion energy and the average KL distance between the rgb histograms of

two frames in the shot for each of the 24 trailers. We note here that the average KL distance

and the average motion energy correlate well suggesting that the average KL distance is also

a possible feature for content characterization. We also note that the average shot duration

and the motion energy are inversely correlated. Figure 3.14 plots the average shot length

versus motion energy. We can clearly observe the I nature of the graph in accord with the

A x C = k theory.

Training and testing

As mentioned earlier, the dataset consists of 24 full length movie trailers. The shortest

trailer is about 1.5 minutes long and the longest trailer is 5 minutes in duration. We



Table 3.4: Table of average shot lengths, motion energy and KL distances

consulted the internet movie database (iMDB)[19] in order to pre-classify these trailers.

This classification is based on the keywords used to describe the movies in the iMDB. Table

3.5 shows the trailer name, the full movie name, the iMDB keywords and the classification

that we assigned to the trailer based on these keywords. We have 10 Action and 14 Character

movies. We note here that since there is a continuum between action and character movies,

this classification just denotes which side of the dividing line the movie lies. As our first

experiment, we considered the average shot length and the average motion energy (see Table

3.4) as the discriminating features. We randomly chose 3 trailers from each category as the

training set. Computing the means and variances from this training set, We performed

a likelihood ratio test assuming implicitly that the shot lengths and motion energies were

Movie avg. shot length avg. motion energy avg. KL btwn. rgb hist.
badboys 14.6746 29.2512 0.3583
blankman 22.6115 27.0813 0.1209
dredd 24.5882 23.5782 0.5378
fighter 16.0071 24.5057 0.3323
jungle 26.8889 11.7419 0.1228
madness 17.9000 25.6444 0.2744
riverwild 46.0000 12.4335 0.0685
terminal 20.2564 22.4440 0.3559
tide 32.2595 10.6759 0.1160
vengeance 12.8198 25.1608 0.2447
circle 60.6780 5.0598 0.0445
clouds 23.7467 8.8116 0.0829
eden 47.1000 7.6748 0.0691
edwood 27.8230 8.9310 0.0714
french 62.1429 4.5978 0.0595
junior 39.9706 7.8763 0.1055
miami 66.9302 3.3276 0.0598
payne 30.8276 11.2788 0.1794
princess 24.3909 9.1767 0.1463
puppet 22.5155 12.4883 0.1478
santa 41.6000 5.8339 0.0899
scout 30.5041 5.8996 0.0570
sleeping 34.9800 5.1866 0.0393
walking 32.6444 8.8228 0.0901
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Figure 3.14: Plot of average shot length versus motion energy

distributed with a Normal density function. This resulted in 78% correct classification.

This classification was also tried with the ratio of average motion energy to average shot

length as the feature with a similar performance. Figure 3.15 is the histogram of the ratio

of motion energy to shot length for one such trailer. We can clearly see that modeling

the histogram with a single gaussian is not a very good approximation and therefore the

classifier performs poorly. We decided to use the ratio of motion energy to shot length

as a feature since in action movies, the motion energy is expected to be high AND shot

lengths small and the converse in character movies. Therefore, a ratio is expected to be

more discriminating. In the second experiment, we took the 6 randomly chosen trailers and

trained two sets of Hidden Markov models on the ME/SL ratio. The models ranged from

2 fully connected nodes to 5 fully connected nodes. The training algorithm was the alpha-

beta algorithm as outlined in [47]. The best classification rate that we obtained was 66.6%.

This was much below the performance of the likelihood ratio test. Upon some analysis, we

found the cause for the poor performance of the HMM models to be the discretization of

states (specifically, the B matrix). The character movies have significantly smaller values



Trailer Movie Name iMDB keywords Class
badboys Bad Boys violence A
blankman Blankman comedy/superhero A
dredd Judge Dredd violence A
fighter Street Fighter action A
jungle Jungle Book adventure/animals A
madness In the mouth of Madness horror/thriller A
riverwild The River Wild action/hostage A
terminal Terminal Velocity action/skydive A
tide Crimson Tide thriller/nuclear A
vengeance Diehard with a Vengeance thriller A
clouds A Walk in the Clouds drama/romance C
circle Circle of Friends drama/romance C
eden Exit to Eden comedy/sex C
french French Kiss comedy/romance C
miami Miami Rhapsody comedy/family C
princess The Little Princess drama/school C
santa Santa Clause comedy/christmas C
scout The Scout drama/baseball/ C
sleeping While you were Sleeping comedy/romance C
edwood Ed Wood biographical/historical C
payne Major Payne comedy/ army- life/teaching C
junior Junior comedy/pregnancy/sci-fi/ C
puppet The Puppet Masters sci-fi/mind control C
walking The Walking Dead drama/afro-american/war C

Table 3.5: iMDC classification: "A" is action oriented and "C" is character oriented

of the ME/SL ratio compared to the action movies. Figure 3.16 shows the fitting of a

mixture of Gaussians model to the two groups (specifically, to the 6 trailers in the training

set). We can see that the character group of movies have significantly smaller ME/SL

ratio. A simple uniform quantization, as in our first attempt with the HMM models, did

not capture this well. In our second attempt with the HMM models, we transformed the

data by taking the natural logarithm of the ME/SL ratio. We similarly trained two sets of

HMMs ranging from 2 nodes to 5 nodes. Table 3.6 shows the results of the best performing

simulation. The performance improvement from using the logarithm was very significant.

The 2-node model and the 4 and 5-node models perform slightly poorly compared to the

3-node HMM implying underfitting and overfitting respectively. The best model correctly



Histogram of ME/SL of the trailer "circle"
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Figure 3.15: Histogram of the ME/SL ratio for the trailer "circle"

classified 22 out of 24 trailers achieving a recognition rate of 91.67%. The ratio of the two

likelihoods given by the HMMs can be used to place the movies along the Action-Character

axis. However, in order to verify this characterization, we can no longer rely on the simple

descriptive keywords of iMDB.

Both the proposed Hidden Markov Models use the temporal evolution information of se-

lected features to classify video sequences. Specifically. the HMMs made structural assump-

tions about the nature of video sequences and used them to classify these sequences. In

other words, we can say that these Hidden Markov Models rely on a grammar that is present

in structured video content in their analysis. In contrast, the query-by-example systems

use purely visual features to retrieve video sequences. It might be interesting to combine

the purely visual features with these grammar-based features. We present this approach in

the next section.
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3.4 Controlled retrieval using VideoBook

Given a query sequence from a particular movie, it is reasonable to expect that visually

similar sequences will be present in movies of similar genres. This expectation arises from

the notion of socially accepted movie production codes (see section 3.3.2). Also, given a

query sequence from a particular genre, it is possible that the user is interested in retrieving

scenes from similar genres. We attempt to enable these queries by providing an additional

control to the user in the VideoBook interface. This enables grammar-constrained searches

on the movie trailer collection.

The Hidden Markov Models are essentially representations of the joint probability density

function in the feature space of the samples that they classify. While these HMMs are

useful for some applications, in many cases it is useful to represent the density functions

in more amenable forms, such as semi-parametric representations. When we combine the



Table 3.6: Classification results for the 3-node HMM model

purely visual low-level features-based representation of the VideoBook with the grammar-

based approach, it is useful to represent the densities in semi-parametric forms rather than

as HMMs. The query-by-example retrieval task is now turned into a weighted retrieval

where one component of the distance is computed from the visual features and the other

component is derived from the distance between movies in the density space. At one end,

this task is identical to the original VideoBook query and the other end, it is a purely

grammar based retrieval. So the queries can range from "Show all shots that look like this"

to "Show all movies (trailers) that are cut like this movie (trailer)". In the middle ground,

we have queries of the type "Show all shots that look like this, in movies (trailers) that are

cut like this movie (trailer)".

Movie iMDB log lik. (char) log lik. (action) 3-node HMM class.
badboys A -584.6431 -279.2000 A
blankman A -372.4045 -273.7870 A
dredd A -116.0311 -65.7753 A
fighter A -412.5557 -230.2305 A

jungle A -235.8129 -231.4702 A
madness A -100.4025 -109.8857 C <-
riverwild A -285.8203 -199.0171 A
terminal A -266.8279 -149.0636 A
tide A -275.2908 -265.1946 A
vengeance A -147.9277 -111.3094 A
circle C -161.9689 -216.2792 C
clouds C -224.2623 -295.5342 C
eden C -171.2445 -192.7708 C
edwood C -198.2601 -218.6139 C
french C -158.0795 -206.4249 C
junior C -153.9576 -191.4976 C
miami C -171.0646 -210.9144 C
payne C -220.7809 -226.5245 C
princess C -233.8534 -244.2294 C
puppet C -304.5891 -212.0613 A <-
santa C -205.8415 -258.7029 C
scout C -271.4748 -296.7294 C
sleeping C -216.3463 -258.3200 C
walking C -231.4427 -255.0258 C



3.4.1 Classification of Trailers using KL divergence

Based on our experiments with Motion Energy and Shot Lengths as useful features for

movie trailer classification, we use the EM algorithm [9] to construct a mixture of gaussians

probability density representations for each of the movie in our collection. Prior to using

them in VideoBook, we evaluate their performance with a classification experiment similar

to that in Section 3.3.2. Since the quantities we are interested in comparing are density

functions, we use the KL divergence as our classification criterion.

We use the 6 trailers used earlier to train the HMMs to create "character" and "action"

density functions (see Figure 3.16). Each trailer is similarly represented using a mixture of

gaussian model and the KL divergence between the trailer and the two classes is computed.

We chose the symmetric form of the KL (SKL) divergence (defined in equation 3.7) as the

similarity measure. The SKL divergence between the group PDFs and the sample PDF was

used to classify the sample in the two categories. This classification is then compared with

iMDB ground truth. Table 3.7 shows the results of the final classification.

SKL(p||q) = KL(p||q) + KL(q||p) (3.7)

We note that the SKL classifier performs as well as the HMMs classifier earlier. Only one

action trailer was misclassified as a character movie. Upon further analyzing the trailer, we

found that the trailer was from the movie "The River Wild" and the opening shot of the

trailer was a long and reasonably static shot (16 seconds) of a river. This skewed shot was

probably responsible for that trailer being misclassified.

3.4.2 Joint grammar and visual query

This joint approach can be viewed as setting up the priors of the features-based retrieval

interactively. That is, the bias of the features towards movies of similar semantic content



Table 3.7: Final classification of trailers using the SKL distance

can be controlled. At one extreme, individual shots do not matter and retrievals are purely

based on proximity of the movies from which the shots were obtained. At the other extreme,
only visual similarity is used for retrieval. A middle ground where both play a role will

possibly result in more meaningful and visually similar retrievals.

To combine the two approaches, we normalize the similarity measures from both the repre-

sentations into a joint rank. The normalized similarity function is as shown below:

S(i,j) = (1.0 - w) x exp(-ki x dl) + w x exp(-k 2 x d2)

Movie SKL (action |movie) SKL (character |movie) classification
badboys 0.933242 17.426211 A
blankman 0.404791 16.910384 A
dredd 0.968591 7.665252 A
fighter 0.165028 8.599979 A
jungle 1.281311 1.863222 A
madness 0.180119 19.061343 A
riverwild 17.284014 1.478502 C
terminal 1.285146 4.503840 A
tide 1.055045 2.193608 A
vengeance 1.506620 3.244065 A
circle 14.991360 0.118162 C
clouds 17.268471 0.036801 C
eden 8.512113 0.174151 C
edwood 6.784345 0.585779 C
french Inf 1.509291 C
junior Inf 1.365144 C
miami Inf 3.116879 C
payne 1.408200 1.525291 C
princess 6.558665 0.149712 C
puppet 4.330472 1.231515 C
santa 9.895152 0.108404 C
scout 15.054414 0.180318 C
sleeping 4.935052 0.290696 C
walking 3.511839 0.381914 C

(3.8)



where dl is the euclidean distance between two shots and d2, the KL divergence between

the corresponding trailers respectively. The weighting factor w determines the degree of

semantic influence in the query. It is chosen to be between (0, 1) by the user. Setting

w = 0 indicates purely features-based query. Conversely, w = 1 is a purely semantic query.

Factors ki and k2 are scale factors chosen to appropriately scale dl and d2. Given the above

transformation, a higher similarity value implies a closer match, with 1 indicating a perfect

match.

We performed 100 query experiments with w = 0.5, indicating equal weighting to both

the representations. As in section 3.1, the trailer database was divided into two groups. A

random shot would be chosen from the query group and queried against the test group. The

result was considered correct if the correct trailer was identified in rank 1 position AND

the retrieved video shot was visually similar to the query shot. We obtained 96 correct

responses, indicating a performance gain of 4% compared to the simple features based

approach. In addition, the shots returned in the next 2 positions are also both visually

similar and from trailers of similar semantic content. Figure 3.17 shows key frames from a

sample query shot and the corresponding retrievals are shown in Figure 3.18. The semantic

weighting serves to increase the prior for similar content and this results in higher observed

performance. In addition, the semantic weighting constrains the search space in favor of

trailers with similar characteristics which results in higher visually proximate rank 2 and

rank 3 retrievals as well.

3.5 Why probabilistic descriptions?

In this chapter and the previous one, we toured through many approaches for image and

video content characterization. For image retrieval, histogram and histogram refinement

techniques (such as coherency vectors and correlograms) have been demonstrated to have

superior performance under a wide range of queries. From an unstructured data perspec-

tive, the advantage that histogram-based techniques offer us is that they do not make



Figure 3.17: Sample query shot for w = 0.5

any assumptions about the content and therefore are applicable widely. Essentially, these

histogram-based techniques describe images and video in terms of statistics of the extracted

features. Similarly, at the other extreme of structured content, Bayesian Models such as

the HMMs we presented were essentially modeling a high-level description in terms of a

probability density over the extracted features. In addition, probabilistic descriptions have

other advantages such as

" They are robust to missing/corrupted data. That is, they can handle dropped frames,

corrupted blocks etc. Their performance degradation is gradual.

" They can be used with different data types. That is, an image and a video sequence

can be treated similarly. An image can be used to query for video and vice-versa.

" They enable multiple groupings. For example, a picture of a crowd taken outdoors

can be categorized both as a picture of a crowd and an outdoors picture. Probabilistic

descriptions provide confidence estimates for each type of categorization which is then

used for multiple groupings.



e They are well understood and provide intuitive explanations and reasoning similar to

the way humans relate to data.

If the framework for video content characterization is built upon a set of probabilistic

descriptions, then it will have the ability to work at multiple levels of complexity (such as

histograms and HMMs). In the rest of the thesis we describe a set of clustering algorithms

in the probability density space that can be used for cataloging unstructured video content

and an application that enables browsing and constructing of alternate outputs from video,

as outlined in chapter 1. This application is designed to be independent of the clustering

algorithms used. This independence permits us to expand the capabilities of the application

by building specialized models (such as the Bayesian Models and HMMs presented) for

handling specific types of structured video content.



Figure 3.18: Corresponding retrievals for w = 0.5. Note a similarity value closer to 1 implies
a better match
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Chapter 4

Density-based Clustering

In this chapter, we start with the assumption that video sequences are modeled as proba-

bility density functions and present clustering algorithms in density space.

The clustering work is presented as four different algorithms:

" Hard clustering, which is similar to Vector Quantization.

" Soft clustering, similar to Expectation-Maximization. The particular technique we use

is an extension of the deterministic annealing technique proposed for Vector Quanti-

zation. This is a top-down algorithm. The hard clustering algorithm can be viewed

as a special case of this algorithm.

" Soft agglomerative clustering. This is a bottom-up algorithm which addresses some

efficiency issues with the top-down algorithm.

" Hard agglomerative clustering. The hard variant of the above soft algorithm.
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4.1 Why clustering for unstructured video?

With structured video sources, the assumptions of common editing codes and presence

of a structured narration are valid. These make possible the use of high-level inference

mechanisms such as the Hidden Markov Models (see Chapter 3, Section 3.3) and Bayesian

Networks (see Chapter 2, Section 2.4). In [31], we argued that a Bayesian approach is a

natural solution to semantic characterization when the assumptions of structured content

can be made. However for unstructured video, we cannot rely on these models because some

of these structural assumptions are not valid. Also, a major limitation with the structured

approach is that these models are good at handling only the vocabulary that they have been

trained upon. Training data requirements grow exponentially with the number of classes

and can become unmanageable for any realistic sized vocabulary.

The query-by-example paradigm [42, 12, 20] (and also all examples in Chapter 2, Section

2.2) is a powerful approach for unstructured video characterization because it makes no

assumptions about the nature of content. However, it pays the price by relying on lower-

level features. The gap between the machine representation and the human perception

is wider compared with model-based approaches. In addition, although query-by-example

works well when the database is small, as the database grows, presenting the user with a

small randomly chosen subset of thumbnails is no longer a viable choice. Also, the notion of

serendipitous discovery of the "right" image/video in the query-by-example paradigm gets

weak if the initial subset that is presented is not representative of the database. Another

important problem with query-by-example is that it has not characterized or abstracted

the database in any particular way. It searches the entire database every time a query is

presented. While there are efficient search techniques to reduce this search complexity, the

problem of not having generalized and abstracted the data remains. In [37] the abstraction

problem is addressed by allowing the user to provide relevance feedback and propagating

newly learned labels. This can be viewed as the system having the ability of "short term

memory". This system achieves the happy middle ground between pure query-by-example

with no assumptions at one end and Bayesian modeling with structural assumptions at the



other extreme.

We argue that clustering offers yet another such middle ground. Clustering is a natural

way to organize massive quantities of data and build interfaces that take advantage of the

cognitive abilities of the user. For example, let us suppose that the user presents a video

collection that is made up of shots from a typical home video. It is reasonable to expect

that good clustering algorithms will groups all shots that have similar features together.

For example, most shots taken indoors will be in one cluster and most shots taken outdoors

will be in another cluster, purely from the color features. The user views these clusters and

attaches labels. The clustering algorithm relied on the user's ability to make inferences and

attach cognitive meaning. This is not to say that it will work all the time. Some clusters

may be such that we cannot provide clean labels. The interesting point is that from the

perspective of extracting alternative outputs from the video (like collages, storyboards, still

pictures and video dramas), it is not important that all clusters make cognitive sense to the

user.

Clustering also offers another advantage that alleviates some of the problems with query-

by-example. As the database grows in size, clustering is a natural solution to presenting

the user with a small representative subset of the database. As opposed to showing a few

randomly chosen images/video clips from the database to start off on a query-by-example

search, chosen images/video from each cluster can be used as the starting point. This

process can be repeated ad infinitum with a hierarchical clustering scheme. This ensures

that the user is presented with a representative collection at each query.

A good choice for the representation of clustering should not compromise the ability to

handle higher-level characterization. In particular, if the clustering is performed in the space

of probabilistic representations, we retain the advantage of using higher-level probabilistic

descriptors when available. We saw earlier the other advantages with using probabilistic

descriptions.



4.2 Introduction to Distribution Clustering

Study of clustering techniques is a topic to which much attention has been devoted [26].

Traditionally, clustering has emphasized discovering structure in data, compact summariza-

tion of data etc. Clustering has also been proposed for alleviating sparse data problems

[29, 44].

Clustering algorithms can be grouped into two categories: partioning and hierarchical. In

partitioning approaches, the sample set is divided into a set of distinct groups. That is,

each sample point is placed into one of many sets. Partitioning approaches can be viewed

as a special case of hierarchical clustering. In hierarchical clustering, all samples belong to

one cluster at the top level and as we descend down the levels, the number of partitions

increase. Hierarchies are either constructued in a top-down or bottom-up fashion. Bottom-

up techniques are usually termed as agglomerative clustering.

Each clustering approach can either be soft or hard. In hard clustering, the partitionings

are distinct and each sample belongs to exactly one partition. In soft clustering, each sam-

ple belongs to every partition with a "degree" of belongingness. This degree sums to unity

across all partitions (and at each level, in case of hierarchical clustering). Most clustering

algorithms begin by creating an initial estimate and then iteratively refine estimate by opti-

mizing a cost function till they converge onto a local minima. Techniques such as simulated

annealing are employed to select better minimas and in theory simulated annealing can

converge to the global minima.

Traditionally in clustering, the sample points are n-dimensional vectors. In our case, the

sample points are probability density functions as we model each image or video sequence

in terms of a density over the extracted features. A simple example of a density estimate is

a normalized color histogram which is one of the features that we use. The use of density

functions impose special constraints on the clustering algorithms. Specifically, this requires

that all centroids that we estimate must be valid densities. Clustering distributions is a



topic of interest on its own accord. In our case, we have illustrated the need and advantages

of modeling video as a collection feature distributions (see Chapter 3) and the merits of

clustering for handling unstructured video.

4.3 Hard partition clustering

We assume that we start with a collection of discrete distributions, with each sample dis-

tribution representing a video shot. For example, these distributions could be the nor-

malized color histograms, or the color correlograms. Given a collection of distributions,

the Kullback-Liebler divergence becomes a natural choice for similarity between two sam-

ples. In order to cluster a collection of such samples, we define a distortion criterion J and

minimize it. The clustering algorithm then proceeds in the following steps:

1. Initialize by randomly assigning N centroids.

2. Assign each sample to the closest centroid. Distance from each centroid is estimated

using the KL divergence.

3. Move each centroid to a new location such that the cumulative

assigned samples and the centroid is minimized.

4. Repeat steps 2 and 3 till no samples change centroids. If no

stop.

distortion between the

change in assignment,

4.3.1 Clustering using KL divergence

Given a cluster centroid, the cumulative distortion contributed by that centroid is given by

J = E D(pljq) + A(E p(i) - 1) (4.1)



where qj is the jth sample density of Nc samples that belong to one cluster and p is the

centroid density. In our notation, qj (i) denotes the ith bin of the density and p(i) is similarly

the ith bin of the centroid density. We add the Lagrange constraint to ensure that the

resulting density is valid. We also implicitly assume that each of the qj are normalized to

be valid densities. D(p||qj) is the KL divergence between qj and p. KL divergence can be

defined in two ways, as we saw earlier.

We minimize J with respect to the cluster centroid for both the expressions of KL divergence

below.

Theorem 4.1 Given the following expression for the cumulative cluster distortion

J = qj(i) log qj + A(Zp(i) - 1) (4.2)

the centroid distribution is the mean of the sample distributions.

Proof: Minimizing the cumulative distortion with respect to the bins of the centroid, we get

qj

p W) gj (1) (4.3)

aJ

EpWi (4.4)

Together, we get

1 gj(i) =41

A = Ne (4.5)



And we get,

p(i) = N j(i)
Nc :,

(4.6)

That is, each bin of the centroid is the arithmetic mean of the bins of the sample densities.

Theorem 4.2 Given the following expression for the cumulative cluster distortion

J = E Ep(i) log p(i) + A (p(i) - 1)
j i qj (i)

(4.7)

The centroid distribution is the geometric mean distribution of the samples.

Proof: Minimizing this J with respect to the p(i)s, we get,

0J
= A + Nc(1 + log(p(i))) - log(qj(i)) = 0

log( p(i) =_log( ), V i k
qj (i) Vi (k

N x log( 
qj(i)

p(k) q z j (k)

p(k) - (q j ( i ) )
Sq(k)

(4.8)

From which we get the following expression for p(i)

p(i) = C x qj(i)7 (4.9)

where C is the constant (4.10) introduced to satisfy the Lagrange constraint to make p a

valid distribution. We see that the p(i) comes out to be the geometric mean of the sample

densities.

(4.10)C = ^ 1
Hj qj (i)N



4.3.2 Clustering using Euclidean norm

Additionally, instead of using the KL divergence as the distortion measure, we could use a

valid distance function such as the euclidean norm. That is, we could consider the discrete

density function as an n-dimensional vector and apply any of the standard distance func-

tions, with euclidean distance being one such example. We continue to impose the Lagrange

constraint to ensure that the resulting centroids remain valid densities. This modifies the

cumulative distortion to

Nc

Z ~ (qj() - p(i)) 2 + A(Zp(i) - 1) (4.11)
2

Minimizing the cost from (4.11) with respect to each bin of the centroid, we get the following:

8J
(qj(i) - p(i)) + A = 0

A = q (i) - Nep(i) (4.12)

From which we get

p(i) = Nc j) (4.13)

Which results in the same expression as using (4.2) as the criterion. This is an interesting

result since the euclidean norm is a very common first choice for distance function. This

result implies that using euclidean distance and computationally more cumbersome KL

divergence result in similar clustering.

One problem that remains is the determination of the number of clusters. The hard clus-

tering algorithm can work for any number of clusters. A variety of different techniques can

be used to determine the number of clusters from the data. For example, we could plot the

final cumulative distortion versus number of clusters. If there is a true number of clusters

in the data, the cumulative distortion would drop with increasing number of clusters until

the desired number of clusters are reached, and after that the drop in cumulative distortion



would be much smaller. Another way to estimate the number of clusters would be leave

some data aside and at each iteration, plot the cumulative distortion of the left out data.

After the "true" number of clusters are reached, this cumulative distortion changes direc-

tion. This approach is popularly known as cross-validation. Alternatively, we could apply

a set of heuristics to determine the number of clusters. At each iteration, we split clusters

that have a higher variance than the average and merge clusters that are close to each other.

This is akin to the Isodata procedure outlined in [60]. A version of our algorithm that is

Isodata-like will be detailed in Section 4.6. Another variation is to add a penalty term to

the number of clusters (clearly, the more the number of clusters the higher is the cost of

representing the data, if we are doing compression). This imposes an additional constraint

on the optimization procedure and is popularly referred to as the MDL (minimum descrip-

tion length) principle. In Section 4.4 we outline yet another procedure for determining the

number of clusters. Unfortunately, there is no right answer since we do not know how many

clusters are in the data to begin with. Ultimately, the question to ask is what are we going

to use the clusters for? That determines the price we are willing to pay in choosing amongst

the different selection criteria. In our case, we are using the clustering to show interesting

groupings to the user and to enable easy navigation through a potentially vast collection of

video. In addition, we are also interested in efficient retrieval through this collection when-

ever the user would like to perform a specific query-by-example search. The considerations

that govern the number of clusters to be shown are the granularity desired by the user,

size of the database (to perform efficient query-by-example searches), possibly the network

connection that the user has to the database. Briefly, if the network connection is slow it

is better to show more clusters, with fewer video sequences per cluster, than it is to show

a few clusters, with many sequences per cluster. Or, for slower connections, it is better to

organize the clusters in a hierarchy and show with increasing detail as user requests get

more specific. Nevertheless, the point here is that the number of clusters in our case are

governed by considerations that seem unrelated to the basis behind the heuristics that are

used to select the number of clusters.

We will detail performance of the hard clustering algorithm together with the other algo-



rithms in Section 4.6. This section also details the specifics of each algorithm.

4.4 Hierarchical soft clustering

The clustering algorithm outlined in the previous section assigns each sample density into

one cluster. While this is useful, in many cases it is desirable to have a soft assignment, i.e,

have samples belong to multiple classes and have a probabilistic association with each class.

For example, a particular video shot of two people in a conversation taken outdoors can

be classified as both a dialog and an outdoors shot. Real world examples can and tend to

have multiple labels associated with them. It is desirable to have the clustering algorithms

possess the ability to assign multiple labels.

The soft assignment process is desirable for yet another reason: As we noted earlier, the

hard clustering algorithm is an iterative procedure with the potential of getting locked in

a local minima. The soft assignment algorithm can be viewed as a technique for selecting

a better local minima. In fact, the deterministic annealing algorithm on which our soft

algorithm is based was proposed as a technique for the same [48].

4.4.1 Framework for probabilistic clustering

We begin with the notion that each sample point (in our case, distribution) is associated

in probability with each cluster. Hard clustering is now a special case where the association

probabilities are either 1 or 0. We quote from [48] the following which is true for clustering

(distributions or otherwise).

For a given set of centroids, the expected distortion in the probabilistic case is

N K

(D) = P(qj E Cjd(qJ,pk) (4.14)
j=1 k=1



where the qjs are the sample points, with N such points and the pAs are the centroids

with K such centroids, each cluster denoted by Ck. The measure d(qj,Pk) is the distortion

for representing sample qj by centroid p. Under the assumption that we have no prior

knowledge about the data, it is reasonable to apply the principle of maximum entropy.

That is, given the different configurations a system can be in, the most likely configuration

is the one with maximum entropy. It is relatively easy to show that maximizing the entropy

under (4.14) results in the Gibbs distribution.

P(qj G Ck ) = e ,Pk) (4.15)
Zqj

where Zqj is the partition function

Zq3 e- Od3'jPk) (4.16)
k

It is also reasonable to assume that the probabilities relating the different samples to clusters

are independent. Hence the total partition function is Z(q) = ]-I Zq,. The parameter #
can be considered inversely proportional to temperature, given the analogy of annealing.

In [481, they further show that the process of minimizing the distortion subject to maximiz-

ing the entropy is equivalent to minimizing the Gibbs free energy which is defined as

F(p) = log Z(q) (4.17)

The set of centroids p, that minimize the free energy satisfy

F = 0 (4.18)
Op

which results in

P(qj E Ck) d(qj,pk) = 0 (4.19)
-Op



While this technique works with any distortion function, It can additionally be shown that

for convex distortion functions, there is a unique solution that minimizes Ej d(qj,p) [48].
That is, at 3 = 0 there is exactly one cluster. At 13 > 0, a set of vectors satifying (4.18)

corresponding to a local minima in free energy can be obtained. The single solution at

1 = 0 is a solution for all / but it changes from being stable to nonstable as 3 increases.

This gives rise to the following generic algorithm for clustering.

1. Set 3 = 0 and find the global solution.

2. Replace each centroid in the solution set with many copies, each copy randomly per-

turbed. Increase 3 per annealing schedule.

3. Repeat probabilistic assignment and centroid computation till convergence.

4. Discard duplicate centroids (i.e, the ones that converge to the same point). This is

the solution set at the new /3.

5. Repeat from step 2 till desired number of clusters are reached or each sample is

assigned to a cluster by itself.

It is interesting to note that at each /3 value, a natural number of clusters result without

employing any heuristics. For a range of /3 values, the same set of clusters emerge. In

continuing with our physical analogy, each such range is analogous to a phase. If it is

possible to determine apriori at which # values a phase transition takes place, we can speed

up the simulation at all other places. In [48], the authors compute these / values for vth law

distortion functions. Since the phase transitions are known deterministically, the simulation

is akin to deterministic annealing. In the distribution clustering problem, it is not easy to

determine these / unstability points because of the relative unwieldiness of KL divergence.

Hence, we are forced to rely on the slower simulated annealing update schedules.



4.4.2 Soft distribution clustering

Our clustering algorithm is inspired by this algorithm. We note importantly that nowhere

in the Free Energy formulation or the centroid optimization was any constraint placed on

the form of the distortion function. This implies that an asymmetric similarity function

such as the KL divergence may also be used. See Ref. [29, pages 23-251 and Ref. [48]

for derivations of the Gibbs free energy formulation. See Appendix B for a simple proof

of convexity of KL divergence which implies that at 3 = 0 we will have one cluster. We

note that this cluster is also a solution at all values of 3. However, it may not be a stable

solution at 3 > 0, signalling phase transitions.

In our case, the samples are not n-dimensional points, but probability distributions. This

places the additional constraint that each resulting centroid solution be a valid distribution.

We employ the above probabilistic clustering framework for soft clustering of a collection

of distributions, using KL divergence as the similarity measure. The additional constraint

leads to the following minimization formulation

+F(p) = (-- log Z(q) + A(1 - EZp)) = 0 (4.20)OP ap #

As in the hard clustering case, we use the two different forms of the KL divergence as the

similarity measure and solve for the centroid.

Theorem 4.3 Given the following expression for the cumulative distortion

J = (P (qj Ck)KL(qI|pk)) + A (1 pk (i) - 1) (4.21)
jk

where KL(qjlpk) is defined as

KL(qjIpk ) = E qj l (4.22)



and P(qj C Ck) is as defined in (4.15) with the appropriate form of the KL divergence, the

centroid distribution is the weighted mean of the sample distributions.

Proof: Minimizing the cumulative distortion with respect to the bins of the centroid pk, we

get

a9 = P(q, E C) ( + A
ONk(i) Pk W)

1 1
p P(qj C C )qj(i) = (P(qj E Ck)qj l), Vi p 1

APk O~jhPk Wi) ZP (qj C CkOlj (i)

Pk (1) 2'jP (qj G Ck) qj(k)

Pk(i) (qj C Ck)qj (i) (4.23)

This proportionality combined with the Lagrange constraint requires that Pk(i) be:

Pk(i) = P(j E Ck)qj (i) (4.24)

Which results from the fact that Ek P(qj C Ck) = 1. Therefore, the centroid is the weighted

mean of the sample distributions.

Theorem 4.4 Given the following expression for the cumulative distortion

J = E e(P(q, E Ck)KL(pkflqj )) + A(Zpk(i) - 1) (4.25)
j k

where KL(pklqj ) is defined as

KL(pk qj) - pk(i) log (4.26)qj(i)

and P(qj G Ck) is as defined in (4.15) with the appropriate form of the KL divergence, the

centroid distribution is the weighted geometric mean of the sample distributions.



Proof: Minimizing J with respect to the pk(i)s, we get,

= E(P(g E C)log k +( P(qj G Ck)+ A=0

P ( E Ck) log k ) - (P(qE Ck) l0 g k ) Vi 541
qj(i) q (l)

log (Pk))P(qECk) - gj(Pk() )P(q ECk) Vi I

q(i) q 1l)

(4.27)

From which we get the following expression for pk(i)

Pk (j) C X l j(j)P(J ECk) (4.28)

where C is the constant introduced to satisfy the Lagrange constraint to make Pk a valid

distribution. We see that the Pk (i) comes out to be the weighted geometric mean of the

sample densities. It is interesting to note that these two expressions are analogous to

the expressions for centroids in the hard clustering case. We can similarly use euclidean

distance instead of KL divergence in the cumulative distortion equation and as before,

we get the weighted average as the expression for the centroid. As we mentioned earlier,

partitioning into multiple clusters from a single cluster at the top relies on the centroid

solution becoming unstable with change in 0. In our experiments, we found that the

Geometric mean expression results in one stable centroid for all values of 13. We have not

yet been able to find an analytical expression for the stability of centroid, but we suspect

that it may be possible to show that for the Geometric mean case there is only one stable

solution.

This technique can be used in two ways: As a standalone, hierarchical clustering scheme

or as a technique for selecting better hard partitions. That is, the algorithm can be run

for a while with increasing # values and once the desired number of clusters are reached,



the simulation can be frozen by increasing 3 to oc and reverting to the hard clustering

algorithm. We note here that we can employ 3 to find cluster regimes. That is, for every

number of clusters, we can find a range of / values that gives the same number of clusters.

Additionally, some ranges of / values will be longer than others. If there are ranges of #

that are significantly longer than the rest, it is reasonable to expect that these correspond

to natural clusters in the data. We call each such range a cluster regime, borrowing from

fluid flow terminology'. We did an experiment with a small dataset of 45 video shots

(representing 10 minutes of home video) whose color histograms were used to cluster2 .

Figure 4.1 is the plot of 13 versus Nc, the number of clusters. We can identify 3 regimes in

the plot for Nc = 1, 4, 7 respectively. This plot seems to indicate that the dataset naturally

splits into these groups. Even so, we have multiple choices for the number of clusters. For

example, we could choose either 4 clusters or 7; But it is unclear if either choice has an

advantage without the context of the application or other considerations.

A similar distribution clustering algorithm was presented in [29] as a solution to handling

sparse data problems in natural language processing. A major difference is that the un-

derlying sample points are distributions in our case and vectors in their case. Rather than

clustering vectors of verb-noun pairs, which tends to be sparse, they estimate a set of condi-

tional densities and perform clustering in the density space. Also, they do not consider both

the forms of KL divergence nor the possibility of using a simple, regular (such as euclidean)

distance function for clustering.

4.5 Agglomerative distribution clustering

The algorithm presented above is computationally inefficient as the simulation has to be

repeated over the entire data set for each change in /3 value. If the dataset is large, this com-

'Fluid flow is characterized by a Reynolds number that has regimes. Two such regimes are the laminar
flow and turbulent flow.

2We used a small dataset primarily because of the time it takes the soft clustering algorithm to execute
each iteration.



8

6

0

E
=3 4

2-

0I I I I

0 1 2 3 4 5 6
beta

Figure 4.1: Plot of # vs. Number of clusters indicating cluster regimes.

putation can be prohibitively expensive. Ideally, if one level of the hierarchy can be related

to the next level without reference to the underlying data, then the resulting algorithm

will be computationally efficient since we deal with a (possibly) much smaller collection of

clusters at each level as opposed to the entire dataset. Since this is a top-down hierarchical

algorithm, with increasing details as we descend the levels, there does not seem to be a way

to relate two levels without taking recourse of the underlying dataset. We now present a

bottom-up approach in which we achieve this computational savings by relating the levels in

the hierarchy. We present this algorithm in two flavors: hard and soft. The hard algorithm

is akin to the agglomerative algorithms in [26] and is a special case of the soft agglomerative

algorithm.
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Figure 4.2: Dendrogram representing the agglomerative clustering algorithm.

4.5.1 Hard bottom-up hierarchical clustering

The hard agglomerative clustering algorithm is conceptually easy to understand and is

presented to provide the intuition behind the soft clustering technique. We do not implement

this algorithm in our tests. Initially, each sample is assigned to a cluster by itself. At each

iteration, distance between clusters is computed and recorded. Clusters that are close to

each other are merged with each other. The number of clusters that are merged at any

iteration and the threshold distance are parameters input to the algorithm. The algorithm

proceeds merging clusters till there is one cluster at the top level. The hierarchical cluster

that results resembles a dendrogram as shown in Figure 4.2.



This algorithm will be computationally efficient if the estimation of the merged centroid

at one level depends only on the centroids at the previous level and not on the data. One

simple way of computing the centroid distribution of the merged clusters would be to use

either the arithmetic mean or the geometric mean (based on our earlier discussions) of the

component centroid distributions. This is clearly independent of the data. However, the

merged centroid does not reflect the distribution of data well. For example, one of the

centroids that is being merged might represent many more data points than the others. To

tackle this, we employ a weighted averaging process. The relative weight that is assigned

each component centroid is proportional to the number of data points it represents. For

example, in Figure 4.2 at iteration 2 the left most merged cluster is made up of two com-

ponent centroids. One of these centroids represents 2 data points and the other 1 data

point. Therefore, we assign weighting to one centroid and 1 to the other centroid in the3 3

estimation of the merged centroid distribution. This merged centroid now represents 3 data

points. While this weighting process seems to be based on heuristics, it will be motivated

in a principled manner in the soft clustering algorithm.

4.5.2 Soft bottom-up hierarchical clustering

The soft clustering algorithm is the general case of the hard clustering presented above.

The clustering model is shown in (4.29). Since the quantities we are dealing with are

distributions, we assume that X represents the underlying random variables that these

distributions pertain to.
Cl

P (X) = rI rp(X Izi = 1, Mt ) (4.29)

where 1 is the level in the hierarchy the model represents, with 1 = 0 being the coarsest level.

M, is the model at level 1, C' the number of centroids at that level and 7ri, the corresponding

priors. The variable z is an indicator that takes the value 1 iff the sample X is drawn from

the ith component. This model is a standard likelihood model in the EM literature [91.

The basic idea is that the centroid distributions at one level I of description are completely



specified in terms of the centroid distributions at the previous level, I + 1. At each level, the

collection of centroid distributions from the previous level is treated as data for estimating

the new model. In addition, at each level the clustering is fuzzy. A straightforward imple-

mentation would be to draw some samples from the model at level 1 and simply run the

EM algorithm to estimate the new model. This would be computationally expensive and

be contrary to our goal.

Let us suppose that instead of generating real samples from the cluster model at level + 1,

we perform a Monte Carlo simulation and extract a collection of virtual samples. The idea

of using virtual samples for estimating EM parameters was proposed for learning mixture

parameters by Vasconcelos [63]. We use this idea for distributional clustering. As in Ref.

[63], we consider a virtual sample block X = X 1 ,... , Xci+1 from the model at level 1 +I 1,

Mi+1 with each Xi a virtual sample block from one of the C1+1 clusters. Each block Xi

is chosen to be of size Ni = rN, where N is the total number of virtual samples drawn.

That is, each Xi is a set of vectors xy, n E [0, Ni]. We further assume that these samples

have been drawn independently. The likelihood of these samples under the model at level

I is therefore
C1+1

P(X|MI) = J P(Xi|M) (4.30)
i=1

The likelihood of each block is therefore

Cl

P(XilM1 ) = 71. P(Xilzi. = 1, M) (4.31)
j= 1

where zij = zj 1 z1 is a binary variable with value 1 iff the samples in Xi are assigned to

cluster j in level 1. The above equation expands to

Cl Ni

P(Xi|M) = J7] P(x"|jzi = 1, M) (4.32)
j=1 n=1

This gives us
C1+1 Cl Ni

P(X|M7) = f Z fi P(x?zij = 1 ) (4.33)
i=1 j=1 n=1



The above equation is referred to as the incomplete data likelihood since it does not account

for the state variables z. Accounting for the indicators, we get

C' Ni

P(XiZijM) = J fi P(x?|zij = 1, M) (4.34)
j=1,zij=1 n=1

where Zi is the set of indicators zij for a given model i. The product form results from

the observation that within a block Xi, each sample xy is drawn independently. The above

expression can be written compactly as

C' Ni

P(Xi, ZiIM) = [r11 fi P(xIzij = 1, Mi)]zii (4.35)
j=1 n=1

Simplifying and combining terms, we get the complete likelihood as

Cl+1 C1

P(X, ZIM) = [il x I P(Xilzij = 1, Mi)]zii (4.36)
i=1 j=1

where Z is the collection of all vectors zij. Taking logarithms we get,

C1+1 C1

log P(X, Z IM) = E E zij log(I P(XiIzij = 1, M)) (4.37)
i=1 j=1

From EM, we get the following E-step:

KjP(Xilzij = 1, M1)
hij= E[zijlXi, Ml] = P(zij = 1|Xi, Ml) = (4.38)

ZkxrkP(Xilzik = 1, Mi)

The steps from generating the virtual sample to the above are standard EM equations and

can be found in any reference to EM [9]. In the next few steps, we relate the two levels

using Theorem A.1 stated in the appendix. P(Xilzij = 1, MI) can be expressed as

Ni

P(XiIzij = 1, M) = log P(x!'Izij = 1, M) (4.39)
n=1

Now, the sample x! is derived from the ith centroid distribution at level 1 + 1. The likelihood



of observing Ni such samples under the jth centroid distribution at level I is given by

Theorem A.1 as

2Ni(H(p'i+Dll+2- (4.40)

where p, represents the jth centroid distribution at level 1. And, D(p||q) is the KL divergence

between distributions p and q. Assuming the units of entropy to be nats, we get

-Ni(H(p'+1)+D(p p

Using (4.41) in (4.38) and cancelling common terms, we get

1r e-NjD(p'.+1jp-

hij = 1(4.42)
Ek NiDe- pl+1

We see that this equation is independent of the virtual samples and specifes the relation-

ship between two levels purely in terms of the model parameters. Therefore, we have a

computationally efficient algorithm for clustering.

Carrying out the M-step of this thought experiment, we get the following relationships. As

is usual in EM, the M-step consists of maximizing

C 11 Cl

Q = hlog(rP(Xilzij = 1,M1 )) (4.43)
i=1 j=1

with the constraint that Ej 7r1 = 1 and the distributions p be valid. We have used the log-

likelihood instead of the likelihood for the sake of ease of manipulation. Both log-likelihood

and the likelihood have the same extremum points and therefore this substitution is valid.

We separate the terms of Q as

C0+1 Cl C+1 C

Q = E E hij log rl + E E hij log P(Xizi = 1, MI)) (4.44)
i=1 j=1 t=1 j=1

The first term of (4.44) depends only on the priors 7r'. and the second term depends only
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on the centroid distributions p1. Differentiating Q with respect to 1rj, we get

C1+1

57rlQ = '=-: 0&i3 i=1 ir
(4.45)

(4.46)

which gives

1 Ehij
Kj=C+1

Simplifying the second term Q' of (4.44) before differentiating with respect to the bins of

the distribution p , we get

C+1 Cl Ni

Q' = S E(hij[E log P(x!'zij = 1,M)])
i=1 j=1 n=1

(4.47)

From Theorem A.1, we get

C1+1 Cl Ni

Q'= (hij[(-H(pl+1 ) - D(pl+1
i=1 j=1 n=1

(4.48)

C+1 C1

Q= E E(hjjNj(-H(p1+ 1) -
i=1 j=1

C0+1 C1

Q'=E E (hig Ni [ (p1+ 1(k) log p+ 1 (k)
i=1 j=1 k

Differentiating (4.51) with respect to the bins of the centroid distribution p , we get

a ( =
01+1 A k

hij N +()
P (k)

Which gives us the following update equation, considering the Lagrange constraint.
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D(pl+ 1 ) )

+P p+( k) log +1 k )]

C1+1 C'

Q' = S 5(hjN[E(p ,+1 (k) log p(k))]
i=1 j=1 k

(4.49)

(4.50)

(4.51)

(4.52)

P (k) - hj Nip+ 
1 (k)

EZ hijNj
(4.53)



Which is very closely related to the update equation (4.24) in the top-down soft clustering

algorithm. Instead of a simple weighted average, we now have the additional weighting factor

that is dependent on the number of virtual samples that we create. Notice that none of the

update equations that we derived relate to the samples X directly. The relationships are

expressed in terms of the different level models. This implies a very efficient implementation.

The quantity Ni plays the same role as 13 in the top-down algorithm. As we increase N

(and therefore Ni), we increase the weighting on a particular configuration of clusters. The

cluster boundaries get harder with increasing N. A natural choice from the algorithmic

perspective is to start with a very high N and decrease it as the simulation progresses to

allow clusters to merge.

One special point to note is that the KL divergence came out as a natural quantity in this

algorithm. As opposed to the earlier two cases where we had a choice of similarity measures,

the setting up of the problem resulted in the KL divergence (and that too in one particular

form) as the similarity measure between two centroid distributions. In (4.53), the weighting

for each component centroid distribution depends on the prior of each distribution (i.e, how

many samples it represents) and the distance from the centroid being estimated (distance

in the KL sense). The hard clustering algorithm is a special case of this algorithm. In

the hard clustering, the second quantity is either 1 or 0 as we have boolean membership

as opposed to soft memberships. We see that the weighting scheme we chose for the hard

hierarchical clustering becomes justified since in that algorithm, each centroid was weighted

proportional to the number of samples it represented. We note here that the hard clustering

as we presented is not exactly a special case of this algorithm since we relax the constraint

on KL divergence and permit both forms.

4.6 Clustering experiments

We begin by detailing the three different algorithms that result from the analysis above.

Since two of the algorithms proposed are soft assignment algorithms, they cannot be directly
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compared with the hard clustering algorithm. In order to make these comparisons, we will

derive hard clusters from these soft algorithms as well. That is, in the soft clustering case,

the algorithms will be run in soft mode and be frozen into the hard mode once the chosen

criterion is met. The criterion we choose is that all algorithms must give us the same number

of clusters. By this, we are evaluating the ability of each of these algorithms to choose a

good local minima at a given configuration (or order, as is customary in the clustering

literature). Since each algorithm is designed to seek a local minima, this criterion seems a

reasonable one. We use the hard partioning algorithm as our control algorithm since the rest

of the algorithms can be stopped whenever the desired number of clusters are reached. As

mentioned earlier, this hard partioning algorithm is modeled after the Isodata procedure to

select the number of clusters in the data. In addition, to evaluate if the Isodata procedure

results in better clustering, we also run the hard algorithm without the split and merge

heuristics. That is, we pre-specify a number of clusters and perform the K-means iteration

alone till it converges. For the Arithmetic mean case, we compare all four algorithms. For

the Geometric mean case, the two soft algorithms are not used.

4.6.1 Clustering Algorithms

Algorithm 4.1 Hard partitioning algorithm

Define (and specify) the following parameters:

T: Minimum number of samples in a cluster.

Nd: Desired number of clusters.

sm: Maximum spread parameter for splitting a cluster.

Din: Maximum distance for merging clusters.

Nm: Maximum number of clusters that can be merged.

nr: Maximum number of discarded samples to be reintroduced into a simulation.
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1. Initialize Nd centroids by assigning one sample to each centroid randomly. Set Nc =

Nd where Ne is the current number of clusters.

2. Compute the mean centroid distribution from all the samples in the dataset. Compute

the mean spread as the average of the squared KL divergence between each sample and

the mean centroid. See (4.54).

3. Assign each one of the valid samples to its closest centroid. The closeness is computed

using KL divergence. If assignment does not change, exit.

4. Eliminate clusters with less than T members. Decrease Ne accordingly. Move the

samples from these clusters into scratch buffer. Samples in the scratch buffer will not

be used in the simulation.

5. Update the centroids using the update equations (for the chosen form of KL divergence)

in Section 4.3.

6. Compute the spread for each centroid. If the iteration is either odd and Ne < 2Nd or

if Ne < then2

(a) split clusters that have spreads greater than smr and increase Nc.

(b) If any clusters have been split, goto step 3.

7. Merge any pair of clusters (until a max of Nm are merged) that have average centroid

distance less than Dn.

8. If scratch buffer is non-empty, reintroduce maximum of n, samples into the simulation.

The closest n, samples to the current centroids are chosen from the scratch buffer.

Go to step 3.

The heuristic behind splitting and merging clusters requires a "measure" to estimate the

largeness and closeness of clusters. For closeness of clusters, we can use the symmetric KL

divergence (average of the two KL divergences) between the cluster centroids. To estimate
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the largeness, we define a mean spread term as

1 N
S(ailla) = N ZKL(ailla)2  (4.54)

i=1

where a is the mean centroid distribution and ai are the sample distributions. This quantity

plays the same role as the cluster variance in the conventional ISODATA algorithm.

The purpose of discarding and reintroducing data samples is to control the effect of outliers.

The procedure of discarding small clusters will hopefully eliminate samples that are outliers.

However, it will also discard good data samples. The purpose of selectively reintroducing

samples based on proximity to centroids will possibly retrieve these good data samples.

Algorithm 4.2 Soft top-down hierarchical clustering algorithm

1. Initialize 3, the inverse temperature, to zero. Compute the all sample mean centroid

distribution. Set parameter n, the number of copies of a centroid made in every iter-

ation. We found that 2 < n < 4 works well. Larger n implies additional computation

at each iteration, for the extra centroid copies.

2. Copy each centroid n times, randomly perturb each of these copies by a small amount.

Change 3 according to the update schedule.

3. For each sample, compute the responsibilities of each centroid. See Section 4.4 for

equations.

4. Update each centroid accordingly. If any centroid is a copy of another, discard the

copies and retain only one such centroid. Repeat steps 3 and4 till no change in cen-

troids.

5. Repeat step 2 until / goes to oc or desired number of clusters reached or each sample

assigned to a cluster by itself. Hard modification for experiments - When desired

number of clusters is reached, set 13 to oo and freeze the simulation.
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Algorithm 4.3 Soft agglomerative clustering algorithm

1. Initialize by assigning each sample to a cluster by itself. Set N, the number of virtual

samples, to a large number. Set 1, the number of levels, to a large number.

2. Decrement N per update schedule. Make copies of centroids at level I and perturb

them by a small amount. Treat these copies as level I - 1 centroids.

3. Compute the M-step and E-step as in Section 4.5.2. Repeat step 3 till convergence.

4. Some centroids would converge to the same points. Eliminate all but one such cen-

troids. Decrease the number of centroids accordingly. If desired number of centroids

reached, stop. Or if all centroids merged into one, stop. Hard extension - when de-

sired number of centroids reached, freeze the simulation by setting N to a very large

number.

4.6.2 Performance evaluation

We used a database of 972 images from the Corel database for our experiments. These

images are RGB color images and a few of them are shown in Figure 4.3. Prior to computing

the histogram, we converted the images from RGB space to Ohta [39] space shown below.

The color axes of this space are the 3 largest eigenvectors of the RGB space, found via

principal components analysis of a large selection of natural images.

I1=R+G+B

12 = R - B

I3 = R - 2G + B (4.55)

The Ohta space approximately decorrelates the color channels which makes it a good choice
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Figure 4.3: Sample images in the test database.

for computing individual channel histograms. We compute 3 color histograms, one for each

channel, for each image in our database. These histograms were then smoothed with a

gaussian kernel to ensure that images of similar but slightly different colors will have similar

histograms. Additionally, this process also ensures that none of the bins in the histogram

have zero values. This is important for the clustering using the Geometric mean criterion.

The experiments that we perform are two-stage query experiments. That is, the test image

is first queried with respect to the cluster centroids using KL divergence as the ranking

criterion. The closest cluster that is returned in this first step is now considered as the

database and the images within cluster are ranked using KL divergence. In the tables,

Rank 1 implies that the correct match came up as the first match in this 2-stage retrieval.

Rank 5 implies that the correct match appeared within the top 5 matches and similarly

Rank 20 implies that the correct match appeared in the top 20 matches. In addition, to

provide a baseline, the same query experiment is performed with the entire database.

It is easy to show that using KL divergence for retrieval is equivalent to performing maximum-

likelihood. Assume that q is the query image density and p is the density of an image in

the database. We define the ranking criterion as

D(ql|p) = qlog(q)
p
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= q logq - Eqlogp

(4.56)

The first term is a constant with respect to the query. The second term is estimating the

log-likelihood of the database model p under the distribution q. Minimum D(qlp) therefore

implies maximum _ q log p. This possibly explains the good performance of KL divergence

as a similarity measure.

In each set of experiments, the query image is subject to a different distortion prior to query.

The distortions that we used are: scaling, sub image, rotation, contrast shift, gaussian

noise addition and random pixel distortion. In the scaling experiment, the query image

is randomly scaled either 0.5 or 2.0 times the original image dimensions. For subimage

experiments, the top 1 of the image is used to perform the query. In rotation experiments,

an affine warp of 45 degrees is applied to the query images. For contrast shift, the dynamic

range of the pixels is reduced to 75% of the original. In gaussian noise addition, the query

image is degraded with gaussian noise such that the Signal-to-noise ratio (SNR) between the

query and the original is between 17 and 20 dB. For random pixel distortion, approximately

15% of the pixels in the query image are randomly changed. This results in the SNR between

the original and query image to be between 14 and 16 dB. Example distortions are presented

in Figures 4.4 and 4.5.

To select the number of clusters, as we mentioned earlier, the Isodata variation of the hard

clustering algorithm is used as the controlling algorithm. The chosen number of clusters is

then input to the other algorithms and they are iterated till the desired number of clusters

are obtained. In addition, the two soft clustering algorithms are frozen to give hard decision

boundaries. For the arithmetic mean case we obtained 9 clusters, and for the geometric

mean case we obtained 10 clusters using the Isodata variation.

Table 4.1 tabulates the 2-stage query experiments outlined above for the case of scaled

images. The first row in each table indicates the performance of the retrieval on the entire
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Figure 4.4: Sample Rotated and Noisy Images. The Top 2 Images are Rotated by 45
degrees. Bottom Right Image is the Noisy Version of the Bottom Left Image.

database without any clustering. In the tables, AM refers to arithmetic mean and GM to

geometric mean. Similarly, TD refers to top-down and BU refers to the agglomerative algo-

rithm. We perform 100 queries per experiment. Table 4.2 represents the query experiments

where the image was rotated by 45 degrees. The corresponding ROC plots are shown in

Figs. 4.6 and 4.7.

Since color histograms are scale-invariant and rotation-invariant, these results are expected.

The changes in the histogram that result by scaling and rotation are mostly numerical preci-

sion errors and by forcing a rectangular aspect on the images (in the case of rotated queries).

It is interesting to note that there is considerable difference between the performance of the

Hard AM and Isodata AM algorithms. This seems to imply that the heuristics of preventing

both very large and very small clusters in the Isodata algorithm helps by finding a better
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Figure 4.5: Sample database image and its 25% sub-image used for query.

representative approximation to the data.

Table 4.3 presents the results for subimage query. In this experiment, the top left 25%

of every image is presented as the query and a correct match implies retrieval of the full

image to which the subimage belonged. Table 4.4 tabulates the results of the random pixel

distortion experiments. Compared to the first two experiments, in these two cases there is

significant change to the histogram of the query image. The corresponding ROC plots are

shown in Figs. 4.8 and 4.9.

In both the experiments, there is remarkable difference in performance between the hard

versions and their Isodata variants. Both the soft algorithms perform the best. In the pixel

distortion experiment, the geometric mean algorithms perform better whereas in the sub

image query, the arithmetic mean algorithms perform better.
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Table 4.1: Cluster experiments for scaled

Table 4.2: Cluster experiments for

query image

query image rotated by 45 degrees

In the next two experiments, we distort the query images by a large extent. For the contrast

and illumination change experiment, we reduce the dynamic range of the pixels to 75% of

the original and for the gaussian noise experiment, we add a gaussian distributed random

number to every pixel in the image. Table 4.5 shows the results of the contrast change

experiment. We note here that we used the Ohta color space and did not normalize the

features to make them illumination invariant as in [16]. We therefore expect a consider-

able degradation in retrieval accuracy. Table 4.6 shows the results for the gaussian noise

experiment. The corresponding ROC plots are shown in Figs. 4.10 and 4.11.

We find that compared to using the entire database, there is a small drop in performance

when limiting the search to only the nearest cluster. However, the time savings of a cluster

based query are significant. Each cluster based query requires approximately -% of the

computation time, where Nc is the number of clusters.
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Algorithm Rank 1 Rank 5 Rank 20
Full 100 100 100

Hard AM 96 96 96
Hard GM 100 100 100

Isodata AM 100 100 100
Isodata GM 100 100 100

Soft TD 100 100 100
Soft BU 100 100 100

Algorithm Rank 1 Rank 5 Rank 20
Full 100 100 100

Hard AM 84 84 84
Hard GM 98 98 98

Isodata AM 99 99 99
Isodata GM 99 99 99

Soft TD 99 99 99
Soft BU 99 99 99
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Figure 4.6: ROC plot
100% line.

for scaled query. All but the Hard AM plot are co-located at the

Table 4.3: Cluster experiments for sub image query

We also find that the arithmetic mean versions are more robust than the geometric mean

versions under a wider variety of distortions. Geometric mean performs better under smaller

distortions to the query whereas the arithmetic mean clustering is robust over a wider range

of distortions. Interestingly, the percentage of correct retrievals in Rank 1 is higher for the

clustered retrieval compared with normal retrieval in Tables 4.5 and 4.6. This is possibly

because of fewer distractors in the clustered cases and therefore less confusion. However,

for Rank 20 performance, the full database query always performs better. This implies that

if the correct cluster is identified at the first stage, then having fewer distractors results in

a better rank. However, there are a number of instances where the correct clusters are not

112

Full DB -a--
Hard AM
Hard GM -E--

Iso AM -x--Iso GM
Soft TD -0- -
Soft BU

Algorithm Rank 1 Rank 5 Rank 20
Full 88 100 100

Hard AM 77 81 88
Hard GM 75 84 92

Isodata AM 81 94 97
Isodata GM 82 91 95

Soft TD 85 94 97
Soft BU 84 94 97
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Figure 4.7: ROC plot for rotated query. All but Hard AM are near the top.

Algorithm Rank 1 Rank 5 Rank 20
Full 87 98 100

Hard AM 71 81 81
Hard GM 86 97 98

Isodata AM 79 89 89
Isodata GM 87 97 98

Soft TD 82 90 93
Soft BU 80 89 93

Table 4.4: Cluster experiments for 15% pixel distortion

identified in the first stage and therefore we do not get similar improvements in Rank 20.

To a smaller degree, this effect can be observed in Rank 5 performance.

Both the soft algorithms performed better than the Isodata variant. However, both these

algorithms are significantly more computationally complex than the Isodata variant. Using

soft algorithms to initialize a hard clustering as we did for these experiments is perhaps not

the best way to use these algorithms. While such an approach improves the hard clustering,

the significant additional computation may not justify the improvement in performance. If

we use the soft clusterings without freezing, there might be additional improvement in

performance. However, it does not result in computational savings during retrieval since in
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Figure 4.8: ROC plot for subimage query.

Algorithm Rank 1 Rank 5 Rank 20
Full 51 78 90

Hard AM 49 72 80
Hard GM 50 67 79

Isodata AM 54 77 87
Isodata GM 55 76 83

Soft TD 60 78 88
Soft BU 58 78 87

Table 4.5: Cluster experiments for contrast change query

soft clustering every sample belongs to every cluster (with only the degree of belongingness

changing). Soft clusterings as such only influence the order of search and do not restrict

the search set. This is a good property to have - e.g., if the user is willing to wait longer

(but not as long as it takes to search the entire database), these soft clusterings can be used

to search the database in the order of decreasing likelihood, thereby reducing the expected

time retrieval. A possible way to achieve the computational savings with soft clustering is

to limit the search set to a fixed percentage of the database images. Since each cluster in

the soft algorithms implies a different search order, this thresholding strategy might offer

the computational savings with possibly higher retrieval accuracy.
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Figure 4.9: ROC plot for 15% pixel distortion query.

Algorithm Rank 1 Rank 5 Rank 20
Full 66 72 88

Hard AM 52 62 70
Hard GM 49 56 68

Isodata AM 66 73 83
Isodata GM 55 63 76

Soft TD 68 77 85
Soft BU 67 75 84

Table 4.6: Cluster experiments for query image distorted with gaussian noise

115

Full 08 .-Hard AM
Hard GM -a--

iso AM---
- -lso GM

Sot TD a
Soft BU



0 5 10 15 20 25
Rank

Figure 4.10: ROC plot for contrast change query.
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Figure 4.11: ROC plot for additive gaussian noise query.
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Chapter 5

Browser and Editors for

Unstructured Video

We now present the application that takes a collection of unstructured video shots and

shows clusters based on the algorithms presented above. These groupings are the launching

pad for the construction process by the user. As we discussed earlier, these groupings are

also an alternative to the query-by-example paradigm of navigating a video database.

Within this application, the user is presented with a choice of groupings and a set of editors

that enable interesting constructions from video. Specifically, we have built three different

editors that work with the cluster browser. The still editor enables extraction of a still

image from a video sequence for embedding into postcards, for example. The collage editor

can be used to construct storyboards, photomosaics, etc. The movie editor can be used in

two modes - in the default mode where the user selects all the shots and arranges the movie;

or given a time budget, the movie editor picks up shots from the clusters and suggests a

movie. In both modes, the user has complete control over the final selection and ordering

of shots within the movie.
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5.1 Representation of unstructured video

We assume that the unstructured video collection (from a home camcorder, for example) is

parsed into a collection of shots before the clustering process. This parsing into shots can

be accomplished using a combination of shot detection algorithms outlined in chapter 2, for

example. Once the shots are suitably extracted, a set of relevant features are extracted from

these shots. In this thesis, we have experimented with colorimetry, motion and texture and

when structural assumptions can be made, we have used sophisticated models and features

as seen in chapter 3. We note that the clustering algorithms and the application are both

independent of the features extracted. The clustering algorithms require a discrete density

representation of the features in order to cluster the shots.

For density representations of video, we use color and motion in our experiments. For exam-

ple, density representations can be either histograms, correlograms, coherency vectors etc.

We also use Vector Quantization to create a universal codebook of the collected shots and

create a codebook-use histogram for each shot. This is yet another density representation

of the underlying features. With video sequences, we find the Vector Quantization based

density representation particularly useful. Since the underlying points are blocks of pixels,

this approach offers some respite from the pure lack of local structure in the histogram and

offers advantages similar to that of a color coherency vector. The local structure informa-

tion gets embodied in the blocks that are used to construct the codebook. In addition,

a codebook based approach also provides a model for the particular region of space that

these video shots occupy and concentrates the histogram bins in this region. Thus, it also

permits greater representational power than with a simple color histogram which quantizes

the color space uniformly. In addition, Vector Quantization is both useful for archiving and

for feature representation. Another possible feature representation that we are currently

exploring is to use the DCT coefficients and the motion vectors that are available from the

MPEG and JPEG streams. The advantage of this approach is that it makes use of the

information already available from the encoding process of the current video and image

archiving and transmission standards.
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Cluster
description

Cluster Browser

Centroid Browser

Figure 5.1: Architecture of the browser/editor application

We note here that the browsers and the editors are independent of both the features and the

representations used to characterize the video shots. In addition, they are also independent

of the clustering techniques used to group the shots. This independent visualization provides

the flexibility to explore a variety of representations and features.

5.2 Architecture of the System

Figure 5.1 shows the architecture of the browser/editors for unstructured video. The appli-

cation is visualized as a standalone module that takes as input a cluster description and a

database of shots. This enables the application to be useful with a wide variety of cluster-

ing techniques. In addition, it also can be used as a tool to visualize and evaluate different

clustering techniques. It comprises of 5 modules as shown in Figure 5.1.
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5.2.1 Cluster Browser

The cluster browser module is the central module of the system. It is the primary interface

of the system to the external world. That is, it mediates all user interactions and also

exchanges information with the environment regarding the clusters, shots, files etc. It

serves as the launching pad for the centroid browser and the different editors. It also serves

as the conduit for messages passed between the different modules. The cluster browser

reads in the cluster descriptions (shot membership of each cluster) and shot descriptions

(physical location of shots, timing information etc) and uses this information to orchestrate

the tasks of the different editors and browsers.

Figure 5.2 shows the cluster browser interface. In the top image display area, one image

per centroid is shown. The image that is shown is the first frame of the top ranking shot for

each centroid. The selected feature for which the centroids are shown is highlighted in the

information panel below. Via this panel, the feature set for which the clusters are shown

can be changed. For the selected feature set, the image display area shows one image per

cluster. For example, in Figure 5.2, there are 6 images indicating 6 centroids for the chosen

feature. Figure 5.3 shows a set of clusters for a typical home video collection.

In addition, the cluster browser permits a hierarchical organization of clusters, in which

case, clusters at a particular level are shown in the image display area. It is hoped that this

interface provides the user with an idea of the database in contrast with the views offered

by a query-by-example system which presents a collection of randomly chosen shots. For

example, assume that the image database consists of pictures of postage stamps. If the

user is browsing for a stamp of a particular color, in the query-by-example system it is

not immediately apparent whether stamps of that color exist or not. However, if there are

sufficient stamps of that color in the database, a clustering based on color will reveal that by

positioning a centroid around that color. The cluster browser thus would be more revealing

to the user. The cluster browser thus offers a solution to the page-zero representation

problem (see chapter 1 and [6]).
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Figure 5.2: Cluster browser view of movie shots database

Figure 5.3: Cluster browser view of home video database

5.2.2 Centroid Browser

In order to view the contents of a particular centroid, a separate browser for each centroid

is launched upon user request. One such browser is shown in Figure 5.4. This viewer shows

all the shots that belong to a centroid. These shots are arranged in decreasing order of

proximity to the centroid. The shot in the top-left corner is the closest to the centroid and

the bottom-right shot is the farthest away from the centroid. One of the advantages of

clustering is that it relies on the cognitive ability of the user to bridge between the shots of
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Figure 5.4: Centroid browser showing some shots in the "field" cluster

a grouping and attach a label to it. For example, in Figure 5.4, a possible label could be

"fields". Similarly, a possible label for Figure 5.5 is "living room".

The centroid browser permits both viewing and addition of selected shots to any open

editors. The combination of the cluster browser together with the centroid browsers enable

browsing into a video database. As we discussed earlier, such browsing is an alternative

method for access into a video database compared to the query-by-example technique.

For unstructured video, we believe that such a browsing is an important mode of access

as the goal of the system is to provide views into the database and enable serendipitous

constructions.

5.2.3 Still editor module

The still editor permits selection of single snapshots from the clustered shots. As described

above, shots are selected in the centroid browser and added to the editor. To aid the selection

of individual frames within a shot, the still editor provides tools to manipulate the shot (play

forward, reverse, freeze frame etc). In addition to extracting single frames from shots, the

still editor provides an interface to the Salient Stills algorithm by Teodosio and Bender[59].
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Figure 5.5: Centroid browser showing some shots in the "living room" cluster

Briefly, Salient Stills is a static representation of a video shot. It aligns individual frames

with respect to a common reference by estimating their motion parameters and registering

the individual images in a shot with respect to a common reference coordinate system.

Once these individual frames are registered with respect to the common reference, a static

composite can be created. For another example of such mosaicing, see Pope et al[45].

5.2.4 Collage editor module

The collage editor extends the still editor by permitting extraction of a collection of single

frames from multiple shots. These can be laid out as a storyboard or can be used to

make collages similar to Photomosaics[52, 17]. In our application, we use the Kullback-
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Figure 5.6: Original still picture of butterfly

Liebler divergence between the histograms of the target frame region and a database of

still images to select the mosaic images. While Photomosaic is also an artistic process with

an artist-in-the-loop to refine the mosaic selection and target image creation, we view this

process of KL collages as a first step in selection of images. These images can be refined

further with a human-in-the-loop performing a query-by-example and replacing images with

more appropriate ones. Figures 5.6 and 5.8 show two original images. Their respective

photomosaics generated by the automated KL process are shown in Figures 5.7 and 5.9.

5.2.5 Movie editor module

The movie editor module has two modes of operation. In the default mode, the selection

process is completely under user control as in the cases of still and collage editors. Once
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Figure 5.7: KL collage of the butterfly

the storyboard is assembled by selection shots via the centroid browsers, it is converted to

a movie by collating all the relevant shots and converting them into a single MPEG stream.

In the suggestion mode, the editor aids the creation of a movie by requesting a time budget

and selecting shots from the clusters to fit within this time budget. To select shots, the

editor picks one shot from each cluster in a round robin selection procedure with the ordering

of each shot within a cluster depending on its proximity to the centroid. This selection is

done till the specified time budget is filled. At this point, the shots are rearranged into their

correct temporal order (assuming that all shots came from one video tape, for example) and

presented as a storyboard to the user. The user can then modify this storyboard by changing

the relative placement of shots or by adding/deleting shots. This process of selecting the

storyboard can be likened to a "maximum likelihood" movie selection since the shots are
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Figure 5.8: Original still picture of turtle

selected from each cluster in accordance to their likelihood within each cluster. This can

be viewed as a video summarization technique akin to Smith et al[54] and Yeung et al [68].

Our technique is very flexible since it provides with a summarization for every time budget

and across every feature set. In addition, since the shots are picked from different clusters,

the summarization is expected to be visually less redundant. Figure 5.10 shows a selected

and rearranged 2-minute summary of the home video collection.
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Figure 5.9: KL collage of the turtle
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Figure 5.10: Automatically generated 2-minute summary of the home video collection
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Chapter 6

Conclusions and Future Work

We conclude the thesis by summarizing the contributions made and presenting some areas

for future work.

6.1 Contributions

We highlight the contributions in three distinct areas.

" Models for video characterization. We presented a suite of classification tech-

niques that analyze video by action/content etc. In addition to characterizing along

color and texture, these techniques used motion as an integral component of video.

Some of these techniques exploited the temporal evolution of video to make interesting

inferences.

" Distribution clustering. We contributed to a clustering approach that takes as

inputs probability density models of images and video sequences and groups them in

this density space. This approach is not limited to image and video but is generally

applicable to all domains that model data as probability densities. We presented
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3 different clustering algorithms based on this approach. These groupings form the

underlying representation that is used by the video browser that we developed for

browsing through unstructured video and creating interesting outputs.

Application for unstructured video browsing and editing. We presented a

browser to search through video content. This browser consists of a set of displays

to enable interesting outputs from video. Examples include a movie display, a stills

display, and a collage display.

6.2 Future Work

The human population watches video - in television and in movies- regularly and in large

quantities; this seems to imply that we possess models for video cognition. Movies and tele-

vision are relatively new constructions, which seems to imply that these models are learned,

both by the creators of such narrations and by the consumers. Models and techniques

that attempt to bridge the gap between machine representation and these learned cognitive

models offer the potential for rich success both in our understanding of this narrative pro-

cess and that of cognitive modelling. In this thesis we primarily explored models that were

close to machine representation and on occasion attempted to extract higher-level meaning

(with the Hidden Markov Models) albeit in a limited way. This work needs to be explored

further. For example, models that do not just characterize movies as Action/Character or

Sports/News but also permit further finer distinctions.

In the distribution clustering work, we primarily explored discrete distributions. Often

times, it is useful to represent a discrete distribution in semi-parametric form (such as a

mixture of gaussians) which are compact. It would be interesting to phrase distribution

clustering in this semi-parametric framework.
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Appendix A

Likelihood of data under a novel

distribution

We present Cover and Thomas' proof [7] for the data likelihood theorem used in Chapter

4.

Let us define a type P of a sequence x = x 1, x2, ... ,x as the relative proportion of

occurences of each symbol in a symbol set A. i.e, Px(a) = N(alx)/n for all a E A, where

N(alx) is the number of times the symbol a occurs in the sequence x.

Let P denote the set of types of sequences in An. A type class is the set of sequences of

length n and type P and is denoted by T(P), i.e.,

T(P) = X 6 X": PX = P (A.1)

We state a theorem from [7]. The proof is paraphrased here from [7, page 281] for conve-

nience.

Theorem A.1 If X 1 , X 2,..., Xn are samples drawn i.i.d. according to a distribution Q(x),
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the probability of the sample X = X 1 ,X 2 ,..., Xn is denoted by Q"(X); and this depends

only on its type:

Q"(X) = 2 -n(H(Px)+D(Px||Q)) (A.2)

where the entropy of X is assumed to be specified in bits.

Proof:

n

Q" (x) =Q Q(i) (A.3)
i= 1

= 7 Q(a)N(alx) (A.4)
aGX

= r Q(a)"xP(4) (A.5)
aEX

= 2nP(a)logQ(a) (A.6)
aEX

= 2 n(Px(a) log Q(a)-Px(a) log Px(a)+Px(a) log Px (a)) (A.7)
aEX

= 2 "Elex(-D(Pxl[Q)-H(Px)) (A.8)

Where we implicitly used the Law of large numbers to go from step 2 to step 3. The

powerful statement that the theorem makes is that the individual sample does not govern

its likelihood but rather the statistics of the distribution to which the sample belongs.
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Appendix B

Convexity of KL divergence

From Theorem 2.6.1 in Cover and Thomas [7, page 241, if a function has a second derivative

which is non-negative everywhere, then the function is convex.

Consider, for example, a distortion function D(x, y) = Ji(z(i) - y(i)) 4. In our notation

x is an N-dimensional vector, x = x(1),... , x(N). From the above-stated theorem, we just

need to show that this function has non-negative second derivatives with respect to x(i)s

and y(i)s. Taking partial derivatives with respect to x(i), we get

a2

2 D(x, y) = 12(x(i) - y(i))2 (B.1)

which is clearly > 0 Vx(i). By symmetry, it is true for y(i)s as well.

Now consider the KL divergence function,

Dq(p|q) =ip(i) log (B.2)

where both p and q are PDFs. That is Efz= p(i) = 1 and 0 < p(i) < 1 Vi C [1, N]. We note
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these additional constraints when we take the partial derivatives.

2 D(p||q)Op(i) p(i)

Clearly, the second derivatives with respect to p(i)s are non-negative.

with respect to q(i):
,92 _pWi

ag 2D(p||q) = 2woterefore q(i) 2

which is also clearly non-negative. Therefore, KL divergence is convex.

The same is true

(B.4)
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