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Abstract

An inference method based on higher order asymptotic expansions of the bias and

covariance of the Maximum Likelihood Estimate (MLE) is used to investigate the ac-
curacy of parameter estimates obtained from remote sensing measurements in oceanic
and planetary environments. We consider the problems of (1) planetary terrain sur-

face slope estimation, (2) Lambertian surface orientation and albedo resolution and

(3) passive source localization in a fluctuating waveguide containing random inter-
nal waves. In these and other applications, measurements are typically corrupted
by signal-independent ambient noise, as well as signal-dependent noise arising from
fluctuations in the propagation medium, relative motion between source and receiver,
scattering from rough surfaces, propagation through random inhomogeneities, and
source incoherence. We provide a methodology for incorporating such uncertainties,
quantifying their effects and ensuring that statistical biases and errors meet desired
thresholds.

The method employed here was developed by Naftali and Makris[84] to determine

necessary conditions on sample size or Signal to Noise Ratio (SNR) to obtain estimates
that attain minimum variance, the Cramer-Rao Lower Bound (CRLB), as well as
practical design thresholds. These conditions are derived by first expanding the bias
and covariance of the MLE in inverse orders of sample size or SNR, where the first-
order covariance term is the CRLB. The necessary sample sizes and SNRs are then
computed by requiring that (i) the first-order bias and second-order covariance terms
are much smaller than the true parameter value and the CRLB, respectively, and
(ii) the CRLB falls within desired error thresholds. Analytical expressions have been
derived for the asymptotic orders of the bias and covariance of the MLE obtained
from general complex Gaussian vectors,[68, 109] which can then be used in many
practical problems since (i) data distributions can often be assumed to be Gaussian
by virtue of the central limit theorem, and (ii) they allow for both the mean and
variance of the measurement to be functions of the estimation parameters, as is the
case in the presence of signal-dependent noise.

In the first part of this thesis, we investigate the problem of planetary terrain



surface slope estimation from satellite images. For this case, we consider the proba-
bility distribution of the measured photo count of natural sunlight through a Charge-
Coupled Device (CCD) and also include small-scale albedo fluctuation and atmo-
spheric haze, besides signal-dependent (or camera shot) noise and signal-independent

(or camera read) noise. We determine the theoretically exact biases and errors in-
herent in photoclinometric surface slope and show when they may be approximated
by asymptotic expressions for sufficiently high sample size. We then determine the
sample sizes necessary to yield surface slope estimates that have tolerable errors. We
show how small-scale albedo variability often dominates biases and errors, which may
become an order of magnitude larger than surface slopes when surface reflectance has
a weak dependence on surface tilt.

The method described above is also used to determine the errors of Lambertian
surface orientation and albedo estimates obtained from remote multi-static acoustic,
optical, radar or laser measurements of fluctuating radiance. Such measurements
are typically corrupted by signal-dependent noise, known as speckle, which arises
from complex Gaussian field fluctuations. We find that single-sample orientation
estimates have biases and errors that vary dramatically depending on illumination
direction measurement diversity due to the signal-dependent nature of speckle noise
and the nonlinear relationship between surface orientation, illumination direction and
fluctuating radiance. We also provide the sample sizes necessary to obtain surface
orientation and albedo estimates that attain desired error thresholds.

Next, we consider the problem of source localization in a fluctuating ocean waveg-
uide containing random internal waves. Propagation through such a fluctuating en-
vironment leads to both the mean and covariance of the received acoustic field being
parameter-dependent, which is typically the case in practice. We again make use
of the new expression for the second-order covariance of the multivariate Gaussian
MLE,[68 which allows us to take advantage of the parameter dependence in both the
mean and the variance to obtain more accurate estimates. The degradation in local-
ization accuracy due to scattering by internal waves is quantified by computing the
asymptotic biases and variances of source localization estimates. We show that the
sample sizes and SNRs necessary to attain practical localization thresholds can be-
come prohibitively large compared to a static waveguide. The results presented here
can be used to quantify the effects of environmental uncertainties on passive source
localization techniques, such as matched-field processing (MFP) and focalization.

Finally, a method is developed for simultaneously estimating the instantaneous
mean velocity and position of a group of randomly moving targets as well as the
respective standard deviations across the group by Doppler analysis of acoustic remote
sensing measurements in free space and in a stratified ocean waveguide. It is shown
that the variance of the field scattered from the swarm typically dominates the range-
velocity ambiguity function, but cross-spectral coherence remains and enables high
resolution Doppler velocity and position estimation. It is shown that if pseudo-random
signals are used, the mean and variance of the swarms' velocity and position can be
expressed in terms of the first two moments of the measured range-velocity ambiguity
function. This is shown analytically for free space and with Monte-Carlo simulations
for an ocean waveguide. It is shown that these expressions can be used to obtain



accurate, with less than 10% error, of a large swarm's instantaneous velocity and
position means and standard deviations for long-range remote sensing applications.
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4-6 (a) Signal to Additive Noise Ratio (SANR), (b) Signal to Noise Ratio

(SNR), and (c) the ratio of coherent to incoherent intensity at 415
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4-7 Ocean acoustic localization MLE behavior given a single sample for (a)

range estimation and (b) depth estimation for a 415 Hz source placed

at 50 m depth in a waveguide containing random internal waves. The

internal wave disturbances have a height standard deviation of nh =

4 m and coherence lengths of l = lV = 100 m. The MLE first-order
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and square root of the second-order variance (cross marks), as well as
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range. Other than the first-order bias and CRLB of the range MLE, the

remaining quantities have increased by at least an order of magnitude

when compared to the static waveguide scenario in Fig. 4-3. Given

the necessary sample size conditions in Eq. (A.6), whenever the first-

order bias and the second-order variance attain roughly 10% of the true
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source level is fixed as a constant over range so that 10logi 0SANR[1]
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4-9 Fluctuating waveguide containing internal waves. 10logio of the square

root of the CRLB for (a) source range po, (b) source depth so MLEs

given a single sample. 101oglo (max[nb, n,]), the sample sizes or SNRs

necessary to obtain (c) source range, (d) source depth MLEs that be-

come unbiased and have MSEs that attain the CRLB. Given any de-

sign error threshold, the sample size necessary to obtain an accurate
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n' = CRLB(max[nb, n])/(design threshold) 2. The internal wave dis-

turbances have a height standard deviation of r/h = 4 m and coherence

lengths of l, = l, = 100 m. The source level is fixed as a constant

over range so that 10logi 0SANR[1] is 0 dB at 1 km source range at all

source depths. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4-10 The same as Fig. 4-7, but here the covariance C of the measurement is

assumed parameter independent so that its derivatives in Eqs. 4.2-4.3

are set to zero. The asymptotic biases and variances of source range
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surement are equal and the two curves coincide. . . . . . . . . . . . . 119
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assumed parameter independent so that its derivatives in Eqs. 4.2-
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4-12 The same as Fig. 4-9, but here the covariance C of the measurement is

assumed parameter independent so that its derivatives in Eqs. 4.2-4.3

are set to zero. The CRLB and the sample sizes necessary to attain

it are underestimated when compared with Fig. 4-9. This scenario

is equivalent to incorrectly assuming the received measurement is a
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5-1 Sketch of the resolution footprint volume enclosing a target with ini-
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in x, y, z coordinates, respectively. The position mean and standard

deviation are , while the velocity mean and standard deviation
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5-3 Free Space. Expected value (black dashed line) and expected square

magnitude (black solid line) of the ambiguity function via 100 Monte-

Carlo simulations for the field scattered from a random aggregation

of targets following the Case A scenario described in Table 5.1. The

source signal and remote sensing system parameters are given in Table

5.2. The expected square magnitude of the ambiguity function based

on the analytical expressions of Eqs. (5.4-5.5) and (5.6) is also shown

(gray line) and is found to be in good agreement with the Monte-

Carlo result. The variance of the ambiguity function dominates the

total intensity and the magnitude squared of the ambiguity function's

expected value is negligible.. . . . . . . . . . . . . . . . . . . . . 137

5-4 Waveguide. Expected value (black dashed line) and expected square

magnitude (black solid line) of the ambiguity function via 100 Monte-

Carlo simulations for the field scattered from a random aggregation of
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fish/m 2 . The source signal and remote sensing system parameters are

given in Table 5.2. The expected magnitude of the ambiguity function
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5-5 Free Space. The strength of the sidelobes is much less than half that of

the main lobe and the Moment Method provides accurate velocity and

position estimates, as shown in Fig. 5-6. (a) Expected value of the am-

biguity function square magnitude for the pressure field scattered from

a shoal of migrating herring (Table 5.1, Case A) and given the source

signal and remote sensing system parameters in Table 5.2. The white

curve indicates 3 dB-down contour(s), which may be used to roughly

delimit the target shoal. The maximum of the ambiguity surface is

shown by a white cross. (b, c) Constant-velocity and constant-position

cuts through the point indicated by the white cross in (a). Dashed

lines indicate the mean position and velocity estimates based on the

maximum value of the ambiguity surface (Peak Method). . . . . . . . 147

5-6 Free Space. Estimates of the velocity and position mean and standard

deviation for simulated migrating and swarming herring shoals, and

a migrating school of tuna (Table 5.1), given the source signal and

remote sensing system parameters summarized in Table 5.2. Target
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footprint, and velocity estimate errors are typically less than roughly
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(white cross in Fig. 5-5(a)). (c, d) Same as (a, b) but for estimates of

the group's position mean and standard deviations obtained via both
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5-7 Waveguide. There is now more energy in the sidelobes of the ambiguity
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5.1, Case A) and given the source signal and remote sensing system

parameters in Table 5.2. The fish are assumed to be submerged in the
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the fish areal number density is 2 fish/m 2 . The white curve indicated 3

dB-down contour(s), which may be used to roughly delimit the target

shoal. The maximum of the ambiguity surface is shown by a white

cross. (b, c) Constant-velocity and constant-position cuts through the

point indicated by the white cross in (a). Dashed lines indicate the

mean position and velocity estimates based on the maximum value of
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Chapter 1

Introduction

In remote sensing applications, parameter estimation often requires the nonlinear in-

version of measured data that are randomized by additive signal-independent ambient

noise, as well as signal-dependent noise arising from fluctuations in the propagation

medium, relative motion between source and receiver, scattering from rough surfaces,

propagation through random inhomogeneities, and source incoherence. Parameter es-

timates obtained from such nonlinear inversions are typically biased and do not attain

desired experimental error thresholds. Further, additional errors can easily ensue if

both the mean and covariance of the measurement are parameter dependent and this

dependence is neglected in either by inappropriately modeling the random measured

field as either (i) a deterministic signal vector, or (ii) a fully randomized signal vector

with zero mean, both embedded in additive white noise. These approximations are

in fact typically employed in ocean acoustic inversions, spectral and radar detection,

localization problems, and statistical optics.[104, 49, 30]

For these reasons, a method has been developed for determining necessary condi-

tions on the sample sizes or Signal to Noise Ratios (SNRs) to obtain accurate param-

eter estimates and aid experimental design.[84] The method is based on asymptotic

expansions for the bias and covariance of maximum likelihood estimates (MLEs) in

inverse orders of sample size or SNR, where the first-order covariance term is the

minimum variance, the Cramer-Rao Lower Bound (CRLB) (see Appendix B). Ana-

lytical expressions are provided for the asymptotic orders of the bias and covariance of



MLEs obtained from general complex Gaussian data vectors, which can then be used

in many practical problems since (i) data distributions can often be assumed to be

Gaussian by virtue of the central limit theorem, and (ii) they allow for both the mean

and the variance of the measurement to be functions of the estimation parameters,

as is the case in the presence of signal-dependent noise.

This approach is based on classical estimation theory, [44, 60] and has already been

applied in a variety of problems, including time-delay and Doppler shift estimation, [84]

source localization in a deterministic ocean waveguide,[102] pattern recognition in 2-

D images,[11] and geoacoustic parameter inversion.[110] All previous applications,

however, were chosen so that only the mean or the covariance of the measurement

would be parameter dependent, but not both. These are special cases of the prob-

lems considered here where signal-dependent noise is typically present: (1) planetary

terrain photoclinometric surface slope estimation, (2) Lambertian surface orientation

and albedo resolution, and (3) passive source localization in a fluctuating waveguide

containing random internal waves.

In planetary terrain surface slope estimation, photoclinometry is typically em-

ployed to derive high-resolution elevation maps.[76, 81, 62, 93] For this problem,

besides signal-independent (or camera read) noise and signal-dependent (or camera

shot) noise, we also incorporate errors due to uncertainties in surface albedo and

atmospheric haze. We show that in many practical photoclinometric scenarios the

approximate asymptotic biases and errors for a single sample differ dramatically from

the exact ones, making asymptotic expressions for errors applicable only when a large

number of independent samples is available.

Acoustic, optical, radar and laser images of remote surfaces are typically corrupted

by signal-dependent noise known as speckle.[27, 48, 49, 86, 71] Surface orientation

and albedo estimates obtained from measurements of fluctuating radiance corrupted

by speckle noise are often biased and do not attain minimum variance. The biases

and errors of surface and orientation estimates are found to vary signicantly with

illumination direction and measurement diversity. This work expands upon work

presented by Makris at the SACLANT 1997 conference[73], as well as unpublished



notes of Makris from the Naval Research Laboratory (NRL).

For passive source localization in an ocean waveguide, scattering by internal waves

may result in the incoherent intensity or variance of the acoustic field dominating.

The ensuing loss of intermodal coherence in the forward propagating field leads to a

degradation in the accuracy of localization estimates. [21, 4, 3] We quantify the effect of

internal waves on the asymptotic biases and variances of source localization estimates

and show that the sample sizes and SNRs necessary to attain practical localization

error thresholds can become prohibitively large compared to a static waveguide. The

results presented here can be used to quantify the effects of environmental uncertain-

ties on passive source localization techniques, such as matched-field processing (MFP)

and focalization, [24] both of which typically utilize line arrays and CW signals.

Finally, we develop a method for estimating the first- and second-order veloc-

ity and position statistics of underwater target aggregations, such as groups of Au-

tonomous Underwater Vehicles (AUVs) and fish schools, imaged using a long-range

(tens of kilometers), remote sensing system. These estimates are based on analytical

expressions for the magnitude squared of the range-velocity ambiguity function for

the acoustic field scattered from such target groups. We show that in free space the

first two moments of the ambiguity function along constant range and velocity axes

are linearly related to the first two moments of the targets' velocity and position

given appropriate signal design. We then demonstrate using illustrative examples

that in a waveguide it is still possible to obtain such estimates of the velocity and

position standard deviations, which can then be used to provide a means for target

discimination and classification.
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Chapter 2

Statistical Biases and Errors

Inherent in Photoclinometric

Surface Slope Estimation with

Natural Light

2.1 Introduction

High-resolution elevation maps of planetary terrain are typically obtained by the

method of photoclinometry [76, 81, 62, 93), which relates variations in surface radiance

to variations in surface orientation relative to the light source, typically the Sun, and

the optical receiver, typically on a spacecraft [29, 83, 61]. While other methods also

exist to produce topographic models, including stereogrammetry and radar altimetry,

photoclinometry offers significant advantages since it (1) requires only a single image,

and (2) can provide higher resolution measurements [83].

It has been observed, however, that photoclinometry may not work very well

under certain lighting conditions that provide little topographic contrast, and that

these conditions typically correspond to small incidence angles [28, 36, 57, 61, 62].

Uncertainties in surface albedo may also lead to errors in surface slope estimates



that are significant for small-scale albedo variations [54, 62], but become relatively

insignificant for large-scale albedo variations [12].

The primary purpose of the present paper is to provide a formulation of uncer-

tainties and analysis of errors that (1) is consistent with the behavior of the likelihood

function [44] of the photoclinometric surface slope estimate that governs the uncer-

tainties, and (2) accounts for all the primary photoclinometric error sources, including

albedo, haze, camera read noise and camera shot noise, in a unified manner. Here,

classical estimation theory [44, 60] is used to provide a method for determining both

the exact and asymptotic biases and errors inherent in a Maximum Likelihood Esti-

mate (MLE) of photoclinometric surface slope given the probability distribution of

the measured Charge-Coupled Device (CCD) data and the nonlinear physical model

relating the measured CCD data to surface slope by planetary surface reflectance [83].

The formulation also provides bounds on the minimum possible error for any unbiased

photoclinometric estimate of surface slope as well as necessary conditions on sample

size to attain this error bound, or a desired design threshold on error. The asymptotic

biases and errors are determined by series expansion in inverse orders of sample size,

where higher order terms vanish in decreasing order as uncertainty decreases until the

Cramer-Rao Lower Bound (CRLB) or first-order error term is attained [84]. Since

approximations to investigate photoclinometric errors [28, 36, 57, 12, 61, 62] have

previously not been formulated in terms of the likelihood function that governs un-

certainties, error bounds, asymptotic behavior for decreasing uncertainty, necessary

sample sizes, and exact theoretical biases and variances have not been previously pro-

vided. We show that in many practical photoclinometric scenarios the approximate

asymptotic biases and errors for a single sample differ dramatically from the exact

ones, making asymptotic expressions for errors applicable only when a large number

of independent samples is available. Moreover, the asymptotic expressions for errors

must be formulated in terms of the likelihood function as in Refs. [95, 5, 80, 84] for

them to properly converge as uncertainty decreases or sample size increases.

In Section 4.2 we derive the likelihood function, the MLE and biases and errors

for photoclinometric surface estimation. The MLE is chosen because it is known to



become asymptotically unbiased and attain the minimum possible mean square error

of any unbiased estimate as sample size becomes large or uncertainty becomes small

[89, 44]. In Section 4.3 we compute the exact theoretical biases and root mean square

errors of the surface slope MLE for various photometric functions and typical values

of camera read noise, camera shot noise, atmospheric haze, and albedo variability. We

show that the biases and root mean square errors grow rapidly when the dependence of

measured intensity on surface slope approaches a constant, and that albedo variability

is typically the dominant source of biases and errors. We also present estimation

methods for minimizing these biases and errors to obtain surface slope estimates that

fall within desired design error thresholds.

2.2 The Likelihood Function and Maximum Like-

lihood Estimation of Planetary Surface Slopes

In photoclinometry, natural light from a thermal source, such as the Sun or a star,

typically acts as the source of planetary surface illumination. Natural light is known

to undergo Circular Complex Gaussian Random (CCGR) field fluctuations and ex-

ponentially distributed instantaneous intensity fluctuations, as a consequence of the

central limit theorem [49]. Spacecraft observations of planetary surfaces are typically

made with photon-counting CCD cameras [77, 81], where the number of detected pho-

tons is known to follow the conditional Poisson probability distribution for a given

average light intensity. Since the average intensity of natural light follows a Gamma

distribution, conditional integration over all possible intensities leads to the negative

binomial distribution for the photocount [49].

Photocount is related to planetary surface orientation by modeling the reflectance

properties of the planetary surface with a photometric function. Many planetary

surfaces have been successfully modeled with one or a combination of a such closed-

form empirical functions, including Lambert's law, Minnaert's law, and the lunar-

Lambert model [83].



In this section, we discuss three common photometric functions used to model

planetary surface reflectance. We then use classical estimation theory to derive the

likelihood function and MLE for photometric surface slope estimation, the theoret-

ical lower bound on surface slope error, and necessary conditions on sample size to

appropriately constrain biases and errors within desired design error thresholds.

2.2.1 Photometric Functions of Planetary Surface Reflectance

The most commonly used photometric function in planetary topography applications

is the lunar-Lambert function first introduced in Ref. [82],

I(p, pon, a)= Bo(a) [2L(2+IPn + (1 - L(c))pon (2.1)

where I(pn, pon, a) is the reflectance function, yI = cos E,, Pon = cos Ln, and en, tL

are the emission and incidence angles respectively, as shown in Fig. 2-1. The phase

angle az corresponds to the angle between the incidence and emission angles, and

Bo(a) = 1(1, 1, a) is defined as the intrinsic albedo. L(o) is the ratio of the lunar

to the Lambertian component in the lunar-Lambert function, so that in the limit

L(az) -+ 0 the modeled surface is Lambertian, while in the limit L(a) -+ 1, the

surface is lunar. The photometric function is the ratio of the intensity incident at

angle tn to that reflected to the receiver at emission angle En.
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Figure 2-1: Resolved surface element with slope 0 to flat topography. The slope, or
tilt 0 is the angle suspended between the z-axis and the surface normal, measured
counter-clockwise. All other angles are measured counter-clockwise from the z-axis or
the surface normal direction, as indicated by subscript z or n respectively. The true
incident angle is equal to the angle between the z-axis and the incident direction, tz,
minus surface slope, 0, or tn = t. - 0. Similarly, the true emission angle is equal to
the angle between the z-axis and the emission direction, ez, minus surface slope, 0,
or En = ez - 0. Specular reflection occurs when En = -tn. Given known angles tz and
Ez, photoclinometry can be used to obtain an estimate of the unknown surface slope
0.



For many planetary surfaces and phase angles, L(ao) can be well approximated as

a constant L, especially when observations are made over a limited range of incidence

angles. Ref. [12], for example, shows that variations in L for Martian terrain lead

to small errors of 10% of the L = 0.55 mean for Mars Orbiter Camera (MOC) [77]

incident angles in the vicinity of 25-45'. Similarly, the effect of large-scale albedo

variations, i.e. changes in the value of Bo(a) across the planetary terrain, can be

minimized by scaling out the average brightness of the imaged region [12]. Small-

scale variations in albedo cannot be similarly accounted for and may lead to much

larger errors [54, 62, 12]. Here we model Bo(a) as a Gaussian random variable

based on a central limit theorem assumption of many independent sources of albedo

variation. The mean is set to the average albedo value across the imaged region and

the standard deviation is defined as proportional to a fraction of the mean following

calculations presented in Ref. [6] for typical Martian surfaces.

The illumination and zenith direction vectors define the principal plane [88]. It is

common in planetary applications for satellite cameras to be close to nadir-looking,

so that the difference between the emission angle and its projection on the principal

plane is negligible. Assuming that local surface slopes are always in the up- or down-

sun direction, which is also the direction where reflectance is most sensitive to slope

changes for a Lambertian surface or small emission angles in the lunar-Lambert model

of Eq. 2.1 [12, 62], the emission and incidence angles can then be written in terms of

slope 0 with respect to a flat surface, e, = ez - 0 and tn = tz - 0. Here tz and ez are

defined as the known angles that the incident and emission directions make to the

zenith direction, respectively.

With these assumptions, the photometric function can be written as

I(p1 Pon, a) = I(0) = Bof(0), (2.2)

where

( os (t - )o(L-)f(0) L Cos(t0) + (1 - L) cos (tz - 6) (2.3)
Cos ('Z'EZ - 6) Cos (,-Z-6--)



Surface slope 6 can be estimated from knowledge of 1(6). While surface slopes will

be underestimated if their azimuth does not lie in the principal plane, this error is

found to be negligibly small for relatively flat topography, as are errors introduced

when the satellite viewing direction is off the principal plane [121.

Equation 2.3 is plotted as a function of surface slope 6 and incident angle with

respect to flat topography t, for the parameter L set to 0, 1, and 0.55 in Figs. 2-2(a),

2-3, and 2-4(a), respectively. The case L = 0.55 is shown here as an appropriate

choice for Martian terrain [12]. For other planetary bodies, Ref. [83] provides best-

fit L(a) values for various terrain types. The angle of emission with respect to the

z-axis is assumed to be c, ~ 00, which is equivalent to the typical case of a nadir-

looking satellite, so that the true emission angle is E, = -0. In all three figures, white

dashed lines highlight where the derivative of I with respect to 6 is zero so that the

dependence of the CCD measurement on surface slope is constant. White dot-dashed

lines correspond to the direction of specular reflection, which in this case occurs when

tn = -En= 6, or equivalently t, = t, + 6 = 26. Finally, black lines denote lines of

constant true incidence angle, tn, which are described by the equation tz = 0 + tn, so

that their slope and y-intercept are 1 and tn, respectively.
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Figure 2-2: Lambertian photometric function given constant albedo, Eq. 2.3 using
L = 0. (a) 3D representation of the value of Eq. 2.3 for L = 0 as a function of surface
slope 0, which is the parameter to be estimated, and incident angle with respect to
flat topography t,. The emission angle e, is assumed to be zero so that the satellite
is nadir-looking. The black lines correspond to lines of constant true incident angle,
on = tz - 0. The regions beyond the |ts| = 900 lines correspond to incidence on the
'back' of the surface patch, so that nothing is reflected towards the receiver and I = 0.
Superimposed on the plot is the curve along which the derivative of I with respect
to 0 is zero (white dashed line). Also shown is the line that corresponds to specular
reflection, en = -tn (white dot-dashed line). The plot can also be interpreted as a
sheared and rotated version of the plot of I versus true incident and emission angle,
tn and en respectively. (b) Three cuts along constant values of incident angle to flat
topography, tz, for the same photometric function. Each curve is obtained by cutting
along the corresponding white dotted line in Fig. 2-2(a) from right to left.
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The Lambertian photometric function of Eqs. 2.2-2.3 for L = 0 is symmetric about

the line where the true incidence angle t, equals zero, which is also where dI/dO is

zero, as a consequence of Lambert's cosine law, and as can be seen in Fig. 2-2(a). The

lunar photometric function of Eqs. 2.2-2.3 for L = 1 is instead antisymmetric about

the direction of specular reflection, while its derivative with respect to surface slope

goes to zero when the incident and emission directions become collinear, as can be

seen in Fig. 2-3(a). For the lunar-Lambert photometric function of Eqs. 2.2-2.3 for

L = 0.55, the dI/dO = 0 curve (white dashed line) is close to the t, = 0 line for small

tilt angles 0, while it gradually moves towards the tz = 0 line as 0 increases, as can be

seen in Fig. 2-4(a). For the Martian example of L = 0.55, and for small tilt angles, the

lunar-Lambert surface then approaches Lambert's cosine law, but becomes similar to

a lunar surface as the surface slopes become larger.

The Lambertian, lunar and lunar-Lambert photometric functions are also plotted

as functions of the true incidence angle t, = tz - 0, for different values of the angle

between the illumination direction and the zenith direction, tZ, in Figs. 2-2(b)-2-4(b).

These plots are constructed by cutting along the white dotted lines of Figs. 2-2(a)-

2-4(a) from right to left. Again, we note that the Lambertian photometric function

depends only on the value of the true incidence angle t , while the lunar photomet-

ric function becomes independent of surface slope when the incident and emission

directions are collinear.

2.2.2 The Probability Distribution of CCD Photocount

Measurements of Planetary Surface Reflectance

Charge-Coupled Devices (CCDs) typically form the basic recording unit of the high-

performance cameras used for space exploration missions [77, 81] by measuring the

number of electrons released from a photosurface when an electromagnetic field is

incident upon it. This number is linearly proportional to the number of incident

photons, which in turn is a function of the average light intensity incident on the

photosurface [56], so that the CCD output signal can be parameterized in terms of



average intensity.

Natural light from thermal sources, such as the Sun, is known to follow Circular

Complex Gaussian Random (CCGR) field fluctuations by the central limit theorem,

so that average intensity is described by the Gamma distribution [49]. Since the

number of photon arrivals for a given light intensity is known to be a Poisson random

variable, the statistics of CCD-measured photocount then follow the negative bino-

mial distribution [49]. For thermal light at optical frequencies, and for the common

integration times of CCDs [77], the discrete negative binomial distribution can be

well approximated by the continuous Gaussian probability density (see Appendix C),

1 1K -E(- 2

PK(Kl0) = (0) exp ( K K(O)] (2.4)
v/27rOK(0 2 .7 K(0).

where K is the measured photocount.

The mean and variance of K have been derived in Appendix C (Eqs. C.19, C.20)

and are repeated here for convenience

K = y[i(6) + H] =-y[Bof (0) + H], (2.5)

K = + s O + U (2.6)

where - is a known proportionality constant that depends on incident solar flux,

camera integration time, pixel surface area and other parameters as described in

Eq. C.5, Bo, 2BO are the mean and variance of surface albedo, respectively, and H is

the expected intensity of atmospheric haze which is assumed to be a known constant

[12]. Atmospheric haze is described by a CCGR field that is independent and additive

to the CCGR field scattered from the surface which carries reflectance information.

The variances or expected intensities of these two fields then add, so that the haze

contribution increases the mean and variance of the photocount K. This leads to

a dilution of surface reflectance information in the total photocount. Atmospheric

haze often contributes minimally to topographic shading [12]. Ref. [63] provides a

model for how haze is affected by changes in atmospheric conditions and illumination



geometry.

The photocount variance then has signal-independent components due to camera

read noise o' [56], and atmospheric haze olaze = yH, and signal-dependent com-

ponents -Bof (0) for shot noise and K a/Bo 2 for albedo uncertainty. The signal-

dependent components arise from the Poisson nature of photon statistics, the CCGR

fluctuations of the incident field, and the multiplicative dependence of the photomet-

ric function on albedo. By defining the Signal to Noise Ratio (SNR) of K - 'YH, or a

sample mean of n independent and identically distributed measurements of K - 7H,

as the ratio of the squared mean to variance, SNR is proportional to sample size n. It

also becomes large as the mean photocount becomes large and the standard deviation

of albedo becomes small compared to the mean albedo.

2.2.3 Maximum Likelihood Estimation

The likelihood function for an estimate of 0 is defined as PK(K16) evaluated at the

measured values of K, where PK(K6) is the conditional probability distribution of a

data vector K of independent and identically distributed photocount measurements

K1 , K 2 , K 3,... , K, obeying Eqs. 2.4 through 2.6 given surface slope parameter 6.

Measurements of random photocount, in the vector K, then contain information

about surface slope 6 through both the mean and variance of the photocount via Eqs

2.1- 2.6. The MLE 0 is defined as the surface slope that maximizes the likelihood

function with respect to 0 [89, 44]. The Cramer-Rao Lower Bound (CRLB) is the

minimum mean square error attainable by any unbiased estimate, regardless of the

method of estimation. The CRLB i- 1 is the inverse the Fisher information, also known

as the expected information, which is defined as i = (l), where l(KJ6) = In PK(K6)

is the log-likelihood function, and lj = ai(KIO).0

If the sample size n is sufficiently large, or uncertainty is sufficiently small, the

MLE 0 is asymptotically unbiased and obeys the Gaussian distribution

Pg(6|6) = exp (6- 6)2 (2.7)
PV 1) 2,7r (2



with variance i-1 equal to the CRLB [89, 60], where [70, 71]

. 1 K 2 + 1 Baln (U )2z=n +
2a o 8 2 80

n K _ 2 ) , - 2
r (K 1\ + 2[1 + 2K- 1 (2.8)2 Kao) 2 x . Bo.

given the probability distribution for K described in Eq. 2.4-2.6 and Appendix C,

Eq. C.18. In the deterministic limit n - oc, where K is obtained from exhaustive

sample averages, P(0) becomes the delta function (0 - 0).

In photoclinometry, surface slope estimates are obtained from single images, so

the sample size is actually n 1 and the MLE often will be biased and not attain

minimum variance. The necessary sample sizes for the MLE to become effectively

unbiased and have a Mean Square Error (MSE) that asymptotically attains the CRLB

are derived in Appendix A.2 and appear in Eqs. A.6b-A.6a. For convenience, we define

the necessary minimum sample size, nb, to obtain an unbiased MLE by conservatively

requiring that the first-order bias b1 (Eq. B. 14) be 10 times smaller than the true value

of the parameter,

nb = 1 0 Jbi(O)l (2.9)
101

Similarly, the necessary minimum sample size, no, for the MSE of an unbiased esti-

mate to attain the CRLB is defined by requiring that the second-order variance var2

(Eq. B.16) be 10 times smaller than the CRLB,

nv = 10 var 2(0IO)1 (2.10)
vari(0|0)

where vari = i-1 is the CRLB (Eq. B.15). In the asymptotic limit as uncertainty

decreases, the conditions in Eqs. 2.9-2.10 can also be interpreted in terms of the SNR

necessary to obtain an unbiased MLE that attains the CRLB.



2.3 Results and Discussion

In this section we calculate the exact theoretical biases and errors of photoclinometric

surface slope estimates for photometric functions following Lambert's law, Minnaert's

law, the lunar-Lambert model, for a typical Martian surface imaging scenario (see

Appendix C) using the statistical formulation of Section 2.2.3 and the Appendices.

To calculate the exact theoretical bias and Root Mean Square Error (RMSE) of a

MLE surface slope estimate 6 it is useful to observe that for K = g(6) and 6 = g-1(K),

it follows that 6 = g-1(K) by invariance of the MLE [60] where K = K is the MLE

of the mean photocount K. The bias and RMSE of 6 are then given by

bias(O) = 6 - (0) (2.11)

RMSE(O) = bias 2() + var(6) (2.12)

where

(6) = g-1(K)PK(K6)dK (2.13)

var(6) = j (g -(K) - (6) PK(K16)dK (2.14)
0

for the conditional probability distribution defined in Eqs. 2.4 through 2.6. The exact

theoretical bias and RMSE are calculated using Eqs. 2.11-2.14 for the combined effects

of all variance terms in Eq. 2.6 assuming U - 6400 electrons, K O(104) electrons,

aze a2000 electrons, and UB, = 0.1 x Bo as discussed in Appendix C. Results are

shown as a function of the incident angle with respect to the zenith direction, tz, and

true surface slope 6 in Figs. 2-5-2-7.

Both the bias and RMSE of the surface slope estimate increase significantly in the

region where the first derivative of I with respect to 6 goes to zero, and the measure-

ment becomes 'insensitive' to the parameter to be estimated. For the Lambertian

photometric function (Fig. 2-5) the worst errors then occur along the t, = 0 line, a

consequence of Lambert's cosine law, as expected from Fig. 2-2. For the lunar photo-



metric function (Fig. 2-6), the bias and variance of the estimate are worst along the

line tz = cz where the incident and observation directions become collinear, as noted

in Fig. 2-3. Finally, the worst bias and errors for the lunar-Lambert photometric

function (Fig. 2-7) occur along a curve that lies in the region between the t, = 0

and t, = c curves, depending on the exact weighting between the Lambertian and

lunar functions. By using the full likelihood function for the surface slope estimate

9, we find that previous approximations to the biases and errors typically underesti-

mated their true values by as much as 50%, as can be seen by comparing for example

the error ranges shown in Fig.A4a of Ref. [57] to those presented in Fig. 2-7. The

first-order error term in Ref. [57], for example, is based on an implicit assumption of

additive signal-independent noise, and so is not consistent with the dominant sources

of photoclinometric noise, albedo and camera shot noise, which are multiplicative and

signal-dependent, and does not equal the first-order term expected from estimation

theory, the square root of the CRLB (Eq. B.15).
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as a function of t, and 6.
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Since the bias and RMSE for the lunar-Lambert photometric function may be

as large as 10 degrees or more when the incident angle with respect to the zenith

direction, tz is less than 20 degrees (Fig. 2-7), obtaining optimal estimates may then

necessitate averaging over statistically independent measurements. Here, an optimal

estimate is defined as one that is unbiased (or has a bias that is negligible compared

to the true value of the parameter), and its RMSE attains the the specified design

threshold. Statistically independent samples can be obtained, for example, by mea-

suring surface radiance under different illumination and/or observation conditions, or

by estimating surface slopes over larger regions that can be divided into statistically

independent and identically distributed sub-regions. When averaging over a spatial

region, the correlation area of albedo variability will limit the total number of statis-

tically independent samples available in that region to the ratio of the total area of

the region to the correlation area. The number of samples N necessary to attain the

design threshold is given by

RMSE(6)

design threshold

By calculating the sample sizes necessary to asymptotically obtain optimal esti-

mates, we find that, while one sample appears to be enough for most illumination

conditions, the required number of samples increases significantly in the region of

the dI/dO = 0 curve. The necessary sample sizes are computed using Eqs. 2.9-2.10,

B.14-B.16, and shown in Figs. 2-8-2-10. In each figure, the white dashed line denotes

the curve where dI/dO goes to zero and more than 10 4 samples are typically required

to obtain an estimate that asymptotically becomes unbiased and has a RMSE that

attains the square root of the CRLB. In Figs. 2-8(a) and 2-10(a), a ridge occurs at

6 = 0, where the denominator vanishes according to our definition for nb (Eq. 2.9).
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face slope and for an unbiased estimate to attain the minimum possible RMSE. The

planetary surface reflectance is assumed to follow the Lambertian photometric func-

tion of Fig. 2-2. (a) 10logio of the necessary sample size for an unbiased estimate 6 as

a function of incidence angle to flat topography tz, and true surface slope 0 computed

using Eqs. 2.9 and B.14. (b) 10logio of the necessary sample size for an unbiased

estimate to attain the minimum possible RMSE as a function of tz and 0 computed

using Eqs. 2.10 and B.15-B.16. The white dashed line indicates the curve along which

the derivative of the photometric function with respect to the estimated parameter 0
is zero and the necessary sample sizes approach infinity.
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Figure 2-11 shows the first-order bias (Eq. B.14) and the square root of the CRLB

(Eq. B.15) for the lunar-Lambert photometric function of Eqs. 2.2-2.3 using L = 0.55.

We find that these asymptotic biases and variances differ dramatically from the exact

theoretical values, as can be seen by comparing Figs. 2-11 to 2-7. This is especially

evident in two regimes: (1) at large incidence angles, larger than typically 10 degrees,

where the asymptotic biases and errors go to zero, and (2) at small incidence angles,

where the asymptotic biases and errors very rapidly approach infinity as dI/d6 goes

to zero along the white dashed lines in Fig. 2-11. In the special case when n, samples

are available, the RMSE equals the square root of the CRLB. Even then, the CRLB

may still be larger than the design threshold, in which case a total of N = n, x n'

samples would be necessary, where VW' = vCRLB/(design threshold).
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Figure 2-11: Absolute value of the first-order bias and the square root of the CRLB,
Eqs. B.14 and B.15, respectively, of the Maximum Likelihood Estimate (MLE) of
surface slope for the lunar-Lambert photometric function. (a) First-order bias as a
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estimated parameter 6 is zero and the asymptotic biases and errors approach infinity.



One way of obtaining more independent samples is to tilt the satellite camera to

an off-nadir direction. For example, consider the case where the emission direction

is at an angle of 20 degrees to the zenith direction, but still lies in the solar plane as

defined in Fig. 2-1 and Section 2.2.1. The photometric function, the bias and RMSE

(Eqs. 2.11-2.14) of the MLE, and the necessary sample size conditions for this case

are shown in Figs. 2-12-2-14.

Comparing Figs. 2-7 and 2-10 to Figs. 2-13 and 2-14, respectively, we find that

rotating the camera significantly affects the bias and RMSE, as well as the sample

size necessary to obtain an optimal surface slope estimate for given values of tz and 0.

This example then suggests that carefully designed off-nadir viewing may provide an

opportunity for reducing surface slope biases and errors when combined with nadir

images.

Depending on the exact experimental conditions, it may be possible to specify a

general strategy where an optimal estimate can be obtained from a single sample. For

example, for the two cases of the lunar-Lambert function presented here (Figs. 2-4

and 2-12), requiring Itzj > 30', and |tzl > |Ez| + 200 will allow optimal estimates to

be obtained for most values of 0. These two conditions are less stringent than the

I ~ 600 - 750, which is typically specified as the optimal regime for photoclinometry

[28, 57], where the upper limit typically stems from the need to avoid shadows which

are not amenable to investigation. The results presented here (Figs. 2-5-2-7 and 2-

13) suggest that photoclinometry may work equally well even at shallower incidence

angles.
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2.3.1 Comparison of the Different Sources of Noise or

Uncertainty

Here, we examine the biases and errors due to each source of noise or uncertainty

described in Section 4.3 acting in the absence of the others. Specifically, biases and

errors are calculated with Eqs. 2.11-2.14 by replacing Eq. 2.6 with only the variance

term for either (i) read noise, (ii) shot noise, (iii) atmospheric haze, or (iv) albedo

variability for each respective case.

As expected, the biases and errors for each noise source increase significantly in

the region where the reflectance function has weak dependence on surface slope, as

shown in Figures 2-15 and 2-16. The total bias and RMSE for all these error sources

has been shown in Fig. 2-7. Biases often dominate the RMSEs.

We find that albedo variability is typically the dominant source of biases and

errors, on the order of 10-20' or more at small incidence angles (t, smaller than

roughly ten degrees), as can be seen from Fig. 2-15(d). Camera shot and read noise

are the next most important noise sources, leading to biases and errors on the order

of 50 (Fig. 2-15(a-b)). Finally, haze appears to be the least significant source of

noise, resulting in biases and errors that are typically on the order of a 1-2', or

approximately an order of magnitude smaller than those due to albedo variability, as

can be seen from Fig. 2-15(c). This last result is in agreement with previous literature

[62], where errors due to haze have typically been found to comprise less than 20% of

the total error when accurately modeled. Note however that haze effects may increase

significantly in magnitude during dust storms [20].
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Since the ratio of the albedo to the shot noise contribution of the photocount

R2variance from Eq. 2.6 is K z, we expect that albedo noise should dominate the
Bo

variance of the photocount K if the standard deviation of albedo uncertainty is larger

than 1 times the mean albedo, or roughly 1% of the mean albedo for the mean

photocount used here of K O(104), given sufficiently low read and haze noise

contributions. This is indeed found to be the case in Figs. 2-15-2-16 where eBo =

0.1 x Bo, for our typical Martian scenario. For much lower albedo uncertainty of

UBo = 0.005 x Bo, as reported for Miranda [51], the total bias and error are instead

dominated by shot noise, which can be seen by comparing the black dashed lines

to the gray dash-dotted lines in Fig. 2-17 which shows a cut through Figs. 2-7 and

2-15-2-16 along the line t,, = 120.
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2.4 Conclusions

Both theoretically exact and asymptotic biases and errors inherent in photoclinomet-

ric estimation of planetary surface orientation from Charge-Coupled Device (CCD)

measurements are calculated using an approach developed from classical estimation

theory. The approach can be used to determine the accuracy of topographic recon-

structions and aid in experimental design.

The likelihood function governing statistical fluctuations of a photoclinometric

slope estimate is derived, including uncertainty due to camera shot noise, camera

read noise, small-scale albedo fluctuations and atmospheric haze. The derivation

incorporates common photometric models of planetary surface reflectance and the

known probability distributions of CCD measurements of natural light. From this,

bounds on the minimum mean square error of any unbiased estimate of photoclino-

metric surface slope are derived, as are necessary conditions to attain these bounds

and constrain errors within desired design thresholds. Approximate asymptotic biases

and errors for low uncertainty (1) are formulated in terms of the likelihood function

to insure proper convergence with decreasing uncertainty, and (2) typically differ dra-

matically from the exact ones, making them applicable only when a large number of

independent samples is available. Biases and errors are shown to typically become

much larger than surface slopes for illuminations and observations where planetary

reflectance is weakly dependent on surface slope, near inflection points of the photo-

metric function.

The approach developed here provides a unified method for quantitatively compar-

ing the biases and errors from different sources of uncertainty in a photoclinometric

estimate. Albedo variability, for example, is shown to typically dominate estimate

biases and errors when the standard deviation of albedo uncertainty is larger than

approximately -J times the mean albedo in the imaged region, for CCD photocount

K, while other error sources such as shot noise may become dominant for very low

albedo uncertainty.
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Chapter 3

Resolving Lambertian Surface

Orientation from Fluctuating

Radiance

3.1 Introduction

Acoustic, optical, radar and laser images of remote surfaces are typically corrupted

by signal-dependent noise known as speckle. This noise arises when wavelength scale

roughness on the surface causes a random interference pattern in the field scattered

from it by an active system. Relative motion between source, surface and receiver,

or source incoherence causes the received field to fluctuate over time with circular

complex Gaussian random (CCGR) statistics.[27, 48, 49, 86, 711 Underlying these

fluctuations, however, is the expected radiance of the surface, from which its orien-

tation may be inferred. In many cases of practical importance, Lambert's Law is

appropriate for such inference because variations in the projected area of a surface

patch, as a function of source and receiver orientation, often cause the predominant

variations in its radiance.

The aim of this paper is to provide a method for estimating remote surface orien-

tation and albedo from measurements of fluctuating radiance that are corrupted by



speckle noise. The ability to accurately resolve remote surface orientation from mea-

surements of fluctuating radiance is not only of great importance to ocean acoustics, [105,

58] but also to optics,[14, 106] medical ultrasound,[101] planetary terrain surveillance,[33,

37] and machine vision.[53] Due to the signal-dependent nature of speckle noise, and

the nonlinear relationship between surface orientation, illumination direction and

radiance,[87] surface orientation estimates based on a single sample typically have

large biases and mean square errors (MSEs). Given the probability distribution of

surface radiance and the physical model relating it to surface orientation and albedo,

maximum likelihood estimates (MLEs) are derived and their biases and variances are

expanded in terms of the likelihood function.[95, 5, 80, 84] The likelihood function

governs the physical and statistical behavior of surface orientation estimates, so that

the expansions presented here are guaranteed to converge in inverse orders of sam-

ple size or Signal to Noise Ratio (SNR). Analytical expressions are then derived for

the sample sizes or SNRs necessary to obtain estimates that are in the asymptotic

regime where biases are negligible and MSEs attain minimum variance. The biases

and errors are found to vary signicantly with illumination direction and measurement

diversity. In a particularly compelling example, it is shown that the minimum er-

ror in estimating the angle of incidence with respect to a Lambertian surface is at

best proportional to the cotangent of this angle, so that surface orientation varies

from irresolvable at normal incidence to perfectly resolvable at shallowest grazing. A

preliminary investigation of surface orientation estimation from fluctuating intensity

presented by Makris at the SACLANT 1997 conference[73] determined sample size

conditions by a Taylor series approach that is not guaranteed to converge in inverse

orders of sample size as the approach here does since it did not involve the expansion

of the likelihood function. The special case of deterministic data, which corresponds

to infinite SNR, has been treated by Horn.[53]

In Section 3.2, we present the necessary Radiometry background and describe how

measurements of surface radiance are typically obtained, and in Section 3.3, we give

the probability density for such radiometric measurements. In Section 3.4, we review

estimation theory and the maximum likelihood method, and determine necessary



conditions on sample size or SNR to obtain estimates of the desired accuracy. Finally,

in Section 3.5 we present illustrative examples of estimating surface orientation and

albedo.

3.2 Radiometry

The flux d1, received in a acoustic, optical, radar or laser beam of solid angle d#,

is related to the area of the resolved surface patch dAO (Fig. 3-1), the local surface

radiance LO, and the solid angle subtended by the receiver aperture dQ, by the linear

equation

dC = dAOLadQ. (3.1)

The solid angle subtended by the receiver aperture from the surface patch dAf is

dQ = cos V), dA/r 2 , where dA is the area of the aperture, cos@, is the foreshortening

of the surface patch with respect to the receiver, ?, is the scattering angle, and r is

the range to the aperture. The intensity of the received beam is then

d1 cos@r
I= dA = dAOLB C 2  (3.2)

10 dA Pr2

Assuming that the receiver is of sufficiently high resolution that it resolves an

elemental surface patch dAf, that is locally planar and small enough so that

d# = dA. cos Or (3.3)
r2

surface radiance can be directly measured by the receiver as

dI = L. (3.4)
d#
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Figure 3-1: Resolved surface patch.



For a Lambertian surface,

LO = pE cos 0j, (3.5)

so that the radiance measured in a acoustic, optical, radar or laser image of the scene

LO, is independent of the viewing direction $r. It follows a linear relationship with the

foreshortening cos @/i of the surface patch, the surface irradiance E, and the surface

bidirectional reflectance distribution function p which is 1/7r for a perfectly reflecting

Lambertian surface. Here @/ is the angle of incident insonification and E is defined

as incident flux per unit area on the surface of albedo irp.

3.3 The Likelihood Function and Measurement

Statistics

Let the stochastic measurement vector R contain the independent statistics Rk whose

expected values ok-(a) = (Rk) are linearly related to measured surface radiance, where

the vector a contains the surface orientation parameters a, to be estimated from the

measurements R for r = 1, 2, 3 ... Q. More succinctly, let o-(a) = (R).

Assuming the Rk are corrupted by Circular Complex Gaussian Random (CCGR)

field fluctuations, the conditional probability distribution for the measurements R

given parameter vector a is the product of gamma distributions[71, 70]

M (Pk pA(k (gk- exp(-pLk Rk

PR(R; a) = 0 .(a) (3.6)
k=1

The quantity pk is the number of coherence cells in the measurement average used

to obtain Rk,[71, 70] the variance of which is given by oa/k. It is important to note

that Pk is then also equal to the squared-mean-to-variance ratio, or Signal to Noise

Ratio (SNR), defined as (Rk)2 /((R2) - (Rk) 2). For example, Pk equals the time-

bandwidth product of the received field if each Rk is obtained from a continuous but

finite-time average. Additionally, Pk can be interpreted as the number of stationary



speckles averaged over a finite spatial aperture in the image plane or the number of

stationary multi-look images averaged for a particular scene.[70]

3.4 Classical Estimation Theory and a Higher

Order Asymptotic Approach to Inference

The Maximum Likelihood Estimator (MLE) A, for the parameter set a, maximizes

the log-likelihood function l(R; a) = ln (PR(R; a)) with respect to a. The Cramer-

Rao Lower Bound (CRLB) i-1 is the minimum mean square error attainable by any

unbiased estimate, regardless of the method of estimation. The CRLB is the inverse of

the Fisher information matrix, also known as the expected information, the elements

of which are given by ibc = (ible), where 1,= -- T-) and a, is the rth component of a.

For sufficiently large sample size, pk, the MLE is asymptotically unbiased and

follows the Gaussian distribution

Psj (A; a) =xp ( a)'i(i-a) ,(3.7)

with variance i-1 equal to the CRLB,[89, 60], where[71, 70]

M alnUk(a)olnUk(a

Zbc - (ik Dab nca) (3.8)
k=1

ibc __ 1 k (a) )2 (9ab aac
- [i1bc = 1 ( k allk (a) a0k(a(39

given the probability ditribution for R described in Eq. 3.6. In the deterministic

limit pk -* o, where the Rk are obtained from exhaustive sample averages, Pj(A; a)

becomes the delta function 6(A - a).

Expressions for the asymptotic orders of the MLE bias and variance have been

derived in detail in Ref. [84] and are summarized in Appendix B. For the statistical



model of Eq. 3.6,

M 1a2 
bi(,; a,iy,1) = M 2 , (3.10)

-~2 I'k i0<
k=1 k

M 2

vari(r;a,/y,1) = Oa r, (3.11)
k=1 Pk Oo(

M .3oa12 a, 4aa, a3 a 14a2 a, 2 (.2
var2(ar; a, y, 1) = E -2o- +0' + (3.12)

where bi is the first-order MLE bias, and vari, var2 are the first- and second-order

MLE covariance, respectively.

As shown in Appendix B, assuming for simplicity that Pk = p for all k, the MLE

bias and variance can then also be expressed as asymptotic series in inverse powers

of P,

bias(dr, yi, 1) = bi (a,; a, e, 1) .+b2 (ar,; a, e , 1) _3), (3.13)

var1(;a, e, 1) var2(; a, e, 1) 3
var(5r, y, 1) = + P2 + Op ), (3.14)

where the components of the vector e are ek = 1 for k = 1, 2,. . . , M. To simplify

notation, let varj (&r; a, e, 1) = vark(ar; a) and bj (a,; a, e, 1) = bj (&r; a).

The value of p necessary for e, to become asymptotically unbiased is found by

conservatively requiring the first-order bias to be an order of magnitude smaller than

the true value of the parameter,

M 012 2a,

y b1(;a) = 10 (3.15)
ar 2a,

Similarly, the value of p necessary for the MLE variance to asymptotically attain the

CRLB is found by requiring the second-order variance to be an order of magnitude



smaller than the first-order variance, so that

|var2(,; a) M aak ar 4 1
p = 10 v( = 10 2k(3.16)

vari(a,;a) M 2 ( aar'
Ek=1 Uk ao-

Only for values of p satisfying these conditions is it possible for the variance to be in

the asymptotic regime where it is unbiased and continuously attains the CRLB. [84,

102, 110]

3.5 Inferring Lambertian Surface Orientation

For measurement k, a collimated source with known unit incident direction sk irradi-

ates a planar Lambertian surface with unknown unit normal vector n. For each mea-

surement, the receiver measures Lambertian surface radiance from any hemispherical

position within view of the surface. For convenience, a Cartesian coordinate system

(x, y, z) is adopted, with the origin in the center of the resolved surface patch, as

shown in Fig.3-1. Because surface incident irradiance Ek is presumed known, given

knowledge of source power, directionality, and transmission characteristics to the sur-

face, it can be deterministically scaled out of the measured surface radiance leaving

OLk = (Lk)/Ek. When signal-independent additive CCGR noise of intensity cNkd/3kEk

is also measured with the radiant field from the surface, the expected measurement

vector (R) becomes o(a) = UL(a) + ON-

Lambert's Law for the expected radiometric component of the data is then

(R)L = UL(a) = [i(a), . . . , uM(a)] Sx, (3.17)

where the matrix S is defined by

ST =[s s 2 s3 ... sM, (3.18)

and the vector x equals pn.



The general problem is to determine both the Lambertian surface normal vector

n and the albedo irp from the fluctuating measurements R. The surface normal is

typically expressed in terms of the surface gradient components

= [ -- q 1]/(1+ p + q) 1 , (3.19)

where

pn =9 , n = -, (3.20)

or in terms of spherical coordinates

n = [cos #n sin On sin 4n sin 6 cos 6]. (3.21)

3.5.1 Maximum Likelihood Estimates of Surface Orientation

and Albedo

The 3-D parameter vector x is to be estimated from the potentially over-determined

M-D measurement vector R. From Eqs. 3.8 and 3.17, the mean square error bound

on any unbiased estimate R is

((i - x)(R - x)T) ;> JI = [ST J0,S] , (3.22)

where [J,]ij = i6,/cr is infinite when all incident vectors Sk are tangent to n in

the absence of signal-independent noise.

To derive the maximum likelihood estimate (MLE) of the vector x = pn, he

probability distribution for R in Eq. 3.6 is rewritten as

M ( tMk p-k ( Rk )Ak-1 ex p( -pk R

PR(R; x) = 1J (X " (Puk) . (3.23)
k=1

The MLE i, maximizes the log-likelihood function in(PR(R; x)) with respect to x,



so that it satisfies

Oln(PR(R; x)) Mk Rk

09r k=1 'k _ Uk
&Uk

1 &X
OXr,_ r .

where 2 is the (k, r) element of S. Considering all the elements of x, Eq. 3.24 can

be rewritten in vector form as

M

( (Sk )T k
k=1 07k X= c

[STJ,o]

M

= (Sk)T
k=1 k

= [ST JoR] _

x=x

(3.25)

(3.26)

where Sk is the kth row of S. The MLE, given linearity between x and o is then

given by

x = [STjS] -1 ST J(R - ON), (3.27)

is unbiased and attains the error bound J;1 of Eq. 3.22.

Given this information, the MLEs for albedo 7r5 = ir ji|, surface normal n = k/#,

cone and polar angles 5, = cos-ins, 4n = tan-' f, and surface gradient components

fn= Z, 4n = -, however, are not generally unbiased and do not generally have

minimum variance except for sufficiently large sample sizes.

Taking the case where R is a 3-D vector and UN iS negligible, for example, the

joint distribution for * is

P(Ix) = |si -s 2x s3s PR(Sl U), (3.28)

which leads to the respective joint distributions

Pgrad(Pn, 4n, AIpn,q n, p) =

Pi(-4&n(1 + p2 + 42)-1/2, jAdn(1 + p2 + 2)-1/2 ,(1 +p + 2)-1/21X

#2'(1 +32 + 42)-3/21
(3.29)

=0 (3.24)



and

Ppo.ar(6, #n, p6,n , p) =

P(p COS n sin 6n y3 sin en sin On, cos nIx) (3.30)

#2 sin 2 6n

for the gradient and polar coordinate MLEs.

Returning to the general case when R is an M-D vector, the asymptotic maxi-

mum likelihood distributions for surface orientation and albedo follow Eq. 3.7 when

Eqs. 3.15 and 3.16 are satisfied.

3.5.2 The Angle of Incidence

Suppose that the angle of incidence 0 is to be estimated from a single measurement

R, with mean o- = p cos @ and variance o 2 //a, given that the albedo 7rp is known.

From Eq. 3.8, the resulting mean-square error bound is the inverse of the (scalar)

Fisher information

()2 -1 (cos + O-N) 2

> [t sin 2 04 (3.31)

for any unbiased estimate 4, which becomes

~ ) cot2
((b )2) - = ,2  (3.32)

when the signal-independent noise is negligible. These expressions show resolution

of the incident angle to be highest when the Lambertian surface is illuminated at

shallow grazing and lowest when the surface is illuminated near normal incidence.

This can be motivated physically by noting that for shallow grazing angle illumination

Lambert's Law has a first order dependence that is proportional to the incident angle.

Conversely, for illumination near normal incidence Lambert's Law is independent of

the incident angle to first order. It is also significant that when the root mean square

error (RMSE) bound is finite, it can be reduced in proportion to the square-root of



the sample size 1 averaged to obtain the radiometric statistic R, as shown in detail

in Section 3.4.

The MLE for the angle of incidence is

)= cos- 1  (3.33)

Many of the potential benefits and difficulties associated with maximum likelihood

estimation can be illustrated by examining the statistical properties of $.

For the remainder of this section, let UN be negligible, as may be expected in

practical imaging systems expect at shallow grazing where # is very near 7r/2. First

of all, because R is a gamma variate and can take on any positive definite value, the

estimate 4 is real for 0 < R/p 5 1 and imaginary for R/p > 1. The probability that 4
is real is found to be -y(p, p/ cos V)/F(p) by appropriately integrating PR(RI@V). But

this leaves finite probability F(p, p/ cos @)/F(p) that 4 is imaginary. More specifically,

let the statistic + r + 4i, where er, 4' are the real and imaginary parts of 4

respectively. Then the statistic 4 is distributed according to

Pj4;4') = p sin 4PR(p cos4';4@) over 0< 7 r/2, (3.34)

for 4 real, and

P= p sinh 4PR(p cosh ; 4') over 0 < oc, (3.35)

for 4 imaginary. The probability F(p, p/ cos 0)/F(p) that # is imaginary decreases

as the angle of incidence 4 and sample size p increase, as does the bias of 4.

Apparently, CCGR fluctuations in the radiant field can lead to unphysical MLEs

of the incident angle 4. This can be remedied by reconditioning the MLE, given

ancillary information[44] that 4 is real, so that

P ,Re(o; Ppbj4' = R{4'};4') = psin 4PR(pcos 3.3)
(p, P/ Cos (3



for 0 < 4 <ir/2. Similarly, the probability that O is imaginary is defined as

4 = { = p sinh 4PR(p cosh 4; @)F(, /cos @), (3.37)

For sufficiently large sample size p, the relationship between MLE @ and data R

approaches linearity, so that @ obeys the Gaussian distribution

P- (4';4') = tp (3.38)
P,G 2 7r c Ot 2 V) 2 coO2

with bias vanishing and variance equaling the inverse Fisher information, cot 2 O/b.

Figure 3-2 shows the probability densities of Eq. 3.36 (dash-dot line), Eq. 3.37

(dash line), and Eq. 3.38 (solid line) for 4 = 30'. As the sample size p increases,

the correlation between P ,G and P;,R. approaches one, while P4',m goes to zero. For

the value of 4 used in these plots, a sample size of approximately 320 is necessary

for the correlation between P ,G and P'Re to become larger than 0.99. As the true

value 4 increases, the necessary sample size to achieve a good correlation is found to

decrease, as discussed earlier.
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Figure 3-2: Probability densities given real, imaginary or Gaussian constraint on
parameter estimate.
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Following Section 3.4, 4 is effectively unbiased when

p t> ,3 (3.39)
20

and effectively attains the bound i- 1  cot 2 0/p when

y > cot2 ( 3+ 7cot2 g . (3.40)

As the above expressions show, the sample size necessary for @ to behave as a

minimum variance, unbiased estimate varies nonlinearly from unity at shallow grazing

angles to infinity near normal incidence.

Figure 3-3 shows the sample sizes necessary for the MLE to become asymptotically

unbiased (Eq. 3.39, dash line), for the MLE variance to asymptotically attain the

CRLB (Eq. 3.40, dash-dot line), and for the correlation between PSG and P to

be greater than 0.99 (solid line), as functions of the angle of incidence 4. The curves

have been truncated so that the minimum necessary sample size is 1. For most values

of 4, achieving a minimum variance estimate also ensures that an unbiased estimate is

obtained that approximately obeys the Gaussian distribution of Eq. 3.38. For shallow-

grazing incidence angles (4 approaching 90 degrees), the sample size necessary for

Pgo to be a good approximation to PbRe becomes the limiting condition.
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an estimate that attains the minimum possible variance.



3.5.3 3-D Surface Orientation and Albedo

Two independent measurements of surface radiance with distinct illumination can

lead to at most two unique solutions for the two components of Lambertian surface

orientation. [53] This ambiguity in surface orientation can be easily resolved if one of

the solutions places the surface out of the view of the observer. Otherwise, the am-

biguity can be resolved if a third measurement is made under distinct illumination.

These observations can be geometrically motivated by considering the intersection of

the cones formed by appropriately rotating the Lambertian surface normals about

the source direction for each measurement given the slope estimated from that mea-

surement. Here, specific examples of resolution bounds on orientation estimation are

presented, as well as expressions for the CRLBs for cone and polar angles, surface

gradients and/or albedo given two or three measurements of surface radiance.

For surface gradient aT = [p q r], or polar coordinate aT = [0 < p] parameteriza-

tions, the mean square error bound on any unbiased estimate d is

-a)(A - a)T) 2 J- -= &&8a T (3.41)ax X x

where Jx is given in Eq. 3.22. The bound J; 1 becomes singular when all the sk are

coplanar but not tangent to the surface for non-zero 0N, or when the Jacobian |I
is singular. When 0 N vanishes, jJl/j 2 J<1/ 2 can be interpreted as the effective

weighted volume of incident vectors sk. For example, when R is a 3-D vector, the

bound J is

[_ 2 s2 x s3si[s2 x s3] + E [S3 x s]i[s3 x s], + ![si X s2]i[s1 x S2]j

(Si - S2 X s3 )2

so that J 1/2 j0, -1/2 simply is the volume (Si - S2 X S3) 2 of the parallelepiped of

incident vectors. Behavior of the Jacobian 1I depends upon the final coordinates

a, as can be seen from the respective forms (p2 + q2 + 1)3/2 /p 2 and 1/(p 2 sin2 0) for

the surface gradient and polar systems.

Assume that the measurements Rk have the same number of coherence cells,



Pk = y for all k. The stereo case is considered where three measurements R1, R 2 and

R3 are used to compute the two parameters ai and a2. Let ai = a and a2 = # be the

Lambertian surface orientations (azimuth and elevation angles, or surface gradients).

The abbreviation Ck -- ok-(a,/) = cos@)[k] is used, where 4[k] denotes the angle of

incidence for the kth measurement. It is also convenient to define the vector L to

have the elements Lk = In Ck, which contain the natural logarithms of the positive

semi-definite measurement cosines. With this definition, the CRLB's for the general

Lambertian surface orientations ac and # are

L 2

1 -5
E[(& - a)2] _ - 2' (3.43)

L 2

21 aL12

E[(1 - /3)2 a 2. (3.44)
/IL DL

B5a 850

The bounds only depend upon the cosine between the source direction and Lam-

bertian surface normal for each measurement, Ck, and the respective partial deriva-

tives of these cosines with respect to the two orientation parameters to be estimated.

It is relatively easy to determine conditions in which these expressions will attain

limiting values due to the positive semi-definiteness of terms in the numerators and

denominators. For example, the bounds are infinite when all three measurements are

coplanar with the surface normal, such that n - (s[1] x s[2]) = n - (s[2] x s[3]) = 0.

However, the bounds are not necessarily infinite for coplanar illumination directions

that are not also coplanar with the surface normal, i.e. for s[1] - (s[2] x s[3]) = 0, but

n - (s[1] x s[2]) $ 0, or n - (s[2] x s[3]) # 0. The bounds are zero when any of the two

direction cosines C1, C2, C3 are zero and the two respective illumination directions

for these have differing polar angles.

It is also possible to estimate the albedo when three measurements with unique

illumination directions are available. Let a3 = p be the surface albedo. It is useful to

define the unit all-measurements-equal vector E by its components such that Ek = 1



for k = 1, 2, 3. With this definition, the CRLB's for estimation of a, /3, p are given

by

E[(d - a) 2] >

E[(# - #)2 >

E[(p - p) 2] >

2

1 x E

2- Ex 'L -E]2
09a 80

1 x EI
1 ExE -E

Oa 80

2
2 OL &L

p2 Xa 00
_ ( - L 2,

09 E x -

It is noteworthy that the bound for p is a function of the surface orientation

components a and #, as well as p. While the bounds for a and # given in Eqs. 3.45

and 3.46 are independent of the value of p, they are affected by uncertainty in the

value of p, and Eqs. 3.43 and 3.44 are no longer applicable. These particular bounds

for a and # are infinite when all three illumination directions are coplanar such that

s[1] - (s[2] x s[3]) = 0, even if the directions are not coplanar to the surface normal.

Additionally, these bounds for a and # can be zero when any of the two direction

cosines are zero.

Note that for the CRLB for p to be given by p2/p, and thereby be otherwise

independent of Lambertian surface orientation, it is sufficient to have

(8L BL N (L BLx -P x =0
Ba 8/3 Ba 8/3 '

87

(3.48)

(3.45)

(3.46)

(3.47)



where the permutation matrix is defined as

0 1 0
P 0 0 1 . (3.49)

1 0 0

For example the CRLB for p is given by p2 /p when any two of the measurement

cosines C1, C2, C3 are equal to zero.

Eqs. 3.45-3.47 are useful in providing a geometric interpretation of the CRLB for

a, / and p given three measurements. For example, consider the conditions leading

to the limiting values of zero and infinity for the bounds. Inspection of the positive

semi-definite numerators and denominators of Eqs. 3.45-3.47 motivates consideration

of the following two cases: (1) the partial derivative of the logarithmic measurement

vector with respect to the orientation component a or # respectively is orthogonal

to the all-measurements-equal vector; (2) the cross product of the partial derivatives

of the logarithmic measurement vector with respect to the a and # orientations is

orthogonal to the all-measurements-equal vector. When (1) is true but (2) is not, the

respective bound on orientation component # or a is zero. When (1) is not true but

(2) is true the bound on either orientation is infinite. As noted before, this occurs

when the illumination directions for all measurements are coplanar with the surface

normal. When both (1) and (2) are true, the bound on a or 3 depends only on the

number of coherence cells.

Figures 3-4-3-6 show the CRLBs of Eqs. 3.45 - 3.47 and the necessary sample

sizes of Eq. 3.15 and 3.16 for the x- and y-gradients, and surface albedo p. These

computations exhibit the dramatic nonlinear variations in the sample sizes necessary

to obtain accurate estimates of Lambertian surface orientation and albedo from multi-

static acoustic, optical, radar or laser images corrupted by signal-dependent speckle

noise.
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Figure 3-4: A visualization for a corresponding to the surface gradient parameteriza-
tion for a 3-D measurement vector R with -N negligible and Lambertian surface de-
fined by the polar coordinate parameterization (On = 7r/4, #n = ir/4, p = 0.6). Inci-
dent vectors si ands 2 are fixed at (//3, - 1/I6, 1/I6) and ( 1/6, V2/3, 1/6)
respectively, but s3 is allowed to vary as in (a) where the positive z-axis is central and
points out of the page. (b) The bound [J;]1 1 on the x-gradient, ai = p, including
full 3-D coupling. Only values where s3 - n is positive and the Lambertian surface
is in view from the positive z-axis are shown. Optimal resolution occurs when s3 is
tangent to the Lambertian surface along the x-axis (horizontal), for the p-bound, and
the y-axis (vertical) for the q-bound (see Fig. 3-5(b)), with sign so as to maximize the
volume of incident vectors. Poorest resolution occurs when the volume of incident
vectors approaches zero, as realized along the dark arc. (c) The sample size necessary
for the MLE &1 = fi to be effectively unbiased, from Eq. 3.15. (d) The sample size
necessary, from Eq. 3.16, for P to effectively attain the bound given in (b).
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Figure 3-5: Same as Fig. 3-4 for estimation of the y-gradient, a 2 = q.
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Figure 3-6: Same as Fig. 3-4 for estimation of the albedo, a3 = P-
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3.6 Conclusions

A maximum likelihood method for estimating remote surface orientation from multi-

static acoustic, optical, radar or laser images is derived. It is assumed that the im-

ages are corrupted by signal-dependent noise, known as speckle, arising from complex

Gaussian field fluctuations, and that the surface properties are effectively Lamber-

tian. Surface orientation estimates for a single sample are shown to have biases and

errors that vary dramatically depending on illumination direction. This is due to

the signal-dependent nature of speckle noise and the nonlinear relationship between

surface orientation, illumination direction and fluctuating radiance. The minimum

number of independent samples necessary for maximum likelihood estimates to be

asymptotically unbiased and attain classical estimation theory's lower bound on res-

olution as well as practical design thresholds are derived.

In a particularly compelling example, it is shown that the minimum error in

estimating the angle of incidence of a Lambertian surface is at best proportional to

the cotangent of this angle. The greatest accuracy occurs for estimates obtained

from shallow illumination angles where Lambert's Law shows its greatest sensitivity

to surface illumination, while poorest resolution occurs near normal incidence where

sensitivity is the least. For the general stereo case where at least three measurements

are used to estimate 3-D surface orientation and albedo, the minimum mean square

error is shown to be inversely proportional to the volume delimited by the unit normals

of incident illumination. As a result, the number of samples or SNR necessary to

accurately estimate surface orientation and albedo is shown to become arbitrarily

large as the illumination directions approach the coplanar limit, while accurate stereo

resolution of 3-D surface orientation and albedo is shown to be possible even with

a single sample given illumination directions of sufficient diversity and shallow angle

incidence.



Chapter 4

General Second-Order Covariance

of Gaussian Maximum Likelihood

Estimates Applied to Passive

Source Localization in Fluctuating

Waveguides

4.1 Introduction

In remote sensing applications, parameter estimation often requires the nonlinear in-

version of measured data that are randomized by additive signal-independent ambient

noise, as well as signal-dependent noise arising from fluctuations in the propagation

medium. Parameter estimates obtained from such nonlinear inversions are typically

biased and do not attain desired experimental error thresholds. For this reason, nec-

essary conditions have been developed on sample size or Signal to Noise Ratio (SNR)

to obtain accurate estimates and aid experimental design.[84]

These conditions are derived by first expanding the bias and covariance of maxi-

mum likelihood estimates (MLEs) in inverse order of sample size or SNR, where the



first-order covariance term is the minimum variance, the Cramer-Rao Lower Bound

(CRLB), which is also the minimum mean square error (MSE) of any unbiased esti-

mate regardless of the method of estimation. It is then required that (i) the first-order

bias term and the second-order covariance term become much smaller than the true

value of the parameter and the CRLB, respectively, and (ii) the CRLB falls within

desired error thresholds.

Here, we provide an analytical expression for the second-order covariance term of

MLEs obtained from general complex Gaussian data vectors, which can then be used

in many practical problems since (i) data distributions can often be assumed to be

Gaussian by virtue of the central limit theorem, and (ii) it allows for both the mean

and the variance of the measurement to be functions of the estimation parameters, as

is the case in the presence of signal-dependent noise. For example, the expression can

be used to aid the design of many experiments in a variety of fields where nonlinear

inversions are typically performed and data are often corrupted by signal-dependent

noise, such as ocean acoustics, geophysics, statistical signal processing and optics. [104,

49, 30]

We then consider the problem of source localization in a fluctuating ocean waveg-

uide containing random internal waves and calculate the minimum array-gain-augmented

Signal to Additive Noise Ratio (SANR) necessary for accurate localization. The fluc-

tuating ocean waveguide is modeled using analytical expressions for the mean, mutual

intensity, and spatial covariance of the acoustic field forward propagated through

random 3-D internal waves in a stratified ocean waveguide for a continuous wave

(CW) narrowband signal.[21] This model provides an analytical treatment of the

loss of intermodal coherence in the forward propagating field due to scattering by

internal waves. While the ensuing degradation in localization performance may be

expected,[4, 3] the exact effect of internal waves is here quantified for the first time by

computing the asymptotic biases and variances of source localization estimates. The

results presented here can be used to quantify the effects of environmental uncertain-

ties on passive source localization techniques, such as matched-field processing (MFP)

and focalization,[24] both of which typically utilize line arrays and CW signals.



Incomplete or imprecise knowledge of environmental parameters and randomness

in the propagation environment are known to seriously deteriorate the performance

of MFP, which has been investigated extensively in the past.[103, 46, 97, 43, 94, 42,

108, 107, 96, 111] MFP has been demonstrated in a number of theoretical and ex-

perimental scenarios involving fluctuating or unknown environments,[42, 96, 111] but

with significant localization ambiguities due to multimodal propagation and environ-

mental mismatch. For example, in Ref. [111] it was shown that given 10logj 0SNR of

more than 20 dB, peaks in the MFP ambiguity surface occured at the true source

range, but significant sidelobes were also observed at other ranges. All past exper-

imental demonstrations of MFP have used SNRs that have exceeded the minimum

levels necessary for accurate localization derived here.

Previously, the performance of passive source localization techniques was investi-

gated by deriving CRLBs in a non-fluctuating waveguide.[4] Later it was shown that

these were single-sample bounds,[72] multiple sample bounds were derived,[72, 41]

and it was shown that stationary averaging could reduce the bounds to zero.[72]

Asymptotic statistics were then used to derive necessary conditions on sample size

for errors to attain the CRLB and these were applied to source localization in a non-

fluctuating waveguide.[102] Our approach is based on classical estimation theory,[84]

is independent of the estimation technique and has already been applied in a vari-

ety of other problems, including time-delay and Doppler shift estimation,[84] pattern

recognition in 2-D images,[11] geoacoustic parameter inversion, [110] and planetary

terrain surface slope estimation.[8] In all previous applications except the last, how-

ever, the measurement was modeled as either (i) a deterministic signal vector, or (ii)

a fully randomized signal vector with zero mean, both embedded in additive white

noise. These are special cases of the scenario considered here where both the mean

and the variance of the measurement are parameter-dependent, which is necessary

to properly model acoustic propagation through a fluctuating waveguide that leads

to a signal-dependent noise component. The methodology presented here can then

be used in any experimental design to ensure that statistical biases and errors meet

necessary error thresholds.



In Section 4.2, we first review the first-order bias and first-order covariance of

MLEs given general multivariate Gaussian data. We then provide a new analytic ex-

pression for the second-order covariance. In Section 4.3, we calculate the MLE statis-

tics and determine necessary conditions on sample size or SNR to obtain estimates

that meet any design error threshold in a deterministic and a random waveguide.

4.2 General Asymptotic Expansions for the Bias

and Covariance of the MLE

In this section, we first review the asymptotic expansions for the bias and covari-

ance of the MLE. We also summarize the conditions necessary for an MLE to become

asymptotically unbiased and have a variance that attains the CRLB. We then provide

a new expression for the second-order covariance of the MLE given general multivari-

ate Gaussian random data and describe how these measurements are obtained.

4.2.1 General Multivariate Gaussian Data

The general bias and variance expressions of Eqs. (A.8-A.10) are now applied to the

specific case of data that obey the conditional Gaussian probability density[60]

p(X; 6) (2_r)nN/2jC(g)jn/2 exp - (X - - ())

(4.1)

where C is the real-valued covariance matrix, and y is the real-valued mean of the real

random data. Similarly to the work of Ref. [102], in the present study of underwater

localization, X, represents the real and imaginary parts of the narrow-band acous-

tic data collected across an array of N/2 sensors around the given harmonic-source

frequency, and the parameter set 0 represents the range and depth of the acoustic

source.

The first-order bias has already been provided in Eq. (7) of Ref. [84] and is repeated



below

bi(0'; 6, n) = 1 ib (PbcC- 1 A - p(C-1)Ac + 2tr(CbC (4.2)

Typically, as discussed in the Introduction, both the data mean and covariance in

Eq. (4.1) are functions of the desired parameter set 6. This necessitates evaluation of

the joint moments in Eq. (A.10) as shown in Ref. [68] and summarized in Appendix

B. The second-order covariance of the MLE given multivariate Gaussian random data

is given by[68]

var2 (0'; 6, n) = -i" + ir"imr i"b PmaC-Iymb - pmmC-Lab - /maC-Lm

+tr(CmCmCaCb) + tr(CmCaCmCb) + tr(CabCmCm) - tr(CmaCmob)

-tr(CmaCbCm) + tr(omaomn) -- tr(CmmCab) - -tr(maom)

+4pma(C-1 )mpb + 2pma(C-1 )btm - /ab(C-1)mm + Ia(C- 1)mmIb

+Im(C- 1).(C-)bm + 2pm(C- 1)(C- 1 )mpb + pa(C-1)m(C-)mb

+i'"'irmabiscd Aac Cyc- ymdC-lyb - 2/Jb(C 1 )d/Im - 4pb(C- 1 )mAd

-tr(o~odCb) + tr(oCbd(m) ± tr(omood) + tr(Omosdob)

1 1
+pIacC 1/im 2 pbdC m + 2pImbC- 1 pd + -tr(Cbdm) - tr(Cm( Cod)

+tr(Omd)] + tr(Omaac) Im(C1)bId + Am(C-4)dAb + 3pb(C-j)mpd

- (tr(CmJbd) + tr(CmoCb) - tr(CmdCb) - tr(mbCd) + tr(COdC))

+tr(rmaC) 1- tT(Omdab) - yim(C)pL - 2pI(C1)mp]

2 Aa(C- 1)metLb(C- 1)mAd + tr(Oac(m) tr(4md) + tr(Obd(m)

+Im(C- 1 )pc I - pm(C-I)dp -- 2pb(C-1)mpd]

fc1-l- 1 1
+ pIIcdC-pa - sLc(C-)apd + 2 tr(LOa tr(Omm b) + tr(OmbOm)

-tr(Cm(mb) + ymmC-lyb + /mbC-Lym + tm(C1)mpb] (4.3)

where subscripts indicate derivatives with respect to the specified indices, tr(C)



stands for the trace of C, and the auxiliary term CR is defined in Eq. (B. Ic) for

an arbitrary set of indices R. As shown in Appendix B, the above expression can be

used even if the random data are not distributed in a Gaussian form, provided that

they can be expressed as functions of Gaussian random variables with a Jacobian of

the transformation that is independent of the parameter set 6. [68] Equation (4.3) can

be used to calculate the second-order MLE covariance in applications where both the

data mean and covariance are functions of the estimated parameters.

4.2.2 Mean and Variance of the Measured Field

We consider a vertical receiving array employed to localize a harmonic source in a

fluctuating ocean waveguide. The mean and covariance of the measured field can then

be obtained from the analytical expressions provided in Ref. [21] and summarized in

Appendix D. Equation (D.1) defines the qth element of the vector A for q = 1, 2, 3,

... , N/2, where N/2 is the number of hydrophones in the receiving array. Similarly,

Eq. (D.4) defines the (q, p) element of the covariance matrix C for q, p = 1, 2, 3,

... , N/2. In the above, we have defined the complex mean f7 and covariance C

that are related to the real mean y and covariance C of Eq. (4.1) by the following

expressions: [60]

Re(j) 14 Re(U) -Im(C) 2

Im(fT) 2 Im(C) Re(C)

where I is the identify matrix and o2 is defined as the instantaneous variance of

the additive noise on each hydrophone. The expressions above are valid under the

assumption that the complex Fourier transform of the data measured at each hy-

drophone follow a circularly complex Gaussian random process[49] when the mean

is subtracted. Evaluation of Eqs. (A.8-A.10) requires knowledge of the higher-order

derivatives of p and C with respect to parameters p and zo, which are provided in

Appendix D.

The SNR and Signal to Additive Noise Ratio (SANR) for a single sample collected



across the array are then defined as

S 4'T(rqIro)) 2 tr(1-1 2)
SNR[1] = :j = (4.5)

NR1 [Var('T(rqlro)) + o-2'] tr(C) + No-2,/2

SANR[1] q~=1 [I ('I§T(rqjro)) + Var(PT(rro))] tr(| 12) + tr(C) (4.6)
No-,/2 No- /2

Since the total received intensity is given by the numerator of Eq. (4.6), we adopt

the convention[102] of setting the SANR[1] of the field across the array to unity for a

source located at r = 1 km range and any depth z, to maintain consistency between

the different waveguides examined in the next section. The definition provided in

Eq. (4.6) does not account for potential improvements due to array gain. For a

uniform array of N/2 elements, the SANR[1] can be array-gain-augmented by (N/2)

for the ideal case of a plane wave signal embedded in spatially uncorrelated white

noise. [104] For a deterministic signal embedded in additive white noise, the covariance

matrix C reduces to .2I so that SNR and SANR are equal and proportional to sample

size,[102]

n SANR (4.7)
SANR[1]

The sample size conditions in Eqs. (A.6) and (A.7) can then also be written in terms

of SANR and SANR[1]. For general multivariate Gaussian data, this simple propor-

tionality is only approximately valid when the signal-dependent noise contribution to

the covariance is weak.

4.3 Illustrative Examples

Here we demonstrate how the methodology presented in Section A and the expression

for the MLE second-order covariance in Eq. (4.3) can be used to specify conditions on

sample size or SNR to obtain accurate source localization estimates in a fluctuating

ocean waveguide. The effects of the loss of coherence in the forward propagating

field are quantified by (i) calculating these sample sizes and SNRs, as well as the



asymptotic biases and variances of source localization MLEs, and (ii) comparing

them to those for a static waveguide. In the latter, the measured acoustic field

is fully coherent, and the source localization problem reduces to that of parameter

estimation given a deterministic signal embedded in white additive Gaussian noise.

Such a problem was treated for a different waveguide, source frequency and receiving

array in Ref. [102], and results are presented here for comparison with the fluctuating

waveguide case considered. In the fluctuating waveguide, both the mean and the

variance of the measurement are parameter dependent so that Eq. (4.3) must be

used to correctly calculate the asymptotic MLE variance. The internal wave height

standard deviation is chosen to be greater than the acoustic wavelength so that the

waveguide becomes highly randomized within a few kilometers of the source,[21] and

the effects of environmental uncertainty on source localization can be distinguished.

The simple two-layer waveguide used in Ref. [21] is again employed here to model

internal waves in a shallow-water continental shelf environment. Figure 4-1 shows the

selected sound speed profile, bottom composition and internal wave characteristics.

The origin of the coordinate system is placed at the sea surface. The z axis points

downward and normal to the interface between horizontal strata. The water depth is

H and the boundary separating the upper and lower medium is at depth z = D. Let

coordinates of the source be defined by ro = (-po, 0, zo), and receiver coordinates by

r = (0, 0, z). Spatial cylindrical (p, #, z) and spherical systems (r, 0, #) are defined by

x = r sin 0 cos #, y = r sin 0 sin #, z = r cos 0, and p = x2 + y2 . The horizontal and

vertical wave number components for the nth mode are, respectively, (n = k sin an

and 7y = k cos an, where an is the elevation angle of the mode measured from the

z axis. Here, 0 < an 7/2 so that down- and up-going plane wave components of

each mode will then have elevation angles an and 7r - an, respectively. The azimuth

angle of the modal plane wave is denoted by #, where 0 < # < 27r. The geometry of

spatial and wave number coordinates is shown in Ref. [74].

For single frequency simulations, we employ a 415 Hz monopole source and a 10-

element vertical array in a 100 m deep waveguide. The water column is comprised

of a warm upper layer with density di = 1024 kg/m 3 and source speed ci = 1520
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m/s overlying a cool lower layer with density d2 = 1025 kg/m 3 and sound speed c2 =

1500 m/s. The boundary between the layers is at a depth of D = 30 m, and the

attenuation in both layers is a = 6x10-- dB/A. The spacing of the array elements

is 1.5 m (A/2 ~ 1.8 m) with the shallowest element at 43.5 m, so that the array is

centered in the water-column. The ocean bottom is a fluid half space with a sound

speed of cb = 1700 m/s, a density of db = 1.9 kg/m 3 , and an attenuation of ab = 0.8

dB/wavelength, which are representative values for sandy environments.

Note that the results presented in this paper are not representative of the perfor-

mance of the waveguide invariant[23, 15] or the array invariant,[65] since the former

uses acoustic intensity data versus range and frequency and the latter employs beam-

time or coherent hydrophone data over time. Here, we instead consider instantaneous

measurements of the acoustic field due to a CW source made with a vertical line array.

The results presented here can also be used for broadband signals when matched-field

processing is performed separately for each frequency component and the computed

ambiguity surfaces are then combined incoherently. This is commonly known as inco-

herent processing, [111, 98] even though each separate frequency bin is still processed

coherently before the correlation values of the data and replica fields are averaged. For

a broadband signal that consists of Mf frequency bins, incoherent averaging means

that the effective sample size equals n x Mf, so that conditions on the necessary

sample sizes can be found by scaling the right hand sides of Eqs. (A.6a), (A.6b) and

(A.7) by 1/Mf.
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3D Random Internal Wave Field in an Ocean Waveguide
x
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Figure 4-1: Geometry of an ocean waveguide environment with two-layer water col-
umn of total depth H = 100 m, and upper layer depth of D = 30 m. The bottom
sediment half-space is composed of sand. The internal wave disturbances have coher-
ence length scales l, and ly in the x and y directions, respectively, and are measured
with positive height h measured downward from the interface between the upper and
lower water layers.

102



4.3.1 Undisturbed Waveguide

For the undisturbed static waveguide, coherent interference between the waveguide

modes leads to a range- and depth-dependent structure in the total acoustic field

intensity which maintains a modal coherence pattern over very long ranges with the

SANR range-depth pattern of Fig. 4-2. The SANR[1] is computed using Eq. (4.6) and

plotted as a function of source-receiver range and source depth for the shallow water

waveguide of Fig. 4-1 when there are no internal waves present. The source level is

fixed as a constant over range so that 10logiOSANR[1] is 0 dB across the array for a

source-receiver range of 1 km. For the static waveguide, the covariance of the acoustic

field measurement in Eq. (4.4) reduces to C = o 2I so that SNR[1] and SANR[1] in

Eqs. (4.5-4.6) are equivalent. For the array of 10 elements considered here, the array-

gain-augmented SANR[1] is higher than the SANR[1] shown in Fig. 4-2 by a factor

of 10.

The first-order bias, first-order covariance (CRLB) and second-order covariance

of the MLEs for source range and depth are plotted in Fig. 4-3, given a source fixed

at 50 m depth and a sample size of n = 1. The asymptotic bias and the square

root of the CRLB for a range estimate are very small, typically less than 10 m

even at ranges beyond 30-40 km, while the corresponding quantities for a depth

estimate (Fig. 4-3(b)) reach values comparable to the waveguide depth of 100 m.

This suggests that it may be possible to obtain unbiased range MLEs from a single

sample, whereas depth MLEs will have significant biases, given the SANRf1] in Fig. 4-

2. The second-order covariance exceeds the CRLB for both the range and depth MLE

even at a few kilometers from the source, so that the variance of MLEs obtained from

a single sample will not in general attain the CRLB. The CRLB and the second-order

covariance approximately coincide where 10logiOSANR[1] is about -5 dB, which is

where the array-gain-augmented 10logiOSANR[1] equals 5 dB. Increasing the arrain

gain could help obtain single-sample MLEs that attain the CRLB at longer ranges

from the source.
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10 log10 SANR in undisturbed waveguide
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Figure 4-2: Signal to Additive Noise Ratio (SANR) at 415 Hz in an undisturbed
waveguide with no internal waves. The SANR received at the 10-element vertical
array described in Section 4.3 is plotted as a function of source range po and depth zo.
The observed range-depth pattern is due to the underlying modal coherence structure
of the total acoustic field intensity. The receiver array is centered at p = 0 m and
z = 50 m. The source level is fixed as a constant over range so that 10logioSANR[1]
is 0 dB at 1 km source range at all source depths. For the undisturbed waveguide,
SANR is equivalent to Signal to Noise Ratio (SNR).
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Figure 4-3: Ocean acoustic localization MLE behavior given a single sample for (a)
range estimation and (b) depth estimation for a 415 Hz source placed at 50 m depth in
an undisturbed waveguide with no internal waves. The MLE first-order bias magni-
tude (solid line), square root of the CRLB (circle marks) and square root of the
second-order variance (cross marks), as well as the measured Signal to Additive
Noise Ratio (SANR, dashed line) are plotted as functions of source range. Given
the necessary sample size conditions in Eq. (A.6), whenever the first-order bias and
the second-order variance attain roughly 10% of the true parameter value and the
CRLB, respectively, more than a single sample will be needed to obtain unbiased,
minimum variance MLEs. The source level is fixed as a constant over range so that
1010gioSANR[1] is 0 dB at 1 km source range.
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The results shown here are consistent with those of Figs. 2 and 4 of Ref. [102] for

a deterministic source signal in a static waveguide, as expected. Since the bias and

variance terms in the asymptotic expansions of the MLE moments, e.g. Eq. (A.3),

always depend on inverse order of sample size n, the asymptotic statistics of the MLE

for any arbitrary n can be obtained by shifting the curves in Fig. 4-3 according to

the order of the term involved and the value of n desired for a given SANR[1]. For

the static waveguide, the data covariance C is parameter independent, in which case

the MLE bias and covariance can also be expanded in inverse orders of SNR. [68] The

necessary sample sizes given throughout this section can then also be interpreted in

terms of necessary SNR or SANR. Increasing SANR by a factor of 10 in Fig. 4-3, for

example, would reduce the first-order bias and the CRLB by one order of magnitude,

and the second-order covariance by two orders of magnitude, as seen by replacing n

in Eqs. (A.2) and (A.3) with SANR/SANR[1] (Eq. (4.7)). Minimum variance range

MLEs could then be obtained from a single sample up to the maximum range for

which the second-order covariance and the CRLB are equal in Fig. 4-3, i.e. 8 km,

given such a factor of 10 increase in SANR.

Figure 4-4 shows the sample size n necessary to obtain an unbiased source range

MLE whose MSE attains the CRLB and has /CRLB < 100 m. It also shows that for

fixed SANR, n fluctuates as a function of source range due to the modal interference

structure of the static waveguide. If the received 10logiOSANR is fixed at 0 dB for

all ranges between 1 and 50 km, then to obtain a source range estimate of 100 m

accuracy for 95% of the ranges either (a) 20 samples are needed, or (b) given a single

sample a 10logiOSANR of 13 dB (Eq. (4.7)) is necessary.

Figure 4-5(a-b) shows the square root of the single-sample CRLB for source range

and depth estimation. The sample sizes necessary to obtain unbiased source range and

depth estimates that asymptotically attain the CRLB are given by the maximum of

nb, n, in Eq. (A.6) and shown in Fig. 4-5(c-d). They are found to be roughly inversely

proportional to SANR[1] and are typically much larger than one, as expected from

Fig. 4-3. We find that the necessary sample size is at least an order of magnitude

larger in the upper waveguide layer where SANR[1] decreases more rapidly, as can
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be seen in Fig. 4-2. Given sufficient source level, however, accurate range MLEs

may be obtained from a single sample at any desired source-receiver separation. For

example, increasing source level so that 10logiOSANR at 1 km range is 40 dB should

be sufficient to accurately estimate the range of a source at any depth and ranges up

to roughly 30 km, according to Fig. 4-5 and Eq. (4.7).

Given the sample sizes in Fig. 4-5(c), for example, the source range MLE will be

in the asymptotic regime where its variance continuously attains the CRLB, which is

the minimum possible mean square error (MSE) of an unbiased estimate, regardless

of the method of estimation. Since the CRLB is inversely proportional to sample size,

as shown in Eq. (A.3), conditions can be specified on sample size for the MLE error to

meet any desired threshold. It is then possible to determine whether these conditions

can be met in practice, since the number of statistically independent samples of the

received acoustic signal is limited by the ratio of the measurement time window to the

coherence time scale of acoustic field intensity, [71, 84] which can also be calculated. [22]
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Necessary sample size for range MLE to attain CRLB, and sqrt(CRLB) <= 100 m
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Figure 4-4: Undisturbed waveguide. 10logio n, where n = {max[nb, n,) x n'} is the
sample size necessary to obtain an unbiased source range MLE whose MSE attains
the CRLB and has /CRLB ; 100 m, where nb, nv, n' are calculated using Eqs. (A.6)
and (A.7), given a 415 Hz source at 50 m depth. Source level is fixed as a constant
over range so that 10logiOSANR is 0 dB at 1, 10, 20, and 30 km source range (black
circles), respectively, for the four curves shown.
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Figure 4-5: Undisturbed waveguide. 10loglo of the square root of the CRLB
for (a) source range #o, (b) source depth 2o MLEs given a single sample.
10logio (max[nb, nt]), the sample sizes or SNRs necessary to obtain (c) source range,
(d) source depth MLEs that become unbiased and have MSEs that attain the
CRLB. Given any design error threshold, the sample size necessary to obtain an
accurate source range or depth MLE is then equal to (max[nb, nb]) x n', where
n' = CRLB(max[nb, n,])/(design threshold)2 . The source level is fixed as a con-
stant over range so that 10logiOSANR[1] is 0 dB at 1 km source range at all source
depths.
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The temporal coherence scale of acoustic field fluctuations for a shallow-water

continental shelf environment such as the one considered here is on the order of

minutes,[22] so that the calculated necessary sample sizes imply that accurate source

localization may not be practical at ranges greater than 20 km given the SANR/1J in

Fig. 4-2, since stationary averaging over time periods on the order of hours may then

be necessary.

4.3.2 Waveguide Containing Internal Waves

The fluctuating waveguide considered here is the same as that in Ref. [21]. The

variance of the acoustic field intensity, or incoherent intensity, starts dominating the

expected total intensity for ranges beyond roughly a few kilometers in the upper

layer and 20 km in the lower waveguide layer, as seen in Fig. 4-6(c). The SNR[1] and

SANR[1] are computed using Eqs. (4.5-4.6), respectively, and are plotted together

with the ratio of coherent to incoherent intensity in Fig. 4-6(a-c) as functions of

source-receiver range and source depth for a waveguide containing random internal

waves. The forward propagated field quickly loses its modal coherence structure and

follows a decaying trend with local oscillations over range due to scattering by random

3-D internal waves. The internal wave disturbances have a height standard deviation

of rh = 4 m and coherence lengths of l, = l, = 100 m.[21] In this random waveguide,

there is no longer a simple linear relationship between SNR[1] and SANR[1], but

10logi 0SNR[1] can be approximated as equal to 10logi 0SANR[1] minus 4-5 dB for

ranges beyond roughly 30 km, as can be seen by comparing Figs. 4-6(a)-(b), as well

as in Fig. 4-7.
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Figure 4-6: (a) Signal to Additive Noise Ratio (SANR), (b) Signal to Noise Ratio
(SNR), and (c) the ratio of coherent to incoherent intensity at 415 Hz in a waveguide
containing random internal waves. The internal wave disturbances have a height
standard deviation of r/h = 4 m and coherence lengths of l, = ly = 100 m. This
medium is highly random so that incoherent intensity dominates at all depths beyond
about 20 km. The total received intensity, given by the numerator of SANR in
Eq. (4.6) follows a decaying trend with local oscillations over range. All quantities
are plotted as functions of source range po and depth zo received at the 10-element
vertical array described in Section 4.3. The receiver array is centered at p = 0 m and
z = 50 m. The source level is fixed as a constant over range so that 10logiOSANR[1]
is 0 dB at 1 km source range at all source depths.
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The loss of coherence in the forward propagated field has severe effects on local-

ization accuracy, as shown in Fig. 4-7 where the first-order bias, first-order covariance

(CRLB) and second-order covariance of source position MLEs are plotted given a

source fixed at 50 m depth and a sample size of n = 1. While the asymptotic bias

and square root of the CRLB of the source range estimate (Fig. 4-7(a)) are still found

to be relatively small, on the order of 10 m for source-receiver ranges greater than

about 20 km, the square root of the second-order range variance has increased by

approximately an order of magnitude from the static waveguide case. The asymp-

totic bias and variances of the source depth MLE have all increased by an order of

magnitude or more, as seen by comparing Figs. 4-7(b) and 4-3(b). Similarly to the

undisturbed waveguide scenario, increasing the array gain could help improve the

accuracy of source localization MLEs.

Given Eq. (A.6b), significantly larger sample sizes will be necessary to obtain un-

biased range MLEs that attain the minimum possible mean square error compared

to the static waveguide case. It will also be practically impossible to attain an ac-

curate source depth estimate from a single sample for ranges greater than a couple

of kilometers, given the SANR[1] in Fig. 4-6. For a given SANR[1], the asymptotic

statistics of the MLE for any arbitrary n can be obtained by shifting the curves in

Fig. 4-7 according to the order of the term involved and the value of n desired. For

this random waveguide, the data covariance C is parameter dependent and the MLE

bias and covariance cannot be readily expanded in inverse orders of SANR.[68] We

find that increasing SANR by a factor of 10 in Fig. 4-7 reduces the first-order bias

and the CRLB by roughly one order of magnitude, and the second-order covariance

by approximately two orders of magnitude, as in the deterministic waveguide case.

Minimum variance range MLEs can then be obtained from a single sample up to the

maximum range for which the second-order covariance and the CRLB are equal in

Fig. 4-7, i.e. 5 km, given such a factor of 10 increase in SANR.
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Figure 4-8 shows the sample size n necessary to obtain an unbiased source range

MLE whose MSE attains the CRLB and has /CRLB < 100 m. It also shows that

for fixed SANR, n remains approximately constant as function of source range in

the fluctuating waveguide, since the forward propagated field now follows a smoother

trend with range than the undisturbed waveguide due to scattering by random 3-D

internal waves. If the received 10logiOSANR is fixed at 0 dB for the four source ranges

investigated in Fig. 4-8 (1, 10, 20, and 30 km), then to obtain a source range estimate

of 100 m accuracy either (a) 20 samples are needed, or (b) given a single sample a

10logiOSANR of 13 dB (Eq. (4.7)) is necessary.

The presence of internal waves may severely affect the ability to obtain accurate

estimates of source position in practice, as can be deduced from Fig. 4-9(a-b) which

shows the square root of the single-sample CRLB for source range and depth estima-

tion. The sample sizes necessary to obtain unbiased source range and depth estimates

which asymptotically attain the CRLB are shown in Fig. 4-9(c-d) and are typically

much larger than one, as expected from Fig. 4-7.

The minimum error of an unbiased source range MLE is on the order of tens of

meters even at ranges beyond 20 km for a source in the lower waveguide layer, as

expected from Fig. 4-7(a), but may become as high as several hundred meters for

a source in the upper layer where the SANR[1] is much lower, as seen in Fig. 4-

6. The minimum error of an unbiased source depth MLE has increased from the

undisturbed waveguide case by at least an order of magnitude, as expected from

Fig. 4-7(b). The sample sizes necessary to attain either of these CRLBs have also

increased by an order of magnitude or more from those corresponding to the static

waveguide scenario, Fig. 4-5. These increases in the CRLBs and the necessary sample

sizes to attain them are particularly pronounced in the upper layer of the waveguide

and the middle of the lower layer at about 65 m, since those are the regions of most

rapid SNR[1] and SANR[1] decrease, and also where the received intensity is weakly

dependent on source depth and range.

The calculated necessary sample sizes suggest that it becomes practically im-

possible to accurately estimate source position for ranges greater than a few kilo-
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meters for the specific receiver array, waveguide, source frequency and type of in-

stantaneous measurements considered given the SANR[1j in Fig. 4-6(a) and typical

acoustic field coherent scales,[21] since stationary averaging over tens of hours may

be required. The examples presented here illustrate passive source localization sce-

narios typical of matched-field processing (MFP) and focalization[24] in fluctuating

waveguides.[21, 67, 45, 64] They not only provide a quantitative demonstration of

the degradation in localization accuracy due to the presence of internal waves, but

can also be used to assess the effects of environmental uncertainties on parameter

estimation.
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Figure 4-8: Fluctuating waveguide containing internal waves. 101ogio n, where n

{max[nb, n<] x n')} is the sample size necessary to obtain an unbiased source range
MLE whose MSE attains the CRLB and has v'CRLB < 100 m, and nb, nv, n' are
calculated using Eqs. (A.6) and (A.7), given a 415 Hz source placed at 50 m depth.
Source level is fixed as a constant over range so that 10logiOSANR is 0 dB at 1, 10,
20, and 30 km source range (black circles), respectively, for the four curves shown.
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Figure 4-9: Fluctuating waveguide containing internal waves. 10logio of the square
root of the CRLB for (a) source range po, (b) source depth 2o MLEs given a single
sample. 10logio (max[nb, n,]), the sample sizes or SNRs necessary to obtain (c) source
range, (d) source depth MLEs that become unbiased and have MSEs that attain
the CRLB. Given any design error threshold, the sample size necessary to obtain
an accurate source range or depth MLE is then equal to (max[nb, n,]) x n', where
n' = CRLB(max[nb, n,])/(design threshold)2 . The internal wave disturbances have
a height standard deviation of r/ = 4 m and coherence lengths of l = ly = 100 m.
The source level is fixed as a constant over range so that 10logiOSANR[1] is 0 dB at
1 km source range at all source depths.
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Importance of the joint-moment terms in calculating the second-order co-

variance

Here, we show the benefits of employing the expression for the MLE second-order

covariance in Eq. (4.3) that can be used to determine necessary sample size conditions

for accurate estimation given measurements whose mean and covariance are both

parameter dependent. If the physical environment leads to parameter dependence

in both the mean and covariance and this dependence is neglected in either, then

large errors can easily ensue, as demonstrated for the physical scenario considered in

Section 4.3.2. Neglecting the parameter dependence in either the covariance or the

mean is equivalent to approximating the underwater acoustic measurement as either

(i) a deterministic signal vector, or (ii) a fully randomized signal vector with zero

mean, both embedded in additive white noise.

These two common approximations to the received field may lead to significant

miscalculations of the CRLB and the necessary sample sizes of Eq. (A.6), as can be

seen by comparing Figs. 4-7 and 4-9 to Figs. 4-10-4-11 and 4-12-4-13, respectively.

Note that the asymptotic biases and variances for source range and depth MLEs

(Fig. 4-10(a-b), respectively) are of the same order of magnitude as those for the

undisturbed waveguide in Fig. 4-3. This is expected since neglecting parameter de-

pendence in the covariance C is equivalent to assuming a static waveguide where the

only noise is purely white additive. The asymptotic biases and variances for the case

where I is assumed parameter independent (Fig. 4-11(a-b)) are instead found to be

many orders of magnitude larger. The observed increase is much larger than the

decrease in SANR[1] and SNR[1], and suggests that the covariance of the measure-

ment is only weakly dependent on source range and depth. The differences observed

between Figs. 4-10 and 4-11 are consistent with those observed between Figs. 2 and 3

of Ref. [102], where the biases of the MLE obtained from a purely random signal are

found to be much larger than those obtained from an equivalent deterministic signal,

and range estimation is more severely affected.
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Figure 4-10: The same as Fig. 4-7, but here the covariance C of the measurement is
assumed parameter independent so that its derivatives in Eqs. 4.2-4.3 are set to zero.
The asymptotic biases and variances of source range and depth MLEs are typically
underestimated, as seen by comparing with Fig. 4-7. This scenario is equivalent to
incorrectly assuming the received measurement is a deterministic signal embedded in
purely additive white noise, in which case the SANR and SNR of the measurement
are equal and the two curves coincide.
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Figure 4-12: The same as Fig. 4-9, but here the covariance C of the measurement
is assumed parameter independent so that its derivatives in Eqs. 4.2-4.3 are set to
zero. The CRLB and the sample sizes necessary to attain it are underestimated
when compared with Fig. 4-9. This scenario is equivalent to incorrectly assuming the
received measurement is a deterministic signal embedded in purely additive white
noise.
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ASquare root of CRLB for po (dB re 1 m)
0 24 60

(A) 55

20- 50

40 45

40

60 35

30
80.

25

100 20

0 20 40

Necessary sample size, n(P)
0

20

40

60 -

100'
0 20

Source Range, p0 (km)

Square root of CRLB for 10 (dB re 1 m)
30

25

20

45
10

0

-5

-10

(dB)
80

70

60

50

'40

30

20

10

0

Necessary sample size, n( O)

20

40

60

80

100
0 20 40

Source Range, p0 (km)

(dB)
80

70

60

50

40

30

10

Figure 4-13: The same as Fig. 4-9, but here the mean yi of the measurement is
assumed parameter independent so that its derivatives in Eqs. 4.2-4.3 are set to
zero. The CRLB and the sample sizes necessary to attain it are overestimated when
compared with Fig. 4-9. This scenario is equivalent to incorrectly assuming the
received measurement is purely random with zero mean, embedded in additive white
noise.
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Both approximations to the measured signal model are inappropriate for deter-

mining the sample sizes required to obtain MLEs of source position that attain desired

error thresholds. The minimum errors for unbiased estimates of source position given

a single sample are shown in Figs. 4-12(a-b) and 4-13(a-b). The sample sizes necessary

to attain either of these CRLBs are given in Figs. 4-12(c-d) and 4-13(c-d). Setting

the derivatives of C in Eqs. 4.2-4.3 to zero results in underestimating the sample size

required to obtain an accurate estimate of source range by a factor of typically 102,

as seen by comparing Figs. 4-10(a) and 4-12(a) to Figs. 4-7(a) and 4-9(a), given the

SANR/1] in Fig. 4-6(a). Similarly, setting instead the derivatives of pZ to zero leads

to an overestimation of this sample size by a factor of at least 107, given the SANR[1]

in Fig. 4-6(a). In the latter case, the degradation in range estimation is especially

notable and minimum errors are now at least as large as tens of kilometers beyond

20 km from the source, having increased by several orders of magnitude from those

calculated in Section 4.3.2.

4.3.3 Discussion

We have calculated the sample sizes or SANRs necessary to obtain accurate source

localization estimates in a static and a fluctuating waveguide, given a 415 Hz source

and an N/2 = 10 element array in Section 4.3.1 and 4.3.2. As a rough design rule, we

find that in the lower layer of both the undisturbed and fluctuating waveguide, source

range can be typically estimated to within 1OOx M m if the received 10logiOSANR at

a single hydrophone is at least (13 + 101ogio 20/N' - 201ogio M) dB, given a single

sample and a vertical array of N'/2 elements. The necessary SANRs for both the

undisturbed and fluctuating waveguide follow the same design rule because they have

similar range-averaged behavior.

The necessary sample sizes or SANRs presented here are consistent with those

reported in experimental studies. For example, in Ref. [96], the authors localize a

source at a range of 5 km with an accuracy of approximately 200 m using single

measurements at similar frequencies as investigated here from a 32-element array,

despite uncertainties in the sound speed profile. The effective 10logiOSANR of their
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multi-spectral measurement is roughly 16 dB at a single hydrophone, which is much

higher than the (13 + 10logio (10/32) - 201ogio 2) ~ 2 dB estimated from our rough

design rule for accurate source localization in a fluctuating waveguide.

4.4 Conclusions

A method is provided for determining necessary conditions on sample size or Signal

to Noise Ratio (SNR) to obtain accurate parameter estimates from remote sensing

measurements in a fluctuating ocean waveguide. These conditions are derived by first

expanding the bias and covariance of maximum likelihood estimates (MLEs) in inverse

orders of sample size or SNR, where the first-order term in the covariance expansion

is the minimum mean square error (MSE) of any unbiased estimate, the Cramer-

Rao Lower Bound (CRLB). Necessary sample sizes or SNRs are then determined by

requiring (i) the first-order bias term and the second-order covariance term to be much

smaller than the true value of the parameter and the CRLB, respectively, and (ii) the

CRLB to fall within desired error thresholds. An analytical expression is provided for

the second-order covariance of MLEs obtained from general complex Gaussian data

vectors, which can be used in many practical problems since (i) data distributions can

often be assumed to be Gaussian by virtue of the central limit theorem, and (ii) it

allows for both the mean and the variance of the measurement to be functions of the

estimation parameters. By comparing the asymptotic biases and errors of MLEs, and

the sample sizes or SNRs necessary to attain accurate estimates in a static waveguide

and in the presence of internal waves, it is then possible to quantitatively assess the

effects of environmental uncertainties on parameter estimation.

Here, we consider the problem of source localization in a fluctuating waveguide

containing random internal waves, which we model using the analytical expressions

provided in Ref. [21] for the mean, mutual intensity, and spatial covariance of the

acoustic field forward propagated through random 3-D internal waves in a strati-

fied ocean waveguide for a continuous wave (CW) narrowband signal. The loss of

coherence in the foward propagating field due to scattering by internal waves may
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have severe consequences on parameter estimation and lead to significant losses in

localization ability with narrowband vertical array measurements for fixed source

and receiver. We determine the sample sizes and SNRs necessary to obtain accurate

source localization estimates in an undisturbed waveguide and find that the median

necessary sample size or SNR increases by at least an order magnitude in a fluctu-

ating waveguide, when internal wave fluctuations result in the incoherent intensity

component dominating the total acoustic field intensity. Past experiments demon-

strating localization with matched-field processing (MFP) in random or fluctuating

environments have used SNRs that exceeded the derived conditions and so have not

tested the limits of passive detection and localization. In practice, many stealthy or

distant sources will have much lower SNRs than have been used in current exper-

iments, and so would likely require impractically long stationary averaging periods

for localization to be possible. The results shown here provide an example of how

asymptotic statistics can be used in experimental design to ensure that statistical

biases and errors meet pre-determined error thresholds.

We also demonstrate the advantages of using the expression for the second-order

covariance presented here, which accounts for parameter dependence on both the

mean and the variance of the measurement. This is achieved by comparing the

asymptotic biases and errors to those calculated when either the covariance or the

mean of the measurement is incorrectly assumed to be parameter independent. Such

approximations are often necessary to model the measured field in fluctuating envi-

ronments when it is not possible to determine the parameter dependence of both its

mean and variance. Using the analytical tools developed here, we can instead take

advantage of the parameter dependence of both the mean and variance of the mea-

sured field to obtain more accurate parameter estimates. We find that modeling the

measurement as a deterministic signal vector leads to significantly underestimating

both the CRLB as well as the sample size or SNR required to attain it. Similarly,

modeling the measurement as a zero-mean, fully randomized signal vector results in

a gross overestimation of the CRLB and the required sample size or SNR to attain

it.
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Chapter 5

Estimating the Instantaneous

Velocity of Randomly Moving

Target Swarms in a Stratified

Ocean Waveguide by Doppler

Analysis

5.1 Introduction

Many animal species and man-made targets assemble in large organized groups,[19,

99] such as schools of fish,[75, 100, 52] swarms of insects,[13] Autonomous Underwater

Vehicles,[59] bats,[10] and flocks of birds.[35] Determining the velocity fields of such

aggregations is of interest for ecosystem sensing, environmental sustainability, as well

as clutter mitigation. Free-space Doppler analysis is typically used to observe and

determine the motion of target swarms in both the atmosphere, e.g. rain droplets,[31]

and in the ocean, e.g. plankton.[69] Here, we show that this is possible because

cross-spectral coherence remains in the variance of the ambiguity function of the field

scattered from such swarms and enables high resolution Doppler velocity and position
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estimation. We also develop a method to estimate the mean of the instantaneous

velocity and position of a random target group, as well as their respective standard

deviations across the group, with a long-range acoustic remote sensing system in both

free space and in a stratified ocean waveguide representative of typical continental

shelf environments.

We show that the variance of the field scattered from large swarms of randomly

distributed moving targets typically dominates the range-velocity ambiguity function

when the spatial extent of the swarm is much larger than the wavelength. This is

achieved by deriving analytical expressions for the expected value and the expected

square magnitude of the ambiguity function in terms of the targets' velocity and

position probability densities relative to a stationary monostatic remote sensing sys-

tem. Domination of the variance in the scattered field intensity has previously been

shown to occur for the special case of large aggregations of immobile targets where

no Doppler shifts occur.[1]

It is shown that for appropriate signal design, such as pseudo-random signals, the

mean and variance of the swarm's velocity and position can be expressed in terms

of the first two moments of the measured range-velocity ambiguity function. This

is shown analytically for free space and with Monte-Carlo simulations for an ocean

waveguide. We refer to simultaneous estimation of the group's velocity and position

from ambiguity surface moments as the Moment Method. Illustrative examples are

then presented for migrating and non-migrating groups of randomly moving targets in

free space and in a stratified, range-independent waveguide. Simultaneous estimates

of the mean velocity and position can also be obtained by finding the velocity and

position that correspond to the peak of the ambiguity function's expected square

magnitude, which we refer to as the Peak Method. For a single deterministic target

in a waveguide, it has been shown that a relatively accurate estimate of the target

velocity can be obtained by measuring the Doppler shifted spectrum of its scattered

field.[92, 91] Here we instead consider scattering from a group of random targets,

simultaneously resolve both instantaneous velocity and position means of the group,

as well as their and standard deviations through the Moment Method. We show
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that estimates of the mean velocity obtained via the Moment Method are at least as

accurate as estimates based on the Peak Method.

In Section 5.2 and the Appendices, we derive analytical expressions for the statis-

tical moments of the field scattered from a source of arbitrary spectrum by a single

moving target in free space or a stratified range-independent waveguide, given random

target velocity and position. We then derive the expected value and expected square

magnitude of the range-velocity ambiguity function for the total field scattered from

a group of random targets. We then show that the first and second moments of the

ambiguity function's expected square magnitude along constant range and velocity

axes in free space are linear functions of the group's velocity and position means and

standard deviations for the Costas sequence, a pseudo-random signal described in

Appendix E.3. In Section 5.3, we demonstrate both the Peak and Moment methods

via illustrative examples in free space and an ocean waveguide.

5.2 Determining Target Velocity Statistics from

Doppler Shift and Spread

We assume a group of N targets are randomly distributed in volume V centered

at the origin 0, which is in the far field of a stationary monostatic source/receiver

system at range r, as shown in Fig. 5-1. We consider a remote sensing sonar platform

that consists of a point source collocated with a horizontal receiving array, such

as that shown in Fig. 5-2. We define uq as the random initial position of the qth

target, and vq as the random speed of the qth target towards the source/receiver

system. We assume that the target positions and velocities are independent and

identically distributed (i.i.d.) random variables with probability densities Pu (u0)

and Pv (vq), which are inherent properties of the target group. We define the means

and standard deviations for uq, Vq to be pu, -u and p, o, respectively. We also

assume that the targets move at low Mach numbers, which is typical for biological

scatterers, e.g. fish at velocities of order 1 m/s.[55, 85, 26] As detailed in Appendix
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E, Vq is defined to be the velocity component parallel to r, which is assumed to

be constant during the time necessary for the sound signal to travel through the

resolution footprint of the remote sensing system. For simplicity, we assume that all

targets have the same scatter function, and for the frequencies considered, they scatter

omnidirectionally. We assume target velocities follow Gaussian probability densities,

and set the velocity means to correspond to typical fish group swimming speeds, in

illustrative examples. A target group is then defined to be migrating by setting the

velocity standard deviation to be approximately 10% of the mean velocity. Similarly,

a group is defined to be randomly swarming if the velocity standard deviation is

much larger than the velocity mean. Targets are assumed to be uniformly distributed

within 100 m about a nominal range of 15 km from the remote sensing system. For

waveguide examples, we consider the waveguide of Fig. 5-2, which is representative of

continental shelf environments, and assume targets are uniformly distributed in depth

between 70 and 90 m. For free space examples, we use the sane distributions. Finally,

areal number densities are chosen so that acoustic returns from the target groups will

stand above background reverberation,[40] based on past OAWRS field data from

the New Jersey Continental Shelf and the Gulf of Maine. [38, 39] For herring we then

assume an areal number density of 2 fish/m 2, while for tuna we consider imaging a

single school consisting of roughly 100 individuals. [40]

In all examples, we employ the specific signal design described in Appendix E.3,

which has center frequency of 1.6 kHz, bandwidth of roughly 20 Hz, velocity resolution

of approximately 0.17 m/s, and range resolutions of about 43 m, which is smaller

than the range dimension of the targets' spatial distribution. The target distribution

scenarios are summarized in Table 5.1, and the source signal and remote sensing

system parameters are given in Table 5.2.

130



Table 5.1: Target Distribution Scenarios

Table 5.2: Remote Sensing System Properties

131

Case A Case B Case C
Migrating Swarming Migrating
Herring Herring Tuna

Velocity Mean, p, 0.2 m/s 0 m/s 1.5 m/s
Velocity Standard Deviation, o-, 0.025 m/s 0.5 m/s 0.1 m/s
Areal Number Density, 2 fish/m 2  1 school
or Number of Targets (100 fish)
Position Mean, pu 0
(from the origin 0, see Figs. 5-1 and 5-2)
Target Range Distribution Uniform, ± 50 m
(from the mean position ptu)
Target Depth Distribution Uniform, 70-90 m
(for waveguide examples, see Fig. 5-2)
Target Cross-Range Extent Exceeds remote sensing system's

cross-range resolution

Signal Design 7-pulse Costas sequence (see Appendix E.3)
Center Frequency 1.6 kHz

Bandwidth 20 Hz
Range Resolution, Au 43 m

Cross-Range Resolution 100 m
(at 15 km range)

Velocity Resolution, Av ~~ 0.17 m/s
Source/Receiver Range 15 km

(from the origin 0, see Figs. 5-1 and 5-2)
Source/Receiver Depth 20 m

(for waveguide examples, see Fig. 5-2)



r

Figure 5-1: Sketch of the resolution footprint volume enclosing a target with initial
offset uO from the coordinate system origin and velocity Vq. The variables L,, Ly, and
Lz denote the dimensions of the footprint volume in x, y, z coordinates, respectively.
The position mean and standard deviation are pz, ru, while the velocity mean and
standard deviation are pV, o-.
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fish shoal

point
source

SIDE VIEW

20 m receiver array

point source,
(x = -15 km, y = 0, z = -60 m)

water column

ci, pi, a1

part of fish shoal
within resolution footprint

70-90 m
--- ----- I

P2, a2  sediment half-space z

Figure 5-2: Sketch of waveguide geometry and sound speed profile. The locations of
the fish shoal, the source/receiver imaging system and the resolution footprint with
respect to the coordinate system (x, y, z) are also shown. The coordinate system
coincides with that of Fig. 5-1. The sound speed in the water column is constant,
ci = 1500 m/s, and the sound speed in the sediment half-space is c2 =1700 m/s. The
density p1 and attenuation a1 in the water column are 1 kg/m 3 and 6x 10-5 dB/A 1 ,
respectively, where A1 is the wavelength in the watercolumn. The sediment half-space
has density P2 = 1.9 kg/m 3, and attenuation a2 = 0.8 dB/A 2 , representative of sand,
where A2 is the wavelength in the bottom sediment.
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5.2.1 Free Space

The field scattered from the qth target due to a harmonic source of frequencey f and

unit amplitude, can be written as[92]

t. S ~ ei7jef)rjf~,u/
s,q(r, t; f) = G(r|O, f)G(O|r, f)e-q"fte-2(~f)1ruo/c (5.1)

where f ~ f(1 + 2vq/c) is the Doppler-shifted frequency of the scattered field, c is

the sound speed in the medium, S(f) is the target's planewave scattering function,

and G(0|r, f) is the free space Green's function between the source and the origin

evaluated at frequencey f. For a broadband source with dimensionless source function

q(t) # Q(f), the scattered field is given by Fourier synthesis as

'Js,q(r, t) J dfQ(f )s,q(r, t; f) (5.2)

where * denotes Fourier transform pairs q(t) = f Q(f)e-i2 ftdf, Q(f) = f q(t)e'27ftdt.

The ambiguity function is defined as

Ts,q(T, v/) = j0I0s,q(r, t)q*(t - T)ei2 '/tdt

- j TIs,q(r, f')Q*(f' - v)ei'-)rdf' (5.3)

where v is the Doppler shift and r is the time delay defined such that T = 0 corre-

sponds to the time instant the signal is transmitted from the source. The ambiguity

function has units of Pa/Hz and can also be interpreted in terms of target velocity

and position by using the transformations v = cv/(2fc) and u = cT/2, where v, u are

the target's velocity and position, and fc is the signal's center frequency. The mean

and second moment of the ambiguity function Fs,q(r, v) are derived analytically in
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Appendix E.1 and are given by

(Aps,q(T, v)) J Sk G(r|O, f')Q*(f' - v)ei2-(f'-v)r

x J G(0r, f'(1 + 2vq/c)-')Q(f'(1 + 2v/c)-1 )

xUq(f'ir/ c,V,) Pv(Vq)dVqdf' (5.4)

fl(77 (V, v) ki1 G(r|0, fi)Q*(fi - v)S* 2) G*(rIO, f2)Q(f 2 - v)

x ei 21(fjf2)T J G(Or, fi(1 + 2vq/c)- 1 )Q(fi(1 + 2vq/c)- 1 )

xG*(Or, ff(1 + 2vq/c)_)Q*(f2(1 + 2vq/c)- 1 )

X Uq((fi - f 2 )ir/C, Vq)P(Vq)dVqdfldf2 (5.5)

where f', fi or f2 correspond to received frequencies, and Q(f) is the source spec-

trum. The variable Uq is defined analytically in Eq. (E.4) and is the characteristic

function for probability density P,(u0), so that it can be interpreted as the Fourier

transform of the target's spatial distribution. For the whole group of N targets, we

find I(1p(T, v))12 = N 2 
2(,q(TZV))1
2 , and (see Appendix E.1),

(I pIs(r, v) 2) = N(I 'Ps,q(, v/)12) + N(N - 1)(,Psq(T, v))|2 (5.6)

The expected square magnitude of the ambiguity function is then the sum of: (i) a

second moment term proportional to N due to scattering from each target, and (ii) a

mean-squared term proportional to N 2 due to interaction of the fields scattered from

different targets. [90]

For target groups large compared to the wavelength, the source spectrum Q and

the targets' spatial spectrum Uq tend to be non-overlapping band-limited functions of

frequency whose products tend to zero in Eq. (5.4), leading to a negligible mean. This

is not the case in Eq. (5.5) where the peaks of Q and Uq overlap because evaluation

of Uq at the frequency difference enables cross-spectral coherence. The variance then
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typically dominates the second moment. [1] This is shown in Fig. 5-3 for the Case A

target distribution scenario that represents migrating herring (Table 5.1), given the

source signal and remote sensing system parameters in Table 5.2, where we find that

the magnitude squared of the expected value of the ambiguity function, I (T 8 (T, V)) 2

is typically about 20 dB smaller than the expected square magnitude of the ambiguity

function, (lP8 (T, v) 2). From Eq. (5.6), this means that for this case we would require

a 100-fold increase in population density for the magnitude squared of the mean

ambiguity function to dominate.
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Expected Value and Expected Magnitude Squared
of the Ambiguity Function, 'P(,r,v)
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Figure 5-3: Free Space. Expected value (black dashed line) and expected square
magnitude (black solid line) of the ambiguity function via 100 Monte-Carlo simula-
tions for the field scattered from a random aggregation of targets following the Case
A scenario described in Table 5.1. The source signal and remote sensing system pa-

rameters are given in Table 5.2. The expected square magnitude of the ambiguity
function based on the analytical expressions of Eqs. (5.4-5.5) and (5.6) is also shown

(gray line) and is found to be in good agreement with the Monte-Carlo result. The
variance of the ambiguity function dominates the total intensity and the magnitude
squared of the ambiguity function's expected value is negligible.
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Estimating Target Position and Velocity Statistics

Equations (5.4) and (5.5) cannot typically be evaluated analytically. A significant

simplication is however possible in the case of specially designed source signals whose

spectra can be approximated as

M-1

Q(f) = E anei27r(f-fn)hnsinc (7r(f - fn)T)
n=O

M-1

~ ane 2
r(ffn)hn6(f - fn), (5.7)

n=o

where a, is the coefficient of the nth frequency component, fn, for n = 1, 2,... , M,

and hn, T are known constants. Equation (5.7) is approximately valid, for example,

for spectra that consist of a series of windowed harmonic waves, such as the Costas

sequence described in Appendix E.3. For such spectra, the expected square magnitude

of the ambiguity function is given by

(jlps,q(T,v)1
2) =

M-1 M-1M-1M-1 - -

((((a* amaiaj S(fn+ V) S*(fA + V)S _ 1=0 amOan 2r(fn + v)/c [27r(fi + v)/c

x G(r|0,f+ v)G*(r|,f+v)G(Or,fm)G* 01r, fi + v fm
fn + V

x6 f+V - f) Uq fn + fm - f - i+7fm I,/(2c), 0
(fn + v fn +

x - i2rUn, -fi-P vC -f 1 (5.8)

When the dimensions of the swarm are much larger than the acoustic wavelength,

the first two moments of Eq. (5.8) along constant Doppler shift v and constant time

delay T axes can be analytically expressed in terms of the targets' position and velocity

first and second statistical moments (see Appendix E.1). Taking moments along a
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constant-w axis,

vi = fv( F,q(r,v)1 )du ~ b1 { (Z 1 2f m ( - fn) + M p2f 21 /

n=o m=O m= .

ci + dip, (5.9a){ M-1 M-1
~j2f m (f _-n

V2  2 J (s,q(7, v2)dv b1  (fm -Ofn)2
f n=o m=o
M-1M-1 2f\ 2 M-1 2 3

+ E 52 (fm - fn) po + M  ) (p + ±-)
n=O m=O m=.

~d C2 + d2Pv + e2(1v + o, (5.9b)

where the ambiguity function has been normalized so that f(I s,q(T, V)1 2 )dv 1.

The coefficient b1 is given by

b M 2f m 1  (5.10)

The coefficients ci, di, c2, d2, e2 can be calculated analytically given a specific

signal design, and then used to provide estimates of the target's mean velocity and

its standard deviation given measurements of vi and v2. For the purposes of this

paper, we employ the Costas sequence design detailed in Appendix E.3 that satisfies

Eq. (5.7), and for which the coefficients are given in Table 5.3. In the illustrative

examples of Section 5.3.1, we assume the form of Eq. (5.9) holds and use it to estimate

the velocity means and standard deviations. Estimates obtained via the Moment

Method are found in Section 5.3.1 to be very accurate, with errors typically smaller

than 10%.

Table 5.3: Coefficients of Eq. (5.9).

ci di C2 d2 e2
0.0156 2.1334 0.5822 0.1333 4.5512

Similarly, for the moments of the expected square magnitude of the ambiguity
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function over time delay T, we find

IM-1 M-1
71= J '(Is,q(r, v)| 2 )dr = (r + ir-pu ) 1dn,m, (5.11a)

)Cn=o m=o

2 (1qj /)1 ]2 AU2 2M-1 M-1
= J T22I~sTq(T, r2) 2)dT ([1r o-]2 + [r + l< -pu] dn,m

n=O m=o

(5.11b)

where the ambiguity function has again been normalized so that f (s,q(T, v/)12)dT =

1. The coefficients dn,m are given by

dn,m = P(C [fno - 1 (5.12)

Equation (5.11) shows that the moments of the ambiguity function's expected square

magnitude along a constant Doppler shift axis are linearly related to the targets'

position mean and variance. Note that as long as the absolute value of the mean

position estimate is less than or equal to the length scale of the resolution footprint,

then for practical purposes the targets have been accurately localized.

5.2.2 Waveguide

As in Section 5.2.1, we assume a group of N targets is randomly distributed within

volume V in the far-field of a monostatic source/receiver system in a stratified range-

independent waveguide. We also assume that targets scatter omnidirectionally for

the frequencies considered. Under these conditions, the field scattered from the qth

target, due to a harmonic source at angular frequency Q, can be found by adapting

Eq. (59) of Ref. [92] to account for the case of a monostatic (ro = r), stationary

(vo = v = 0) system and for the change of the coordinate system origin from the

target centroid to the center of the resolution footprint,

<bs,(r, t; Q) = 47 S(wm,l,q) <'(r, Q Wm,,q)e"iwmqt (5.13)
m k(wm,l,q)
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where Wm,l,q = Q + Vq[(,(Q) + (m(Q)] is the Doppler shifted frequency due to target

motion, ( is the wavenumber, S(w) is the target's planewave scattering function, 1,

m are indices corresponding to the incoming and outgoing modes, respectively, and

the variable <b7n describing propagation to and from the target is defined explicitly

in Eq. (E.30). Note that both the scattering function and the wavenumber are eval-

uated at the Doppler shifted frequency Wm,l,q due to modal propagation. The mean

and second moment of the ambiguity function of the back-scattered field are derived

analytically in Appendix E.2 and are given by

1 f S(w')
('Ps,q(T, v)) =- 1 _____ Q* ('2 -r "-2m-r

7r f k(wo)

x 1>3 >3Q(w'(1 + Vq(1/of + 1/o ))-)Ufm(C', vq)Pv (vq)dvqdw'

(5.14)

(lITs,q(r, v)12 ) =J k(wi) Q*(wi - 27rv) Q(w 2 - 27rv)e-i(W1-2)r

x 1>3>3>3 Q(wi(1 + Vq(1/of + 1 W2, vq)
m n p

xQ*(w2 (1 + Vq(1/vG + ) 1 P(vq)dVqdwidw2  (5.15)

where w', w1 or w2 correspond to received frequencies,[92] vG is the group velocity

of the mth mode, and Q(f) is the source spectrum. As in the free space case, the

ambiguity function can also be interpreted in terms of target velocity and position

by using the transformations v = v v/(2fc) and u = vT/2, where v, u are the tar-

get's velocity and position, and fc is the signal's center frequency. The variables U,m

and U,mnP are defined in Eqs. (E.34) and (E.38), respectively, and are characteristic

functions for the qth target's initial position u given its probability density function,

Pu(u'). They can be interpreted as Fourier transforms of the target's spatial distri-

bution and are evaluated at the Doppler shifted frequencies Wm,l,q and wp,n,q so that

they are functions of the modes 1, m, n, p.

For a group containing N targets, we again have |(4'(T, v)) 2 = N 2 1('Fsq(T, V))1 2
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and (IT8(r, v7) 2) = N(|I's,q(T, V)1 2 ) + N(N - 1)(WTq(r, V))| 2. As in the free space

case, the expected square magnitude of the ambiguity function is the sum of a second

moment term proportional to N and a mean-squared term proportional to N2 , where

the variance term typically dominates for groups large compared to the wavelength,[l]

as shown for the Case A target distribution scenario that represents migrating herring

(Table 5.1) in Fig. 5-4. The source signal and remote sensing system parameters are

given in Table 5.2. We note that the targets appear to be closer to the source/receiver

by roughly 40 m, but this is approximately equal to the length scale of the system's

resolution footprint, so for practical purposes the targets are still accurately localized.
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Expected Value and Expected Magnitude Squared
of the Ambiguity Function, ''s(-rv)
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Figure 5-4: Waveguide. Expected value (black dashed line) and expected square mag-
nitude (black solid line) of the ambiguity function via 100 Monte-Carlo simulations
for the field scattered from a random aggregation of targets following the Case A
scenario described in Table 5.1. The cross-range resolution is set to be such that the
fish areal number density is 2 fish/in 2. The source signal and remote sensing system
parameters are given in Table 5.2. The expected magnitude of the ambiguity function
based on evaluating Eqs. (5.14-5.15) and (5.6) is also shown (gray line) and is found
to be in good agreement with the Monte-Carlo result. The variance of the ambiguity
function dominates the total intensity and the magnitude squared of the ambiguity
function's expected value is negligible.
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Estimating Target Position and Velocity Statistics

As in the free space case, Eqs. (5.14) and (5.15) cannot typically be analytically

evaluated. A significant simplification is however possible in the case of some specially

designed source spectra, such as Costas sequences, which can be written in the form of

Eq. (5.7), Q(Q) = EM_ anei(O-Qn)Hn(Q-Qn). The second moment of the ambiguity

function is then given by (see Appendix E.2),

M-1 M-1 M-1 M-1 *
(I 12) M-1-M1- a*,amiauai S(wn, + 27v) S*(wi, + 2,rv)

sq7 n/ M/S / 72 S ,(W'+ 27rv)/c_ _ wii + 27irv)/c

x(or W1, + 27rv) e
(m WM n' + 27Iv)

x 555U'mp(W , + 21ru, wi' + 27rv, i0q)P, (q)
1 m n p

(5.16)

where an, are the coefficients of the w, frequency components for n' = 1, 2,. .. , M,

and

W = n/ + 27v - 1) (1/v + 1/vG)- 1  (5.17)

Despite this simplified form, it is still not straightforward to derive analytical expres-

sions for the moments along time delay T and Doppler shift v/. We note, however,

that

U',n "'(Won + 27rv, wi' + 27v, iq)

1 <bm (r omi, wn + 27rv)<D *"'(r, or, I' + 27rv)dau , (5.18)

which is not a function of target velocity, so that Eq. (5.16) for the waveguide has

many similarities with Eq. (5.8) for the free space case. In the illustrative examples

of Section 5.3.2, we assume the form of Eq. (5.9) still holds and use the coefficients

of Table 5.3 for free space to estimate the velocity means and standard deviations in

a waveguide.
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5.3 Illustrative Examples

Here, we demonstrate how the position and velocity mean and standard deviation

of a group of targets can be simultaneously estimated in free space and in a typical

continental-shelf environment. We examine the three target scenarios described in Ta-

ble 5.1, which are illustrative of long-range remote sensing of marine life in the ocean.

In all the examples, we employ the Costas sequence design detailed in Appendix E.3

and the remote sensing system parameters summarized in Table 5.2. The mean of the

ambiguity function and its expected square magnitude are found by evaluating either

Eqs. (5.4 - 5.5) for free space, or Eqs. (5.14 - 5.15) for the waveguide scenario via 100

Monte-Carlo simulations. We then evaluate the moments of the ambiguity function

square magnitude along constant time delay and Doppler shift axes. Estimates of

the targets' velocity and position mean and standard deviation are obtained via the

Moment Method by inverting Eqs. (5.9) and (5.11), using coefficients from Table 5.3,

Av,j = d , (5.19a)

v2 - C2 - d v1j - b2
O-o,j = ,V (5.19b)

e2
cT1

l, -/Au = '- r, (5.19c)
d3

ir--- [r + ir - u (5.19d)

where

M-1 M-1

d3= 1 13 dn,m, (5.20)
n=O m=O

dn,m has been defined in Eq. (5.12), and j corresponds to one Monte-Carlo simulation.

For the coefficients ci through e2 , we use the analytically calculated values for free

space given in the first row of Table 5.3. Estimates of the mean velocity and posi-

tion are also obtained by simply finding the peak of the ambiguity function square
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magnitude, which we refer to as the Peak Method and define by

(I|'s,q(T, v)12) =2g g ,2 f/ (5.21a)

( s,q(r, v/)1 2 = A , I (5.21b)

For each estimated quantity, NMC = 100 Monte-Carlo simulations are used to

calculate the estimate's sample mean and sample variance, and so investigate how

such estimates perform in both free space and waveguide environments. For example,

( N1, 
(5.22a)

1 MC
Nmc

var(Av) = N ' _ (/V))2 (5.22b)
NMC_

The free space results are presented here for comparison with those in a waveguide,

since analytical expressions for the moments of the expected square magnitude of the

ambiguity function have been derived only for free space. For the waveguide scenarios,

we check whether estimates of the velocity and position mean and standard deviation

can be obtained via the Moment Method using the analytical expressions derived in

free space, Eqs. (5.9) and (5.11), and Table 5.3.

5.3.1 Free Space

The expected square magnitude of the ambiguity function, as well as constant-velocity

and constant-position cuts through its maximum for a typical migrating shoal of

herring (Table 5.1, Case A) are shown in Fig. 5-5, given the signal and remote sensing

system parameters summarized in Table 5.2. Estimates of the velocity and position

mean are obtained via the Moment Method (Eqs. (5.19a) and (5.19c)), as well as via

the Peak Method (Eq. (5.21)). The Moment Method and Eqs. (5.19b) and (5.19d)

are then used to estimate the velocity and position standard deviation.
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< Ambiguity Function|2>; Herring Shoal, nA = 2 fish/m2 (dB)
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Figure 5-5: Free Space. The strength of the sidelobes is much less than half that
of the main lobe and the Moment Method provides accurate velocity and position
estimates, as shown in Fig. 5-6. (a) Expected value of the ambiguity function square
magnitude for the pressure field scattered from a shoal of migrating herring (Table
5.1, Case A) and given the source signal and remote sensing system parameters in
Table 5.2. The white curve indicates 3 dB-down contour(s), which may be used to
roughly delimit the target shoal. The maximum of the ambiguity surface is shown
by a white cross. (b, c) Constant-velocity and constant-position cuts through the
point indicated by the white cross in (a). Dashed lines indicate the mean position
and velocity estimates based on the maximum value of the ambiguity surface (Peak
Method).
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The sample means and sample standard deviations, e.g. Eqs. (5.22a) and (5.22b),

of these estimates are shown in Fig. 5-6. We find that estimates of the velocity and

position mean based on the Moment Method are at least as accurate as those based on

the Peak Method. For mean velocity, only the case of the swarming herring demon-

strates an observable bias which is likely due to the very large standard deviation

of the targets' velocity for that scenario. As long as the estimate of mean position

is within the 40 m resolution footprint of the remote sensing system, for practical

purposes, the target group has been accurately localized. This is the case for all the

examples considered here, as shown in Fig. 5-6. Estimates of the velocity standard

deviation for Cases A, B and C are very distinct. This suggests that in free space

it may be possible to use the Moment Method to help identify and classify dynamic

behavior.
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Figure 5-6: Free Space. Estimates of the velocity and position mean and standard de-
viation for simulated migrating and swarming herring shoals, and a migrating school

of tuna (Table 5.1), given the source signal and remote sensing system parameters
summarized in Table 5.2. Target positions are localized within the remote sensing sys-
tem's resolution footprint, and velocity estimate errors are typically less than roughly
10%. Horizontal lines indicate true values. (a, b) Estimates of the targets' velocity
mean and standard deviation. Triangles and solid vertical lines indicate the sample
means and sample standard deviations of estimates obtained via the Moment Method
(Eqs. (5.19a) and (5.19b)), using 100 Monte-Carlo simulations. Circles and dashed
lines indicate the sample mean and sample standard deviation for estimates of the
mean velocity obtained via the Peak Method (Eq. (5.21a)), i.e. by locating the max-
imum of the ambiguity function square magnitude (white cross in Fig. 5-5(a)). (c, d)
Same as (a, b) but for estimates of the group's position mean and standard deviations
obtained via both the Moment (triangles and solid vertical lines) and Peak (circles
and dashed lines) methods.
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5.3.2 Waveguide

We consider the same cases (Table 5.1) as in Section 5.3.1 for free space, with the

same source signal and remote sensing system parameters (Table 5.2), but now in the

waveguide of Fig. 5-2. For the case of a migrating herring shoal (Table 5.1, Case A),

we find that the Peak and Moment methods provide accurate velocity and position

estimates, even though the ambiguity function square magnitude now exhibits more

significant sidelobes, as shown in Fig. 5-7.

These estimates for all cases are shown in Fig. 5-8. We find that the free space

expressions and coefficients for the Moment Method of Eqs. (5.9), (5.11) and Table

5.3 provide very good estimates of the mean velocity and position of the groups and

their standard deviation in a stratified range-independent waveguide environment.

Estimates of the velocity mean and standard deviation are found to typically be

within 10% of their true values, and the targets are accurately localized within the

system's resolution footprint. Estimates of the velocity standard deviation for the

three different cases considered are found to be distinct, which suggests that it may be

possible to classify dynamic behavior through instantaneous Doppler measurements.
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<lAmbiguity Function 2>; Herring Shoal, nA = 2 fish/m2
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Figure 5-7: Waveguide. There is now more energy in the sidelobes of the ambiguity
function compared to Fig. 5-5, but both the Peak and Moment methods still provide
accurate velocity and position estimates as seen in Fig. 5-8. (a) Expected value of
the ambiguity function square magnitude for the pressure field scattered from a shoal
of migrating herring (Table 5.1, Case A) and given the source signal and remote
sensing system parameters in Table 5.2. The fish are assumed to be submerged in the
waveguide of Fig. 5-2. The cross-range resolution is set to be such that the fish areal
number density is 2 fish/m 2 . The white curve indicated 3 dB-down contour(s), which
may be used to roughly delimit the target shoal. The maximum of the ambiguity
surface is shown by a white cross. (b, c) Constant-velocity and constant-position cuts
through the point indicated by the white cross in (a). Dashed lines indicate the mean
position and velocity estimates based on the maximum value of the ambiguity surface
(Peak Method). 151
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Figure 5-8: Waveguide. Estimates of the velocity and position mean and standard de-

viation for simulated migrating and swarming herring shoals, and a migrating school
of tuna (Table 5.1), given the source signal and remote sensing system parameters
summarized in Table 5.2. Target positions are localized within the remote sens-
ing system's resolution footprint, and velocity estimate errors are typically less than

roughly 10%. Horizontal lines indicate true values. (a, b) The sample means and

sample standard deviations of estimates of the tagets' velocities mean and standard

deviation obtained via the Moment Method (Eqs. (5.19a) and (5.19b), triangles and

solid vertical lines). Also the sample mean and sample standard deviation of the

target mean velocity estimate obtained via the Peak Method (Eq. (5.21a), circles and

dashed lines), i.e. by locating the maximum of the ambiguity function (white cross

in Fig. 5-7). (c, d) Same as (a, b) but for estimates of the group's position mean and

standard deviations obtained via both the Moment (triangles and solid vertical lines)

and Peak (circles and dashed lines) methods.

152

1 --- (A) -

1 .--

0.5 -. ..

50r-

0

-50

-100
Migrating

Herring

...........

-.... -- .



5.4 Conclusions

We showed that for typical remote sensing scenarios of large aggregations of ran-

domly distributed moving targets where the group dimensions are much larger than

the acoustic wavelength, the variance of the scattered field dominates the range-

velocity ambiguity function, but cross-spectral coherence remains and enables high

resolution Doppler velocity and position estimation. We then developed a method for

simultaneously and instantaneously estimating the means and standard deviations of

the velocity and position of groups of self-propelled underwater targets from moments

of the measured range-velocity ambiguity function. This Moment Method is based

on analytic expressions for the expected square magnitude of the range-velocity am-

biguity function in free space. It was shown that for pseudo-random signals, such as

Costas sequences, the moments of the ambiguity function's expected square magni-

tude along constant time delay and Doppler shift are linear functions of the mean

and variance of the targets' velocity and position. We also described an alternative

Peak Method that can be used to estimate the targets' mean velocity and position.

Both methods were shown to perform well not only in free space, but in a typical

continental shelf ocean waveguide also. In particular, for typical long-range imaging

scenarios, exceeding 10 km, the target groups were accurately localized within the

remote sensing system's resolution footprint with simultaneous velocity mean and

standard deviation estimates for the group within 10% of the true values. We found

that the estimates obtained via the Moment Method were at least as accurate as

those provided by the Peak Method. The performance of both methods is dependent

on maintaining low sidelobes in the ambiguity surface. Since it is only possible to

measure the targets' velocity component relative to the system, at least two sources

or receivers must be used to estimate horizontal velocity vectors.
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Chapter 6

Conclusion

In this thesis, we investigated the biases and errors inherent in parameter estimates

obtained from nonlinear inversions of measured data that are randomized by additive

signal-independent ambient noise, as well as signal-dependent noise arising due to

propagation through fluctuating media and random inhomogeneities, relative motion

between source and receiver, scattering from rough surfaces and source incoherence.

Three problems were considered where signal-dependent noise is typically present:

(1) passive source localization in a fluctuating waveguide containing random internal

waves, (2) Lambertian surface orientation and albedo resolution, and (3) planetary

terrain photoclinometric surface slope estimation. For each of these problems, we

first expand the bias and covariance of Maximum Likelihood Estimates (MLEs) in

inverse orders of sample size or Signal to Noise Ratio (SNR). We then determine

necessary conditions on sample size or SNR to obtain accurate parameter estimates,

following the approach of Ref. [84], which is based on classical estimation theory and

is independent of the estimation technique. The results presented here can be used in

experimental design to ensure that statistical biases and errors meet pre-determined

error thresholds.

The biases and errors of photoclinometric surface slope MLEs are shown to typi-

cally become much larger than surface slopes for illuminations and observations where

planetary reflectance is weakly dependent on surface slope. Further, the asymptotic

biaeses and errors are shown to typically differ dramatically from the exact ones,
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making them applicable only when a large number of independent samples is avail-

able. For this problem, a unified method is provided for quantitatively comparing the

biases and errors from different sources of uncertainty, including signal-independent

(camera read) noise, signal-dependent (camera shot) noise, as well as noise due to

scall-scale albedo fluctuations and atmospheric haze. Albedo variability is shown to

typically dominate estimate biases and errors.

The minimum number of independent samples or SNR necessary for Lamber-

tian surface orientation and albedo MLEs to be asymptotically unbiased and attain

classical estimation theory's lower bound on resolution as well as practical design

thresholds are derived. Single-sample MLEs are shown to have biases and errors

that vary dramatically depending on illumination direction. The number of samples

or SNR necessary to accurately estimate surface orientation and albedo is shown to

become arbitrarily large as the illumination directions approach the coplanar limit,

while accurate stereo resolution of 3-D surface orientation and albedo is shown to be

possible even with a single sample given illumination directions of sufficient diversity

and shallow angle incidence.

For passive source localization, we quantify the effects of the loss of coherence in

the forward propagated field due to scattering by random 3-D internal waves, and find

that there may be significant losses in localization ability with narrowband vertical

array measurements for fixed source and receiver. The sample sizes necessary to

obtain accurate source position estimates increase by at least an order of magnitude,

when compared to the static waveguide case. It may then no longer be possible

to attain the requisite number of independent samples since stationary averaging

may be necessary over time periods on the order of hours. We also demonstrate

the advantages of using analytical tools that can take advantage of the parameter

dependence of both the mean and variance of the measured field by comparing the

asymptotic biases and errors to those calculated when either the covariance or the

mean of the measurement is incorrectly assumed to be parameter independent.

Finally, we also developed a method for estimating the means and standard devi-

ations of the velocity and position of self-propelled underwater target groups imaged
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using Ocean Acoustic Waveguide Remote Sensing (OAWRS). This method is based

on analytical expressions of the range-velocity ambiguity function for the acoustic

field scattered from such target groups. For free space, we showed that the moments

of the range-velocity ambiguity function magnitude squared are linearly related to

the targets' velocity and position mean and variance. We also demonstrated that

the method performs well in a typical continental shelf environment and the velocity

mean and standard deviation can typically be estimated within 10% of their true

values. Estimates of the second order velocity statistics may offer new possibilities

for clutter discrimination and classification.
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Appendix A

Asymptotic Bias and Variance of

the MLE and the Sample Sizes

Necessary for Accurate Parameter

Estimation

A.1 Asymptotic Expansions of the MLE Bias and

Variance

Following the theory and notation adopted in Ref. [84], assume an experimental

measurement that consists of a set of n independent and identically distributed N-

dimensional real-valued random data vectors Xj obeying the conditional probability

density p(X; 0), where X = [XT, ... , X'] and 6 is an m-dimensional parameter

vector. Also let vT = [v1 , v2 , ., vN] be the vector of samples vk used to obtain

the measurement X,k for k = 1,2, ... , N and all j = 1,2,..., n.

The MLE 8 of 0 is the maximum of the log-likelihood function 1(6) = ln(p(X; 6))

with respect to 6.[89, 5, 44] The first-order parameter derivative of the log-likelihood

function is defined as 1, = Bl(6)/8or, where or is the rth component of 6. The

elements of the expected information matrix, also known as the Fisher information
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matrix, are given by irs = (iris), and the elements of its inverse by is = [ialrs,

where i- 1 is the CRLB,[89, 60, 104] and (...) signifies expected value. Moments

of the log-likelihood derivatives are defined by VR - R), and joint moments by

VR 1,R 2 ,...,RM R1iR 2 - -RM), where Ri is an arbitrary set of indices.[84, 102]

The moments of Qr for r = 1,. . . , m can then be expressed as a series of inverse

powers of the sample size n,[84, 102] provided that the required derivatives of the

likelihood function exist.[95] The MLE bias is then given by[110, 8]

bias(0', v, n) = bi(or; 6, v, n) + b2 (or; 6, v, n) + Higher Order terms, (A.1)

where by (6r; 6, y, n) = b(;, v, 1)/ni, so that

bi(6r; 6, y, 1) b2 (or; 6, V, 1)bias (or, y, n) = + 2 + 2 O(n -3), (A.2)

where O(n- 3) represents integer powers n-3 and higher. Similarly, the MLE variance

can be written as

vari(or; 6, v, 1) var 2 (or; 6 V 1)var (or, y, n) = n + n2 ' ' + O(n~-3) (A.3)

where the first term on the right hand side of Eq. (A.3) is the CRLB, which is the

asymptotic value of the variance when sample size n and SNR become large and also

the minimum possible mean square error (MSE) of an unbiased estimate.

A.2 Necessary Sample Sizes to Attain Design

Error Thresholds

The value of n necessary for the MLE to become asymptotically unbiased is found by

requiring the first-order bias to be much smaller than the true value of the parameter

bi(or; 6, y, 1) (A.4)
Or
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Similarly, the value of n necessary for the MLE variance to asymptotically attain the

CRLB is found by requiring the second-order variance to be much smaller than the

first-order, so that

var2(6r; 9, V, 1)(A.5)
vari(or; 6, V, 1)

Only for values of n satisfying these conditions is it possible for the estimate to

be in the asymptotic regime where it is unbiased and it continuously attains the

CRLB,[84, 102, 110] so that it has the minimum possible mean square error. Fol-

lowing established convention, [102, 110] we determine the sample sizes necessary to

obtain an unbiased, minimum variance MLE by requiring the first-order bias and the

second-order variance to be an order of magnitude smaller than the true value of the

parameter and the first-order variance, respectively,

bi (or; 6, V, 1)
nb =_ 10 or(A.6a)

n, =_ 10|vr(' 6,y 1 (A.6b)
vari (or; 6, 7V, 1)

In this thesis, conditions on sample size or SNR for parameter estimates to attain

specified design error thresholds are calculated by requiring that (i) n meets the

conditions in Eq. (A.6), and (ii) the CRLB is smaller than the desired error threshold.

The sample size necessary to obtain accurate parameter estimates is then given by

(max [nb, n,]) x n', where

_ CRLB(max[nb, n,]) (A.7)
(design threshold) 2
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A.3 Expressions for the Asymptotic Orders of the

MLE Bias and Variance

Expressions for bi(0'; 6, v, n), vari(Or; 6, v, n) and var2(or; 6, v, n) have been derived

in terms of tensors in the form of VR 1 ,R 2 ,...,RM corresponding to moments of the log-

likelihood derivatives, [84, 68] as summarized below

1
bi($r; 6, ,, n) = i C(Vabc + 2 Vab,c) (A.8)

var1(or; 6, V, n) = ir (A.9)

var2 (or; 6, V, n) = irr

+"rmirm ipq (2vmq,m,p + Vmmpq + 3 Vmq,pm + 2Vmmp,q + vmpq,m

ipzqt VmptVm,q,z + VmpmVqzt + 5vmpqVmzt + 2 Vm,qzVmtp

+ 2 VmmtVqz,p + 6Vmt,zVmpq + Vm,mtVpqz + 2 Vmq,zVpt,m

+ 2Vmq,mVpt,z + vmq,pvmt,z)] (A.10)

Here, as elsewhere, the Einstein summation convention is used, where summation over

indices appearing both as superscript and subscript is implied. These expressions are

evaluated for the case of multivariate Gaussian data in Appendix B.

162



Appendix B

Joint Moments for Asymptotic

Gaussian Inference

B.1 Analytical Tensor Expressions for General

Multivariate Gaussian Data

Before giving the explicit expressions for the first order bias and the second order

covariance, we define the auxiliary quantities

1 1 8p
= C- 1 [ab + (C-')bta = C-

2 2 9V 99

= C-1pabc + (C-)cyab + (C-)bcPa

1C 1 a3 + 1C- 1  82
3 99aggb,9Vc 979c aaadb a

= C- 1 Ca..ap = C-

= C ..a9dap

- tr ( a0 [C-1 a + tr C a3C-1

and specify that we will write the tensors as a principal group of terms plus the terms

obtained by a rearrangement of the indexes using the notation described in Table B.1.

If more than one of the symmetry prescriptions appear in the same tensor, it means
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ac- 1 aLt
Nab

Mabc

O%..ap

al..ap

pabc

Va+ aO a

2C- 1 ay
gban3c aga

(B.1a)

(B.1b)

(B.1c)

(B.1d)

(B.le)

= C(C-l)a...a,



that the total number of terms contained is the product of the number of terms

generated by each symmetry. As a reminder, for the terms where the sample size n is

not explicitly shown, we write a square bracket beside it containing the corresponding

power. For example, VabVed[2] is proportional to n2 since it is the product of two terms

proportional to n.

Table B.1: Legend of Index Rearrangement

Aa,a 2 ,...,am, perm(ai, a 2 , ... , am): Add the terms with
permutated indexes

Aai,a 2 ,...,am, rot(ai, a2, ..., am): Add the terms with
rotated indexes

Aai,a2 ,...,am, (ai <- aj): Add the terms with
indexes ai and a3 inverted

The tensors are then given by

1
Va,b -ab = lab = n[C b + -r(Ca bb)] (B.2a)

2
2 1Vab fl[4Abc- C - AI '(C-1 )b/Ic + 2-tr(C a( bc) - I-tr(Cb

Uabc -b c -3 2tT(Oablc)]

rot(a, b, c) (B.2b)

Vab,c = n[ Nab /c + ItT ((abjc)], (a <-+ b) (B.2c)
4

1 1
Va,b,c n[-/la(C 1 )bc + t(Ca bc)], perm(a, b, c) (B.2d)

2 6
[1 T-1 1 T3 -i +1

?abcd n1- /ab C cd abc d -~ t(a 2bcCd + it (Cab c d)

1 1 1
TII-\ 1T 1 l

16t(Oabcd) -- tT(Oabcad) 2 b(C)d 4 p (C-)beId,

perm(a, b, c, d) (B.2e)
11 1

Va,b,c,d 8 a , b-c,d b CAd + tr(Cabcd)1,

perm(a, b, c, d) (B.2f)
1 1 1

Vab,c,d VabVc,d[2] - n [tr(4cd dab) + -tr( c ab d)

1 8
+Nab(dpc + y /IC- 1 

abpd , (a +-+ b)(c <-4 d) (B.2g)
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Vab,cd VabVcd2] + nI tr(CabC cd) + NiCNcd], (a <-+ b)(c +-+ d) (B.2h)
48

Vabc,d = 1 tr(Cabccd) + a/IcId1, rot(a, b, c) (B.2i)
6
n 1T 1 1 1C1

Vabcde = 24[labcd ye ~ l bc pde - t abcd e

24 tr(abcode)+ tr($abcodoe) + 4tr($abCcdoe)
24" 2 1 T~a(C-1 bd

-tr($aeob + tr(CaCbcodCe) - 1 pTC )bcdye

- p C 1 cyde - p PbcC-lde -- C

perm(a, b, c, d, e) (B.2j)
1 1 1  1

abc,d,e Vd,eVabc2 - trT(abcde) + y C abcpe + M(Bed],

rot(a, b, c)(d e) (B.2k)

abc,de VdeVabc[2] + n[-tr(Cabc de) + McCNde], rot(a, b, c)(d <-4 e)(B.21)

Uab,cd,e [abr(cd,eC2- Cab(eeCcd) + Nbcdpte + NbOeCNcd],

(a <-+ b)(c +-- d)(ab <-+ cd) (B.2m)

1 1n 1 ~ ~ ~ ~
Vab,c,d,e I VabVc,d,e + -Vd,eVab,c) [T( abCcCdle)

12 4 )2 2

+2NabCeCcyd + pdCl0csabye , (a - b)perm(c, d, e) (B.2n)

1 1n
Vabc,d,e,f I VabcVd,e,f+ Labc,de,f + abc(d e f)

+6MacCeC f yd + pdC- CfCabce + pdC- abcftye],

rot(a, b, c)perm(d, e, f) (B.2o)

1
Vab,cd,e,f 16VabVcdVe,f [3]

+(a (Vcd,e,f - VcdVe,f) + v (Vcd,ab - VcdVab) + IVab,eVcd,f)[2]

3 16 1
+n 16tr(OabOcd(eO f) + INcideO f CNab + 1 yd C C abcapf

+peTC- 1Cf CcdCNab] , (a <-+ b)(c +- d)(e +-* f)(ab +-+ cd) (B.2p)

VabVcdVef,g [3 + VabVcd,ef,g + Vab,gUef,cd -
3 Vab,gVcdVef

ab,cd,ef,g16 16

+ n[tr(Oab~cdlef Og) + N!Ocdlef pg + N!Ocd(gCNef

+NTOg~cdCNef , (a b)(c <-4 d)(e <-+ f)perm(ab, cd, ef) (B.2q)
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Vabc~e~~g abcduej~ + g abcd,g~ej )[2 + 1 r(Xf4g bVabcddeeffgg F82+n4t(S~ bd

+ 6 C- obed + 6abcC_ ad + p abC-koed + p4 a -1

+ y tZ TC-+ Voabcdag perm(a, b, c, d)perm(g, e, f) (B.2r)

L abcCede~~f,9d

Vabce,f,g = ( d 1 3 4

6 +deabc,f,g - +abcde,f,g + Uf,guabc,de -| 2abc,f/Ide,g - 3Vdeabc]f,g f]

12
1 1

+n MbcfaCde+ Veofo +abcpg+ Nde -aabcifg1 112+ [ Mlbc"f ' gCNe + N3 TfaI Nd ~ 3 ~ I~

1 y C-1abcodetpg + 6 I-f odeoabc/Ig + 2MabCdeCfpg

1 1 ~ -~~ 1
+ M cofodepg + I tr(CabcCdeCfCg),24

rot(a, b, c)(f <- g)(d * e) (B.2s)

The expressions given above are in a form suitable for analyzing situations where

the parametric dependence is on both the mean vector y and the covariance matrix

C. The formalism can also be readily adapted to the case where only the mean

vector or the covariance depends on the parameters by setting the derivatives of the

covariance matrix or the mean vector to zero, respectively.

Substituting for the tensors of Eq. (B.2) into Eqs. (A.8) and (A.10), expressions are

obtained for the first-order bias and second-order covariance of the MLE given general

multivariate Gaussian data. The former has been stated in Eq. (7) of Ref. [84], while

the latter is now shown here. For the diagonal terms of the second order covariance

matrix we obtain Eq. (4.3).

B.2 Deriving Tensor Expressions for non-Gaussian

Data

The explicit expressions of the tensors evaluated for general Gaussian random vari-

ables can also be used for random data that are not distributed in a Gaussian

form provided that they can be expressed as functions of Gaussian random vari-
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ables with a Jacobian of the transformation that is independent of the parameters

to be estimated.[68] This result is then used to prove that the asymptotic orders

of the MLE bias and variance are expressible in inverse orders of SNR when the

measurement data follows the gamma distribution of Eq. (3.6).

Consider for example a single vector sample composed of Y1,...,Y arbitrary

random variables which can be expressed in terms of u1 ,..., u q Gausssian random

variables (q > b). Assume the Jacobian of the transformation is independent of

the m-dimensional parameter vector 6. The mapping is assumed to be one-to-one

between u = [ui,.. . ,ug]T' and Y = [Y1 ,. . . ,Y]T (for q = b), or between u and

-[Y, QT Y1 , . .. , Y, 1, .. , Qq-b]T (for q > b), with Q1, ... , Qqi- some arbi-

trary random variables that are not dependent on the parameter vector 6. For the

general case of q > b, the parameter independent Jacobian of the transformation is

J' = . Under these assumptions, we have the following identity which holds for

the expectation of any function of derivatives of the likelihood function with respect

to the parameters,[68]

J ln(p(Y; )) a p(Y;

f (aln(p(Y; 6)p(Q)) .. dln(p(Y;6)p()) p(Y; 6)p())dYd,

(B.3)

for all i = 1, 2, ... , m, where the last equality is introduced so as to make the

transformation between Y' and u, since p(Y; O)p(Q) = p(u(Y, Q; 0)) J' and Q is

parameter independent. Equation (B.3) can then be written as

(f)Y // f Bn(p(u(Y, Q); 0)J'), adln(p(u(Y, Q) 6)J'))

xp(u(Y, Q); 6)J'dYdQ

(&In(p(u; 6)) alln(p(u; 9))

= (f)U (B.4)
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The expected value of any function of derivatives of the likelihood function for Y with

respect to the parameters 6 can then be written as the same function of derivatives of

the likelihood function for u. Since the asymptotic orders are function of expectations

that have the same structure as Eq. (B.3), the asymptotic orders of the MLE of a

parameter 0 can be computed from measurements of the non-Gaussian quantity Y.

For example, the MLE of a scalar parameter 0 from an observation Y distributed

as a Gamma with parameter dependent mean u(6),

(Yn 0) Y" nY

p )= IP)J exp - (B.5)

can be computed using the set of Gaussian random variables U1 , ... , U2n

2n Ui

P(Ul,.-, U2n; 0) = Hexp -- O (B.6)
2=1 (7)o)(

B.2.1 Expansion of Bias and Variance in Inverse Orders of

Sample Size or SNR for Gamma-Distributed Intensity

Data

For the problem of surface orientation considered in Chapter 3, the M-dimensional

measurements R, given parameter vector a, are distributed according to the product

of gamma distributions of Eq. 3.6. The parameter a can be estimated using the set of

Gaussian random variables x 1,1 , .. X,21 , X2 ,1, ... , X 2 ,2 A 2 ... , zM, - , M such

that

M 2,k 2

Px(zi,1, ... , XM,2pm a) exp Xki . (B.7)
k=1 i=1 V7rak (a) \o a

where o-k is the mean of Rk and also twice the variance of Xk,i for i = 1, .. .2p

Assuming that pk = yu for all k, Eq. B.7 then becomes

1 1 24
x(X1, -/,p; a) =(27r)m I C(a) 2 LxC(a)- x (B.8)

j=1

168



where xj = [x1,j, ... , XM,j]T is the jth sample of the M-dimensional data vector for

j = 1,.. . , 2p, and the M-dimensional covariance matrix C(a) has elements CkI =

6klk/2. Using this notation, the M-dimensional measurement R, with parameter-

dependent mean a-(a), can be replaced by the measurement x obtained from n' = 2p

independent and identically distributed M-dimensional vectors, where the parameter

dependence is instead on the covariance of the data, C(a).

The asymptotic orders of the MLE bias and variance for the rth component of

the parameter vector a can then be calculated using the existing expressions provided

in Ref. [84] after substituting for n' = 2pi and Ckl = 6 klk/2. These asymptotic

expansions are in inverse orders of the sample size n', and therefore in inverse orders

of p. Since p is the SNR of the gamma-distributed R measurement, the MLE bias and

variance given data that follow a gamma distribution can be written as asymptotic

series in inverse orders of SNR,

bias( i, M = 1) -bi(a; a, e, 1) b2 (a; a, e, 1)+ ( 3 ) (B.9)

var1(a; a, e, 1) var2(ar; a, e, 1)
var(+ar, y, M = 1) + 2, (B.10)

where the vector e with components ek = 1 signifies the 'all-measurements-equal' case

of pk = t for all k = 1,2. .M

For example, consider the Fisher information and the first order bias. The Fisher

information matrix has elements

M 1 1 alk (a) a~k (a)
ibc = (2p) E O~)2ab a, 7(B. 11)

k=1 2 (k( a a

and is equal to Eq. 3.8, as expected. The first order bias using the gamma distribution

of Eq. 3.6 is given by

1 7 ft Bag(a)a82Uk(a)
bi(d') = -- iraibc .~ka ~~ a (B. 12)

2 E \( crk(a))2 &aa Dabaac
k=1

which reduces to Eq. B.14 after substituting for ira, ibc. Using the Gaussian distribu-
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tion of Eq. B.8,

bi (a')= - ir" bc 2/y BOy(a)8a2 U(a).
4 b 1  ( (r(aa)b ((a2 aa baac

which equals Eq. B.12, as expected.

B.2.2 Analytical Expressions of the Asymptotic MLE Bias

and Variance for CCD Measurements of Surface

Reflectance

For the statistical model of Eq. C.18

bi (0|0)

vari(0l1)

var2(06)O

12 1
[v1, 2 + Iviv 2 + vi,1v1],

= i-, )
-11

(i- 3)[214 - 5v, 2 vi + 6 11 2 P1+ 6v1, I -v11 /

-Vi, 1/2 - V1 ,3 - v121 2]

72 7 2
1,2 + 2 vi,11 v 2 + 7v1,1v1,2v1

72 7 112
+ V12 + 7Vi,2vi2 ~ 2 V,1v

6v1, 2 

-6v,, 1z4 6 v]

where

Va,b
1 Dak abk

= 9Oa gob

1 1cc

and i is the Fisher information given by Eq. 2.8.
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Appendix C

Statistics of CCD Measurements of

Surface Reflectance

We show that a CCD photocount measurement, K, of planetary surface reflectance

from a natural light source approximately follow a Gaussian distribution. The deriva-

tion incorporates surface albedo variability, as well as CCD camera read and shot

noise, and atmospheric haze noise. The number of photoevents K recorded by CCD

cameras is directly proportional to incident intensity [56]. The averaged intensity

incident on a photosurface of area A in the time interval (to, to + T) is a random

variable

WIBo = A]]] 0(x, y; tIBo) dt dx dy (C.1)
-rA i to

where Jf(x, y; t|Bo) is the random instantaneous intensity at time t and location (x, y)

on the photosurface given albedo Bo. For satellite imaging of a planetary surface

under the illumination-observation scenario described in Fig. 2-1, the expected value

of J(x, y; t Bo) is proportional to the surface reflectance function I(pi,, pon, a) times

the incident solar flux Jo [79], where the latter is assumed to be a known constant,

plus the mean intensity from atmospheric haze H. The surface reflectance function

can be expressed as I(p, pon, a) = Bof(0) (Eq. 2.3), where Bo is the random surface

albedo and 0 is the unknown planetary surface slope. Atmospheric haze is described
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by a CCGR field that is independent and additive to the CCGR field from the surface,

so that the field variances, or equivalently the mean instantaneous intensities of each

add.

The probability distribution of W|Bo for polarized thermal light is given by the

Gamma distribution [49],

(WC-lexp - )fr >

PWIBo(W|Bo) w,() for W> 0 (C.2)
0 for W < 0

where WBo = (W|Bo) f WPWBo(W|Bo)dW = J[Bof (0) + H], and H is the

expected intensity of atmospheric haze which is assumed to be a known constant

[12]. The variable ( is the number of coherence cells in the intensity average [49]

which is equal to the squared-mean-to-variance ratio, or Signal to Noise Ratio (SNR)

of W|Bo, defined as (WIBo)2/((WIBo 2) - (WIBo) 2). For example, ( equals the

time-bandwidth product of the received field if WjBo is obtained from a finite-time

average [70]. Additionally, ( can be interpreted as the number of stationary speckles

averaged over a finite spatial aperture in the image plane or the number of stationary

multi-look images averaged for a particular scene [2, 70].

The probability of observing K photoevents follows the conditional Poisson dis-

tribution [49]

PKW,Bo(KW, Bo) = (KWBo)KeKWBo (C.3)
K!

where KW,Bo = #rAW. The proportionality constant 3 is given by # = , where h is

Planck's constant (6.626x10- 34 Joule-s), P is the mean optical frequency of radiation,

and 7 is the quantum efficiency that represents the average number of photoevents

produced by each incident photon (0 < 7 < 1). From Eqs. C.2 and C.3, the probability
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of observing K photoevents then follows the negative binomial distribution

PKIBo(K|Bo) = j PKIW,Bo(K W, Bo)PWIBo(W|Bo)dW

1F(K + () i K , KB]1 [ o (C.4)
F(K + 1)F(() KBo

where KBo = #rAWBO - y[Bof (0) + H], and we have defined for convenience the

proportionality constant y

Y = prAfo = rAfo (C.5)
hyP

For ( > 1, the Gamma distribution of Eq. C.2 approximates a delta function

[78], PWIBo(WIBo) = 6(W - WBo), so that the negative binomial distribution for K

(Eq. C.4) approaches a Poisson distribution. To show this, let q = KBO/(. The first

cumulant of the negative binomial distribution for K conditional on Bo is given by

AI(KIBo) = (q, and the rest by the recursion equation

dA, (K IBo)
Aj+1(KIBo) = q(q + 1) dq , (C.6)

so that

n

An(KIBo) = ((q + I: ajq3 ) for n > 2, (C.7)
j=2

where the a, are constants. For thermal light at optical frequencies, and for the

common integration times of CCDs, ( is very large, usually in the order of 1010, while

maximum values for KBO are typically much smaller, around 104. For ( > KBo, q

tends to 0 and An(KIBo) ~ (q for all n, so that the cumulants of KIBo become equal

to those of a Poisson distributed random variable with mean (q = KB0 , which is

random since Bo is a random variable.

The total probability distribution for K is also approximately Gaussian by virtue

of the central limit theorem. To show this, we first calculate the cumulants r, of the
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photocount K using the law of total cumulance [17],

n(K) = r1(K1, ... , Kn) = ,(A, (Kni|Bo), ... I , A(Kg |Bo)) (C.8)

where the summation is defined over all possible partitions 7r of the set {1,.. . , n}

of indices. For each partition ir, sub-blocks are denoted by rl,. . ., irj, so that for

example, if n = 3 and -r = {2 indices, 1 index}, the sub-blocks are 7ri = {[1, 2], 3},

7 2 = {[1, 3], 2}, and r3 = {[2, 3], 1}. We then define K 1 = K 2 = ... = Kn = K.

Equation C.8 reduces to the well known laws of iterated expectations and total variance

for n = 1, 2 [9]. The cumulants for K are given by,

r1(K) = (KBo), (C.9)

K2(K) = (KBo) + var(KBo), (C.10)

rn(K) = (KBo) + bnvar(KBo) (C.11)

where the b, are constants and we have made use of Kj(KBo) = 0 for all j > 3, since

Bo has been assumed to follow a Gaussian distribution with mean Bo and variance
2

UBo*

Defining a new random variable

U = (C.12)
1 ohBoVK= (I + K7

where K = (KBo) = -y[Bof (0) + H], the cumulant generating function of U is given

by

gU(#) = In(eOU)

-0 I 2 + gK 2C 3
(1+ Ko- 0 /Bo )1/2 K K=(1 + Ko0 /Bo2 )1/2

where gK(d) is the cumulant generating function of K. The cumulants of U are then
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given by

. digu(#) 1
d~i =0 [K(1+ KUo0/Bo2)i/2]3 do =

+ rj (K)) , (C.14)

so that

U1 = 0,

U2 = 1,

K(1 + cn - 0/Bo2)

[K(1 + Ko/o 2 )1/2]

where the cn are constants.

that U and consequently K

For very large values of K, un approaches 0 for n > 2, so

become Gaussian random variables.

The discrete probability density for K is then well approximated by the continuous

Gaussian probability distribution,

PK(K1O) = exp -I [K K(O)
N/2 o-UK ( -UK (0) _

(C.18)

where

= y[Bof (0) + H],

K= K+ RK2 / 2 +±

(C.19)

(C.20)

are the mean and variance of K respectively, o is an additive signal-independent

variance term due to CCD camera read noise, and we define Ua =yH as the noise

term due to the known atmospheric haze expected intensity H.

In order to determine appropriate noise levels and the scaling factor -y, we consider

as an example the HiRISE camera of the latest Mars Reconnaissance Orbiter (MRO)

mission [7, 81], where Ref. [7] specifies read noise oR to be roughly 80 electrons r.m.s.,
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and imply in Fig. 12 a y ranging from roughly 20000 electrons for the blue-green and

NIR bands to 70000 electrons for the red (pan) band. The mean photocount, K, is

then on the order of 10' electrons.

A typical value for the contribution of atmospheric haze to the total measured

signal in images of Mars may be inferred from Table I of Ref. [16]. Accounting for the

gain of Mariner's camera [34], we find that the atmospheric haze component, 2aze, is

typically on the order of 2000 electrons, or roughly 10% of the mean signal expected

using the blue-green HiRISE band. For albedo variability, the mean Bo is normalized

to one and the standard deviation UBo is specified as 10% of the mean following

calculations presented in Ref. [6] for typical Martian surfaces. Albedo variability

then results in a variance that is on the order of 106 electrons.

The integration time or shutter speed of the HiRISE camera is T > 76 psec and

the optical bandwidth is vB ~ 1014 Hz or greater, depending on the exact band

used. The value of ( is then in the order of 1010, while k is in the order of 104,

so that the negative binomial distribution of Eq. C.4 is well approximated by the

Gaussian distribution of Eq. C.18. In this paper, we consider CCD measurements in

the blue-green and/or the NIR band.
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Appendix D

Received Pressure Field in a

Fluctuating Ocean Waveguide

D.1 Mean, Covariance of the Forward Propagated

Field, and their Derivatives

Here, we review the analytical expressions for the mean field, variance, and expected

total intensity of the forward field propagated through an ocean waveguide containing

random internal waves. These expressions will be used to calculate the mean vector y

and the covariance matrix C in Eq. (4.1), and determine their derivatives with respect

to source range and depth. We employ the formulation developed in Refs. [21] and

[90], where it is assumed that the internal wave inhomogeneities follow a stationary

random process in space. Referring to Fig. 4-1, for a source at ro = (-po, 0, zo), the

mean forward field received by the qth hydrophone array element at rq = (0,0, zq) is

given by Eq. (83) of Ref. [90]

('FT(rqlro)) = W " (rro)e o 7,(p,)dp, (D.1)
n
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where p, is the horizontal location of the internal wave inhomogeneity, and

W ")(rqlro) = 47r e-ir/4u(zq)un(zo)e
d(zo) v/8i N/PO

(D.2)

is the incident field contribution from mode n given no inhomogeneities in the medium,

d(zo) is the density at the source depth zo, un(z) is the modal amplitude at depth z,

(n is the horizontal wave number, and v is the change in the horizontal wave number

due to multiple scattering from the inhomogeneities. As detailed in Ref. [90], the

modal horizontal wave number change is complex, and it leads to both dispersion

and attenuation in the mean forward field. Analytic expressions for 1n are provided

in Eqs. (56) and (60) of Ref. [90] for compact inhomogeneities that obey a station-

ary random process in depth and for general inhomogeneities with arbitrary depth

dependence, respectively.

The variance of the forward field at the receiver is given by Eq. (84) of Ref. [90]

Var(rTT(rqjro)) d2 (zo) | o1 un(zo)1un(zq) 2
n 2 Z) P" n(O

xe o( (efOoI 4(pa)d'" - 1) , (D.3)

where , is defined in Ref. [90] as the exponential coefficient of modal field variance,

and .{... }, R{... } correspond to the imaginary and real part, respectively. The

variance of the forward field depends on the first- and second-order moments of the

scatter function density of the random medium. Analytic expressions for pn for

general surface and volume inhomogeneities are provided in Eqs. (74) and (77) of

Ref. [90] for fully correlated and uncorrelated scatterers, respectively.

The covariance of the forward fields received at rq and r, is given by Eq. (104) of

178



Ref. [90]

Cov(IT(rlro),XT(r,|ro)) =

27r 1 I/z)2 z-2Q\2 {n,}po

d2( zo) |{1snp o ) nZU*ze

x exp ( j (iR{ vn,q(p,) - vn,(ps)} - Q{vn,q(ps) + v,,(ps)})dps

x (ef 0 o n,q,p(ps)dps - 1) (D)

The mean forward field of Eq. (D.1) is also called the coherent field, the magnitude

square of which is proportional to coherent intensity. The variance of the forward field

in Eq. (D.3) provides a measure of the incoherent intensity. The total intensity of

the forward field is the sum of the coherent and incoherent intensities. As shown in

Ref. [21], the coherent field tends to dominate at short ranges from the source and in

slightly random media, while the incoherent field tends to dominate in highly random

media. It should be noted that in a nonrandom waveguide , = 0 so that the variance

of the forward field is zero, from Eq. (D.3). This is expected since the field is fully

coherent in this case.

D.1.1 Derivatives of the Mean Field with Respect to Source

Range and Depth

Going back to Eq. (D.1), the modal amplitude us(z) is defined as

un(z) = [N(1)ei{f-"}z - N(2)ei-nfY}z] e-{Yn}z. (D.5)

We will assume that

j v.(p,)dp = vnpo, and (D.6a)

ad(zo) - 0, (D.6b)
Bz0
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so that

('T(rIro)) (D.7)= 1 Cn(z)fn(zo)g.(po),
n=1

where the following quantities have been defined

Cn(z) = 4 7r etix/4Un(z),d
d(zo,)V8,rg

fn(zO) = un(zo)

gn (PO)
- 1 ei( 'n+Vn)Po

(D.8a)

(D.8b)

(D.8c)

The derivatives of the mean field with respect to source depth and range can then

be simply expressed in terms of derivatives of fn(zo), g,(po) and their products,

respectively.

Depth derivatives

The first three derivatives of the mean with respect to source depth zo

f (zo)

f (ZO)

fn (zo)

= i {} [N(l)eYn}zO + N( 2)e-i-{n}zo] e-{OnY}zo

-- Ynjfn(zo),

= - [(R{7y })2 + ({7_Yn}) 2 ] fn(zo) - 2{7f (zo),

= - [(R{7})2 + (Q{7,})2] f 1 (zo) - 29{7y}f (zo).

are given by

(D.9a)

(D.9b)

(D.9c)
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Range derivatives

The first three derivatives of the mean with respect to source range po are given by

gn (Po)

2 (P0)

g (PO)

ei(en+vn)Po i

= ni(vn + vn ) - , )

e i( n+Vn)PO - + n2 - ( n + vn)

= I0 I-(( +PO)--

ei( n+vn)po

= P-

3 1
4pi.

(D.10a)

(D.10b)

-((n + vn) 3 + 3( n + v/n) 2

2po

+ i 9 ( + vn) 8p _1 . (D.10c)

D.1.2 Derivatives of the Covariance of the Field with Re-

spect to Source Range and Depth

We can express the covariance of the forward propagated field in Eq. (D.4) as

00

Cov(XPT(rmlro), WT(rlro)) S [ Dn(Zm, z,)hn(zo)ln(po),
n=1

Dn(Zm, zp)

hn(zo)

1i(PO)

d2 (zo I& lUn(zm)u*(zp),

I un(zo)12,
1 2e-2Q n+v}po (ef2 o An(ps)dps

PO

(D.11)

(D.12a)

(D.12b)

(D.12c)- 1).

We can simplify the above expressions for hn(zo) and ln(po) by writing

hn(zO) (e-2Q{n}zo) [cos2(R{yn}zo)Mi + sin 2 (Rf{yn}zo)M2

+2 cos(R{yn}zo) sin(R { yn}zo)M31, (D.13)
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and,

ln(Po) = e-2a {+vn}po efOPO n(ps)dps _ i
PO

= --e-Po (A, -1(D.14)
PO

where

MI = (R{N(1 ) - N()})2 + ( i'{N(1) - N(2 )}) 2 , (D.15a)

M2 (R{N() + N()})2 + ({N( 1 ) + N(2 )}) 2 , (D.15b)

M3 2 [R{N()}1NN } - {, (D.15c)

Kn= 2 {( + Vn}, (D.15d)

An= efOo An(ps)dp. (D.15e)

The derivatives of the covariance of the field with respect to source depth and range

can then be simply expressed in terms of derivatives of hn(zo), ln(po) and their prod-

ucts, respectively.

Depth derivatives

The first three derivatives of the variance with respect to source depth zo are given

by

hl(zo) = -2Q{yn}h(zo)

+2{yn}e-2{Yn}zo [- cos(R{'ynzo) sin(R{yn}zo)(M1 - M2)

+ (cos 2 (R{yn}zo) - sin 2 (R{yn}zo))M3] , (D.16a)

hi(zo) = -29{'yn}[2h (zo) + 29{yn}hn(zo)]

+2( {Yn}) 2e-23{ ,nz [(sin2 (R{-yn}zo) - cos2 (R{yn}zo))(M1 - M2)

- 4 cos(R{yn}zo) sin(R{yn}zo)M3] , (D.16b)

h'(zo) = -2Qv{'yn}[3h2(zo) + 6a{yn}h1(zo) + 4(a{yn}) 2hn(zo)]

-4(Rfyn})2[h'(zo) + 2QV{yn}hn(zO)]. (D.16c)
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Range derivatives

The first three derivatives of the variance with respect to source range po are given

by

1
= -e- KnPO

Po
1 F

= -e KnPO

Po

t + - + An -
PO

12 1
( + 2

PO PO

+A, ( (K +

1 e
= -- e-"O

Po

1

Po
13 3

( + -P)3 + 2
PO PO

+ n ,

- 2pn (Kn +
POn

1 2
(Kn + -) + --

PO PO

+ A1 12-3/1 1
+ n (-( + )3+ 3ptI(rln + 1)2 3p(n + ) -

PO Po PO

3n - 2 - 3/-t'(iln + -)+
PO P
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ll(po)

ln (PO)

n13(PO)

(D. 17a)

1
+ PO

+ p+ p' (D.17b)
+ tt + [n ).

+ 3 P+

3
-(sO +
Po

1

PO

(D. 17c)3pn/p'n +/p'n.]
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Appendix E

Full Formulations in Free Space

and in a Stratified Waveguide for

the Statistical Moments of the

Ambiguity Function for the Field

Scattered from a Group of

Randomly Distributed, Randomly

Moving Targets

E.1 Free Space

Here, we derive analytical expressions for the statistical moments of the ambiguity

function of the total acoustic field scattered from a group of moving targets in free

space. We begin with an analytical expression for the acoustic field scattered from

a simple harmonic source by a single moving target in free space (Appendix C of

Ref. [92]), and derive expressions for the statistical moments of the received field when
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the target's position and velocity are random. Fourier synthesis is then used to expand

these expressions for the general case of broadband source signals and calculate the

statistical moments of the ambiguity function of the received field. Accounting for the

cummulative effect of a distribution of N randomly swarming targets, we note that

the expected intensity of the received field consists of: (i) a variance term proportional

to N due to scattering from each target, and (ii) a mean-squared term proportional

to N2 due to interaction of the fields scattered from different targets,[90] where the

variance term typically dominates.[1]

E.1.1 The Back-Scattered Field

We consider a monostatic stationary source/receiver system at r, and a group of N

targets randomly distributed in volume V centered at the origin 0. The random

position of the qth target at time tq is given by rq = u + vqt, as shown in Fig. 5-

1, where uO is its random initial position, and vq is the target's average velocity

during the time necessary for the sound signal to travel through the remote system's

resolution footprint. Since the Doppler shift due to a moving target depends only on

its speed relative to the source and receiver, we assume without loss of generality that

Vq = Vqir + Vqllr,I, where Ir,L denotes a unit vector perpendicular to ir. Under the

above conditions, the field incident on the qth target in the far field of a harmonic

source of frequency f is given by adapting Eq. (C3) of Ref. [92],

cTiq(rq, tq; f) = e 2 qf(riruvqtqe)/ce i
2

rftq (E.1)

where r = |rl, ir = r/|rl, and we have used the far field approximation |rq - rl =

r - ir - r, valid for r > rq. To determine the field scattered from the q target, we

then follow the derivation procedure detailed in Eqs. (C4-C19) of Ref. [92],

s,q(r, t; f) = G(0|r, f(i + 2vq/c) )G(r|0, f)e-i2 ft
k 1)
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where

Sf (1 + vq/c)
q -V/c orf f(1+2Vq/C)

(E.3)

is the Doppler-shifted frequency of the scattered field. This derivation is also con-

sistent with the approach of Dowling and Ffowcs Williams,[32] Eqs. (9.1)-(9.7), for

calculating the sound field due to a moving point source.

Let us now consider the effect of random target position and speed. Taking

expectations over the random initial offset uO, we define

Uq(fir/c7vq) = Pu +fir [ 1
c I 1+ 2 v/C

= -i27rf(1+(1+2eq/c)-1)ir.nouq u )du (E.4)

where Pu(uO) is the probability that the target initial position is u', and pu is the

corresponding characteristic function, i.e. the Fourier Transform of Pu. Then,

k G(Or, f(i + 2vq/c)- 1)G(r|0, f)e- 2I

x Uq(fl,/c, Vq)Pv (vq)dVq (E.5)

where Pv(vq) is the probability that the target speed is Vq. We note that when the

source frequency f becomes such that the wavelength c/f is much smaller than the

length scale of the targets' spatial distribution, the variable Uq(fir/c, vq) approaches

zero, so that (,s,q(r, t; f)) ~ 0 also.

Finally, we can derive an expression for the autocorrelation of the scattered field
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from the qth target,

((D,q(r, t; f)I *,q(r, t + T; f))

f S(f)S*if) G(rJO, f)e-i2  t G*(r|O, f)ei2
,f(

t +r)

x G(0r, f(1 + 2v/c)1)e-i27rir-uo/c(+(1+2q/c>l)

x G*(Ojr, f(i + 2vq/c)--1)ei27rfj.u'/c(1+(1+2Vq/c>-)

x Pu(u )P,(vq)d'udVq

IS(f)12=1 p |G(r|0,f |2G(0|r, f(1 + 2vq/c)- 1 ) 2envr y'P(vq)dvq

E.1.2 Statistical Moments of the Ambiguity Function

For a broadband source with source function q(t) 4+ Q(f), the scattered field is found

by Fourier synthesis as

Is,q(r, t) dfQ(f)@s,q(r, t; f) (E.7)

The ambiguity function of 'W,,q(r, t) is defined as

J s,q (r, t)q*(t - r)ei2 vtdt = j ''s,q(r, f')Q*(f' - v)e--i2 (f'-v)df'

(E.8)

where * signifies complex conjugate and

= die27'

= dte2-7f'*

df Q(f)(D~ (r, t; f)

dfQ(f) SW/G(0|r,
k

f(1 + 2vq/c)- 1 )G(r|O, f)

(E.9)
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Changing the order of integration, the integral over t results in the delta function

6(f'- f), where f = f(1+ 2Vq/c) (see Appendix E.1). Substituting for f,

6(f' f)df Q(f(1 + 2vq/c)-1) G(0 |r,
1 + 2vq/c k

\.,-i2-7rf (1+(1+2Vq /C)-1(r u /c

'G(Or, f'(1+ 2v/c)-1)G(r|0, f')Q(f'(1

-i27r f'(1+(1+2ve /c)-1)ir -u /c

f(1 + 2vQ/c)- 1 )G(r|0, f)

+ 2vq/c)-1 )

(E.10)

Plugging Eq. (E.10) into Eq. (E.8), we then have

qIs,q(r, V) = SUf) G(0|r, f'(1 + 2Vq/c)- 1 )G(rl0, f')Q(f'(1 + 2vq/c)- 1 )

xei2rf'(1+(1+2Vq/c)-
1)i,.UO/cQ*(f' _ v)e- 2f(f'-)Tdf' (B.11)

and we can now provide expressions for the expected value of the ambiguity function,

as well as its second moment,

(Ps,q(T, 7)) S f) G(r|0, f')Q*(f' - v)e-i2r(f'-v)r

x J G(0|r, f'(1 + 2vq/c)1)Q(f'(1 + 2vq/c)- 1 )

X Uq(f'ir/c,vq)Pv(vq)dVqdf' (E.12)

and

- 0 0 S(f 1 ) G(r10, fi)Q*(fi - v) S* f)G*(r|0, f2)Q(f2 - v)

xei21(fjf2)T J G(Or, fi(1 + 2vq/c)1 )Q(f1(1 + 2vq/c)-1)

xG*(Olr, f2(1 + 2vq/c)- 1)Q*(f2(1 + 2vq/c)~1)

x U((fi - f2)ir/c, Vq)Po,(Vq)dVqdfidf2

(E.13)
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We note that the term Uq, which corresponds to the characteristic function of the

random target position uq, is evaluated at different wavenumbers between Eqs. (E. 12)

and (E.13). As demonstrated in Section 5.2.1, evaluating Uq near base-band typically

leads to the second moment of the ambiguity function dominating over the magnitude

squared of its first moment.

For the total field scattered from the group of N targets within volume V we can

write I,(r, f') = EN 1I's,q(r, f'). Assuming that: (i) target positions are indepen-

dent and identically distributed random variables (i.i.d.), and (ii) target speeds are

also i.i.d., we then have (I',(r, v)) = N(Ws,q(T, v)), with the second moment given by

S Nf0 ) S* (f 2)
(IjI,(r,v) 2) E i G(r|0, fi)Q*(fi - v) k* G*(r|O, f 2)Q(f 2 - v)

q=1 p=1 -2

x JJJJ G(0|r, fi(1 + 2vq/c)- 1 )Q(fi(1 + 2eg/c)

xG*(Ojr, f2(1 + 2vp/c)-)Q*(f 2(1 + 2vp/c)')

-i27rfi (1+(1+2Vq/C)--1)lr U/c i27rf2(1+(1+2vq/c)1)l,-u /c

x Pu (uq) Pu(u0) Pv (Vq)Pv(vp)duodu dvdvpe-i2 "(f -f2)rdfidf 2

SN(j's,q(T, v)2) + N(N - 1)('Is,q(T, v))12  (E.14)

The last line is arrived at by considering the distinction between the q = p terms, and

the q # p terms. The second moment of the ambiguity function then consists of two

terms: (i) a variance term proportional to N due to scattering from each target, and

(ii) a mean-squared term proportional to N 2 due to interaction of the fields scattered

from different targets, [90] where the variance term typically dominates. [1]

E.1.3 Moments of the Ambiguity Function over Time Delay

and Doppler Shift

Equations (E.12) and (E.13) cannot typically be analytically evaluated. A significant

simplification is however possible in the case of specially designed source spectra that

can be approximated by Eq. (5.7), Q(f) = Ef' alei27(f-fa)hn6(f - f,). As we show
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in Appendix E.3, a Costas sequence belongs in this set of signals. Equation (E.12)

can then be rewritten as,

M-1 M-1

= Ea*am
n=O m=O

xe-427(f--)>-

04Sk') G(r|O, f')e-i2r(f'-fv-n)hn,(fI - - fn)

f G(0|r, f'(1 + 2vq/c)-1)ei2-(f'(1+2q/C>--m)hm

x6(f'(1 + 2vq/c) - fm)U(f'ir /C, vq)Pv(vq)dVqdf'

Integrating over f' introduces the delta function

Vq - [fn+

since f' = f, + v = f m (1 + 2vq/c), so that

- 1 * S (f n + V ) G r
1: a:nam2 (fn + v)/cGrO

0= =

f, + v)G(0|r, fm)ei
2 fn-r

xpu([fn + fm + V] r/C)P
fn + V

fm
(E.17)

where we have substituted for Ub,q using Eq. (E.4). Similarly, for the second moment

of the ambiguity function we find,

M-1 M-1 M-1 M-1

= [L [ [a*ama a
n=O m=O 1=0 j=0 27r(fn + v)1 S*(fU +v) 127r(fn + v)/cJ L27rfl + v)/cJ

xG(r|O, fn + v)G*(r|0, fj + v)G(Or, fm)G* (01r,

x6 (f,+i' fmn - f) Pu ([f + f. -

xe- 2 xfn-1TP (Cn[+ v -1"
2 fm

fn +

fi - f,

where the delta function signifies that, for given v, only specific frequency ratios result

in non-zero values for (|Ws,q(7r, V) |2)

To evaluate the moments of the ambiguity function's expected square magnitude
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ir/c)

(E.18)

(XWs,q(r, v))
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along v, we assume that the acoustic wavelength is much smaller than the spatial

extent of the target swarm, so that the characteristic function of the target's position

(pu) can be approximated as a delta function, whereby

M -1 M -1 + V f[f + , f +E +E f6 -f + + fn+f i-f Vfn +v f + v f
1=0 j=0 )

M-1 M-1

S (fl - fn)6(fj - fm) (E.19)
1=0 j=0

so that

M-1 M--l
(I jsq(T, V)| 2 ) 2 an|2|am|2 I Sfn + v)|2 1 cv ( [fn+V ])

n=0 m=0 [2x(fn+v)/c]24xrs 2 fm

(E.20)

For low Mach number motions, we assume that the term |S(fn+v)|2/[2((fn+v)/c]2 is

approximately constant and equal to |S(fn)| 2/[27rfn/c] 2. The moments of Eq. (E.20)
along v for constant T are linearly related to the moments of the target speed proba-

bility density,

Vi Jv(s,q(T, v)2)dV = bn,mm ( - fn + fm (E.21a)
n,m

V2 V2 sq(Tv)2)du = bn,m {(f m - fn + f m  ) + 2 f
n,m

(E.21b)

after normalizing so that f(|WFq(T, v)12 )du = 1, where bn,m is a known constant,

p', o-v are the mean and standard deviation of the target speed, and fn, fm are

known constants that correspond to the distinct frequency components of the source

spectrum of Eq. (5.7). For example, for the case of a continuous harmonic wave

(M = 1), we find vi = 2fopv/c, and v2 = 4f2(o + p)/c2 .

Going back to Eq. (E.18), to evaluate the moments of the ambiguity function's

expected square magnitude along T, we now write the characteristic function for u as
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a Taylor series expansion,

Pu (Yr /C) Pu(Uq) e-i2ryir-uq/cduq

= Pu(uq) (1

= 1-i27ry(r+

P

= Zcad
d=0

47r2
-- iryi, - uq/C 2 [7lr -u duq

4 2 2
2 ([-Ou]2+ [r+Ir-pu) /c2+...

(E.22)

where y = (f,, + fm - f, - fm(fi + v)/(f. + v)), and pu, o-u are the mean and standard

deviation of the target initial position, respectively. The moments of Eq. (E.18) along

-r involve integrals of the form

I TP-i2r(fn-f)T d
2(ri P (P) (f - fi) (E.23)

where 6(P) is the pth derivative of the Dirac delta function and is defined by the

property

J h(f)6(P)(f)df = -
Oh(f) 6 (P-1)(f)df = (-1)P

Of Pf 6(f)df

Before substituting into Eq. (E.18), we also note that

M-1

10 fn +vIf
f3) 6(fn

The moments of Eq. (E.18) along r are then given by

TP (I F,q(T, v)12 )dT
M-1 M-1 I~nv1

= I: E IanI2IamI12 [1ir(fn +V)c 2 (41) 4

n=0 m=0 2rf VI] 4r

- 1]
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(E.26)
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27r 2 fm
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so that

1 M-1 M-1 C [I +]= T(I 4
8 ,qQr, v)|j2)d-r = (r + lr -pu) P( -i , (E.27a)

n=O m=O f Ur
2 2 ]2+ [r ^,r .ILU]2M-1 M-1p [f

72 J2 q(T 2 )dr 4 ([l o-u]2 + [r ) p]P ( - 1
n=O m=O 2 f

(E.27b)

Note here that, for the case of a continuous harmonic wave (M = 1), it is not possible

to infer the statistics of target position since - = 0, pu(O) = 1, and the magnitude

square of the ambiguity function does not depend on target position, as expected.

Also note that Eqs. (E.21 - E.27) were derived for the expected value of the

ambiguity function magnitude squared given a single target with random position

and velocity, Eq. (E.13). For a total of N targets, the expected value of the ambiguity

function magnitude squared is instead given by Eq. (E.14), which also involves the

magnitude squared of the expected value of the ambiguity function for a single target,

Eq. (E.12). Moments of the latter along constant-T and constant-v axis cannot in

general be expressed as linear functions of the target's position and velocity statistical

moments, even for source signals that satisfy Eq. (5.7). For a group of N targets,

moments of the expected value of the total ambiguity function magnitude squared

can still be used to obtain estimates of the targets' position and velocity means and

standard deviations, as long as the variance of the received field intensity dominates,

which is typically the case.[1]

E.2 Stratified Waveguide

Here, we derive expressions for the statistical moments of the ambiguity function

of the total acoustic field scattered from a group of moving targets in a stratified

waveguide. Our formulation is based on analytical expressions for the Doppler shift

and spread expected in long-range scattering from fish groups in the continental shelf,

which in turn are based on a model for scattering from a moving target submerged
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in a stratified ocean waveguide. [92] We also state conditions for modal decorrelation,

since it has been shown that given a sufficiently large distribution of random volume

or surface inhomogeneities, the waveguide modes will decouple in the mean forward

field.[18, 90]

E.2.1 The Back-Scattered Field

As for the free space case in Appendix E. 1, we consider a monostatic stationary system

at range r from a group of N targets randomly distributed within volume V centered

at the origin 0. The position of the qth target at time tq is given by rq = U + Vtq,

as shown in Fig. 5-1, where uO is the initial random target position, and Vq is the

target's average velocity during the time needed for the sound signal to travel through

the remote system's resolution footprint. We assume again that Vq = Vqir + Vqlr,I,

where ir,I denotes a unit vector perpendicular to ir Finally, we assume that for

the frequency regime we consider, the targets scatter omnidirectionaly so that their

scatter function has no angular dependence. Under the above conditions, we can

rewrite Eq. (59) of Ref. [92] as

CIs,q(r, t; Q) = 4r S(wm,l,q) ig(r, , Wm,I,q)e ~Wmlqt (E.28)
,ir 47r k(wm,l,q) s,q

where

Wm,1,q = + Vq[(l(Q) + (m(Q)] (E.29)
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is the Doppler shifted frequency due to target motion. We have defined for conve-

nience

= A1 (r; Q)Am(r; Wm,l,q)e " (Q)+-ym(Wm,1,q))zq

- A,(r; Q)Bm(r; m,l,q)ei(_Y1 )-ym(Wm, ))zq

- B (r; Q)Am(r; om,i,q)e-i(YI ()-ym (Wm,1,q))Zq

+ Bi(r; Q) Bm(r; Wm,i,q)e- 0()+]ym(Wml))z] x ege(Q)+mm))p

(E.30)

where, other than in the expression for Wm,l,q, the lth mode wavenumbers are eval-

uated at , while the mth mode wavenumbers are evaluated at Wm,l,q. Note that

<bj(r, Q, Wm,i,q) is an implicit function of Vq.

Equation (E.28) is valid when we are in the far-field of the source/receiver, which

is satisfied here since we are considering scattering from targets within a resolution

footprint of our monostatic system. We have already made use of this fact in deriving

Eq. (E.30), where for the amplitudes of the down- and up-going plane waves of the

incoming mode 1, we have written

Al(r - uq; Q)

Bl(r - uq; Q)

= A,(r;Q)

B,(r;Q)

and similarly for the plane wave amplitudes of the outgoing mode m, we have used

Am(r - u ; om,i,q) = Am(r; wm,l,q)

Bm(r - u ; wm,i,q) = Bm(r; wm,l,q)

For spatial cylindrical coordinates k = ii, + -yi., while A,(r; Q), B1 (r; Q) are the

amplitudes of the down- and up-going modal plane wave components incident on the

target, and Am(r; wm,l,q), Bm(r; Wm,i,q) are the amplitudes of the down- and up-going
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modal plane wave components scattered from the target,

Aj(r; Q)

B1(r; Q)

A (r; wmiq)

Bm(r; wm,i,q)

= ir4u~),' ei(WdQ)lPl+-Yda)zt),
d z) V87x (t)|p|

z -ier/4 u (z) Nl) (i P-Y(Q t
d(z) V87x (Q)|p|

= i r/ 'm(z) N e) i( Im(U)mI, )|I PI+-Ym(WmI, )zt)

d (0) VV~xm (wm,i,q)p|

= i e -i-r/um(z)Nn2 ei( Im(Wnm1q)|I Il-Ymn(Wnm1,)Zt)

d(0) VTxr(m-(wm,,,q)|pl

Before taking expectations over target position and speed in Eq. (E.28), we note

that only 44>1;' is a function of uO and define

U'm (L4m,l,q, o V) = (P~(r, Q, Wm,l,q) dsu0

= sinc (( ij + (m)Lx/2) sinc (((j, + (my)Ly/2)

x [sinc (Qxi + -ym)Lz/2) (AiAm + BiBm)

- sinc ((7y - 7m)Lz/2) (AiBm + BiAm)] (E.34)

where we have assumed that the target position is randomly distributed within the

resolution footprint of volume V, and the following shorthand notations have been

employed: A, = Aj(r; Q), B1 = Bi(r; Q), Am = Am(r;wom,i,q), and Bm = Bm(r; Wm,l,q).

Note that clx, (zy, yi are evaluated at Q, while cmx, amy, 7m are evaluated at Wm,l,q.

We can then write for the expected value of field scattered from the qth target,

((,a(r, t; Q)) =4-x fE E Uq(Wm,iq,,vge-iktmP,(V))dvE.35)

where Pv(vq) is the probability that the target speed is vq. For small Mach num-

bers, the change between wavenumbers (z(Q) and (i(Wm,i,q), as well as the change

between modal amplitudes A1 (Q) and AI(Wm,i,q) are both very small, so that modal
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orthogonality leads to E Em U"m (Wm,iq, Vq) = Ei Uj"(wi,i,q, Vq), where

U1' 1(wi,I,q, Vq) = sinc (tiL,) sinc ( iLy ) x [sinc ('y1Lz) (A2 + B 2) - 2AjBI] (E.36)

When the length scale of the resolution footprint becomes sufficiently larger than the

wavelength, the mean scattered field (4D,,q(r, t; Q)) ~ 0.

For the autocorrelation of the scattered field, we find

((,,q(r, t; Q),(r, t + ; Q)) = 16Er I f zS*(wznZ
,q~r~+ V 1m n p k(Wm,i,q) k*(PPn,q)

x , (r, R, om,i,q) D*,n'p (r, Q, o n,q)

x eiVq [n()+ (neinrP(vq)dn dvg

= 167r2 S(WM'l)q)S*(pnq)
x m kn"m"'qk(wp,n,q, o LLeiv n, q)

x e aV qlA + .A(n)- p(Q ) W~(vq)dog (E.37)

by defining

U"''(Wmiq ,,Dq o1) - (r, Q, om,i,q) (' (r, W, p~q)dsu

= sinc ((clx + mx - - px)Lx/2) sinc ((i + my - ny - Py)Ly/2)

x (AimAA* A* + Bi BmB* *B*)sinc ((y 1 + -ym - yn - 7p)L. / 2)

- (AiAmA* B* + BiBmB*A*)sinc ((7i + ?m - yn + -yp)Lz/2)

- (AiAmB*A* + BiBmA* B*)sinc ((Ti + m + n - -y,)Lz/2)

+ (AiAmB*B* + BiBmA*A*)sinc (Qyi + -ym + -yn + -y)L,/2)

-(AiBm A*jA* + BiAmB*B*)sinc (Q-i - - - /n - y)L /2)

+ (AiBmA*B* + BiAmB*A*)sinc ((-yi - -- -yn + yp)Lz/2)

± (AiBmB*A* + BiAA*B*)sinc ((1 - Tyi + n - )Lz/2)

- (ABmB*B* + BiAmA *A*)sinc ((1 - 'T + uym + )Lz/2)] (E.38)
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where A, = A,(r; Q), B, = B,(r; Q), A, = A,(r;wp,n,q), and B, = B,(r;Wp,,n,q). Also

(n, (ny, -yn are evaluated at Q, while (,x, y, -y, are evaluated at wp,n,q. Due to

modal orthogonality, the quadruple modal sum in Eq. (E.37) reduces to a triple sum,

El Em En Ep Ugm,,'P(Wm,i,q, Wp,n,q, vq) = El Em Ep Uqm'I'P(wm,i,q, Lp,I,q, vq). Fur-

ther, following the reasoning of Ref. [90], Section IV B, Eq. (68), terms with m # p

are negligible compared to terms for which m = p as long as the size of the resolution

footprint is large enough, i.e.

sinc ((cmx - ,z)) Lx/2) << 1, and (E.39a)

sinc (( my - py)) Ly/2) << 1, (E.39b)

so that EZ Em E, U1'm''P(Wm,i,q, Wp,l,q, vq) E1 Em Uq lm(Wm,i,q, Wm,l,q, Vq). An il-

lustrative example for the length scales necessary for the above conditions to hold is

presented in Fig. E-1 for the waveguide of Fig. 5-2 and the source signal and remote

sensing system parameters of Table 5.2. We assume the targets are stationary and

uniformly distributed over all depths, and that the mean range to the targets is 30

km. While the exact 'necessary' length scale will differ depending on the exact modal

decomposition of the field, we may still conclude that the higher the frequency and

the number of propagating modes, the larger the length scale required for the double

sum approximation stated above to be valid.
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Figure E-1: Waveguide. Necessary length scales for the quadruple modal sum of
Eq. (E.37) to reduce to a double modal sum, given different frequencies Q and sound
speed profiles.
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Under these conditions, Eq. (E.37) simplifies to

(4s,q(r, t; Q)<},q(r, t + r; Q)) = 167r2 1Z
1M

jk(Wm,i,q) U2 
m

m(Q)]7eiQr dvq (E.40)

E.2.2 Statistical Moments of the Ambiguity Function

For a broadband source with source function Q(Q) < q(t), we can use Fourier syn-

thesis to write the scattered field and its spectrum as

Ps,q(r, t)

Ip,,q(r, W')

1 I dQQ(Q)<ks,q(r, t; Q),

= dies'' t,,4q(r, t)

(E.41)

(E.42)

The expected values of 's,q(r,w'), and |I's,,(r, W')1
2 , can then be calculated in a

manner similar to the process described in Appendix E.1.2 for the free space case.

The expressions are given below

(T,,q(r, W'))

(Iqs,q(r, W ')12)

=2 J Q(w'(1 + vq(1/V + 1/vM))1)

xUq"m(W v,)Pv(vq)dvq

4 p
lm n p

Q(w'(1 + Vq(1/V + 1/ )

xUql,,~ (v,(1/o + 1/o))~1 )Pv(vq)dVq

(E.44)

where v denotes the group velocity of the lth mode. Similarly, for the statistical

moments of the ambiguity function, T,,q(r, V) and Is,,q(r, v)12 , we find

(3,,q(T, V)) SQ* (w' - 27rv)e'i(w~ 27v)

x J Q(w'(1 +vq(1/of +1/v))- )Um"(w', vq)Pv(vq)dVqdW'

(E.45)
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and

(| Ijsq(7, v) 2) = 1 ' '(Q*(wi - 2rv) Q(w 2 - 27v)e-i(W1-W2)T

x is5 5Q(wi(1 (1/v + (W1" i, W2, Vq)
m n p

xQ*(w2 (1 + Vq(1/V + 1/V)>)-)Pv(vq)dVqdwidw2 (E.46)

We note that the term , which corresponds to the characteristic function of the

random target position uq, is evaluated at different wavenumbers between Eqs. (E.45)

and (E.46). As demonstrated in Section 5.2.2, evaluating Uim near base-band typ-

ically leads to the second moment of the ambiguity function dominating over the

magnitude squared of its first moment.

The total field TI(r, w') is given by summing over all targets, TI(r, w') = T ,q(r, w').

We assume that: (i) target positions are independent and identically distributed

random variables (i.i.d.), and (ii) target speeds are also i.i.d. It then follows that

(Ts (rT, z.)) = N(Ps,q(T, v/)), and the expected value of the magnitude squared of the

ambiguity function is given by

- Q -S27rv Q*(w2 - 2v)y (W )e-i-2)
q1=1q2(=1 k(wi) k*(W 2 )

x <>55 '"(r, wi(1 + V1(1/V + 1/v'))1, Wi)
1 m n p

xQ(wi(1 + vq1(1/v + 1/v))l)Q*(w2(1 + Vq2(1/of + 1/oG))-1)

x<, 2 (r, w 2 (1 + Vq2(1/of + 1/v)) 1, w 2 )

x Pv (vq )Pv (Vq2)du iduO 2 dvidoq2 dwidw2

= N(Ws,q(T, v)| 2 ) + N(N - 1)|(T',,q(T, v))12 (E.47)

where the last line is arrived at by considering the distinction between the q2 = q1

terms, and the q2 # q1 terms. Again, the second moment of the ambiguity function

for the total group of N targets consists of two terms: (i) a variance term proportional

to N due to scattering from each target, and (ii) a mean-squared term proportional
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to N2 due to interaction of the fields scattered from different targets,[90] where the

variance term typically dominates.[1]

E.2.3 Moments of the Ambiguity Function over Time Delay

and Doppler Shift

Equations (E.45) and (E.46) cannot typically be analytically evaluated. A significant

simplification is however possible in the case of specially designed source spectra that

can be approximated by Eq. (5.7), Q(Q) = >Mj-0 anei(Q~Qn/)Hn_6(Q _ Q). As we

show in Appendix E.3, a Costas sequence belongs in this set of signals. Equation

(E.45) can then be rewritten as,

(4J s,q(T, V)) =

M-1 M-1 oo1 a*,am' S(W')-i(w'-2v-W,1)H 2rv- Wn,)
E w J0 k(w')

Xe-i(w' 27rv) (w'(1+ve(1v )--)HU (W og)

1 M

X6(W'(1 + Vq(1/VI ± /v) - Wm') Pv (Vq)dVqdw' (E.48)

Integrating over w' introduces the delta function

3 (vq(1|vf~ ± 1|vG) -- [-, 1 =)6t(vhat)

since W' = wn' + 27rv = m,(1 + Vq(1/V + 1/o )), so that

M-1 M-1*
- z -1 a* ,am, S(n v e"w + 2rrv) uiW UIm(w, ± 2rv, i9q)Pv(fq)

(E.50)
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Similarly, for the second moment of the ambiguity function we find,

M-1 M-1 M-1 M-1 , -

( S~q(TV)1
2 ) a *amiaia S(u, + 27rv) S*c (wi + 27rv)

n/ / i rI 2 _(uni+ 270v1c] _I wit + 21rv)/C_

Wit wit + 27rv
x6 e- n-'

(wm' wn! + 21rv)

x US"'"'Son, + 27rv, wit + 27rv, iq)P(q)
I m n p

(E.51)

where the delta function signifies that, for given v, only specific frequency ratios result

in non-zero values for (|Iq,,q(7, V) 12).

Contrary to the free space case in Appendix E.1.3, the moments of Eq. (E.51)

over time delay T and Doppler shift v cannot be analytically expressed as linear

functions of the target's position and velocity statistical moments. This is because

the characteristic function for target position is not separable from the propagation

effects in a waveguide, but both are instead contained within the term U,mnP, which

in Eq. (E.51) is also a function of the Doppler shift v. Nevertheless, we may still

expect that the moments of the ambiguity function magnitude squared over v and T

relate to the statistics of target velocity and position, respectively. In fact, we show

in Section 5.3.2 that calculations of these moments can indeed be used to obtain

estimates of target velocity and position statistics.

E.2.4 Evaluating the Volume Integral

The following integral

jesP+Yz~d3r = 27r eidepdp j esdz (E.52)

is more easily evaluated by changing into a cartesian coordinate system, where k =

±iz + ly + -ylz and d3r = dxdydz. If the characteristic lengths of the resolution
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footprint along dimensions x, y and z are LX, LY and Lz respectively, then

L2f Ly/2 Lz/2
= [L/eoxxdxL e~/2 dy-- ei'?zdz

Lx _Lx/2 Ly -Ly/2 Lz J-Lz/2

- sine Lx sine sine (yLZ (E.53)

so that

I ,q(r, t)d3ro
V (8 = 4 k( m)

x sine (( jx + (mx)Lx/2) sine (((jy + (my)Ly/ 2 )

x [Ai(r; o)Am(r; om,i)S( ... ) x sine ((yi - ym)Lz/2)

- A,(ro; wi)Bm(ro; om,)S() x sine ((7 y + m)Lz/2)

- B1(rg; 0)Am(r8; Wm,i)S( ... ) x sine ((yj + 7m)Lz/2)

+ Bi(r0; i)Bm(r8; om,)S(. .. ) x sine ((7y' - ym) )Lz/2)](E.54)

This represents a three-dimensional sinc pattern that approaches unity as L,, Ly, L, -+

0. The first zero in the x direction lies at Lx = Ax/2, in the y direction at Ly = Ay/2

and in the z direction at L2 = Az/2. The first sidelobes are 13 dB down from the

mainlobe, and for Lx > Ax or L > AY or Lz > Az, the integral goes to zero. In our

case, LX, LY are on the order of 100 m and Lz on the order of 20 m, while |ki is on

the order of 1 m-.

E.3 Signal Design

The range-velocity ambiguity function provides a graphical representation of the res-

olution capacity of a given signal and is typically used to quantify the signal's per-

formance in terms of resolving target range and relative velocity from measurements

of the scattered field.[66] The ambiguity function characteristics for several 'basic'

signals have been reviewed extensively in literature. [47, 25, 66, 50] In terms of clutter

discrimination and reverberation suppression in the presence of ambient noise, the fol-
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lowing signals are among the best options: pulse trains, linear frequency modulated

(LFM) signals, and pseudo-random noise signals, such as Costas sequences. Here, we

describe the design of a Costas sequence signal motivated by the need to resolve the

position and velocity of a large group of underwater biological targets. We assume

that the desired range resolution is around 50 m, while the velocity resolution should

be better than 0.2 m/s. Finally, the signal's center frequency should be on the order

of hundreds of Hz or a few kHz, to allow for remote sensing on the order of tens of

km. [40]

A Costas sequence is defined in terms of the number M of CW pulses in the se-

quence, the duration Tc. of each pulse, the base frequency fb, and the sequence used

to generate each CW pulse. To determine appropriate values for the above param-

eters, we consider the range Au = cAT/2, and velocity Av = cAv/(2fe) resolutions

we want to achieve, where AT, Av are the time-delay and Doppler shift resolutions

of the signal,[66]

A B "M, (E.55a)B M'
1 1

AV - T- (E.55b)Tot MTem,

f = fb + B/2 is the center frequency and c is the speed of sound in the medium.

Given then a Costas sequence of M = 7 pulses, a pulse length of Te = 0.4 s leads

to a range resolution of approximately 43 m in water (c = 1500 m/s). The desired

velocity resolution of 0.2 m/s or better can then be achieved by choosing fc = 1600

Hz to get Av ~ 0.17 m/s.

For this specific design of a 7-pulse Costas sequence, the total signal duration is

Tot = MTc = 2.8 s and the bandwidth is B = M/Tew ~ 20 Hz. Each of the seven

consequent pulses is a CW at frequency ft = fb + o/Tc for n = 0,1,... M - 1,

where fb is the signal 'base' frequency (fc - B/2), and a, is the (n + 1)th element

of the Costas sequence, here chosen to be [4, 7, 1, 6, 5, 2, 3]. The normalized time
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domain expression is given by[66]

M-1

q(t) = V gn(t - nTem)
n=O

qn(t) = e-i 2 fnt 0 < t < Te,

0, otherwise

The complex signal spectrum is then given by the Fourier Transform of Eq. (E.56),

Q~f) =M-1

Q(f) = i ei2lrf(nTc)ei2r(f-fn)TW/2sinc (K(f - fn)Tc,)
n=O

M-1

= ane 27r(f-fn)h"sinc (i(f - fn)Tcw)
n=O
M-1

~~ anei2 r(f-fn)hn6(f _ fn)
n=O

(E.58)

where an = F ei 2 rfnTcw and hn = (n + 1/2)Tew, so that Eq. (E.58) is in the form

of Eq. (5.7). Note that the last line of Eq. (E.58) strictly requires If - fnl > 1/Tc.

It is still aproximately valid otherwise.
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Appendix F

Reciprocity Examples

F.1 Plane Wave Incident on Rigid Plate

Suppose we have a rigid plate at the origin. The plate lies in the x-y plane and is of

size LX by LY. A plane wave with direction vector ki is incident on the rigid plate, as

shown in Fig. F-1. The scattered field is given by

4D,(r, t) = - (F.1)10 t

where (DT equals 2 GIlz=O on the left hand side, and is 0 on the right hand side.

Assuming the receiver is at the far field of the plate, such that r >> re, we can write

VG(rlr,;w) - 22 G(r r;w) -jkziG(r0; w)e-jkrair

where G(rro; w) is the free space Green's function,

G(rlro; w) ej kIrro
47r - ro|

(F.2)

(F.3)

which in the far field (r >> ro) can be approximated as G(rro; w) ~j e-ik ro, and

k = kir.
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[Not drawn to scale]

Figure F-1: Rigid plate.
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For 'general' incident field, given a harmonic source of frequency Q at position ro,

1i(r., t,) = I ~ dto dVoG(r., ta lro, to)q(ro, to) (F.4)

where for a stationary source, q(ro, to) = e-jQto, so that assuming the source is also

in the far field (ro >> r,),

Ii(ro, t,,) = IodtoeiQto G(Olro; wi)ejw(t ,to)jkr,o dwi (F.5)

Putting it all together,

t+

2j'kz dt, dS(7 * zz t+

fo f f0

dtoe-jqto 1 2

x j G(Oro; wi)e-wi(to -o) e kir.%ro dwo

x j G(rj0; w)e~w(~*)e-jkrrdw] (F.6)

where ki and k are evaluated at wi and w, respectively, which are 'dummy' variables.

Finally, for a plate moving with constant velocity v, in the z direction, r, = r,+v. taiz,

where ro denotes the initial position of points on the rigid plate at time t = 0. The

integral over to introduces the delta function 6(w, - Q). [92] Similarly, the integral over

t, introduces the delta function 6(w - wi - kviz- iro + kivqiz - Zr). Integrating over

wu and w, we then obtain, [92, 32]

8s(r, t) = 2jkzG(Olro; Q)G(r; D)e-jfJ dS. (F.7)

where k, is evaluated at &, and

-O,

C
(F.8)

The scattering function for the moving rigid plate is found by evaluating the
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surface integral in Eq. (F.7) and substituting for the scattering function SQ in

(D.(r , t) = Di (0, 1 ) '~lk e-30w
k r

where 5i(0, Q) = G(01ro; Q), so that

(F.9)

S(ki, k) = j k2 L L
cos 0 2 "sinc

2ir
([Lx

(kix - k) sine (kiy

where ki = Q/c and k is evaluated at cD. The scattering function is then that of a sta-

tionary rigid plate evaluated at the Doppler-shifted frequency ' ~ Q I + T2g - (ir -.ro) .

This example proves that the scattering function should be evaluated at the frequency

calculated by Lai and Makris. [92]

Now we can also check reciprocity by swaping source receiver positions, reversing

time and repeating the process above, whereby we have

1s(ro, -to) = - dt, dSa -( 4 T(r,, -t,)V,G(ro, -to Ir., -ta))

where, on the left hand side of the plate

4 T(r., -t,) = 21i(r., -ta)|zI = 2 dteja't 1
2ir

G(O|r; w)e~jW(tt-tekr.r.dw
-00 

e 'Id

(F.12)

for a source at r that is harmonic at Q'. We can then write for the scattered field

/-t+J
J._co

dt, JdSa - z 02

x G(ro10; w)e-jWi(tsto) ejkjruio do

x j G(Or; w)e-jw(t-ta)ekra irdw] (F.13)

Which expression we can evaluate for a moving plate such that r, = -Vtaiz, and we
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get

Ds(ro, -to) = 2jk J dSo. izG(rolO; cD)G(Or; Q')ejw'to (F.14)

where

&='( r- (-, -2zi-o) (F.15)

Setting the source frequency equal to the received frequency at r from before, i.e.

Q' = CD, then cD = Q, so that

18 (ro, -to) = 2jK2 J dSO - i2G(rol0; Q)G(Olr; Jj)eto (F.16)

Comparing with the expression derived earlier, we find that reciprocity is con-

served, as expected. In particular, the terms inside the surface integrals are equal in

both cases, so that we have

18 (r, t) jct - s(ro, -to) e- t (P.17)
2j kz 2jKz

and reciprocity holds.

F.2 Pressure Release Sphere

Bubble of radius a at distance rc from the origin. We will assume it moves with

velocity vc = occ where Pc lies on the x-y plane, for convenience. A plane wave is

incident along direction ki, as shown in Fig. F-2. The spectrum of the field scattered

from the bubble and received at position r can be written as

T,(rrc; w) = S P (re) ,krl (F.18)
k |r - re|
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and the boundary condition on the surface of the bubble is

Pr (rc + air ) 1I + S()ek]= 0 (F. 19)k a

so that S(w) = -ka = -wa/c (because ejka 1). Making a far field approximation,

i.e. r > re,

T,(rjrc; w) a jkrojkrj(kk).r (F.20)
r

where eikiro is some 'artificial' phase that we apply to the incident plane wave for the

purpose of proving reciprocity, as we show next. The position ro can be thought of

as the 'origin' of the plane wave, since its phase is zero at that point.
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Figure F-2: Pressure release sphere.
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We plug the above into Eq. C15 of [Lai and Makris] and get

18(r, t) = dte dVqP(r, t rc, tc)q(re, tc) (F.21)

where q(rc, tc) = e-iwitc6(rc - vetc), because we have a assumed a harmonic source at

wi and the target moves with velocity v, as described earlier. Then

s(r, t) = j dtc1L1j dw'I'(rvetc; )e-jw(t-tc)e-jwitc

- j+ dtC+ j dw S)ejkiroejkre-jwt etc(w-wi+(ki-k).vc)] (F.22)

In a manner similar to that of the [Lai and Makris] paper, the integral over te leads

to the delta function 6(w - wo + (ki - k) - vc), and subsequently the integral over W

results in the above expression evaluated at w*, where

*wi 1 - -(fci c) (F. 23)

1 -ik - Cc
C

So we have, finally,

-(r.t) S(w*)ek1roej*(/c~) (F.24)
k*r e - Lk -3 e

C

where the last fraction is due to the delta function property, as explained in the

Ffowcs Williams book (note that this terms is approximately equal to one, and in

fact we neglect it in the future).

For the reciprocal problem, we evaluate the spectrum of the field scattered from

the bubble at frequency w' instead. We then have S = -k'a, and

I, (ro rc; L') a _ikrjkroj(k'k).r (F.25)
ro
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where the plane wave is now incident along vector k'. The scattered field is given by

'1s(ro, -to) dtc- dw'Wf(ro~vctc; w')e-J'(cto)estc
f__0 27 _00

/-to 1 1 d S(wL)') i~o~wt
dtc--- d0' 27 ejk'rekroe'to ejtc(w,-w'+(k'-k')v (1.26)

because the source frequency is now w' and the target position is now rc = -vctc.

Like before we integrate over t, and w' to get

S(C') 1kr ~~l~o
8s(ro, -to) = ~ esiroeio(r/c-to) 1 (F.27)

kro 1 + Lck - e

where

S [= ± - ~] 1 + ('1 - k') rc (F.28)

Now, let w' be the received frequency from before, i.e. w' = w*. Then,

[ = Ii - ~[ W (F.29)

since ki = k'i, k = k' because they are just unit vectors, and we have assumed small

Mach numbers so that terms of the order (vc/c) 2 can be neglected. We then find that

the reciprocal example gives us the reverse shift in frequency, as expected: reciprocity

holds!

F.3 Pressure Release Boundary

Pressure release boundary on the x - y plane, moving with velocity VB in the direction

of the z-axis, as shown in Fig. F-3. A plane wave with direction vector ki is incident

217



on this boundary at angle Oj, so that the incident field on the boundary is given by

Pi(rB; wi) = ejkzzBjkizXB (F.30)

where subscript B denotes a point on the boundary and we have neglected the y

direction without loss of generality. The reflected field is a plane wave propagating

along direction k = kixzia - kziz at reflection angle 6R and frequency w,

PR(r; w) = RP (rB; w')e-jkz(z-zB)ejkixx (F.31)

where R = -1 is the reflection coefficient that satisfies the boundary condition (Pi +

PR = 0) on (r = rB).
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Figure F-3: Pressure release boundary.
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Plugging into Eq. C15 of [Lai and Makris], we find

s8 (r, t) = dtB JdSBPR(r, t rB, tB)q(rB, tB) (F.32)

where the source term is q(rB, tB) e witB6(rB - VBtBiz), so that

t+
sD,(r , t) = f dtB 2 df dwe-(ttB) [-eikizvBtB IekzzeikzvBtB e-jwitB ejkix(XBx)

(F.33)

The integral over tB then leads to the delta function 6(w - wi + kizVB + kzvB), so that

integrating over w, we get

s (r, t) = -e-jW*tej [(x+XB) cos OR-z sin OR] (F.34)

i 11 - sin R
C

VB VB.S- sinO - -sn OR
c cJ

Notice that the reflection angle is different from the incident angle because of the

moving boundary,

W cos 0, = W* cos OR (F.36)

For the reciprocal problem, we define a plane wave incident on the pressure release

boundary along direction k' = -kI ix + k' ii at frequency w', so that the incidence

angle is OR. The reflected field propagates along direction k' = -k 2i - k'iz at

reflection angle 0' and frequency w', so that for a receiver in the far-field

PR(ro; w') = e- k(XB+Xo) ejkizzB e-k(zo-zB) (F.37)
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where ZB - VBtB. Reversing time also, the scattered field is given by

_t+0 0dtB I dw'e-jw'(tB-to)
2x-F_

-- ejto ej[-(o+XB)cos9'-zosin']

w(1 + vsin OR]
1 - B sin 0'

C

~w41

__ekzvBtB e-jk'zo ejk'VBtB eJWitB -jkikx(XB+xo)

(F.38)

vB . VB .
+ sin OR + -sin 0'

cc
(F.39)

where w cos 6 R = cos 0'. If we now set the frequency of the incident wave to that

of the received wave in the previous example, i.e. w' = w*, then w* cos OR = wi cos Oi

from before, and

L = w~oO
cos 0'

w,)j[ 1- L--sin 6]

1 - ! sin6'
C

(F.40)

(F.41)

whereby 0' = O and J' = wi, i.e. we get the reverse shift in frequency and reciprocity

holds.
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