
Real-time Adaptive Morphing Website Modeled Per User and Optimized Across Users

by

Christopher J. Perciballi

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

ARCH
Master of Engineering in Electrical Engineering and Computer Science

MASSACHUSE

at the Massachusetts Institute of Technology OF TECF

May 2010 AUG 2

Copyright 2010 Christopher J. Perciballi. All rights reserved. LIBRJ

The author hereby grants to M.I.T. permission to reproduce and
to distribute publicly paper and electronic copies of this thesis document in whole and in part in

any medium now known or hereafter created.

IVES

TTS INSTITUTE
HNOLOGY

4 2010

\RIES

Author

Department of Electrical Engineering and Computer Science

May 21, 2010

Certified by
Glen L. Urban

David Austin Professor of Management Science

Chairman, MIT Center for Digital Business

Thesis Supervisor

Accepted by_
Dr. ChristlopeYAJ. Terman

Chairman, Department Committee on GraI ate Theses

Real-time Adaptive Morphing Website Modeled Per User and Optimized Across Users
by

Christopher J. Perciballi

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 2010

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Morphing is a powerful tool for providing users with information in a format that benefits them
most. It has been shown to increase trust and sales. This thesis describes the implementation of a
modular website that morphs based on the click stream of each individual user and learns how to
pick the optimal morph based on aggregate user results. The main components are the website
controller, the Bayesian Inference Engine, and the Gittins' Optimization Engine. The website
controller acts as the interface between the user input and the mathematical modeling of the
user's cognitive styles. It uses the Bayesian Engine to update the model and the Gittins' Engine
to select the best morph in order to modify the website view. The project was run in survey
format to test the effectiveness of morphing for the Suruga Card Loan advice site as well as to
test performance and feasibility of real-time morphing and optimization.

Thesis Supervisor: Glen L. Urban
Title: David Austin Professor of Management Science
Chairman, MIT Center for Digital Business

Table of Contents
L ist o f F ig u re s ..----.... 4

1 In tro d u ctio n .. 5

2 M otivation and Background W ork.. 5

2 .1 M o tiv a tio n ... 5

2.2 Previous W ork...6

3 Project Overview ... 6

3.1 System Functionality W alkthrough.. 7

4 Im plem entation ... 9

4.1 Site W orkflow ... 10

4 .2 C o n tro lle r .. 1 1

4.3 Bayesian Inference Engine..13

4.4 Gittins' Optim ization Engine ... 13

4.5 r-m Table Im plem entation .. 13

4.6 Gittins' Index Table ... 14

4.7 Lessons Learned..14

5 R e s u lts ... 1 5

6 Contributions .. 16

7 F u tu re W o rk .. 1 6

B ib lio g ra p h y .. 1 8

Appendix A. System M aintenance and Im plem entation Details 19

C o n tro lle r .. 1 9

The indexo Function ... 19

Page Functions .. 19

Function m ath engine()..19

Function save clicko...19

Site Content 20

Bayesian Inference Loop... 20

Gittins' Optim ization Engine ... 20

Database Tables .. 21

Problem s Encountered ... 21

List of Figures
1. High level diagram of system com ponents... 7

2. Survey setup and Suruga site in a fram e.. 8

3. Architecture of system and black boxes.. 9
4. Results of clicking on a link..10

1 Introduction
This thesis describes the design and implementation of a modular and scalable website that performs

cognitive and cultural style morphing based on user click stream data. The morph decision process is

optimized at the level of individual users as well as across all users. First I will describe the motivation for

morphing and previous work done in the field by Professor Urban and his team. Then in Section 3, I will

give an overview of the system and its functionality. In Section 4 1 will describe the implementation of

the major system components. Section 5 describes the results of the complete system, followed by

contributions in Section 6 and future work in Section 7.

2 Motivation and Background Work
In this section I will give a high-level description of morphing motivation and theory, as well as previous

work in the field. For more information on morphing motivation, please refer to "Morph the Web to

Build Empathy, Trust, and Sales" by Glen L. Urban, John R. Hauser, Guilherme Liberali, Michael Braun,

and Fareena Sultan. For a more detailed explanation of previous work, please refer to "Website

Morphing" by John R. Hauser, Glen L. Urban, Guilherme Liberali, and Michael Braun.

2.1 Motivation
Morphing has been shown to increase sales by building empathy and trust. Through morphing, users are

presented with information in a way that best matches their cognitive style, allowing them to process

the information more easily. Imagine trying to explain how a circuit works to a classmate and then to a

younger sibling. The two explanations would be likely to vary in content, vocabulary, and depth. The

same ideas apply when trying to create a marketing advisor. Some users are more visual and will

appreciate graphs and figures. Others are more verbal or technical and will gain more from statistics and

descriptions. By adapting the advice website, companies can appeal to more users and thus increase

trust and sales.

2.2 Previous Work
The British Telecom advice website, as described in "Website Morphing", was the first site to make use

of the morphing ideas and algorithms. It used a Bayesian Inference Loop and a dynamic programming

Gittins' solution to pick the optimal morph. The project demonstrated the steps to making a morphing

website and provided the foundation for the Suruga Card Loan site. In order to create the site, a priming

study was used to determine the cognitive styles of users and match them to the preferred morphs. This

data was used to classify the morphs and links in the website so that cognitive styles could be inferred

through click stream data.

3 Project Overview
The system described in this thesis performs cognitive morphing as well as logging clicks and statistical

data to be analyzed for research purposes. The main components, as depicted in Figure 1, are the

Bayesian Inference Engine, the Gittins' Optimization Engine, and the Content Management System.

After each click, the Bayesian Engine is run to update the estimate of the user's cognitive style. After a

fixed number of clicks, as set after the previous study, the Gittins' Engine is run to determine whether to

change the morph. The morph number selects a row from a morph translator array, which is used to

determine which visual components are loaded in the HTML page.

Link

HTML

Figure 1. High level diagram of system components.

The site is also required to interface with a survey panel, which sent users to the site after collecting

responses to priming questions. In order to facilitate the interface between the survey panel and the

site, a separate landing page accepts and redirects users to the Suruga site by opening another frame.

The landing page is also used to determine "success" or "failure", defined as the user's wish to receive

more information about card loans, the product being described. Users could click one of two buttons:

one to get more information then leave the site, or one to leave the site without information. Closing

the frame without clicking on one of these buttons was also a failure, and the landing page was used to

handle that case.

3.1 System Functionality Walkthrough
This section describes the path users take through the site and outlines the roles of site modules in the

process.

First, users are directed to the landing page from the survey panel. The landing page has instructions

and leads to the page that launches our survey setup in a new window, shown in Figure 2. The window

displays the Suruga Card Loan page in a frame and keeps a timer to ensure that the user browses for a

sufficient period of time. The page has two buttons at the top for leaving the page with or without

7

getting more information about a card loan. These buttons help determine whether the user should be

counted as a success or failure.

Figure 2. The Suruga Card Loan site displayed in a frame. The buttons at the top right allow the user to leave the
site with or without more information on getting a card loan.

When the Suruga Card Loan page is first loaded, a random morph is selected. In addition, control users

are randomly chosen to see one morph for the duration of their visit to the site. We will focus on the

case where morphing is enabled. When the user clicks on a link, the function for the page being viewed

is called. Many of the links on the site have been assigned cognitive style vectors, c-vectors, based on

previous surveys and observation. The vectors, which contain weights for various dimensions, are used

by the Bayesian engine. Whenever such a link is clicked, the Bayesian Engine is run to update the model

for the user. If the selected link does not have a c-vector, the click is still recorded and relevant values

are updated. These values include the total number of clicks and clicks per morph. On every fifth click,

the Gittins' Optimization function is called. Based on previous studies, it was determined that on

average deciding whether to morph every fifth click was optimal. This allowed us to gain a performance

advantage. If the function determines that a morph change would be beneficial, the new morph is set

and the next page (the page just selected by the link) will reflect the changes.

After a time period defined by survey requirements has elapsed, the user can decide to leave the site. If

the user elects to receive more information about card loans, they are asked to fill out a short

questionnaire. This sets a parameter to success in the landing page database. If the user elects not to

receive more information or simply closes the browser, the parameter is unchanged and signifies failure.

Back on the landing page, pressing continue calls a function on the Suruga Card Loan site that updates

the alpha and beta distributions based on the success or failure. The user is then redirected back to the

survey panel for closure.

4 Implementation
This section details the implementation of main site components as well as their interaction in the

morphing process. The site is implemented in Cake and PHP with MySQL for storage of user data and

morphing parameters. The Bayesian Engine and Gittins' Optimization Engine are separate PHP modules

that we treat as black boxes. The website controller is the interface between user input and the black

boxes. Figure 3 below depicts the flow of the morphing process and the interaction of the black boxes

with the controller.

optimization
Priors on q,(t) Engine 2

Visitor n starts (bten
using the site

Optimization
Webit Saein q (t), y,N(1),wn(t) Engine I(within-Website nne subject D.P.)

Optimal morph

Update a, @:

a (n)=u a0(-1) + Nq,(t) -

Visitor n leaves the site
(made a purchase or not)

Figure 3. Architecture of system and black boxes by Guilherme Liberali. Clicks from the website go
through the controller interface to invoke the Bayesian Inference Engine and the Gittins' Optimization
Engine. Success and failure events update the alpha and beta distributions to improve morph selection
across users.

4.1 Site Workflow
When a user clicks on a link, the page function for the page that the link points to is called in the

controller. Pages with c-vectors call the math_engineo function, which reads the c-vector of the link and

all other links on the previous page and runs the Bayesian engine. For example the two image links on

the home page, shown in Figure 4, have c-vectors. Clicking on one invokes function levell($link,

$originPageName). The parameters $link and $originPageName are passed through the URL. The picture

of the house links to http://advocacy.mit.edu/cp/suruga web pages/levell/3/pageO, where 3 is the link

and pageO signifies the home page as the origin. The math_engine() function uses the page and link

information to look up the c values and construct vectors using makeCVectoro. Then it runs the

Bayesian function, which returns the array of updated q values.

Figure 4. Results of clicking on a link. The cognitive style before and after the click as well as the morph number are
displayed at the top of the page.

After every fifth click, mathengineo also calls the Gittins' function Optimengineo to select the best

morph. If the morph changes, mathengineo increments the number of morph changes and stores the

new morph in the session variable.

The page functions select page elements by calling the function loadlayoutruleso. This

function modifies the morph array, which is read by the template site pages. This allows the pages to be

built from components rather than having a different version of each page for each morph.

To update alpha values in the event of a success, the function recordalpha() is called by

opening the recordalpha page of the site. Beta values are updated using record betao. The landing site

10

opens these pages during the survey, and the pages redirect immediately to the survey site so the

process is transparent to the user. The functions take the user's ID as a URL parameter and use the ID to

find the last click log in the suruga userstatistics database. The click log from the most recent click

contains the most recent q and zeta vectors, which are needed to update alpha and beta. The

updateindicesO function in the Gittins' Optimization module is used to update the values.

4.2 Controller
The controller contains initialization functions as well as a function for each page in the site, which are

called before the page view is constructed and displayed. The controller first initializes the) matrix and

q_o, the initial cultural and cognitive style estimate vector. Based on the previous study, we were able

to define qo = (0.1876, 0.2575, 0.2954, 0.2595) to best approximate the user's cognitive style. The

controller keeps track of the number of morph changes, the number of total clicks made by the user,

and the number of clicks per morph. Clicks per morph are stored in the zeta array, defined as clicks per

morph divided by total clicks.

The function index() is called when a user goes to the Suruga Card Loan home page. The

function initializes all of the variables used to conduct the survey and to run the black boxes and display

the correct morphs. If it is the user's first time to the home page, the user's ID is set. For survey

purposes, it randomly assigned some users to the control group by fixing the morph. The variables that

are initialized are: the total number of clicks on the site, the zeta array, and the number of morph

changes.

The controller contains a function for each page on the site. If the page has an associated c-

vector, the function calls math engineo, which acts as an interface between the controller and the black

boxes. It updates the state variables and runs the Bayesian and Gittins' functions as needed. If the page

does not have a c-vector, the function calls save_clickO, which updates the state variables accordingly

but does not run the Bayesian or Gittins' functions.

The mathengineo updates the total number of clicks and the number of clicks per morph and

logs user statistics in the database surugauser statistics. The function uses the click information from

the user to look up the c-vector associated with the selected link as well as the c-vectors associated with

all other available links on the page. These vectors are the input to the Bayesian engine, which

mathengineo) calls to update the model of the user's cognitive and cultural style.

The mathengine() function also provides the input to the Gittins' Optimization function, which

was redesigned after previous field studies. First, the function reads the alpha and beta values from the

database. A pair of values (a,p) is retrieved for each combination of r and m values, where r is the vector

of cognitive style groups and m represents morphs one through four. Thus there are 16 (t,p) pairs. The

alpha and beta values are then used as indices into the G matrix, a 3000 by 3000 matrix of values. The

Gittins' Optimization function takes as input the current morph number, the number of clicks, the q

vector, and the G values determined by alpha and beta.

The controller also contains functions to update alpha and beta values for success and failure.

These functions are called by the landing page rather than by user clicks. After the update is complete,

they redirect back to the landing page. The alpha and beta values are updated according to the following

formulas:

ar,m(n) = arm(n - 1) + qrn(t)(m,n

(1 - 8)
f#r,m (n) = fr,m(n - 1) + N rn (t) m,n

Y N 4

where S, is 1 for success and 0 for failure, y is a weighting value defined to be 0.99 in our system, N is

the total number of morph changes for the user, and (is the zeta vector with elements click per morph

divided by total clicks. These values are modified in the database and provide the basis for optimization

across all users. The updated alpha and beta values are used to index the G matrix. As a result, the

updated values will impact the Gittins' Optimization function for subsequent clicks made by all users on

the site.

4.3 Bayesian Inference Engine
The Bayesian Inference Engine uses Bayes' Rule to update the estimate of the user's cognitive and

cultural style based on the link the user clicks. It takes as input the c-vector from the link selected as well

as the c-vectors from all other available links on the page. Based on priming studies done on the site, we

can compute the probability of the user clicking on a link given his or her cognitive style. Using Bayes'

Rule, we can compute the posterior distribution for cognitive style given that they clicked on the link.

44 Gittins' Optimization Engine
The updated Gittins' Optimization function was designed and implemented in R by Guilherme Liberali

before we ported it to PHP. The PHP code can be found in Appendix A. It performs backwards induction

to determine the optimal morph to show the user. The new function makes use of the updated Gittins'

Index table and r-m table. The optimization function takes as input the current q vector, the click

number, the relevant G values, the system parameter gamma, and four fixed empirical q vector values.

The G values are extracted from the 3000 by 3000 matrix of G values using the alpha and beta values

from the r-m table, which is stored in MySQL for global access by all user sessions. The system uses four

values for r and four morphs, making G a length 16 vector.

4.5 r-m Table Implementation
The r-m Table stores a and P values for each combination of r and m, where r is the set of cognitive

styles and m is the set or morphs. The values are used to track success and failure of the morphing

system and determine the optimal morph in the Gittins' Optimization function. In the British

Telecommunication site, r = 64 and m = 64, resulting in nearly 10-second lookup times in a nested for

loop on r and m. To alleviate this performance problem, the table was stored in local memory in each

user session. In this system, the r-m Table must be global in order for optimization to be carried out

across users. Due to the decrease in number of morphs to four and resizing r to four, the table could be

stored in a database without significant delays during lookups. The values are now stored in r_m_tables

in the MySQL database.

4.6 Gittins' Index Table
The Gittins' Index Table, or a-P Table, stores the indices needed for running the Gittins' Optimization

function indexed by (ct,p) pairs. It is a 3000 by 3000 table of floats that must be accessed 16 times every

fifth click on the site. The table is far too large to store in local memory, and causes performance

decreases when stored in a database. Due to time constraints in getting the survey to field, we needed a

quick solution. I decided to break the table up and store it in text files by row. The lookup function uses

P to choose the correct file, then uses a to index into the file and return the correct value. The files are

stored locally on the server and are named with the prefix "G_." For example, G_1.csv contains the first

row of the table in comma delimited format. The code can be found in Appendix A.

4.7 Lessons Learned
The final site is a complex system with many interacting parts. The site was not originally designed to

run the survey, and the landing site added some extra complication. However, at the same time, it

provided functionality that would have been more difficult to implement otherwise. The timing function

that ensured users browsed for a sufficient period of time was a simple addition to the landing page.

This is because the frame that contains the Suruga Card Loan site remains unchanged during the

browsing period. The mechanism for determining success and failure would have been a more natural fit

in the Suruga Card Loan site itself, but it would have required modifying every page to insert the

buttons. It would have been much simpler if this had been planned from the start. The modifications

required to implement the survey functionality demonstrate the well-known need for a good initial plan

and design. The modular design of the system allowed for the necessary changes to be made.

In systems with many interacting parts, unexpected problems arise during field study. Though the

system was tested with several complete survey responses before going to field, problems arose with

tracking IDs between the landing page and the Suruga Site, and with memory limitations. The survey

was run in batches of 200-300 users in Japan, which could lead to a wide variety of browsers and range

of technical user knowledge. It was impossible to predict potential problems, so closely monitoring the

site and data collection was critical. A major lesson from the data collections is to log all information

possible, including creation time of all database entries, session ID for every click, and user ID for every

click. This provides a strong possibility for recovery in the event of any problems collecting data.

5 Results
Overall, the site and survey were a success. Early results show that morphing led to an increase in

purchase interest as opposed to the control group. Site performance was acceptable with the exception

of two minor problems related to the database, described below. The site successfully morphed and

updated the a and P values across users.

In order to correctly assign control groups, the home page makes a request to the MySQL table

surugauser statistics, which logs each click made by all visitors to the site. Sorting the table has

become very costly as the number of clicks has reached the thousands. After the survey completed, the

home page took about 5 seconds to load. However, removing the sort returns the performance to

normal, and a production morphing website would not experience this problem.

The a and 0 update presents a more important performance issue. Currently, the updated is

handled when the landing page opens the Suruga Card Loan pages recordalpha or recordbeta and

passes a user ID. The site then finds the last click made by the given user ID in the surugauser_statistics

table to find the clicks per morph and cognitive style estimate q, which are needed to perform the

update. As the number of clicks by user on the site grows, the filter and sort time could become very

expensive. In a large-scale production site, this may need to be addressed. One solution would be to

keep a database with a profile of each user containing the necessary information, which would reduce

the lookup to a filter problem only. This would keep performance reasonable as filtering by ID is very

fast compared to sorting by creation time.

6 Contributions
This thesis demonstrates how to build and maintain a modular website that performs cognitive and

cultural style morphing at the level of the individual user while learning how to pick the optimal morph

from aggregate results. The black boxes have clean interfaces and are reusable in other systems. The

modules may be accessed from outside the Suruga Card Loan site itself, which is useful for web projects.

This allows the aggregate data to be updated seamlessly.

The project also provides an example of how a site can be used to collect research data without

extensive changes to the underlying system. It was used to gain valuable data to evaluate the

effectiveness of cognitive morphing and its feasibility for web applications, with the survey functionality

coming from the landing site.

7 Future Work
The results of this project are very encouraging for future morphing projects. The modular black-box

design allows the components to be applied to many applications. The Bayesian Inference Engine

outputs a cognitive style estimate vector, and the Gittins' Optimization Engine outputs the optimal

morph. In our system, these values are used to set a morph array, which determines which site

components the user sees on a page. These values could be used for many other purposes. For example,

Professor Urban and his team are laying the groundwork for an ad morphing project in which the black-

box outputs would determine which style ads a user site visitor would see.

The performance improvements will be necessary for the next project that is under

consideration with Suruga Bank: a mobile morphing application. The mobile platform is especially

exciting because it has not yet been attempted and there is great potential for increased utility. Due to

the limited screen space and input functions on most mobile devices, format and presentation are

critical to making a good application. Providing the user with the best display possible would likely lead

to large gains in user satisfaction.

Bibliography
[1] John R. Hauser, Glen L. Urban, Guilherme Liberali, and Michael Braun. Website Morphing. Marketing

Science, 2009.

[2] Glen L. Urban, John R. Hauser, Guilherme Liberali, Michael Braun, and Fareena Sultan. Morph the

Web to Build Empathy, Trust and Sales. MIT Sloan Management Review, Summer 2009.

[3] Clarence Lee. User Adaptive Web Morphing: An Implementation of a Web-based Bayesian inference

Engine with Gittins' Index. Master of Engineering thesis, Massachusetts Institute of Technology,

Department of Electrical Engineering and Computer Science, June 2008.

Appendix A. System Maintenance and Implementation Details
This section contains relevant code and implementation details for the system modules, as well as notes

on maintenance and how to run the system.

Controller
The controller is implemented in surugawebpages controller.php. It acts as the interface between the

website and user input and the black boxes used for morphing. It contains a function for each page in
the website and provides functions for updating alpha and beta.

The iidex() Function
The indexo function is called when a user goes to the site homepage. It records the user's ID from the
URL if no user ID exists. It initializes key user session variables: the q vector, morph number, number of
morph changes, number of clicks per morph, and total number of clicks.

Page Fiuctions
The controller contains a function for each page within the site of the form:

function levell($link, $originPageName) {
$this->Session->write('link', $link);
$this->Session->write('originPageName', $originPageName);
$this->Session->write('lastseenlevel', "pagel");
$page = $this->getPageModel($originPageName);
if ($link != 5) {

$this->mathengine($page, $link);
} else {

$this->save_clicko;
}
$this->set('SurugaWebPages', $this->SurugaWebPage->findAll());
$this->pageTitle = 'Welcome to the Card Loan Advocacy System';
$this->load-layout-rules(1);

$this->my-history('home', $this->Session->read('morpharray'));

The most important role of these functions is to call either math engine() or save clicko. The function
mathengine(is called if the link has an associated c-vector and the Bayesian Inference Engine should
be run, and saveclick() otherwise. Descriptions of these functions can be found below.

Function nath-engine()
The math engine() function updates user data and logs the data in suruga user-statistics. The logged
data includes the user's ID, the page, link, morph before and after, q vector before and after, clicks per
morph, alpha and beta values, and Gittins' Index values. The function calls run_bayesianengine() to
update the cognitive style model and it calls Optimengine() to get the optimal morph

Function save-click()
The save clicko function was created to handle clicks on links that do not have c-vectors and should not
trigger either of the black boxes. It updates the number of clicks per morph, and logs a click entry in
surugauser statistics. It can be viewed as a placeholder for mathengineo.

Site Content
The morph determines which elements will be displayed on the web page by selecting a vector from the

morphTranslator array, which is defined as

var $morphTranslator = array(
arrayo,
array("D1" => "O", "D2" => "O", "D3" => "1", "D4" => "1", "D5" => "O", "D6" => "O"), //0
array("D1" => "O", "D2" => "O", "D3" => "1", "D4" => "1", "D5" => "1", D6" => "O"),// 1
array("D1" => "O", "D2" => "1", "D3" => "O", "D4" => "O", "D5" => "O", "D6" => "O"), //2
array("D1" => "O", "D2" => "1", "D3" => "1", "D4" => "O", "D5" => "1", "D6" => "O"), //3

The vector entries point to different files and images in the content folders, and the PHP and HTML in
the templates select the proper elements as shown below, taken from the template levell.thtml:

$morph = $session->read('morpharray');

if ($picarray['reading'] == 'no') { $reading = 'x'; } else { $reading = (string)$morph['D1'];
if ($picarray['analytic'] == 'no') { $analytic = 'x'; } else { $analytic = (string)$morph['D2']; }
if ($picarray['deliberative'] == 'no') { $deliberative = 'x'; } else { $deliberative = (string)$morph['D3'];

if ($picarray['hiearchical'] == 'no') { $hiearchical = 'x'; } else { $hiearchical = (string)$morph['D4'];
if ($picarray['individualistic'] == 'no') { $individualistic = 'x'; } else { $individualistic = (string)$morph['D5'I;

if ($picarray['neutral'] == 'no') { $neutral = 'x'; I else { $neutral = (string)$morph['D6']; }

$picloc = $reading.$analytic.$deliberative.$hiearchical.$individualistic.$neutral.$pic_array['file'];
$pic-loc = $svr rootpath.'suruga/levell/home/pics/'.$pic_loc;
$filename = $picloc;
$img str = '';

Bayesian Inference Loop
The code to run the Bayesian Inference loop is found in Bayesianengine.php. The function
runbayesianengine($cselected, $c total) is called from mathengineo. It takes the c-vector of the
selected link and the c-vectors of the other links on the page and outputs the updated q vector.

Gittins' Optimization Engine
The Gittins' Optimization Engine contains the function Optimengineo, which perfoms the backwards
induction to find the optimal morph. It also contains code to lookup Gittins' indices given a and P in the
function lookupgittins index new($alpha, $beta). The function updateindices($qrm,
$clickspermorph, $totalmorphs, $buy) takes q, zeta, total morphs, and delta and interfaces with the
database to update a and P. This function is called from record alpha() and record betao in the
controller.

The new function for looking up Gittins' Indices is as follows:

function lookupgittins_index_new($alpha, $beta)
if ($alpha < 1) {

$alpha = 1;

}
if ($beta < 1) {

$beta = 1;

}

if($alpha > 3000 |1 $beta > 3000) {
return $alpha / ($alpha + $beta);

$Gfloor = $this->lookup_G_helper(floor($apha),floor($beta));
$Gceil = $this->lookup_G_helper(ceil($apha),ceil($beta));

return ($Gfloor + $G_ceil) * 0.5;

The function uses the alpha and beta values to select the G files and index into them. It accounts for the
fact that alpha and beta may not be whole numbers by using both the floor and ceiling of each and
averaging the results.

Data base Tables
The files to interface with databases are found in the app/models folder. The files used for morphing
are: r_m_table.php, suruga_user_statistic.php, and surugapage[O-7].php. The files with the prefix
surugapage contain the c-vectors for the links found on the given page. The databases can viewed from

phpMyAdmin on the Advocacy server.

Problems Encountered
During the running of the survey, a few bugs arose. First, there was a problem with the site's memory
allocation. The home page failed to load due to a PHP memory shortage. This was fixed by increasing

memorylimit field in the php.ini config file.

There was a problem with some user IDs showing up as null or -1. This is believed to be a cookie

problem as it does not occur in all cases and a wide variety of browsers may have been used by survey
respondents. See the code in the controller's index() function for dealing with user IDs.

