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Abstract

Advances in mobile electronics are fueling new possibilities in a variety of applications, one
of which is ambulatory medical monitoring with body-worn or implanted sensors. Digital
processors on such sensors serve to analyze signals in real-time and extract key features for
transmission or storage. To support diverse and evolving applications, the processor should
be flexible, and to extend sensor operating lifetime, the processor should be energy-efficient.

This thesis focuses on architectures and circuits for low power biomedical signal process-
ing. A general-purpose processor is extended with custom hardware accelerators to reduce
the cycle count and energy for common tasks, including FIR and median filtering as well
as computing FFTs and mathematical functions. Improvements to classic architectures
are proposed to reduce power and improve versatility: an FFT accelerator demonstrates a
new control scheme to reduce datapath switching activity, and a modified CORDIC engine
features increased input range and decreased quantization error over conventional designs.
At the system level, the addition of accelerators increases leakage power and bus loading;
strategies to mitigate these costs are analyzed in this thesis.

A key strategy for improving energy efficiency is to aggressively scale the power supply
voltage according to application performance demands. However, increased sensitivity to
variation at low voltages must be mitigated in logic and SRAM design. For logic circuits, a
design flow and a hold time verification methodology addressing local variation are proposed
and demonstrated in a 65nm microcontroller functioning at 0.3V. For SRAMs, a model for
the weak-cell read current is presented for near-V supply voltages, and a self-timed scheme
for reducing internal bus glitches is employed with low leakage overhead.

The above techniques are demonstrated in a 0.5-1.OV biomedical signal processing plat-
form in 0.13p-Lm CMOS. The use of accelerators for key signal processing enabled greater
than 10x energy reduction in two complete EEG and EKG analysis applications, as com-
pared to implementations on a conventional processor.

Thesis Supervisor: Anantha P. Chandrakasan
Title: Joseph F. and Nancy P. Keithley Professor of Electrical Engineering
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Chapter 1

Introduction

Recent advances in sensor technology, low power circuits, and energy harvesting are pro-

viding growing opportunities for mobile electronic technologies to impact health care. One

emerging application of great interest, conceptually shown in Figure 1-1, is ambulatory

medical monitoring within a tele-health framework. In the envisioned scenario, body-worn

or implanted sensor nodes acquire a subject's physiological signals and communicate the

information to a local relay, such as a cell phone. The local relay then transmits this in-

formation through a wide-area network to a physician or a hospital, where the data can be

further analyzed. This offers a major advantage in allowing a subject to be continuously

monitored without being confined to the hospital and wired to various instruments. The

subject is able to carry on with his/her daily activities, enabling physicians to assess the

subject's condition in a more natural setting.

Ambulatory medical monitoring imposes stringent requirements on the sensor electronics

and offers many opportunities for innovation in circuit technologies. Since sensor nodes

for remote monitoring are worn over extended periods of time, comfort and convenience

are important considerations. This implies that the nodes should be small and have long

operating lifetimes, motivating the design of highly integrated and energy-efficient sensors

and electronics. Moreover, because the monitoring takes place in uncontrolled environments,

the quality of the data will be inferior to that collected in a hospital. Therefore, the sensor

electronics should preserve sufficient signal fidelity in order for the physician to correctly

interpret the data.

Arising from recent interest in this field, several sensor nodes with band-aid-sized form
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Figure 1-1: Ambulatory medical monitoring in a tele-health context, where body-worn or
implanted sensors monitor a subject's vital signs and transmit observations through a local
relay to a health care provider. (Figure courtesy of Patrick Mercier.)

factors have been demonstrated. For example, compact sensors are being developed by

IMEC [1], Toumaz [2}, Mindray [3], Corventis [4], and ST Microelectronics in partnership

with Mayo Clinic. These systems focus on heart monitoring but some contain other sensors

such as accelerometers or temperature sensors.

This thesis focuses on architectures and circuits for energy-efficient digital signal pro-

cessing, with ambulatory medical monitoring as the target application. To provide a system-

level context, we first describe a representative body-worn sensor node, of which the pro-

cessor is a part. We then discuss related work on digital processing components on such

sensor nodes.

1.1 Biomedical Sensor Nodes

A representative sensor node is shown in Figure 1-2. The sensor node contains an ana-

log front-end to amplify and condition signals from one or several biomedical sensors, for

example Electrocardiogram (EKG) electrodes, pulse-oximetry probes, and accelerometers.

The analog front-end provides digitized signals to a local processor, which analyzes and



prepares the data for storage or transmission. A communication module transmits the data

over a short distance to a local relay such as a cell phone. Lastly, an energy subsystem

contains the energy processing circuits to provide the power and voltage levels required by

all components of the system. The system can be powered by several means - by a primary

cell battery, rechargeable batteries and/or supercapacitors, or energy scavenging.

Sensors Energy Subsystem

Interface &DC-DC Bsbn-InterfBaseb
Analog Front-End Processor

Figure 1-2: Block diagram of representative biomedical sensor node.

Table 1.1 lists the typical power consumption of the components of the sensor nodes,

citing the state-of-the-art in research literature and commercial products. Substantial ad-

vances have been made in the analog domain; recent instrumentation amplifiers in the

literature [5, 6] consume several microwatts of power, while low power Analog to Digital

Converters (ADCs) consume less than a microwatt at 1-k samples per second [7, 8]. As

seen from the cited examples, the power of digital signal processors varies greatly with the

frequency and the amount of supported functionality. Likewise, power consumed for com-

munication can vary widely, particularly between different modes of communication (e.g.

wireless or wired). In interpreting the power of radios, it is important to note that they

are often duty-cycled and turned on only during transmission or reception. Back-of-the-

envelope calculations indicate that the duty cycle of the ChipCon radio [9] for an EKG

application is on the order of 0.03%, assuming that only key information such as the heart

rate is transmitted.

The data in Table 1.1 highlights how the digital signal processing component consumes

a sizable proportion of the power in the sensor node electronics, especially after account-

ing for duty cycling of the radio. This raises the question of whether the sensor node

should perform digital processing locally, or whether the raw physiological signals should



Table 1.1: Power consumption of state-of-the-art components in medical monitoring sensor
node. Commercial products are indicated by *. 'EEG stands for electroencephalography.
2DSP stands for Digital Signal Processor.

Component Reference Active Notes
Power

Verma, VLSI 2009 [5] 3.5pW for EEG acquisition
Instrument- Denison, ISSCC 2008 [6] 6pW for neuroprosthesis
ation
Amplifier Yazicioglu, JSSC 2008 6.9pW for EEG acquisition

[10]
Bohorquez, VLSI 2010 reconfigurable for different bio-
[11] 1.3iiW signals

Micropower Instrumentation Ampli-
INA333* [12] 90piW fier

Verma, ISSCC 2006 [7 25piW 12-bit, 100kS/s

ADC Agnes, ISSCC 2008 [8] 3.8pW 12-bit, 100kS/s

ADS7866* [13} 220pW 12-bit, 100kS/s

Jocke, VLSI 2009 [14] 0.72pW 8-bit microcontroller, 475kHz
DSP 2  Phyu, X-SSCC 2009 [15} 176pW Custom EKG QRS (heart rate) de-

tection chip, 1MHz

MSP430F5438* [161 363pW 16-bit microcontroller, 1MHz

3-5GHz Pulsed UWB transmitter,

Radio Mercier, JSSC 2009 [17] 4.36mW 15.6MBaud Tx, -16.4dBm output
power

2.4GHz transmitter plus packet han-
ChipCon 2550* [9] 33.6mW dling logic, 500kBaud Tx, -12dBm

output power

be transmitted elsewhere for processing. One reason to include local processing is to al-

low basic monitoring directly on the subject's body, so that the subject does not need to

carry a local relay at all times or be within the range of a basestation. Further, in systems

like loop recorders [18] which store data in memory for later download, local processing

is necessary to identify irregular episodes for recording and thereby reduce memory stor-

age requirements. For a quantitative illustration, we analyze the power corresponding to

two scenarios with and without local processing, using an epilepsy detection application

described in [19] as an example. The first sensor node listed in Table 1.2 transmits the raw

captured Electroencephalography (EEG) channel to a basestation for analysis. The second

node processes the EEG signal and extracts several features (consisting of 7 words) every

two seconds and transmits only the features to the basestation for classification. It is seen



that local processing can sufficiently reduce the amount of data transmitted to lower the

overall system power. Of course, power in the Digital Signal Processor (DSP) must be kept

low relative to the radio power in order to yield net power savings. Accordingly, this thesis

focuses on the design of a low power DSP for ambulatory monitoring applications, both

to realize power reductions like in the previous example, and more generally to reduce the

proportion of power consumed by the DSP component of a sensor node.

Table 1.2: Computation versus communication power trade-off in sensor nodes, showing
the benefit of local processing to reduce radio transmit power.

Component No local processing Local processing
Amplifier 3.5pW [5] 3.5puW
ADC 3.8piW [8] 3.8pW
DSP 0 19pW (Chapter 6)
Radio: Transmit 4kbpsx4OnJ/bit[5] 56bps x 40nJ/bit
Start-up 4.8pW 4 .8pW every 2 sec
Idle Mode 0.46pW 0.46pW
Total 176.4pW 31.4pW

Biomedical applications are particularly amenable to low power processing due to the

relatively low bandwidths of physiological signals. Table 1.3 lists the sample rate and

resolution of several sources of physiological data. The sample rates are typically less than

1kHz, leading to relaxed speed requirements for analog-to-digital conversion and digital

processing. It should be noted, however, that certain types of signals such as the EEG have

low amplitudes on the order of microvolts, which impose stringent noise requirements on

the analog front-end amplifier.

1.2 Related Work in DSPs for Medical Monitoring

As a result of recent interest in ambulatory medical monitoring, researchers have demon-

strated numerous prototype monitoring systems. This section reviews relevant work in

the DSP component of such systems to provide context on the state-of-the-art. The dig-

ital processors found in these systems span a spectrum ranging from commercial high-

performance DSPs, general-purpose low power processors, to Application-Specific Inte-

grated Circuits (ASICs) customized for a specific function. At one end of the spectrum,

many prototype systems in the literature employ off-the-shelf processors. For instance, a

32-bit DSP was used in [22] to build a mobile acquisition system for monitoring motor



Table 1.3: Typical sample rates and resolutions of of physiological signals.

Signal Source Sample Resolution Signal
Rate Amplitude

EKG MIT-BIH Arrhythmia 360Hz 11-bits 1-5mV
Database

EKG Long-Term ST Database 250Hz 12-bits 1-5mV

EKG ANSI/AAMI EC13 Test 720Hz 12-bits 1-5mV
Waveforms

EEG Data for seizure onset de- 256Hz 16-bits 1-100pV
tector development [19]

Photoplethys- MIMIC Database [20] 125Hz 12-bits 1mV
mograph

Gyroscope Tremor Monitoring [21] 200Hz 12-bits several volts

control. Similarly, a 32-bit floating point DSP operating at 150MHz was utilized in [23} for

real-time epileptic seizure onset detection from a set of EEG signals. While these powerful

processors are convenient for system prototyping, it is likely that many applications do not

actually require their high performance or advanced capabilities, and can instead achieve

lower power through slower processors with appropriate hardware support for specific com-

putations. For example, part of the algorithm in [231 was subsequently implemented on

fixed point custom hardware operating at 75Hz [5].

Several systems employ commercial low-power microcontrollers such as the 8051 [2] and

MSP430 [1]. Further, the design of ultra-low power processors has been an active area of

research. These processors are not specifically targeted towards biomedical applications but

can nonetheless be used in a sensor node. Some such as [14, 24, 25, 26] are designed to

achieve very low energy per instruction through aggressive voltage scaling, while [27 was

optimized for low leakage power. Generally speaking, these processors achieve moderate

performance (tens of MHz or less) and support general-purpose instruction sets. Although

compact, this type of processor lacks dedicated hardware such as multipliers and filters to

support efficient signal processing. To address this deficiency, [28] presented a micropower

DSP with a 16-bit CPU along with FIR filter and Fast Fourier Transform (FFT) modules

to help reduce energy in microsensor applications. Similarly, the processor in [29] featured

a 32-bit ARM CPU and an FFT module.

On the other end of the spectrum lie custom ASICs that are hardwired for specific



functions. For instance, the EKG signal processor in [30] featured a custom circuit to

compress EKG signals for storage. In [15], the authors proposed extracting the peaks of an

EKG signal from its wavelet transform, and designed hardware to compute the transform

and perform adaptive thresholding. Similarly, the EEG acquisition system-on-chip in [5]

contained a hardwired modulated filter bank to extract energy from different frequency

bands in the signal.

Figure 1-3 plots the energy per operation of the previous work cited above. For DSPs

and low-power processors, an operation refers to an instruction. For the ASIC of [5] which

implements a series of FIR filters, an operation refers to one multiply-accumulate in an FIR

filter. It is seen that floating-point DSPs and even commercial microcontrollers consume

several hundred pJ/op. Custom, ultra-low-power microcontrollers in the literature achieve

tens to several pJ/op. Finally, since ASICs only include circuits for the specific computation

at hand, they typically consume less energy relative to equivalent implementations on a

general-purpose processor.

+ ASIC
Low Power Processors

* Floating-point DSP

[24] [26]
1 10 100 1000

-- -pJ/Op

[14] [5] [25] [28] [2] [23][1]

Figure 1-3: Energy per operation (an instruction or a signal processing operation) in related
work.

1.3 Signal Processing Platform Overview

As seen in Section 1.2, previous work has focused on system prototypes with off-the-shelf

DSPs, general-purpose low power processors, or custom ASICs implementing a specific

algorithm. Development of a flexible but low power platform for biomedical signal processing

has received relatively little attention. Motivated by the diverse applications in this field

and active efforts in algorithm development, this work proposes a programmable platform



targeted for ambulatory medical monitoring. We first give an overview of the processor

and its key features. In the subsequent chapters we will analyze different aspects of the

processor, ranging from system-level architecture to transistor-level circuit design.

In the spectrum of processor designs discussed above, our design lies between a low

power CPU and a custom ASIC. The processor, whose block diagram is shown in Figure

1-4, features a 16-bit CPU based on Texas Instruments' MSP430 for general-purpose com-

putation and control. Importantly, it includes four accelerators customized to efficiently

perform common signal processing operations. As a platform, this processor must support

applications of varying complexity and performance demands in an energy-efficient manner.

The system is therefore voltage-scalable from 1V down to 0.5V, such that low performance

applications can be executed at 0.5V to reduce energy. Further, each module can be dy-

namically clock- and power-gated when not in use. The clock control block at the top

level distributes a clock to a module upon request, and disables the clock after the module

has completed processing. In addition, 15 power domains are implemented with on-chip,

high-V switches controlled by the power management unit.

EXTCLK rp r, -T3

ADC C"=

Figue 14: Clock gaLfsga rcsigpafr.Drl hddbok r utm

a*RIFCLK

pWC CoreII S===1=_MAB[19:0]

CPU LRea~l
Timers Tm

P lck Ports iplier

Figure 1-4: Block diagram of signal processing platform. Darkly shaded blocks are custom-
designed for biomedical applications and low-voltage operation.

The lightly shaded blocks in Figure 1-4 are based on components from Texas Instru-

ment's MSP430 microcontroller, a low power microcontroller widely used in industry. We

custom-designed the darkly shaded blocks for biomedical applications and low-voltage op-

eration. A description of the modules on this platform is provided in Chapter 6.



ducing energy and propose solutions. Within those areas, this thesis makes the following

contributions:

1. Accelerator architectures. There is a wealth of literature on algorithms for ambula-

tory medical monitoring utilizing diverse signal processing techniques. It is well-known

that hardware implementations of such techniques can be made more energy-efficient

than software realizations. However, hardware accelerators must be broadly appli-

cable across many usage scenarios, while at the same time satisfying stringent area

and power constraints. Chapter 2 presents four hardware accelerators - a median

filter, a CORDIC engine, an FFT module, and an FIR filter - chosen for their im-

pact on many applications. Although there has been much previous work on these

architectures, we find ways to extend the classic structures to support more usage

scenarios at low hardware cost. We propose improvements to the convergence range

and quantization error in the CORDIC engine, low power optimizations in the FFT

and FIR filter, as well as cycle count optimizations in the latter. While motivated

by biomedical applications, these improvements are applicable to signal processing

architectures in general. The proposed accelerators are demonstrated in a prototype

test-chip with which we can quantify the cycle count and energy reduction afforded

by the accelerators. Most importantly, we show that accelerators enable greater than

10x energy reduction in several complete applications compared to a conventional

processor.

2. Low-voltage digital circuit design. A key strategy for improving the energy efficiency

of the processor is to lower its supply voltage until application performance constraints

are barely met. However, in designing low-voltage logic and SRAM circuits, we must

contend with their increased sensitivity to manufacturing process variation. For logic

design, Chapter 4 proposes an approach to verify timing constraints while accounting

for significant variation at low voltages. The approach was demonstrated in a 65nm

MSP430 test-chip functioning down to 0.3V, which was the first processor to achieve

deep sub-threshold operation at the 65nm node.

For SRAM design, Chapter 5 proposes a model for the worst case read-current, a key

parameter in SRAM design, when the supply voltage is near the transistor thresh-

old and conventional models do not apply. We analyze the energy trade-offs of two



techniques that enable writing in the face of variation. The analysis reveals that sig-

nificant energy is expended in driving a large data bus connecting sub-blocks within

an SRAM. Accordingly, we employ a self-timed scheme to reduce glitches on the data

bus. While the usual practice in SRAM design is to anticipate the worst case and

eliminate all glitches, we find this imposes excessive leakage overhead. Instead, we

implement a scheme that considers the average case and removes most glitches at a

small fraction of the leakage cost.

3. System architecture for low power processors. The addition of accelerators in particu-

lar, and functional modules in general, imposes costs which must be considered when

designing the top-level system architecture of the processor. Specifically, accelerators

increase the capacitive load on the system bus. Accordingly, in Chapter 3 we analyze

an alternate dual-bus structure and investigate the optimal assignment of modules

to buses to minimize bus energy. In addition, accelerators introduce leakage power

which must be reduced through power gating. Chapter 3 concludes with a discussion

of power gating implementation and trade-offs.



Chapter 2

Accelerator Architectures

Accelerators, or hardware dedicated to a specific function, have been designed into many

electronic systems ranging from the Intel 8087 floating point co-processor first announced

in 1980 to video encoder/decoders integrated into modern multimedia processors for mobile

handsets. In the context of sensor processors, it has been shown in [28] that accelerators can

provide considerable energy savings. This chapter first discusses the selection of hardware

accelerators based on algorithm requirements in the ambulatory monitoring domain, then

describes the accelerator architectures and proposed improvements.

2.1 Accelerators for Biomedical Signal Processing

A wide range of techniques has been applied to the processing of biomedical signals. To

highlight some representative examples, Table 2.1 lists the main signal processing operations

in a number of published applications for ambulatory medical monitoring. This guided the

selection of common signal processing tasks that can benefit from hardware acceleration.

From this list, it is clear that several operations are often found in ambulatory monitoring

applications. Filtering is a prevalent task since signal acquisition typically introduces noise

which must be removed. Wavelet decompositions have been employed in several of the

listed application domains. The FFT is needed in several instances to analyze the frequency

content of various physiological signals. We further observe that many applications involve

comparing a signal against a threshold, for which we require the nrh largest or smallest

sample in a window of data. Similarly, median filtering, which is helpful for removing noise

spikes without degrading signal edges (unlike a low pass filter), requires the median of a



Table 2.1: Signal processing in ambulatory medical monitoring applications.
Signal Application Operations

IIR filter (M=16, N=32)
EKG QRS Detection [31] FIR filter (N=128)

Adaptive threshold detection
IR filter (M=2, N=10)

EKG QRS Detection [32] Curve length transform

__________ _____________________ Z = V t2 + Ay2

IIR filter (M=2, N=12)
FIR filter (N=4)

EKG QRS Detection [33} F2

Median filter (N=10)
EKG Analysis of R-R interval [34] FFT

EKG QRS detection [15} Wavelet transform
Threshold comparison

EKG Arrhythmia classification [35] Integer division
Sum of absolute differences

EEG Epileptic seizure onset detection [23, Wavelet decomposition
36]

EEG Indicators of sleepiness during driv- H(p) = - Ek Pk logpking [37]
EEG Elimination of Periodic ECG V) (x[n}) = x 2 [n]-x[n+1]x[n-1]

Artifacts [38] FIR filter
Photoplethys- Finding blood oxygen saturation [391 FIR filter (N=22)
mograph log x

FFT
Heart Sound Auscultation aid [40, 41] atan, sin, cos

inverse FFT

window of data. This suggests that a means for sorting a block of data samples would be

useful. We also note that algorithms utilize a range of basic mathematical functions such

as division, log x and V/E that are not natively supported in fixed point microcontrollers,

and thus require expensive software emulation.

To understand what percentage of clock cycles in typical applications are spent on

these signal processing operations versus other tasks, several applications were profiled on a

standard MSP430 microcontroller with a 16-bit RISC CPU and hardware multiplier. Open

source code in C or MATLAB was available for the chosen applications and thus simplified

our task. First, the applications were ported to the MSP430 and compiled using a standard

MSP430 C compiler, which unfortunately did not have profiling capabilities. Instead, we

executed the resulting instructions on an MSP430 CPU in cycle-accurate VHDL simulations



and recorded the number of clock cycles spent in major portions of the applications.

The cycle breakdown of algorithms for EKG arrhythmia classification [35], pulse-oximetry

[39], and heart sound processing [40, 41] are shown in Figure 2-1. It should be noted that

the code was not hand-optimized for the MSP430 (for example, the heart sound application

was in floating point), but default compiler optimizations were enabled. The arrhythmia

classification algorithm involves many control tasks that are suited to a general-purpose

CPU (e.g. loops, comparisons, searches). However, many clock cycles are consumed while

matching an incoming heart beat against templates. Part of this pattern matching involves

computing the sum of absolute differences (SAD). It is possible to replace SAD with matched

filters, which can then be mapped to a hardware FIR module. FIR filtering contributes the

majority of clock cycles in the pulse-oximetry application as well. In the third algorithm,

heart sounds are transformed into the frequency domain, processed, then transformed back

into the time domain. Consequently, the FFT/IFFT is a key component consuming roughly

half of the total number of clock cycles.

Other-,.
9% l

Pattern matching
(uses SAD)

(a) (b)

Other
45%

Multiply by
window atan/cos/sin

1% \ 3%

(c)

Figure 2-1: Breakdown of cycle count on a standard MSP430 while it executes (a) EKG
arrhythmia classification, (b) pulse-oximetry, and (c) heart sound processing.

FIR filter

(23 ta p)
72%



The profiling results illustrate that on a general-purpose CPU, operations such as filter-

ing and FFT can dominate the cycle count in an application. To determine the potential

gains from implementing these operations in hardware, we estimate the associated hardware

complexity and the achievable cycle count savings, since both metrics can be computed be-

fore design time. In Table 2.2, as a measure of hardware complexity, we list the primary

arithmetic blocks required in a given accelerator and architecture. The cycle count savings

are obtained by profiling operations on the 16b general-purpose CPU to obtain a baseline

cycle count, then calculating the theoretical number of cycles required on a given hardware

accelerator architecture.

Table 2.2: Evaluation of accelerator costs and benefits before platform design.

Cycle Count Cycle Count
Operation (CPU + HW Arithmetic Blocks in Accelerator

_______________ Mutipler) (Accelerator)Multiplier)

N-tap FIR 53N + 182 N 1 mult., 1 adder

M-level wavelet (2 M - 1)(53N 2 M 2MN mult., 2M(N - 1) adders
decomposition + 182)

512-point FFT 918880 6431 1 complex mult., 2 complex
adders, 1024-word memory

65-point median 1210 6 130 adders, 65 registers
filter

ln(x) 4214 50 3 adders, 3 barrel shifters

From Table 2.2, it is clear that accelerators significantly reduce the number of clock

cycles for the above operations. From an energy perspective, the total energy to complete

an operation can be expressed as energy/cycle x number of clock cycles. Therefore, an

accelerator can reduce computational energy as long as its energy/cycle is not much larger

than that of a CPU. Based on the hardware complexity listed in Table 2.2, this is a rea-

sonable assumption for most of the accelerators except the wavelet filter bank (a series of

tapped delay lines with one multiplier per tap). However, instead of adding hardware to

implement all filters in the wavelet filter bank, the hardware cost can be reduced by using

one filter iteratively, if the additional latency is acceptable.

Based on the above observations, we have decided to include four accelerators in the sig-

nal processing platform: a median filter, a Coordinate Rotation Digital Computer (CORDIC)



engine, an FFT module, and an FIR filter. Understandably, a large body of work exists on

hardware architectures for filtering and FFT due to their importance in signal processing.

While circuit realizations of other functions are less well-studied, several implementations

have also been demonstrated in prior work. In this chapter we focus on augmenting clas-

sic architectures to support the wide range of use cases found in monitoring applications.

Further, we propose several optimizations to reduce power and improve speed. These opti-

mizations are not specific to biomedical algorithms and are also applicable to other fields.

For example, FIR filtering and FFT are found in monitoring applications for sensor networks

[42]. By virtue of the accelerators, the biomedical processor itself can also be leveraged for

other non-biomedical applications with a sizeable signal processing component.

2.2 Median Filter

As mentioned previously, a way to sort a block of data is useful for several reasons in

biomedical applications. The minimum and maximum are often used in setting adaptive

thresholds, while the median is needed in median filtering (the output of such a filter is the

median value in a window of data samples). Median filters are commonly used in image

processing to remove speckle noise, with the advantage that it preserves edges in the image.

Similarly, median filtering is employed in biomedical signal processing to remove noise spikes

without degrading edges in the signal. It is also useful for removing baseline wander from

biomedical recordings.

Since a hardware median filter essentially contains circuitry to sort a window of data, the

area of the filter can be quite large for long windows. An architecture with a relatively small

area was selected for the biomedical processor. This section first describes the architecture,

then focuses on analyzing the trade-off between area, energy, and leakage of the median

filter. An optimization to shorten the filter's critical path is also presented.

2.2.1 Median Filter Design

Several architectures have been proposed for median filtering in hardware, and a compre-

hensive overview can be found in [43]. Among these, the sorted list architecture described

in [44, 45] is attractive for a low power processor because its hardware complexity grows

linearly with the number of samples in a window of data. This is in contrast to other ar-



chitectures such as [46, 47, 48, 49], whose complexity grows quadratically with the window

length.

Illustrated in Figure 2-2, the sorted list architecture maintains a window of data in

a shift register and in sorted order. Each data sample is also associated with a counter

that maintains the "age" of the sample, or how many clock cycles it has been stored in

the window. When an incoming sample arrives, the oldest sample is removed from the

window. The incoming sample is then compared against all samples in the window before

being inserted in the correct position. When all the comparisons are done in parallel, the

computation takes a constant number of clock cycles regardless of window length.

Stage 1: remove Input Stage 2: insert
oldest element new element

Ctrl Age Data + 0 Compare elements
with input

Remove oldest Ctrl Age Data
element

Ctrl Age Data Insert input into
Shift lower IIsorted list

elements up by Ctrl Age Data
1 position t tvShift lower elements

ctrl Age Data down by 1 position

Figure 2-2: Median filter based on sorted list architecture.

As seen from Figure 2-2, a basic processing element (PE) is replicated N times for a

median filter of length N. The PE is thus the key determinant of the area, leakage, and

performance of the filter. Details of the PE are shown in Figure 2-3. The PE contains a

register (data) to store the value of a data sample. For a median filter of length N, the PE

requires a register with log2(N) bits to store the index (idx), which indicates how long the

data sample has resided in the filter.

When a new input sample arrives, the idx register is incremented. In the PE where

idx == N, the corresponding data sample is removed by shifting the contents of all the

PEs below upwards by one position. This is indicated by asserting the shift Up/i] signal,

which propagates through an OR chain to the downstream PEs. The shift Up causes the

PEs to move idxBelow and dataBelow into the idx and data registers.

After removing the oldest data sample, the next step involves inserting the new input
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Figure 2-3: Reference architecture for median filter and details of the processing element.

sample datain into the sorted list. In the basic design, datain is compared with the data

register in every PE. datain is inserted into the ith PE in which dataIn >= data[i] and

dataIn < data[i - 1], and these two conditions are encoded in cmpData[i] and cmpData[i-

1] respectively. Contents of the downstream PEs are all shifted down by one position by

having each PE store idzA bove and dataA bove into its registers.

This architecture can find the median (and any other order statistic) in very few clock

cycles by virtue of its parallel structure. Correspondingly, it occupies a large area and

consumes significant leakage power when not power-gated. To reduce area in our median

accelerator, we share the data comparator amongst several processing elements in a time

multiplexing scheme. Figure 2-4(a) shows the synthesized area of the median filter when a

data comparator is shared amongst 2, 4, 8, and 16 PEs. The area savings reach diminishing

returns since other components in the PE start to dominate the area.

We further optimize the processing element by shortening the critical path of the design.

The first way to shorten the critical path is by performing the index and data comparisons

on separate clock cycles. Otherwise, if they are performed on the same clock cycle, the

critical path would pass through all PEs.1

In another modification to the reference architecture, we share one index comparator

between several PEs in the same way that the data comparator is shared. As illustrated in

Figure 2-4(b), this reduces the area by approximately 20%.

With the above modifications, the critical path in the design lies in the long chain of OR

gates that generates the shiftUp/i] signals. A chain of 2-input OR is necessary since each

This is because we must wait until the index comparison completes and the shift Up signal propagates
through all PEs, before we can compare the appropriate data to the incoming sample.
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Figure 2-4: (a) Area savings from sharing data comparator between several PEs. (b)
Additional area savings from sharing index comparators between several PEs.

gate's output is used by a processing element to generate local control signals. However, the

effective critical path length can be shortened using a bypass technique similar to that in

carry bypass adders [50]. This is illustrated in Figure 2-5. For every group of 4 processing

elements, a group shift Up signal is generated with a 5-input OR gate. This shortens the

critical path from 64 2-input ORs to 15 5-input ORs plus 4 2-input ORs.

In the final median filter design, the degree of comparator sharing is taken at the knee

of the curve in Figure 2-4(a) to balance the opposing trends of reducing area and increasing

latency. In this implementation, one index and one data comparator are time-multiplexed

between four PEs, implying that one median computation requires 4 x 2 = 8 clock cy-

cles. Nevertheless, this is substantially faster than equivalent software implementations

that involve either sorting a block of data or maintaining a sorted linked list.

2.2.2 Area, Energy, and Latency Trade-offs

The decision to share one comparator among several PEs embodies a trade-off between the

area, energy, and latency of the median filter. The following lists the differences between

two designs in which a) several PEs share a comparator, and b) each PE has its own

comparators. We refer to these as Design A and B respectively.
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Figure 2-5: Bypass technique to shorten critical path in median filter. The bypass path is
indicated by thicker black lines.

" Latency: If x PEs share one comparator in Design A, a median filtering operation

takes 2 * x cycles to complete.

" Switched capacitance: Design A has fewer logic gates and lower interconnect capaci-

tance. The net effect is that Design A has lower effective switched capacitance as will

be shown by simulation results below.

* Area: Design A has smaller area.

" Leakage power: There are two opposing factors to consider. Design A has fewer

standard cells. However, Design B can function at a lower VDD while achieving the

same latency as Design A. These two effects will be evaluated in the discussion below.

This section investigates the above trade-offs by simulating median filters with different

degrees of comparator sharing. This is done via gate-level simulations of the designs after

layout, with accurate switching activity and extracted wiring parasitics. Since a median

filter would typically be part of a larger system, we examine the trade-offs in the context of

two different system scenarios illustrated in Figure 2-6. In the first case, the median filter



does not have an independent power supply. This implies that the supply voltage (VDD)

is at a fixed level and the filter cannot be powered gated during its idle periods. In the

second case, the median filter has its own power supply. This implies that the filter can be

power-gated during idle periods, and its operating voltage can be set independently from

the rest of the system.

Scenario 1 Scenario 2

Shared VDD Independent VDD

T __ T T T

Median Other Other Median Other Other
Filter Logic Logic Filter Logic Logic

Figure 2-6: Two operation scenarios analyzed in this section. In scenario 1, the median filter
shares a power supply with other logic. In scenario 2, the median filter has an independent
power supply.

Scenario 1: No independent power supply

Figure 2-7 illustrates the power consumption over time of the median filter in scenario 1.

The variables are defined as follows:

" Pact: the active power when the median filter is computing the median. This equals

the total simulated power minus the leakage power.

" Tcy: the clock period (100ns in this case).

" Ncy: the number of clock cycles needed to find the median. In a design with no

comparator sharing, Ncy equals 2. In a design where x PEs share one comparator,

Neye = 2x.

* Tacc: the time between the arrival of consecutive input samples.

" Pcak: the leakage power of the median filter when it is not active (and not power

gated since it shares a supply with other logic).

The total energy per output sample, which varies with Tacc, is given by:

Etotal = PactTcycNcyc + PleakTacc (2.1)
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Figure 2-7: Power profile without power gating.

Figure 2-8(a) plots the energy per clock cycle (Eact/cyc = Pact * Tcy) of median filters

with one comparator shared between 1 to 16 PEs. This is simulated at 1V for post-layout

designs annotated with accurate switching activity and wiring parasitics. It is shown that

a filter with more comparator sharing has fewer logic gates and interconnect capacitance,

resulting in lower energy per clock cycle. Figure 2-8(b) plots the leakage power at various

degress of comparator sharing. Although the leakage power decreases with more sharing, it

eventually levels off when other components that cannot be shared begin to dominate the

leakage power.
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Figure 2-8: (a) Active energy per clock cycle and (b) leakage power of several median filter
designs with various degrees of comparator sharing. All simulations performed at VDD=lV.

Recall that a design with a higher degree of comparator sharing needs more clock cy-

cles to compute the median. Accordingly, Figure 2-9 plots the total energy per one out-

put sample, computed as the energy per cycle times the number of clock cycles required

(Eact/cyc * Ncyc). This illustrates the trade-off between a median filter with no comparator

sharing (i.e. higher Eact/cyc and lower Ncyc), versus a design with more sharing (i.e. small



Eact/cyc and large Ncy).

In Figure 2-9, the term Eact/cycNcyc gives the y-intercept of the curves while Pleak gives

the slope. Even though the design with no sharing has larger Eact/cyc, it consumes lower

active energy overall due to a small Nyc. Therefore, when the active energy component

dominates - when the time between consecutive input samples Tacc is small - the design with

no sharing consumes the least energy At larger Tacc, increased leakage starts to dominate,

and a design with more sharing consumes lower energy.

2500

0 2 4
Tacc (ms)

Figure 2-9: Total energy to compute one output sample versus Tacc (time between input

samples). This shows the total energy for several median filter designs, each with a different
number of PEs sharing one comparator.

Scenario 2: Independent power supply

Figure 2-10 illustrates the power consumption over time of the median filter in scenario 2,

where the filter can be power-gated during idle periods and its VDD can be set independently

from the rest of the system. The variables are defined as follows:

" Pact, Neye, Tacc: same definition as in scenario 1.

* Tcyc: the critical path delay of the median filter at the VDD where it operates.

* Pak: the leakage power of the median filter when it is not power gated.

" Teep: the time over which the median filter is power gated in between consecutive



input samples. Note that the filter is power gated only if Tsieep is longer than the

break-even time as defined in Section 3.3.2.

" P8,eep: the leakage power of the filter when it is power gated.

* Epgoverhead: the energy overhead associated with power gating (Section 3.3.2).

The total energy per output sample in the scenario of Figure 2-10 is given by

Etotal = Pact TcycNcyc + PleakTcycNcyc + PsieepTsieep + Epg.overhead (2.2)

It is possible to buffer several input samples before powering on the median filter to process

them. The advantage of this is that Epgoverhead can be amortized over several input samples.

We do not consider buffering here, but it can be included easily in the analysis.

Power

p Epgoverhead
actl 

P sleep

leak T N sleep Time

T acc

Note: assumes Ts1e > power gating break-even time

Figure 2-10: Power profile with power gating.

We now consider the effect of scaling VDD. First, we constrain all designs to run at the

same throughput. The design with no comparator sharing requires fewer clock cycles to

compute the median versus a design with comparator sharing. As a result, the former can

run at a lower frequency, which implies that it can operate at a lower VDD.

Figure 2-11(a) plots Eact/cy versus degree of comparator sharing when VDD is lowered so

that all designs have constant throughput. Here, the design without sharing has the lowest

active energy due to quadratic savings from VDD scaling. The total energy is shown in

Figure 2-11(b). When Tace is small (less than the break-even time2), the filter is not power

gated and consumes leakage power equal to Pleak. When Tacc is large, the design is power

gated, after which it consumes negligible Peep. Figure 2-11(b) shows that the difference

in leakage energy between designs is negligible compared to the difference in active energy

arising from VDD scaling. In this scenario, the median filter without any sharing achieves
2More precisely, the design is not power gated when Tsiep is less than the break-even time.
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Figure 2-11: (a) Energy per clock cycle at different degrees of comparator sharing. VDD
is set so that all designs have constant throughput. (b) Total energy per output sample.
When Tace is large, the design is power gated, after which it consumes negligible Psieep.

The above analysis illustrates that the system and application characteristics set the

relative importance of leakage and active energy components, which in turn influence the

accelerator architecture if energy minimization is the goal. The biomedical processor does

not allow the median filter VDD to be set independently from the rest of the system. In this

case, Figure 2-9 showed that total energy per output sample is similar for a filter without

comparator sharing versus a design where four PEs share a comparator. Consequently, the

implemented median accelerator adopts the latter design to save area.

2.3 CORDIC Engine

As noted in Section 2.1, biomedical applications employ a range of mathematical functions

that are not natively supported in fixed point processors. On a typical microcontroller,

these functions are emulated in software by the compiler. However, one emulated operation

typically requires several thousand cycles to complete. Fortunately, the CORDIC algorithm

allows efficient computation of these functions at relatively low hardware cost, and in fact,

CORDIC has been widely used in pocket calculators.

CORDIC, which stands for Coordinate Rotation Digital Computer, was first proposed

in 1959 as an algorithm to compute trigonometric functions in airplane navigation systems



[51]. It was later generalized in 1971 to compute other functions such as multiplication,

division, exponentials, and square roots [52]. A comprehensive survey of the developments

in CORDIC theory and architectures can be found in [53]. This section first describes

the CORDIC algorithm and the classic hardware architecture. Next, we discuss several

limitations of the classic approach, our proposed improvements, and their impact.

2.3.1 CORDIC Algorithm

To aid understanding of the hardware architecture and its limitations, we first give an

overview of the conventional CORDIC algorithm developed by [51] and [52]. For simplicity

we omit some details here, but a good description of the algorithm can be found in [54]. The

CORDIC algorithm computes trigonometric functions by rotating a vector in a successive

approximation manner in the circular coordinate system. This can be further extended

to the linear and hyperbolic coordinate systems as proposed in [52]. The key strength of

this approach is that it allows computation of some mathematical functions in very few

clock cycles and with low hardware cost, which makes it amenable to low power, flexible

processors such as the biomedical platform in this work.

Figure 2-12 illustrates how the sine and cosine of an angle a can be computed with

CORDIC. We begin with a unit vector vo parallel to the x-axis, then rotate it by a set of

elementary angles Oi until it makes angle a with the x-axis. Cosine and sine are then simply

the x- and y-components of the resulting vector.

1
V2y=sin(t) _ V3

I V1

01
0 Ia 1 10 V9
x=cos(a) 1

Figure 2-12: Illustration of the basic principle behind CORDIC - a unit vector vo is rotated
until it makes angle az with the x-axis, thus providing sin(a) and cos(a).

Mathematically, rotating a vector vi = is equivalent to multiplying it by a
Yi)

rotation matrix. By restricting the rotation angle in each iteration to a satisfy a specific

property [54], the rotation (except for a scaling factor) can be implemented efficiently by



shifting and addition. The necessary scaling factors can be aggregated over all iterations

and applied at the beginning or end of the iterations.

In each iteration, the vector is rotated clockwise or counterclockwise so that its angle

with the x-axis approaches the desired quantity. To determine the direction of rotation at

each step, an angle accumulator is first initialized with the desired angle (a). The amount

of rotation at every step is then subtracted from the accumulator, and the next rotation is

taken in a direction that decreases the magnitude of the angle accumulator.

The above summarizes the rotation mode of operation of CORDIC. Reversing this pro-

cess gives rise to the vectoring mode of operation, where we start with a vector at an angle

with the x-axis, and rotate it until it becomes parallel to the x-axis. At the conclusion,

y should be close to 0, x is a scaled magnitude of the original vector, and z is the angle

formed by the original vector with the x-axis.

The operations in the circular coordinate system can be further generalized to the linear

and hyperbolic coordinate systems [521, thus allowing CORDIC to support a variety of

functions. Equation 2.3-Equation 2.5 describe how to update the x, y components of the

vector and the angle accumulator (z) after each iteration.

Xi+1 = Kmi(xi - myidi2~*) (2.3)

yi+1 = Kmi(yi + xidi2-) (2.4)

zi+1= zi - diyi (2.5)

where:

* m =1, 0, and -1 for rotations in the circular, linear, and hyperbolic coordinate systems

respectively

* 7i is set to arctan(2-'), 2-', and arctanh(2-') for the circular, linear, and hyperbolic

systems respectively

e di = +1 indicates the direction of rotation

* Kmi is a set of scaling factors as described in [54]

Table 2.3 summarizes the supported functions in six different modes of operation of the

unified algorithm, as well as the required initialization, results, and any post-processing

involved. Although not specifically supported in our processor, the CORDIC algorithm



can be extended to compute the inverse of certain functions, for instance arcsin(9) and

arccos(O). The procedure for doing so is detailed in [54].

Table 2.3: Functions, inputs, outputs, and post-processing in six modes of operation. All
modes are supported in the CORDIC accelerator except linear-rotation (since a hardware
multiplier is already available).

Mode of op- Supported Inputs Outputs Post-Processing
eration Functions
Circular- cos(zo) xo = 1/Knc Xn = cos(zo) N/A
rotation sin(zo) Yo = 0 yn = sin(zo)

zo=a zn =_0

Circular- arctan(yo/xo) zo= a Xn = Knc + y2 Scale Xn by
vectoring K x + y2 yo = b yn = 0 1/Kne

zo = 0 zn = arctan(yo/xo)

Linear- xOzo zo = a Xn = X0 N/A
rotation yo = 0 yn = XOZO

zo = b z= = 0

Linear- yo/xo xo = a x= Xo N/A
vectoring yo = b y= 0

zo = 0 Zn = YO/XO

Hyperbolic- cosh(zo) xo = 1/Knh Xn = cosh(zo) e =

rotation sinh(zo) Yo = 0 yn = sinh(zo) sinh(zo) + cosh(zo)
zo =a Zn=0

Hyperbolic- N xo = a + 1/4 Xn = Khxa / =

vectoring yo = a - 1/4 Yn = 0, xn/Knh
zo = 0 zn = arctanh(yo/xo)

Hyperbolic- ln(a) xo = a +1 Xn = KnhV X2 - Yo ln(a) =

vectoring yo = a - 1 yn = 0, 2arctanh(yo/xo)
zo = 0 zn = arctanh(yo/xo)

In Table 2.3, Knc and Knh refer to the aggregated scaling factor in the circular and

hyperbolic coordinate systems respectively, and are given by

Knc = f 1 + 2-2i (2.6)
i

Knh 1 2 -2i (2.7)

2.3.2 CORDIC Architecture

A direct mapping of Equation 2.3-Equation 2.5 to hardware components gives rise to the

classic iterative CORDIC architecture pictured in Figure 2-13. It is apparent that this



design has low hardware cost; xi and yj are computed with two adders and barrel shifters.

This architecture provides one bit of the result per clock cycle. The functions arctan(2-2),

2-4, and arctanh(2-') for integer values of i, necessary for computing zi, are stored in lookup

tables. In several modes of operation the CORDIC algorithm introduces an extra scaling

factor as noted in Table 2.3. To eliminate the need for the user to consider this extra scaling,

a multiplier is employed to remove the scaling factor from the CORDIC output.

Xo Yo

XXI+

sgn(yi) Z

xshft syshft CR Car i o

di / +/ - M mdi

yi+1 Xi+1 Zi+1

Figure 2-13: Basic iterative hardware architecture for CORDIC.

2.3.3 Proposed Hardware Modifications

The CORDIC engine in our processing platform is based on the iterative architecture in

Figure 2-13 but with several proposed enhancements. Before detailing the enhancements,

we first quantify the speed advantage of the CORDIC architecture over software emulation

on the CPU. Table 2.4 compares the number of clock cycles needed to compute various

functions on the CPU versus the accelerator, including the overhead of transferring data

into and out of the accelerator. This illustrates that CORDIC is a highly efficient and

versatile architecture for supporting such functions.

It is important to note that the conventional CORDIC algorithm suffers from several

limitations: the algorithm introduces numerical inaccuracy and converges to the correct

result for a limited range of inputs. Accordingly, we propose architectural enhancements to

mitigate these effects.



Table 2.4: Number of clock cycles needed to compute various functions on the MSP430
CPU versus the CORDIC accelerator.

Function CPU + Multiplier Accelerator
cos(O) 4482 50

arctan(O) 1344 50

/X_2 + Y2 7716 50
ex 4288 88

ln(x) 4214 59

Limited Convergence Range

The limited convergence range of CORDIC stems from the fact that the angle accumulator z

can only be increased/decreased by values in a finite-size lookup table. When unaddressed,

this severely limits the usefulness of the CORDIC accelerator in biomedical applications.

Intuitively, in order for z to be driven towards zero in rotation mode, the initial input value

zo is restricted by the sum of all entries in the lookup table. More precisely, the convergence

theorem in [52] sets the bounds on zo for which CORDIC will converge to the correct value.

In circular-rotation mode, the bound is

N

|zo| 5 arctan(2-N)) + arctan(2 ) (2.8)

Similar arguments and bounds apply to other modes of operation.

In the CORDIC engine of this work, the limited convergence range is addressed us-

ing different approaches in each coordinate system. In the circular system, conventional

CORDIC converges for angles in quadrants I and IV. Angles in quadrants II and III are

handled by the well-known method of performing an initial rotation of tE. In the linear

system, we are interested primarily in the vectoring mode of operation which computes y/x,

for which CORDIC converges when Iyo/xol 1. Therefore, we support integer division by

computing 1/xo then multiplying the result by yo with the internal CORDIC multiplier.

Extending the convergence range in the hyperbolic coordinate system has received much

less attention since many CORDIC designs operate only in the circular system. Further,

while inputs in the circular-rotation mode are restricted 3 to the range -7r < z < 7r, there

3Similarly, there is no convergence issue in circular-vectoring mode because arctan(yo/xo) lies within
±7r/2.



are no such bounds on the inputs of hyperbolic functions. One approach to address the

issue involves reducing the input argument in order to place it within the convergence range

of CORDIC [55, 56, 57]. In particular, the algorithm proposed by [55] can be integrated

into the conventional CORDIC datapath and is thus more suitable for our CORDIC engine.

Therefore, we propose architectural enhancements to realize this algorithm as part of the

iterative datapath (Figure 2-13).

The conventional CORDIC converges in the hyperbolic-rotation mode when the input

zO is
N

Izol < arctanh(2-N) + arctanh(2-'). (2.9)
i=1

For large N, the sum approaches 1.1182. This is a very limited convergence range, and it

would be highly desirable to extend this range for general-purpose computation.

A natural step towards increasing the convergence range would involve including extra

iterations with non-positive index values (i < 0). However, arctanh(2-) is complex-valued

for negative i. The authors of [55] proposed another sequence that can extend the conver-

gence range quickly in a few iterations. Using this new sequence in M + 1 extra iterations

at the beginning, the input range is given by

0 N

Izol < E arctanh(1 - 2-2-+±)) + arctanh(2-N) + arctanh(2-'). (2.10)
i=-M i=1

Table 2.5 lists the maximum allowable Izol for different values of M. In our CORDIC engine,

we support M up to 3 since this provides sufficient input range for the functions of interest

(ex, fi, ln x) in a 16-bit fixed point processor, as will be detailed later.

Table 2.5: Maximum allowable zo for different values of M. The number of extra iterations
required is M + 1.

M Zmax

0 2.091
1 3.808
2 6.926
3 12.818
4 24.255

The proposed architectural enhancements to realize this algorithm in the iterative

CORDIC engine are as follows. In this work since we implement the algorithm in a fixed-



point engine and must address two main design issues not considered in the theoretical

work [55]. Specifically, the internal datapath values have a large dynamic range due to the

extra iterations. This, in turn, significantly increases the quantization error in the com-

puted results. In the following, we provide details on how this is addressed in the proposed

CORDIC engine.

Although the engine supports M up to 3 (performing up to 4 extra iterations), doing

so for every input regardless of its magnitude would significantly compromise numerical

accuracy. This is because in the M = 3 iteration, more integer bits (out of a maximum of

15) must be allocated to the z register in order to accommodate the larger values involved.

If the M = 3 iteration was not actually necessary because the input zo is small, more bits

could have been allocated to the fractional part of zo to improve numerical accuracy. For

this reason, M and the number of extra iterations are not set statically, but are determined

in real-time for each input.

We determine M by requiring the user to give a 16-bit signed representation of zo and

the number of integer bits in the representation. As will be addressed in Section 6.2.2, this

can be done easily in software by disassembling a floating point datatype into its constituent

parts. zo is then compared with the values in Table 2.6, and the corresponding M is selected.

The ranges in Table 2.6 differ slightly from those of Table 2.5 to ease implementation. In

hardware, comparison of zo with these ranges can reuse the add/subtract units in the

conventional CORDIC datapath, hence no extra arithmetic units are required but the total

execution time is lengthened by several clock cycles.

Table 2.6: Value of M selected in the CORDIC engine for a given value of zo
Range of zo M

|zol < 1 No extra iterations necessary
1 Izol < 2 0

2 IzoI 5 3.75 1
3.75 < Izol < 6.875 2

6.875 < Izo| 3

The resulting CORDIC architecture is shown in Figure 2-14. Compared to conventional

CORDIC, additions to extend the input range include:

* a shifter to shift values from the lookup tables to the appropriate position before

adding to zi



" multiplexers before barrel shifters and adders for comparing zo against the ranges in

Table 2.6

" the hard-coded constants from Table 2.6

With these changes, we significantly extend the convergence range of CORDIC in the hy-

perbolic coordinate system. Table 2.7 compares the convergence range of conventional

CORDIC with that of our implementation. The range has now been extended by approxi-

mately a factor of 214 to cover the full range required in 16-bit fixed point processing.

Compute x, y components Angle
of vector at each rotation accumulator stores E,

------- :------------------------TN--------

const- 8 const- x23b
ants ext xt ants

ext ext

d imd. Id

Legend: Binary pt. adjustment . Extending input range F; Conventional datapath

Figure 2-14: Proposed architecture to extend the convergence range (components with
dotted pattern) and reduce quantization error (zigzag pattern). Due to reuse of existing
datapath blocks, only limited additional components are required.

Table 2.7: Convergence range of conventional CORDIC and our proposed implementation.
The range has been extended to cover the full range required in a 16-bit fixed point processor.

Operation Conventional CORDIC Proposed Enhancements

Vs 0.0267 < x < 2.339 0 < x < 215 _ 1
ln x 0.1068 < x < 9.360 2-15 < x < 215 - 1
e __ 1.3 -1.118 < x < 1.118 -10.39 < x < 10.39 (e 0 e a 21 _ 1)

Quantization Error

The CORDIC algorithm contains two main sources of quantization error. Since the desired

rotation angle is approximated as the sum of a finite number of elementary angles stored

in the lookup table, an exact representation may not be possible. This will be referred to



as the angle approximation error. Furthermore, in a fixed point processor, rounding errors

are inevitable. In this section we investigate several architectural techniques to improve the

numerical accuracy of the CORDIC engine.

Due to quantization errors, the effective number of bits provided by CORDIC is less

than the datapath width. Thus a straightforward way to improve numerical accuracy is

to increase the number of iterations to decrease the angle approximation error, and to

widen the CORDIC datapath to reduce the rounding error. In [58], upper bounds on the

total quantization error were derived for a conventional CORDIC design. However, due

to some architectural changes detailed below, deriving similar bounds is difficult for our

CORDIC engine, but this can be investigated in future work. Instead we perform extensive

simulations, with a fixed-point MATLAB model which exactly mirrors the hardware design,

to characterize the quantization error .in the accelerator. The results are as follows.

Figure 2-15 shows the error introduced by CORDIC while computing sin(zo) at different

datapath widths. The y-axis plots the relative error defined as CORDIC output-ideal value
I ideal valueI

The ideal value is quantized to 16-bits to decouple the inaccuracies introduced by CORDIC

from the error inherent to representing a number in 16-bit fixed point format. As seen here,

widening the datapath significantly reduces the maximum error. Since the quantization

error varies with input, we take the root mean square (RMS) of the values in Figure 2-15

as an overall error metric. The trade-off between improving accuracy and increasing energy

per cycle is illustrated by simulated results in Figure 2-16. From this we see that the RMS

error decreases exponentially with a linear increase in energy. In this design we employ a

24-bit datapath to achieve good accuracy in the hyperbolic coordinate system which is the

most susceptible to quantization effects.

The second approach to improving accuracy involves adjusting the binary point dy-

namically to maximize the number of fractional bits used throughout the computation.

Arithmetic overflow is a particular concern in fixed-point computation, and overflow is

handled in the CORDIC engine by dedicating 1 bit in x, y, and z as an overflow bit, as

illustrated in Figure 2-17(a). An overflow occurs when the overflow bit is different from the

sign bit, and this condition is checked before the registers are updated. If either xi or yi

overflows, both variables are shifted towards the right by 1 position before being registered,

since the binary points of x and y must be at the same position. Overflow for z is checked

independently. Two counters store the number of times the binary point was shifted to the
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Figure 2-16: RMS quantization error (calculated over 0 in [--r, -r}) in the modified CORDIC
engine. This is plotted versus simulated energy per cycle at different datapath widths.

right so that the end result can be interpreted accordingly.

Similarly, the binary point can be adjusted to increase the number of significant bi-

nary bits whenever possible, to help reduce rounding errors. When the sign, overflow, and

most significant bits of a variable are the same (see Figure 2-17(b)), the MSB is redun-

dant, and therefore the variable can be shifted towards the left by one position without

losing information. x and y are adjusted if both satisfy this condition, while z is adjusted

independently.

Recall that the algorithm to extend the input range also increases the dynamic range of

the intermediate datapath values, and thus increases the quantization error. Binary point
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Figure 2-17: (a) Overflow bit in the x, y, and z registers. If an overflow occurs, register
contents are shifted one position towards the right. (b) When the leftmost three bits are
equal, the MSB is redundant, and the variable is shifted one position towards the left.

adjustment is particularly effective in reducing the quantization error in these scenarios.

To illustrate, Figure 2-18(a) plots the relative error versus different input values for T

without binary point adjustment. In Figure 2-18(b), the relative error has been significantly

decreased with binary point adjustment.
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Figure 2-18: Relative quantization error in G that is introduced by CORDIC (a) without
and (b) with binary point adjustment. The maximum error has been decreased in (b).

Figure 2-19 and Figure 2-20 illustrate the quantization error profile of the proposed

CORDIC engine in the circular-rotation (sin(x)), linear-vectoring (y/z) and the hyperbolic-

rotation (sinh(x), ex) modes of operation. It can be seen that the quantization error is

difficult to predict in general.

Table 2.8 summarizes improvements in the RMS error attributed to the binary point

adjustment technique under operation in all three coordinate systems. In the circular-
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Figure 2-19: Relative numerical error in the proposed CORDIC engine in the circular-
rotation mode of operation.

rotation mode, the technique results in approximately 2x improvement in RMS error. It is

interesting to note that the linear-vectoring mode shows no benefit since overflow/underflow

occur very infrequently in this mode. Conversely, the hyperbolic-rotation mode benefits

greatly since the intermediate results can grow quickly in this case.

Table 2.8: RMS error introduced by CORDIC with and without binary point adjustment.
Mode of operation Without adjustment With adjustment
Circular-rotation 5.75 x 10-5 2.95 x 10-5
Linear-vectoring 0.00147 0.00147

Hyperbolic-rotation 0.8136 0.002

The last method to improve accuracy pertains to exponentials, which are computed

conventionally as ez = sinh(z) + cosh(z) [54}. Because sinh(z) and cosh(z) are large in

magnitude but opposite in sign when z is negative, the resulting ez calculation is grossly

inaccurate. This is reflected by the large errors for negative x in Figure 2-21(a).

In this CORDIC engine, the issue is addressed by first computing elzl for z < 0, then

leveraging the linear-vectoring mode of operation to invert the result. This is accomplished

at low hardware cost of several multiplexers to obtain and direct Iz| appropriately during

startup, as well as simple logic to initiate the 1/elzi computation. Moreover, the numerical

error is significantly reduced as shown in Figure 2-21(b). Although the relative error for

x ~~ -10 seems large, it is important to note that e-10 ~ 4.54 x 10-5 which is between the

two smallest positive signed 16-bit numbers, 3.053 x 10-5 and 6.103 x 10-5. In this region,
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a small quantization error of 1 LSB can easily lead to a large relative error.

Figure 2-22 summarizes the impact of both enhanced convergence range and improved

accuracy on e'. The input convergence range increased by 9.3x and accuracy has been

substantially improved for x < 0.
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2.4 Fast Fourier Transform

The Fast Fourier Transform is an efficient algorithm for computing the Discrete Fourier

Transform (DFT), which is important to many applications in signal processing, for example

in implementing digital filters and in spectral analysis. In this section we will propose a

control scheme to reduce the switching activity in the FFT datapath. This decreases the

datapath power by 50% and the overall FFT power by 29%. As with the CORDIC engine,

we also discuss ways to extend the classic architecture to support more use cases at low

hardware cost.

2.4.1 Architecture Overview

The FFT accelerator utilizes a serial radix-2 architecture shown in Figure 2-23. It contains

a datapath to implement one butterfly computation which consists of one complex multipli-

cation and two complex additions/subtractions as detailed in [59]. An N-point FFT requires

Nlog2(N)/2 butterflies; in the accelerator, the control logic is responsible for sequencing

the order of butterfly computations. The twiddle ROM stores twiddle factors which are

coefficients needed in the FFT computation. The input data and intermediate results are

stored in a custom voltage-scalable SRAM, allowing the FFT accelerator to function down

to 0.5V. The FFT SRAM employs the same bit-cell and peripheral circuit design as the

main memory of the biomedical processor (discussed in Chapter 5)..

FFT Memory
(4 single-port Butterfly
SRAM banks)- Datapath

High-Odd High-Even F-*I
128x34 128x34

Low-Odd Low-EvenI
128x34 128x34 i.-

RdAddr: u, vtVrddr s t _ ---
Twiddle

Control
L k1  ROM

Supports:
Complex-valued FFT, IFFT (128-512 pt.)

Real-valued FFT (128-1024 pt.)

Figure 2-23: Serial radix-2 FFT architecture.



2.4.2 Low Power Optimizations

The serial radix-2 architecture is widely used and our particular implementation is based on

[60] and [28]. We now propose several optimizations to reduce power and increase versatility

of this basic structure.

Complex Multiplier

We first examine the complex multiplier, a key component of the butterfly datapath. In the

FFT, the complex multiplier implements (Re{b}Re{w} - Im{b}Im{w}) +j(Re{b}Im{w} +

Im{b}Re{w}). Figure 2-24(a) represents a straightforward mapping of the above equation

and requires four multipliers. To decrease the number of multipliers, an alternate design

shown in Figure 2-24(b) was proposed previously. Here we evaluate both designs to deter-

mine which is more suited for the FFT accelerator.

WW
Bi X AL_.+ X

Br , x )+ +-Xr
Wr -

+r
Br A + w x +x -+ r+: Ar

B +Y
Wi-* ~Ar-+~*

(a) (b)

Figure 2-24: (a) Butterfly datapath with 4 multipliers. (b) An alternate design with 3
multipliers.

Table 2.9 compares area, delay, and power of the two complex multipliers after synthesis.

For the first set of results the multipliers were synthesized without delay constraints. In

the second set, they were synthesized for a delay of 30ns, an appropriate performance

for the FFT accelerator. When the delay is unconstrained, the alternate multiplier is a

better choice because it occupies less area and achieves the same power consumption as the

standard design. However, at the delay constraint of 30ns targeted for the FFT accelerator,

the standard design is preferable. The alternate design uses larger standard cells since it

contains a longer critical path, and consequently it occupies more area and consumes higher



power. Because the standard design is lower power in the frequency range of interest, it

was adopted for use in the butterfly datapath.

Table 2.9: Area, delay, and power estimates from synthesis of two complex multiplier de-
signs. Synthesis performed at VDD=1V.

Complex Multiplier Type Area (pm') Delay (ns) Active Power (pW)
No delay constraint

Standard (4 multipliers) 6301 81.1 17.18
Alternate (3 multipliers) 5302 87.4 17.08

Delay constraint = 30ns

Standard (4 multipliers) 7679 28.32 684
Alternate (3 multipliers) 7718 29.83 824

Activity Factor Reduction

In a serial architecture, different inputs are typically time-multiplexed into a critical circuit

(e.g. a datapath). Generally, if consecutive inputs are uncorrelated, time-multiplexing

tends to increase the switching activity in the critical circuit. In this section we propose an

approch to mitigate this in the FFT accelerator. Specifically, we present an efficient control

scheme to perform butterflies with the same twiddle factor consecutively, in order to reduce

the switching activity in the butterfly datapath.

Control schemes for serial radix-2 FFT [61, 62, 63, 64] have been described in previous

work. The proposed control scheme differs from the cited work in that we focus on reducing

the datapath switching activity, while also enabling simple single-port SRAMs to be used.

Specifically, the control scheme achieves these objectives:

" In iteration i of an FFT, i E 0.. log2(N) - 1, butterflies with the same twiddle factor

are performed consecutively.

" On every clock cycle, two inputs are read from memory and two outputs are written

back. Reads and writes should occur on different memory banks.

" The sequence should be applicable to different FFT lengths.

Since two reads and two writes are needed per clock cycle, the dedicated FFT memory

is partitioned into four banks as suggested by [60] so that each bank can accommodate one

access. Specifically, every memory address is assigned to one of the four banks according to

its parity and most significant bit. This is because the two inputs of a butterfly always differ



in parity [65] while the two inputs of the post-processing for real-valued FFT computation

differ in the MSB, as will be discussed in the next section. This partitioning ensures that

two reads always take place on different banks.

At the same time, the control logic is responsible for ordering the butterflies so that

consecutive butterflies access different banks. For example, if the current butterfly writes

outputs to the two banks with MSB=0, the next butterfly must fetch inputs from the

MSB=1 banks.

We now propose the control scheme described below which satisfies the above conditions

and is amenable to hardware implementation. Let a butterfly computation be represented

by

X'[u] = X[u] + W[k]X[v] (2.11)

X'[v] = X[u] - W[klX[vl (2.12)

where X[u], X[v] are the inputs, u, v are memory addresses, and X'[u], X'[v] are the outputs.

W[k] is the twiddle factor.

In the first i = 0, 1, .. (n - 2) iterations, u, v of the jth butterfly differ in parity, while

u, v of consecutive butterflies differ in the MSB. One method to generate u, v is:

M= {j[n - 2: 1], 0} (2.13)

u {j[0], ROLn_ 1 (m, i)} (2.14)

v= {j[0], ROLn_1 (m + 1, i)} (2.15)

k=j with (n- 1-i) LSBsset toO (2.16)

where j[0] indicates bit 0 of j, and {a, b} denotes a concatenated with b. ROLn_ 1(a, b)

involves rotating an n - 1 bit number, a, by b bits to the left.

In the last iteration (i = n - 1), u and v differ in their MSB so the above does not apply.

Since successive u should differ in parity, u can instead be generated with an (n - 1)-bit

gray code counter, while v = u with MSB set to 1. Table 2.10 gives an example of the

butterfly ordering for N=16. The memory is partitioned into four banks as follows:

" Memory bank 0: addresses with even parity, MSB=O

* Memory bank 1: addresses with odd parity, MSB=0



" Memory bank 2: addresses with even parity, MSB=1

" Memory bank 3: addresses with odd parity, MSB=1

Table 2.10: Example of butterfly ordering to
Note that changes in the twiddle address are

reduce switching activity in a 16-point FFT.
minimized within each iteration.

Note in Table 2.10 that butterflies using the same twiddle factor are performed consec-

utively within an iteration. Further, u and v occupy different memory banks in a butterfly,

and consecutive butterflies access different banks as much as possible. The last butterfly of

iteration 2 and first butterfly of iteration 3 both access memory bank 3 (shown in bold),

which is unavoidable. This is handled by stalling the datapath by one clock cycle. This

control scheme achieves fewer stalls than a reference FFT design without switching activity

reduction.

The circuit to realize this control scheme is shown in Figure 2-25. It consists of two

bit-rotators for Equation 2.14 and Equation 2.15 and a gray code counter. In general the

bit-rotators need to be log2N -1 bits wide for an N-point FFT. Therefore, to accommodate

j (Butterfly #)
iteration i = 0

u 0 8 2 10 4 12 6 14
memory bank of u 0 3 1 2 1 2 0 3

v 1 9 3 11 5 13 7 15
memory bank of v 1 2 0 3 0 3 1 2
twiddle address k 0 0 0 0 0 0 0 0

iteration i = 1
u 0 8 4 12 1 9 5 13

memory bank of u 0 3 1 2 1 2 0 3
v 2 10 6 14 3 11 7 15

memory bank of v 1 2 0 3 0 3 1 2
twiddle address k 0 0 0 0 4 4 4 4

iteration i = 2

u 0 8 1 9 2 10 3 11
memory bank of u 0 3 1 2 1 2 0 3

v 4 12 5 13 6 14 7 15
memory bank of v 1 2 0 3 0 3 1 2
twiddle address k 0 0 2 2 4 4 6 6

iteration i = 3

u 0 1 3 2 6 7 5 4
memory bank of u 0 1 0 1 0 1 0 1

v 8 9 11 10 14 15 13 12
memory bank of v 3 2 3 2 3 2 3 2
twiddle address k 0 1 3 2 6 7 5 4



variable FFT sizes, the bit-rotators support variable bit widths as shown in the dashed box

of Figure 2-25. Similarly, several gray code counters of different bit-widths are included.

Figure 2-26 shows the power comparison of a reference FFT design with the proposed

scheme. Both designs were synthesized and laid out, and the power consumption simulated

with wiring parasitics included. It is seen that the proposed control logic consumes slightly

higher power than the reference design but helps reduce the datapath power by 50%, which

is a major component of the FFT power consumption. This results in an overall power

decrease of 29%.

Butterfly Ordering Logic
Butterfly counter (j[n-2:0])

Variable width bit-rotator
{j[n-2:1], 0} {j[n-2:1], 1} , Dt2:01 a[7.0J

I * +

FFTsize Variable Variable Stage 1: a[7 a[5]
itrtin width Gray code, width aotat a bi

bit-rotator counter bit-rotator
FFTsize

{j[0],intAddr} {OgAddr} {1,g ddr} {j[0]ntAddr}: a[6:0] a[7:1] a[0]

last '1

1 0 t shift[0] 0Iteration. 
-IaddrO (u) addrl (v) '. a_s171] a_s1[0]

---- ---- ---- ---- - _ a_s1 [7:0)

Stage 3: a s2[7:4]a s2[5:2] Stage 2 a.si 7:6]a s1 5:4]
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L .. .. I I

----------- ----------------------------------
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Figure 2-25: FFT control logic which reduces switching activity in the datapath.

Figure 2-27 shows the simulated waveform of the FFT using the proposed control scheme

and a reference design. The switching activity at the twiddle factor input of the datapath

(wr and wi in the waveform) is much reduced particularly in the earlier iterations. For

example, in the second iteration wr changes from Ox7FFF to OxOOOO on every cycle using

a straightforward ordering scheme, while the transition only happens on one cycle in the

proposed method.
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Figure 2-26: Power comparison of reference design and proposed design with switching
activity reduction. Simulation performed at 1V, 10MHz for a 128-pt CVFFT.

2.4.3 Increasing Versatility

The FFT module described above supports a straightforward complex-valued FFT (CVFFT),

where the inputs are assumed to be complex. However, we can make minor additions in

order to leverage the basic structure for several other related computations, namely

* Real-valued FFT

" Inverse FFT

" Magnitude approximation

Real-valued FFT (RVFFT) is an optimization which allows computing the N-point

FFT of a real-valued input sequence x[n] via an N/2-point FFT plus a post-processing

step [60]. The real-valued sequence is split up into two half-length sequences consisting of

the even and odd samples (xe[n] and xz[n]). We then form the complex sequence xe[n] +

jx[n] and perform an N/2-point FFT. From this we can reconstruct the FFT of x[n] in a

post-processing step by taking advantage of the conjugate symmetry of FFT{x[n]}. This

approach allows computing an N-point RVFFT in 2x fewer clock cycles than a CVFFT of

the same size. The post-processing step requires the addition of four adders to the datapath.

The control overhead is negligible since the gray code counter for CVFFT control above is

also applicable to the post-processing step.

Supporting the inverse FFT allows a signal to be processed in the frequency domain

and then converted back into the time domain. The inverse FFT can be computed with
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Figure 2-27: Simulated waveform of the twiddle factor w, and wi in the reference and
proposed design. The switching activity in both signals has been substantially reduced,
particularly in the early iterations when only several distinct twiddle factors are in use.

the existing hardware by swapping the real and imaginary parts of the frequency domain

samples X[k], performing an FFT, then swapping the real and imaginary parts of the result

and scaling by 1/N. Both swapping and scaling can be easily supported with very small

hardware overhead.

Lastly, the FFT module can provide the approximated magnitude of the results, useful

when the magnitude is of interest but not the phase. Again, this is achieved at low cost

with the approximation lx i max(IRe{x}|, lIm{z}l) + min(IRe{x}|, |Im{x}})/4.

2.5 FIR Filter

As seen in Section 2.1, FIR filtering is a prevalent task in ambulatory monitoring applica-

tions. This section describes hardware architectures for FIR filtering and low power opti-

mizations. Like the FFT module, the FIR filter has several additional features to support

special cases efficiently.

2.5.1 Hardware Architectures

A Nth order FIR filter is described by

N

y[n] =k h[k][n - k]
k=0

(2.17)
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where x[n] is the input sequence, h[n] are the filter coefficients, and y[n] is the filter out-

put. FIR filter architectures are therefore centered around multiply-accumulate operations.

A common serial FIR architecture is shown in Figure 2-28, where one multiplier and ac-

cumulator can be time-multiplexed to compute Equation 2.17 over N + 1 clock cycles.

This architecture offers flexibility in supporting filters of variable orders, symmetric/non-

symmetric filters, and other special cases. In addition, it can support high-order filters with

much smaller area than a parallel implementation (e.g. [59]). We now describe low power

optimizations of this serial FIR architecture.

Data X +Mem.

Coeff .
Control -Mem

Figure 2-28: Serial FIR architecture with one multiplier and one accumulator.

2.5.2 Low Power Design

The multiply-accumulate circuit constitutes a major portion of the power and area of the

FIR filter. Out of several possible multiplier designs, a Booth-Wallace multiplier was chosen

for its low delay and area [50]. A Booth multiplier encodes one of the inputs with modified

Booth's recoding, which reduces the number of partial products to N/2. It was observed

in [66] that in an FIR filter, the choice between encoding the input data versus encoding

the coefficients impacts the multiplier power due to different switching activity profiles. We

therefore simulate the power of two FIR filters, one applying Booth encoding to the input

sequence, and the other to the coefficients. Since FIR filter coefficients tend not to change

dramatically from one sample to the next, we simulate power with two sets of coefficients:

one randomized and one implementing a low-pass filter. The results are summarized in

Table 2.11. We observe that Booth-encoding the coefficient input results in lower power in

both cases.

Besides the multiply-accumulate block, the local memory to store data and coefficients

is a key component of the FIR filter. Here we evaluate different approaches to implementing



Table 2.11: Power of multiply-accumulate block with Booth-encoding on the input data or
coefficients.

Multiply-Accumulate
Power @ 1V, 10MHz

Filter Coefficients Encode Input (pW) Encode Coefficients (pW)
32-tap Low Pass Filter 58.0 33.5
Random Coefficients 59.6 47.0

this memory. The data and coefficients are stored in two separate memories. The coefficient

memory provides one word per clock cycle. However, the data memory needs to provide up

to two words per cycle to handle symmetric filters, as discussed in Appendix A. Typically

this type of memory would be implemented as an SRAM or a register file. An SRAM

has a dense storage cell but its peripheral circuits can impose significant area overhead,

particularly for the small memory sizes of interest here. Further, the need to provide two

words per clock cycle would complicate the SRAM design, and consequently we employ

register files for the local memories. For simplicity, the register file is synthesized from

standard cells which are robust down to 0.5V; a custom register file bit-cell, like an SRAM

bit-cell, would require considerable design effort to ensure low-voltage operation.

A typical synthesized register file in digital circuits use edge-sensitive flip-flops as storage

elements. In this work, to save power, we employ level-sensitive latches which are approx-

imately half as small as flip-flops and impose half the amount of clock loading. The main

design issue in a latch-based register file is the possibility of a race condition, which causes

data to be written into the wrong row at the end of the write cycle. In this work, this

is addressed by ensuring that hold time constraints are met in the relevant signals in the

register file.

The output multiplexer in the register file selects one out of 32 16-bit entries and thus

constitutes a fair portion of the area and power. In this section, we simulate a design using

a tri-state bus to connect all 32 entries; only the selected row actively drives the bus while

all others remain high-impedance. This involves one tri-state buffer per storage bit rather

than a 32:1 multiplexer tree per 32 bits. A tri-state bus requires careful design to avoid

enabling two tri-state drivers simultaneously, causing excessive short-circuit current.

A latch-based local memory design with tri-stated outputs is shown in Figure 2-29. This

design was realized in schematic form but was not implemented in silicon due to lack of time



to manually implement the layout and characterize its timing. The 32 rows are connected

by a tri-stated bus, and each bit of the bus contains a keeper to maintain the most recent

value driven on the bus when no reads take place (RDEN=O). One advantage of this design

is that it can be completely realized with standard cells, which greatly reduces design effort

in physical layout and timing characterization.

Figure 2-29: Latch-based register file design with tri-stated outputs.

Three register files - (1) a typical design synthesized from flip-flops, (2) a synthesized

design with latches, and (3) a custom design with tri-stated outputs (Figure 2-29) - were

simulated for power. The total FIR power and breakdown between components are shown

in Figure 2-30. In the typical design, the control logic and clocking consume a significant

portion of the power. Comparing designs (1) and (2), using latches in place of flip-flops

reduces the memory power as well as the power consumed by the clock tree and hold time



buffers. This results in a 31.1% decrease in the overall FIR power. Further, the custom-

designed register file with latches and tri-stated outputs consumes 67% less power than

design (1), and decreases the overall FIR power by 39.2%. Due to design time constraints

as mentioned previously, the second design (synthesized with latches) was chosen for the

biomedical processor.
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Figure 2-30: Power breakdown and comparison between three register file designs. Simula-
tions were performed at 1V, 10MHz.

2.5.3 Cycle Count Optimizations

Since FIR filtering is widely used, it is important to leverage the basic structure shown in

Figure 2-28 to support a range of usage scenarios. In this work we make several modifications

to decrease the cycle count while handling special cases, and these are described in Appendix

A. An important observation here is that the extra features can be realized with a small

area cost. As a measure of the area overhead, Table 2.12 lists the area after synthesis of

the FIR accelerator, as the features are added. The baseline design is a basic serial FIR

filter without any additional features. As Table 2.12 shows, each feature only adds an area

overhead of several percent, but can greatly increase the applicability of this FIR filter. For

example, support of high order filters enabled energy reduction in an EEG feature extraction

application as will be shown in Section 6.3.



Table 2.12: Area overhead of additional features in the FIR filter.

Area after synthesis Percentage increase
(in equivalent gates) from above

Baseline 9061.5 N/A
Symmetric and high 9687.75 6.9%

order filters
Context switching and 10164 4.9%

polyphase
Multiplication by 10206.75 0.42%

window

2.6 Conclusions

This chapter focused on the selection and design of accelerators for the processing platform.

A survey of the literature reveals that common signal processing tasks can contribute a large

portion of the total cycle count in ambulatory medical monitoring algorithms. Further, the

cycle count and thus energy of these tasks can be significantly decreased through hardware

acceleration. Not surprisingly, FIR filtering and FFT are widely used. The median filter and

CORDIC engine are somewhat less familiar but can nonetheless support many applications

- the former to remove baseline wander or noise spikes, and the latter to compute basic

mathematical functions.

The median filter is based on a sorted list architecture whose hardware complexity grows

linearly with window size. While a previous design utilized two comparators per entry

in the window, we examine the trade-offs between area, energy, and latency of sharing a

comparator amongst several entries. Simulations show that a median filter with comparator

sharing has less area and switched capacitance, but its latency increases linearly with the

degree of sharing. The exact energy trade-off depends on the idle time of the filter and

whether its supply voltage can be changed independently from the rest of the system.

This chapter described improvements to a conventional CORDIC architecture to accom-

modate a range of use cases encountered in diverse algorithms. Specifically, the useful input

range of the CORDIC engine can be dramatically improved with relatively few additions

that fit within the conventional datapath. In the design of fixed point arithmetic blocks, it

is important to consider overflow and quantization error; strategies to mitigate these were

discussed in this work.



In serial architectures, an effective approach to reducing power is to decrease switching

activity by reordering operations. This chapter demonstrates the concept in the FFT accel-

erator. The proposed butterfly ordering scheme allows the use of simple single-port SRAMs

and decreases the switching activity, and thus datapath power, by 50%. The overall FFT

power is reduced by up to 29%.

Finally, the FIR filter utilizes a serial architecture which, compared to a parallel design,

is much more easily extensible to high-order filters, symmetric filters, and other special

cases. A serial architecture commonly employs a flip-flop based local memory to store data

and coefficients. We contribute here by demonstrating and characterizing a latch-based

register file design, which reduced the overall FIR power by 31%. We also show that with

careful design of the filter control, the accelerator can handle high-order filters which are

instrumental to the EEG feature extraction application in Chapter 6. We show that these

features are achieved with less than 10% area overhead compared to a bare-bones FIR filter.



Chapter 3

System Architecture: Interconnect

and Power Distribution

Designing a low power and flexible system architecture is as important as the design of

accelerators. Accelerators, like any other functional module, add capacitive loading on

the system bus as well as leakage power. Accordingly, in this chapter we first examine

the overhead of interfacing the accelerators to the rest of the processing platform. We

then discuss the bus architecture, comparing the single-bus structure common in low power

processors with an alternate dual-bus structure. A methodology is proposed to assign

functional modules to the two buses in order to minimize the bus energy. To address

leakage of the modules when not in use, this chapter concludes with a discussion of power

gating implementation and trade-offs.

3.1 Accelerator Integration

In Chapter 2 we discussed the design and performance of the accelerators in isolation, but

we must integrate them into the processing platform in order to leverage them in larger

applications. This section addresses the overhead of interfacing the accelerators with the

CPU.

The accelerators are integrated in the same way as any other memory-mapped peripheral

in the platform. The CPU sets options and initializes the accelerators by writing to their

registers. These register interfaces in all accelerators and peripherals reside in the same

memory space as the main memory, and hence programming and retrieving results from



the accelerators are functionally no different from accessing main memory. The usage of

the accelerators is as follows:

e CPU configures accelerator options by writing to its register interface.

e Accelerator startrs computing, during which the CPU can perform other tasks or

enter clock-gated sleep mode.

e The accelerator signals task completion.

9 The CPU or Direct Memory Access (DMA) fetches the results.

Key to this usage model is the transfer of data into and out of the accelerators, which

can be accomplished in the following ways.

1. Using DMA (abbreviated as 1. DMA): A channel on the DMA module can be

assigned to provide inputs and/or fetch outputs from the accelerator. DMA activities

take place automatically in the background without user intervention.

2. Software-Initiated (abbreviated as 2. CPU): There is no automatic notification when

the accelerator finishes computing. The user software must contain explicit instruc-

tions to move each input sample to the accelerators and retrieve each output after

waiting a sufficient amount of time.

3. Using Interrupts (abbreviated as 3. ISR): The accelerator automatically raises an

interrupt when it needs the next input or has finished computing an output. The CPU

then executes an interrupt service routine to transfer data to/from the accelerator.

These three approaches involve a different number of clock cycles and accesses to main

memory, which has significant implications on the energy needed to transfer data to/from

the accelerators. The cycle latency and memory accesses are determined by the MSP430

architecture (published in [16]). These values for transferring one 16-bit word are summa-

rized in Table 3.1 and used in subsequent analysis, but first, we give insights into how they

are derived.

1. DMA: DMA is active for two clock cycles per transfer of one 16-bit word (one cycle

to read from the source, another to write to the destination). One memory access

is required when the Static Random Access Memory (SRAM) is either the source or

destination.



2. CPU: Each transfer requires an explicit mov instruction, which spans three 16-bit

words in the MSP430 instruction set. Therefore, each transfer takes five clock cycles

(three cycles to fetch the mov instruction and two cycles for the actual transfer).

3. ISR: Same as in CPU but requires additional overhead of entering and exiting the

interrupt. At a minimum, this includes saving and restoring the current system state

to the software stack. Details of interrupt handling are provided in [16].

Table 3.1: Number of clock cycles needed to transfer one word between main memory and

accelerator.

Number of clock cycles to Number of main memory accesses
transfer one word to transfer one word

1. DMA 2 1
2. CPU 5 4

3. ISR 5, plus 6 cycles initialize ISR 5, plus 5 accesses to enter/exit ISR

Table 3.1 and the measured energy per cycle of the CPU, DMA, and memory allows us

to calculate the energy spent on data transfers. This gives insight into how much energy is

consumed by the accelerator doing the actual computations compared to the data transfer

energy. Figure 3-1 and Figure 3-2 plot the energy breakdown for the four accelerators based

on chip measurements. The following explains the five categories in the two figures.

a) Accelerator: Energy consumed by the accelerator only, not including bus or data

transfer energy.

b) Memory: Energy consumed by the main memory. In methods 2 and 3 (CPU and

ISR), this includes the energy of fetching the mov instruction from memory.

c) Transfer: Energy consumed by the CPU or DMA logic, computed as the energy per

cycle x number of clock cycles (Table 3.1).

d) ISR Entry: Energy consumed by the CPU when entering an ISR.

e) ISR Exit: Energy consumed by the CPU when exiting an ISR.

The energy breakdown serves to illustrate some trade-offs between the three methods.

In all cases the DMA is the most energy-efficient method for data transfers. However,

typically a processor contains a limited number of DMA channels (e.g. the biomedical

processor provides 3 channels). More channels may be required to support applications in

which many modules work simultaneously, at the expense of higher DMA power. Further,
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Figure 3-1: Breakdown between the computation energy in the accelerator and the energy
expended in transferring data to/from (a) FIR and (b) FFT. Data transfers are performed
with DMA, CPU, and interrupt service routine.
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Figure 3-2: Breakdown between the computation energy in the accelerator and the energy
expended in transferring data to/from (a) Median and (b) CORDIC. Data transfers are
performed with DMA, CPU, and interrupt service routine.

when the DMA has use of the shared address/data bus, the CPU stalls since it cannot

fetch the next instructions from the SRAM. Consequently, in a system with many DMA

channels, bus arbitration between the DMA and CPU must be carefully managed.

From a software point of view, the ISR method offers the most convenience and flexibility

because the programmer can define a set of tasks to be done automatically (in the interrupt

routine) whenever the accelerator outputs are available. However, from an energy point of

view, ISRs are less efficient than the other two methods since entering and exiting interrupts

can impose sizeable energy costs. The interrupt handling overhead is especially significant

.111, ....... ......... ... .. ........ ............... :: -::



for accelerators which consume/provide one word at a time (e.g. FIR and median filters).

Conversely, the overhead is negligible in block-based processing (e.g. FFT) .

To summarize, Figure 3-1 and Figure 3-2 show that the data transfer energy can exceed

the computation energy, particularly when the CPU is employed. This indicates that the

accelerators are efficient relative to the rest of the system, and sizable gains can be achieved

by decreasing the data transfer energy. One component of the data transfer energy involves

driving the large address and data buses connecting all peripherals, which will be discussed

in the next section.

3.2 Bus Architecture

In microcontroller architectures, peripherals such as timers and I/O ports are typically

linked to the CPU via a shared bus, for example in the 8051 [67], MSP430 [68], and PIC [69].

A higher-complexity microcontroller, the 32-bit ARM Cortex-M3 [70], utilizes dedicated

buses between the CPU and the program and data memory, but all the peripherals remain

connected by a peripheral bus to the CPU. In this work, accelerators introduce additional

capacitive loading on the shared bus. More generally, this is an important consideration as

more specialized modules are being added to modern systems such as multimedia processors

and microcontrollers. Accordingly, this section analyzes the energy impact of placing some

modules on a separate bus.

It should be noted that the implemented biomedical processor utilizes a single-bus struc-

ture. However, here we make use of the processor design and layout to extract parameters

for a bus energy model. This model is in turn used to examine the impact of an alternate

bus structure.

Figure 3-3 shows the basic single-bus structure. All peripherals are memory-mapped,

implying that the CPU can access the peripherals in the same manner as accessing memory.

In the following discussion, we will refer to the set of address and data signals connecting

more than one module as one bus. A set of address lines, which only the CPU and DMA

can control, connects the CPU and all other modules. In this section we consider uni-

directional data lines: the CPU broadcasts data to all modules on one set of data lines, and

each module provides output on its own set of data lines which are then multiplexed before

being read by the CPU. However, the analysis below can be easily modified for tri-stated,



bidirectional data lines.

Figure 3-3: Basic bus structure with all peripherals connected to the same address and data
signals driven by either the CPU or DMA. Each module outputs data on its own data lines,
which are multiplexed into the CPU.

An alternate scheme is shown in Figure 3-4, in which the accelerators are removed from

the primary bus and put on a secondary bus. A second DMA is added to the secondary

bus to allow data transfers directly between two accelerators without CPU intervention.

In general, this structure has the advantage of reduced capacitive loading on both primary

and secondary buses, so the energy to switch either one of these buses is smaller compared

to the original structure. However, extra energy in interfacing two buses is required when

two modules on different buses need to communicate. The average switching energy of this

bus structure, therefore, depends on the software application.

p, modules p2 modules

S Pe-rinhera ... nh 660

primary :secondary:
bus bus

Figure 3-4: Alternate bus structure with accelerators connected by secondary bus and all
other blocks on the primary bus. The two buses are interfaced by a bridge.

The average switched capacitance per cycle of the two bus structures can be modeled

...... ......



Clbus =a(CCPU + Cperi) (3.1)

C2b.S a [(1 - Y)(CCPU + PCperi) + (1 - X) (P2Cperi + CDMA2) + (1 - X - Y)Cinterface)]

(3.2)

where

* a: the average bit switching activity on the bus (i.e. the average number of bits that

transition from 0 to 1 in a clock cycle divided by the total number of bits).

* CCPU, Cperi: the capacitive load on the bus from the CPU and a peripheral respec-

tively.

* x and y: the percentage of clock cycles where only the main or secondary buses are

active respectively.

* CDMA2: the switched capacitance in the secondary bus controller (DMA2).

" Cinterface: overhead of transferring data between the two buses.

We determined the capacitance parameters from the layout of the biomedical processor

including interconnect parasitics. CDMA2 is taken from the switched capacitance of the

DMA implemented in the processor. In the platform, the number of modules on the primary

bus (pi) is 9, and the number on the secondary bus (P2) is 4. a is averaged over all the

bus transactions of the processor while it executes a benchmark application. The power of

multiplexing the data lines (dataInMux in Figure 3-4) is similar in both structures.

Substituting these values into the above model, we obtain the plot in Figure 3-5 for

Clbus - C2bus as a function of x and y, indicating the switched capacitance savings under

the alternate two-bus structure. Since x and y differ between applications, estimated values

for several biomedical applications - heart sound [40], EEG feature extraction [19], and

pulse-oximetry [39] - are shown on the plot. An average bit switching activity (a) obtained

from chip measurements is used for all three applications. Cibus - C2bs for these three

applications are -2.7pF, -0.39pF, and 0.47pF respectively.

In applications where most transactions occur only on one bus, the alternate dual-

bus structure provides energy savings as expected. However, in applications that require

transactions between the two buses, the overhead of interfacing the two buses causes an

overall energy increase.



Puse-oximetry

LL

C-2-

N EEG

0-4

-5-

1

x1
0.5

0.5

y 0 0

Figure 3-5: Difference in average switched capacitance between 1) using one bus to connect
all peripherals and 2) putting accelerators on second bus. x and y respectively denote the
percentage of clock cycles where only the main or secondary buses are active in a given
application. Values for several applications are shown.

We now generalize this analysis to the case where any module can be assigned to any

one of two buses. Depending on the typical bus usage characteristics under consideration,

certain configurations will be more energy-efficient than others due to a smaller average

switched capacitance. The average switched capacitance in a given bus configuration can

be modeled by Equation 3.3.

1 N N N

Cbus-avg = E ai3 TiJ (1 - xi)(1 - xj) E(1 - Xk)Ck +
i=1 j=i+1 k=1

N

xix CDM A2-init + XkCk 
k=1

N

(xi + xj - 2xixj) ( Ck + Cinter face (3.3)
(k=1

where

x zi: set to 0 if module i is assigned to the primary bus (bus 1), and set to 1 if assigned

to the secondary bus (bus 2)



* Cj: the load capacitance that module i adds to the bus

" CDMA2-init: overhead of initializing DMA2 (Figure 3-4) to do transfers within bus 2.

* aij: the bit switching activity when modules i and j communicate

" Tij: the number of bus transactions between modules i and j per unit time in a given

application.

* S: total number of bus transactions per unit time.

Again, the capacitance parameters are extracted from the biomedical processor layout.

For the numerical results below, we set aij to the average bit switching activity from the

address/data traces of the processor as it runs an EEG feature extraction application [23].

However, the model allows a different aij for each pair of modules.

In Equation 3.3, the first term in the double summation gives the switched capacitance

during one transaction between modules i and j if they are both assigned to bus 1. Similarly,

the second term handles the cases when both modules are assigned to bus 2. The third

term accounts for the capacitance when the modules are on different buses, which includes

the capacitance on both buses and the overhead of interfacing them. It is assumed that

the energy of the two bus controllers are similar and has weak dependence on the number

of modules on the bus. Hence the energy difference between bus configurations arises only

from discrepancies in the load capacitance and the interface overhead.

Having the above model for one assignment of xi, i E 1..N, we can now evaluate it over

different bus configurations to find the one with the lowest switched capacitance, and thus

the lowest switching energy. In general this is a binary optimization problem with a cubic

cost function which is difficult to solve algorithmically. Fortunately, because of the low

dimensionality of this problem (there are 13 modules to be assigned), an exhaustive search

can be computed quickly. Note that the problem is symmetric and therefore one module

can be arbitrarily assigned to one bus to halve the search space. We assign the CPU to

bus 1 and then enumerate the 212 possibilities for the remaining 12 modules. Due to the

relative simplicity of Equation 3.3, the search can be completed within several seconds.

The model is evaluated using bus transaction data from an EEG feature extraction

application (Figure 6-7) that will be detailed in Section 6.3. The bus configuration that

minimizes the bus energy involves assigning the CPU, SRAM, FIR, and general-purpose

I/O ports to bus 1 and the remaining modules to bus 2. Figure 3-6 plots the histogram



of average switched capacitance across all possible bus configurations (212 in total) for the

EEG feature extraction application. Towards the right of the plot, the large bin contains

configurations where the memory is assigned to a different bus than the CPU. The average

switched capacitance in a single-bus structure is 2.42pF. The minimum average switched

capacitance, in the configuration described above, is 0.754pF, a 3.2-fold decrease. Although

this turns out to not be a large percentage of the total switched capacitance in the biomed-

ical processor, the analysis above can be applied to other processors with significant bus

energy. In addition, the interconnect capacitance in a large shared bus becomes increasingly

important in more advanced process technologies.
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Figure 3-6: Histogram of average switched capacitance across 212 bus configurations for
EEG application. The bar on the right contains configurations where CPU and SRAM are
assigned to different buses.

Here, the model was applied to one algorithm as an illustration, but multiple applications

can be easily supported by adding the bus transactions (Tj) over different applications

before evaluating Equation 3.3. Finally, it is important to remember that the interfacing

between the two buses introduces additional delay. If this delay lies in the critical path

and the resulting slow down is unacceptable, the logic synthesis tool will increase logic cell

sizes in the critical path, which reduces the energy savings. Thus the two-bus partition is

advantageous when the critical path does not involve the interface between the two buses.



3.3 Power Gating

Although peripherals and accelerators can perform specific tasks more efficiently than the

general-purpose CPU, thus providing active energy savings, the additional blocks impose

leakage overhead when not in use. One effective method to reduce leakage overhead is

to power off the modules during idle periods, in a well-known technique known as power

gating. This is accomplished by adding low-leakage power switches between the logic and

the actual power source, as illustrated in Figure 3-7. A group of logic cells sharing a virtual

supply is said to belong to the same power domain.

VDD

low-leakage
switch T VirtualVDD

Circuit blocks
(same power domain)

Figure 3-7: Illustration of power gating.

3.3.1 Power Gating Implementation

Before discussing power gating trade-offs in this design, we briefly describe how power

gating was implemented on this platform. Each module shown connected to a power switch

in Figure 1-4 can be powered on/off independently. The power switch is physically realized

as several 50pm wide switches connected in parallel and distributed along the virtual VDD

supply of the module. The SRAM has two low-leakage modes summarized in Table 3.2.

The CPU is not powered gated since doing so would cause internal CPU states to be lost,

and there is no provision in this platform to save the internal CPU states to a separate

location before powering off.

The Power Management Unit (PMU) manages the power on/off sequence of all modules

on the chip. The sequence of signals is shown in Figure 3-8, along with the finite state

machine in the PMU which generates the signals. The power off sequence involves:



Table 3.2: Two modes to reduce leakage in the SRAM.

SRAM Component Retention Mode Power-Gated Mode
Global timing control off off

Address decoders off off
Column periphery off off

Row periphery on off
Bit-cell array on off

" enabling isolation cells to force outputs of the module to "0" or "1"

* turning off power switch

The power on sequence involves:

" turning on power switch

" asserting module's reset signal

" turning off isolation cells and de-asserting reset signal

reset [x]=0
pwrSwOn [x]=1

isoCellOn [x] =0

pmuclk PWRON (pwroff req[x] and
reset[x]=1 . pwroff-ack) =1

pwrSwOn [x]=1 RESET
isoCellOn [x]=1 reset [x]=0

ISO pwrSwOn[x]=1
isoCellOn [x]=1

reset [x] =0 AKU
pwrSwOn [x}=1 pmuclk

isoCellOn [x]=1
WVROFF

pwroffreq[x] = 0
reset [x]=0

pwrSwOn [x] =0

isoCellOn [x =1

resetll

pwrSwOn

isoCellOn

Figure 3-8: Power on/off sequence managed by the Power Management Unit.

Isolation cells serve to drive all outputs of a power-gated module to logic "0" or "1"

levels. Otherwise, excessive leakage will occur if the outputs float to an intermediate value

while driving other circuits that are still powered. The isolation cells in our platform are

simply AND or OR cells with one input tied to the isolation signal managed by the PMU.

The application software can control power gating by two means. First, it can directly

write to registers in the PMU to power a specific module on or off. Additionally, power



switches can be configured to turn off/on automatically when the platform enters/exits a

system-level low power mode.

3.3.2 Break-even Time

As one might expect, power gating imposes an energy overhead that must be considered

before making a decision to power off a module. This overhead arises from the energy

needed to turn power switches on and off, the energy for the power management logic, the

need to restore charge back to a domain after powering it back on, as well as the cost of

re-initialization. Due to this overhead, once powered off, a power domain should be kept in

the off state for a minimum period of time known as the break-even time in order to achieve

energy savings from power gating. More formally, the break-even time is given by

PleakTbe = Eswitch + EPM + Erestore + PseepTbe (3.4)

Tbe - Eswiteh + EpM + Erestore (35)
Pleak - Psleep

where Pleak and PIee, refer to the leakage power of a power domain when its power switch

is on and off respectively. Eswitch, Epm and Erestore represent different components of the

power gating energy overhead as described above.

A thorough account of the energy transfers that occur during power gating is provided

in [42], which noted that Eswitch and Erestore are not constants but instead depend on how

long a domain has been powered off. Since our platform employs on-chip power switches,

characterizing E8 witch and Erestore for a domain is very difficult. Fortunately, the break-even

time can be measured experimentally without knowing the exact values of these parameters

using the method proposed by [42] and outlined as follows. In our platform, although the

power switches are not accessible externally, the CPU can execute a short assembly program

to toggle the power switch of a domain periodically. Then, we run a second program with

the same instructions, except the power switch is kept on rather than toggled. We vary the

clock frequency until the average power of these two programs are equal. Specifically,

Pprogrami - Pcpu(ton + toff) + Pdomainton + Eoverhead + Psleeptoff (3.6)



Pprogram2 -- (Pcpu Pdomain) (ton + toff)

where ton and toff are the times over which the power domain is turned on and off in

program 1. Pdomain and PIeep denote the domain leakage power when the power switch is

on and off respectively. Since Pprogrami Pprogram2, the terms involving ton cancel and we

have

Pdomaintoff = Eoverhead ± Psleeptoff (3.8)

The toff which equates the power of the two programs is the break-even time. Using

this method, we measure the break-even times for the accelerators as listed in Table 3.3. It

is shown that power gating the accelerators is advantageous if the off state persists for at

least several hundred ps. Since physiological signals typically have data rates of less than

1kHz, these relatively low break-even times imply that the accelerators can be powered off

after processing each incoming sample or after a block of several buffered samples.

Table 3.3: Break-even time of accelerators measured at 1V.

Module Break-Even Time
FIR 427ps
FFT 1.02ms

CORDIC 512ps
Median 461ps

3.3.3 Power Gating Granularity

In this section, we examine the trade-off between coarse- and fine-grained power gating.

In a coarse-grained approach, several modules are grouped into one power domain and are

power-gated together. In a fine-grained approach, each module forms its own power domain

and can be independently powered off. Power gating on an even smaller scale - for -groups of

logic gates within a module - has been investigated in [71] and [72]. However, sub-module

gating is much better suited to circuits with a regular structure (an FPGA and memory

address decoder in [71] and [721 respectively) than the generic logic blocks in this platform.

Authors of [72] proposed a methodology to synthesize arbitrary logic with automatic power

gating; however, the area and power overhead of the control mechanism can be significant.

Table 3.4 summarizes a qualitative comparison of coarse- and fine-grained power gating,

(3.7)



with numerical results to follow. The power management unit described previously requires

one Finite State Machine (FSM) for each power domain, hence the control cost scales linearly

with the number of domains. However, isolation cells must be inserted at the output of

each gated module regardless of the power gating approach. Likewise, the power switches

are sized according to the modules' power consumption; by superposition, the total width

of power switches would be the same whether coarse- or fine-grain power gating was used.

Table 3.4: Qualitative comparison of coarse- and fine-grained power gating.

Consideration Comparison
Energy in control logic Scales approximately linearly with number of

power domains
Number of isolation cells Same for both approaches.
Total width of power switches Same for both approaches.
Leakage reduction factor Same for both approaches.
Total leakage energy savings Higher for fine-grained power gating

From an energy point of view, fine-grained power gating incurs higher control energy but

provides more opportunities to power off a module to save leakage energy. Therefore, if a

module can be powered off for a sufficiently long period of time as a separate power domain

than as part of a larger domain, then the fine-grained approach is beneficial. We denote this

additional power gating opportunity in a fine-grained approach as Tfy. From simulation of

the PMU, we find that the control energy per power gating cycle is less than 1pJ at 1V.

Accordingly, Table 3.5 lists Tfg for different modules in the platform. For large blocks such

as the median filter and FFT, the control cost can be recouped after several clock cycles of

power gating, and therefore these modules should be placed in their own power domains.

Heavily used modules likely to be powered for more than several hundred clock cycles, such

as FIR, GPIO, serial port, and timer, should also be placed in separate domains so that

they do not prevent other blocks from being shut off. This leaves four modules which can

conceivably be grouped into one power domain, but for additional flexibility, they are kept

in separate domains.

3.3.4 Power Switch Selection

One important consideration in power switch selection is the choice between a PMOS header

and an NMOS footer. The use of header and footer switches are illustrated in Figure 3-9.



Table 3.5: Tg for modules in the processing platform.

Module Tfg (ps) Tfg (clock cycles
at 1V)

Median 0.44 4.4
CORDIC 5.74 57.4

FFT 0.356 3.6
FIR 4.13 41.3

GPIO 7.92 79.2
Serial port 6.59 65.9

Real time clock 6.84 68.4
Timer 12.1 121

S/W debug support 19.6 196
Watchdog timer 18.6 186

In the context of a voltage-scalable design, a header switch has the following benefits and

shortcomings relative to a footer switch.

Benefits

" Does not require special standard cell layout; compatible with typical cell layouts.

" Can provide lower leakage at low VDD (0.5V) if the gate of the power switch is driven

by nominal or I/O VDD (1V or 1.8V) such that its VGS is negative (see Figure 3-9).

" Can apply forward bias when switch is on to improve on-current and reverse bias

when switch is off to reduce sub-threshold leakage current. This is not possible for an

NMOS in an N-well process.

Shortcomings

* For the same switch size, a PMOS header has lower on-current than NMOS, resulting

in a larger speed penalty in the power-gated circuits.

" For the same speed penalty, a header must be wider, increasing the energy overhead

of turning the switch on and off.

" At 0.5V, leads to significantly slower speed than a footer, since a footer can be driven

by nominal or I/O VDD such that its VGS > VDD (see Figure 3-9).

The delay and leakage current (Ioff) trade-offs in a 0.13 pn process are quantified in

Table 3.6. We simulate a 32-bit adder without power gating, with a header, and with a

footer. Both header and footer are sized so that the voltage drop across them are the same,

and the adder delay increases by 5% relative to the non-gated adder at the nominal supply
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Figure 3-9: Illustration of using PMOS header or NMOS footer as power switches.

voltage (VDD-HI). The delay and Ioff at a low voltage (VDD-LO) are simulated with the

header and footer both driven by a 0 -+ VDD-HI signal.

Table 3.6: Comparison of PMOS header and NMOS footer switches in a 0.13 pm process.

No power gating PMOS header NMOS header
Normalized switch size N/A 2.58 1

VDD-HI delay 1 1.05 1.05

VDD-HI 'off 1 1/107 1/485

VDD-LO delay 1 1.16 1

VDD-LO 'off 1 1/10200 1/507

Like the selection between header and footer, switch sizing embodies a trade-off between

speed during active mode and leakage current during idle mode. When a module is active

(i.e. power switch is on), the voltage drop across the switch should be small, which favors

a wide power switch with smaller equivalent on resistance. When a module is power-gated

(i.e. power switch is off), the switch should be small to limit leakage currents. This platform

employs a common approach to switch sizing - the switches are sized sufficiently large to

achieve a fixed IR drop across the switch, and thus a fixed speed penalty compared to

a design without power gating. In this platform that operates between 0.5V and 1V, the

switches are sized for a 15% speed penalty at 0.5V. Because the switches are high-V devices

that are close to being in sub-threshold at 0.5V, designing for a speed penalty below 15%

at 0.5V would lead to very large power switches and corresponding increases in leakage

power. To size the switches, we first determine the voltage drop corresponding to 15%



speed penalty at O.5V, then find the required switch width from a simple model:

V = IavgRequnitN,

where Iavg is the average current drawn by the power domain, Regqunit is the on resistance

of a unit-sized switch (W = 50pm), and N is the number of parallel unit-sized switches

required by the power domain. Note that the power switches are sized to provide the

average current drawn by a power domain; the switches need to be substantially larger if

they need to supply the peak current. To support peak current requirements during circuit

switching, each domain also contains local decoupling capacitors between the virtual supply

and ground, which are sized to provide the necessary charge. The presence of decoupling

capacitors increases the break-even time of a power domain, and this was included in the

break-even time measurements in Section 3.3.2.

3.4 Conclusions

This chapter examines the overhead of including accelerators into a typical low power pro-

cessor architecture. Although the discussion is motivated by accelerators, the analysis and

conclusions are more broadly applicable to any functional module one wishes to include in

the platform.

Similar to other low power processors, the biomedical processor offers three methods to

transfer data to and from the accelerators (as well as to other modules). Trade-offs between

energy, flexibility, and convenience exist between these methods. An energy breakdown

based on chip measurements shows that a DMA is the most energy-efficient way to transfer

data to and from the accelerators. An interrupt service routine (ISR) is the least efficient

because of the overhead to save and restore the CPU state. However, an ISR offers the con-

venience of allowing the programmer to define a set of tasks to be performed automatically

each time an accelerator output becomes available. We find that in the latter approach,

the energy to transfer data can exceed the total energy spent on computation by the ac-

celerator. This has two implications for system design. First, more DMA channels should

be included (in addition to the three channels in the biomedical processor). However, bus

arbitration between the CPU and DMA should be carefully managed. Second, optimizing

data transfers will have a large impact on the overall system energy.



Accelerators introduce additional capacitive loading on the shared bus. When all mod-

ules are connected to the same bus, communication between any two modules switch the

load capacitance of other modules. To circumvent this, we consider an alternate dual-bus

structure where the accelerators are placed on a separate bus from the CPU and other

peripherals. Next, we generalize this to the problem of assigning every module to any one

of two buses. We present a framework for analyzing the bus energy, considering that appli-

cations have distinct bus transaction characteristics. Applying this to an EEG application,

the minimum-energy bus partitioning decreased the bus energy by approximately 3x over

the classic single-bus structure. Although this was a small percentage of the total energy

in the biomedical processor, the same analysis can be used for other processors where the

bus energy is more prominent.

While power gating is a well-known technique to reduce idle leakage power, this im-

plementation is uncommon amongst low power microcontrollers in that each module can

be individually power gated with on-chip switches. Accordingly, we consider the trade-off

between module-level power gating as implemented, or a coarser-grained approach. It is

shown that the control overhead of module-level gating is low and can be compensated by

the leakage energy savings after less than 200 clock cycles. Therefore, most modules can

benefit from being independently powered off.
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Chapter 4

Voltage-Scalable Logic Design

The previous chapters have discussed how to reduce energy in different components of the

biomedical processor. A major opportunity to improve the energy efficiency over the entire

processor, and in digital circuits in general, is to aggressively scale its supply voltage ac-

cording to performance demands. When the supply voltage is scaled to below the transistor

threshold voltage (Vt), the transistor is said to enter the sub-threshold or weak inversion

region of operation.

The idea of exploiting weak inversion for low power circuits was pioneered by Vittoz in

the 1960's [731, with one of the earliest applications being electronic wristwatches [74]. Sub-

threshold operation has captured interest in recent years as a means to achieve quadratic

energy reduction in the active (switching) energy. Although circuits exhibit slower speeds

at low supply voltages, the trade-off remains attractive for energy-constrained systems with

relaxed throughput constraints. When VDD approaches the sub-threshold region, the leak-

age energy per operation increases as a result of the leakage power being integrated over

exponentially longer clock periods, as shown in Figure 4-1(a) for an arithmetic logic unit

(ALU) in 65nm. These opposing trends in active and leakage energy give rise to a minimum

energy point, or the optimal VDD which minimizes the energy per operation [75]. Expres-

sions for the optimal VDD and Vt were given in [76], which also noted that the minimum

energy point depends on the relative proportions of active and leakage energy - a high

proportion of active energy (high activity factor) tends to decrease the minimum energy

point. For many practical circuits, this point lies in the sub-threshold region.

The previous argument assumes that a circuit can complete a task at the speed achiev-



able at the minimum energy point, and then shut off, so that it consumes negligible energy

during idle periods. However, certain system components, such as memories, must be pow-

ered for arbitrarily long periods unrelated to their own speeds. In this case, it is essential

to minimize the leakage power. Voltage scaling is also beneficial here, as it causes a de-

crease in leakage current by alleviating Drain-Induced Barrier Lowering (DIBL), which,

combined with VDD reduction, can provide an order of magnitude leakage power savings

(Figure 4-1(b)).

10 >50x eductin.

10

0 - -

~-10
10 01 ..

0.2 0.4 0.6 0.8 1 1.2 0.4 0.6 0.8 1
VD (V) VDD (V)

(a) (b)

Figure 4-1: (a) Energy per clock cycle versus VDD of an ALU in 65nm. In this circuit,
there is an optimal VDD which minimizes the energy per cycle. (b) Leakage versus VDD in
a 65nm SRAM.

As one might expect, voltage scaling presents great opportunities but also significant

and interesting challenges in logic design. This chapter describes issues related to designing

logic circuits at low voltages, starting with the impact of process technology on the minimum

energy point. Subsequently, it addresses logic design and timing verification for two different

types of low-voltage systems: 1) those that function mainly in the sub-threshold region

(~0.4V and below) and 2) voltage-scalable systems that operate from near-threshold up

to nominal supply voltage. In the first type of system, we are primarily concerned with

mitigating process variation which greatly impacts transistor behavior in sub-threshold. The

design approaches described in this chapter were demonstrated in a 65nm microcontroller

operating from O.3V to 0.6V. The lessons from sub-threshold design inform our approach to

94



voltage-scalable systems, one example being the biomedical signal processing platform. In

particular, library design and timing considerations will be discussed. Lastly, the chapter

presents measurement results of the 0.3V 65nm microcontroller.

4.1 Process Technology

In this section we explore two issues pertaining to process technology, the first being the

variation in minimum energy point with technology scaling, and the second being the choice

of technology based on the characteristics of the application.

4.1.1 Trend in Minimum Energy Point with Process Scaling

As noted previously, the minimum energy point depends on the relative contributions of

active and leakage energy, and lies in sub-threshold for many practical circuits. Process

scaling results in lower switched capacitance, but recent technology nodes have seen leakage

current increasing substantially, in part because device thresholds are lowered to maintain

performance while the nominal VDD is scaled down. Therefore, a natural question is how

the minimum energy point scales with process scaling, and whether it remains in the sub-

threshold region.

To examine trends in the minimum energy point, we simulated a 32-bit Kogge-Stone

adder [50] implemented with 65nm, 32nm, and 22nm predictive technology models. These

models are adapted from the publicly available predictive models [77], courtesy of Professor

Dimitri Antoniadis at MIT and Professor Yu Cao at the Arizona State University. The

adder illustrated in Figure 4-2 was first designed and laid out in a 65nm process to extract

wiring capacitance. In porting the adder to other technology nodes, the W/L of transistors

are kept the same while L is scaled to the minimum length in the target technology. Wiring

capacitance is scaled according to ITRS projections [78]. Since the switched capacitance

and leakage current of a circuit are input-dependent, the average values over random input

vectors are used in the discussion below.

The active energy per cycle versus VDD of the adder is shown in Figure 4-3 for different

technology nodes. As expected, the active energy decreases with scaling, but in advanced

technologies wiring capacitance is a significant contributor to the total capacitance, and

partially offsets the energy savings from lower gate capacitance. Changes in delay and leak-
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Figure 4-2: 32-bit Kogge Stone adder used in process scaling simulations.

age current with process scaling is shown in Figure 4-4(a) and Figure 4-4(b) respectively.

The leakage energy per addition is equal to the leakage power integrated over the prop-

agation delay of the adder, i.e., foP IlekVDDdt, and is plotted in Figure 4-5. Initially as

VDD decreases, the propagation delay increases linearly while the leakage power decreases

super-linearly since both Iheak and VDD are reduced. This causes a net decrease in the

leakage energy per addition in the above-threshold region. However, in sub-threshold, the

propagation delay increases exponentially at a faster rate than the leakage power is reduced,

leading to a net increase in the leakage energy per addition.

Adding the active and leakage energy components gives the plot of total energy versus

VDD in Figure 4-6. The minimum energy point occurs at a higher voltage due to the larger

proportion of leakage component at 32nm and 22nm. Nevertheless, the minimum energy

point still occurs in the sub-threshold region, suggesting that aggressive voltage scaling will

remain an important tool for reducing energy in future process technology nodes.

4.1.2 Technology Selection in a Given Application Scenario

The minimum energy point analysis above assumes that the circuit can operate at a reduced

speed at the minimum energy point while still meeting application performance demands

[76]. Further, since the leakage energy consists of the leakage power of the circuit integrated
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Figure 4-3: Active energy versus VDD of a 32-bit adder simulated with predictive technology
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Figure 4-4: (a) Delay and (b)
predictive technology models.

leakage current versus VDD in a 32-bit adder simulated with

over its propagation delay, it is implied that the adder is powered off immediately after use so

that it consumes negligible leakage during idle periods. However, these assumptions are not

always valid in practical usage scenarios - the circuit may need to operate at a higher speed

in a given application. Here we generalize the analysis to consider application frequency

constraints and duty cycle characteristics. The 32-bit adder and predictive models are again

used for illustration, but this can be extended to other circuits and technologies.

In the following we use VDD as the primary means to adjust the speed of a circuit. Al-

though increasing device sizes in the critical path helps lower propagation delay, eventually

the parasitic capacitance of the devices becomes significant and prevents further speed-up

[50]. In the sub-threshold region, delay is an exponential function of VDD and a linear func-
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Figure 4-5: Leakage energy versus VDD of a 32-bit adder simulated with predictive technol-
ogy models.
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dominates which favors smaller feature sizes. At low frequencies, leakage energy dominates,

and the energy curves of the 22nm and 32nm adders begin to cross over. Note that if

the clock frequency constraint lies below the minimum point of the curve (for example at

1MHz), the adder should be not be operated at this point. Rather, it should be operated

at the minimum point of the curve and powered off afterwards.
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Figure 4-7: Total energy versus frequency of a 32-bit adder. Each marker corresponds to

one value Of VDD-

Next we consider the impact of duty cycle. In an application with duty cycle d, the

adder operates one out of 1/d clock cycles and is otherwise idle. If the adder can be powered

off during its idle periods, the analysis is the same as before (Figure 4-7) since we only need

to consider the leakage energy in one clock period. On the other hand, if the adder cannot

be powered off (for example because it shares a supply with another component that is

active), then we must consider the leakage energy over all 1/d clock cycles. Since this

accentuates the leakage component of total energy, a process with lower leakage would be

favored. Figure 4-8 plots the average energy per clock cycle of the adder with 10% and 1%

duty cycle, where average energy is defined as dEop+ (1 -d) Pleakdwt. As the duty cycle

decreases, the 22nm curve crosses the other curves at a higher frequency. Comparing the

minimum achievable energy in all three processes, the relative advantage of 22nm lessens

at low duty cycles.

The above analysis can be applied more broadly to larger systems and other process

technologies. It should be noted that instead of simulating a large circuit at different

technology nodes, an approximate analysis can be performed by abstracting the circuit into

parameters including its average switched capacitance and leakage current versus VDD, then

extrapolating them to other technology nodes. The leakage current versus VDD character-

istic differs between process nodes since it depends on device properties like channel length



0 -
10 . 10

-o-65nm
-i- 32nm .

22nm
U)L

0 -

0-0

2 -2200)

S10 C
1 0 -

Frqunc (Hz).... Frequency.(Hz)

()(
0)............................. ....... 0)............................... ...

Co1

a -a32nm

1025 16 7 18 9 7 7 10 2n6m 107 109
1 10 1 1010 10~ 106 10 80 1

Frequency (Hz) Frequency (Hz)

(a) (b)

Figure 4-8: Average energy/cycle of adder at (a) 10% and (b) 1% duty cycle. Average
energy is defined as dEop + (1 - d)Eleak/cycle-

modulation and DIBL, as well as circuit topologies like the number of stacked transistors.

A estimated curve for each process node can be obtained by simulating the leakage versus

VDD of a simple circuit. Similarly, delay versus VDD (needed to compute Eleak/cycle) can

be obtained by simulating only the critical path of the circuit. A similar analysis was ap-

plied in selecting between high- and low-V options in the target 0.13[tm process technology

of the biomedical platform.

4.2 Standard Cell Library for Sub-threshold Systems

After determining the process technology, we now address the next building block of logic

circuits, the standard cell library. The key challenge behind sub-threshold logic design stems

from the exponential dependence of transistor current on V, and the variation in V found

in modern process technologies. More precisely, a common model for the device current in

sub-threshold is given by [79]:

(V=S-V T rVDS , -VDS 

ID e Vth 
1 -e Vth /

where
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n n = the sub-threshold slope factor

* = DIBL factor

* Io = a process-dependent factor

* Vth = kT/q, the thermal voltage

Note that the drain current depends exponentially on both VGS and Vt. In modern processes,

Vt exhibits variation on both global and local scales. Global variation affects all transistors

on a chip in the same manner; for instance, a chip at a strong-NMOS weak-PMOS global

corner contains NMOS devices that are all stronger than average and PMOS devices that

are weaker. Further, local variation implies that Vt of transistors on the same chip can

also differ. In this section and the next, we will discuss the implications of variation on

sub-threshold standard cell design and timing verification.

4.2.1 Logic Design Challenges

Sub-threshold logic design at a deeply scaled technology node must address two factors

which critically impact functionality. First, random-dopant-fluctuation is a dominant source

of local variation in sub-Vt, causing random, local threshold voltage shifts [80]. Moreover,

the ratio of on to off currents in transistors (i.e. ratio of active to leakage currents) degrade

by four orders of magnitude as VDD is scaled from a nominal voltage to sub-threshold. This

weak ION/JOFF is exacerbated by exponential changes in device currents, and consequently

static CMOS logic gates do not always provide rail-to-rail output swings. The two combined

effects are illustrated in Figure 4-9 by the voltage transfer curve of a 65nm inverter at

300mV. Global variation weakens the NMOS devices relative to PMOS in this example,

and skews the VTC towards one side. Additionally, local variation randomly changes the

strengths of PMOS and NMOS to cause perturbations in the VTC, in some cases severely

degrading the logic levels.

These degraded logic levels can adversely impact functionality, even in typically robust

static CMOS circuits. For example, reduced logic swing in inverters I2, I3, 14, 15 of Figure

4-10 decreases the hold static noise margin (SNM) of latches in the classic transmission-

gate register. Another failure mechanism is illustrated in the transient simulation of Figure

4-10. Here, because the clock buffer had reduced output swing, the transistor M11 cannot

be completely turned off during the transparent mode of the slave latch. Consequently, a
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Figure 4-9: Effects of variation and reduced ION/IOFF on sub-V inverter voltage transfer
curve.
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Figure 4-10: Reduced voltage swing in sub-V can impact hold SNM and signal propagation
in registers. The latter issue is shown by transient simulation.

Previous work has presented different strategies and considerations in designing low-

voltage standard cell libraries. In an early treatment of this topic, the authors of [81] sized

logic gates for operation at the minimum possible VDD based on the trade-off between

strong-NMOS/weak-PMOS and weak-NMOS/strong-PMOS global process corners. It was

also observed that certain cell topologies, where several parallel leaking devices fight one

active device, exhibit degraded output voltages and are thus less suited to sub-threshold

operation. In [82], authors found that the failure point of typical standard cells in 0.18pm is

lower than the minimum energy point, and so minimum sized devices in standard cells should

be optimal for minimizing energy. The work in [24] reached a similar conclusion for a 0. 13pm

process. There, authors compared processors implemented with libraries employing three

device sizing strategies, and found that the same performance can be achieved with lower

energy by increasing VDD of the minimum-sized library rather than increasing transistor

sizes.
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The above work was performed on older process technologies in which local variation

was less prominent. On the other hand, Figure 4-9 and Figure 4-10 have shown that local

variation significantly degrades functionality at the 65nm node. One approach to mitigate

local variation at the standard cell level is to increase the width and/or length of transistors,

since empirical observations revealed that the standard deviation of V is proportional to

the square root of the channel area (o-(Vt) oc 1/v/WL) [83, 84]. However, in the interest

of minimizing energy, transistors should also be kept as small as possible, to lower CV 2

energy and leakage currents. A standard cell design approach to negotiate this trade-off is

detailed in [85] and [86]. Since degraded output levels can cause standard cells and logic

circuits to be non-functional, the approach determines whether a logic gate under design

has adequate output levels by verifying it against the worst case gates in the library. The

worst case gates are the ones that require its inputs to be closest to VDD or ground in order

to produce a correct output. For example, the worst case gates in a typical cell library

would be the high fan-in NAND and NOR. As illustrated by their VTCs in Figure 4-11, the

logic high input to NAND must be close to VDD, and the logic low input to NOR must be

close to ground, in order to turn on the NMOS- and PMOS-stacks in these cells sufficiently

to produce the correct output. Under local variation, some cells will be able to drive the

worst case gates, while some will have insufficient output logic levels. By performing Monte

Carlo simulation with different transistor sizes in the gates under design, we can find the

minimum sizes required for the gate to drive the worst case cells with high probability.
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Leakage
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0.1 Active >0.1
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0.05 min. VIN to get 0.05 logic "1" output
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Figure 4-11: VTC of 3-input (a) NAND and (b) NOR cells.
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4.2.2 Standard Cells for Sub-threshold Operation

A standard cell library functioning down to 0.3V in 65nm CMOS was developed in [86] and

used to build the sub-threshold microcontroller test-chip that will be described in Section

4.6. Although the library was necessary to achieve functionality at 0.3V, its area and energy

overhead was not addressed in [861. Therefore, we will quantify the overhead in the following

discussion.

Since the library design involved increasing the width of key transistors to mitigate local

variation, we compare the area of the resulting sub-V cell library against a commercial low

power cell library optimized for nominal VDD operation. Figure 4-12 reports the ratio of

total transistor area (WL) in the custom sub-V cells to that of the commercial cells. Since

the cells with the lowest drive strength were re-sized in the sub-V library, while the higher

strength cells are less susceptible to local variation, Figure 4-12 compares the total transistor

area in the " 1 x " strength cells of both libraries. Some sub-V cells such as XOR2 are larger

than the commercial counterparts by several percent, while several cells are smaller. The

3-input NAND and NOR cells employ large devices for reasons explained previously. Not

surprisingly, all sub-V flip-flop cells (DFF) occupy more area than above-V cells as well,

since they represent an early point of failure in a library. Their back-to-back inverters (12-5

in Figure 4-10) must be sized appropriately to ensure data retention, while the data and

clock buffers must be sized such that they can properly turn the transmission gates on and

off.

2.5

2

1. -

0.5 .1
U -- r--r--T~ -~ -~- -~ -~

Figure 4-12: Ratio of total transistor area in the 65nm sub-V library cells to commercial
library cells. Cells with 1 x drive strength are shown.

104



To evaluate the energy overhead, we implemented two versions of a 16-bit microcon-

troller core based on the MSP430 [68], one targeting low-voltage operation with the sub-V

library (the sub-V chip) and the other targeting nominal-VDD operation with the commer-

cial library (the baseline chip). Both cores (approximately 10k gates in size) contain the

same logic except for the memory interface since the two chips employed different SRAMs.

The two cores were fabricated in a 65nm low power (LP) CMOS process, and their die

micrographs are shown in Figure 4-13.

The chips were fabricated on two separate process runs with different global process

characteristics' which prevented a fair comparison of the leakage power. However, we

can characterize their switched capacitances to estimate the energy overhead of the sub-V

library. In doing so, it is important that both designs are synthesized at speeds that allow

comparison, since the synthesis tool tends to choose larger standard cells to meet aggressive

frequency constraints. The baseline and sub-V chips are synthesized at the slow global

corner with a clock period of 20ns at 1.1V and 200pts at 0.3V respectively. Since the inverter

delay scales by approximately 9000 x across these conditions, the chosen synthesis speeds

allow a reasonable comparison of the switched capacitance. In Table 4.1, we summarize the

measurement results. Note that the baseline chip does not operate below 0.8V while the

sub-V chip is designed to function up to 0.6V, so we opted to compare measurements taken

at the same frequency (1MHz). Results show that the use of the sub-V library in the 0.3V

microcontroller leads to approximately 12% switched capacitance overhead.

Power DC/DC
domains converter

1.89mm

Baseline
1.86m MSP430

128kb: SRAM array I 128kb SRAM 1.57mm
array

2.29mm

(a) (b)

Figure 4-13: Die micrographs of 16-bit microcontroller implemented with (a) sub-V library
and (b) nominal-VDD library.

'The sub-Vt chip was less leaky than average, and the baseline design was the opposite.
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Table 4.1: Comparing the switched capacitance of the baseline chip with a commercial
library and the sub-V chip with a custom low-voltage library.

Baseline chip Sub-V chip
Synthesis Conditions 1.1V, slow corner 0.3V, slow corner

Synthesis Clock Period 20ns 2 00 ps
Measured active power (1MHz) 23.1puW at 1V 9.68pW at 0.6V

Switched capacitance (CS= P/(fVDD) 23.1pF 25.9pF

4.3 Timing Verification for Sub-Threshold Logic

In addition to affecting functionality, process variation also increases delay uncertainty. Like

device currents, the propagation delay of a logic gate is exponentially dependent on V in

sub-threshold. Figure 4-14 plots the normalized delay histograms of a microcontroller logic

path (composed of multiple logic gates) at 0.3V and 1.2V. To highlight the difference in the

relative variation, both histograms are normalized to the sample mean, showing that the

relative variation increases by an order of magnitude as VDD is scaled down to 0.3V.

5200

5 100
0

S21

0

0.8 1 1.2 1.4 1.6
Delay Norm. to Mean

1.8

0.8 1 1.2 1.4 1.6 1.8
Delay Norm. to Mean

Figure 4-14: Delay histograms of microcontroller logic path (tcq,min + tiogic,min), each nor-

malized to sample mean to highlight the difference in variability. Both histograms contain
1000 samples.

This large variance in delay is not handled well in conventional library characterization

tools used in digital design flows. In a conventional characterization tool, the delays of

standard cells are simulated at a range of input signal slew rates and output capacitance. To

account for global variation, the characterization is performed at different global process and
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temperature corners and supply voltages (typically at VDD ± 10%)- Until very recently, local

variation is often ignored in library characterization. If included, a common method was to

model a standard cell as having two delays - a "local-maximum" and "local-minimum" delay

- under each set of global process conditions [87]. In the context of sub-threshold, this is

akin to representing the delay distribution of a cell by two points, often at fixed percentages

above and below the mean delay. More recently, new tools have features to model the

distribution of cell delay due to local variation. However, our most recent attempt to apply

this at low voltages was unsuccessful as the tool was not able to characterize a flip-flop at

0.5V.

Similarly, conventional tools for timing verification do not function well in sub-threshold.

Timing verification consists of checking the setup and hold time constraints for every timing

path between two sequential elements or input/output ports (Figure 4-15). The setup and

hold time constraints are defined respectively as [50]:

tc-q,max + tlogic,max + tsetup _ Tcock + (tclk2 - tclkl) (4.1)

tc-q,min + tlogic,min > (tcik2 - tclkl) + thold (4.2)

where

e tc-q is the clock-to-Q delay of a flip-flop

* Tclock is the clock period

* (tcdk2 - tekl) denotes clock skew

* tsetup and thold are the setup and hold time properties of a flip-flop

The constraints are simple to evaluate when cell delays are considered deterministic, as

in conventional library characterization. However, as seen previously, cell delays in sub-

threshold exhibit substantial variation, which should be accounted for in timing verification.

Accounting for local variation accurately in sub-threshold is complicated by several

factors. Like device currents, cell delays exhibit a lognormal distribution in sub-threshold

and Gaussian distribution in above-threshold. However, there is no closed form expression

for adding lognormally distributed gate delays to obtain the logic path delay [88]. Instead,

this must be done with iterative approaches [89] or analytical models, one example being

the expression for the sum of identically distributed sub-V gate delays in [80]. Further, the

setup and hold time properties of flip-flops (tsetup and thold in Equation 4.1 and Equation
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Figure 4-15: Setup and hold time constraints in a digital logic path.

4.2) are not well-modeled by either Gaussian or lognormal distributions, as illustrated in

Figure 4-16.

Lcgnorrnal Fit200 \ Gaussian Fit

100, Data

0
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Norm. thold

Figure 4-16: Histogram of thold for a flip-flop at 0.3V.

4.3.1 Variation-Aware Hold Time Verification

A timing approach was developed for verifying hold time constraints Equation 4.2 in the

0.3V microcontroller. In this work we focused on hold time because unlike setup time vio-

lations, hold time violations cause race conditions that cannot be fixed by slowing down the

clock frequency. The complications described previously make an exact analytical approach

difficult. In this design we employed an approach based on Monte Carlo simulation to ac-

curately capture the hold time constraint on critical paths, while using analytical methods

to reduce the total simulation effort.

Since performing Monte Carlo simulations on all timing paths in a circuit would be
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prohibitively time-consuming, the basic idea here is to pick a subset of paths that are more

likely to violate hold time constraints and simulate them in detail. Figure 4-17 gives an

overview of the timing flow.

Timing paths 1. Put into groups
in design

2. Select subset

4. Add delay to ---------------
violating paths -- --------

3. Simulate subset

Figure 4-17: Overview of the proposed hold time verification flow.

First, we obtain a list of timing paths in the design after it has been placed and routed.

For a small design such as the 0.3V microcontroller, this can be an exhaustive list. For

a large design, the list can leave out timing paths with very large timing margins. In

the context of hold time violations, the hold time margin is defined simply by rearranging

Equation 4.2:

thold-margin - tc-q,min + tlogic,min - (tck2 - te41) - thold (4.3)

The hold time margin must be non-negative for proper functionality. In other words, a

timing path with a long logic delay relative to clock skew has a large margin and is thus

unlikely to violate hold time.

The list of timing paths is generated under the worst case global conditions - at the

fast process corner for verifying hold time, and at low VDD where V variation is most

prominent. However, the list does not consider local variation. Known paths with very

short logic delays (e.g. shift registers) are removed from the timing report and handled
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separately.

The timing paths are put into groups according to their mean hold time margin (i.e.

thold-margin reported by commercial timing tools, without local variation). At this point,

the place and route tool should have ensured all paths have positive mean hold time margin.

A subset of paths in each group, which we will call the critical paths, is then selected for

Monte Carlo simulation. More than one critical path is simulated per group because the

path selection makes several approximations to speed up the analysis. The paths are split

up into groups so that if Monte Carlo simulations reveal that the critical paths are likely

to violate hold time, fixes can be applied to the entire group.

The path selection aims to find paths that have large standard deviation over mean

hold time margin. Since the paths in a group have similar mean hold margins, this is

approximately the same as finding the paths with the largest standard deviation or variance.

There are two main approximations made in the path selection, and we guard against the

inaccuracies due to these approximations as will be described later. First, to estimate the

variance of the path, we first assume that the stages that make up the path (i.e. delays

of individual gates) are uncorrelated. For conciseness, we will refer to these as the path

variance and gate variance respectively. The above assumption allows us to find the path

variance by adding the variance in delay of the individual logic gates. Second, we model

gate variance as a function of the size of the transistor switching the output, the rise/fall

times of the input, and the load capacitance at the output of the gate. This is done instead

of characterizing the delay variance of every single logic gate in a library across different

input/output conditions, which would be extremely time-consuming especially for large

libraries.

We capture how gate variance changes with transistor sizes, input rise/fall times, and

output load capacitance in a series of lookup tables that can be precharacterized for the

process technology. Figure 4-18 plots partial results from this characterization, showing

Udelay/Pdelay versus transistor width, performed over a range of input slews (rise/fall times)

and load capacitances. It is observed that Udelay/Idelay does not change much with load

capacitance and decreases slightly for inputs with slow rise/fall times.

The path selection is validated by perfoming Monte Carlo simulations on all the paths

in a group, and seeing which paths were identified by the path selection approach. Figure

4-19 illustrates the mean and standard deviation of all the paths in one group found by
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Figure 4-18: o7delay/de1ay versus transistor width in an inverter, taken at different input
rise/fall times and load capacitances.

Monte Carlo simulation. The paths selected by the proposed approach are identified with

red circles, and the remaining are identified by blue squares. It is seen that the approach

can identify the critical paths (i.e. the ones with the largest standard deviation over mean).

It should be noted that the original assumption of uncorrelatedness may not hold, since

the delay of one logic gate depends on the output rise and fall times of the logic gate which

precedes it in the timing path. Therefore, the estimated path variance may not be fully

accurate. To address this, we select multiple paths within each group for simulation.

The selected paths from all the groups undergo Monte Carlo simulation with local vari-

ation and at the global fast corner, giving an accurate histogram of their thold-margin, with

an example shown in Figure 4-20. A sample in the Monte Carlo simulation is considered to

violate hold time when thold-margin < 0. Since the probability of P(thold-margin < 0) is typ-

ically small (less than 1%), finding it accurately from the raw data alone would require an

impractically large number of simulations. Therefore, we fit the data to a Gaussian distribu-

tion and then estimate P(thold-margin < 0). A Gaussian instead of lognormal distribution

was used because the latter is undefined for negative values.

If P(thold-margin < 0) is above a set threshold, as determined by the number of paths

in the design and the desired timing yield, then extra delay buffers are inserted in the

logic path to increase tlogic,min and the hold time margin. Since the simulated paths are
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Figure 4-19: Validating the path selection approach. Scatter plot shows the mean and
standard deviation of the timing paths that were placed in one group in the timing flow.
The path selection correctly identifies the critical paths with the largest standard deviations
(most likely to fail).

the critical paths from a group, buffers are also applied to other (unsimulated) paths in

the same group. In the 0.3V microcontroller design, paths requiring extra buffering were

concentrated in small groups with low average hold time margin. As a result, 151 paths

were fixed in the hold time verification flow.

It should be noted that a variation-aware approach typically results in fewer delay

buffers inserted compared to worst case timing analysis. For instance, a common worst case

methodology uses two deterministic values to model fast and slow delay in a cell under local

variation. One such example would be to use the ±1- points as the slow and fast delays.

Hold time constraint is verified by assuming all cells in the data path have fast delays, while

those in the capture clock path have slow delays, in order to obtain the worst case scenario.

However, in reality, it is unlikely that all cells in the data path uniformly exhibit fast delay

due to local variation. Because of this pessimism, the worst case methodology identified

929 timing paths for hold time fixing, several times more than the 151 paths selected by

the variation-aware approach.

The tools used and the run time of each step of the flow is reported in Table 4.2. The

run time is measured on a Linux workstation with a 2.3GHz quad-core CPU.
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Figure 4-20: Example histogram of thold-margin of one timing path in the 0.3V microcon-
troller. Points show simulated data and line shows a fitted Gaussian distribution.

Table 4.2: Tools used in each step of the timing flow, and the associated run time on a
2.3GHz CPU.

Step Tool Run Time
Path selection MATLAB 20 minutes

Simulation of one selected path SPICE 5 minutes
(1k-point Monte Carlo)

Analyzing simulation results MATLAB several minutes

Accuracy Versus Run-Time Trade-Offs

There are several ways in which the accuracy

expense of longer run time as discussed below.

of this timing flow can be increased at the

* Account for the correlation between the stages in a path. For this we would need to

characterize the covariances of all pairs of logic gates in a path. This characterization

time grows quadratically as the number of logic gates in a library.

" More extensive precharacterization of the gate variance. This includes simulating

over more input and output conditions, as well as characterizing the delay variance of

stacks of transistors.

* Perform a longer Monte Carlo simulation of each path to get a more accurate hold

time margin distribution for the path.
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4.3.2 Comprehensive Delay Variation Data

Apart from the analysis described above, we performed Monte Carlo SPICE simulations

over several months on 30000 timing paths in the microcontroller. A 1k-point simulation

was performed for each path which requires approximately 5 minutes. The results serve to

illustrate trends in sub-V delay variation.

In Figure 4-21(a), each horizontal cross section is the logic delay histogram of one timing

path under local variation, at 0.3V and global fast corner. The rightward skew is typical of

a lognormal distribution. Figure 4-21(b) shows a scatter plot of the corresponding timing

path statistics. Each point represents one path, with mean delay plotted on the x-axis and

a/p shown on the y-axis. Initially, the lower range of u/p decreases with the mean delay,

which reflects how variation tends to average out in longer paths. However, this quickly

reaches diminishing returns, and a/p does not decrease far below 0.1, even for very long

paths. The same trend is observed when logic depth (the number of stages in the path),

instead of mean delay, is plotted on the x-axis. Since u/p depends on both device sizes and

logic depth, the lower bound observed reflects the inherent variability given the device sizes

used in the standard cell library. Additionally, the upper range indicates that outliers with

large amounts of variation occur less frequently as the path length increases. However, it is

important to note that the shortest path is not necessarily most likely to violate hold time,

because slightly longer paths can exhibit significantly higher variability.

4.4 Standard Cell Library for Voltage-Scalable Logic

The previous sections discussed standard cell and timing verification for logic targeting

minimum-energy operation in sub-threshold. In the next two sections, we address the two

topics for voltage-scalable logic operating from near-threshold up to nominal VDD to meet

more stringent speed constraints. The biomedical processing platform is one such example.

While designing standard cells to function in sub-threshold is challenging, circuits be-

come less sensitive to local variation as VDD is increased. Therefore, at voltages close to

the the transistor threshold, a conventional, above-threshold cell library may be sufficient.

Nevertheless, it is important to verify functionality of the library with Monte Carlo simu-

lations at the lowest targeted VDD and at the worst case global corners. Section 4.2.2 has

noted that the cells most susceptible to local variation are sequential elements (i.e. flip-flops
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Figure 4-21: (a) Delay histograms of 30k microcontroller timing paths at 0.3V, fast cor-
ner. Each horizontal cross section represents distribution of one path. (b) Scatter plot of
microcontroller timing path statistics corresponding to data in (a).

and latches) and logic gates with many parallel leaking devices fighting series-connected de-

vices (i.e. high fan-in NAND/NOR gates). For example, the biomedical platform in this

thesis aims to operate at 0.5V, slightly above V in the 0.13pm process, and is able to use

a conventional cell library.

4.5 Design Flow and Timing Verification for Voltage-Scalable

Logic

In designing a logic circuit to function across a wide voltage range, one key consideration

is that the propagation delays of logic gates do not scale in the same manner across VDD-
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Unfortunately, the digital design flow and common design tools are targeted towards circuits

that operate within a narrow range of supply voltages. In this section we describe issues

due to non-uniform delay scaling and show a modified design flow to address them.

The basic digital design flow is illustrated in Figure 4-22, and we will discuss issues

related to several steps in the flow: synthesis, place and route, and hold time fixing. The

synthesis and place and route steps employ a pair of timing libraries characterized at two

closely spaced voltages, forming a guard-band around a nominal value (in this case, VDD ±

10%) in order to account for voltage supply noise. Accordingly, in designing a circuit that

scales across a wide voltage range, we must select one nominal VDD for synthesis and place

and route. A natural choice is to design the circuits at the highest VDD so that the circuit

can be optimized to achieve the desired maximum speed. In other words, the setup time

constraint which sets the maximum frequency is more important at the high voltage end.

However, as we will show next, the hold time constraint is more critical at the low voltage

end.

RTL
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SO VDD+I10%

a e Library''
Netlist Weak PT,:

41~ V..DD-IO0%

Post-
Route
Netlist

Gate-level
Sim

Verif cation

Top-level layout
DRC/LVS, etc.

Figure 4-22: Typical digital design flow. Issues related to voltage scaling in the dark shaded

steps will be discussed in this section.
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In the following, we synthesize the biomedical platform at high VDD and find the hold

time margin (as defined in Equation 4.3) across its timing paths at three VDD within its

operating range: {0.55V, 0.7V, 1V}+10% 2. Figure 4-23 shows a histogram of the hold

time margin across 10,000 timing paths at the three voltages. The majority of samples

were close to 0, so the x-axis is "zoomed in" to show details where the hold time margin

is less than 5% of the clock period. The y-axis shows the proportion of timing paths with

timing margins corresponding to the x-axis value.
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Figure 4-23: Histograms of the hold time margin in timing paths of the biomedical platform.
Data taken at (a) VDD=1-1V, (b) 0.77V, and (c) 0.6V. The x-axis scale is set to 5% of the
clock period. Relative frequency refers to the proportion of timing paths with hold time
margins corresponding to the x-axis value.

The data shows that the design has adequate hold time margins at 1.1V because the

design flow explicitly optimized the design at this voltage. However, the hold time margin,

as a fraction of the clock period, degrades at lower voltages, as reflected by the histogram

shifting to the left and clustering close to 0. From this we can conclude that hold time
2Note this was done with Synopsys Primetime, a conventional timing tool, and does not include local

variation.
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margins do not scale proportionally with the maximum path delay as VDD is decreased.

Moreover, after implementing a design at one voltage, it is imperative to check timing

constraints at other voltages in the operating range and fix any violations. In addition.,

the variation-aware timing approach described in Section 4.3 can be used for additional

verification at the low voltage end. We modified the digital flow accordingly for use in

designing the voltage-scalable biomedical platform. The modified flow is shown in Figure

4-24.

-l low/med/

high....... I!

| ... Top-level layout
DRC/LVS, etc.

Figure 4-24: Digital flow for voltage-scalable circuits. PT refers to process and temperature.

The non-uniform scaling of logic gate delays with VDD also has implications for the

special delay cells used to fix hold time violations. Recall that the hold time margin can

be increased by slowing down the logic path. Typically this is done by extending the logic

path with special delay cells, specifically designed to introduce long delays, by employing

longer-than-minimum length transistors. Unfortunately, due to reverse short channel effects

[90] in modern process technologies, the drain current at low VDD actually goes up with

increasing device lengths. Therefore, delay cells become less effective at slowing down the

logic path with voltage scaling. The difference in delay scaling between a delay cell and a
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NAND gate is plotted in Figure 4-25.
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Figure 4-25: Delay scaling across VDD of 2-input NAND gate and typical delay cell. Both
curves are normalized to the minimum delay of the cell. Due to reverse short channel effects,
the delay cell becomes less effective at low VDD-

When such delay cells are used in a voltage-scalable design, the hold time margin at low

VDD significantly worsens. The first row of Table 4.3 lists the negative hold time margin

at 0.5V, summed across all violating paths in the biomedical platform if conventional delay

cells were used. The large negative margin indicates many violations that must be fixed

manually by inserting an impractically large number of cells. Clearly this is not feasible, and

instead we employed an alternate delay cell with only minimum length devices. We increase

the delay provided by this alternate cell by adding small MOS capacitors within the cell

as illustrated in Figure 4-26(a). This alternate cell has a larger area than the conventional

cell, but allows hold violations to be corrected with much less power. As shown in Figure

4-26(b) and Table 4.3, this alternate cell maintains effectiveness at low VDD and greatly

reduces the amount of hold time violation in the biomedical platform, which are then fixed

in a subsequent design iteration.

Table 4.3: Negative thold-margin summed across all violating paths in the biomedical plat-
form. The first design uses conventional delay cells, resulting in severe hold violations at

0.5V. The use of alternate delay cells greatly reduces the amount of hold time violations.

Delay cell Type Number of Violating Paths Total Negative thold-margin
at 0. 5V at 0.5V

Conventional (L > Lmin,) 174 -49094ns

rAI-ternate (L = Lmin) 100 -117ns
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Figure 4-26: (a) Alternate delay cell that maintains effectiveness at low VDD. (b) Delay
scaling across VDD of NAND gate, typical delay cell (L > Lmin), and alternate delay cell
(L = Lmin). The delay of the alternate cell scales approximately in the same way as
NAND2.

4.6 Ultra-Low-Voltage Microcontroller

A microcontroller system-on-chip, designed to operate down to 0.3V, demonstrated the

logic design and timing methodology described in this chapter. While previous work has

shown the energy savings afforded by ultra-low-voltage operation, most of these systems

were designed in older process technologies where local variation is less prominent. For

example, a 180mV, 0.18pm FFT processor was presented in [811, while a 0.13pm processor

with 8-bit ALU, 32-bit accumulator, and a 2kb SRAM functional down to 200mV was

implemented in [251. Body biasing and several gate sizing strategies were examined in a

0.13tm sub-V processor [24].

Looking forward, technology scaling enables reduced CVD energy and increased den-

sity, but presents a new challenge in the form of heightened intra-die variation. In [91],

authors presented a 65nm 320mV motion estimation accelerator to compute the sum of

absolute difference (SAD) between a pair of 8 pixels. The chip employed optimized datap-

ath circuits to address weak ION/IOFF ratio and threshold voltage variation. For instance,

registers contained fully-interrupted, upsized keepers, and multiplexers with more than 3

inputs were remapped into 2:1 multiplexers. In [92], a 65nm SRAM design with a 10T

bit-cell achieved functionality down to 400mV.

The work of [91] and [92] involve regular circuit structures that can be hand-crafted to
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ensure functionality down to low voltages. In this thesis, the microcontroller was synthesized

and laid out with a standard digital design flow, and hence its functionality relies heavily

on logic design and timing methodology. The demonstrated functionality shows that it is

feasible to synthesize sub-threshold digital circuits in advanced process technologies despite

significant process variation.

We also note that soft digital signal processing is an interesting approach for a specific

class of applications where a small amount of computation error (e.g. due to timing errors

resulting from local variation) are acceptable and are considered as noise in the system.

For instance, computation errors in an FIR filter can be considered as a degradation of the

output signal-to-noise ratio. In [93], the authors propose exploiting this for energy savings

by lowering the VDD of a DSP below a critical voltage, beyond which timing errors start

to occur for certain inputs that exercise the critical path. An error control block of low

complexity monitors the output of the DSP. A test-chip in [94] demonstrates this concept.

The idea of soft DSPs has been subsequently extended in the literature, for example in

[95, 96]. While these approaches are attractive for datapath circuits, it is important to note

that control circuits are often much less tolerant to errors, and proper design methodologies

are still critical in those cases.

4.6.1 System Overview

The microcontroller logic was part of a system-on-chip which also included a custom low-

voltage SRAM [97] designed by Naveen Verma and a switched capacitor DC-DC converter

[98] designed by Yogesh Ramadass. As pictured in Figure 4-27, both logic and SRAM were

designed to operate between 0.3V to 0.6V. To realize the full energy savings from voltage

scaling, a DC-DC converter which efficiently converts a battery voltage to low voltage and

power levels is crucial. Further, minimizing the number of external components is desirable

in embedded applications. Accordingly, the system features a DC-DC converter which is

fully integrated on chip, and can provide variable voltages at microwatt power levels with

high efficiency.

Figure 4-28 shows a block diagram of the core logic, which is based on the MSP430

microcontroller architecture [68]. The 16-bit Reduced Instruction Set Computer (RISC)

CPU supports 27 instructions and 7 addressing modes of the standard MSP430 instruction

set. The microcontroller interfaces to 128kb of unified instruction and data memory, imple-
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Figure 4-27: Block diagram of the system-on-chip.

mented as a custom SRAM, as well as to a watchdog timer and general purpose I/O ports.

Programming of the SRAM is performed at startup via a JTAG interface.
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TCK
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MCLK

SMCLK

ACLK

Sleep
Transistor

Figure 4-28: Block diagram of microcontroller core.

Targeting low power applications, the microcontroller provides several power manage-

ment features as illustrated in Figure 4-28. The clock system, which distributes external

clocks to the microcontroller logic, supports three low power modes. In the first mode

(LPMO), the master clock (MCLK) going to the CPU is gated. At this time, the CPU does

not perform any processing, although peripherals remain active. The high frequency clock

for the peripherals, or the sub-system master clock (SMCLK), is disabled in the second low

power mode (LPM2). However, the auxiliary clock (ACLK), the low frequency clock for

peripherals, remains on so that peripherals can function with lower active power. In the

122



standby mode (LPM4), all clocks are shut off. The microcontroller can wake up from any

of these modes through an interrupt event generated by the watchdog timer or input port.

This implementation also contains two features not found in commercial versions of the

MSP430 microcontroller. First, the memory interface contains a small cache to reduce the

memory access power. One 64-bit row of memory, which contains four 16-bit CPU words, is

fetched and stored at a time. Successive 16-bit accesses to the same row require no further

memory activity. This provides up to 50% savings in the measured memory access power

for applications with a high hit rate. Second, the logic is split into two power domains; the

unused blocks shaded in Figure 4-28 are power gated during standby mode. Key CPU states

are retained such that the microcontroller can continue program execution upon emerging

from standby. The on-chip sleep transistor is sized for approximately 5% delay penalty at

VDD=300mV. Accounting for the energy overhead in turning this transistor on and off, the

breakeven time for power gating is less than 100Is.

4.6.2 Prototype Measurements

A summary and die micrograph of the test chip, fabricated in 65nm CMOS, is shown in

Figure 4-29. The DC-DC converter, including charge transfer capacitors, occupies just

0.12mm 2. The minimum energy point of the microcontroller occurs at 500mV, and func-

tionality was verified down to 300mV.

Core logic DC-DC
(2 power domains) converter

2.29mm

(a)

Process 65nm CMOS

DC.-DC Converter 0.12mm2

SRAM 1.36mm2

Logic 0.14mm2

Minimum 500mVEnergy Point
Minimum 300mVFunctional VD0

(b)

Figure 4-29: (a) Die micrograph and (b) summary of microcontroller test chip.
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Active Energy and Performance

Figure 4-30(a) plots the measured energy per cycle versus supply voltage for the micro-

controller logic and SRAM at 00C, 250C, and 750C. The energy is measured while the

system executes test code which cycles through the available instructions and addressing

modes. Since the I/O pads, logic, and memory array are operated at the same voltage, level

shifters are not required on-chip. Level converters are used on the test board to interface

the low-voltage I/Os to the logic analyzer. Memory and logic together consume 27.2pJ per

clock cycle at 500mV and 250C. The optimum energy does not vary much across 20 chips;

the measurements have a o-/p of 0.0897.

Shown in Figure 4-30(b) is the energy consumption of the microcontroller core logic

while it executes specific instructions. Generally, instructions for arithmetic or boolean

operations (e.g. add, and, compare), executed on operands stored in CPU registers, require

roughly the same amount of energy per cycle. Instructions that involve memory accesses

for data (e.g. load/store, push/pop) exhibit higher energy consumption as expected. The

jump instruction, which generates high switching activity on the address bus, requires the

most energy.

0---

10.3 0.4 (V05 0.6 \

(a) (b)

Figure 4-30: (a) Energy versus VDD of logic and memory over temperature. The o-/p of
measurements across 20 chips at 500mV is shown. (b) Energy of microcontroller core logic

while it executes different instructions at 500mV, room temperature.

The energy consumed by the SRAM array per system clock cycle is shown in Figure 4-31.

The memory greatly influences the minimum energy point of the system since it consumes a

major portion of the total system energy, highlighting the importance of reducing memory
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energy through voltage scaling and other circuit techniques.
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Figure 4-31: Energy versus VDD of the SRAM array per system clock cycle.

The efficiency of the DC-DC converter delivering 500mV is shown in Figure 4-32. The

converter achieves more than 75% efficiency with an order of magnitude change in load

power, between 10pW to 250pW. With the microcontroller as a load, the converter provides

75% efficiency at 12pW. When measured standalone, the converter reaches a peak efficiency

of 78%.

0.8

0.7

0.75- 06

1 10 100 500
Load Power (uW)

Figure 4-32: DC-DC converter efficiency while delivering 500mV. The
by a 1.2V supply.

converter is powered

Figure 4-33 plots the microcontroller performance versus supply voltage at 00C, 250C,

and 75"C. The measured frequency, accounting for logic and memory delays, is 434kHz at

25"C and 500mV. The frequency ranges from 8.7kHz to 1MHz across the operating range

of 0.3V to 0.6V. The -/p of measurements across 20 chips at 500mV is 0.133.
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Figure 4-33: Frequency versus VDD across temperature. The o-/pu of measurements across

20 chips at 500mV is shown.

Standby Power

The inclusion of a DC-DC converter enables the system to dynamically scale VDD to 300mV

during standby mode, where memory and logic together consume less than l1pW, as shown

in Figure 4-34. Accounting for the DC-DC converter efficiency loss at such low power

levels, this represents a 2.1 x reduction in leakage power compared to keeping VDD constant

at 500mV during standby.

-- - - - - - -- - ------------------

10

0
0 ------

*10

0.3 0.4 0.5 0.6

V DD (V)

Figure 4-34: Standby power versus VDD across temperature. The o/pt of measurements

across 20 chips at 300mV is shown.

4.7 Conclusion

Process technology, of course, has deep implications for the design of low-voltage digital

circuits. We first examine the movement of the minimum energy point with process scaling
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with predictive models at the 65nm, 32nm, and 22nm nodes. For a 32-bit adder charac-

terization circuit, the optimum VDD increases with process scaling, but still remains in the

sub-threshold region, motivating the design of sub-threshold circuits. Since recent technol-

ogy nodes embody a trade-off between lower active energy and higher speed versus lower

leakage power, we consider the issue of selecting a technology given the frequency constraint

and duty cycle of an application. At low duty cycles when leakage energy becomes signifi-

cant, an older technology node can result in lower total energy. This approach was used in

selecting an appropriate process flavor for the biomedical processor.

This chapter considered logic design issues in two classes of low-voltage circuits: one

targeted for deep sub-threshold operation at the minimum energy point, and the other oper-

ating from near transistor threshold to nominal VDD, to support commensurate performance

requirements. The former class of systems is primarily concerned with achieving function-

ality despite prominent process variation. We analyze the area and switched capacitance

overhead of designing a 65nm standard cell library to operate at O.3V. Two microcontrollers

with the same functionality were fabricated, one with a conventional library and one with

the 0.3V sub-V library. Chip measurements show that switched capacitance overhead of

the sub-V library was roughly 12%, but the library enables energy reduction overall by

allowing aggressive voltage scaling.

Circuits operating in sub-Vt exhibit order-of-magnitude higher delay variation than seen

at above-Vt. This renders conventional timing verification tools inaccurate. Instead, we

present an approach to verify timing in a microcontroller using Monte Carlo simulation for

accuracy but selecting critical paths analytically to reduce simulation time.

The sub-V library and timing approach were demonstrated in a 65nm MSP430-based

microcontroller operating down to O.3V. This represents the first processor to achieve deep

sub-threshold operation at the 65nm node, and the first to incorporate standard cell design

and timing methodology explicitly considering local variation.
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Chapter 5

Low-Voltage SRAM

In many systems ranging from embedded microcontrollers to high performance desktop

CPUs, the memory often occupies a dominant portion of the area and power. Similarly,

memory is a key component in the processing platform, being responsible for storing pro-

gram instructions and data. In this type of embedded processor, a static random access

memory (SRAM) is a natural choice for storing content that is frequently accessed - it sup-

ports random access unlike flash memory, does not require specialized process technology

unlike embedded DRAM, and can be operated at lower voltage and power than Ferroelectric

RAM (FeRAM). On the other hand, non-volatile memories such as flash or FeRAM are

suitable for storing data that must be retained for long time periods even if the processing

platform is powered off. In this chapter we focus on the design of an SRAM as the pri-

mary storage for instructions and short-term data; in a system prototype, data requiring

non-volatile storage would be written out into external flash memories.

Since the SRAM is involved in the vast majority of activities on the processor - providing

instructions, storing processed results - reducing its energy is crucial. Further, it would be

desirable to operate the SRAM at the same voltage as the logic to avoid the need for

level conversion, which imposes delay and power overhead. Conventional SRAM circuits

for nominal-voltage operation are optimized for high density and performance at a cost

of reduced robustness. This trade-off works admirably at nominal VDD but quickly breaks

down at low voltages where circuits become more sensitive to process variation. Accordingly,

researchers have explored a range of bit-cells, peripheral circuits, and architectures to enable

low-voltage operation. A detailed discussion of prior work as well as a low-voltage SRAM
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Table 5.1: Related work in low-voltage SRAMs.

design are given in [99]. We summarize some related work in low-voltage SRAMs and their

key features in Table 5.1.

This chapter outlines the challenges of designing low-voltage SRAMs and the first points

of failure when VDD is reduced. Next, bit-cell and peripheral circuits enabling low-voltage

operation are discussed; the energy of two competing write assist circuits are analyzed and

a model for the read current distribution is proposed. Finally, we present a mechanism for

decreasing glitch energy on the SRAM data bus which, unlike common practice in SRAM

design, considers the average instead of worst case to remove glitches at low leakage cost.
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Reference Process Key Features
Technology

Takeda, 90nm 7T bit-cell with 7 th transistor added to prevent read
ISSCC 2005 [100] upset condition
Calhoun,
ISSCC 2006 [101] 65nm 10T bit-cell, floating VVDD to aid writing

Chen, 0.13pm Register file-based cell; multiplexed read scheme; self-
JSSC 2006 [102] timed keepers

Kim, 0.13pm 10T bit-cell with data-independent bitline leakage; vir-
ISSCC 2007 [103] tual ground replica scheme to aid reading

Zhai, O.13pm 6T bit-cell modified for single-ended read; floating vir-
ISSCC 2007 [104] tual VDD and ground rails to aid writing

Verma, 8T bit-cell modified to reduce bitline leakage during

ISSCC 2007[105 65nm read; boosted wordline and actively driven VVDD to
aid writing

Chang, 65nm 8T bit-cell, short read bitlines and long write bitlines;
VLSI 2007 [1061 gated diode sense amplifier

Kulkarni,
JSSC 2007 [107] 0.13pm lOT bit-cell with hysteresis to improve read margin

Chang, 90nm 10T bit-cell supporting column-wise selection and col-
ISSCC 2008 [108] umn interleaved layout

Sinangil, Optimized for wide operating range (0.25-1.2V) withESSCIRC 2008 65nm reconfigurable read and write assist circuits
[109]

Sinangil, 8T bit-cell with new array architecture to enable col-
A-SSCC 2009 45nm umn interleaving; loop to select reference voltage for
[110] sense-amplifier



5.1 Low-Voltage SRAM Challenges

Hold and Read Static Noise Margin

The conventional 6-transistor (6T) bit-cell pictured in Figure 5-1 forms the basis of modern

SRAM designs, but suffers from several vulnerabilities in the presence of process variation

which render it non-functional at low voltages. To achieve high area density, the 6T bit-cell

relies on ratioed device sizing to set the relative device strengths needed for functionality.

Since sizing changes current linearly while V variation has an exponential impact in sub-

threshold, variation can easily overwhelm the effect of sizing to cause bit-cell failures. The

three pairs of transistors in the 6T cell are each primarily involved in one aspect of the cell

operation. In the subsequent discussion, we will refer to these devices as labeled in Figure

5-1 - the NMOS pass-transistors are called the access devices, the NMOS pulling to ground

are the driver devices, and the two PMOS are the load devices.

M3 M4 M1, M2: driver

M3, M4: load
M5N NC M6 M5, M6: access

M1 M2

Figure 5-1: Conventional 6-transistor bit-cell

Data retention in a 6T SRAM bit-cell is determined by the cross-coupled inverters Ml-

M4 in Figure 5-2(a). The ability of a bit-cell to retain data can be characterized by its

butterfly plot as illustrated in Figure 5-2. The two bi-stable intersection points in the

butterfly plot, shown by red circles in Figure 5-2(a), indicate that the bit-cell can support

"0" and "1" logic levels, and thus proper data retention. The static noise margin (SNM)

indicates the maximum amount of noise that can be applied to the storage nodes of the

bit-cell before the state of the cell is destroyed. The SNM is measured as the edge length

of the largest inscribed square in the butterfly plot [111]. If variation causes both VTCs

to be shifted by more than this amount, the butterfly plot would no longer have bi-stable

intersection points, indicating failure of the bit-cell to hold a required data state.

In the 6T cell, the read operation is performed by precharging the bit-lines (BLC/BLT

in Figure 5-2(b)) and then asserting the word-line (WL) to turn on the access transistors

(M5 and M6). The storage node which stores a "0", for instance NT, causes the bit-line
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Figure 5-2: (a) Hold static noise margin in a conventional 6T bit-cell in 65nm. (b) Read
static noise margin in the 6T cell. The word-line is asserted while transistor M1 must fight
M5 to pull node NT low.

BLT to discharge. However, since the bit-line is initially precharged, M5 tends to pull NT

high while the driver device M1 attempts to pull it low. The fight between M1 and M5 raises

the voltage at NT. Accordingly, the butterfly plot for a 6T cell during read is squashed on

one end as can be seen in Figure 5-2(b).

As VDD is decreased, both read and hold SNM correspondingly become smaller. More-

over, as is apparent from Figure 5-2, the read SNM is considerably smaller than hold SNM

and thus limits low-voltage operation [99, 112]. We confirm this for the target 0.13pm

process technology through 50k-point Monte Carlo simulations of a 6T bit-cell. Figure 5-3

plots histograms of the hold and read SNM with local variation, at 0.5V, 85"C (the worst

case temperature corner) and nominal global process conditions. Local variation degrades

the read SNM to nearly OV, and in fact, the worst-case read SNM becomes negative once

global variation is taken into account. This necessitates a different bit-cell topology as will

be discussed in the next section.

Write Margin

Similar to the read operation, a successful write to a 6T bit-cell hinges on the relative

strengths of two transistors - the access device must overcome the load device in order to

write a new value into the bit-cell. One metric of a bit-cell's write margin is the trip voltage

132



12000
-e-Hold SNM

10000 .-- Read SNM

S 8000
0

E 6000

o 4000

2000

0 0.05 0.1 0.15 0.2 0.25
Static Noise Margin (V)

Figure 5-3: Histograms of the hold and read SNM of a 6T bit-cell at 0.5V, 850C, and under
nominal global conditions. Data is obtained from 50k-point Monte Carlo simulation with
local variation.

[113], and a bit-cell with a high trip voltage is easier to write into. Figure 5-4 shows a

histogram of trip voltage of a 6-T bit-cell in the target 0.13pum technology at 0.5V, under

worst-case global conditions and local variation. Here, a significant number of cells operate

on the verge of write failure, which must be addressed especially in the design of large bit-

cell arrays. However, improving the write margin through device sizing is again ineffective.

Since reading requires the driver devices to be stronger than the access transistor, while

writing dictates that the access transistor must overcome the load device, enforcing these

conditions through device sizing would lead to impractically large bit-cells.

8000

6000-
C,)
0
C

4000-

0

0
2000-

0 0.05 0.1 0.15
Trip Voltage (V)

Figure 5-4: Histogram of the trip voltage with local variation, at 0.5V, -100C and weak-
NMOS strong-PMOS global corner. Data is obtained from 50k-point Monte Carlo simula-
tion with local variation.
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Bitline Leakage

Thus far we have considered functionality of the 6T cell in isolation during reading, writing

and data retention. However, to ensure correct sensing during a read, we must also consider

the interaction between the accessed cell and its unaccessed neighbors. Figure 5-5 illustrates

a typical sensing scheme in 6T SRAMs. The bit-lines are first precharged, then the read

current in the accessed bit-cell discharges one of the bit-lines to develop a voltage differential.

This is then amplified by a sensing circuit. At low voltages, the read current in the worst

case bit-cell is much less than the mean, due to the exponential dependence of current on

local V variation. The worst case cell thus severely limits the read speed at low voltages.

Moreover, because the ratio of on to off currents (lon/Ioff) in a transistor is much reduced

at low voltages, the read current on one bitline can be less than the aggregate leakage

currents in the unaccessed bit-cells on the other bitline, causing read errors.

Bitlines precharged to VDD
WL=VDD

Wrlread

WL=O

-- AV -

Sense
Amplifier

Figure 5-5: A typical sensing scheme in 6T SRAMs.

For the targeted 0.13pm process, Figure 5-6 shows the ratio of the worst case read

current to the worst case aggregate bitline leakage current in a column of 256 bit-cells. At

the strong process and temperature corner, the worst case bitline leakage exceeds the read

current, making reliable sensing impossible. A method to decrease the bitline leakage is

proposed in [105] and will be described in Section 5.2.4.

From the data presented above, it is clear that a conventional 6T SRAM in the target

134



10 2

( 10
J,

cc
J? 10

10

1 0 - - - - -

10-1
0.4 0.5 0.6 0.7 0.8

V DD(V)

Figure 5-6: Ratio of the worst case read current to the worst case aggregate bitline leakage
current in a column of 256 bit-cells.

0.13pm technology suffers from degraded read and write margins as well as unreliable

sensing at low voltages. The next section describes the design of a low voltage SRAM that

addresses issues with read and write functionality.

5.2 Enabling Low Voltage Operation

5.2.1 Bit-Cell

The SRAM in the processing platform employs an 8-transistor (8T) bit-cell which has been

demonstrated in previous low-voltage SRAMs [112, 105, 109]. Pictured in Figure 5-7(a), the

8T bit-cell consists of the conventional 6T cell and a 2T read buffer. The read buffer serves

to isolate the internal storage node from the bitline. Consequently, the internal node is not

disturbed during a read, and the read SNM is the same as the hold SNM. In addition, the

8T topology allows separate optimization of the bit-cell for read and write functionality. In

a 6T bit-cell, reading and writing introduce opposite sizing constraints on the access device

as discussed previously. In the 8T bit-cell, the access device can be sized to aid writing and

the read buffer sized to improve read speed.

The target 0.13pim process technology features low-leakage and standard transistors

(high- and low-V devices respectively). This additional degree of freedom allows us to
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simultaneously improve speed and leakage over a single-V design. Since the processing

platform employs low-V standard cells, the critical read path in the SRAM must also use

low-Vt devices in order to achieve comparable speeds. However, the 6T storage cell does

not lie in the read path, and can thus utilize high-Vt transistors to reduce the array leakage.

Although the high-V access transistors would slow down the write operation, the speed

decrease is mitigated by the write assist mechanism in this SRAM as detailed later. The

leakage currents and read currents of bit-cells with various combinations of high- and low-Vt

transistors are reported in Table 5.2. Using low-Vt devices in the read buffer improves read

current by 3.5x, while using high-V devices in the storage cell reduces leakage by 2.92x,

compared to a bit-cell with all low-Vt devices.

Table 5.2: Leakage and read currents of 8T bit-cell with different configurations of high-
and low-V transistors. Simulations are performed at VDD=1V, nominal process and tem-
perature.

6T storage cell 2T read buffer 8T Cell Leakage Current read current
High-V High-Vt 8.29pA 14.7piA
High-V Low-Vt 9.95pA 51A
Low-V Low-V 29.1pA

The layout of the resulting bit-cell is shown in Figure 5-7(b), which satisfies special design

rules concerning the spacing between high- and low-V transistors. The layout follows a "tall-

cell" design where the word-lines are routed horizontally and the bitlines routed vertically.

This layout was chosen so that BV,, at source terminal of M7 can be routed horizontally

across all other bit-cells in the same row, the reason for which will be discussed in Section

5.2.4.

WrWL RdWL . High-Vt Device Active

N-well Poly
M3 M4 -L

M5 Q QBM6 M8QB RdBL --- - --- ---

M1 M2 M7 IWrWL
I BV V

BLT BLC RdBL B F------
M7 BFLC QB V, Q BOTi

RdWLIBVSS M , M6 M2 M1 M5

(a) (b)

Figure 5-7: (a) 8-transistor, multi-V SRAM bit-cell. (b) Layout of the multi-V bit-cell.
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5.2.2 Analyzing Write Assist Schemes

Since the write operation to an 8T bit-cell is the same as that of a 6T bit-cell, the challenge

of reduced write margin outlined in Section 5.1 remains. A successful write requires that

the access device (M5/M6) overpower the load device (M3/M4). Accordingly, techniques

have been proposed to aid writing by strengthening the access device or weakening the load

device, as summarized in Table 5.3. For example, [103] lengthened the access transistors

to increase their drive current in sub-threshold (taking advantage of reverse short channel

effects). Unfortunately, this weakens the access devices at nominal voltages and is thus

unsuitable for a 0.5V-1V SRAM. In [101, 104], authors gate the power supply of the bit-cell

during a write operation and let the VDD rail float to a lower voltage, thereby weakening

the PMOS load devices. The 8T SRAM in [105] takes this one step further and explicitly

drives the VDD rail to an intermediate voltage rather than simply allowing it to float. In

addition, the design boosted the write word-line (WrWL) by 50mV to strengthen the access

devices. These write assist schemes enable write functionality at low VDD but introduce

a power overhead at nominal VDD when they are no longer needed. Accordingly, [109]

proposes a reconfigurable write assist circuit which combines the approaches in [101] and

[105] - depending on the operating voltage, the cell supply is either kept at full-rail, allowed

to float, or actively driven to an intermediate voltage.

It should be noted that the above write assist schemes that involve reducing the bit-cell

supply or boosting the word-line prevents column interleaving [106]. Two approaches have

been proposed to address this limitation [108, 110]. Table 5.3 provides a summary of the

above write assist techniques.

The SRAMs in [105, 109, 101] rely primarily on reducing the bit-cell supply voltage

to enable writing at low voltages. Here, we analyze the energy consumption of two write

assist techniques: reducing the cell supply and boosting the write word-line. These two

techniques are not mutually exclusive and can be used together. However, if only one is

needed to overcome variation in a particular design, it is useful to understand the energy

trade-offs between the two approaches. We will refer to these as virtual VDD and word-line

boosting respectively in the subsequent discussion.

The virtual VDD technique has several main sources of energy overhead. After reducing

the cell supply (VVDD) during a write cycle, the supply must be charged back up to VDD.
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Table 5.3: Proposed techniques to aid writing in low-voltage SRAMs.
Reference Summary
Calhoun,
ISSCC 2006 [101] Floating bit-cell supply voltage
Zhai,

ISCC 2007 [104] Floating bit-cell supply and ground voltage

Verma,
C 2007 [105] Drive bit-cell supply to intermediate value; boost word-line

Sinangil, Reconfigurable between driving bit-cell supply, floating supply, and
ESSCIRC 2008 keeping supply constant
[109]
Chang,
ISSCC 2008 [106] 10 bit-cell supporting column interleaving

Sinangil,
A-SSCC 2009 New bit-cell array architecture enabling column interleaving
[110]

The capacitance on VVDD includes the gate-source capacitance of the load devices, the

wire capacitance on VVDD, the N-well capacitance, and decoupling capacitance. Second,

as pointed out by [99}, a short circuit current path arises when VVDD is pulled low, flowing

between one of the bitline drivers and the VVDD driver, as illustrated in Figure 5-8. Finally,

designs with VVDD employ a folded-row layout shown in Figure 5-9(a) [92) where each

SRAM row is folded into two in the physical layout such that VVDD can be shared across

adjacent rows to achieve a dense layout. This doubles the wiring capacitance on the bitlines

compared to a conventional layout.

VV7DD RdWL

0

BL driver

Figure 5-8: Short circuit current path between bitline driver and VVDD driver when VVDD
is being pulled low.

In word-line boosting, the primary energy overhead comes from the need to temporarily

boost the word-line voltage above VDD. A boosting circuit was proposed in [105] for another
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(a) (b)

Figure 5-9: (a) Folded-row layout of a 64 rowx64 column sub-block, enabling VVDD to be
shared across adjacent rows in the layout. (b) Conventional row layout of a 64x64 sub-block
employed in the word-line boosting technique.

purpose but can be applied to word-line boosting. In the circuit shown in Figure 5-10, charge

is stored on the capacitor C before the write word-line is to be asserted. During a write

cycle, WrWL is first charged to VDD, then the charge stored on the capacitor is transferred

onto WrWL, increasing its voltage above VDD. The capacitor in the boosting circuit can

be sizable since it must store sufficient charge to boost a large capacitance on WrWL.

Further, the circuit timing should be well controlled: before boostEn rises and applies the

boosting, WrWL should be charged to nearly VDD and transistor MP1 should be turned

off, otherwise the charge stored on C would be wasted. On the other hand, the bit-cells can

be laid out in a conventional manner (Figure 5-9(b)), which results in shorter bitlines with

approximately 2x lower wire capacitance.

VDD

4MP1

Vboost

C
WrWLI I

boostEn
WrWL

Figure 5-10: Circuit to boost WrWL above VD Dto assist writing at low voltages [105).
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Two SRAM sub-blocks each employing one of the above write assist techniques were

simulated with extracted wiring parasitics. Figure 5-11 plots the energy breakdown at

0.5V of a write operation using the techniques. Due to its long and narrow layout, VVDD

consumes less energy in driving horizontally routed signals, as reflected by the smaller energy

components in WrWL, array control, and other global signals. Conversely, VVDD requires

more energy to drive vertical bit-lines. Although word-line boosting requires driving a signal

above VDD, this analysis shows that the actual energy involved is only a small fraction of

the total write energy. It is noteworthy that reducing and restoring VVDD introduces

considerable overhead and contributes to more than one-third of the total write energy.

Restore VVDD

5 0.8 & short cct current

3 0.6 . Global WL
w Global ctrl.
_0

0.4- DIO

M ~Sub-block
E0.2 ctrl.

BLsz
0 

WrWL
VVDD WL Boosting

Figure 5-11: Write energy breakdown in two SRAM sub-blocks employing two write assist
techinques (normalized to energy of VVDD scheme). Simulated at 0.5V with wiring par-
asitics extracted from layout. Here, DIO refers to the data bus connecting 16 sub-blocks
internal to the SRAM and used in both reading and writing.

Differences in row and column capacitances affect read energy as well. Figure 5-12

shows the energy breakdown during a read cycle. Again, VVDD consumes more energy in

precharging the read bit-lines, but less energy in driving global signals. Importantly, a large

portion of the read energy is consumed when driving the read results onto the large D1O

bus (the data bus connecting 16 sub-blocks internal to the SRAM and used in both reading

and writing). The boosted word-line design has more capacitive loading on DIO because its

shorter and wider layout requires D1O to span longer distances. These two opposing effects

result in VVDD consuming slightly less energy (1pJ) per read than boosted word-line.

Due to the trade-off between read and write, the energy of both techniques are similar

when averaged over reads and writes. In this work we employ word-line boosting since it

leads to a simpler SRAM layout; the VVDD technique requires the column circuits to fit
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Figure 5-12: Read energy breakdown in the two SRAM sub-blocks, normalized to that of
boosted word-line scheme. Simulated at 0.5V with wiring parasitics extracted from layout.

into half the bit-cell pitch.

It is possible to employ both techniques in a design. One reason for doing this would

be if one technique alone does not enable reliable writing, as was the case in [105]. Another

reason is to trade off the energy overhead of VVDD at the cost of boosting the word-lines

to a higher voltage. In either case, the need to share the VVDD rail requires the use of

the folded-row layout (Figure 5-9(a)). This implies that most components of the sub-block

energy (Global WL, global control, D1O, sub-block control, BL) would be the same as in a

VVDD-only design. As seen from Figure 5-11, a design combining the two techniques must

reduce the energy overhead of VVDD by 77% in order to achieve write energy comparable

to a design with only boosted word-line.

The preceding analysis revealed that the DIO energy is a major component in both

reading and writing. This will be addressed further in Section 5.3.

5.2.3 Read Current Modeling

As mentioned in Section 5.1, the read current (Iread) in an SRAM bit-cell discharges the

bitline to develop a voltage differential for sensing. This bitline discharge time is a large

component of the read access delay of an SRAM. Consequently, accurately predicting the

smallest read current in the bit-cell array is key to predicting the speed of an SRAM.

The read current for velocity-saturated devices in above-threshold is linearly related

to V, and as a result, it is common practice to model the read current by a Gaussian

distribution as shown in Figure 5-13. Based on the distribution, one can extrapolate the

141



expected worst case (smallest) read current in a bit-cell array of a given size. For example,

in the design of large bit-cell arrays, designers are interested in the "5o" read current

that is 5 standard deviations smaller than the mean read current. A similar analysis can

be performed in deep sub-threshold, when the read current is lognormally distributed.

Unfortunately, this method breaks down when the supply voltage is near threshold, which

is the targeted lowest VDD of the biomedical platform and other low-voltage systems (e.g.

[28, 114]). In this region, the observed data cannot be fitted accurately to a normal or

lognormal distribution. To find the worst case read current, one would need a large number

of simulations which grows proportionally with the array size, or settle for an inaccurate

estimate based on one of the above distributions.

o Data
-Normal Fit

0.1
:3
Cy

U)

a)0. 05

0
0.6 0.8 1 1.2 1.4 1.6

Iread (Norm. to Mean)

Figure 5-13: Read current in above-threshold can be modeled by a Gaussian distribution.

The difficulties in modeling can be attributed to two major factors. First, when VGS

(and VDD) is close to V, the transistor is in moderate inversion and its drain current

deviates from behavior predicted by both strong- and weak-inversion models' [90]. Further,

when VDD is close to the nominal V, local V variation, by increasing or decreasing V, can

then put a device in the above- or sub-threshold mode of operation. In light of the latter

observation, we propose modeling the read current distribution at VDD ~ Vt as the weighted

sum of a Gaussian and a lognormal distribution. The distribution shown in Equation 5.1

has six parameters: ai and a 2, the weights, p1 and o-, the two parameters of the normal

'We use the terms strong- and weak-inversion interchangeably with above- and sub-threshold.
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distribution, and /2 and c2 , the two parameters of the lognormal distribution.

f(x)= e 21 + e x22 (5.1)
/27ru £ 2ro

While it is straightforward to fit a dataset to either a Gaussian or a lognormal distri-

bution, since the maximum likelihood estimates of the parameters are given by closed-form

expressions, the same is not true for the weighted sum in Equation 5.1. One can consider

using the EM algorithm [115] to estimate the parameters given a dataset. Alternatively,

for ease of implementation, we opted to use the curve fitting capabilities of MATLAB to

fit a histogram of read to the model in Equation 5.1. To help the curve fitting function

converge, we must specify reasonable initial guesses for the parameters. The following steps

enabled convergence in our experiments.

1. Fit Iread data to Gaussian distribution only and record the two parameters that result.

2. Fit Iread data to lognormal distribution only and record the two parameters that

result.

3. Use the parameters from steps 1 and 2 as initial guesses for pi, Oi, p2, 92. Provide a

reasonable guess for a1 and a2-

4. Obtain histogram of the read data.

5. Run the curve fitting function with initial guesses to fit Equation 5.1 to the histogram.

Using the above approach, we fit the above model to simulated Iread in a 1 million-point

Monte Carlo simulation at VDD=0.5V and 0.6V. The circle markers in Figure 5-14(a) show

the simulated histogram of read at 0.5V. Recall that in SRAM design, we are concerned with

the left tail in finding the smallest Iread in a large SRAM array. Comparing the dashed lines

to the simulated data towards the left of the graph, we see that a Gaussian distribution

underestimates the weak-cell Iread, while a lognormal distribution overestimates it. The

solid line representing the model in Equation 5.1 provides a better fit to the simulated data.

A similar discussion applies to the data taken at VDD=0. 6V, reported in Figure 5-14(b).

For near-threshold supply voltages, the proposed model can be used to predict the

smallest read current in a bit-cell array, which is used in sizing the read buffer in the bit-cell

as follows:
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Figure 5-14: Simulated read current distribution from 1 million-point Monte Carlo simula-
tion. Dashed lines represent fitted Gaussian and lognormal models, and solid line indicates
the proposed model in Equation 5.1. (a) and (b) plot data at VDD=0.5V and 0.6V respec-
tively.

1. Integrate the model in order to obtain the cumulative distribution function (CDF) of

the read current. In MATLAB, the integral is approximated numerically by summing

over the y-axis value of the model at each I,ead multiplied by the step in 'read (see

Figure 5-14). 2

2. From the CDF, find the value of 'read corresponding to 1/array size. This is the

expected smallest read current (Iread-weak) in the array.

3. Compute the bitline discharge time as read wea, where CBL is the bitline capacitance.

4. Add the bitline discharge time to the propagation delay of other components of the

read path to find the read access time of the SRAM.

5.2.4 Assisting Read Operation

Although the 8T bit-cell removes the read SNM limitation, it does not address the issue

of bitline leakage. In the 8T cell, bitline leakage imposes a similar problem to that of

a 6T cell described in Section 5.1. The 8T cell has one read port and hence relies on

pseudo-differential sensing - after a period of time allocated to bitline discharge, read bitline

2A scaling factor should be applied in order for the CDF to sum to I.
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voltage (RdBL) is compared to a fixed reference (VREF). In this situation, the critical case

to consider is when the RdBL should remain precharged at VDD, but is instead partially

discharged by the leakage in the unaccessed cells.

Some degradation of the RdBL can be tolerated by the sensing circuitry, but the RdBL

must not droop below VREF plus the offset of the sense amplifier. Based on statistical

simulations of the bitline leakage and sense amplifier offset, the droop on RdBL is acceptable

at the weak process corner but is too large at the strong corner, reflecting the findings in

Figure 5-6. To reduce bitline leakage, we use the approach proposed in [97] and illustrated

in Figure 5-15. The source node of M7 in the read buffer is driven to VDD on the unaccessed

bit-cell, which eliminates the source-drain sub-threshold leakage current in the read buffer.

precharged to

Unaccessed Row

VDDMVo= 
..

MN1 BVss VDD

1" "1

Accessed Row 6T

MN1 BVss ~0V

Figure 5-15: Approach to eliminate source-drain sub-threshold leakage current on read
bitline [97].

For the SRAM row being accessed, the NMOS MN1 (Figure 5-15) in the read buffer

driver must sink the read currents of all cells on the row. In the unaccessed rows, however,

MN1 should be small to limit leakage. To sidestep this sizing trade-off, a charge pump from

[97] can be used to boost the gate of MN1 in the accessed row, dramatically increasing its

drive current at low voltages. Although [97] adds a dedicated boosting circuit for the read

assist, in this work we can reuse the circuit for boosting the write word-line as shown in

Figure 5-16 since reading and writing are mutually exclusive. Further, the capacitor C in

this circuit is sized for boosting a large write word-line capacitance by 100mV, and can

therefore provide a large boost to the small gate capacitance of the read buffer driver.
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Figure 5-16: Circuit shared between boosting word-line during write and boosting gate of
MN1 during read.

5.3 Glitch Energy Reduction

Figure 5-17 shows the top-level organization of a 64kb SRAM macro. 16 bit-cell sub-blocks

of 64 rows by 64 columns are connected via a tri-state data bus (DJO) used for both

reading and writing. During a read operation, the accessed sub-block drives the value being

read onto the D1O bus to the top-level output buffers. During a write, the global control

block drives the input data via D1O to the bitline drivers in the sub-block. In low-voltage

SRAMs, the energy to drive the DIO bus can be particularly large for two reasons. First,

full-swing signaling is employed for increased robustness instead of the low-swing schemes

found in above-threshold SRAMs. Second, the area density of low-voltage SRAMs tend to

be lower because having fewer bit-cells in a column helps improve read speed and relieve

bitline leakage. However, DIO must now span a larger physical area for the same memory

capacity. To lower the D1O bus energy for low-voltage SRAMs, we propose a self-timed

technique to reduce glitch energy.

A detailed diagram of the SRAM column circuits is shown in Figure 5-18. In a read

operation, the RDBL is allowed to discharge for a set period of time. Subsequently the

sense amplifier (implemented as a StrongArm latch) is strobed, and the result stored in an

SR latch. The latched result is then driven onto the DIO bus by a tri-state buffer. Since the

sense amplifier output is latched, the D-O bus does not change until the next read cycle,

providing the the next read occurs on the same sub-block. On the other hand, if the next
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Global Control Address Decoder

Figure 5-17: Top-level organization of a 64kb SRAM macro.

read occurs on another sub-block, then the new sub-block would drive data previously held

in the SR latches before the newly accessed data arrives, thus causing glitches on DIO. This

is illustrated in Figure 5-19. From a software point of view, consecutive memory reads to

different sub-blocks occur frequently, for example when the program instructions are stored

in one block of memory while the data is stored in another, or when the program is accessing

the software stack.

For read For write

Figure 5-18: Detail of SRAM column circuits.

One method to prevent glitches is to enable the tri-state drivers only after each sense-

amplifier has resolved. At the beginning of each read cycle, the differential sense-amplifier

outputs are both reset to VDD, then one output is discharged to ground during evaluation.

Accordingly, an XOR of the sense-amplifier outputs can be used to indicate that evaluation

has completed. The straightforward way to eliminate glitches is then to gate the tri-state
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Figure 5-19: Example of glitch occurring on DIO.

buffers with an XOR of the sense-amplifier outputs, as shown in Figure 5-20. If, on average,

half of the DIO lines glitch when switching between sub-blocks, then gating the tri-state

buffers reduces the switched capacitance by 28pF, a substantial amount.

Upon closer examination, however, we see that adding an XOR plus an AND gate to

every column imposes considerable leakage overhead. Whether this addition provides net

energy savings depends on the trade-off between glitching energy reduction and leakage

energy increase. This is analogous to the trade-off in power gating, and therefore break-

even time analysis can be applied. Here, the break-even time is tbe = Eglitch/Pleak-logic, or

the ratio of the glitching energy reduction to the additional leakage power. Table 5.4 lists

the three quantities at VDD=1V and 0.5V.

Table 5.4: The break-even time of adding logic to gate tri-state drivers for reducing glitches

on DIO. The added logic must be activated with the break-even time in order to provide
net energy savings. Leakage power overhead refers to the leakage of the two gates in the

shaded box of Figure 5-20, which are added to every column in the SRAM.

VDD Glitching energy Leakage power Break-even time Equivalent number of
savings overhead clock cycles

0.5V 7.03pJ 79.4nW 88.6ps 8.9
1.OV 28.1pJ 150nW 188ps 1880

To achieve net energy savings, there must be consecutive SRAM reads to two different
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Figure 5-20: SRAM column circuits with additional logic to enable tri-state buffer only
after the sense-amplifier resolves.

sub-blocks within tbe. At 1V this is a likely occurrence since tbe equals 1880 clock cycles.

Conversely, at 0.5V tbe translates into only several clock cycles, and the added logic may

well consume more energy than it saves.

As is apparent from the discussion of SRAM challenges in Section 5.1, in SRAM design

it is common to account for the worst case scenario, which in this context implies addressing

all glitches on DIO. Since the evaluation times of all 64 sense-amplifiers in the sub-block

differ due to local process variation, each must have its own gating logic to completely

eliminate glitches. However, we can instead consider the average case. On average, one

sense-amplifier selected at random will be slower than half of the sense-amplifiers in the

sub-block. By using one sense-amplifier to gate all tri-state buffers in the sub-block, we can

expect to reduce glitches on half of the DIO bus.

We can further extend this to selecting two sense-amplifiers. In this case, the slower of

the two selected amplifiers determines how many tri-state buffers can be effectively gated to

remove glitches. The expected savings can be computed as follows. Given the integers 1 to

64 (corresponding to 64 sense-amplifiers ordered according to their delays), randomly draw

two integers without replacement (X, Y), and find the expected value of their maximum.
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Let M = max(X, Y), then

E(M) = M x PMF(M)

64 M(M - 1)
M=1 6

43.3

In other words, by selecting two sense-amplifiers to gate all tri-state buffers, on average

we can remove glitches in 43 out of 64 bits on the DIO bus. This can be achieved at

the relatively low cost of two XOR and two AND gates per sub-block, as illustrated in

Figure 5-21. Table 5.5 reports the break-even times of using one and two sense-amplifiers

to generate the gating signal. Using a small subset of the sense-amplifiers, we can achieve

2/3 of the ideal glitching energy reduction while significantly reducing the leakage cost.

SA Done Differential
SA outputs

Column
"' circuits

RDE
DIO[O] DIO[1] DIO[2] DIO[62] DIO[63]

Figure 5-21: Generating tri-state enable signal (bufEN) for all 64 columns with the differ-
ential sense-amplifier outputs of two columns.

Table 5.5: The break-even time-when selecting only one or two sense-amplifiers to generate
gating signal for tri-state drivers.

VDD Glitching energy Leakage power Break-even time Equivalent num-

savings overhead ber of clock cy-
cles

Select one sense-amplifier

0.5 3.52pJ 1.28nW 2.75ms 275
1.0 14.1pJ 2.42nW 5.82ms 58200

Select two sense-amplifiers

0.5 4.69pJ 2.56nW 1.83ms 183
1.0 18.8pJ 4.84nW 3.88ms 38800
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5.4 Measurements and Characterization

The SRAM, whose layout is shown in Figure 5-22, was integrated into the processing plat-

form and fabricated in the target 0.13pm process. Since the SRAM is tightly integrated

with the logic, it is not possible to measure its speed independently. However, measurements

confirm that the system as a whole achieved the required performance in silicon. Figure

5-23(a) plots the frequency versus VDD of the SRAM integrated with the logic. Since the

SRAM has separate power pins from the logic, it is possible to measure the SRAM energy

independently. Measurements (averaged over reads and writes) at room temperature are

shown in Figure 5-23(b). The minimum energy point of the SRAM occurs at 0.6V. At 0.5V,

the leakage energy component causes the total energy to increase.

Global
control

Address
Decoder Sub-block DIO Bus

Figure 5-22: Annotated layout of 64kb SRAM macro in a 0.13pm process.

The SRAM was laid out with different components supplied by separate power pins such

that we are able to measure the energy of individual components on silicon. Figure 5-24

shows the components of total energy at O.6V and 1V.3 At 1V, the energy consumed for

driving global control signals (for example the global word-lines and sense amplifier strobe

signal) forms the largest component of the total energy. The column circuits, which include

the data bus drivers, are the second largest contributor. At 0.6V, the column circuits

overtake global control as the largest energy component. Since the SRAM contains many

copies of the column circuit (one for each column), the leakage power in the unaccessed

columns becomes significant when integrated over a long clock period.

Table 5.6 lists the measured energy of two previously published 8T SRAMs with ar-

chitectures similar to this work. The energy per access shown is averaged over reads and

3Note that the partitioning in silicon is somewhat different from the simulated energy breakdown.
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Figure 5-23: (a) Frequency versus VDD of SRAM integrated with logic. (b) Energy per ac-

cess versus VDD of 64kb SRAM macro. Both measurements are taken at room temperature.

Table 5.6: Energy per access comparison with previously published SRAMs with similar
architectures to this work.

SieMinimum Minimum
Reference Technology Sub-Block Size on t EngA s

m. Energy Point Energy/Access

Sinangil, 65n 64x128 0.V 11pJ
ESSCIRC 2008 [109]
Kwong, 65nm 64x64 0.5V 14.5pJ
ISSCC 2008 [26] 5
This work 0.13pm 64x64 0.6V 14.4pJ

writes. The SRAM in

published SRAMs that

this work achieves an energy per access comparable to previously

were implemented in more advanced technologies.

5.5 Conclusions

An examination of the key functional metrics of an SRAM - the operational margin for

reading, writing, and holding data - reveals that a 6-transistor SRAM in the target 0.13pum

process cannot function reliably at 0.5V. In particular, the read and write margins, as well

as substantial bitline leakage at the fast global process corner, must be addressed.

The SRAM design in the processing platform utilizes an 8-transistor bit-cell that is

amenable to low-voltage operation. While low-voltage 8T SRAMs have been demonstrated

152

0.6 0.7 0.8
VDD (V)

(a)

5

-.. ...................-. .....-4 -.-.-.-.- -.-

--. .... -.. ..... -.. ... -.. ... --.. ... -.. ...

-. ...... -.. ............- ..... -... . -.. . -.

0.6 0.7 0.8
V DD (V)

5



25.

0.

20

a 15 -Boosting
%Row

2')
oD Precharge
D 10

-6 Column
0

5

Global
0 1V 0.6V

Figure 5-24: Energy breakdown of the 64kb SRAM macro at VDD=1V and 0.6V (the
minimum energy point). The energy is averaged over read and write accesses.

previously [112, 105, 109], this chapter analyzes two aspects that have not been addressed in

prior work. We examine the energy of two common write assist schemes, reducing the bit-

cell VDD and boosting the word-line. It is shown that the first scheme requires considerably

more energy for writing due to the overhead of restoring the bit-cell VDD after a write

access. The read energy of the first scheme is slightly lower as its tall physical layout results

in a shorter data bus connecting the SRAM blocks. Next, we propose a model for the worst

case read current in an SRAM array, intended for situations where the supply voltage is

near-threshold (~~0.5V) and conventional models become inaccurate.

The energy analysis above showed that a sizable portion is needed to drive a large data

bus connecting blocks within an SRAM. Accordingly, we employ a self-timed scheme to

reduce glitches on the data bus. However, we show that it is important to weigh the leakage

overhead against active energy savings, particularly in SRAM design when a small circuit

change is replicated many times across the array. The usual practice of anticipating the

worst case and eliminating all glitches imposes excessive leakage overhead. Instead, we

implement a scheme that considers the average case and remove most glitches at a small

fraction of the leakage cost.
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Chapter 6

Chip Measurements and

Biomedical Application

Demonstration

Having described the design and optimization of components in the biomedical platform, we

now turn to measurement results of the prototype test-chip. The top-level block diagram

of the test-chip is repeated in Figure 6-1 for convenience. Below is a list of modules on this

platform and a brief description of their function.

* Microcontroller (pC) Core: a 16-bit RISC CPU supporting the MSP430 instruc-

tion set along with logic for software debugging (e.g. stepping through code, break-

points).

" Direct memory access (DMA): for efficiently copying data between any two

memory-mapped locations in the main memory and peripherals.

" JTAG: a 4-wire interface for loading instructions and data into the main memory at

start-up.

" Timers and real time clock: the timer generates timing intervals and pulse width

modulated signals, while the real time clock is helpful for timestamping data.

" Serial ports: for communicating with external components such as the ADC and

radio. Support UART, SPI, and 12C protocols.

" Multiplier: a 32-bit hardware multiplier.

" ADC interface: for communicating with a custom low power ADC being developed
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at MIT.

* General-purpose I/O ports (GPIO): 40 pins that can function as digital input

or output ports to interface to external components.

" Power Management Unit (PMU): manages power gating of all other modules in

the system, as discussed in Section 3.3.

" FFT, CORDIC, FIR, Median: custom hardware accelerators detailed in Chapter

2.

" SRAM: the main memory of the system which stores program instructions and data.

The memory is custom-designed to operate across 0.5V-1V, as discussed in Chapter

5.

A die micrograph of the test-chip, implemented in a 0.13pm low power process, is shown

in Figure 6-2 along with annotations of the various components. Since non-volatile memory

was not available for this test-chip, the software program and data are loaded at power-up

into the chip's SRAM through the JTAG interface. To facilitate testing and debugging,

the memory address and data buses (MAB, MDB) and key internal signals are multiplexed

to the general-purpose I/O ports so that we can observe them externally. Since most of

the activity in the system appears on MAB, MDB, we can compare transactions observed

on-chip to Verilog simulations to validate silicon functionality. Operation of the timers

and serial ports were verified in preparation for a future system prototype integrating this

digital processor with analog front-end and radio. Lastly, the accelerators can be verified by

printing their outputs to the GPIO ports and checking the results against expected values.
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Figure 6-2: Die micrograph of biomedical signal processing platform fabricated in a low
power 0.13pm process.

6.1 Top-Level Chip Measurements

The measured energy per clock cycle versus VDD of the microcontroller core, which includes

the 16-bit CPU, DMA, and software debug support logic, (IC core) is plotted in Figure

6-3(a). The core energy decreases monotonically with VDD, reflecting its relatively high

active energy component relative to leakage as explained in Chapter 4. For a 64kb SRAM

macro, Figure 6-3(b) shows that its energy per access (averaged over reading and writing)

reaches a minimum at VDD=0.6V and increases at lower VDD, which is consistent with its

low activity factor.

All components in the platform are designed to operate at the same frequency. The mea-

sured frequency across VDD of the system is shown in Figure 6-4. The measured frequency

lies within the range predicted by simulations.

6.1.1 Accelerator Measurements

This section details the system energy required to complete signal processing operations

including the energy of transferring data to and from the accelerators. We compare the

number of clock cycles and total energy to execute tasks in two ways. First, an operation

(e.g. an FFT) is specified in C software, compiled with default compiler optimizations,

then executed on the CPU and hardware multiplier. The MSP430 CPU does not include

an integrated multiplier, and hence the compiler maps multiplications to a 32-bit hardware
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multiplier peripheral. Second, the same operation is computed with a hardware accelerator.

Table 6.1 summarizes the number of clock cycles required in the two implementations,

while Table 6.2 reports the total energy. Accelerators provide between 133 to 215x energy

reduction for the listed operations. Of course, a complete application involves much more

than an FIR filter or an FFT. We will quantify the energy savings provided by accelerators

in the context of complete applications in Section 6.3.

Table 6.1: Number of clock cycles needed to execute signal processing tasks with 1) CPU
and multplier, and 2) hardware accelerator.

Number of Clock Cycles
Operation CPU & Multiplier Accelerator

32-tap FIR Filter 1890 32
512-point Complex-Valued FFT 918880 6431

sin(x) (CORDIC) 3395 36
65-point Median Filter 1210 15

6.2 Accelerator Programming Model

While sophisticated C compilers exist for the MSP430 microcontroller core in this platform

as well as for other microcontroller architectures (e.g. 8051, ARM), compiler support for
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Table 6.2: Energy per clock cycle and total energy to execute tasks
multplier, and 2) hardware accelerator.

with 1) CPU and

CPU & Multiplier Accelerator Reduction

Operation Energy Total Energy Total from
Per Cycle Energy Per Cycle Energy accelerators

(pJ) (nJ) (pJ) (nJ)

32-tap FIR Filter 93.2 176 38.1 1.22 144.4x
512-pt CVFFT 89.4 82148 95.8 616 133.3x

sin(x) (CORDIC) 82.3 279 36.1 1.30 215.2x
65-pt Median Filter 94.2 114 52.4 0.79 144.9x

accelerators is less well understood. Ideally, a compiler would be able to infer, from a high-

level software description, portions of an application that can be mapped onto hardware

accelerators. The design of such a compiler lies outside the scope of this thesis, but here we

will address how the accelerators can be incorporated into a software application.

6.2.1 Wrapper Functions

Usage of the accelerators is very similar to the use of peripherals in the MSP430 and other

architectures. A general sequence of events is as follows:

1. Program control registers to select desired features and mode of operation.

2. Provide the input data to be processed and start the accelerator.

3. Wait for the accelerator to complete.
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4. Retrieve results.

There are several ways to wait for the accelerator to complete. As mentioned in Chapter

2, the accelerators can raise a DMA trigger or an interrupt at task completion. However, we

have shown that interrupt handling can impose significant energy overhead. Alternatively,

if the computation time is short, it may be more efficient for an application to poll the

accelerator until it completes, thus avoiding the overhead of interrupt handling. Finally,

since the latency of the accelerators is deterministic, an application can simply proceed to

other tasks and fetch results from the accelerators after sufficient time has elapsed. In all

cases except polling, the rest of the system can be clock- or power-gated while waiting for

the accelerator.

As an example, the C software below illustrates the steps to initialize the FIR filter.

When the filter completes one operation, the FIR interrupt service routine is launched and

the result saved into a variable.

/************ Initialization Routine ************I

void initFIR() {

FIREN = 0; //Reset FIR by clearing FIREN bit

FIRCTLO = DECFILTSIZE-1; //set FIR order

FIRCTLI = 0;

FIRINTR = 1; //Enable interrupt on completion

FIREN = 1; //Start FIR accelerator

//initialize FIR filter with data

for(i=O; i<MAXSTORE; i++) {

FIRWRDATA = eegSamp[chnI][i];

//now initialize with coefficients

for(i=0; i<MAXSTORE; i++) {

FIRWRCOEFF = DownSample[i];

}

return;

/************ Interrupt Service Routine ************/

#pragma vector=FIRVECTOR

interrupt void FIRISR(void) {

firIntrVec = FIRIV; //Clear the interrupt

firOut = FIRRES; //Get FIR output
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}

In the above example, the programmer must be familiar with the structure of the FIR

control registers and the order in which the data and coefficients should be provided. This is

similar to the level of knowledge required in conventional embedded programming. However,

we can also simplify the programmer's task by abstracting some details into wrapper func-

tions. In the example shown below, the programmer can call a wrapper function initFIR

with arguments specifying the filter order, symmetry, and pointers to data. The wrapper

function then programs the accelerator accordingly.

void main() {

int f irIn[32];

int firCoef f [32];

//call wrapper function

initFIR(31, 1, 1, firIn, firCoeff);

}

/************ A wrapper function provided to the programmer ************/

void initFIR(int order, int symmetry, int intrEn, int* data, int* coeff) {

FIREN = 0; //Reset FIR by clearing FIREN bit

FIRCTLO = order; //set FIR order

FIRCTL1 = (symmetry) ? 0x2000 : 0;

FIRINTR = (intrEn) ? 1 : 0; //Enable interrupt?

FIREN = 1; //Start FIR accelerator

//initialize FIR filter with data

for(i=0; i<=order; i++) {

FIRWRDATA = data[i];

}

//now initialize with coefficients

for(i=0; i<=order; i++) {

FIRWRCOEFF = coeff[i];

}

return;

}
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6.2.2 Handling Floating Point Computation

Although the accelerators compute in fixed point arithmetic, it is not necessary to convert

an entire application from floating point to fixed point in order to make use of the accelera-

tors. Instead, an application can declare variables as floating point, perform floating point

operations on them as needed, and convert them into fixed point temporarily for processing

by the accelerators.

When converting a floating point variable in C into fixed point, we essentially need

to extract its mantissa, while the exponent indicates the scaling factor in the conversion.

Fortunately, we can utilize knowledge of the IEEE floating point standard [1161 to perform

the conversion efficiently. In the following we assume that the C compiler in question

represents a "float" data type by the binary32 format in the IEEE standard, but a similar

argument applies to different formats as well. The binary32 format consists of a sign bit

(s), an 8-bit exponent (x) followed by a 23-bit fraction (m), as shown in Figure 6-5. A

number in this representation is equivalent to (--1)s x (1 + m2 2 3 ) x 2(x-127). Accordingly,

we can construct a 16-bit fixed point representation of a floating point variable by treating

the first 16 bits of (-1)s x (1 + m2- 23) as an integer and 2-(x-127) as the scaling factor.

+- 8-bit exponent 4 : - 23-bit fraction -

31130 23 22 0

Sign Implied leading 1
bit before binary point

Figure 6-5: IEEE binary32 floating point format.

To make this more clear, we show an example of how to take the square root of a floating

point variable using CORDIC.

void main() {

float a, b, c, d;

c = a/b; //c is the result of a floating pt. division

d = sqrt-cordic(c);

}

float sqrt-cordic(float x) {

//Pointers to the ms and Is 16 bits of the float variable x
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unsigned int *float-msb, *floatlsb;

unsigned int x-fxPtScaIe, x.fxPt;

floatIsb = (int*) &x; //Set pointers to address of x

float-msb = (int*) &x;

floatmsb++;

//Get exponent field and subtract (bias-1)

x_fxPtScale = ((*float-msb) >> 7) & OxFF;

x_fxPtScale -= 126;

//Get the first 14 bits of the fraction field, then add the implied

/leading 1

//Note: this assumes that x is positive (for sqrt)

x_fxPt = (((*floatmsb & Ox7F) + 0x80) << 7) + ((*floatlsb) >> 9);

//Now program the CORDIC accelerator

cordic-wrap(x-fxPt, xfxPtScale, SQRT);

< reverse the above process to convert CORDIC output back to floating point >

}

6.3 Application Demonstration

Previously we have addressed the operation and energy of the accelerators in isolation. In

this section, we will demonstrate the accelerators in the context of complete biomedical

applications.

6.3.1 Epileptic Seizure Onset Detection from EEG

The first application aims to detect epileptic seizures from EEG signals acquired on the

surface of the scalp [19]. Since seizures are very disruptive to the lives of epilepsy patients,

the ability to detect their occurrence in real-time, and raise an alarm to a caregiver, would

be extremely valuable. Further, performing the processing on a wearable platform would

allow the patient to move freely while being monitored. A high-level view of the algorithm

is shown in Figure 6-6, where features are first extracted from a subject's EEG and then

analyzed by the classifier to determine whether they resemble features of a normal EEG or
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those of a seizure event. If a seizure is detected, an alert is raised.

Feaur Classification Alert
Acquired Feature- Normal/

EEG Signal Vector Seizure

Figure 6-6: High-level overview of the machine learning algorithm for epileptic seizure onset
detection [19].

A prototype EEG acquisition system-on-chip targeting this application was demon-

strated in [117, and included a custom ASIC with hard-coded filters to implement feature

extraction. We also focused on implementing the feature extraction stage of this algorithm,

but our platform solution allows the algorithm to be adapted on a patient-specific basis.

Additionally, in future work it is also possible to implement the classification stage by lever-

aging the CORDIC accelerator. Feature extraction involves computing the energy in seven

frequency bands of each EEG channel over 2-second windows. As illustrated in Figure 6-7,

a channel is first low pass filtered and downsampled by 4. The energy in different bands

is estimated with a filter bank followed by magnitude-summation. This is performed for

all EEG channels, which number 18 in a common EEG montage, but can be reduced to

five by intelligently selecting a subset that contains the key information for detection [118].

After every two seconds, the computed energies of all channels are concatenated into a

feature-vector and sent to the classifier.

In an EEG acquisition system (e.g. [23]), sensor nodes for acquiring different EEG

channels are distributed around the scalp, but information from all these channels must be

aggregated at one location for classification. To eliminate wires between sensor nodes for

acquisition and classification, which pose a strangulation hazard, the data is transmitted

wirelessly. The amount of data transmitted is greatly reduced by performing local processing

of each EEG channel, and only sending the feature-vectors instead of sending the entire

captured EEG channel. The amount of data transmitted with and without local processing

is given as:

" Local processing (send only feature-vectors): 18 channels * 7 words/2seconds * 16

bits/word = 1008 bits/sec

" No local processing (send entire waveforms): 18 channels * 256 words/second * 16

bits/word = 73728 bits/sec
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* Data compression with local processing: 73.1 x

Example inputs and outputs computed by the test-chip are shown in Figure 6-8. The top

panel plots one pre-recorded EEG channel that is fed into the test-chip. The prerecorded

EEG was generously provided by A. Shoeb and was obtained as part of the research in [19].

In the lower panels, each column of 7 points represents a feature-vector computed by the

chip, which is then sent to the classifier.

Processing per 39-tap BPF sum
EEG channel

N 0
]~62tap,

Figure 6-7: Details of the feature extraction portion of the seizure detection algorithm.
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Figure 6-8: One EEG channel and the computed energy in 7 frequency bands.

The shaded blocks in Figure 6-7 indicate portions of the feature extraction, namely

the decimation filter and the modulated filter bank, that can take advantage of the FIR
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accelerator. Since the test-chip only contains one FIR module, the various filters must be

handled sequentially. In this case it is advantageous to filter one block of samples at a time

to reduce the cost of initializing the FIR module with filter coefficients. Further, note that

the filters consist of 62 and 39 taps respectively, larger than 32-word local FIR memory.

Consequently, support for this application would not be possible if not for the extended

mode feature of the FIR accelerator (Section 2.5.3), which allows 32 taps to be stored in

local memory and the remainder to be fetched from main memory. To summarize, Figure

6-9 shows how this algorithm can be mapped onto the biomedical platform. The CPU and

DMA control the sequence of events and manage the flow of data. The key processing occurs

in the FIR filter, and when it completes one output sample, it raises an interrupt to wake

the CPU, which stores the decimated signal in memory or performs magnitude-summation

on the band pass filter results.

Processing in
CPU or DMA

Processing in
FIR accelerator

Load from /
store to
main memory

FIR interrupt
service routine

CPU, FIR
|sleep

Figure 6-9: Sequence of processing in the feature extraction application.

We now quantify the impact of accelerators in this context. As in Section 6.1.1, we

compare the energy of executing the complete application 1) solely on the CPU and mul-

tiplier versus 2) using the FIR module for filtering and the CPU for the remaining tasks.

Since the accelerated version finishes computation in fewer clock cycles, the platform can
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operate at a lower VDD while achieving the same latency as the CPU-based version. The

measured results are summarized in Table 6.3, showing that the combination of lower cycle

count and energy per cycle in the accelerated version contribute to 10.2x savings overall.

The energy breakdown between portions of the accelerated version is illustrated in Figure

6-10. The FIR filtering category includes the energy consumed by the FIR accelerator and

by the transfer of data/coefficients to the accelerator. The Other category includes the

movement of data needed to time-share one FIR hardware block between different filters in

the algorithm. This corresponds to the initialize and save contents steps in Figure 6-9.

Table 6.3: Measurements of two implementations of the EEG feature extraction algorithm,
one utilizing only the CPU and multiplier (CPU-based), and the other with CPU and

accelerators (accelerated).
Implementation VDD (V) System energy per Cycle count per Total energy per 2s

clock cycle (pJ) 2s window window (pJ)
CPU-based 1.0 94.2 2099720 198
Accelerated 0.7 49.7 388824 19.3

FIR Filtering
14%

Magnitude
Summation

5%

Figure 6-10: Energy breakdown between major portions of the EEG feature extraction
algorithm (version employing FIR accelerator).

6.3.2 Detecting the QRS Onset and Duration in an EKG Signal

The second application analyzes an EKG signal to find the onset and duration of the

QRS complex, which corresponds to the depolarization of the ventricles of the heart. The

amplitude and polarity of the QRS complex depend on the placement of the EKG electrodes,

but in many cases it is the most visually obvious part of the signal. The algorithm of interest

was proposed in [32] and available as open source software on Physionet [119]. While many
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QRS detectors in the literature find the peak of the R wave, the work in [32] locates the

beginning of the QRS complex, which can improve the accuracy of heart rate variability

analysis. In addition, it finds the duration of the QRS complex, a helpful feature for beat

classification. In the context of ambulatory monitoring, these two features can be analyzed

in real-time by the biomedical platform to determine if a subject's heart beat is normal or

warrants further attention.

Curve Length Adaptive Threshold
Na IIRE PF Transform & [ocal Search
C

Uses CORDIC Uses median filter
for fx and y/x to help local search

Figure 6-11: Outline of the application for detecting QRS onset and duration in an EKG.

The main components of the algorithm are illustrated in Figure 6-11. The EKG signal

is first low pass filtered with a second order IIR low pass filter. Then the curve length

transform of the signal is found by computing the arc length of the signal over a sliding

window ( At 2 + Ay ). The curve length transform accentuates long excursions

that are typical of a QRS complex if the window length is similar to the QRS duration.

Next, the transformed signal is compared against an adaptive threshold. At the crossing

point, the algorithm searches forwards and backwards to locate the start and end of the

QRS complex.

The shaded blocks in Figure 6-11 indicate portions of the algorithm that can leverage

the accelerators. The curve length transform requires integer division (for scaling) and the

square root, which can both be performed with CORDIC. Finally, the last stage of the

algorithm requires the minimum and maximum value of the transformed signal near where

it crosses the adaptive threshold. This can be aided by the median filter accelerator.

This application brought out several important observations about the CORDIC accel-

erator design. First, it would be impossible to compute the curve length transform with a

conventional CORDIC design due to its limited input range. Only by improving the input

range, as discussed in Section 2.3.3, were we able to utilize our CORDIC engine in this

168



computation. Using the modified CORDIC engine, we can compute the square root with

708 cycles (including floating point number conversion described in Section 6.2.2), versus

7440 cycles through software emulation on the CPU, a 10.5x decrease. Second, although

the CORDIC engine computes in fixed point and introduces quantization errors as discussed

in Section 2.3.3, its accuracy is sufficient for this application because our implementation

utilizing CORDIC for both f/i5 and y/x gave final results (the QRS onset and duration)

identical to a floating point C implementation.

Shown in Figure 6-12 are segments from two EKG records from the MIT/BIH Arrhyth-

mia Database [119] and the QRS start and end points as computed by the test-chip. We

again compare the energy of implementations with and without accelerators. In the fol-

lowing, we constrain the latency for processing one heart beat to 300ms, and adjust the

system voltage and frequency accordingly to meet this requirement. Table 6.4 summarizes

the measurement results. The use of accelerators provides 11.5x energy savings in this

application.

>6-
E

5-

0 200 400 600 800

6

>5.
E

0 500 1000 1500
Sample

Figure 6-12: Two EKG records annotated with the QRS start and end points as computed
by the test-chip.

Figure 6-13 plots the measured energy breakdown as the QRS detection algorithm pro-

cesses one heart beat. Data for the accelerated version is shown. In this algorithm, the

length transform is updated for every input sample, implying the square root is computed

for each input as well. Consequently, the square root function is an important portion
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Table 6.4: Measurements of two implementations of the QRS detection algorithm, one uti-
lizing only the CPU and multiplier (CPU-based), and the other with CPU and accelerators

(accelerated).
Implementation VDD (V) System energy per Cycle count Total energy per beat

clock cycle (pJ) per beat (pJ)
CPU-based 1.0 85.3 2210000 188
Accelerated 0.7 47.3 346000 16.4

contributing 24% of the total energy, even when it is computed efficiently by the CORDIC

engine. In the local search phase, the median filter requires 3.8x fewer cycles to find the

minimum of a signal compared to searching in software using a loop. However, the local

search phase occurs once per heart beat, and thus the overall energy impact of the median

filter is small in this particular appplication.

find minimum
1%

Figure 6-13: Measured energy breakdown between main portions of the QRS detection
algorithm (accelerated version).
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Chapter 7

Conclusions

This thesis demonstrated an energy-efficient processor for biomedical sensor nodes that can

be applied across multiple application domains. This is achieved by desiging for flexibility

and low power at different levels of abstraction. At the circuit level, lowering the power

supply voltage allows a circuit to operate at its minimum energy point. At low voltages,

circuits are much more sensitive to process variation, which becomes increasingly important

with process technology scaling. In digital design, the functionality of individual logic gates

as well as circuit delays are dramatically affected. However, it was shown in this thesis that

both effects can be managed through a careful analysis of failure modes at low voltages and

variation-aware design methodologies to address these mechanisms. The resulting ability to

operate circuits down to low voltages provides the flexibility of lowering the power supply

when a given application does not require high performance.

On the architecture level, power reduction can be achieved without throughput penalty

by decreasing unnecessary switching activity. This thesis demonstrated two examples of this

concept: reordering computations in an FFT to lower switching activity in the datapath,

and using a low-leakage self-timed approach to remove glitches on the SRAM data bus. To

improve flexibility, we design the accelerator architectures such that the basic datapaths

can be leveraged for various special cases, and this proved useful when we later mapped

biomedical applications onto the processor. These special cases are supported primarily by

adding appropriate control logic. The resulting accelerators show that this can be achieved

with low area cost.

On the processor level, accelerators provide substantial savings in the cycle count and
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energy of signal processing tasks. The leakage overhead of these blocks is effectively miti-

gated by module-level power gating. Chip measurements show that accelerators reduce the

energy to perform signal processing by two orders of magnitude. Consequently, the energy

consumed by the rest of the system in transferring data to and from the accelerators now

becomes significant. Accordingly, alternate bus structures or low-swing signaling would be

worthwhile to pursue in future work. Nevertheless, by performing key signal processing very

efficiently, the biomedical processor in this thesis achieved more than 10x energy savings

over two complete biomedical applications compared to a conventional low power processor.

7.1 Summary of Contributions

This thesis focuses on architectures and circuits for energy-efficient digital signal processing,

targeting ambulatory medical monitoring as the end application. Details of the contribu-

tions are summarized below.

Accelerator architectures

" Identification of signal processing functions that are common in ambulatory medical

monitoring applications, and for which hardware acceleration can provide significant

energy reduction.

" Analysis of the limitations of the classic CORDIC architecture and proposal of a mod-

ified architecture to extend the valid input range and reduce quantization error. The

input range was extended by a factor of approximately 214, and the RMS quantization

error decreased by 2-400 x depending on the mode of operation.

" Proposal of a control scheme to reduce datapath power in a serial radix-2 FFT archi-

tecture, common in low power processors. With this technique, the datapath power

is reduced by 50% and the overall FFT power by up to 29%.

" Design of a flexible FIR filter which supports special cases such as high-order filters

and polyphase implementations. Filter demonstrates a latch-based register file which

reduces the overall FIR power by 31%.

" Design and integration of the above accelerators in a prototype biomedical signal

processing platform in 0.13pm CMOS.
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* Demonstration of ambulatory monitoring applications on the processing platform,

and most importantly, mapping key signal processing functions to the accelerators.

Using the accelerators to aid the CPU enables greater than 10 x energy reduction in

complete EEG and EKG applications compared to implementations on a conventional

processor.

Low-voltage logic and SRAM design

e Proposal of design flow and timing verification methodology for two classes of low-

voltage logic: 1) targeting deep sub-threshold operation at the minimum energy point,

and 2) operating from near transistor threshold to nominal VDD, to support commen-

surate performance demands.

" Demonstration of a 65nm microcontroller which operates down to 0.3V. This repre-

sents the first processor to achieve deep sub-threshold operation at the 65nm node,

and the first to incorporate standard cell design and timing methodology explicitly

considering local variation.

" Identification of the energy to drive the SRAM internal data bus as a large contributor

to total energy in low-voltage SRAMs. Accordingly, a self-timed scheme to reduce

glitches on the data bus is employed. In contrast to the usual practice of designing

for the worst case, the proposed scheme removes most glitches in the average case at

a small fraction of the leakage cost.

" Design and integration of a 0.5V-1V SRAM as the main memory and FFT memory

of the biomedical processor.

System architecture

" Analysis of the energy of interfacing functional modules to a typical low power pro-

cessor architecture. It is shown that optimizing data transfers between modules will

have a large impact on the overall system energy.

" Analysis of a dual-bus structure as an alternative to the common single-bus archi-

tecture. Proposal of a framework to assign modules to the two buses in order to

173



minimize bus energy while accounting for the bus transaction characteristics of the

end applications.

7.2 Future Work

This thesis investigated several aspects of low power processor design for biomedical appli-

cations, but clearly there are many other interesting avenues for further exploration. We

list some directions for future work below.

Application-Specific Instruction-Set Processors

This thesis focused on a top-level architecture for the processing platform consisting of a

general-purpose RISC CPU augmented by specialized functional modules. An alternate

architecture is that of application-specific instruction-set processors (ASIPs). In ASIPs, a

general-purpose instruction-set is extended by specialized instructions targeted towards a

specific application [120]. These specialized instructions are supported by functional units -

in the example given in [120], an ASIP for Reed-Solomon encoding is extended by a module

for computing Galois-field multiplications. This is akin to the addition of accelerators

explored in this thesis, but an ASIP provides custom instructions for their usage as well

as compiler support for these instructions. On the other hand, extending the instruction

set would likely increase the size and complexity of the processor. It would be worthwhile

to evaluate an ASIP against a traditional CPU/peripheral architecture in the context of

biomedical applications in order to understand the performance and energy implications.

Compiler Support for Accelerators

Accelerators are only useful to the extent that they can be leveraged by the software pro-

grammer. In the accelerator design, we have made an effort to simplify their usage and

support a variety of special cases. Nevertheless, it would greatly aid the programmer's task

if a compiler can map a high-level description of an algorithm onto both the CPU and

accelerators. For a module like CORDIC which takes an input argument and provides an

output, this may be relatively simple. It is much more challenging to automatically generate

code that allows one hardware module to be time-shared across different portions of the

software (e.g., allowing one FIR module to support several filters).
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Multi-Function Accelerator

The accelerators in this work are each targeted towards a specific function. However, the

FFT and FIR filter, and likely other potential accelerators, rely on a common set of arith-

metic components. Instead of implementing separate modules, one can consider designing

a multi-function accelerator that can support both FIR filtering and FFT, consisting of

adders, multipliers, a local memory, and control logic managing the flow of data. The con-

trol aspect of such a multi-function accelerator brings forth interesting design problems and

trade-offs.

Energy of FFT Architectures

Due to the importance of the FFT in signal processing, numerous FFT architectures have

been proposed in previous work. Different designs (e.g. radix-2, radix-4, radix-23) are

often evaluated based on their peak throughput or the utilization rate of the datapath com-

ponents. To our knowledge, no prior work has compared architectures based on energy.

Differences between FFT architectures are somewhat more complex than a simple replica-

tion of components. For example, a radix-2 butterfly contains one complex multiplier while

a radix-4 butterfly contains three complex multipliers. However, the number of butterflies

in radix-2 and radix-4 are N/2 log 2 N and N/4 log 4 N respectively. A study of the trade-offs

between a larger datapath and fewer cycles to compute an FFT would be informative for

future sensor processor design.

Process Technology Selection

High performance, high volume products such as microprocessors and mobile chipsets are

implemented on the most advanced process technologies, mainly to take advantage of the

lower area and cost per chip enabled by process scaling. For other applications that do not

require high performance nor achieve high volumes, such as biomedical sensor nodes, we

may instead select a technology to minimize energy given application constraints.

In Section 4.1.2 we examined how to select a process technology to minimize energy

considering the frequency constraints and duty cycle of an application. This was accom-

plished by simulating a circuit across different supply voltages at each technology node of

interest. While simulating the exact circuit gives the most accurate results, an approximate
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approach that reduces the simulation time would be highly desirable, particularly for large

circuits. At the end of Section 4.1.2 we outlined one such approach that involves abstracting

a circuit into parameters such as the average switched capacitance and the leakage current,

then scaling these parameters across process technologies. Our preliminary simulations in-

dicate that it is challenging to accurately model how the leakage of a circuit scales with

supply voltage across different technology nodes; models using simulations of an inverter

do not suffice. Refining the approach into a reasonably accurate model would be helpful to

circuit and system designers.
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Appendix A

Cycle Count Optimizations in the

FIR Filter

A.1 Symmetric/Anti-Symmetric Filters

Symmetric and anti-symmetric filters are a popular class of filters due to their linear phase

characteristics. The impulse response of a symmetric FIR filter satisfies the relation h[N -

n] = h[n], where N is an integer. Because the filter coefficients are symmetric about N/2,

it is well-known that the convolution of Equation 2.17 can be rewritten as:

(N-1)/2

y[n] = E h[k](x[n-k]+x[n-N+k]),N odd (A.1)
k=O

N/2-1

y[n] = E h[k](x[n - k] + x[n -N + k]) + h[N/2]x[n - N/2], N even (A.2)
k=0

This type of filter can be implemented with half the number of multiplications compared to

a non-symmetric filter, which in our serial architecture translates into half the number of

clock cycles. To compute the above convolution in the FIR accelerator, we fetch two words

from the local data memory per clock cycle and add or subtract them before multiplying

with a coefficient.

177



A.2 High-Order Filters

Due to area constraints, the local data and coefficient memory of the FIR filter is restricted

to 32 words long. Typically this would imply that only filters of order < 31 can take

advantage of the accelerator. However, to introduce additional flexibility, we design the

control logic to accommodate filters of order up to 127. When the filter order is more than

31, 32 pairs of data and coefficients are stored in the local memory and the rest is kept

in main memory. The filter first performs multiply-accumulate on the pairs stored locally,

then fetch the remaining pairs from main memory in order to compute one output sample.

Although we incur more clock cycle and active energy with this approach than if all

data/coefficient pairs were stored locally, we still achieve savings during part of the compu-

tations.

A.3 Context Switching

Many applications require more than one FIR filter to appropriately process an incoming

signal. Accordingly, we designed an operating mode in which the data and coefficients of

two filters are stored in the local memory, and either one can be selected as the active

filter at any time. This provides savings in energy and clock cycles that would otherwise

be needed to initialize the local memory with another filter. Due to the size of the local

memory, this mode supports filter orders of < 15; however, the two filters can be of different

orders.

A.4 Polyphase Implementation

We further extend the context switching mode to perform a polyphase implementation of

a decimation filter. Although the accelerator design supports decimation-by-2, the concept

can be easily extended to decimation by higher factors. Figure A-1 shows the straightfor-

ward approach to form a decimation-by-2 filter. However, this approach is wasteful since

the filter runs at the higher input sample rate, but every other output sample is discarded.

In this approach, each output sample requires 2(N + 1) multiplications.

Instead, it is more efficient to implement the filter in its polyphase decomposition as

shown in Figure A-2, where Heven(z) and Hodd(z) denote two filters of order (N + 1)/2,
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x[n]-+ H(z) y[n]

Figure A-1: Conceptual diagram of a straightforward decimation-by-2 filter. Half of the
computations are wasted since every second output sample is discarded.

consisting of the even and odd coefficients of H(z) respectively. The top branch filters

the even samples of x[n] with Heven(z) and the bottom branch filters the odd samples;

after both branches have processed one input, the results are added to form one output

sample. It can be shown that Figure A-1 and Figure A-2 are mathematically equivalent

[59]. Moreover, since Heven(z) and Hodd(z) each perform (N + 1)/2 multiplications at a

rate of fi,/2 = fos,, the total number of multiplications per output is only (N + 1). This

represents half as many multiplications as in the straightforward approach, which again

translates into a 2x reduction in the cycle count in our serial architecture.

even
samples

samples
of x[n]

Figure A-2: Conceptual diagram of polyphase implementation of a decimation-by-2 filter.

In the FIR accelerator, we leverage the context switching mode to realize Figure A-2.

The accelerator stores H,,,,(z) and Hodd(z) as two different filters in local memory, auto-

matically switches between them after every input sample, and adds the results appropri-

ately.

A.5 Multiplication by Window

In addition to performing convolution, we can leverage the multiplier and local memory to

multiply a block of data with a window function. This type of operation arises often in

spectral analysis where a block of time-domain samples are multiplied by a window function

179



before undergoing the DFT. Different types of window functions (for example Hamming

windows or Kaiser windows) allow trading off frequency resolution and spectral leakage in

spectral analysis. We support this efficiently by storing the window within local memory

and multiplying input samples with successive values in the window, thus saving the energy

of repeatedly accessing the window from main memory.
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