
Building Condition Monitoring
By

Stephen Samouhos

B.S. Mechanical Engineering

Massachusetts Institute of Technology, 2004

MASSACHUSETTS INSTl71TE
OF TECHNOLOGY

SEP 0 1 2010

LIBRARIES

ARCHMVS
M.S. Mechanical Engineering

Massachusetts Institute of Technology, 2006

SUBMITTED TO THE DEPARTMENT OF MECHANICAL ENGINEERING IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY IN MECHANICAL ENGINEERING
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2010

© 2010 Stephen Samouhos. All Rights Reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and

electronic copies of this thesis document in whole or in part in any medium now known or

hereafter created.

Signature of Author:
Department of Mechanical Engineering

June 2010

/7

Certified by: ,~ ' I, - I -

Leon Glicksman
Professor of Mechanical Engineering

Thesis Supervisor

Accepted by:
David E. Hardt

Professor of Mechanical Engineering

Chairman, Committee for Graduate Students



2



Building Condition Monitoring

By

Stephen Samouhos

Submitted to the Department of Mechanical Engineering on June 1st, 2010, in Partial Fulfillment

of the Requirements for the Degree of Doctor of Philosophy in Mechanical Engineering

Abstract:

The building sector of the United States currently consumes over 40% of the United

States primary energy supply. Estimates suggest that between 5 and 30% of any building's

annual energy consumption is unknowingly wasted due to pathologically malfunctioning lighting

and comfort conditioning systems. This thesis is focused on developing analytical methods

embodied within useful software tools to quickly identify and evaluate those building system

faults that cause large building energy inefficiencies.

The technical contributions of this work include expert rules that adapt to HVAC

equipment scale and operation, a general framework for applying probabilistic inference to

HVAC fault detection and evaluation, and methods for sorting fault signals according to user-

defined interests such as annual cost of energy inefficiencies. These contributions are particularly

unique in their treatment of model and measurement uncertainty within the fault inference, and

the careful consideration of user interests in fault evaluation.

As a first step to developing this general framework for fault detection, I targeted first

order faults such as simultaneous heating and cooling and imbalanced air flows within several

large air-handling units in three buildings on the MIT campus. Experiments included the

purposeful implementation of mechanical and software control programming faults on otherwise

fault-free equipment. Between the five pieces of equipment, the software system successfully

identified all previously known and experimentally implemented faults, as well as additional

faults that had not been previously identified or imposed during the experiment. User testing and

experiments show that embracing uncertainty within HVAC fault detection and evaluation is not

only paramount to judicious fault inference but it is also central to gaining the trust and buy-in of

system users who ultimately can apply fault detection information to actually fix and improve

building operations.

Thesis Supervisor: Leon Glicksman
Title: Professor of Mechanical Engineering
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1 Introduction

1.1 Thesis Motivations and Direction

Buildings use 40% of the primary energy supplied in the United States (US), and over

70% of all generated electricity (1), primarily for heating, cooling and lighting. In commercial

buildings, about 20% of their energy consumption can potentially be saved by correcting faults,
including malfunctions and unnecessary operation of equipment (2). And research and initial

deployments of advanced control systems suggest that they can save an additional 10-20% (3).

The energy efficiency resource recoverable through such improved building controls and fault

detection correspond to the output from hundreds of power plants, equivalent to more than a

third of the coal-fired power production in the United States (4). Realizing these substantial

savings will require introducing intelligence into the infrastructure of buildings (4).

This thesis is intended to contribute to the foundation of intelligent building infrastructure

by providing a framework and methods for the automated detection of building energy in-

efficiency faults. The anticipated extensions of this research include application of the fault

detection framework towards the construction of next generation phenomenological building

control systems, and enhanced intelligent infrastructure for energy efficiency.

1.2 Building Faults and Energy Efficiency

According to a recent report from TIAX (2), commercial buildings can typically reduce

their energy consumption by 20-30% through continuous commissioning practices I and the

implementation of a handful of energy efficiency strategies. These statistics are especially

pertinent to large commercial buildings whose conditioned surface area exceeds 50,000 square

Commissioning is the practice of reviewing and testing the operation of installed equipment in buildings to ensure
their proper installation, controls programming and maintenance; continuous commissioning typically uses real time
data feeds to automate and continuously carry out this process.



feet. Of the 5 million commercial buildings in the United States, less than 20% of them can be

considered as large, however that sub-set of the stock represents over 80% of the energy used in

the commercial building sector, or equivalently 25% of the energy consumed by all buildings (1),

commercial and residential. Furthermore, over 80% of the energy inefficiency, or energy wasted

by those large commercial buildings can be attributed to five common pathologies: simultaneous

heating and cooling, extraneous lighting, extraneous heating, cooling or ventilation, imbalanced

ventilation systems, and leaky ventilation ductwork (2).

A small sampling of energy audits and inspections for a variety of buildings on the

eastern seaboard of the US, between New Jersey and Massachusetts, further supports the

hypothesis that there is no shortage of efficiency opportunities within the US building stock.

Amongst a dozen residential and commercial buildings that were inspected as part of this thesis,

all of them were found to have efficiency opportunities whose value matched or exceeded 15%

of their annual utility bills. Even with a small sample of buildings, I discovered systemic in-

efficiencies ranging from thermostat programming errors that caused equipment short cycling, to

hot and cold water loops whose connections had been reversed and incurred year-round

simultaneous heating and cooling. Less conspicuous efficiency opportunities were revealed

through sub-metering programs in large, mixed-use buildings; for example a 60 story mixed-use

tower in New York City, NY, experienced a decrease in common-area-maintenance (CAM)

charges by 8% following a re-allocation of utility bills according to tenant actual consumption

rather than the more commonly used allocation metric, tenant occupancy square footage.

Still, other buildings were found with oversized heating, ventilation and air-conditioning

(HVAC) equipment that would short cycle and waste energy simply because their control

programming was intended for equipment of a smaller size. While there is no publication or

report that has explicitly evaluated or even estimated the total energy efficiency opportunity

within the entire US building stock, historical precedence and practical experience suggests that

most buildings possess an efficiency opportunity equivalent to or exceeding 15% of their annual

utility costs.



1.3 Fault Definition and Identification

Interviews with a variety of building stakeholders in conjunction with results found in the

literature and through practical experience suggest that a building pathology, or fault, that wastes

money or causes discomfort can be due to a very wide range of issues: erroneous controls

programming, inherent design flaws, mechanical degradation, occupant disposition and many

others. Likewise, for each fault that exists, different stakeholders may interpret those faults to

have different values or priorities for remediation; financial officers may prioritize energy waste

whereas facility managers may prioritize occupant discomfort. As a consequence of this rich

fault environment, the definition and implications of a building fault can vary widely depending

on the perspective of a stakeholder. The design of a useful fault detection system must therefore

consider the technical aspects of faults that the system will identify, as well as the information

content that is desired by the intended audience of the fault detection system. The focus of my

research is to identify HVAC equipment that consumes more energy than expected, and to

communicate those results to an audience comprised of building management, operators, and

engineers who control the funds needed to resolve building energy in-efficiencies.

1.4 Contemporary "No-tech" Fault Detection in Buildings

Despite the apparent opportunity for fixing building faults and recovering energy

efficiency resources, very few of today's buildings contain a dedicated system for the detection

of energy in-efficiency faults. The past twenty years of research and development into

sophisticated and practical building fault detection has yielded numerous potential solutions, as

will be discussed later in this thesis, however market proliferation of fault detection products

remains very small (2).

One large hurdle for 3 rd party or dedicated building fault detection systems is the belief

amongst building managers that their traditional means of fault detection are already sufficient;

the traditional approach to building fault detection by building managers is through alarms on the

building's HVAC control system, occupant feedback and complaints, and routine or un-



scheduled maintenance. Most of the facility and technical stakeholders interviewed in this

research stated that they often find equipment inefficiencies while tracking down the causes for

occupant discomfort; inefficiencies are often "discovered" by accident during these un-scheduled

equipment inspections. While occupant complaints are certain to raise the fastest response

amongst maintenance personnel, it is not a guaranteed solution to finding the most wasteful of

in-efficiencies. For example, simultaneous heating and cooling within an HVAC system is an

extremely wasteful and prevalent fault, however it typically does not yield uncomfortable space

conditions. Consequently, simultaneous heating and cooling often persists for long periods of

time without any conspicuous indications of the fault's existence.

Routine preventative maintenance of equipment is another form of building equipment

fault detection and remediation. Because the method involves a periodic physical inspection of

equipment by an experienced technician, it may appear to be the most reliable amongst fault

detection schemes. The technical skill of preventative maintenance personnel, however, is not

guaranteed to be sufficient for identifying or fixing all buildings faults. At the same time,

preventative maintenance itself is a process that focuses on specific equipment components; if

the preventative maintenance schedule does not actually cover the section of the equipment that

is defective, then the preventative maintenance technician will not observe the defect. Moreover,

many equipment in-efficiencies are artifacts of control system programming errors or operator

overrides; these types of software-derived faults are difficult to identify during a routine or un-

scheduled equipment inspection.

The contemporary standard for software-based building fault detection is single-variable

alarms from the building's HVAC control system. All building control systems support alarm

functionality whereby control system installers and designers can implement conventional

threshold and duration alarms on measured or computed variables. Such alarms are standard

features for making building operators aware of equipment operation that may be un-safe or

uncomfortable for building occupants, or deleterious to the useful life of the equipment. While

control system software alarms seem like the most obvious solution for continuous detection of

HVAC energy in-efficiencies, they have not yet found extensive use in that capacity. Interviews

with building stakeholders suggest that the lack of exploitation of control alarms in detecting



energy in-efficiencies is partially due to the miss-match between the intended audience of control

system alarms and the audience that wants to identify wasteful equipment operation. Likewise,

the technical personnel who are responsible for programming building control systems typically

do not have specific training on how to write building control alarms that explicitly identify

energy inefficiency opportunities. While building control systems seem to be the most obvious

platform for supporting software-based HVAC fault detection, control system companies have

not yet delivered explicit software solutions to do so.

As buildings have become more complex and managers find the classical fault detection,

paradigm to be insufficient, other 3d party solutions for identifying energy in-efficiency faults

have begun to emerge. The most noticeable amongst new solutions in the market are explicit

monitoring services where control system alarms are used to filter and condition building

operation data for expert fault-detection analysts. Those expert analysts consume the data that is

filtered by the building control alarms to create monthly reports that inform building

management stakeholders about efficiency opportunities that exist in their buildings. While

successful at identifying and communicating efficiency opportunities, interviews with building

stakeholders suggest that such analyst services are still far too expensive for wide-scale or even

continuous use over a building's entire lifetime. The high cost of analyst services may be an

artifact of the immature market for 3rd party building fault detection; as time goes on, better

technology and extension of the market beyond early-adopters will ultimately drive down the

cost for 3 party fault detection.

1.5 Thesis goals

This thesis is motivated by the goal of providing a 3 d party software system that can use

building control data to automatically identify, communicate and track building energy

efficiency opportunities for building management. The software automation of what is currently

an expert-analyst service could potentially yield a continuous commissioning program that is

sufficiently low-cost for building stakeholders to use it across their entire building stock and for

the full lifetime of their buildings. Especially within the context of a growing building stock,



rising energy costs, and deeper political and environmental implications of energy waste, low-

cost systems for identifying building energy in-efficiencies may be critical to our energy future.

This thesis has three primary technical goals that should culminate in a prototype automated

HVAC fault detection system

i. Create a fault detection system architecture that could potentially scale to include any

type of equipment, in any building, for any fault analysis

ii. Create a fault detection framework that supports probabilistic inference, and expresses

results where possible in financial terms that characterize some of the risk as well as the

reward of diagnosing or resolving a potential fault

iii. Create fault classifiers that adapt to the equipment or systems that they analyze

The ensuing chapters of this thesis will explore the origins of these goals, their development, and

their demonstration within a proto-type automated fault detection system. Additional thesis

chapters will discuss the initial performance of that prototype fault detection system and detail

the future research needed to further cultivate the underlying ideas.

1.6 Thesis Chapter Outline

The following chapter, chapter 2, will enumerate some of the standard prior art for

HVAC fault detection systems, as well as the apparent research gaps in that literature and how

this thesis intends to fill some of those gaps. Chapter 3 will focus on energy-modeling of Air-

Handling Units (AHUs), and the simulation of several equipment and control faults that are

typically found in that type of equipment. I will continue to use AHUs throughout the thesis as a

test subject for exploring novel fault detection ideas, and chapter 3 provides the physical basis

for measuring and predicting AHU energy consumption under fault-free and fault-laden



operating conditions. In addition to defining equipment energy and fault models, chapter 3 also

explores the magnitude of impact that various faults can have on AHU energy consumption, as

well as the effects of seasonal weather on discriminating between fault-free and fault-laden

equipment operation. Chapter 4 of the thesis concerns the more practical aspects of data and

uncertainty within the built environment, and how data and uncertainty could be used to detect

faults in HVAC equipment. Chapter 4 will explore how model and measurement uncertainty can

propagate through the fault detection analysis in order to yield probabilistic inference. In that

same chapter I will discuss the methods by which data is typically extracted from a building, and

how that process might be improved to further reduce the cost of implementing automated

building fault detection systems. Chapter 5 details the application of the core thesis ideas into a

tangible prototype system for detecting HVAC faults on the campus of the Massachusetts

Institute of Technology (MIT). Chapter 6 includes and discusses the results of applying that

prototype HVAC fault detection system to several AHUs across MIT's campus. Finally chapter 7

includes concluding remarks about the ideas and experiments that were developed and explored

in this thesis, as well as a roadmap for continued cultivation of these ideas towards the next

generation of building control and fault detection systems.

2 Literature Review

2.1 Introduction

Building modeling, simulation and fault detection research has a rich, interwoven history

that spans over five decades. Research into software-based methods for detecting faulty building

operation extends back to the early 1980's when direct digital control equipment was first

deployed in buildings. The government sponsorship for developing building energy modeling

tools began in the 1960's with programs for the DOE-2 and BLAST software packages. Today,

building modeling for energy prediction or fault detection has evolved into numerous software

tools and its own distinct profession; numerous engineering firms exist whose sole service is

building energy modeling. Furthermore, the earlier distinctions between fault detection and



energy modeling have begun to fade; building modeling today is used to identify when buildings

are not working as we might want them too as well as to quantify the value of correcting that

divergent behavior.

There exist three primary approaches to the modeling of buildings:

" Physical Modeling: thermodynamics, mass transport and heat transfer are used to derive

equations of state that describe the performance of the building

" Black Box Modeling: purely empirical state machines, trained by historical building

data, that generate an output for a given set of data inputs

e Grey Box Modeling: empirical models that are enhanced by physical models, or vice-

versa. This approach typically combines physics with building data in order to provide a

more accurate, semi-empirical perspective on performance.

Most contemporary design-build construction projects now require a physical energy

model of the building in order to achieve certain construction certifications and help the design

team make educated choices between various building design options (5). Black box models

have been extensively developed for applications in both the detection and diagnosis of building

system faults (6) (7) and the prediction of building energy consumption (8). Likewise, physical

and grey box models have also been developed to diagnose buildings faults (9) and predict

building energy consumption (10). While this thesis is focused on fault detection and diagnostics

of building systems, the interaction between fault detection and energy modeling warrants the

inclusion of a literature review on both subjects. The following sections will briefly review some

of the more recent developments in building energy modeling, and then focus more deeply on the

prior art of fault detection.

2.2 Predicting Building Energy Consumption



2.2.1 Introduction

Holistic building energy modeling techniques were originally motivated by the

commercial need for tools that could predict and verify the energy-cost implications building

design and renovation options. To that end, modeling techniques can now utilize historical

building utility records, building design documents or both to create a baseline and forecast for

the energy consumption of a building. Several energy models can be generated and compared for

a building, each one representing a different design or renovation case, and thereby provide the

basis for judicious selection of design and renovation options. On the other hand, baseline

building energy models can also be applied retro-actively after a renovation or design change in

order to verify the impact of pursuing those options; this is a technique often used in the

measurement and verification of energy savings after a renovation.

2.2.2 Physical Modeling Techniques for Building Energy Models

Numerous software tools have been commercialized and developed for the physical

modeling of building energy consumption (11). Consequently, physical modeling techniques for

buildings are very mature and the majority of contemporary work on such techniques has

focused on streamlining user interfaces, improving model accuracy, and expanding model

libraries (12) (13). Using today's tools, however, the cost and labor associated with forming an

accurate physics-based building energy model is still prohibitively high for all but large and

luxury type buildings to have an energy model. The primary cause of that high hurdle is the

effort associated with collecting and entering all of the relevant building information into the

modeling software. In some cases the high level of effort is unavoidable simply because many

buildings do not have as-built drawings or equipment schedules to instruct the modeling agent on

how the building is put together or what is in it. In all cases, however, the modeling agent must

requisition building information from the building management or designer, and take some

action to verify that their building information is accurate.



In order to get around the physical limitations of physical models, industry and academia

have focused on the development of empirical modeling techniques that can learn from utility

records and other data how a building consumes energy and reacts to its environment. By

eliminating the need for physical information about the building, a black or grey box model may

be easier, faster, and less expensive to develop for a building than a physical model.

2.2.3 Black and Grey Box Modeling Techniques for Building Energy Models

ASHRAE's "Great Building Energy Shoot-Out" I and II in the mid-i 990's were high-

profile events in the history of the major international efforts devoted to developing black box

techniques for predicting building energy consumption. The contests were intended to encourage

the development of models that could be used to estimate building energy savings due to HVAC

and lighting equipment retrofits; this goal was motivated by the commercial need for tools that

could help companies sell and execute building retrofits on the basis of improved energy

efficiency. The second contest was particularly successful and focused on predicting the hourly

building energy data for the fourth week of every month within a year's worth of building energy

data from two buildings at Texas A&M university (10).

Twelve whole months of building energy data were used in the second shoot out contest.

The first three weeks of each month were provided as model training data in the contest. The 44

international contestants were judged based on the coefficient of variation (CV) and the mean

bias error (MBE) between their predictions and the actual values for the energy data of the

missing fourth week of each month. These performance metrics were chosen by the contest

organizers and had been used in the first shoot-out as well (14).

t=1(Ypred,i Ydata,i)
N

CV = 100 X
Ydata

Equation 2-1



X=1(Ypred,i - Ydata,i)

MBE = 100 x N
Ydata

Equation 2-2

The training data set was composed of local weather data and five thermal and electrical

energy measurements for each building. In both shoot-outs, the best results were produced by an

artificial neural network (ANN) model that also included statistical tests for relevance of input

data and refinement of the ANN structure. The winners of the second contest, Dodier and Henze

from the University of Colorado and Nebraska, respectively, created an ANN that was perfected

through the Wald test, and resulted in an average root mean square error (RMSE) of 17% (15).

Shootout contestants utilized a wide variety of input relevance tests, such as Bayesian

relevance estimation (16), statistical tests for nonlinear correlation (17), autocovariance and the

Wald test (15), and principal component analysis (18). Contestants consistently identified input

selection and model structural design as the principal challenges in model synthesis. Initial input

variable selection was made by the organizers based on their broad knowledge of building

parameters and weather characteristics that are known to influence building energy usage. These

initial variables included outdoor air temperature and humidity, wind speed, insolation, and the

energy variables themselves. Contestants independently created additional time variables to

capture the influence of annual period, day-type, and other temporal features that are known in

the field to impact energy consumption.

In Dodier and Henze's winning entry, a separate ANN was developed for each of the five

energy variables in each test building. The model inputs were chosen from a consistent set of

inputs, but their network weights were pruned according to the Wald test, which was applied to

each separate model. The architecture of the ANN (feed-forward, single hidden layer with 25

nodes) was chosen for ease of implementation and balance between modeling accuracy and

ability to generalize. The Wald statistic was computed for each input in each model by training

the model with and without the input variable; if the Wald statistic was found to be larger than a

given threshold, then the input was deemed relevant.



Dodier and Henze report that the selection of this threshold is another critical parameter

that must be empirically determined during model synthesis. A full discussion of the Wald

statistic can be found in Dodier and Henze (15), but in general they report that basic engineering

knowledge of input relevance was reflected in the results of the Wald statistical analysis.

Moreover, Dodier and Henze found that their temporal input variables generated greater values

of the Wald statistic than did their environmental input variables; they interpreted this result as a

reflection of the overwhelming influence of human occupancy on building energy consumption.

On the other hand, outdoor air temperature and insolation also follow strict time variations thus

further strengthen the role of time in predicting building energy consumption. Finally, Dodier

and Henze also suggested that model performance may be improved by taking a Bayesian

estimation approach, or constructing multiple models for each prediction, and taking an average

output from all plausible models as the final prediction.

In addition to reporting the statistical results of their models, the energy shoot-out

contestants were also asked to predict the dollar savings from retrofits made at each test building.

Contestants applied their pre-retrofit models to post-retrofit weather data in order to simulate the

building energy consumption that might have occurred in the absence of any retrofits. The

simulated energy data was compared to actual post-retrofit energy costs in order to create a

margin of savings incurred by the retrofits. Energy savings predictions made by the top five

contestants for the larger test building spanned from $83,399 to $189,655, with an average

savings of $163,058.

On the other hand, predictions made by those contestants for the smaller test building

spanned from -$23,333 to $22,822 with an average savings of $4,761. The reduced accuracy for

predictions made on the smaller building were suspected to be due to un-accountable occupancy

schedules of the building (10). Overall, however, this wide range of predictions on the economic

performance of retrofits is partially responsible for the limited proliferation of forecasting

techniques into the mainstream business of selling energy efficiency retrofits.

Continuing from the ASHRAE energy shoot-out, Karatsou et al (19) reduced the problem

of ANN driven building energy prediction to three main challenges:



e Input selection

" Gross model structure selection

" Model refinement

Various statistical tests have also been developed to help design the architecture of ANN

models. Anders and Korn (20) highlight tools such as hypothesis testing, information criteria and

cross-validation. Rivals and Personnaz (21) examine methods based on least squares estimation

and statistical tests applied to a two step process of building up a preliminary model followed by

refinement through subtracting away irrelevant input and middle layer nodes. Karatsou applied

the principles found in Rivals and Personnaz to build ANNs that predicted annual building

energy data for buildings in Athens, Greece, and Austin, Texas. The latter building data set was

the same data set used in ASHRAE's great building energy shoot-out I. In their experiments as

well those performed by most other researchers in the field, Karatsou et al used a conventional

single hidden-layer, feed-forward ANN model, with hyperbolic tangent hidden layer nodes.

With a constant set of inputs, Karatsou et al incrementally increased the number of

hidden layer nodes according to the growth conditions set in Rival and Personnaz (21). Once a

satisfactory ANN was built, the network was subjected to a pruning process that removed

irrelevant inputs and nodes. Once again, time of day and an occupancy indicator appeared as the

most influential input variables, followed closely by environmental variables such as temperature

and insolation, and additional time-lag variables for temperature and insolation. Synthetic, time-

shifted environmental input variables have been used across the literature to account for the

thermal inertia of buildings. In general, the two-step statistical approach used by Karatsou et al

resulted in ANN models that outperformed the contestants of ASHRAE's building energy shoot-

out II, with CVs ranging between 8 and 13%.

Seem (22) in 2006 presented an alternative approach to identifying anomalous energy

consumption in commercial buildings via outlier detection algorithms. The novel method

employed outlier detection to identify occasions when building electricity consumption was

significantly different from it's historical performance. Seem's method evolved from the

conventional human-operator approach to anomaly detection, where building operators had to

manually pick out anomalous consumption from graphical presentations of utility data. The



intelligent data analysis approach presented by Seem is intended to eliminate the tedious practice

of hunting for anomalies, and provide the building operator with data sets populated only by

likely anomalous performance data.

Seem's method begins by grouping utility data into day-type categories, with historically

similar consumption profiles, and then organizes statistically significant outliers in each category

according to their modified z-scores. An outlier in this case is judged to be statistically

significant if the associated studentized deviation of the outlier exceeds a critical value. The

severity of the outlier is then ranked according to its modified z-score, which is equal to the

number of robust standard deviations between the outlier value and the robust mean (robust

statistics are computed from the data set that excludes all outliers). The method was applied to 97

buildings, and over the course of several months the method successfully identified three

buildings with anomalous periods of energy consumption. The causes of those anomalies were

investigated and attributed to chiller failures, poor ventilation design and poor controls operation.

Seem reports that those errors were corrected soon after their identification, yielding significant

energy and operational cost savings for the buildings. A year earlier, Seem had also published a

similar pattern recognition algorithm for determining days of the week with similar daily energy

consumption profiles (23).

Another more recent addition to the spectrum of building energy intelligence is the

application of support vector machines (SVMs) to energy forecasting and fault detection (24),

(25), (26). A popular rival to ANNs, SVMs are typically regarded as having a more rigorous

mathematical foundation than ANNs, and over the past decade SVMs have in fact displaced

ANNs in most machine-learning applications (27), (28), (29). SVMs have been particularly

successful in learning problems composed of sparse, yet high-dimensionality training sets, such

as those data sets found in DNA micro-array analysis (30). Success in that application suggests

that SVMs might also be well suited to similar energy learning problems composed of monthly

or daily energy and environmental data. While the building energy literature is well stocked with

publications concerning ANNs and other popular intelligence technologies, there is a noticeable

dearth of attention paid to SVMs applied to building energy problems. It appears that SVMs are



not even mentioned in the building energy literature until 2005, despite their origins three

decades prior.

Recently in 2008, Lai et al reported their results of training SVMs to forecast the building

energy consumption of a 2,000 sq.ft. residential building in Tohoku, Japan. Using 15 months of

hourly electrical energy consumption and indoor environmental conditions, and daily climate

data recordings, Lai et al explored daily and monthly building energy forecasting. In addition,

they also tested the ability of their model to identify artificially induced anomalous building

energy consumption. The performance of their models was measured by the Pearson and

robustness coefficients

P (Xi - 2)O(yi - y-)
(n - 1)SxS,

Equation 2-3

(xi - )

Equation 2-4

where x and y denote the measured and predicted data sets, respectively, S is the standard

deviation with subscripts denoting the data sets described by the parameter, and n is the size of

the measured data set. The Pearson coefficient, P given by Equation 2-3, is used to measure the

correlation between the measured and predicted data, and the robustness coefficient, R defined

by Equation 2-4, is the ratio of the variances for the measured and predicted data sets. Lai's

month-ahead and day-ahead forecasting was found to produce Pearson and robustness

coefficients roughly equal to 0.9. Although it is not clear how the conclusion was reached, Lai et

al report that outdoor air temperature was the most significant contributing factor to their

forecasts. By identifying significant differences between predicted and actual energy

consumption, their SVM model was also capable of identifying an artificially induced period of

anomalous energy consumption. In their conclusion, Lai et al suggest that since SVMs are

sufficiently fast and easy to train on building data, they should be applied as modelfactories to



continuously learn from daily building operations and produce accurate daily or monthly energy

forecasts.

In an earlier paper, Dong et al (25) explore SVMs to create forecasting models for the

purpose of whole building energy baselining. Their model was applied to four commercial office

buildings in Singapore, to predict whole building energy consumption based on monthly

averaged outdoor air temperature, humidity, and solar insolation. Three years of monthly electric

utility bills and weather data were used for the training and testing of their SVM models. Dong et

al used a Gaussian radial-basis function kernel for their SVM, as well as a step-wise search

algorithm to estimate the best model parameters for the learning problem. Consequently, Dong's

models for each building produced CV values, defined by Equation 2-1, under 3% using a single

year o'f whole building energy (WBE) training data. The performance of Dong's model exceeded

the performance of all other WBE ANN models produced through ASHRAE's great energy

shoot-out, which achieved a minimum WBE modeling CV of 10.36%. In their conclusions,

Dong et al also claim that their publication was the first to ever explore the application of SVMs

to the prediction of whole building energy consumption.

2.2.4 Summary for Predicting Building Energy Consumption

While physical methods for building energy modeling are mature and manifest in

commercial products, black and grey box approaches to building energy modeling represent an

active area of academic and industrial research. The literature suggests that the algorithms used

for black and grey model input selection and model structure definition in building energy

forecasting are of greater importance than the algorithms that are used to train the models

themselves. Cross-over between energy modeling and fault detection is apparent in the literature,

and indeed other reviews of the literature typically treat both in the same context of modeling

techniques (8).



2.3 Fault Detection and Diagnosis of Building Systems

2.3.1 Introduction

The following examination of prior art for building fault detection and diagnostics explores those

applications at all levels of the building (31), ranging from a high-level whole-building

perspective (32), (33), (34) down through specific components and systems within the building

(35), (36), (37), (38), (39), (40). Like building energy modeling, the research in fault detection

and diagnostics can be segmented according to physical, black, and grey box modeling

techniques.

2.3.2 Overview of Fault Detection and Diagnosis Methods

Fault detection and diagnostics (FDD) is implicitly based on forming and evaluating

comparisons between measured and predicted building performance. Consequently, FDD is a

multi-part system comprised of data collection, analysis and inference engines. Because of that

multi-part nature, FDD systems can have multiple points of failure; data collection can suffer

from broken sensors, analysis can suffer from inaccurate models, and inference can suffer from

poor tuning. The complexity in FDD systems has given rise to a rich field of academic and

industrial research and development, which will be partially examined in the following sections.

Despite the volume of research, however, there does not exist today any set of FDD products that

have found as wide application or use in practice as have building energy modeling tools.

The most recent authoritative review of the state of the art of building FDD was prepared

by Katipamula and Brambley in 2005 (6), (7) and we will adopt and expand their organization of

the literature in this review.
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Figure 1 Katipamula and Brambley's approach to structuring the field of research in building fault detection, diagnostics
and prognostics

Katipamula and Brambley organized the field of FDD research according to their

interpretation of the modeling and inference techniques that are being used by FDD researchers.

In what they termed quantitative models, Katipamula and Brambley included research where

system models were formulated from physical orfirst principle engineering models, and faults

were detected by analysis of residuals between model predictions and measurements. On the

opposite end of their research classification scheme, Katipamula and Brambley included FDD

methods that were primarily based on learning faults from historical process data. The approach

in that category of research could otherwise be categorized as purely black box, or even semi-

empirical, where the fundamental process of FDD is based on pattern recognition analysis of

current data against a historical database. In between these extremes are what Katipamula and

Brambley have termed qualitative methods; research in that category includes FDD systems

comprised of expert inference rules that are derived from engineering first principles or practical

experience.

Overall, the categories introduced by Katipamula and Brambley reflect the manner in

which system knowledge is stored in a computer, and how that system knowledge is used to infer

the existence of a fault. The three primary method of storing system knowledge include first-

principle or physical model derivation, practical engineering models, or historical records of



performance. Likewise, the three corresponding methods of fault inference include residual

comparison between models and measurements, violation of expert rules, and detection of

statistical anomalies. FDD researchers are not restricted to operate in any one of these research

categories, and in fact much of the recent research activity has focused on blending the best

attributes of each category.

2.3.3 Quantitative Methods of FDD

2.3.3.1 Overview of Quantitative FDD Methods

Quantitative model-based approaches to FDD rely on detailed physical modeling of

system thermodynamics, heat transfer and mass transfer. While the fundamental equations and

concepts of physics are universal, the algorithms for using such models to discern and diagnose a

specific fault have remained a very active area of research. The quantitative modeling approach

to fault detection and diagnosis typically employs the continuous computation of residuals

between predicted and measured system performance. Typically, thresholds and simple

discrimination functions are used to convert those residuals into fault signals of varying intensity.

A statistical test may also be applied to these residuals in order to compute the likelihood of a

particular fault (39), (41). In general, quantitative, first-principle models are prone to difficulties

incurred by un-modeled behaviors, complex models of transient interactions, loss of generality

by over-development towards a specific system, and requirements for additional system sensors.

Although many physical HVAC&R system models have been developed (42), these limitations

have resulted in very few quantitative models that have actually been reduced to practice and

tested in realistic situations (9), (43), (44), (45).

2.3.3.2 Detailed Physical Models for FDD



The ASHRAE 1020 research project (9) was a significant demonstration of empirical and

physical model based FDD methods. The research was performed at the Iowa Energy Center's

Energy Resource Station (IEC), in their building test facility. The IEC research space is

particularly unique in that it is a fully operational, yet unoccupied office-style building equipped

with three AHUs that serve multiple test rooms. The complete variable-air-volume (VAV)

HVAC system is controlled by a commercial BCS, which was also serves as the data collection

tool for HVAC research data.

Over the course of several weeks in multiple seasons, two different FDD methods were

tested at the IEC for their ability to identify faults about the three AHUs installed at the building.

One FDD method was based on detailed physical models that identified faults by comparing real

time operational data against engineering-based performance models of the equipment. The

second FDD method was based on anomaly detection within semi-empirical correlations

between sub-metered electrical power measurements about the mechanical equipment and

nominal HVAC data from the BCS. The details of the semi-empirical FDD approach will be

discussed in a later section of this review that deals explicitly with grey and black box FDD

techniques.



- - MECHANICAL
CLASSROOM DIPA T'ITROOM

ROOM ARB

SERVICE
ROOIS

WET B MEDIA SATA
CEN TER N

W Sr ,A ST 8

Z SERVED BY AHU-A

RECEPTION

D SERVED BY AHU-1

COMPUTER O SERVED BY AHU-B
CEN TERZ

Figure 2 A plan diagram of the test facility at IEC

The test facility at IEC has a total floor space of 9,272 square feet that includes several

teaching classrooms, office space, reception, and commons areas. The matched pair of AHUs

(denoted AHU-A and AHU-B in Figure 2) serves four classrooms each, where the eight

classrooms were paired on each face of the building. The building itself has a true north-south

alignment which provides each test room pair with nearly identical exposure to external loads.

The test rooms were unoccupied but equipped with electric heaters to simulate normal thermal

loads as well as electric lighting. The third AHU (denoted as AHU- 1 in Figure 2) serves the

remaining areas of the facility including offices, commons space and a reception area.
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Figure 3 A schematic diagram of the AHUs at IEC

All three AHUs had a similar variable-air-volume (VAV) configuration shown in Figure

3. The cooling plant for the system included a 10 ton, two-stage, reciprocating air-cooled chiller.

The major components of the AHUs include recirculated air, exhaust air, and outdoor air

dampers; cooling and heating coils with control valves; and supply and return fans with variable

frequency belt drives (VFDs). The heating coils denoted in Figure 3 were not used during any of

the test periods. Local space heating was performed at the level of terminal VAV units that were

equipped with electric or hydronic re-heat coils. The supply fan speed in all AHUs was regulated

to maintain a constant supply duct static pressure. The return fans on AHU-A and AHU-B were

controlled to maintain a constant percentage of the supply airflow; in AHU-1, the return fan

control signal was a constant percentage of the supply fan control signal. The chilled water flow

rate through the cooling coils in AHU-A and AHU-B was controlled by a three-port mixing

valve in a diverting application. A two-port valve was used to control chilled water flow through

the cooling coil in AHU- 1.



Several common AHU faults were investigated in this experiment, two of which also

represented the impact of long-term component degradation. Faults were implemented via

software and mechanical component alterations, including system modification with special

bypass piping and valves. Faults included stuck and leaking recirculation dampers, leaking coil

valves, internally fouled cooling coil, drifting pressure sensor, unstable fan control, and slipping

fan belt. Each fault was implemented in at least two of the three week test periods held during

the summer, winter and spring seasons. Each test included a two week measurement period, one

for calibrating a performance baseline for the system, and the second for a blind test on fault

detection and diagnosis. For tests with AHUs A and B, the list of possible faults for a particular

test period was known ahead of time to the investigators; they did not, however, know when the

faults would be implemented during the test week. On the other hand, tests with AHU- 1 did not

permit the investigators to know the nature or timing of faults. Consequently, tests with AHU- 1

were more representative of situations that exist in real buildings.

Fault Type Implementation
Air-Mixing Section

Stuck-closed recirculation Abrupt Application of a control voltage from an independent
damper source to maintain the damper in the closed position.

Leaking recirculation Degradation Removal of the recirculation damper seals, with one seal
damper removed for the first fault stage, two for the second, and

all seals for the third stage.
Filter-Coil Section

Leaking cooling coil valve Degradation Manual opening of a coil bypass valve.
Reduced coil capacity Degradation Manual throttling of the cooling coil balancing valve, to
(water-side) 70%, 42%, and 27% of the maximum coil flow of 1.7 Ls

(27.5 gpm) for the three fault stages.
Fan

Drifting pressure sensor Degradation Introduction of a controlled leak in the pneumatic signal
tube from the supply duct static pressure sensor to the
transducer, to a maxium reduction of 225 Pa (0.9 in of
water).

Unstable supply fan Abrupt Introduction of alternative gams for the PID controller that
controller adjusts fan speed to regulate static pressure.

Slipping supply fan belt Degradation Adjustment of fan belt tension to reduce maximum fan
speed by 15% at 100% control signal for the first stage
and 20% for the second stage. The third stage had an
extremely loose belt with variable fan speed.

Figure 4 Table of faults tested in ASHRAE 1020, and their method of implementation



The first principles approach to fault detection relied on thermo-mechanical sub-system

models for the entire AHU. In particular, sub-system models for the fan, economizer and cooling

coil were used to predict performance from a given set of input variables and compare those

predictions against measured system output values. The fan sub-system model was based on the

quadratic relationship between air flow rate, system resistance and static pressure change. The

economizer model was based on a thermodynamic representation of the mixed air conditions as a

function of outdoor air conditions, mixing damper position and return air conditions. The cooling

coil model was based on the NTU method for modeling heat exchangers. In all three cases, the

thermal models are complimented with actuator and motor models that account for latency and

hysteresis of response, as well as thermal gains due to various modes of electro-mechanical

energy dissipation. All data intended for the first principles model was first treated with a low

pass filter in order to- extract the steady state data needed by the model. In fact, a high rejection

rate at the filter was used as a fault detection method for identifying inappropriate equipment

performance oscillations. To account for measurement errors and inaccuracy of modeling,

discrepancies between output predictions and measurements were compared against a

statistically significant threshold to reduce the rate of false fault alarms.

The magnitude by which the predictions exceeded the thresholds were termed

innovations", and were split into three bins based on a three way organization of the AHU

operating space. The bins stored average innovation magnitudes, weighted exponentially by their

age. Expert rules were then applied to the average values of the bins in order to diagnose a fault.

As an alternative to this method (which is illustrated schematically in Figure 4), fault detection

and diagnosis was also explored in ASHRAE 1020 through recursive parameter estimation

within first-principle system models. In this latter FDD approach, the inputs and outputs of the

system are used to iteratively update the values of certain model parameters. The FDD algorithm

in this case tracks the change in those specific parameters until they surpass a certain threshold or

exhibit a time series pattern indicative of a certain fault.



Figure 5 Diagram of the "innovations" based fault detection and diagnosis algorithm used in ASHRAE 1020

ASHRAE 1020 exposed a series of practical difficulties in using physical models to

detect and diagnose AHU faults. Various components of the FDD method were affected by

e Measurements from sensors placed in positions not conducive for collecting observations

needed by the model

e Un-modeled effects in the AHU stemming from un-balanced air flows and flow reversals

* Model training data that did not encompass the full range of possible observations

* Insufficient modeling at the device level to accommodate for small-signal fault data or

unknown disturbances

* Preponderance of transient operation, precluding the capabilities of the steady state

thermo-mechanical model



* Dependent model parameter estimation

Overall, these deficiencies in the approach were mitigated throughout the test periods by

adjusting parameters that governed the sensitivity and efficacy of the FDD algorithm. The results

of the study showed that fault diagnosis was typically harder to do successfully than fault

detection. This deficiency is partially to blame on the practical need for building an FDD system

from sensor data that is traditionally collected on commercial VAV AHUs. Additional AHU

sensors would have enabled more detailed physical models or expert classifier rules, either of

which may have supported more robust and extensive capture and classification of AHU faults.

On the other hand, this study also relied on instrumentation grade HVAC sensors that were

calibrated and well tended as part of the research center; it remains unclear what additional

technical difficulties would arise from commercial grade HVAC sensors that are not typically re-

calibrated during their operational lifetime or even at installation. Beyond sensor data, the

physical models themselves also required an extensive training period, typically consisting of a

whole day's worth of measurements from a series of step input signals to the AHU.

ASHRAE 1020 acknowledged that the first-principles FDD method relied on a model

that only represents what is normally considered as "ideal" operation of the HVAC system.

Design faults inherent to a system (of which many commercial installations are prone) present a

considerable challenge to the robustness and sensitivity of this FDD method. In the ASHRAE

1020 research, non-ideal behavior was present as both unexpected relationships between outside

air flow rates and supply fan speed, as well as the mechanical integrity of the damper linkages.

Due to constant mechanical alterations for various experiments, the tuning of equipment like the

damper linkages was not consistent and eventually played a role in determining the efficacy of

the FDD method. This phenomenon can be extrapolated to consider situations where the FDD

method is rendered ineffective due to training or operational data from equipment that is not

tuned properly or in a state of disrepair. ASHRAE 1020 pointed out that the FDD method should

recognize the long-term degradation of equipment once FDD has been initiated, but then the

calibration process itself requires not only data but also consummate commissioning of the

equipment.



To mitigate the influence of non-ideal starting conditions, statistical fault detection

thresholds were typically reset and re-calibrated for each test period. This threshold adjustment

was performed in a subjective manner in order to reduce the false alarm rate during periods

where the system was known to operate "normally". Testing with AHU-1 was particularly

troublesome in this respect and required two days of effort just to properly adjust the fault

detection threshold. Even with those adjustments of AHU- 1, however, non-ideal system behavior

was predominant and created several false alarms during the related test period. In other cases,

the false alarm rates were curtailed by setting wider thresholds for fault alarms. The eventual

result of this strategy was to reduce the sensitivity of the system below that needed to capture

small-signal faults that were induced in the AHU.

2.3.3.3 Summary for Physical Methods of FDD

Real world issues such as sensor placement, fault magnitude and significance, and

imperfectly understood equipment stand between laboratory successes in FDD and commercial

solutions for improved building operations. The ASHRAE 1020 project was instrumental in

exposing these key issues that surround continued development of commercially viable FDD

solutions, especially with respect to thermo-mechanical system models and non-intrusive load

monitoring.

2.3.4 Qualitative Methods of FDD

2.3.4.1 Overview of Qualitative FDD

Qualitative models employ knowledge based relationships to infer the state of systems

from their measured data. This modeling approach can be further subdivided into rule-based

mechanisms and those that rely on qualitative physical models. The latter subdivision uses

characteristics of physical equations that govern machine operation to create heuristics for



interpreting data from that machinery. For instance, the order and components of differential

equations that govern thermo-fluid processes can be used to create dimensionless groups and

order of magnitude relationships that describe measurable data. In this fashion, incomplete or

imprecise models about systems may yield basic relationships for qualitatively assessing the

measured performance of the system. Despite the apparent advantage of not requiring detailed

physical models or complete data sets, the qualitative-physical modeling approach has not found

wide application to fault detection and diagnosis about building HVAC&R systems (6).

2.3.4.2 Rule Based FDD

Models based on expert rules for FDD, unlike qualitative-physical models, are well

represented in the relevant HVAC&R literature. Such models rely on expert or engineering

knowledge about physical systems in order to create a decision tree for classifying system data.

Rules based on expert knowledge are typically built from a collection of anecdotal and best

practice guidelines regarding the variables in the measured system data set. Due to their

computational simplicity, expert rule-based FDD tools have been researched for use on packaged

or stand-alone HVAC&R equipment as well as for larger systems that are under the control of an

energy management control system (EMCS). Despite the long history of expert-rule research

(46) (47) (48) no tool based on this modeling approach has been widely commercialized for FDD

of building systems. Expert systems are desirable due to their ease of development, ability to

deal with uncertainty and transparent reasoning towards a conclusion, but these advantages are

also the source of the model's weaknesses; expert systems tend to be very specialized towards a

particular system and they are prone to failure when they encounter situations that extend beyond

the boundaries of their programmed knowledge.

A close cousin to the expert rule method, FDD based on engineering first principle rules

utilizes physical first principles to derive basic quantitative relationships between measurable

system variables. Such engineering rule systems have been developed into full scale, tested

diagnostic tools for air handlers by Katipamula and Brambley (48), (49) and House et al (50),

(51). Both tools operate under similar principles where data from a building control system is



used to navigate through a decision tree composed of physical rules in order to reach a

conclusion about the operation of an air handling unit.

Katipamula et al described their FDD efforts for automated AHU commissioning in 2003

(52). Their motivation for the technology stemmed from the need for reducing the cost and time

of implementing human commissioning of complex building systems such as a large AHU. The

design of Katipamula's automated FDD system included four fundamental modules:

" fault detection and diagnosis based on passive measurements

" proactive fault detection and diagnosis

e fault evaluation

e decision engine for suggesting solutions to faults, if any exist

The detection of economizer faults through passive monitoring of AHU data was

accomplished by Katipamula et al in the Outdoor Air Economizer (OAE) software module of

their Whole Building Diagnostician (WBD) package. The OAE module is capable of identifying

20 different ventilation-related faults, however it does not operate to find any faults related to

water-side AHU components such as hydronic heating and cooling coils.

Figure 6 below illustrates the implementation of physical rules within decision tree

architecture to facilitate passive FDD about AHU economizer operation. The diamonds and

squares show the action of rules upon HVAC measurements, and the logical linkage between

different operations as the process seeks a conclusive reaction to the input data. Beyond passive

FDD means, Katipamula et al also explore proactive FDD that utilizes brief, but real-time test

control sequences applied to an AHU in order to actively probe for AHU faults.
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Figure 6 The decision tree used by the passive OAE fault detection module in Katipamula's WBD

In their 2003 paper, Katipamula et al describe an example of proactive FDD for testing of

erroneous temperature sensor measurement. Figure 7 below illustrates that proactive FDD test

sequence imposed on an AHU in order to create operating conditions to satisfy a physical rule

that probes for faulty mixed air temperature measurement. As with all other FDD decision rules

in Katipamula et al (both passive and proactive), physical rules are used to create analytical



redundancy about a physical measurement. Katimapula et al identify faults by measuring the

difference between analytical predictions about a measured physical variable, and the real

measured value of that variable. In essence, each FDD decision block in their approach is

actually a streamlined first principles model about certain aspects of AHU behavior. This

approach is repeated in their work for a wide variety of typical AHU faults, ranging from

malfunctioning dampers to drifting pressure sensors.

Figure 7 From Katipamula et al, 2003, the diagram shows a test sequence for proactive FDD of erroneous temperature
measurement



While the work done by Katimapula et al has been successfully applied in several real

building test beds, the modeling approach suffers from limitations that are common amongst all

FDD that are based on engineering first principles (17):

" Lack of uniform AHU design across building stock

" Existence of un-modeled AHU behavior

e Transient behaviors in measurement data

e Poor tuning of thresholds and tolerances for fault classification

The last two items in the above list are complimentary in their efforts of causing false

fault alarms. Thresholds and tolerances for classification rules must be set according to the

dynamics of real time data measurement; first principle FDD systems must be sufficiently

flexible to handle noise in the data as well as natural variations due to weather and occupancy.

Such variations may be periodic, or even at times apparently random, but in either case they

frequently cause a well tuned first-principles-based FDD to miss-fire a fault alarm. Un-modeled

effects in AHUs have a similar impact on first-principle FDD because they create data that

extends beyond the physical knowledge base of the FDD classifier. Finally, even if a first-

principles-based FDD could adjust to noise and be resilient against un-modeled behavior, it is

not likely that the FDD tool will be applicable across the entire building stock. This is attributed

to the customized nature of large AHUs that are tailor designed, built, and programmed to the

needs of a specific building. Consequently, first principle FDD rules that apply in one building

may not necessarily apply in the building next door.

House et al (50), (51) developed a technology that was similar to that created by

Katipamula et al in its use of first principles to derive expert rules about AHU operation. The

new technology, termed APAR (AHU performance assessment rules), was composed of roughly

two dozen rules about AHU operation that were derived from mass and energy balances applied

about the AHU. House et al also relied on their unique method for classifying the operation of

the AHU into five distinct categories to which operational rules were then assigned and used to

infer corresponding faulty AHU operation.



APAR rule set

Mode

Heating (mode 1)

Cooling with outdoor air (mode 2)

Mechanical cooling with 100% outdoor air (mode 3)

Mechanical cooling with minimum outdoor air (mode 4)

Unknown occupied modes (mode 5)

All occupied modes (mode 1. 2. 3. 4. or 5)

Figure 8 From House et al (51), list of expert rules per category of AHU operation. Note that House only relied on
temperature and humidity measurements about the system, as well as occupancy schedule and valve control signals.

In contrast to Katipamula et al and their extensive use of system model parameters,

House et al reduced the set of variables to only a few temperature, humidity, occupancy and

control signal measurements with corresponding input parameters for measurement tolerance and

fault threshold. With fewer model parameters than Katipamula et al, House's FDD technology

was designed to be simple and streamlined for rapid application to a typical economizing AHU.

Rule no.
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Figure 9 From House et al (50), schematic of a typical economizing AHU for which House et al developed APAR.

In fact, the design intent of APAR was to overcome the limitations imposed on FDD by

the scarcity of fault-less system training data that spans the full range of AHU operating

conditions. The APAR rules express engineering knowledge of how the AHU should operate and

hence obviate the need for extensive training data about fault-free AHU operation. Furthermore

unlike other expert HVAC FDD systems that focus purely on mechanical faults, the rules

invoked by APAR seek out both mechanical and control based AHU faults.

The approach taken by House et al begins with identifying the occupancy status of the

building and in the case of occupancy, further categorizing the mode of operation for the AHU.

For the test AHU shown in Figure 9 House defines the following AHU operational modes

e Heating

* Cooling with outdoor air (free cooling)

* Mechanical cooling with 100% outdoor air

* Mechanical cooling with minimum outdoor air

* unknown mode



In mode 1, system heating, APAR assumes that the heating coil valve is controlled to

maintain the supply air temperature at its set point value while the cooling coil valve remains

closed. Furthermore, the mixing box dampers are modulated to allow the minimum outdoor air

fraction mandated to satisfy building ventilation requirements.

Mode 2, cooling with outdoor air, is activated once the outdoor air temperature rises

above the cooling outdoor air setpoint. In this mode, the heating and cooling coil valves are both

closed and the mixing box dampers are modulated to maintain the desired discharge air

temperature from the AHU. As the cooling load rises, however, the outdoor air flow rate will

saturate and the building will require mechanical cooling in order to sustain indoor comfort

conditions.

At this point there are two subsequent mechanical cooling modes: mode 3 supplements

free economizer cooling with some mechanical cooling action, while mode 4 all together relies

on mechanical cooling with the minimum required outdoor air fraction. Modes 3 and 4 represent

opposite extremes of the cooling control logic, with the latter case most often found in very

warm and humid ambient conditions. The control logic for modulating the AHU dampers in

mode 3 can also vary at the discretion of the controls engineer; for APAR, the expert rules

assume that the mixed air controls are driven by the comparison of the return and outdoor air

enthalpies.

Finally, mode 5, unknown operation, is declared for any periods of AHU operation that

cannot be classified as modes 1 through 4. The classification of the AHU in modes 1 through 5

depends on the measured control signals from the AHU control system.
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Figure 10 From House et al (51), diagram of transitions between classifications of AHU operational modes.

Once the AHU operational mode has been classified, families of expert rules are used to

infer faulty AHU operation according to the schedule shown in Figure 8. The rules are written

such that faults are identified when a rule is satisfied, however, APAR does not search for or

guarantee the existence of a particular fault; instead, the satisfaction of a rule provides the basis

for inferring that a range of faults or faulty-systems could exist. Despite the lack of specificity,

the rules were designed to isolate faults related to actuator failures or degradation, sensor

malfunction and drift, inherent mechanical design or installation flaws, erroneous control logic,

and inappropriate operator intervention. In practice, individual APAR expert rules can infer

several distinct fault mechanisms, with increasing resolution as more rules are activated. The

design intent of APAR, however, was not to yield precise fault diagnosis but instead to better

inform building operators of potential problems in their system.

Like most other expert rules systems, APAR exhibited a higher rate of false positives

when applied to transient data instead of steady state data. To mitigate that failure mode, APAR

was designed to operate only once per hour on exponentially weighted moving averages of the

measured data. Furthermore, APAR rules were only applied to AHU data if the AHU remained

in any one particular mode of operation for an entire hour. This constraint was obviously not



applied to rule 28 of APAR which measured the number of mode transitions executed each hour.

Despite these constraints, APAR required a reasonably small set of commonly available input

variables, most of which were temperature measurements and actuator control signals. In

addition to the measured system data, APAR also required fundamental AHU specifications in

order to setup and verify the suitability of the expert rule set for performing FDD about the

AHU. Such system specifications included:

* Minimum and maximum expectation values for the actuator control signals

" Minimum outdoor air fraction

e Outdoor air enthalpy reset for economizer cycle

e Description of AHU control sequence

While the classification performance of APAR was not explicitly measured in simulation

and field testing, the results of all tests have shown that APAR can successfully detect faults and

often diagnose them to a high degree of specificity. Despite their success, House et al suggest

that future research should focus on methods for dynamic updating of user-defined fault

thresholds and measurement tolerances, field-testing and development of APAR rules for more

AHU designs, and a rigorous study of APAR false alarm rates that occur during field trials.

2.3.4.3 Summary of Rule Based FDD

In general, rule based FDD falls into two categories; residual methods that infer faulty

operation from the comparison of measurements and predictions about system variables, and

fault rules that raise alarms when system variables exceed user-defined thresholds.

2.3.5 FDD Based on Process History

2.3.5.1 Overview of Process History FDD



In contrast to physical models that derive from first principles, or expert rules that derive

from expert experience, process history FDD is derived from a mathematical regression over

process data. There are a wide variety of mathematical techniques available for creating a data-

driven multi-input and multi-output (MIMO) FDD model, including linear and multi-linear

regression (LR and MLR), artificial neural networks (ANN), fuzzy logic (FL), support vector

machines (SVM) statistical process control (SPC), Bayesian networks (BN) and combinations

therein. Often times these analytical techniques are combined with first-principle derivations to

yield grey box MIMO models for FDD, and in other cases the data regression is used on its own

resulting in completely black box models. Complimentary to Katipamula and Brambley's

treatment of the subject, an authoritative review of process history methods for equipment fault

detection was published by Venkatasubramanian in 2003 (53) for chemical plant applications.

2.3.5.2 Grey Box FDD Methods

Parameter estimation in grey box FDD models has been explored for a wide variety of

HVAC FDD applications by many authors. Katipamula and Brambley include several examples

and a list of appropriate citations for the time frame of their publication. An important recent

addition to the literature was made by Najafi et al in 2008 (54), where the authors extended the

grey box modeling field to include Bayesian Network models of HVAC equipment. The novel

approach captures a system model within the probabilistic framework of a Bayesian Net, and

thereby supports posterior probabilistic inference on the existence of equipment faults. Najafi et

al applied their method to model the mixing box of a variable-air-volume (VAV) air-handler

(AHU), and detect some common faults such as stuck and leaking dampers. While the method

was successfully tested and shown to work with experimental data from the Iowa Energy Center

(IEC) that included known faults, the publication does not discuss how the approach can identify

faults that are not a-priori expected in a data set.

Aside from the detection of purely anomalous behavior (in other words, data that cannot

be explained by historical data), black box classifiers such as Bayesian Networks, Support

Vector Machines, and Artificial Neural Networks cannot diagnose a specific fault without a-



priori or in-situ supervised learning of that fault. The a-priori approach to supervised learning

would include a pre-existing database of fault-laden data that was labeled with diagnosed faults.

In-situ supervised learning of faults would require an on-line labeling mechanism where expert

analysts could label fault-laden data and re-train the machine classifier with the new

classifications. In both cases, the space of faults is not fully defined or even known to be finite.

Najafi et al discuss the additional, semi-supervised learning approach of grey box machine

classifiers where first principle models and engineering rules can generate psuedo-data for

training machines on fault-free and fault-laden equipment behavior. While this approach has the

added benefit of excluding an expert analyst and labeling of fault-free and fault-laden behavior,

it is still limited by the ability of physics and engineering rules to adequately model how

equipment operates correctly and in-correctly. While the probability calculus of Bayesian

network models has useful properties for judicious inference, the grey box approach is still

ultimately limited by the model's perception of equipment physics, and the sufficiency of a

historical database.

2.3.5.3 Black Box FDD Methods

Black box FDD models are developed in a similar fashion to grey box models, however

the estimated model parameters have no physical significance. Katipamula and Brambley include

a long list of authors who have developed statistical and non-statistical approaches to black box

FDD modeling, with techniques that range from Artificial Neural Networks and fuzzy logic to

various linear and non-linear regressions. Another more recent publication by Choi et al (55)

showcases an expansion of the black box modeling technique to include support vector machine

classifiers.

Choi et al discuss a data-driven approach to detecting faults in HVAC chiller

performance through three different fault classifiers, most notable of which is a support vector

machine. The classification of faults was only one component within their overall fault detection

and isolation (FDI) scheme; other components included fault severity estimators, and a

likelihood ratio test for residuals between model predictions and system measurements. The fault



signal for classification was generated in a similar fashion to the research in ASHRAE RP 1020;

residuals between system measurements and predictions were passed through a statistical test for

significance, which Choi et al termed a generalized likelihood ratio (GLR) test. Fault

classification and severity were both judged by independent support vector machine classifiers in

order to yield total fault detection and isolation. While the classification and severity ranking of

faults was near perfect for their SVM classifiers, the authors do not mention the extent of

training that was necessary to yield such accurate classifiers. Likewise, the entirety of the

research project was based on noisy simulation data gathered from a detailed model of a

centrifugal chiller (56), and a predefined space of chiller faults; the authors do not discuss how

the system may perform in a more realistic setting. Like most other black box modeling

techniques, SVM's require a learning algorithm (which may include historical data) in order to

learn correct and in-correct operation of equipment. While the details of that learning algorithm

are not included in their publication, Choi et al do show a promising new direction for extending

black box models to include modern machine learning techniques such as the SVM.

2.3.5.4 Summary of Process History FDD Methods

Process history based FDD models are well suited to operate on equipment or systems

where theoretical or engineering models of behavior are poorly developed or insufficient to

describe the full range of operation. Despite their ostensible convenience for systems that are too

complex to accurately model, black box models carry the additional requirements of training data

sufficiency in order to learn complex models. Furthermore, as is often the case with ANNs, the

over-use of training data can result in black box models that are hyper-trained towards a

particular aspect of system behavior. Modern machine learning techniques such as the SVM and

Bayesian Network are inherently designed to overcome the threat of over-training, and in fact

minimize the need for training data all together. While such modern techniques may seem to be a

universal solution for effective black box modeling, they still carry a need for some level of

supervised learning of representative fault-laden behavior. As more live-building data is

collected and labeled over time, it may be possible to create a master library of real-world faults



that is sufficient to train flexible machine classifiers to accurately identify a diverse variety of

HVAC faults.

2.3.6 Summary of FDD

A wide variety of techniques and tools exist for performing fault detection and

diagnostics on building systems. Modem FDD technologies leverage machine learning

techniques and statistical analysis, expert rules derived from expert experience and engineering,

and first principle physical models for system operation. Through this literature review we have

identified several existing technical challenges that seem pervasive to the continued research and

development of FDD technology:

e Lack of a real-world database of system and equipment operating data that is labeled with

fault classifications

e The need for adaptive FDD thresholds in order to accommodate customized equipment

installations

e The need for FDD systems to deliver dollar values, or hard costs, of faults that are

identified

e The need for FDD systems to communicate the uncertainty of their inference

FDD research and development has attempted to answer these challenges through more

accurate physical and grey box models of systems and equipment, FDD techniques that yield

dollar estimates for fault diagnoses, and probabilistic inference in the form of Bayesian

Networks, Fuzzy Logic, and other statistical analysis. Despite these attempts, it also appears

difficult for current FDD implementations to strike a careful balance between ease of

implementation without loss of utility or generalization; it seems that the majority of techniques

have so far succeeded in the opposite extreme of yielding highly detailed and useful

implementations with a large sacrifice of generality.

Based on this research review we have chosen to pursue the research and development of

an FDD system that incorporates dynamic FDD thresholds for creative expert rules, within a



FDD framework that could scale to multiple equipment types and installations, while making

straightforward probabilistic inferences that yield estimates on the dollar value of fault

diagnoses.

3 Modeling of HVAC Equipment and Faults

3.1 Introduction

Fault detection is implicitly based on having a model of the system or piece of equipment

that is under scrutiny; chapter two reviewed a wide variety of physical, black, and grey box

modeling techniques for this application. Of the possible modeling techniques, physical and

some grey box approaches are preferable by building engineers and technicians because the

mathematical relationships tend to have physical interpretations and context that are more

familiar to them. Following those preferences, we will also develop FDD models that are based

on the physics of system and equipment operation.

In addition to choosing physical modeling techniques, we have also chosen to focus our

research on the detection and valuation of faults in large air-handling units (AHUs). This is

because AHUs and their associated air distribution systems support four out of the top five

energy in-efficiencies that are commonly found in commercial buildings:

1. Simultaneous heating and cooling
2. Extraneous heating, cooling or ventilation
3. Imbalanced air flows
4. Leaking air distribution systems

AHUs also represent an intellectually challenging system of interacting components that

exchange mass, momentum and thermal energy across multiple phases and media; the large

degrees of freedom in these systems supports a rich and interesting space of possible faults.

Likewise, AHUs are responsible for maintaining both the health and comfort of occupied spaces,
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hence fault detection on those systems carries an impact on energy as well as occupant safety and

health. In this particular chapter we will develop models of AHU equipment and some of their

common faults in order to ascertain the impact of those faults, at various fault severities, and the

difficulty of detecting those faults under various seasonal and occupancy conditions. Our fault

space for this chapter will include:

1. Stuck AHU mixing box dampers
2. Leaking AHU mixing box dampers

Through the course of this chapter we will model and simulate the operation of AHUs

under fault-free and fault-laden conditions, and qualitatively compare the results of simulation

against experimental results collected in ASHRAE RP 1020 for the same faults on similar

equipment.

3.2 Air handler Description

Figure 11 shows the schematic representation of a variable-air-volume (VAV) AHU; the

VAV AHU is commonly found in large commercial buildings that have a single duct air

distribution network.
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Figure 11 Schematic system model of the variable-air-volume air-handler studied in this project

The AHU design is termed variable-air-volume because the displaced air volume of the

supply and return air fans can be varied by slowing down or speeding up the rotation rate of the

fans. This is a modern, energy-efficient approach to ventilation since it allows the AHU to

modulate ventilation rates in response to changing building occupancy conditions and thermal

loads. In addition to the supply and return fans, the other primary sections of the representative

air-handler include a mixing box for combining fresh outdoor air with recirculated air from the

building, heating and cooling coils for adjusting air temperature and humidity, and a set of

dampers that control the outdoor air content of the supply air flow. The air-handler modulates the

circulation and quality of air within the building by adjusting the orientation of the exhaust,

recirculation and outdoor air dampers, and the rotational speed of the return and supply air fans.

The temperature and humidity of the air that is supplied to the building are typically

adjusted by heat exchange with the heating and cooling coils that are found within the air-

handler. Given appropriate weather conditions, however, the desired temperature and humidity

of the air supplied to the building may also be achieved simply by mixing adequate quantities of

outdoor and recirculation air. This "air-mixing" approach to tempering the supply air

temperature and humidity is typically termed free-cooling since it obviates the use of the heating

and cooling coils in the air handler. There are other names for this approach to supply air

conditioning, including air-side economizing, or just economizing.
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Free-cooling is a very attractive method for providing comfortable air to a building since

it requires no thermal energy consumption by the air-handler. The success of this approach,

however, is predicated on the existence of appropriate outdoor weather conditions, as well as the

fault-free operation of dampers within the mixing box. Free cooling is possible during at least

half the year for buildings in a cool or mild climate zone, such as the Northern United States, but

its usefulness decreases as the mean annual outdoor air temperature of a location increases

beyond 65 OF. Since free-cooling is dependent on the appropriate control of outdoor air flow into

the AHU, mixing box faults such as stuck or leaking dampers may render free cooling less

effective, or even completely impossible.

Dampers within a mixing box may fail in a wide variety of ways, all of them rendering

the air-handler unable to rely solely on free cooling to condition the supply air to a desired

temperature and humidity. In the ensuing discussion we will focus on just two common damper

faults, a stuck damper and leaking damper, at three different levels of severity for each of them.

These two faults are prevalent in commercial buildings with large air-handlers and they are

considered by engineers as a significant source of energy in-efficiency in buildings with large

heating, ventilation and air-conditioning (HVAC) systems. Beyond the energy implications of

these faults, lack of control over the intake of outdoor air by the air-handler can also result in

catastrophic mechanical failures such as freezing coils or uncomfortable and unhealthy building

conditions due to poor air quality.

VSAP = VRCP + VOAP

Equation 3-1

VSACPTMA = VRCCPTRA + VOACPTOA

Equation 3-2

The subscripts OA and RC indicate variables for the outdoor air and recirculated air,

respectively. The variables V, p, c, T correspond to volumetric flow rate, density, thermal

capacitance and temperature of the air, respectively. The subscript MA refers to the mixed air



conditions that exist at the boundary between the outlet of the mixing box and inlet to the

hydronic coil control volume. A species balance for air across the hydronic coil control volume

shown in Figure 11 reveals that the mass flow rate of air at the mixed air boundary must equal

the mass flow rate of air supplied to the building; this result is included in Equation 3-1 and

Equation 3-2 with the subscript SA on the volumetric flow terms. Contributions from humidity

are also important in an enthalpy balance and mass balance, but they have been neglected here in

order to simplify the analysis; those contributions will be included later on in the final

formulation of our results.

The heat transfer between air and the air-handler's heating and cooling coils is intended

to adjust the mixed air thermal conditions to achieve the supply air conditions, which are the

desired temperature and humidity of air that is distributed within the building. The energy

required to raise the mixed air conditions to the supply air conditions is found through an

enthalpy balance about the hydronic coil control volume shown in Figure 11.

EH&C = SAPC(TMA TSA)

Equation 3-3

The new term in equation three, EH&C, is the enthalpy exchange rate between the air flow

and hydronic heating and cooling coils; this is the thermal energy cost for operating the air-

handler. Combing enthalpy balances across the mixing box and hydronic coil sections yields an

overall energy cost for comfort conditioning that is based on supply, return and outdoor air flows

and temperatures.

EH&C = VRCCPTRA + VOACPTOA - VSACPTSA

Equation 3-4

Outdoor air is drawn into the air-handler in an attempt to yield mixed-air conditions that require

the least amount of hydronic heating or cooling enthalpy exchange in order to achieve supply air

conditions. A minimum outdoor air flow rate is also required by building code in order to satisfy

mandates on indoor air quality. Depending on the ambient conditions outside the building,



mixtures of recirculated and outdoor air flow may yield the required supply air conditions and

altogether eliminate the need for mechanical cooling or heating. Conversely, mandates on

minimum outdoor air flow rate may incur extraneous cooling or heating energy expenditure

when the outdoor air cannot mix with the recirculated air to yield the supply air conditions.

The role of outdoor air in heating and cooling energy expenditure suggests that the

enthalpy exchanged defined in equation four may be scaled by the energy that is needed to create

supply air conditions from the recirculated air flow alone.

Es = VSAPC(TRA - TSA)

Equation 3-5

Dividing the heating and cooling energy cost function in Equation 3-4 by the above

energy scale yields a dimensionless energy term that isolates the impact of outdoor air flow on

the thermal energy cost of the air-handler. Eliminating the recirculation flow rate through the

mass balance around the mixing box section, and dividing through by the supply air flow rate

yields a dimensionless energy loss index that is a function of the outdoor air fraction and the

supply, return, and outdoor air temperatures

E* (1 -g)TA + gTA -TSA

TRA TSA

Equation 3-6

9 = VOSA
o A

Equation 3-7



The energy loss index show in Equation 3-6 is a measure of the impact of outdoor air

flow on the thermal energy consumption of the air-handler. The total energy consumption of the

air-handler would require additional terms that represent electricity consumption of the supply

and return fans. Those additional fan energy terms would require fan models that yield fan

energy as a function of pressure and flow, and ultimately ventilation in the building. Models for

ventilation in buildings are typically complicated and time-consuming to develop, and the

purpose of Equation 3-6 is to create an energy metric that can be evaluated without a model for

real-time building ventilation. The thermal energy analysis represented by equation 6 is a simple

alternative to total energy calculations that isolates the impact of faulty dampers on air-handler

energy consumption.

The outdoor air fraction, denoted as g and defined in Equation 3-7, is the ratio of the

outdoor air flow rate to the supply air flow rate; it is typically controlled by varying the

recirculation damper position. When the outdoor air fraction is equal to zero, the energy loss

index, shown in equation six, is equal to one. For non-zero values of outdoor air fraction, the

energy loss index is a function of outdoor, return and supply air temperatures. The energy loss

index will be negative or positive, respectively, for cases where heat must be added or removed

from the mixed air flow in order to meet supply air conditions. Outdoor air fractions that

minimize energy consumption for any given set of supply, return, and outside air temperatures

can be derived from setting the numerator of equation six equal to zero.

In this simple model the outdoor air fraction might be controlled through the following

set of rules that satisfy requirements on indoor air quality and guarantee the smallest possible

energy loss index across all thermal conditions:

TOA TRA, 9 = 9 min

Equation 3-8



TSA TOA < TRA 9=

Equation 3-9

TOA <TSA, TRA - TSA
TRA -TOA

Equation 3-10

The control rules for the outdoor fraction are such that the outdoor air fraction is a

minimum whenever the outdoor air temperature exceeds the return air temperature. Conversely,

the outside air fraction is at a maximum value whenever the outdoor air temperature is between

the return and supply air temperatures. For days that are sufficiently cold, the outdoor air fraction

can be modulated between its minimum and maximum values to yield an energy loss index equal

to zero. This set of control rules could be modified to include humidity contributions by

replacing the temperature terms with their respective total air enthalpies.

3.2.1 Mixing Box Air Flow Modeling

The flow of outdoor air into an air-handler, and commensurate outdoor air fraction, is

controlled by the pressure differential that exists between the core of the mixing box and the air

pressure at the inlet to the building's outdoor-air intake duct. This pressure differential is

physically dependent on several aspects of air-handler design and operation, but the proper

adherence to ASHRAE design guidelines should yield a primary dependence on recirculation

damper position. In particular, ASHRAE guideline 16-2003 details the selection of dampers in

order to achieve certain levels of recirculation damper authority,A, that reduces the influence of

other variables on outside air flow.

A - APdamper,100% open

APdamper duct total

Equation 3-11



The damper authority is defined as the ratio of the pressure drop across the recirculation

dampers when they are 100% open to the total pressure drop in the duct section that contains the

recirculation dampers, both measured under maximum flow conditions. Other equipment such as

outside air louvers, exhaust air dampers, and variations in supply air fan speed can also influence

the mixing box pressure, but we will assume for now that those effects are muted by proper

damper selection.

Damper performance is reported in ASHRAE Guideline 16-2003 as the percent of

maximum possible flow through the damper versus percentage opening of the damper.
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Figure 12 Families of curves with varying damper authority for percent of maximum recirculated flow through opposed
(left image) and parallel (right image) dampers, as a function of percent opening of the damper. ASHRAE Guideline 16-

2003

The maximum possible recirculation flow through the recirculation damper is a function of the

actual supply air flow rate and the minimum required outdoor air flow rate.

VRC,max = VSA - VO A,min

Equation 3-12



ASHRAE guideline 16-2003 is intended to help engineers design recirculation system with a

damper authority that results in the most linear relationship between the recirculation damper

position and maximum recirculated air flow. This linear relationship is convenient and desirable

for the programming of building controls, because it simplifies the code needed to modulate

recirculation air flow based on recirculation damper position. Non-linear relationships between

recirculation damper position and air flow would require more complex controls programming to

accommodate for that non-linearity, or the purchase of additional sensor equipment to support a

local feedback control loop. For parallel blade recirculation dampers, the right hand image in

Figure 12 shows that a design damper authority between 2 and 5 results in an approximately

linear relationship between damper opening and percentage of maximum recirculation flow.

VRC
. ~ -rad

VRC,max

Equation 3-13

Equation 3-13 is a linear constitutive model for the recirculation damper that includes the

percent opening of the recirculation damper,rad, the recirculation flow rate and maximum

possible recirculation flow rate. Combining the linear constitutive model in Equation 3-13 with

the definition of maximum recirculation flow in Equation 3-12 yields a new relationship between

outdoor air flow, supply air flow, recirculation air flow and recirculation damper position.

VRC = rad VSA + rad* VOA,min

Equation 3-14

The recirculation air flow can be eliminated in favor of the outdoor air flow and supply

air flow by using Equation 3-1 for the mass balance around the mixing box section. Dividing

through by the supply air flow yields the following dimensionless relationship between outside

air flow and recirculation damper position for air-handlers with parallel blade recirculation

dampers that have a damper authority between 2 and 5.



g = 1-rad - (1 -gmjn)

Equation 3-15

When the return air dampers are fully closed, the outdoor air fraction is equal to one.

Conversely, when the return air dampers are fully open, the outdoor air fraction is reduced to its

minimum value. Equipped with a constitutive model that relates the recirculation damper

position to outdoor air fraction, we can now use Equation 3-7 through Equation 3-10 to create

control laws that minimize the energy loss index by modulating the recirculation damper

position. We can also leverage Equation 3-14 to generate additional constitutive models that

represent a variety of faulty damper conditions.

3.2.2 Mixing Box Recirculation Damper Fault Modeling

A stuck damper is the simplest generic fault to model because the damper remains in one

position and cannot move. This is an important fault to model because it represents a wide

variety of physical situations that waste energy, such as binding of damper linkages, loss of air-

pressure in pneumatic actuators, or loosened connections between dampers and their actuators.

Many dampers also come pre-loaded with springs that drive the damper blades fully open or

closed when the damper linkages fail. The fault-free constitutive model in Equation 3-14 can be

modified to represent all of these stuck-damper situations by replacing the variable rad with a

constant, a.

g = 1 - a (1 -9min)

Equation 3-16

The fault-free model in Equation 3-14 can also be modified to represent leaking dampers,

which is another class of damper faults. In this case the damper is still able to move, but the

damper blades cannot provide an air-tight seal when they are completely closed. In contrast to a

stuck damper, the effects of a leaking damper will also vanish as the damper continues to open.



The effect disappears because the contribution of the leakage air-flow to the total air-flow

becomes very small as the damper opens wider. The subtraction of an exponential decay from

the original linear model in Equation 3-14 is one of many flexible representations for a leaking

damper,

g = 1 - rad -6 -fle-yrad)

Equation 3-17

The parameter f# in this equation represents the damper leakage that occurs when the

damper is fully closed, and the parameter y measures how fast the effects of the leak vanish. The

parameter 6 is a constant that represents the minimum required outdoor air flow rate. In order to

qualify as a model for the damper, the parameters fl, y and 6 must satisfy two conditions: the

outdoor air fraction is always a decreasing function of return air damper position, and the

minimum outdoor air fraction is achieved when the return air damper is fully open. These

boundary conditions lead to a set of constraints that can be solved to simulate the effects of

various damper leakage levels.

-1 - 9

.y + e -Y

Equation 3-18

8 = 1 - gm - flex

Equation 3-19

The mathematical properties of the exponential decay provide a convenient

representation of damper leakage because the response is fully specified by only two boundary

conditions and yields a decay that asymptotically approaches the fault-free behavior.

Polynomials or trigonometric functions can also be used to represent damper leakage, however

they may require additional boundary conditions to fully specify the response; the exponential

decay appears to be a simple choice amongst these options.



Beyond these fault-models, there are numerous ways in which the mixing box may

actually malfunction and alter the relationship between outdoor air flow and recirculation damper

position. The relationships developed in Equation 3-12 through Equation 3-17 allow us to

simulate mixing box performance under a variety of these circumstances, and estimate their

impact on the air-handler's energy consumption. Our expectation is that we can determine a-

priori what faults and fault severities create the greatest opportunities for energy efficiency

improvements, and thereby triage fault signals to only those that are most important to energy

efficiency.

3.3 Mixing Box Simulations

3.3.1 Assumptions

In conjunction with typical meteorological year (TMY) data for a given geographic

location, we can use the models derived in Equation 3-14 through Equation 3-20 to explore the

impacts of various mixing box faults on the relative annual energy consumption of an air-

handler. To simplify the analysis, we will assume that the return air damper control signal, rad,

follows ideal control laws that are derived from Equation 3-7 through Equation 3-9 and

reproduced here:

TOA TA rad = 1

TsA TOA< TRA rad=O

TOA< TSA rad= 1- TRA-TSA 1
TRA -TOA 1 ~ 9 min

Under fault-free conditions, the control signal and physical position for the damper are

assumed to be identical. In that case, Equation 3-14 applies to compute the outdoor air fraction



from the damper control signal. The results from Equation 3-14 are subsequently consumed by

equation 6 to yield the energy loss index for the thermal conditions that gave rise to that damper

position. The same computation process applies to fault-laden simulations, with the exception

that equation 14 is replaced with the appropriate constitutive model for the fault under

investigation.

In order to easily evaluate Equation 3-20 without an additional model for the supply air

flow rate, we will assume that the minimum outdoor air fraction is a constant equal to 0.2. This

assumption is reasonable for certain types of buildings, such as commercial office space, where

we hope to deploy fault detection systems. The minimum outdoor air flow rate for an office

building with large cooling loads could be on the order of 10% of the maximum supply air flow

rate for the air-handler. If the building is equipped with a typical single-duct, variable-air-volume

distribution system, then the supply air flow from the air-handler will be modulated to maintain

the static duct pressure of the building. A typical variable-frequency drive can modulate the

supply air flow between 50 and 100% of its maximum value, so for this type of building the

minimum outdoor air fraction should only vary between 0.1 and 0.2. By assuming the larger

value for the minimum outdoor air fraction, we can compute an upper bound on the energy loss

index for periods when the air-handler would ideally draw the least amount of outside air. To

completely specify the year round operation of the building, we must also make assumptions

about the supply and return air conditions.

The air-handler in a commercial office building is typically controlled to maintain supply

air conditions at 55 OF. The return air conditions are a function of the building loads, which will

vary over the course of the day and season. For simplicity and the purposes of this sensitivity

analysis, however, we will assume that the building loads vary such that the return air

temperature is always 72 OF. This assumption is also reasonable during the day-time operating

hours of a commercial office building where the primary cooling load of the building is due to

the people and equipment in the building. More sophisticated simulations may relax these

assumptions and leverage existing building energy simulation programs such as energy-plus in

order to create more realistic operating conditions. At this point, however, only a simple building



simulation is needed in order to identify the energy impact of various mixing-box faults relative

to the base-case of fault-free mixing box operation.

3.3.2 Results for Boston, Massachusetts

The stuck damper was simulated for a recirculation damper stuck at 10%, 50% and 90%

open positions; these are the corresponding values of a for use in equation 15, the stuck damper

constitutive model. The leaking damper was tested for a small, medium and large leak,

characterized respectively by values of f in equation 15 that include 0.1, 0.3, and 0.5.
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Figure 13 Baseline operation of Air-Handler under fault-free operating conditions for Boston, Massachusetts

The top left panel of Figure 13 depicts the mean hourly outdoor air temperature for

twenty four hours in each month for the city of Boston, Massachusetts; the time series is in 24
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hour intervals for each month. The annual variations in recirculation air damper position are

shown in the top right panel of Figure 13. The majority of the year includes modulating the

recirculation dampers to take advantage of free cooling with outdoor air; the damper spends

more than 60% of the year at less than 60% open, with the most likely position between 0 and

10% open. Subsequent variations in outdoor air fraction and energy loss index are shown in the

bottom panels of Figure 13. The lower right-hand panel of Figure 13 shows that the damper

control rules are sufficient to drive the fault-free energy loss index to zero during the winter

months, and keep the loss index less than one for the vast majority of the year. The same graph

shows that most of the thermal energy consumption of an air-handler in Boston occurs during the

summer months when the mixed air must be cooled to meet supply air conditions.
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Figure 14 Energy loss index simulated for a recirculation damper stuck at various positions

Figure 14 depicts the energy loss index simulated for a year of mixing box operation with

recirculation dampers stuck at various positions, and undei normal operation. The net overall

percent increase in energy use over the fault-free case for 10%, 50% and 90% stuck open
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dampers is 169%, 82% and 132%, respectively. The largest losses relative to the fault-free case

are during the winter period when the recirculation damper is stuck at 10% open; those results

are shown in black within Figure 14. These losses are a result of drawing large quantities of cold,

outdoor air into the air-handler that must be heated to the supply air conditions. Beyond energy

implications, the excessive intake of very cold air is dangerous for the air-handler since the

mixed air temperature could drop sufficiently below the freezing point of water and cause

hydronic coils in the air-handler to burst due to water freezing and expansion. The opposite

extreme is a damper that is stuck at 90% open and cannot draw sufficient outdoor air to take

advantage of free cooling. The air-handler must constantly cool the mixed air conditions to reach

the supply air temperature, which results in the green line in Figure 14 that is constantly greater

than zero. A damper stuck at 50% open exhibits characteristics that are derived from both the

10% and 90% stuck open cases, but a net energy consumption that is less than the either of those

two faults.
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Figure 15 Energy loss index simulated over three damper leakage levels
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Figure 15 depicts the energy loss index simulated for a year of mixing box operation with

three different damper leak severities, and under normal operation. The net overall percent

increase in energy use over the baseline case for 0.1, 0.3 and 0.5 values for fl is 6.8%, 39% and

86%, respectively. Clearly, the energy loss due to leaking dampers grows with the severity of the

damper leak. In contrast to the stuck damper faults, however, none of the leaking damper faults

increase the amount of energy consumed for heating the mixed air to supply air conditions. In

fact, all three of the simulated leaking dampers appear to increase the cooling energy

consumption of an air-handler much in the same way as a damper that is stuck at 90% open.
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Figure 16 Energy impact of various mixing box faults

The energy impact of the different faults relative to the fault-free case is shown in the bar

chart in Figure 16. The most significant increase in energy consumption follows from a

recirculation damper that is stuck at 10% open, resulting in an increase of energy consumption

by 170%. The smallest energy impact is only a 7% rise in energy consumption for a leaking

damper with f# equal to 0.1.



Damper characteristics for varying leak and stuck levels
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Figure 17 Outdoor air fraction versus recirculation damper position for several fault cases, simulated over a year's worth
of Boston weather data

In addition to the energy loss index time-series in Figure 14 and Figure 15, the

simulations also provide scatter plots of damper position versus outdoor air fraction for all fault-

free and fault-laden cases. The stuck dampers are immediately identifiable in Figure 17 by their

characteristic horizontal lines across the entire range of recirculation damper positions. The most

severe leak with a fl value of 0.5 has a sufficiently small slope for damper positions less than

40% that it resembles a stuck damper for that same range of damper positions. On the other

hand, the curve for a leaking damper with f# equal to 0.1 is almost identical to the fault-free

curve for damper positions that exceed 20% open.

One potential metric that could be used to distinguish between these curves, and

eventually support fault detection is the square root of the mean squared residuals on outdoor air

fraction between the normal and faulty operating curves
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d = (g - gi)2

Equation 3-20

This error metric, d is regarded by engineers as a traditional measure of the difference

between two sets of data; in this case it measures the difference between the fault-free outdoor

air fraction, denoted by gi, and fault-laden outdoor air fraction, denoted by gi, measured over the

full range of recirculation damper positions. The error metric is computed for the simulation data

where N is the total number of points, and the subscript i refers to pairs of faulty and fault-free

data for each position of the recirculation damper. For dampers stuck at 10%, 50% and 90%

open, the error metric is 0.37, 0.29, and 0.49, respectively. Likewise, the error for leaking

dampers with leakage rates of 0.1, 0.3 and 0.5 is 0.06, 0.19, and 0.33, respectively.

The largest and smallest energy impacts are due to fault-laden behaviors that yield

residual error values of 0.37 and 0.06, respectively. This result is rather counter-intuitive since

we might expect that the most divergent behavior, found here with an error residual of 0.49,

would yield the greatest energy impact, yet it does not. The energy impact of faulty behavior

defies our intuition because energy consumption is a function of both the weather conditions and

the matching operations of the equipment. For Boston, Massachusetts, it is far worse for a

damper to be stuck at 10% open rather than 90% open, because of the typically low air

temperatures in the northeast. In order to identify faults that have the greatest impact on energy

consumption, fault detection should implicitly consider the extent of divergent behavior as well

as potential energy impact when classifying measurements as either fault-negative or fault-

positive.

3.4 Measured performance of a mixing box

3.4.1 Fault-free operation



The simulation results shown in Figure 13 are based on an ideal linear model of the

mixing box. It is unlikely that a real mixing box in any air-handler will exhibit such convenient

and simple behavior. On the other hand, we expect that the outdoor air fraction in a real air-

handler will be a monotically decreasing function of increasing recirculation damper position.

This assumption is based on physical intuition that resistance to air flow through the recirculation

damper must continuously decrease as the dampers extends from a closed to fully open position.

Several examples of real mixing box data have been prepared in order to qualitatively

compare the previous simulations against real mixing box data, and provide additional insight

into the operation of a real mixing box.

Measured Normal M-Box Operation
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Figure 18 Measured fault-free operation of Air-Handler B at the IEC

Figure 18 shows real mixing box data measured from air-handler B at the Iowa Energy

Research Center (IEC) in Des Moines, Iowa. The data for this figure has been compiled from
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several days of fault-free mixing box data from the ASHRAE 1020 research project, which was

conducted at the IEC. No data was available for damper positions greater than 0.65 because the

recirculation dampers in the ASHRAE 1020 research project were constrained by the building

control system to never exceed that maximum value unless the air-handler was off. Furthermore,
we could not find any other data sources that could match even the limited data that was made

available by the ASHRAE 1020 research project.

With the exception of what look to be outliers at a recirculation damper position of 0.65,
the outdoor air fraction appears to be a monotically decreasing function of recirculation damper

position. In contrast to the simulation results that yield an outdoor air fraction equal to 1 for

closed recirculation dampers, the outdoor air fraction measured in ASHRAE 1020's air-handler

B at the closed damper position yields a dense spread of values between 1.0 and 1.2.

Measured Normal M-Box Operation
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Figure 19 Measured fault-free operation of Air-Handler A at the IEC



Similar data was also acquired for air-handler A at the IEC; both air handlers have

identical equipment, manufacturers, and control sequences. Furthermore, they serve identical

halves of the test building that comprises the IEC. Air-handler A, like its twin, exhibits a spread

of values for outdoor air fraction when the recirculation damper is fully closed, but with roughly

twice the range as compared to measurements made on air-handler B.

Both air-handlers exhibit a monotically decreasing behavior that is nearly one-to-one

between values of outdoor air fraction and recirculation damper position, for damper positions

between 0.0 and 0.3, non-inclusive. For damper positions greater than and equal to 0.3, however,

both air-handlers yield clusters of multiple values for outdoor air fraction per damper position.

The most visibly extreme case of this multi-valued phenomenon appears in both air-handlers at a

recirculation damper position of 0.65; at this damper position the outdoor air fraction appears to

take on values across the entire range of plausible measurements, with a central tendency in the

range of outdoor air fractions equal to 0.2 and 0.4.
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Figure 20 Time-series of rad and g measurements on a spring day within
series begins at 9 am

ASHRAE 1020-RP for air-handler B; the time



A day's worth of data sampled at 1-minute intervals from air-handler B is shown in

Figure 20. The overlapped time-series of recirculation damper position and outdoor air fraction

reveal the relative noise level of each signal, their cross-correlation, and the potential existence

of any additional variables that may influence the outdoor air fraction. The maximum cross-

correlation coefficient was found at 0 time-lag between the signals, indicating that the response

time of the outdoor air fraction to changes in recirculation damper position is less than 1 minute.

The absence of time-lag in this particular sample does not guarantee its absence for all operation

of the mixing box; it remains unknown if the outdoor air fraction will exhibit a lag when the

damper position changes more rapidly.

The data in Figure 20 was taken on a spring day when the recirculation air damper was

modulating the outdoor air flow according to external environmental conditions. The damper

control signal is visibly smoother than the outdoor air fraction, which is not surprising since the

damper signal is a direct output from the building control system. The uncertainty of the outdoor

air fraction was estimated by the mean standard deviation of several continuous 50-point samples

drawn from visibly flat regions of the damper control signal. The mean standard deviation was

found to be roughly 0.02, which is consistent with the 5% or better accuracy expected from the

commercial air flow meters used to measure the supply and outdoor air flow rates of the air-

handler.
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Figure 21 Time series measurements for rad and g, collected from air-handler A over 6 different days spanning summer,
winter, and spring seasons

Several days of data for summer, spring, and winter seasons were sampled at 1-minute

intervals from air-handler A and collected into the time-series shown in Figure 21. The winter

season spans the time interval from the origin to 1450, the spring season spans the time interval

1451 to 2150, and the summer season includes the remainder of the series. The three seasonal

segments of the time-series in figure 12 exhibit representative behavior for the corresponding

seasonal weather conditions in Des Moines, Iowa; the outdoor air fraction modulates in the

winter, is maximal in the spring, and is minimal in the summer. The uncertainty in outdoor air

fraction for air-handler A was estimated from the multi-season data in Figure 21 in the same

fashion as it was estimated from the data in Figure 20; the result was again roughly 0.02.

During periods when the recirculation damper position is held constant, or nearly

constant, the outdoor air fraction measured for both air-handlers exhibits variations that do not

appear attributable to measurement noise. The magnitudes of these variations can exceed three
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times the measured or predicted measurement uncertainty of the outdoor air fraction, and persist

over several minutes or more. The effect is most visible in Figure 21 for times greater than 1450.

The outdoor air fraction also exhibits long-term variations with similar changes in magnitude

when the damper position changes slowly over the range of 50 to 60% open; this effect is visible

in Figure 20 within the time intervals of 75 to 250, and 350 to 500. These observations suggest

that other variables may have a significant influence on the outdoor air fraction, especially when

the recirculation damper position is held constant. The latter observations also re-enforce the

non-linearity that is apparent in Figure 18 and Figure 19; the gain between damper position and

outdoor air fraction appears to be greatest towards the center of the range of damper positions.
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Figure 22 Time-series for rad, g, and supply air flow rate scaled by its maximum possible value (denoted by ssaf)

Figure 22 includes two time-series of recirculation damper position, outdoor air fraction,

and supply air flow rate, where the supply air flow rate has been scaled by its maximum rated

value of 3600 CFM; the scaled supply air flow rate is denoted by ssaf in the figure. The time-

series are both sampled at 1-minute intervals for two separate days of operation during the spring

0.2L
0



season. Literature from the ASHRAE 1020 research project suggests that the supply air flow rate

can influence the outdoor air fraction, and that inter-relationship is visible for portions of the

lower time-series in Figure 22. The effects of supply air flow rate on outdoor air fraction in that

case are most evident in the time the interval 150 to 300, where the outdoor air fraction and

supply air flow rate both appear to experience a simultaneous decline and then rise in value while

the damper position remains nearly constant. On the other hand, the upper time-series in Figure

22 supports the independence of outdoor air fraction from supply air flow rate; in that case, the

outdoor fraction remains nearly constant while the supply air flow rate varies over 25% of its

range.

One potential explanation for this behavior is that the effects of supply air flow rate are

greatest while the outdoor air fraction and damper position modulate in the middle of their

ranges; as the outdoor air fraction reaches unity, or perhaps either extreme of its range, the

supply air flow rate appears to exert little influence on the outdoor air fraction. This hypothesis

stems from the observation that the outdoor fraction is at its maximum value in the upper time-

series of figure 11, while it is in the middle of its range for the lower time-series in Figure 22.

Figure 18 and Figure 19 support this saturation effect since the steepest gain in the non-linear

relationship between outdoor air fraction and damper position occurs in the middle of their

ranges, which is where we would expect and indeed observe additional variables to exert their

influence on outdoor air fraction.

The exact relationship between supply air flow rate, outdoor air fraction and recirculation

damper position remains unknown for air-handlers A and B, but the data still supports the

original hypothesis that the damper position is the primary control variable for outdoor air

fraction. The multiplicity of outdoor air fraction values shown in Figure 18 and Figure 19 for

damper position equal 0.65 may be explained by the influence of supply air flow rate on the

outdoor air fraction within that range of damper positions. The apparent multiplicity of outdoor

air fractions for the closed damper position may stem from additional measurement uncertainty

at that damper position, limitations of damper actuator repeatability for closed-damper position

control signals, or other un-modeled physical effects such as flow reversal. In the latter case, the

outdoor air fraction may exceed 1.0 because the outdoor air flow surges up through the



recirculation damper and exits via the exhaust dampers. While it is not intended to occur, flow

reversal from the outdoor air duct and across the recirculation dampers is a common problem in

air-handlers and may explain part of the data included here.

3.4.2 Fault-laden operation

In addition to data that is characteristic of normal mixing box operation, the ASHRAE

1020 research project also collected performance data on fault-laden mixing box operations. The

prior simulation faults were in fact modeled after the leaking and stuck damper faults that were

physically implemented in IEC air-handlers as part of ASHRAE 1020. Three different damper

leakage levels were applied to the air-handlers at the IEC by removing in equal increments from

the damper blades all of the layers of rubber sealant that are intended to yield an air-tight seal for

the closed damper position. Likewise, stuck dampers were simulated on air-handlers at the IEC

by disengaging the damper linkages and manually adjusting the dampers to either a fully closed

or open position. The leaking and stuck damper faults were applied on several days in the winter,

summer and spring seasons of the ASHRAE 1020 research project.
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Figure 23 Measurements of faults in a real mixing box: stuck and leaking dampers

Figure 23 shows an overlay of normal mixing box data from air-handler B at the IEC

with fault-laden mixing box data from the same air-handler, for stuck and leaking dampers that

were tested over several winter, summer, and spring days of the ASHRAE 1020 research project.

In this particular data set, the leaking faults were only applied on days where the weather was

sufficient to keep the damper position held constant at either 0.65 or 0.00. Consequently, Figure

23 only shows leaking dampers as two vertical red line segments whose abscissae indicate their

corresponding constant valued recirculation damper position. For the three leak levels tested at a

damper position of 0.65, the red circles indicating data from the leak are barely visible at the tails

of the central tendency of normal mixing box operation at that same damper position. The

outdoor air fraction under leak conditions at the closed damper position appears to decline past

normal mixing box operation by roughly four times the measured uncertainty of the fault-free

signal. In contrast to the leaking damper data that was primarily collected at two damper

positions, the stuck damper faults were imposed on days where the external weather caused the
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recirculation damper to travel its full range. The results of that ideal weather condition are the

black circles that horizontally traverse the graph in Figure 23, and are visually distinct from the

fault free mixing box data. Comparisons between the stuck damper simulations shown in Figure

17 against the measured data about a stuck damper in Figure 23 suggest that the constitutive

model used to simulate stuck dampers is in fact representative of the real fault.

While the effects of a stuck damper are immediately discernible in Figure 23 the leaking

damper faults are less obvious to the casual observer. The fault detection system in ASHRAE

1020, when applied to this same fault data, provided fault identification and detection with about

the same accuracy as we can deliver by visual inspection of the data shown in Figure 23. Small

and medium leaks, especially at open damper positions were very difficult to isolate in ASHRAE

1020, while large leaks, especially at closed damper positions were more readily detected; stuck

dampers of any nature were always detected and diagnosed. Leaking damper faults were also

imposed on air-handler A at the IEC, but during the winter season where the damper position

was modulated over a wider range than occurred during leaking damper tests in air-handler B.
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Figure 24 Data from three different leak levels imposed on air-handler A at IEC during the winter testing season of
ASHRAE 1020

Figure 24 presents a juxtaposition of normal mixing box data from air-handler A against

three different leakage levels imposed on the same air-handler. The data representing faulty

operation is colored red in each graph of Figure 24, and is visibly discernible at each fault level

from the blue data that represents the normal mixing box operation. In contrast to the leak data

from air-handler B that is anchored on two damper positions, the leakage fault data from air-

handler A varies over the damper position range of 0.4 to 0.55. The most visible effects of

leaking dampers are observed in the bottom graph of Figure 24, corresponding to the data set

from the largest leak imposed on air-handler A. The data from the large leak are seen to protrude

from the bottom of the fault-free data set by roughly 4 times the measured uncertainty of the

outdoor air fraction signal.

The leak data measured from air-handlers A and B does not cover a sufficient range of

damper positions to support a complete comparison of the real operation of leaking dampers
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against the constitutive models that were used to simulate the operation of leaking dampers.

Comparing the simulation results in Figure 17 against the fault data shown in Figure 23and

Figure 24 however, suggests that the constitutive model for simulating leaking dampers may

approximate the measured data with Equation 3-14 for values of fl between 0.1 and 0.3. In both

the measured cases and simulations with f# between 0.1 and 0.3, the magnitude of divergence

from fault-free behavior is roughly 0.08, or 4 times the measured uncertainty of the outdoor air

fraction signal.

3.4.3 Real energy impact of faults

On its own, the data available from ASHRAE 1020 is insufficient to provide a complete

estimate of the impact of stuck and leaking damper faults on the annual energy consumption of

an air-handler. This is because the ASHRAE 1020 data set does not include values for outdoor

air fraction over the full range of damper faults and positions, or year round estimates for the

ventilation rates and return air conditions experienced by the building. The annual energy

consumption of the air-handler, and subsequent energy-derived cost of operations, must be

estimated in order to motivate any sort of action on fault-laden operations.

We can extrapolate the impact of mixing box faults on annual energy consumption by

assuming some reasonable values for year-round ventilation rates, building comfort conditions,

and the relationship between outdoor air fraction and recirculation damper position. The

complete enthalpy balance around the combined mixing box and hydronic coil sections of the

air-handler schematic in Figure 11 reveals the year-round information that is necessary in order

to estimate the true energy impact of damper faults

TEAHU = 0 OAhOA + rnRAhRA - 7hSAhSA

Equation 3-21

TEAHU in Equation 3-21 is the thermal power consumption of the air handler, measured in

BTU/s; the new air enthalpy terms, hiA, measured in BTU/lbs are defined by



hiA = cApTiA + X(hw + CW,pTiA)

Equation 3-22

for each flow into and out of the air-handler.

Equation 3-22 for air enthalpy is measured in BTU/lbs wet air, and includes the variables

CA,p, the thermal capacitance of dry air measured in BTU/lbs-0 F, cw,p, the thermal capacitance of

water measured in BTU/lbs-0 F, hw, the enthalpy of vaporization for water measured in BTU/lbs,

and X, the absolute humidity ratio measured in lbs H20/lbs dry air. The temperature

dependencies of thermo-physical properties of air and water are often ignored by HVAC

engineers allowing many of the terms above to be taken as constants measured at standard

conditions: cA,p is 0.24 BTU/lbs-0 F, cw,p is 0.444 BTU/lbs-0 F, hw and is 970 BTU/lbs.

The mass balance in Equation 3-1 can help eliminate the recirculation mass flow rate in

Equation 3-21, and upon re-arranging terms yields the thermal energy consumption of the air

handler in terms of the supply and outdoor air mass flow rates

TEAHU ~ rhoA(hoA - hRC) + rsA(hRC ~ lSA)

Equation 3-23

In order to evaluate Equation 3-23, we must estimate the supply and outdoor air mass

flow rates, and the enthalpy of the recirculation, supply, and outdoor air flows. A constitutive

model for the mixing box, like Equation 3-17, can be used to compute the outdoor air flow rate

as a function of the supply air flow rate, and hence support the evaluation of Equation 3-23. Such

constitutive equations can also model fault-laden mixing box operation and their use with

Equation 3-23 facilitates the comparison of energy consumption between fault-free and fault-

laden air-handler operation.



The real-time supply air flow rates in the ASHRAE 1020 building under all weather and

occupancy conditions are difficult to simulate over an entire year because the fans are modulated

to maintain certain conditions within the building. It is not possible to predict the year-round

conditions within the buildings, or the subsequent real-time supply air flow rates, without a

detailed energy and ventilation model of the entire building. While it is possible to create such

detailed building energy models, a simple alternative to ascertaining the order of magnitude of

energy loss incurred by various damper faults is just to assume an average ventilation rate for the

building during occupied hours.

In this case, the mean supply air flow rate for both air-handlers A and B across the entire

ASHRAE 1020 data set was 1,700 CFM, or roughly 50% of their maximum rated flow rate, and

the standard deviation was 376 CFM. The distribution of supply air flow rates for air handlers in

ASHRAE 1020 is included in Figure 25.
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Figure 25 Distribution of supply air flow rates for AHSRAE 1020 air-handlers; the data is drawn from over 30 days of
operating history, measured at 1 minute intervals during the regular working hours of 9 am to 5 pm.

Based on the distribution of supply air flow rates shown in Figure 25, we might create

upper and lower bound estimates on the impact of various damper faults on air-handler energy
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consumption by evaluating Equation 3-23 with constant supply air flow rates of 1,500 and 2,000

CFM.

The typical recirculation and supply air enthalpies can also be estimated from

corresponding temperature and humidity data within the ASHRAE 1020 data set. Over the 30

days of data collected in ASHRAE 1020, the return air temperature distribution was broadly

distributed over the range 70 "F to 74 OF with a mean of 72 "F and standard deviation of 1.5 "F. In

contrast, the supply air temperature distribution had a sharp peak at 55 "F with a standard

deviation of 2.5 "F. The discharge and return air humidity conditions followed a bi-modal

distribution, with peaks determined by the humidity in cold and warm weather seasons.

3000

2000

1000

0
1

Juuu

2000 -

1000-

0
0

40 50 60 70 80
disharge air relative humidity (RH %)

10 20 30 40
return air relative humidity (RH %)

50 60

Figure 26 Distribution of humidity for return and supply air, across 30 days from the ASHAE 1020 data set

The distribution of return and supply air temperatures suggest that their respective mean

values can be used to estimate the year round energy consumption of the air-handler. It is harder

to assign a constant year-round value for the humidity of the recirculation and discharge air

flows because those variables vary with season and building occupancy. Much like our approach

to the supply air flow rate, however, we may create upper and lower bounds around the energy

impact of various damper faults by assuming worst and best case values for the supply and return
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air humidity. The most energy intensive operation of the air-handler results when return air

arrives at the air-handler with the upper humidity value of the comfort envelope for the building,

or roughly 75% relative humidity. This is a worst case scenario for air-handler energy

consumption because the return air has its highest possible high water content. The best case

scenario is when the return air arrives at the air-handler with a humidity that is closer to the

bottom of the comfort envelope for the building, or roughly 40% relative humidity. These best

and worst case values for the return air humidity do not match the two peaks that are observed in

the lower histogram of Figure 26 for the distribution of return air humidity observed in ASHRAE

1020. This discrepancy is due to the lack of occupants within the ASHRAE 1020 building;

human beings are a significant latent load within buildings, and their effect is noticeably lacking

from the ASHRAE 1020 data set.

The supply air humidity for all simulation cases is a function of the combined water

content from the outdoor and recirculation air flows, and the saturation moisture content of air at

the supply air temperature. At 55 F, which is the estimated year-round temperature for the

supply air, the saturation concentration of water in air is 9.2 x 10- lbs H20/lbs dry air. If the

combined water content of the recirculation and outdoor air flows exceeds that threshold, then

water must condense from the supply air stream before the supply air temperature will reach 55

'F; in this case the supply air humidity will be 100%. If the combined water content of the

recirculation and outdoor air flows is less than 9.2 x 10-3 lbs H20/lbs dry air, then no water needs

to condense out of the supply air before the supply temperature reaches 55 'F; the supply air

relative humidity will be a function of the water content of the recirculation and outdoor air

flows.

The flow of outdoor air into the air-handler is controlled by the recirculation damper

position and the supply air flow rate. The exact control rules for recirculation damper position in

ASHRAE 1020 remain unknown; however the literature from ASHRAE 1020 does suggest that

those rules were similar to the control rules presented previously in Equation 3-7 through

Equation 3-9. Those previous control rules are shown again here for the convenience of the

reader:

TOA TRA rad=1



TSA 5TOA <TRA rad=0

TOA < TSA rad = 1 - TRA-TSA 1
TRA TOA 1 - 9min

The primary difference between these controls rules and the ASHRAE 1020 literature is

that the control system in ASHRAE 1020 was programmed to not open the recirculation damper

position beyond 65%; this feature is not represented in the above control laws, however it was

included in our subsequent simulations of the ASHRAE 1020 air-handlers.

The outdoor air fraction for fault-free and fault-laden mixing box operation is given as a

function of the recirculation damper position by Equation 3-14, Equation 3-15, and Equation

3-16 respectively. Subsequent simulations of this ASHRAE 1020 model used a value of f# equal

to 0.2 to model the worst case of leaking dampers, and a value of a equal to 0.1 to model

dampers that are stuck open; these model parameters come from a visual inspection of the fault

data shown in Figure 18 and Figure 19.

Simulations of the ASHRAE 1020 air-handler are intended to provide insight into the real

energy costs incurred by leaking and stuck mixing box dampers. In order to compute the energy

costs of heating and cooling air with the air-handler, the thermal power consumption computed

in Equation 3-23 must be transformed into the primary energy consumption at the heating and

cooling plant that serves the air-handler. This conversion is done by utilizing assumptions about

the bulk efficiency of those heating and cooling plants; the heating plant at the IEC is a

condensing boiler with fuel utilization efficiency that is likely to be approximately 92%, and the

cooling plant is a 10 TON condensing chiller with a COP that is likely to be approximately 5.

The condensing boiler at the IEC is fueled with natural gas and the condensing chiller is

electrically powered; today's natural gas and electricity tariffs are roughly $1.50 per therm, and

$0.13 per kW-hr, respectively.
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Typical meteorological data for Des Moines, Iowa, is used to generate the graph of

outdoor air temperature that is shown in Figure 27. The data is taken for 10 representative

working hours in each month, from 8 am to 6 pm; the outdoor air temperature graph depicts

average working day conditions for each month of the year. The corresponding control signal for

the damper position is shown in the lower graph of Figure 27. The mean outdoor air temperature

for Des Moines, Iowa during working hours of the IEC is 55 "F. The average summer time high

for outdoor air temperature during working hours is 85 OF; the winter low is 19 OF. We have

focused exclusively on data during the work week at the IEC because the air-handlers are

otherwise normally off.

Fault-free, stuck, and leaking dampers were each simulated using the conditions defined

above, and the outdoor air temperature and humidity data contained within the TMY file for Des

Moines, Iowa. Figure 28 includes a scatter plot of outdoor air fraction versus damper position for

all three fault states of the air-handler. The severities of leaking and stuck dampers included in
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these simulations are representative of the same faults that were tested in the ASHRAE 1020

research project. The real fault data for stuck and leaking dampers is shown in Figure 23 and

Figure 24; simulation models for those faults were chosen in order to generate data that appeared

similar.

outdoor air fraction versus return damper position
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Figure 28 Simulation results for Des Moines, Iowa: scatter of outside air fraction versus return air damper position

The impact of these fault states on heating and cooling energy consumption are shown in

Figure 29 as a pair of time series of monthly heating and cooling energy consumption. The

energy consumption measured on the y-axis of the time series in Figure 29 reflects how much

thermal energy is consumed at the air handler in order to provide desirable supply air conditions

to the building.
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Figure 29 Simulation results for Des Moines, Iowa: monthly energy consumption per fault status

The heating energy consumption for a stuck damper is almost 10 times that of a normally

operating damper; this is by far the largest increase in energy consumption amongst all cases of

faulty operation simulated here. The stuck and leaking dampers increase the cooling energy

consumption of the air handler by 10's of percent. Surprisingly, the leaking damper actually

reduces the heating energy consumption of the air handler. The corresponding changes in energy

cost per fault status are included in Table 1.

Normal Stuck Leak
Heating Cost $136 $1,444 962% $85 -37.50%
Cooling Cost $544 $625 15% $745 36.95%

Table ITable of annual energy costs and percent difference from fault-free case, per fault status

The normal operation of the air handler incurs roughly $680 of annual thermal energy costs, with

20% of that for buying natural gas, and the remainder devoted to purchasing electricity. This

does not include the cost of electricity for running the fans, pumps, or other plug loads, or the
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thermal energy costs associated with the operation of the other two air handlers that are in the

building. The stuck damper fault incurs the greatest waste of energy and increases the thermal

energy expense of the air handler by more than a factor of three. The leaking damper has a

smaller impact on the air-handler, raising the thermal energy expense by only 25%. In absolute

terms, the stuck damper increases the thermal energy expense by $1,389, and the leaking damper

increases thermal energy expenses by $150.

The nominal hourly rate for a mechanical service technician who could fix leaking and

stuck dampers is around $100. Assuming that fixing a leaking or stuck damper requires the

equivalent of three hours of labor in time and material costs, the return on investment for fixing a

stuck or leaking damper is 3 months and 2 years, respectively. Even if the equivalent of 10 hours

of service labor and materials is needed to fix stuck dampers, the simple pay-back period on that

investment is still less than one year.

3.5 Conclusions

In this chapter we have achieved several objectives leading towards the automated

identification and evaluation of air-handler faults: we have created simulation models in order to

understand common damper faults that are found in air-handlers, we have compared the results

of those simulations against similar fault-laden and fault-free data from two real air-handlers, and

we have computed the real energy costs that are associated with stuck and leaking damper faults.

The data from simulations and real air-handlers suggest that simple faults such as stuck

dampers pose a more significant threat to increase the energy consumption of an air handler than

do leaking damper faults; clearly not all faults are of equal importance to either energy efficiency

or occupant comfort. Review of the data available from real air-handlers shows that more data is

needed on fault-laden systems over the full range of damper positions in order to quantitatively

evaluate the accuracy of our simulation models. Likewise, a review of existing literature and

conversations with experts in the field suggest that the research community in general does not



have a data library of fault-free and fault-laden behavior for commercial AHUs. A significant

research contribution of deploying any sort of HVAC fault detection system in multiple

buildings may simply be to aggregate a database of fault-free and fault-laden equipment

behavior.

Estimates on the real energy costs associated with damper faults show that the dollar

values of those faults can be much larger than the cost of service labor and materials needed to

fix those faults. This result, in conjunction with the notion that not all faults are of equal

importance, provides a basic argument for a FDD system that does not necessarily diagnose

faults, but instead detects and prioritizes them in order of their financial significance. Such a

fault detection and valuation system would allow system users to decide for themselves whether

a fault is worth pursuing; some limited diagnostic features would also serve to help system users

track the origins of a fault, instead of full diagnostics that attempt to completely specify the

origins of faults.

For a comparatively small air-handler like air-handlers A and B at the IEC, the estimated

annual financial loss due to stuck dampers is on the order of $ 1,000. With a simple physical

assumption that AHU energy consumption scales linearly with volume, we can extrapolate the

result from the IEC to larger pieces of equipment with similar control algorithms and that are

located in climates similar to Des Moines, Iowa. For instance, Cambridge Ma has a climate that

is similar to Des Moines, Iowa, and MIT has more than 10 VAV AHUs on its campus that

exceed 30,000 CFM rated capacity; the annual financial loss for just one of those air handlers to

have stuck dampers for a single year is on the order of tens of thousands of dollars.

4 Building Data and Data Uncertainty

4.1 Introduction



4.1.1 The Role of Data in Buildings Today

Data, and the possibilities for more data, abounds in buildings; ranging from records of

repair and maintenance to extended logging of building control system measurements. Despite

the existing and potential volume of building data, it is still not extensively archived, reviewed

and converted by building managers into useful planning or execution information. Even

national compendiums of construction data, such as RS Means (57) are only used as a rough

starting point to estimate basic construction costs. The lack of data-driven action within buildings

today is largely due to the time and effort that is required of building managers to organize,

inspect and draw inference from data; they typically don't have the time or man-power to

examine reams of data in order to find anomalies or wasted money. This situation is exacerbated

by the fire-fighting culture of building management and services; pro-active planning and action

is almost always deferred to re-active response to emergencies, complaints and discontent.

Despite the contemporary proliferation of IT infrastructure, lower cost of data acquisition,

databases and expert systems, our interviews with a wide variety of building stakeholders

indicates that buildings are still managed and maintained much in the same way they were 20

years ago; problems come up, and if they raise enough attention they get solved.

4.1.2 Leveraging the Experience of Building Management

Data uncertainty is another key limiting agent to the use of building data for planning and

execution. From a scientific perspective, engineers and scientists are comfortable with the ideas

of precision and bias measurement error, but for a building manager there are many other forms

of data uncertainty that are more difficult to quantify and overcome. Take for example the labor

costs associated with providing mechanical, electrical or maintenance services; interviews with

service managers at MIT and elsewhere clearly demonstrated to us that timesheets of labor hours

don't necessarily reflect the number of hours actually worked by a technician, or in some cases

they don't even reflect the true activities or location of the work.



The uncertainty of financial and execution records within an organization are something

that only a member of that organization can fully appreciate and quantify. We found that in many

cases, building managers don't often rely on building data because they know that it may be

tainted with falsehoods or is not applicable to forecasting execution. This seems to be the

underlying power of experience in buildings; cost estimates, scheduling and planning are based

on the experience of the management team, and far less so on the written records of past

performance. This unique nuance of building management and service suggests that FDD

systems should not necessarily "solve" problems for building managers, but instead point out and

prioritize decision options. The best FDD system may in fact be the one that leverages the way

that buildings are actually maintained and operated; through the experience and knowledge of

the actual building managers.

4.1.3 Making decisions with incomplete knowledge

Based on discussions and interviews with building stakeholders, we have found that

uncertainty and risk are key considerations in the decision making process of building

stakeholders. The review of prior art in chapter 2 of this thesis revealed that the majority of FDD

techniques communicate their results in a deterministic fashion, and withhold from system users

the inherent uncertainty of FDD results. In this chapter of the thesis we will develop techniques

for managing uncertainty in FDD, and communicating the results of FDD in a framework that

includes the uncertainty of inference. By embracing rather than shunning model and

measurement uncertainty, we may create more robust methods of FDD that empower system

users to ultimately judge for themselves whether a fault signal is important and worth

investigating, based on the uncertainty of acknowledging a fault.

4.2 Collecting data from buildings



4.2.1 Building control systems for data collection

This thesis explicitly focuses on the use of physical measurements that are made about a

building in order to support inference on its possible HVAC pathologies. In today's buildings,

control systems are widely used to measure physical variables such as temperature, pressure and

flow in order to control actuators and other devices. Because of that existing infra-structure, the

most convenient approach to collect data for FDD seems to be through the data collection

capabilities of installed building control systems. A survey of the major building control

platforms shows that they all offer features for the extended logging and output of measurement

data to third party applications. Some control systems, like that offered by Schneider Electric, are

built on a standard SQL database which can facilitate the continuous electronic exchange of data

between the control system and a third party FDD software. Other popular control systems do

not have as well developed infrastructure for machine-to-machine (m2m) data exchange, and

users can only access measurement data in bulk through comma delimited files or spread sheets.

The ubiquitous adoption amongst the building controls industry of standard

communication protocols such as BACnet and LONtalk offers an additional avenue to data

extraction from control systems; using a common protocol, FDD software may directly query

measurement data from individual building controllers. This approach to data collection

overcomes any systemic limitations that a control system may have towards database-level

electronic exchange of measurement data however it also introduces other potential drawbacks.

Interviews with control system experts, and research into the appropriate literature (58), suggests

that open protocols such as BACnet and LONtalk are not supported nearly as well as we might

desire by control companies. The use of open communication protocols for direct queries on

building controllers has often resulted in situations where the building controller's response time,

or scanning rate, is made sluggish. While open communication protocols appear to facilitate

transparency of data exchange between different products, their level of support by building

control companies does not seem sufficient to enable facile deployment of FDD across the

building stock (58).



4.2.2 Cost of Data Collection

While building control systems are a ready vehicle for collecting FDD data, their

existence within a building does not guarantee that sufficient measurements are being made to

support any level of FDD. Interviews with experts and review of pertinent literature indicates

that the rich instrumentation of buildings is not the prerogative of building control installations;

instead the opposite is true where just enough measurements are made to support the lowest cost,

yet still functional control architecture. It is likely that FDD systems in buildings will require

additional installation of sensors beyond what is normally found in a low-cost controls

installation, depending on the desired depth and breadth of FDD.

The cost of installing instrumentation in buildings is a significant hurdle to the scalable

deployment of FDD throughout the building stock, as well as the retrofit of building control

systems that could significantly impact building energy efficiency. Interviews with building

control experts, as well as a review of pertinent literature (57) indicates that the total cost of a

building control system, furnished with front-end graphics and deployed over the entire HVAC

system, is amortized at roughly $1,000 per measurement or control point. While the price range

for typical HVAC sensors like duct-immersion temperature or humidity probes is on the order of

$10 to $1002, the inclusive cost of installation, start-up, engineering and commissioning escalates

the per-point cost of building measurement to roughly $1,000. Of that $1,000 point cost, roughly

25% is the cost of the sensor and related control hardware, 10% may be attributed to profit, and

the remaining 65% is for the labor associated with installation and setup3.

Stand alone sensor overlays for the purpose of FDD can be cheaper than $1,000 per

point, but the lower point cost typically comes with a sacrifice of control capability; stand-alone

sensor overlays do not necessarily contribute to the control of a building. Likewise, the labor cost

associated with installing certain useful sensors will always be much greater than the cost of the

sensor itself. Take for example the measurement of outdoor air flow in an air-handler, or the

measurement of chilled water temperature for a chilled water supply main that is equal to or

2 Price checks at www.kele.com, a popular supplier of HVAC sensor products
3 Personal communications with control contractors from Schneider Electric, Carrier Corporation and Evco
Mechanical, Inc.
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greater than 3" in diameter; in the latter case a temperature measurement well must be installed

on the chilled water supply main, and in the former case an air flow station must be installed in

the air-handler's ductwork. Both of these activities could require shutting down of systems,

draining of pipes, welding, cutting, piping, and other expensive labor activities.

The costs and complexities of collecting building data extend far beyond the cost of

acquiring sensors and data acquisition hardware; instrumentation in buildings is a systems

engineering problem whose planning and execution underpin the success of FDD.

4.2.3 What to Measure

From one perspective we may consider deploying dense sensor networks in order to

create maps of energy transmission and consumption in a building; the usefulness of that

approach has not yet been born out in practice or research. A more pragmatic approach to

building measurement is to start with the un-answered questions and interests of the building

managers, and work backwards from that desirable information to determine what additional

measurements are needed in the building. Since our research has focused on FDD in AHUs, we

asked building maintenance personnel at MIT what they would like to know about their AHUs.

The top most interest of MIT personnel in the operations of their AHUs is the quantity of

electrical and thermal energy consumed by that equipment. Complimentary to their inquiries

about AHU energy consumption, MIT personnel also wanted to know if their AHUs could

potentially consume less energy without sacrificing occupant comfort or safety.

In order to satisfy the interests of MIT personnel, we created the following list of

desirable, standard AHU instrumentation:

* Electrical sub-metering of supply and return fans

o Preferably full electric power measurement; this is often integrated in

contemporary variable-frequency drive products that are used for VAV

AHUs
* Thermal sub-metering of heating and cooling coils
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o Air-side measurements are typically cheaper than other options, and
require air flow measurements across the heat exchanger, as well as air-
inlet and exhaust temperature measurements.

o Humidity measurements across the heat exchanger are also important for
cooling applications.

o Measurements of valve stem positions on the heat exchangers are also
useful for detecting leaking valves

Mixing box characterization
o Air-flow measurement of the outdoor air intake, as well as the supply air

discharge
o Temperature and humidity measurements on the outdoor and return air

flow streams
o Temperature and humidity of the mixed air conditions

Electrical and thermal sub-metering of AHUs has straightforward uses in educating

building management about the energy consumption of their air-handling equipment. Additional

measurements of the valve stem position on AHU heat exchangers also helps to identify when

valves are leaking. Finally, the measurement of outdoor air fraction, especially for AHUs that

can operate in an economizing mode, is very useful for identifying prevalent and costly energy

in-efficiencies like a broken economizer cycle.

4.2.4 Instrumentation Options

Temperature and humidity measurements in occupied building spaces are commonplace

and generally easy to implement. In an AHU, however instrumentation design and

implementation is made more complex by the need to make accurate measurements over large

airflows and energy intensive processes. Mixed air temperature measurement in a mixing box,

for example, is classically a difficult measurement to make accurately because mixing boxes are

prone to poor mixing of air that is derived from multiple sources and at various temperatures.

Likewise, air flow measurements, especially at the outdoor air intake manifold are difficult to

implement because of the low face velocity of the outdoor air intake flow rate and typical lack of

space for ductwork that supports an accurate measurement of air flow. The accurate

measurement of bulk air flow typically requires a straight run of ductwork that is multiples in
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length of the duct's hydraulic diameter, and sufficiently small cross sectional area to yield a face

velocity of over 100 FPM (59).

In the case of outdoor air flow, ASHRAE research project 980 focused on alternative

means by which the outdoor air fraction could be measured for a VAV AHU, other than directly

measuring the outdoor and supply air flow rates. ASHRAE RP 980 explored the use of C02

species and enthalpy balances to infer outdoor air fraction. These alternative methods utilized

extra C02 sensors and temperature sensors, respectively in order to obviate the need for an

outdoor air flow station. The use of enthalpy balance to measure outdoor air fraction required

higher accuracy measurements of mixed air temperature, which ultimately rendered the approach

less useful because of the difficulties associated with making such measurements in practice. In

contrast, the C02 species balance was found to be more practical, lower cost and accurate than

the enthalpy balance method, however only during periods where the building was sufficiently

occupied that the return air C02 concentration differed from the outdoor C02 concentration by

about 100 PPM.

4.2.5 Sensor Measurement Uncertainty

The uncertainties of HVAC sensor measurements are usually included as the rated

accuracy for a manufacturer's sensor product. Sensor accuracies are typically expressed as a

relative percent error of the sensor's measurement, or measurement range. For example, a typical

HVAC temperature probe may have an operating range of -30 "F to 230 OF, and a rated accuracy

of 0.2% over that range; the manufacturer may also quote this accuracy as +/- 0.5 OF.

Alternatively, a manufacturer may rate the accuracy of their sensors simply as a given

percentage, for example 0.2%, without specifying that this relative percent error is effective over

a range of values or for each individual measurement. In the latter case, the sensor accuracy is

improved at the higher extreme of the measurement range, and it asymptotically approaches the

accuracy that is associated with a relative percent error over the entire measurement range.
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Temperature +/- 0.3 'F for probes, +/- 3 'F for averaging sensors

Humidity +/- 2 to 5% of measurement value

Air-flow +/- 2 to 5% of measurement value

CO 2 Concentration +/- 2 to 5% of measurement value

Pressure +/- 1 to 3% of measurement value

Table 2 Measurement accuracies for typical HVAC instrumentation4

We can use the findings in table 1 to estimate the impact of measurement uncertainty on

the calculation of energy consumption by an AHU. For example, consider an AHU with 20,000

CFM of air flow, and a steam coil that incurs a 30 "F rise for the air flowing over the coil. The

enthalpy rate of the steam coil is calculated in mBTU/hr (106 BTU per hour) according to (60)

1.1 x CFM x AT
Hs = 106

Equation 4-1

and is found to be 0.66 mBTU/hr. Using the accuracies in table 1, we can also compute an upper

and lower limit estimate of the steam coil's enthalpy rate as 0.76 mBTU/hr and 0.56 mBTU/hr,

respectively. Combing all of these results, we can express the energy calculation with its

associated relative percent uncertainty as 0.66 mBTU/hr +/- 15%. If the AHU's steam coil were

to operate in this capacity for an entire work week (5 days, 24 hours each), and we assumed that

the cost of heating was equivalent to the cost of natural gas, roughly $1.50 per therm (one therm

is equal to 100,000 BTU), then the thermal energy cost of the AHU for that time period would be

$1,188 +/- $178.

If we interpret HVAC sensor measurement uncertainty as the measure of a statistical

distribution, then the above results can form the basis for a probabilistic, rather than a

deterministic inference about the cost of AHU operation. The probabilistic interpretation is

preferable because it accommodates for the inherent uncertainty of HVAC measurements, and

facilitates statistical testing of FDD hypotheses. A deterministic approach to evaluating HVAC

operation wholly ignores the fundamental fact that measurements are never perfect, and in doing

4 Values were taken from www.Kele.com for popular HVAC instrumentation products
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so presents building managers with an incomplete picture of how their systems could be

operating.

4.3 Propagation of Uncertainty in HVAC analysis

Uncertainty in HVAC analysis can arise from a variety of sources, including the natural

precision error of measurement, bias of measurements, and uncertainty of models. In the

following sections we will explore a method for propagating measurement uncertainty through

HVAC FDD analysis, and expands its capability to include other forms of uncertainty or

confidence that are important to the final FDD inference.

4.4 Modes of uncertainty

4.4.1 Random Measurement Error

Random measurement error is a familiar form of uncertainty amongst scientists and

engineers; it underpins the accuracy and precision ratings of sensors. HVAC sensor accuracies

are tabulated by their manufacturers in order to help HVAC engineers select a sensor that is

appropriate for its intended application. High quality HVAC sensors can be purchased with

accuracy certifications that are traceable to NIST (The National Institute of Standards and

Technology), but the vast majority of products are subject to less stringent certification

standards, if they are certified according to any standard at all. In many cases manufacturers will

publish accuracies for their sensors without including any description of how that accuracy was

ascertained or made credible.

4.4.2 Systematic Measurement Error
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Measurement bias, or systematic error, is a form of uncertainty that does not contribute to

the scatter of measurement data. Bias error is typically fixed and attributable to finite limitations

of measurement (such as the number of bits in an analog-to-digital converter), but in other cases

it can change over long periods of time resulting in measurement drift. Commercial HVAC

sensors typically come with an estimate of drift magnitude versus time in order to inform HVAC

engineers of the intended lifetime of the sensor product. Humidity sensors are notorious within

the HVAC industry for drifting measurements; the growing bias error is often attributed to

fouling of the capacitative elements within the sensor that are used to measure the water content

of air. Unlike random error that can be easily quantified by taking numerous samples in a static

system, bias error is almost always unknown unless measurements can be compared between a

calibrated sensor and one under scrutiny. Sensor calibration in the building commissioning

process typically consists of that comparative process where measurements from installed

HVAC sensors are compared against similar measurements drawn from temporarily installed,

laboratory-calibrated instruments.

4.4.2.1 Model uncertainty

In most engineering analysis of HVAC systems, the fundamental principles of physics

are used to describe, size, and analyze the operation of an HVAC system. Inherently, engineers

do not perceive "uncertainty" in their application of fundamental thermal-fluid analysis to

HVAC systems. On the other hand, the classic technique of "over-sizing" equipment during the

specification of HVAC systems is a broad method by which HVAC engineers embrace the

uncertain accuracy of their calculations. Since HVAC systems are designed based on a model of

the building, whether that be a detailed energy model, load calculations or design-day estimates,

HVAC engineers respond to the unknown factors of the model by increasing the load capacity of

their designs.

In FDD, data-driven and physical modeling techniques must both consistently

accommodate for measurement uncertainty because such models are used to continuously predict

the operation of a system. FDD measurement uncertainty is a mainstream component of black

and grey box modeling techniques because statistics provides a straightforward toolset for
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managing empirical uncertainty. In that same vein, measurement uncertainty is also a common

consideration for physical models, again because statistics has a broad tool set for managing

empirical errors.

Model uncertainty of the physical, grey or black box model itself, as in a mathematical

description of the model's shortcomings, is a less common consideration in FDD models of

systems. The inaccuracies of physical models in particular are not often directly considered

because the underlying assumption of a physical model is that its description of a system is

sufficient for the desired FDD inference. In practice, however, we found in the literature review

of chapter 2 that physical models of HVAC equipment very rarely capture the entire spectrum of

possible physics that can influence FDD inference; experience has shown that inaccurate models

result in extensive filtering and handling of extraneous fault signals. The typical fashion for

handling such model uncertainty is simply to state the limits of the models; for example, a model

may only apply for certain temperature ranges or hours of the day.

A more implicit method of handling model uncertainty may facilitate the comparison of

identical engineering results that stem from multiple physical models. For example, the energy

consumption of a boiler that is fired by natural gas may be measured or predicted in a variety of

ways:

e Sub-metering of natural gas flow

e Sub-metering of thermal BTU output

" Count of degree days or hours (reference measurements of indoor and outdoor

temperatures)
e Status measurement on the natural gas valve (61)
" Acoustic signature of combustion (62)
* CO 2 and CO measurements on the boiler exhaust

All of these physical measurements can be converted by some model into an estimate of

the energy that is consumed by the boiler over a period of time. Intuitively, as engineers we may

identify that sub-metering of natural gas flow provides the most direct estimate of energy

consumption (or alternatively, utility cost), but in many cases the cost of implementing that

measurement is prohibitively high. And even if we did measure the flow of natural gas into the
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boiler, there are several possible models to convert that gas flow into energy consumption; the

simplest model is to assume that all of the natural gas is converted in thermal output. Clearly that

simple model is flawed, however, because the heat exchange process is known to be imperfect

within the boiler and there could be small leaks of fuel out of the boiler.

Alternatively, lower cost measurements such as acoustics on the combustion chamber or

status on the valve are preferable from a financial perspective to the installation of a gas flow

meter. But the models for converting those lower cost measurements into energy estimates may

be more even inaccurate than the models that are used with gas flow measurements. The

increased model inaccuracy is partially due to the less direct method of measuring the flow of

energy; acoustics and valve status measure properties that are related to energy consumption,

where as gas flow measures the flow of chemical energy itself.

This thought experiment exposes the need for an analytical FDD framework that includes

model uncertainty and permits the comparison of engineering results between different models

that use different measurements. For example, we might be comfortable using a low cost

measurement such as valve status to yield a rough estimate of the boiler's energy consumption,

instead of an expensive measurement with a more accurate estimate, if the more rough result

came with an estimate of its model uncertainty.

A fundamental hypothesis of this thesis is that characterization of both model and

measurement uncertainty in FDD is what can enable probability to become the common

language of comparison between different building systems. Ultimately, such a probabilistic

framework would support our desired probabilistic inference, and yield a FDD system that may

be agnostic to what sensors or models are actually used to describe the building. Bayesian

networks are a common approach to handling model and parameter uncertainties within a unified

framework (63), but in the ensuing discussion we will discuss a simpler approach that follows

from the engineering application of experimental uncertainty.

4.4.3 Methods for accommodating uncertainty in analysis
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The scalable deployment of FDD requires consideration of the costs and practicalities of

deploying sensors in buildings and drawing inference about complex and uncertain systems. In

the real world, the best models and measurements will not always be available for use in every

situation, but characterizing model and measurement uncertainty may provide a basis for using

whatever model or measurement is most practical for a given situation.

4.4.3.1 Mathematical treatment of experimental uncertainties

Our treatment of measurement uncertainty follows directly from the classic exposition of

Coleman and Steele on the subject of engineering application of experimental uncertainty (64).

In their publication, Coleman and Steele review the underlying assumptions, derivations and

extensions of the International Standard Organization's (ISO) "Guide to the Expression of

Uncertainty in Measurement", otherwise known as ISO/IEC Guide 98:1995. ISO Guide 98, at

the time of its publication, served as the basis for standards bodies such as ANSI/ASME and

AIAA to review and update their own procedures for characterizing and communicating

experimental uncertainties. Today, ISO Guide 98 is still a significant standard that is used across

numerous industries to communicate and characterize experimental uncertainty.

Measurement uncertainties in ISO Guide 98 and in Coleman and Steele are broken down

into two basic modes: bias and precision error, or, alternatively systematic error and data scatter.

We shall use the nomenclature found in Coleman and Steele and refer to bias error as f# and

precision error as Ekwhere the subscript k enumerates the sequential index of a measurement on

the variable X. In nearly all experiments or measurement processes, the measured values of

different variables are combined using a data reduction equation (DRE) to yield some useful

information; in the case of FDD, the DRE may be an energy function that outputs energy

consumption and the measured variables (for an AHU) may be air flow and temperature change.
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Figure 30 Modes of uncertainty for measuring a variable, X: a) two discrete readings b) infinite number of readings
(adapted from Coleman and Steele, 1995). In both cases, the bias error, 18k represents a systematic difference between the

averaged measured value of X and its true value. The precisions error, Ek is a measure of the data scatter between the
mean measurement of X, and its kth sample.

The interaction between the DRE and its parent measurements is presented

mathematically as

r = f(x, y)

Equation 4-2

for two measurement variables, x and y, and the DRE output, r. The kth result of the DRE may be

expanded in a Taylor series around its true value, rtrueto show the mathematical interplay

between uncertain parent measurements, Xk and Yk, their true values, Xtrue and Ytrue and the

output value uncertainty, rk

1r ar
rk - rtrue + (Xk - Xtrue) + ~ (Yk - Ytrue) + R2

x q o y

Equation 4-3
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where R2 is the expansion remainder that includes higher partial derivatives of the parent

measurement variables.

un.. xk Yr,.1

r r

Figure 31 Propagation of measurement bias and precision errors into experimental results

The higher order terms of the Taylor expansion may be neglected if we assume that the

measurement errors themselves are small or if the DRE itself is linear. In the former case, we

expect the higher order terms to approach zero faster than the first and zero order terms, and

hence the residual term, R2 is negligible in comparison to the other terms. Following Coleman

and Steele, we will assume that the measurement errors are sufficiently small to neglect higher

order terms in the Taylor expansion.

As more measurements are made on the system, the output from the DRE will naturally

embody the bias and precision errors that exists in its parent measurements; the effects of

propagation are shown schematically in figure 2. Rewriting the Taylor expansion using the total

error 6 for the kth determination of the result r, and using the notation 0, = ar/ax, the DRE error

can be written as
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Ork = Ox(flxk + Exk) + Oy(/3yk + Eyk)

Equation 4-4

The variance of the total error 8 for some large number N of results r is defined by

N

2 = im 6r
U4. N-4oo N k

k=1

Equation 4-5

Substituting the definition for total error variance into the DRE Taylor expansion, as well

as similar definitions of variance for the bias and precision errors of the individual measurements

and taking the limit as N approaches infinite yield

2= 60 2  + 620, + 2 0x6,aplca + 62 o2 + 62  + 26,ayr
(4 X ftX +Y fly Y fyx Xx Ey Y +2xVyq1JE'X

Equation 4-6

In reality the population variances are never known and they must be estimated. Defining

uc as an estimate of the distribution of total errors in the result, b2 as the estimate of the variance

of a bias error distribution and S2 as an estimate of the variance of a precision error distribution,

we can write

2 2 + A2 +2 + 2 2 ~f0su, = x2 b +Yby + 20x0ybxy + 6xSx + y + 20xySxy

Equation 4-7

where the variance terms with mixed subscripts indicate covariant terms between

measurement variables.

The derivation so far is distribution free and seeks to reveal how parent measurement

uncertainties are propagated into analytical results. The choice of distribution is forced by the

desire to obtain an uncertainty Ur from the result variance uc with some confidence level. The

transition from variance to result uncertainty is made in the ISO guide as well as in Coleman and

Steele by the selection of a coverage factor K, which supports
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Ur = Ku,

Equation 4-8

For normally distributed errors, which is typically assumed via arguments based on the

Central Limit Theorem, the coverage factor K is equivalent to the value of the t statistic for a

given number of degrees of freedom and level of confidence. The appropriate degrees of

freedom for a system of measurements can be computed either from the Welch-Satterthwaite

formula (65) or according to large sample and engineering approximations that are enumerated

in Coleman and Steele and in their cited literature. In either case, the value of the coverage factor

for normally distributed variances approaches 2.0 for increasing degrees of freedom and a

confidence interval of 95%. Coleman and Steele show that degrees of freedom equal to or greater

than 10 are sufficient to allow the use of a coverage factor of 2.0. Furthermore, Coleman and

Steele also show that for DREs composed of multiple variables, the product of the degrees of

freedom for each individual variable can be substituted as the total degrees of freedom for the

estimate of the coverage factor. Because of these engineering and large sample arguments, the

ISO standard as well as Coleman and Steele and other cited authors suggest that a coverage

factor of 2.0 can typically be used to compute a 95% confidence interval for analytical results

that are based on uncertain measurements.

The results from Coleman and Steel can be reduced to a generalized equation for

handling bias and precision errors in the computation of a 95% confidence interval, Ur for

engineering analyses

Ur 2 + p 2
Up= B + rz

Equation 4-9

where B. and Pr are the total bias and precision uncertainties for an arbitrary analysis. The bias

and precision uncertainties for a total analysis are subsequently defined as
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j j-1 j

B = 6 B? + 2 BijOkpbikBjB,

i=1 i=1 k=i+1

Equation 4-10

and

j j-1 j

Pr = 0P +2 2 Gi~g psikPiPk
i=1 k=i+1

Equation 4-11

where i and k are indices over the number of variables involved in the analysis, and Pbik and PSik

are the correlation coefficients between pairs of bias and precision errors, respectively. Finally,

the precision error of an individual variable, Pi is related to its sample variance, Si according to

Pi = tiSi

Equation 4-12

where ti is the value of the t statistic for the desired level of confidence and degrees of freedom

of the variable. Based on the prior arguments, the t statistic is often assumed to be equal to 2.0

for a 95% confidence interval.

4.4.3.2 Application of measurement uncertainty to single sample measurements

HVAC systems are dynamic and responsive to their environments, which makes it

challenging to collect multiple measurement samples that are representative of a single state of

the system. From a physical perspective, the time interval over which buildings can transition

between states may be limited by the time constants of energy exchange in the building. Thermal

interactions in buildings generally occur over a period of minutes, which suggests that sub-

minute measurement sampling can yield statistically significant populations of data to represent

building states. From a practical perspective, however, control loops for building control systems

operate at the scan rate of their processors, and representative forcing functions such as PID
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loops can modulate at sub-minute periods. In general this means that building control systems

can react very quickly to small thermal interactions, despite the slower response of bulk building

physical properties such as air or wall temperatures. Since many of our FDD measurements can

be outputs from the building control system, or physical measurements about the building space,

it becomes difficult in practice to define a sampling period for building systems other than an

instantaneous single sample.

Coleman and Steele as well as ISO Guide 68 admit that most practical experimental

systems only permit single-sample instantaneous measurements of the state of the system, much

like we may be limited to in buildings. If it were possible to create statistically significant sample

sizes for each state of a system (perhaps with 10 measurements or more, per state), then a sample

precision and possibly bias error could be computed for each state sample and used in the above

equations to create a confidence interval. In the presence of single sample measurements,

however, Coleman and Steele and ISO Guide 68 indicate that the selection of precision and bias

errors should be selected for each measurement according to the best relevant information

available at the time of measurement.

Following these recommendations, we will in this thesis use the manufacturer's quoted

accuracy to generate estimates of the precision error for our measurements made about building

systems. Specifically, we will make a fundamental assumption that the manufacturer's quoted

relative percent error for their sensor represents a 95% confidence interval about the sensor's

measurement, under a normal distribution that is centered at the sensor measurement. For

example, under this assumption a temperature measurement of 65 OF, from a sensor with a

manufacturer's quoted accuracy of +/- 3 OF (typical for an averaging sensor in an AHU) will be

interpreted as representing a normal distribution of the possible real values for temperature, with

sample mean of 65 "F, and sample standard deviation of 1.5 OF. This assumption is effectively a

form of bootstrapping in order to form a probabilistic inference over a time series of data. In

terms of the equations above, we will assume that tL is equal to 2.0 for a 95% confidence

interval, and that Pi is provided by the manufacturer as their sensor accuracy. The validity of this

assumption should be considered on a case-by-case basis for analysis on uncertain measurements
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however it is a simple program that could be used to quickly build probabilistic FDD for HVAC

systems.

Momentarily ignoring the bias error and assuming independent variables and

measurements, we can now use the above equations to propagate measurement uncertainty

through our FDD analysis. Furthermore, by assigning a statistical interpretation to a

manufacturer's published sensor accuracy we can present the results of FDD as a statistical

distribution instead of a deterministic number.

4.4.3.3 Model uncertainties and Bias Error

Coleman and Steele present the estimate of a measurement bias limit, Bi as a root-sum-

square combination over elemental bias limits, B,

M -1/2

B, =2Bi =(Bi n
Ln=1

Equation 4-13

for M possible elemental biases. According to Coleman and Steele and ISO Guide 68, elemental

biases can include a wide variety of experimental contributions including information theoretic

limits of data acquisition systems, manufacturer's specifications on drift, experimental insights

from calibration studies and much more (66). In general, the ISO as well as Coleman and Steele

specify that the experience of the investigator is central to the selection of important elemental

biases; many biases can exist in an experimental system, but not all of them carry a significant

contribution to the outcome of the experiment.

One possible elemental bias that may be included in the estimate of the bias limit is the

bias of the DRE model itself; for example it may be possible to characterize the DRE such that

under certain circumstances we expect its result to not be very accurate (as in the model itself is

known to be inaccurate for certain regimes of variable measurements). Inclusion of the DRE bias

as en elemental bias may serve as a bridge between different mathematical models that attempt
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to estimate the same result using different measurements. In terms of the prior thought

experiment of estimating boiler energy consumption, inclusion of DRE biases within the

estimates of confidence intervals would allow us to compare energy consumption estimates

derived from measurement of natural gas flow against less accurate energy consumption

estimates that are derived from measurements on the status of the natural gas valve. If both

results are expressed as a statistical distribution, then a hypothesis test can be used to determine

whether the results are effectively equivalent to within a specific degree of confidence.

There may be a variety of approaches to encapsulating the uncertainty of models within a

bias term however we have considered the simple engineering approach of using upper and

lower bound extremes of plausible experimental results. This approach to estimating model

biases is drawn from the classical engineering technique of bounded-value estimation. For

example, thermal-fluid analysis of engineering problems are often complicated with multiple

modes of heat exchange and transient phenomena, but we often simplify such problems by

making bulk estimates of heat transfer coefficients, physical properties, and flow geometries.

These types of simplifications are intended to peal-back real-world complexities and permit

engineers to get a "ball-park" estimate of how a system is working, without having to invest

significant time in a more accurate analysis that would otherwise require numerical simulation or

approximation. When engineers create such "ball park" analyses they must also compute upper

and lower bound "brackets" on their gross estimate in order to couch their results within the

uncertainty of their analysis. Our approach, which is one of many possibilities, is simply to

assign a confidence interval across the upper and lower bound brackets of the engineering

analysis. Admittedly this is an "expert" approach to expressing model uncertainty since it relies

on the confidence that an expert perceives in their bounded model. Despite the drawbacks of

expert systems (67), this approach does allow us to use the simple mathematics of experimental

uncertainty in order to simultaneously manage measurement and model uncertainties.

4.5 Probabilistic Inference
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Since the results of our engineering analysis are now statistical distributions rather than

deterministic numbers, we can use the tools found in statistics and probability to perform

rigorous FDD inference. Expert rules and other methods mentioned in chapter 2 can now be re-

cast in terms of probability so that the results of discrimination and classification can be

communicated to within certain levels of confidence. Confidence levels in FDD analysis can

then be used to measure the strength of a fault signal and filter out FDD results that are less

certain.

4.5.1 Example of cost prioritization

Earlier in this chapter we computed the thermal-cost of operation for a simple AHU;

when measurement uncertainties were included in that computation we found that the cost of

operation was $1,188 +/- $178, but we did not prescribe any interpretation for the +/- $178.

Applying the ideas from experimental uncertainty to those same results allows us to now

interpret the included uncertainty of the calculation as a 95% confidence interval for a normal

distribution centered at $1,188. If we desired, we could now compute the probability, P, of the

cost of operation exceeding a certain threshold, UD, according to

-2(x-M) 2

x 2 ltot
P Uto e dx

Equation 4-14

where M is the center of normal distribution, which is $1,188 in this example, and Utot is the

result's total uncertainty, which is $178 in this example. Using this approach, we can now

prioritize the investigation into different pieces of equipment by the probability that their energy

cost exceeds a certain threshold.

4.6 Taking action under uncertainty
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A large majority of FDD analysis and results, as they were presented in the literature

review of chapter 2, are often based on absolute terms; expert rules are either violated or not-

violated, decision trees consist of binary yes or no questions, and dollar losses are expressed as a

single number. But as we have seen in this chapter the world of measurement and data in

buildings is fraught with uncertainties, whether they stem from random errors or systematic

biases. Furthermore, building managers and stakeholders are used to that uncertainty and

building management processes have clearly grown to accommodate it.

FDD in buildings may benefit from embracing building model and data uncertainty in

order to be more flexible with practical deployment and also to communicate results in terms that

building managers and stakeholders can better appreciate. The engineering application of

uncertainty provides a convenient and simple mathematical framework that FDD can use to

manage building model and measurement uncertainties. The added benefit of this analytical

approach is that numerical results are delivered as statistical distributions rather than

deterministic values, which allows FDD systems to naturally leverage the large tool set of

probability and statistics in order to perform rigorous analysis.

5 Experimental work on MIT equipment

This chapter of the thesis will describe our experimental methods for testing the FDD

system, as well as the methods by which the system was deployed on all of the AHUs involved

in this research. The chapter is broken into two primary sections; the first section will focus on

AHUs 9 and 10 in MIT building 46, and the latter section will focus on the other three AHUs.

5.1 Introduction

An FDD system was designed, developed and deployed on five AHUs across three

separate buildings on the MIT campus. For one of those AHUs, AHU 9 in MIT building M46,

mechanical and software-control faults were purposefully applied to it and the FDD system was
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tested to see if it could detect those faults and evaluate their impact on AHU energy

consumption. Another three AHUs, AHUs 2 and 3 in MIT building 56, and AHU 2 in MIT

building 16, were also used to test the FDD system because of their known pre-existing

conditions of simultaneous heating and cooling. These last three AHUs served as control

variables in our experiment to test if the FDD system could detect and evaluate pre-existing

conditions, as oppose to the conditions that we purposefully applied on the other tested AHUs.

The three control AHUs were also chosen because MIT had already deployed on them a fault

detection service that is offered by a local company, Cimetrics Inc. MIT has had a long-standing

relationship with Cimetrics, and we were interested in comparing the results of our FDD system

against what was already identified by Cimetrics and known to the MIT facilities department.

The FDD system was also deployed on AHU 10 in MIT building 46, however no purposeful

faults were applied to that AHU; AHU 10 is a twin unit to AHU 9, and it served as the control

for our experiments where we purposefully deployed mechanical and software-control faults.

5.2 AHUs 9 and 10 in MIT Building 46

MIT Building 46, otherwise known as the McGovern Institute for Brain Research and the

Picower Brain and Cognitive Research Center, is a mixed-use laboratory and educational space

that was completed in 2006. The building includes over 250,000 square feet of research,

conference and teaching space including a primate research laboratory, animal vivarium, nearly

1,500 VAV air distribution boxes, hundreds of laboratory fume hoods and a seven story open-air

atrium with a glass ceiling. The building's HVAC system includes over two dozen AHUs, most

of which are dedicated outdoor air units (DOAs), of varying sizes and complexity. The

building's ventilation system was designed so that laboratory animals could be transported

anywhere in the building at any time, resulting in essentially the largest laboratory-grade

ventilation system on the MIT campus. In addition to the high air exchange rates used throughout

the building, some of the AHUs are also designed with demand-based ventilation systems that

utilize local and return air measurements of CO 2 concentration to modulate outdoor air flow.
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5.2.1 Physical Description of AHUs 9 and 10

AHUs 9 and 10, which were included in our research, are two of the AHUs in MIT

building 46 that utilize demand-based ventilation; they are also two out of a small minority of

AHUs in the building that re-circulate air and possess an economizing cycle (the nature and

implications of AHU economizing cycles were discussed previously in chapter three). AHUs 9

and 10 are of a twin design, both with a name plate supply air flow rating of 50,000 CFM, static

duct pressure rating of 1.4 inches of water column, steam heating coils rated at 1 million BTUs

per hour, and chilled water coils rated at 167 Tons. AHU 9 serves four conference rooms, one of

which is rated for 70 occupants and the others at 20 occupants each, as well as part of the main

atrium of the building. AHU 10 serves the remaining portion of the atrium, as well as the main

reception and administrative office of the building, which together hold roughly 100 occupants.
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Figure 32 Screenshot from the building control system for MIT building 46, detailing a schematic of AHU 09; the
schematic for AHU 10 is identical. The design of these AHUs is reminiscent of the schematic VAV AHU design that was

included as figure 1 in chapter 3 of this thesis

The schematic diagrams of AHUs 9 and 10 are identical, and are represented in Figure 32

by a screenshot of the building control interface for AHU 9. The outdoor air intake of the AHUs

is split into two sections; a maximum outdoor intake with continuously adjustable dampers, and

a minimum outdoor air intake with binary open or closed dampers. The minimum outdoor air

dampers occupy roughly 30% of the cross sectional area of the total outdoor air intake manifold,

corresponding to a minimum outdoor air fraction of 30% across all supply air flow rates for both

AHUs 9 and 10.

The schematic in Figure 32 is slightly misleading because it portrays the measurement of

the outdoor air flow only at the maximum outdoor air inlet to the mixing box; in reality the
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outdoor air flow measurement station is located in the throat of the outdoor air intake manifold

that leads to both sets of outdoor air dampers. In general, AHUs 9 and 10 are better instrumented

than most VAV AHUs; for example Figure 32 shows that all four of the AHU air flows are

measured: outdoor, return, supply, and exhaust. Measurement of all four AHU air flows is not

commonly found in conventional AHU installations, but was included with this installation

because of the critical role that ventilation plays in the safe use of the laboratory building. The

magnitudes of all four air flows are controlled by the interplay between the supply and return air

fans, and the exhaust, outdoor, and recirculation air dampers. The economizer section of the

AHUs is composed of the mixing box and the set of three control dampers.

The heating and cooling coils of the AHUs are also well instrumented with discharge

temperature sensors following each coil, as well as a mixed air temperature sensor in the mixing

box and supply air temperature sensor following the discharge of the supply air fan.

Additionally, static pressure sensors are included on the supply and return air sides of the AHUs

in order to control the rotational speed of their respective fans. Humidity sensors are also

included on the supply, return and outdoor air flows in order to facilitate enthalpy computations

for each flow and subsequent enthalpy control over the economizer cycle. Other features

included in the control graphic snapshot include set-points and valve positions which are output

and stored values from the building control system, as well as measured status labels for the fans.
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Figure 33 Picture of the mixing box interior showing the use of turbulators to improve mixing of return and outdoor air;
the averaging mixed air temperature string is also shown traversing the turbulator surface. As a length scale, the length

of a horizontal turbulator fin is 4 feet

The building control system for MIT building 46 was provided by Schneider Electric and

installed by the MIT branch office for Schneider Electric Systems Integration. The control

system for MIT building 46 includes over 5,000 measurement and control points, distributed

over several hundred hardware controllers, and several dozen graphical interfaces. The graphics

interface and control platform belong to the continuum product line of the building controls

division of Schneider Electric; roughly two-thirds of the MIT campus operates on this control

platform, with over 200,000 measurement and control points across the campus. The

sophistication of the Schneider Electric control interface is representative of features and

functions that are commonly found amongst most building control systems.

5.2.2 Relevant Controls Programming

The basic control elements for AHUs 9 and 10 are embodied within their respective

sequence of operations document; this is a descriptive document that is kept by MIT facilities as

part of the operations and maintenance (O&M) manual for the equipment. The O&M manual is a

typical resource that building managers have for each piece of equipment or major system that is

in their buildings; O&M manuals exist to support repair and maintenance efforts over the
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lifetime of building equipment. The key control sequence elements that influence day-to-day

AHU energy consumption have been summarized here:

1. Supply and return fans shall be on at all times

2. The variable speed drives on the supply and return fans shall modulate the fans to

maintain 1.25 inches of water column static duct pressure in their respective ducting

3. The unit will enter economizer mode when the outside air enthalpy is less than the return

air enthalpy. The economizer will be locked out when the outside air enthalpy equals or

exceeds the return air enthalpy; in that case the maximum outdoor air dampers will close,
the exhaust air dampers will go to their minimum position of 15%, and the return air

dampers will be fully open.

4. In economizer mode, the exhaust, return and outdoor air dampers will modulate to

maintain a mixed air temperature of 52 'F; the return air dampers will close as the

exhaust and outdoor air dampers open

5. CO 2 control over outdoor air flow takes precedence over the mixed air temperature

control and economizer lock-out. A minimum outdoor air flow of 20,000 CFM will be

maintained for the minimum CO 2 threshold concentration of 800 ppm; as the measured

return or space CO 2 concentration exceeds 800 ppm, the minimum outdoor air flow rate

will proportionally increase in value.

6. The AHU's steam pre-heat coil and chilled water cooling coil are controlled by separate

PID control loops in order to maintain a supply air temperature of 55 "F.

The control sequences for these two are-handlers are more sophisticated than similarly

sized air-handlers that are found in other buildings; for example, most buildings do not include

CO2 concentration as a ventilation control signal. MIT Building 46 uses CO 2 concentration-

based ventilation control as a means of carefully managing the indoor air quality (IAQ) of the

building. Instead of CO 2 control signals, most buildings have a time-based schedule that reduces

the supply air flow rate of the air-handler when the building is supposed to be largely un-

occupied (typically in the evening till the early morning for conventional office buildings). To

compensate for periods where the pre-programmed ventilation and occupancy schedule is

inaccurate, occupants are often provided with manual override switches to temporarily re-

activate the ventilation system; these override switches or buttons are typically integrated into
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the local room thermostat. On the other hand, occupants may not realize that their IAQ has

decreased until it reaches uncomfortable levels, and in research laboratory spaces with animal

quarter and noxious chemicals, poor IAQ can pose serious health risks to building occupants.

In order to actively control the energy consumption associated with ventilation, as well

as maintain high IAQ, the dynamic control over outdoor air ventilation rates in MIT building 46

is embedded within the programming of the system as well as in occupant override switches. The

related control methods and set-points for the economizing cycle and discharge air conditions in

AHUs 9 and 10 are more customary amongst other VAV AHU implementations. Likewise, the

static duct pressure control limits and scheme for modulating the supply and return air flows are

common for VAV AHUs that are controlled to meet static duct pressure constraints.

5.2.3 Instrumentation and Data Acquisition

5.2.3.1 Measurements

Over two dozen physical and virtual points exist for AHUs 9 and 10 on their building

controller. Some of these physical and virtual points will be important to our FDD system, while

others do not yet appear useful. Without yet developing a FDD model of the system, our

experiences from chapter three suggest that physical and virtual control points that are relevant to

thermal energy calculations will be useful to the FDD system. The schematic in figure 1 suggests

an initial list of measurement points that can be used to compute AHU thermal energy

consumption:

" Outdoor, supply, return, and mixed air temperatures

" Heating and cooling coil discharge air temperatures
" Outdoor, return and supply air relative humidities
e Outdoor, return, supply and exhaust air flow rates
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Other data sources shown in Figure 32 may also prove useful to detecting faulty operation of the

AHU, or computation of their electrical energy consumption, including:

* Outdoor, exhaust and recirculation damper position

" Heating and cooling coil valve position

e Supply and return static pressure

e Return and other CO2 measurements

e Supply and return fan amperage

5.2.3.2 Data Collection

The collection of data for all of the experiments included in this thesis was performed by

the Schneider Electric building control system itself. At the equipment level, measurements and

control points were affected by the controller product that was installed on the equipment; in all

cases, these were Infinet/TAC brand products from Schneider Electric. The controllers on AHUs

9 and 10 were i2-920 system controllers by Schneider Electric, with 12-bit digital-to-analog

conversion for 16 universal sensor inputs and 8 control outputs, analog voltage resolution of 2.5

mV over the range of 0 to 10 V, analog voltage accuracy of +/- 7.5 mV, 1 MB of SRAM and 2

MB FLASH memory.
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Figure 34 Picture of the i2-920 system controller for AHU 9 in MIT building 46

In addition to on-board memory and implementation of control programming, the

controllers also serve as a terminal block for collecting and aggregating control point data. Point

data can arrive at the controller's terminal block in a variety of forms, typically including but not

limited to:

* Analog voltage (typically 0 to 10 V)
" Analog current (typically 4 to 20 mA)
" Circuit resistance (typically 3 to 20 kD)
* Digital pulse (typically 5 V peak-to-peak)

The collection and storage of building control data in the Schneider Electric product is

also facilitated through their software. All control points, whether they are numerical

computations, input values or output signals can be logged over predetermined time intervals at

the controller or database level. The building controller itself has a finite memory of 100 MB that

can store, and will overwrite point data; for a typical AHU with 20 control points, polled

regularly at 5 minute intervals, the local controller can store roughly 15 days worth of data. The

limitations on local data storage at the controller level are overcome if the building control data

can be regularly sent to a much larger storage database. At MIT and in many other buildings that
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have Schneider Electric control products, the local building controllers are connected over an

Ethernet network to a central database that can support extended logging of building control

data.

Figure 35 Screenshot of the setup screen for implementing extended logging on an Infinity point; the data logging feature
is supported on MIT's building control system for all types of control points.

Figure 35 shows the setup screen for implementing extended data logging on the exhaust

air damper position for AHU 9 in MIT building 46. The logging setup allows users to specify the

interval of data logging, as well as its typology; data logging can be instantaneous at a certain

interval, or averaged over that interval. The user can also specify how many total data points

should be collected per day, and whether the data should be stored over the network at the central

database (this is termed extended logging) or just locally on the building controller.

Despite the capacity for a network database server to store seemingly limitless amounts

of data, of the nearly 200,000 points that are on the building control network at MIT, only about
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380 of them are currently setup for extended logging; less than half of a percent of the control

infrastructure at MIT is setup for any extended data logging. On the one hand the volume of

possible building control data at MIT seems like a tremendous untapped resource for better

management and maintenance of MIT's buildings, however the reality is that few personnel at

MIT facilities have the expertise, let alone the time, to use that data to improve the campus.

Consequently, data is rarely collected and reviewed by MIT personnel except for emergency or

forensic purposes.

Once a control point is setup for extended logging, data harvesting by our FDD system is

achieved via an ODBC data source connection and T-SQL query to the SQL database that rests

at the heart of the MIT building control's network.

5.2.4 Commissioning AHUs 9 and 10

Before creating FDD models around equipment designs and data acquisition, we needed

to verify that AHUs 9 and 10 were actually operating according to the control logic that was

prescribed in their written sequence of operations. Likewise, the calibration and even existence

of building control data collected from the equipment instrumentation also had to be verified

before any FDD model could be synthesized and applied to the AHU. The process of verifying

control logic, checking sensor calibration and visually inspecting the integrity of the equipment

is collectively termed commissioning; the goal of commissioning is to verify that the AHU is

operating in the manner in which it was originally designed and intended to operate. We

commissioned AHUs 9 and 10 in our research program according to the following simple

procedure:

1. Verify the enthalpy control over the AHU's economizer cycle
2. Compare outdoor and supply air flows against a calibrated flow meter
3. Examine duct work for mechanical deformation, possibly resulting from over or under

pressurization
4. Check the integrity of the pneumatic connections and piping between the controller and

equipment actuators
5. Cycle the AHU's dampers to ensure that they work properly
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6. Verify that the heating and cooling coil control valves can be controlled to open and fully
close

7. Verify the balance of air flows between the four air flows that are measured about the

AHU

Building commissioning is a profession unto itself, and our abbreviated commissioning

list does not reflect the much deeper and thorough investigation that is associated with a

dedicated commissioning and retro commissioning process (68). Our primary interest in AHU

commissioning was to understand how the AHU was programmed to operate; without that

knowledge we could not create an accurate FDD model of the AHU. In addition to learning how

the AHU was truly programmed to operate, we also wanted to gauge the level of AHU sensor

calibration and equipment integrity. Over the course of this research project, like in most

commercial settings, there was never an opportunity to remove sensors from the equipment in

order to test their calibration under laboratory conditions. Our efforts to test instrument

calibration were on par with conventional commissioning practice; measurement data from the

AHU was compared against a hand-held or temporarily installed sensor with a known

calibration, and also reviewed by hand for any practical indications of gross inaccuracy. The

process of commissioning AHUs 9 and 10, especially with the respect to verifying actuator

controllability, eventually mixed with and transitioned into the development and deployment of

an FDD system on the AHUs. For that reason, aspects of commissioning such as verifying

damper actuation, air flow balancing and control valve controllability were included as FDD

modules themselves; the results of that particular work will be discussed in the next chapter of

this thesis.

The first step in commissioning AHUs 9 and 10 was to examine their control

programming. We quickly determined from an inspection of the control logic that the AHUs

were not programmed exactly according to the control architecture that was specified in their

written sequence of operations. In particular, the AHUs were programmed to use outdoor and

return air temperature instead of enthalpies (as was mentioned in the sequence of operations) to

control their economizing cycle. This was not a surprising finding; most economizing cycles in

VAV AHUs are based on temperature comparisons rather than enthalpy comparisons, usually

because the system installation does not include humidity sensors on the outdoor and return air
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flows. In the present case, AHUs 9 and 10 are equipped with humidity sensors and the sequence

of operations does specify enthalpy control over the economizer, however the enthalpy-derived

control programming was not implemented in practice. It is unknown to us why the controls

programming did not include enthalpy control despite its inclusion in the written sequence of

operations; it may be possible that the sequence of operations that was kept on record by the MIT

facilities department did not reflect any last minute changes that were made in the controls

specifications. The discovery of that discrepancy between programming practice and

specification underscores the need to commission equipment before deploying an FDD system.

We learned throughout this research project that the contents of building documentation such as

engineering plans, operating manuals and sequences of operation are not guaranteed to

accurately reflect physical installations.

We found other control programming errors in the control logic for AHUs 9 and 10, most

important of which was as an erroneous conversion factor between the measured supply air flow

velocity and computed volumetric flow rate. While this programming error has no consequence

on the control of the AHU, it would dramatically alter the outcome of data computations within

an FDD model of the AHU. We found in both AHUs 9 and 10 that the conversion factor between

the supply flow velocity measurements and volumetric flow computation was off by a factor of

2; the building control system was reporting volumetric supply air flow rates that were only half

as much as they actually were.

Our physical inspection of the AHUs found no observable mechanical, pneumatic or

electrical faults. Since the building itself had only been occupied for less than 3 years, we did not

expect the equipment to show any visible signs of degradation. We worked with a technician

from the building management office to examine electrical connections, pneumatic tubing,

mechanical linkages, air filters and fan belts, all of which appeared to be in acceptable working

order. While there were no obvious physical failures about the equipment, we relied on our FDD

system models to identify any software or hardware faults that were not identified during the

commissioning process.
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5.2.5 AHU Models

5.2.5.1 Introduction

The fundamental thermal energy model for a generic VAV AHU was derived in chapter 3

and is also applicable here:

TEAHU : OA (hOA - hRC) + rhsA(hRC - hSA)

Equation 5-1

where positive and negative values of TEAHU correspond to heating and cooling energy

consumption by the AHU, respectively, measured in BTUs per hour. The mass flow rates of

outdoor and supply air flow rates are represented by 'roA and rnSA respectively, measured in

pounds of dry air per hour. The enthalpies of the outdoor, recirculated and supply air flows are

represented by hoA, hRC, and hSA respectively, measured in BTUs per pound of air. Based on our

list of measurements for AHUs 9 and 10 in the previous section, the building control system

yields either direct measurements of each quantity in equation 1 (such as air flows), or

measurements of quantities that can help to evaluate the variables in equation 1 (such as

temperatures and humidities to yield enthalpies).

While Equation 5-1 can tell us how much thermal energy is consumed by AHUs 9 and

10, it does not immediately provide insight into how much thermal energy should be consumed

by AHUs 9 and 10 under optimal operating conditions. Since the AHU consumes thermal energy

in order to condition mixtures of recirculated and outdoor air flow to meet supply air conditions,

we can predict how much energy should be consumed by these AHUs by predicting how much

outdoor and recirculated air they should receive.

Chapter 3 explored this same modeling exercise for the AHUs at the Iowa Energy Center

and in that case we derived relationships for the outdoor air fraction of the supply air flow based

on the AHUs' mixed air temperature control logic. AHUs 9 and 10 in MIT building 46 have

similar mixed air temperature controls to the AHUs that are at the IEC, however the analysis for

133



the AHUs at MIT are made more complex by the presence of additional ventilation control logic

that is based on measured CO 2 concentrations.

5.2.5.2 Mixed Air Temperature Control

The thermal energy consumption of the air-handler, as computed in equation 1, is

dependent on several key variables, including the mass flow rates of supply and outdoor air, and

the enthalpy of the return, outdoor, and supply air flows. According to the control sequence of

operations, the outdoor air flow into the MIT AHUs is a function of the mixed air temperature

conditions in the mixing box and the CO 2 concentration in the return and space air. Regardless of

the control logic, however, the analysis in chapter 3 revealed that the flows of recirculated and

outdoor air through VAV AHUs are controlled by the positions of the AHU's mixing box

dampers. The model for the outdoor and recirculated air flows in AHUs 9 and 10 can therefore

be derived from the control logic that links their mixed air temperature and CO 2 sensor inputs to

the positions of their exhaust, outdoor and recirculated air dampers.

Upon close examination of the control logic in AHUs 9 and 10 we found the

programming that computes the control signal for the mixing box dampers according to CO 2

concentrations and mixed air temperature conditions:

1 Max C02 = maximum(RetAirC02, Rrn33 10_CO2, Rn4199_CO2, Rm4300AC02, Rm5199_CO2,
2 Rm6199_CO2)
3 CO2Mode = Range.Fn((MaxC02 > C02_Se), 0, 1, CO2Mode, 0, 0.2, Timer[2])
4
5 If CO2Mode = On then
6 OutsideAirFloSe = Ratio.Fn(CO2Signal, 0, 1, OutsideAirFloMin, SupAirFlow)
7 MixAirDmpSignal = maximum(MixAirTeSignal, OutsideAirFloSig)
8 Else
9 OutsideAirFlo Se = OutsideAirFloMin
10 MixAirDmpSignal = MixAirTeSignal
11 Endif
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The first two lines of code show that the C0 2-based control signal, "Max_C02" is

actually dependent on several measurements of CO 2 concentration; five from rooms that are

served by the air-handler, and one from the return air flow. The maximum measured CO 2

concentration from of all of those sources is used create the "MaxC02" signal which controls

whether the air-handler ventilates the building according to CO2 concentration logic or mixed air

temperature logic

The third line of code executes a comparison between the maximum measured CO2

concentration and a set-point concentration of C0 2, the result of which is used to activate the

"CO2MODE" for the air-handler; the set-point CO 2 concentration, C02_Se, is equal to 800

ppm6 . The comparison in line 3 is implemented with a function called Range.Fn, which also

accepts several other arguments; further investigation into Range.Fn revealed that its extra

arguments define a timer that prevents the CO2MODE from activating unless the Max_C02

signal exceeds the C02_Se for a certain period of time.

Once the CO2MODE has been defined as either "on" or "off', its value is used in a

conditional statement, code lines 4 through 10, to switch between ventilation that is controlled by

CO 2 concentration and mixed air temperature conditions. When the CO2MODE is off (code lines

7 through 10), the control signal for the dampers, "MixAirDmpSinal" is equal to the mixed air

temperature control signal, "MixAirTeSignal". During periods when the CO2MODE is on (code

lines 5 through 7), the damper control signal will equal the maximum of two different signals,

"MixAirTeSignal" and "OutsideAirFloSig". In cases where the "CO2MODE" is on, line 5 of the

control program shows that the program also computes a new set-point value for the outdoor air

flow rate, "OutsideAirFloSe"; this new set-point value is used to generate an updated

"OutdoorAirFloSig" for the active "CO2MODE" state.

s Code snippet taken from a program entitled "AHMisc.Pr" on the controller for AHU 9 in MIT building 46. The
snippet is intentionally included in order to show the reader what control programming looks like in the Schneider
product line.
6 The values for various AHU set points was also stored in the control program "AHMisc" on AHU 9 in MIT
building 46
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The mixed air temperature control signal, "MixAirTeSignal", and outside air flow signal,

"OutsideAirFloSig" are both computed from their own respective proportional-integral-

derivative (PID) control programs 7. In both cases, the PID control programs generate a single

corrective control signal based on a measurement value, a set-point for that measurement value

and three gain constants (one each for the proportional, integral and derivate gains). In the case

of "OutsideAirFloSig", the set-point value for the PID calculation is also computed in the main

control program (see line 5 of the code snipped included above). The PID programs for

MixAirTeSignal and OutsideAirFlowSig output a signal equal to zero for measurement values

that are equal to or less than their respective set-points. For measurement values that exceed their

respective set-points, the MixAirTeSignal and OutsideAirFloSig are positive and range from 0 to

1.

For example, if the "CO2MODE" is off and the measured mixed air temperature is 65 OF

while its set-point is 52 OF, then the "MixAirTeSignal" PID program would generate a positive

control signal between 0 and 1. In that case and according to line 10 of the included code snippet,

the MixAirDmpSignal which drives the damper actuators would be equal to the MixAirTeSignal.

Examination of the actuation programs for the exhaust, outdoor and recirculation dampers

revealed that the MixAirDmpSignal is directly used to drive the exhaust and outdoor air

dampers, but its unit compliment, or one minus the MixAirDmpSignal, is used to drive the

recirculation dampers. This follows our expectations from chapter 3 where we showed that

normal mixing box operation requires that the recirculation dampers continue to close as the

outdoor air dampers continue to open.

In the case of AHUs 9 and 10, the exhaust and outdoor air dampers are both directly

modulated by the MixAirDmpSignal, however the exhaust damper actuator also includes a

constant positive bias on the control signal in order to prevent those dampers from fully closing

when the control signal value is equal to 0. The outdoor air dampers do not include a bias on

their damper control signal because the minimum outdoor air dampers will continue to remain

fully open even when the adjustable outdoor air dampers are fully closed.

7 The controller for AHU 9 includes several individual PID loop control programs, including ones for the mixed air
temperature signal and outside air flow signal.
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The PID programs for both "MixAirTeSignal" and "OutsideAirFlo" are evaluated once

each time the air-handler controller cycles through its complete set of programs. The cycle rate

of the air-handler is termed its scan rate, and is typically on the order of 10 to 60 seconds8 ; the

scan rate is sufficiently slow to allow the physical actuators on the air-handler to respond to their

control signals. A detailed model for outdoor air flow into the AHU may include the actual PID

loop control logic over "MixAirTeSignal" and "OutsideAirFlo", however in that case our model

of the AHU would also have to include sub-component models for actuator response, hysteresis,

and other complicated dynamics9 . It is not clear whether such a detailed dynamic model of an

AHU yields superior insight into the impact or presence of gross energy in-efficiencies like

simultaneous heating and cooling or imbalanced air-flows.

Since our goal is to simplify the FDD modeling process such that FDD systems can be

rapidly deployed, we will make a fundamental assumption that the dynamics of satisfactory

AHU control response are much faster acting than the equipment pathologies that incur the

greatest energy in-efficiencies. Another way of stating this assumption is that the time period

over which important energy in-efficiencies exist is much longer than the time needed for AHU

actuators to properly respond to their control signals. This assumption does not discount the

impact of poor PID loop tuning or the slow response of actuators that suffer from mechanical

degradation; on the contrary we are simply putting a minimum time threshold for AHU dynamics

that contribute to energy in-efficiency. This assumption may be stated mathematically as

Tin-efficiency Tdynamics

Equation 5-2

where we expect the proper response time of equipment actuators rdynamics to be on the order of

10's of seconds, so that Tin-efficiencies is on the order of minutes, if not longer. Practically

speaking, our modeling assumption forces an instantaneous reaction time between AHU systems

8 The limiting factor for controller scan rate is the response time of the equipment actuators; typical fast acting
pneumatic actuators have a response time of 10 to 15 seconds.
9 ASHRAE 1020 RP made extensive use of modular models of actuators and systems, but this approach has been
shown to require extensive training data in order to fit parametric component models
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and their disturbances, and creates a lower bound of roughly 1 minute on the building data

sampling rate needed for FDD.

If we follow the assumption that the PID control response occurs instantaneously, then

the outdoor air flow into the AHU under mixed air temperature control conditions follows

directly from the control sequence of operations. The results can be summarized in the following

set of relations, which were derived previously in chapter 3 of this thesis:

VOA-( MA,sp ~TRA) VSAfor TOA < TRA
TOA ~~ RA

Equation 5-3

VOA= 0.3 x VsA for TOA TRA

Equation 5-4

VSA x 0.3 5 VOA5 VSA

Equation 5-5

where VoAand VSAare the AHU's outdoor and supply air flow, respectively, measured in CFM.

TMA,sp, TOA, and TRA are the mixed air temperature set-point, outdoor air temperature, and return

air temperature, respectively, measured in degrees Fahrenheit.

Equation 5-2 and Equation 5-3 define the outdoor air flow into the AHU for a variety of

weather conditions. Equation 5-3 and Equation 5-4 follow from the physical constraint that the

minimum outdoor air flow cannot decrease below 30% of the supply air flow, because of the

outdoor air flow attributed to the minimum outdoor air dampers. Equation 5-4 also shows that

the maximum possible outdoor air flow is when the supply air delivers 100% outdoor air.
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We can use the prediction of outdoor air flow from Equation 5-2, Equation 5-3, and

Equation 5-4 in Equation 5-1, along with actual measurements of the supply air flow and other

temperatures to create a prediction of the thermal energy consumption of the AHU. The energy

in-efficiency of the AHU can then be inferred from the comparison of its predicted and measured

energy consumption. In the absence of CO 2 ventilation controls, Equation 5-2 and Equation 5-3

would suffice as a model to predict the outdoor air flow into the AHU as a function of weather;

AHUs 9 and 10, however require additional modeling constraints to accommodate their CO 2

based ventilation logic.

5.2.5.3 C02-based Ventilation Controls

The code snippet included in the previous section shows that the C0 2-based ventilation

control logic in AHUs 9 and 10 is a function of several possible CO 2 measurements. When any

one of those measurements exceeds a critical concentration threshold of 800 PPM, the AHU

controller will increase the outdoor flow in order to reduce all CO 2 concentration measurements

to below that threshold. Variations in outdoor air flow due to this control action are difficult to

model from first principles because the dynamic CO 2 concentrations in the building are a

function of the space geometries, ventilation rates, and real-time occupancy. We attempted to

model the impact of the C0 2-based ventilation logic on the AHU's outdoor air flow through a

steady state species balance across the spaces served by the AHUs.

The largest of the spaces served by AHUs 9 and 10 is the central atrium; it is seven

stories tall and has a floor seating area for roughly 50 occupants. Air-handler 9 also serves five

conference rooms, the largest of which seats roughly 70 occupants in 11,000 cubic feet while the

other four each seat another 25 occupants in 3,800 cubic feet. The atrium itself occupies roughly

450,000 cubic feet, half of which is ventilated by air-handler 9, and the other half by air-handler

10. The total space and maximum occupancy served by air-handler 9 is roughly 250,000 cubic

feet, and 220 people, respectively; our estimates of volume and occupancy were created by

inspecting the mechanical drawing set for the building, as well as onsite measurement of room

geometries and occupancy.
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The conference and class rooms served by air-handler 9 have a much larger ratio of

occupancy to air flow rate, and we expect that the CO2 measurements in those rooms, if

anywhere, are the most likely to exceed 800 PPM. This hypothesis is supported by the CO 2

sensor placement for AHU 9; of its six CO2 measurements, one CO 2 sensor exists in each of the

five rooms served by the AHU, while the remaining sensor exists in the return air ductwork

leading to the AHU's mixing box. Due to its size and low-occupancy, the atrium return air serves

to blend with and dilute the CO 2 concentration of the return air derived from the conference and

class rooms. As a result of that dilution we do not expect the total return air CO 2 measurement at

the air-handler to often yield a significant CO 2 ventilation control signal. Likewise, since the

atrium return air dilutes the total CO 2 concentration of the AHU's return air, it also helps to

reduce the CO 2 concentration in the recirculation air that is delivered back to the space. The total

CO2 concentration of the air-handler supply air is a function of the ratio between recirculation

and outdoor air flow rates, and their respective CO 2 concentrations.

The ventilation design engineers for MIT building 46 adhered to ASHRAE standard

62.2-2007 in order to specify the minimum fresh air ventilation rates that prevent the room air

CO 2 concentrations from exceeding 1,000 PPM. According to the ASHRAE standard, about 15

CFM of fresh air per occupant should be supplied to conference rooms and classrooms in order

to maintain comfortable indoor air quality; this rate is a blend of the per-person and per-square

foot fresh air ventilation ratings for an adult educational facility. At that rate, the minimum fresh

air ventilation for the large and small conference rooms that are served by air-handler 9 should

be roughly 1,050 CFM and 375 CFM, respectively. Upon examining the mechanical design

drawing set for the building as well as the individual conference rooms, we found that the design

flow rates for the large and small conference rooms was actually 4,200 CFM and 1,000 CFM,

respectively. The ratio of the minimum outdoor air ventilation specified by ASHRAE to the

actual design flow rates of the building suggests that the minimum outdoor air fraction for air

handler 9 is roughly .31; this matches our previous observation that the minimum outdoor air

dampers for AHU 9 occupy about 30% of the cross-sectional area of the AHU's outdoor air

intake duct, and hence they supply a minimum outdoor air fraction of roughly 0.3.
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The worst-case scenario for attaining high CO2 concentrations in the conference rooms is

when all of them are filled to their occupant capacity, assuming ideal mixing with no supply air

short circuiting to the room exhaust. This scenario results in the highest possible return air CO2

concentrations, and when counting recirculation air flow, the scenario also yields the highest

CO2 concentrations for the air that is supplied back to the rooms, per quantity of outdoor air

flow. We can create a steady-state model of room-level CO2 concentrations for this worst-case

scenario by performing a species balance for CO 2 around the air-handler, atrium and conference

rooms, and return air plenum:

Figure 36 Control volume analysis of C02 species balance around air-handler

Equation 5-6

The species balance around the air-handler relates the supply air CO2concentration to the

outdoor air and recirculation air CO2concentrations and flow rates, respectively.

Figure 37 control volume analysis of CO2 species balance around set of conference rooms
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Equation 5-7

We can lump all of the conference and class rooms together into a single element because

the worst case scenario requires that the all of those rooms be filled to their occupant capacity,

and all of the rooms are known to have the same design ratio of air flow to maximum occupancy.

Lumping all of the conference rooms together yields a single model component that relates the

supply air CO 2 concentration to the CO2 generated by the conference room occupants and the

CO2 concentration of the air leaving those conference rooms.

CL D-

Atrium -) 7n,

Figure 38 control volume analysis of C02 species balance around atrium

Equation 5-8

In a similar fashion, the atrium model also considers the CO 2 balance between the supply

air, return air and human occupants. In order to simplify the model and remove the influence of

AHU 10 on the CO 2 concentration of the atrium we will also assume here that AHU 9 provides

all of the fresh air ventilation to meet the needs of atrium occupants. This approximation can

yield an upper bracket on the impact of occupant derived CO 2 in the atrium if we expect the

return air CO 2 concentration from the office space served by AHU 10 to have a negligible CO2

contribution relative to that of the conference rooms. This is a reasonable assumption because the

conference rooms served by AHU 9 have a smaller ratio of outdoor air flow to occupants than

will the office space served by AHU 10, when the conference rooms are at their maximum

occupancy.
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Figure 39 control volume around mixing box plenum for atrium and conference room returns

Equation 5-9

The final component of the model is the plenum return where the return air from the

conference rooms is blended with the return air from the atrium to yield a total CO 2

concentration for the air that returns to the AHU.

The goal of this analysis is to identify combinations of supply and outdoor air flow rates

that yield CO2 concentrations in the conference rooms that exceed 800 PPM under the worst case

conditions of saturated room occupancy and room-level design flow rates (8200 CFM total). The

set of four equations from the model sub-components is cast with four unknown variables, Csa,
Cra, Cral, Cra2, or the supply, return, conference room return and atrium return air CO 2

concentrations, respectively.

The other parameters in the model include constants or derived values; we will assume

that the CO 2 output of a sedentary human, , is 0.00706 CFM, or roughly 200 mili-liters per

minute, and that the background outdoor air CO2 concentration is 380 ppm. Additional

assumptions include that the supply and return air flow to the conference rooms are equal to the

sum of the design air flows for all of the conference rooms, 8,200 CFM, and that the flow of air

to the atrium is equal to the total supply air flow rate minus the supply air flow rate to the

conference rooms. Combining these assumptions, parameters and equations yields the following
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linear system of equations that we can solve to find conference room CO 2 concentration as a

function of total supply and outdoor air flow rate:

VoaCoa + (Vsa - Voa)Cra - VsaCsa

Equation 5-10

VsalCral : VsaiCsa + fpCpp

Equation 5-11

(Vsa - Vsa1)Csa + fpeaople,aCpp = (Vsa - Vsal)Cra2

Equation 5-12

Vsa1Cra1 + (Vsa - Vsal)Cra2 : VsaCra

Equation 5-13

Re-arranging these linear equations into matrix form allows us to solve the set of

equations for any given pair of outdoor and supply air flows. Solving these equations for a range

of supply air flow rates, 15,000 to 50,000 and outdoor air fractions of 0.15 to 1.0 yields a set of

surface contours that define the worst-case CO2 concentration in the conference rooms for that

ordered pair:
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Figure 40 (upper graph) CO2 concentration contours per supply air flow and outdoor air fraction, and (lower graph)
critical curve between supply and outdoor air flow rate for a CO 2 concentration of 800 PPM. In both graphs a red-line

has been included to show the minimum outdoor air flow that is possible for the AHU

The upper graph in Figure 40 shows several contours for conference room CO2

concentrations under the worst case conditions prescribed in the model, and for various

combinations of AHU outdoor air fraction and supply air flow. The outdoor air fraction was used

as the ordinate in this graph in order to facilitate easier comparison against the minimum outdoor

air fraction for the AHU. The red line represents the minimum outdoor air fraction for the AHU,

and bisects the space into operating points that are possible and impossible; operating points to

the left of the line are impossible because the minimum outdoor air dampers physically prevent

the AHU's outdoor air fraction from decreasing below 0.3. The graph shows a small space of

operating points for outdoor air fractions between 0.3 and 0.37 and supply air flows between

10,000 and 12,000 CFM where under the worst case conditions of this model, the conference

room air CO 2 concentration may equal or exceed 800 PPM. The space of possible points that

satisfies this constraint grows larger as the supply air flow decreases, however it is not likely that
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the supply air flow would decrease far below 10,000 CFM given that the supply air fan has

name-plate capacity of 50,000 CFM and the conference rooms receive 8200 CFM. Even in cases

where the modeling assumptions made around the atrium and elsewhere were less accurate, it

appears that only a small space of typical operating conditions leads to ventilation control based

on CO2 concentrations. This may imply that the CO 2 based ventilation controls were intended

more as a safety feature in case laboratory animals were transported through the atrium or other

parts of the building.

The lower graph in Figure 40 shows the same information as the upper graph, but in

terms of outdoor and supply air flow rates instead of outdoor air fraction and supply air flow

rate; the blue curve represents the critical relationship between outdoor and supply air flow rates

that bisects the space of operating points according to whether they yield conference room air

CO 2 concentrations that exceed 800 PPM, or not. AHU operating points that exist on the blue

line yield conference room air CO 2 concentrations that equal 800 PPM, while operating points

above the blue line yield concentrations that are less than 800 PPM. The red line in that graph

represents the minimum outdoor air fraction for the AHU; operating points below the red line are

physically impossible due to the construction of the AHU. Once again we can see that only a

small region of operating points satisfies the constraint on minimum outdoor air fraction and

exist below the critical threshold to yield undesirable conference room air CO2 concentrations.

The blue line in the lower graph of figure 40 can be analytically determined by setting the

conference room CO 2 concentration, Cral, to 800 ppm and solving the set of equations for the

outside air flow as a function of the supply air flow:

5775 * 9sa
5775 + VsA

Equation 5-14

For any given supply air flow rate, Equation 5-14 yields the critical outdoor air flow rate

at which the conference room CO 2 concentration reaches 800 ppm; below this critical outdoor air

flow rate the conference room CO 2 concentration will increase steadily beyond 800 PPM or even
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grow without bound. For example, if all of the conference rooms are occupied at full capacity

and the supply air flow is slightly less than half of its maximum rating at 20,000 CFM, then the

outdoor flow rate must be at least 4,481 CFM, or 22% outdoor air fraction in order to maintain

conference room CO 2 concentrations below 800 PPM. If the conference rooms are not fully

occupied, or the supply air flow rate is less than its full capacity, then the outdoor air flow rate

can be less than 4,481 CFM and still maintain conference room CO 2 levels below 800 PPM.

The documented sequence of operations for AHUs 9 and 10 specifies that the minimum

outdoor air flow rate for periods where the CO 2 concentration signal achieves 800 PPM shall be

20,000 CFM, and that the outdoor air flow rate is supposed to increase from that value

proportionally as the CO2 concentration signal exceeds 800 PPM. Our investigation into the

AHU controller programming, however, shows that the CO 2 control logic cannot directly

influence the outdoor air flow rate but instead can only drive the outside air dampers to a more

fully opened position. This means that at best the CO 2 control logic could drive the outdoor air

fraction to unity and cause the AHU to supply the building with 100% outdoor air. While the

implemented CO 2 control logic does not necessarily satisfy the claims written in the sequence of

operations, our worst-case scenario model suggests that those written requirements are in fact

excessive and unnecessary. Our model shows that even with low supply air flow rates there

exists only a small space of supply and outdoor air operating points that can trigger the CO 2

control logic. Even then, that space of points only exists under worst case conditions and they

can often be avoided without using more than 10,000 CFM of outdoor air flow. In the event that

those conditions are satisfied, however, we have also generated a mathematical model of room

air CO2 concentration to help reform our predictions of outdoor air fraction under those

circumstances.

5.2.5.4 Summary of Model for AHU Energy Measurement and Prediction

The thermal energy consumption of our experimental VAV AHUs is given by Equation

5-1, which is reproduced here for convenience of presentation:
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TEAHU - hOA(hOA - hRc) + rhsA(hRC - hSA)

We can estimate the actual thermal energy consumption of a VAV AHU by evaluating

Equation 5-1 with measurements of outdoor and supply air mass flow rates, and their

corresponding outdoor, return and supply air enthalpies. We can also use the control logic, and

weather and building conditions to predict the ideal AHU outdoor air flow rate. The mixed air

temperature controls and C0 2-based ventilation controls yield the following set of relationships

to predict the ideal outdoor air flow rate for AHU 9 in MIT building 46:

VOA- (TMAsp-TRA ) VSA fOr TOA < TRA
TOA ~ RA

Equation 5-15

VOA= 0.3 x VSA for TOA TRA

Equation 5-16

VSA x 0.3 VOA VSA

Equation 5-17

5775 * VsA

5775 + VSA

Equation 5-18

if VOA< VoA,crit, then VOA= VOA,crit

Equation 5-19

Based on the model derived in the ventilation control section, we expect these

relationships to hold over the majority of the AHU's operation. Equation 5-18 defines a critical

relationship between outdoor and supply air flow for AHU 9 that demarcates operating

conditions which under worst case conditions could lead to air CO 2 concentrations that exceed

800 PPM. Equation 5-19 integrates that critical relationship into the overall model of outdoor air

flow for the AHU simply by requiring that the AHU's outdoor air flow never decrease below the

critical outdoor air flow. This approach to combining the ventilation models rests on the

assumption that the instantaneous PID loop response to the CO2 ventilation signal would prevent
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the outdoor air flow from ever decreasing below the critical outdoor air flow. We also assume

that the control response to the CO 2 ventilation signal will not force the outdoor air to flow be

very different from what would otherwise be predicted by the mixed air temperature control.

These assumptions are based on the conclusions drawn from the worst case scenario model

which suggested that the C0 2-based ventilation control would only have a significant presence at

very low outdoor air fractions and supply air flow rates. Even in those situations, the model

suggests that that increased demand for outdoor air flow in order to satisfy CO 2 conditions would

not far exceed the demands for outdoor air flow placed by the mixed air temperature control.

Having combined the ventilation and mixed air temperature controls to yield a uniform

prediction of AHU outdoor air flow, we can now use equation 1 to yield an estimate of the ideal

thermal energy consumption of AHU 9.

5.3 FDD System

The detection of faults in AHUs 9 and 10 follow from the model describing outdoor air

flow of the AHUs combined with the uncertainty analysis presented in the previous chapter. The

Taylor expansion for propagating experimental uncertainty was used with the AHU models to

estimate parameters for the distribution of AHU thermal energy consumption.

Energy consumption parameter distributions estimates were made on both the predicted

and measured operation of the AHUs. In addition to statistical tests on the homogeneity of

energy measurement and prediction populations, we also created a series of expert rules to detect

and diagnose the presence of equipment faults within those populations.

5.3.1 FDD Expert Rules

We used FDD expert rules to target the detection and diagnosis of two principle AHU

pathologies in our experiments: simultaneous heating and cooling, and imbalanced air flows. We
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chose those faults because of their known prevalence within the commercial building stock, and

their typically large impact on energy consumption and indoor air quality.

We evaluated the presence of simultaneous heating and cooling by computing the

average probability that the heating and cooling coils may both be active at the same time:

PSimHC = (P (-tisAAhhc > 003 P 7hSAAhcc > 0.03
QHC I c CC

Equation 5-20

where QHC and Qcc refer to the capacity of the heating and cooling coils, respectively. The

probability of either the heating or cooling coil being active is given by the probability that the

heating or cooling enthalpy exchange for the AHU, when scaled by its respective coil capacity,

exceeds 0.03. The threshold of 0.03 was chosen based on our experience that 3% of a heating or

cooling coil's capacity defines the start of meaningful heat transfer between the working fluids of

a heat exchanger. The probability computations use the mean and standard deviation of the

population that are defined in chapter 4 according to the Taylor expansion for propagating

experimental uncertainty, as well as the underlying assumption that all experimental populations

follow a normal distribution. Assuming that the probabilities of coil operation are independent,

then the mean product of those probabilities is found for an arbitrary evaluation time series, and

reported as a gross indicator of whether simultaneous heating and cooling occurred in that time

interval. The advantage of our approach to FDD expert rules relative to the prior art is that it

embraces and propagates the uncertainty of measurements and models, and automatically scales

to the size of the AHU equipment.

In order to detect air flow directions that do not match the expected orientations of intake

and exhaust on the equipment, we estimated the AHU supply air flow rate from the other three

air flow measurements made about the AHU, and then compared that estimate of the supply air

flow rate against its actual measurement value; the probability of flow reversals was calculated in

a similar fashion to how we calculated the probability of heating and cooling coil activity.
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SA- VRA - VEA + OA

Equation 5-21

VSA ~ VSA )
PImbaiance = (P VSA A 0.05

( SA,max

Equation 5-22

The supply air flow rate estimated from the other flow measurements made about the

AHU is defined as V*A, and is measured in CFM; the nameplate rating of the supply air flow is

designated as VsAmax and is also measured in CFM. The threshold of 0.05 was chosen based on

our expert experience that deviations between measured and expected supply air flow rates are

meaningful when they exceed 5% of the rated capacity of the supply fan. Once again, this

probabilistic form of expert rules is advantageous because it automatically scales to the size of

the AHU.

In both cases of expert rules, the result is always a number between 0 and 1, which

provides a convenient standard for communicating the urgency of a fault. For example we could

raise fault alarms for all faults whose probability of existence exceeds 75%, or some other user

defined criteria. Within this framework, text-based inference or diagnosis of fault signals can

also be based on the strength or magnitude of the probability estimate relative to unity. Beyond

text-based inference, the interpretation of these expert rules is also uniform; the numerical result

is always the average probability that a condition is satisfied or exceeded over the prescribed

time interval.

5.3.2 FDD Financial Estimates

Our approach to assigning financial value to fault signals is based on user-defined

parameters for financial investments. Using appropriate conversion factors between energy

values and energy unit-costs, we can compute the value of discrepancies between the predictions

and measurements of AHU energy consumption, and also the probability that the value of those

discrepancies exceeds user defined investment goals:
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Equation 5-23

where is the user-defined financial criteria, is the distribution of measured energy

consumption, is the distribution of predicted energy consumption, and is the critical

energy quantity that corresponds to the user defined financial criteria. Using this probabilistic

format we can communicate the value of divergent AHU behavior in terms of the odds that

correcting that behavior can yield a certain financial return.

5.3.3 Fault Experiment Program

Several different AHU faults were planned and executed on AHU 9 in MIT building 46

during our research. Hardware faults were selected for our experiments based on their ease of

implementation, ability to not cause irreparable damage to the AHU, low risk of generating

occupant hazards, and their prevalence in buildings.

Figure 41 Picture of an AHU mixing box that is suffering from broken damper linkages, rusted open dampers, and
disconnected pneumatic actuators. The picture was taken during a tour of 14 AHUs across the MIT campus; we observed

similar pathologies in a number of AHUs across the campus.
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The practical constraints of imposing mechanical faults on an otherwise properly

functioning AHU led us to focus on mixing box mechanical faults. In particular, the MIT

facilities department was comfortable with our tampering with the damper linkages and actuators

for the outdoor and recirculation dampers in the mixing box of AHU 9 in MIT building 46. We

were also interested in tampering with the AHU's mixed air temperature sensor and heating coil

valve in order to simulate the effects of other common AHU pathologies, but MIT was not as

comfortable with our imposing those types of mechanical faults on their equipment.

Figure 42 Interior picture of the mixing box for AHU 9, showing the outdoor and recirculation air dampers, and their
corresponding actuators, and actuator linkages.

A wide variety of AHU mixing box pathologies were represented in our research by

disengaging the damper linkages between the outdoor and recirculation air dampers and

actuators, and the pneumatic supply lines to those same damper actuators. Broken damper

linkages and malfunctioning pneumatic actuators can result from a number of AHU issues,

ranging from ageing and natural degradation of equipment, to spontaneous mechanical failures

or accidents during routine maintenance.
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By removing the pneumatic supply pressure to the damper actuators, the recirculation and

outdoor air dampers defaulted to their fully open and closed positions, respectively. This type of

reaction is representative of mechanical faults that yield dampers stuck in certain positions; the

potential impact of such faults was explored earlier in chapter 3. The outdoor and recirculation

dampers also possessed multiple sets of linkages to their respective actuators; by incrementally

removing those linkages we were able to test different levels of fault severity for leaking and

broken dampers. Once the damper linkages were removed, the dampers could also be manually

positioned to any particular starting orientation; over time, however, the orientation of free

floating dampers was a function of the air flow over them.

Figure 43 Cascade of mixing box images and close-up pictures of fault implementations; the lower left picture shows the
disconection and capping of the pneumatic supply to the outdoor and recirculation dampers at the pneumatic supply

manifold for the AHU. The lower right picture shows the removal of a linkage between the outdoor air damper and its
actuator.

To compensate for our limited ability to apply diverse hardware faults on the AHU, we

also altered the control system software programming to simulate pathologies that could not be
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rendered physically. In particular, we altered the damper control programming to eliminate the

mixed air temperature control and C0 2-based ventilation control; the changes in software led to

periods of heating and cooling that would have otherwise not occurred.

1 If CO2Mode = On then
2 OutsideAirFloSe = Ratio.Fn(CO2Signal, 0, 1, OutsideAirFloMin, SupAirFlow)
3 If TrainingSwitch = On then
4 If (Timeofday >= 7:00am & Timeofday < 1:00pm) then
5 MixAirDmpSignal = (1 / 35) * ((Hour - 7) * (60 / Mint) + floor(Minute / Mint))
6 Endif
7 If (Timeofday >= 1:00pm & Timeofday < 7:00pm) then
8 MixAirDmpSignal = I - (1 / 35) * ((Hour - 13) * (60 / Mint) + floor(Minute / Mint))
9 Endif
10 If (Timeofday < 7:00am ! Timeofday >= 7:00pm) then
11 MixAirDmpSignal = maximum(MixAirTeSignal, OutsideAirFloSig)
12 Endif
13 Else
14 MixAirDmpSignal = maximum(MixAirTeSignal, OutsideAirFloSig)
15 Endif
16 Else

10

The software code changes were made to the same snippet of code that was shown earlier

in this chapter. Instead of allowing the dampers to be controlled by the MixAirTeSignal or

OutsideAirFloSig as indicated in the original code, we modified the program to cycle the damper

positions as a function of time for a certain period of the day. In particular, our software

modification forced the MixAirDmpSignal to follow a linear ramp from 0 to 1, in 15 minute

increments, starting at 0 at 7:00 am and ending at 1 at 1:00 pm. Following that positive ramp, we

also forced the MixAirDmpSignal to ramp back down to 0 in the same 15 increments, starting at

1 at 1:00 pm, and ending at 0 at 7:00 pm. Outside of the hours of 7:00 am to 7:00 pm, the

MixAirDmpSignal was allowed to follow its nominal control programming. In addition to

causing unnecessary periods of heating and cooling (which was desired as a fault characteristic),

the new code also facilitated our commissioning of damper actuation and air flow measurements.

10 Code snippet taken from a program entitled "AHMisc.Pr" on the controller for AHU 9 in MIT building 46
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These hardware and software faults were applied intermittently over a period of three months,

from January 2010 through March 2010. The FDD system was operational over that time period

and was used to detect and evaluate the impact of those faults. The results of the FDD system

were presented to several different members of MIT's repair and maintenance and project

engineering staff in order to ascertain how MIT could actually use our FDD system to help

improve the energy efficiency of buildings across the campus.

5.4 AHUs 2 and 3 in MIT Building 56, and AHU 2 in MIT Building 16

The other three AHUs involved in our experiment belonged to MIT buildings 16 and 56;

these two buildings are adjoining and to an onlooker unfamiliar with MIT's buildings, they

appear as one large building. Together, the buildings include seven above-ground floors with

approximately 100,000 square feet of laboratory, teaching and office spaces. The bottom two

floors of the building include classrooms and computer rooms, while the remaining above-

ground floors are replete with biological laboratories and office space. The basement and sub-

basement levels of the building include a chemical hardware stock room, offices, and mechanical

rooms.

5.4.1 Physical Characteristics

AHU 2 in MIT building 16 is one of the largest AHUs on campus, with a rated supply air

capacity of 100,000 CFM. AHUs 2 and 3 in MIT building 56 are much smaller in scale, each

with a rated supply air capacity of 10,000 CFM. All three of these AHUs are dedicated outdoor

air systems, meaning that they only condition and supply 100% outdoor air to the building.
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Figure 44 Schematic diagram of AHU 2 in MIT building 16; the image is a screenshot from the building control system
interface to the AHU

A schematic diagram of AHU 2 in MIT building 16 is shown in Figure 44; the image in

the figure shows that the AHU has two supply air fans, and a unique heating coil arrangement

that involves coil-face bypass dampers. The supply air fans in this particular AHU have a

constant rotational speed however the discharge air flow rate from the AHU can be modulated by

the orientation of directional vanes; the vanes are not shown on the schematic in Figure 44,

however they exist at the entrance to the fan-portion of the AHU, and they control the pressure

drop of air entering the fans. This particular method of modulating air-flow is less energy

efficient than using variable frequency drives, which are used in the AHUs in MIT building 46.

The percent turn down of the control vanes for both supply air fans can be read directly from the
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image of the equipment control interface that is in Figure 44. Likewise, the supply air flow rate

of each fan is also measured and presented in the equipment control interface.

The heating coil for this AHU design integrates a face-bypass damper system with steam

heating coils in order to better regulate how much heat is injected into the outdoor air intake

stream. While the schematic in Figure 44 shows the bypass dampers and steam heating coils as

portions of separated ductwork, in reality the two pieces of equipment are integrated within the

same flow path. The bypass dampers articulate between vertical, cylindrical-finned steam

heating elements in a clam-shell-like fashion; by opening and closing, the bypass dampers alter

how much air is forced across a cylindrical steam heating element rather than around it.

Fortunately, the building control system includes a temperature sensor at the inlet and discharge

of the steam heating section which allows us to measure the total change in air temperature

across the heating-portion of the AHU. The cooling coil of the AHU is a conventional chilled

water coil like the ones encountered in MIT building 46. The discharge temperature of air from

both coils is included in the equipment interface, as well as the commanded percent opening of

their respective control valves, and the commanded percent opening of the steam heat bypass

dampers.
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Figure 45 Schematic diagram of AHU 2 in MIT building 56; the image is a screenshot from the building control system
interface to the AHU

AHUs 2 and 3 in MIT building 56 are of identical designs, and a schematic of their

equipment is shown in the control interface screenshot in Figure 45. Similar to AHU 2 in MIT

building 16, AHUs 2 and 3 in MIT building 56 have a set of coil-face bypass dampers that are

integrated with their steam heating coil. Unlike the former AHU however, AHUs 2 and 3 in MIT

building 56 only have one supply fan each, whose rotational rate is controlled by a variable

frequency drive.

5.4.2 Relevant Controls Programming
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The relevant controls programming for these three test AHUs is straightforward; the

heating and cooling coils are controlled to maintain a supply air temperature of 55 "F. Ideally this

would translate to either minimum heating or cooling energy expenditure in order to modulate

the raw outdoor air temperature to meet the supply air discharge temperature set-point. The

heating enthalpy exchange of these AHUs with their outdoor air flows is controlled both by the

percent opening of their heating coil face-bypass dampers, as well as the position of the heating

coil valve. Similar to AHUs 9 and 10 in MIT building 46, the supply air flow rates of these

additional test AHUs is controlled by the static duct pressure and static duct pressure set-point

for the equipment; this is the conventional control algorithm for VAV AHUs.

5.4.3 Instrumentation and Data Acquisition

The AHU measurements that are relevant to computing the thermal energy consumption

of each of these AHUs include their total supply air flow rate, outdoor air temperature and

humidity, and coil discharge temperatures. The discharge air humidity for these AHUs is not

measured which implies that we cannot compute the change in water content from the outdoor

air intake to the supply air discharge; this limits the computation of dry air enthalpy to only the

sensible heat contribution.

All of the data used for performing FDD on these three AHUs was ultimately derived

from the Schneider Electric building control system, however, a historical data set from 2009

was included in our analysis as well as current data from our experimental research period,

January 2010 through March 2010. The historical data set was provided by Cimetrics Inc., who

collected the data in 2009 from the Schneider Electric building control system in order to provide

MIT with FDD services on those same AHUs. Our data collection during the research period was

performed in the same exact fashion as was executed for AHUs 9 and 10 in MIT building 46.

5.4.4 Commissioning
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Commissioning of these AHUs largely followed from examination of the FDD reports

that Cimetrics Inc. had provided to MIT in 2009 during their analysis and inspection of the

AHUs. Our discussion with MIT facilities revealed that no new work had been performed on

those AHUs following the FDD work done by Cimetrics, and we therefore assumed that the

instrumentation and equipment was already qualified for use in our analysis. The historical data

collected from Cimetrics about those AHUs was identically used in Cimetrics' analysis and

hence we assumed that it was suitable for our use as well. To be certain of their current state,

however, temperature and air flow data collected from those AHUs during our experimental

period was manually inspected for any gross anomalies or inaccuracies.

5.4.5 AHU Models

The thermal energy models for these three AHUs are nearly identical and straightforward

to derive from a control volume analysis since the AHUs are dedicated outdoor air systems

(DOAs):

TEDOAsAHU = rnSA(hSA - hoA)

Equation 5-24

where mSA is the total supply air flow rate, measured in CFM, and hsA and hoA are the

enthalpy of the supply and outdoor air conditions, respectively, measured in BTUs per pound of

dry air. The only difference amongst these three AHUs is that AHU 2 in MIT building 16 has

two supply air fans whose independent supply air flow rates must be summed to yield the total

AHU supply air flow; the other two AHUs each have a single supply air fan whose flow is

identically the AHU's supply air flow rate.

5.4.6 FDD System

The specific FDD goal for these three AHUs was to identify and evaluate periods in

which they exhibited simultaneous heating and cooling. This target was chosen because

Cimetrics had already identified and evaluated the extent of simultaneous heating and cooling
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that was occurring in these AHUs in 2009, and we wanted to verify that our FDD system could

at least reproduce the results of Cimetrics' analysis using their historical data. Since MIT

facilities had not yet corrected the simultaneous heating and cooling that was known to exist in

those AHUs, we also wanted to make sure that our FDD system could still identify and evaluate

those same problems with data drawn during our experimental period. Finally, in order to test the

ability of our expert rules to generalize across equipment types, we applied the exact same expert

rule used to identify simultaneous heating and cooling in AHU 9 in MIT building 46 to the test

AHUs in MIT buildings 16 and 56. The financial implications of simultaneous heating and

cooling in these three test AHUs was also evaluated in the same fashion as it was for the other

test AHU.

5.5 Summary of Experimental Setup

We tested our FDD system on several different faults in five separate AHUs that

represent three different AHU equipment designs. Our specific FDD expert rules and financial

analysis are cast in a probabilistic and dimensionless framework, which, despite their reliance on

an expert's choice of thresholds, may still generalize across equipment typologies and size.

Prominent equipment faults such as simultaneous heating and cooling were tested in both current

and historical data sets, portions of which were already labeled with existing fault diagnoses. The

results of these experiments are included in the next chapter and address the efficacy of our fault

detection system both from an absolute perspective for faults that we purposefully implemented

on equipment, and a relative perspective for faults that had already been identified by another

FDD service.

6 Results
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6.1 Introduction:

Experimental results are presented in this chapter as screenshots of the output from the

FD&E system that was developed to identify faults on the MIT campus. The results are

presented in this fashion in order to underscore the research effort put into designing how

technical information is communicated through the software's user-interface to less technical

users of that software. Presenting the results as part of the FD&E system output also facilitates a

discussion on how technical features of the analysis correspond to specific elements in the user-

interface. Feedback from MIT facilities personnel on the software interface and design features is

also included at the end of this chapter.

6.2 FD&E Software

6.2.1 Software architecture and setup at MIT

The architecture of the FD&E software developed in this thesis reflects the interactive

components that are needed in order to collect, store, analyze and report on building data; figure

1 illustrates those components and their integration into the software architecture.
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Figure 46 Schematic of the software architecture that underpins the FD&E system developed in this thesis

A class library was created to manage data acquisition from diverse data sources at

multiple levels of the OSI network model of communications (69), including ODBC data source

objects, web-services, TCP/IP sockets, and web-page scraping. A large database written in SQL

was used to store data collected from the network and coordinate interaction between the other

elements in the architecture. Additional class libraries were written in MATLAB to define

equipment and point-measurement objects, as well as constructors for assembling equipment

analysis. Finally, the user-interface was written in ASP.net in order to provide a fully web-based

application.

Setting up this system to run at MIT required several additional pieces of information:

e Unit costs for heating and cooling energy
e Targeted dollar value of annual pay-back on correcting faults detected
* Roster of equipment and points to be monitored

The previous chapter explained in greater detail the efforts taken to model and

commission equipment and measurement points once they were chosen for monitoring. MIT

facilities provided blended heating and cooling costs of $1.50 per therm of heating and $0.13 per

TON-hour of cooling; these values reflect the extensive co-generation and multi-plant utility

164

..... ...... .I~. _ .- ...... ....... ....................... : ::: ::: :::_ ;:::::::-

Classes and types of

measurement points',

e qui pment, an d

analysis. Database for
users, buildings,

points, and inference



system that exists on the campus. Conversations with MIT facilities personnel also suggested

that the software target the detection of faults that if corrected, could yield an annual savings of

$10,000 or more.

6.2.2 Software interface

The FD&E software interface employs a variety of features that communicate the results

of data analysis according to user defined fault detection settings. One approach is a zero-to-ten

ranking system, or energy prioritization, of the results of energy inefficiency analyses. The zero-

to-ten ranking is calculated for energy inefficiency analyses by multiplying the number 10 and

the probability that the dollar value of any detected inefficiencies exceeds the annual payback

target. For analyses that do not forecast losses over the entire year but instead compute the dollar

value of detected inefficiencies over a specific time interval, the energy priority of those results

is found by multiplying ten and the probability that the dollar value of inefficiencies in that time

interval equals or exceeds the annual target, proportionally reduced to that time interval. For

example, an analysis may find that there is a 20% probability that an AHU wastes $5,000 or

more over a 4 week period due to simultaneous heating and cooling. The targeted annual

payback of correcting faults detected is $10,000, but over a 4-week period that target is

proportionally reduced to roughly $770. In this case, the probability that the dollar value of the

identified AHU inefficiency over a 4 week period exceeds $770 is very close to unity;

multiplying the probability by ten yields an energy priority of roughly 10; the highest possible

priority. A possible future improvement to the prioritization of energy loss estimates over

arbitrary time intervals is to extrapolate the results of that time interval over an entire year via

regression on weather parameters such as degree days or outdoor air temperature. Not all energy

analysis may lend themselves to such extrapolation and so the simpler approach described above

was taken in the current software development.

But there are many more things that can go wrong with a building than just energy

inefficiency, and so the software includes other prioritization systems for maintenance issues and

occupant health and safety issues. In this case, the maintenance prioritization system currently

reports the product of the number ten and the probability that certain maintenance conditions are
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met by the equipment. For example if the expert rule for simultaneous heating and cooling

identifies the probability of simultaneous heating and cooling over an interval as 0.88, then the

maintenance priority for that analysis over that time interval is 8.80. This design for a

maintenance priority system is very rudimentary and does not consider the costs of maintenance

or other factors that maintenance personnel would use for prioritization. The presentation of

maintenance priorities in the current version of the software is meant primarily to illustrate the

concept of forming maintenance priorities as a means of sorting monitoring data. Likewise, the

occupant health and safety prioritization system was not developed as part of this thesis, but was

included as a place holder to illustrate that such a system should also be used to sort monitoring

data.

Figure 47 includes a screenshot of the software interface that reveals some of the features

discussed above.

Equipment Information:

Equipment Name: M16-AHU-02

EquipmentType: DOA2coilDualFan

Choose a timeframe, and/or change dates, and click "Get New Data":

r Single Day

r Seven Day

r Calendar Month

Anlsis Open CloseDat Date
Close Date 05/07/09

The average chance of simultaneous heating and cooling is

Notes 100.00%. There is a 20% chance that you wasted $ 5993.89
or more.

Energy Priority 10.00
Comfort/Health Not Specified
Prorty
Maintenance 10.00
[priority

Figure 47 Screenshot of the software interface, showing features that link the underlying analysis to user defined settings
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The screenshot in Figure 47 shows two elements of the interface; in the background is the

main page of the interface that includes a spreadsheet-like report for a roster of analyses

performed over a specific date range, and in the foreground is a pop-up window showing the

detailed results for a specific analysis performed over a particular date range. The main page

allows users to navigate lists of faults detected over monthly, weekly, or daily date ranges, sorted

by energy, maintenance or health and safety priorities. The pop up window shows the same

information that is included in each row of the spreadsheet, but only for one date range of

analysis (one row of the spreadsheet). The name of the analysis performed is included in both

interfaces, as is the starting and closing date for the analysis; Figure 47 includes a pop up

window for the analysis "DOASDualFan2Coil", which, as the name implies, is for dedicated

outdoor air system that have two fans and two coils.

The "notes" section of the interface includes text that is automatically generated by the

software to help users interpret the results of analysis. In the case shown in Figure 47, the

software has identified that the probability of simultaneous heating and cooling over that date

range is 100%. The analysis also reports that there is a 20% chance that the equipment has

wasted almost $6,000 over that date range; this is the upper tail of the distribution of dollar losses

attributed to the inefficiency of the equipment. Below the notes section are the priority rankings

of the results; the energy priority is a ten because the dollar value of the inefficiencies detected

has a high likelihood of exceeding the targeted annual payback. Below that, the maintenance

priority is also a ten because the probability of simultaneous heating and cooling is 100%. While

the software does not diagnose the cause of the simultaneous heating and cooling, it does notify

system users that the condition exists and that it has a high priority ranking; it is up to the system

user to decide whether or not there is sufficient motivation to further investigate the possible

fault. The graphs included in the foreground of the screenshot in Figure 47 are included as a

visual aid to help users better interpret the analysis results and perhaps diagnose the specific

origin of the possible fault. The features of those graphs will be discussed in the following

sections as part of the broader presentation of experimental results.
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6.3 Experiments in Building 46: AHUs 9 and 10

The previous chapter discussed an experimentation program in AHU 9 of MIT building

46 that included the purposeful application of software and hardware faults on the AHU. The

hardware mechanical faults applied to AHU 9 included removal of the pneumatic supply

pressure to the AHU's recirculation and outdoor air dampers, as well as removal of the damper

linkages between those dampers and their actuators. The software fault on the AHU included a

change in control programming to drive the mixing box damper signal as a function of time

instead of its nominal dependence on CO2 concentration in the building or mixed air temperature

in the mixing box. These purposeful faults as well as other inherent faults of the equipment were

all identified and evaluated by the software. None of the faults on AHU 9 were found to have

significant financial value relative to MIT's targeted annual payback of correcting faults

detected, however they do illustrate the ability of the software to detect and prioritize various

faults.

6.3.1 Results from MIT Building 46

Figure 48 shows a close up view of the software pop-up screen that facilitates inspection

of the energy efficiency analysis results for AHU 9. The upper graph in the figure shows the

measured and predicted heating activity of the AHU's heating coil while the lower graph shows

the measured and predicted activity of the AHU's cooling coil; measured activity is shown in

black, while predicted activity is shown in red. Predictions on AHU performance are not

forecasts of operation, but instead are the model-based idealized performance of the AHU for the

given weather and operating conditions of the building over the date range of analysis.

The heating and cooling activity of the AHU, whether predicted or measured, are each

shown as three lines in Figure 48; the dashed outer lines represent a normally distributed 95%

confidence interval about the solid center line. For the graphs in Figure 48, the red, prediction

curves more clearly show this banded structure than do the black lines for measured operation. In
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this case the distribution on the predicted heating and cooling activity of the AHU is wider than

the distribution of measured activity.

Comparison between predicted and measured heating power
for MIT Building 46 on unit M46-AHU-09

4- - measured

-predicted
2-

0 I

oWV JArm Ju2 aId Jul Jul26s JaV27 Jul2 Jul29
Time

Comparison between predicted and measured cooling power
for MIT Building 46 on unit M46-AHU-09

4. -measured

= . -predicted

~1 0 0

o J 2 Ja Ja24 JlA J 6 JalJa27 Jsn
Time

Analysis AHUactualVidealfnergyl
Open Date 01/22/10
Close Date 01/29/10

Notes No significant sins of simukaneous heating and cooling.There
is a 20% chance that you wasted $ 26.06 or more.

Energy Priority 0.00
Comfort/Health
Prifort Not SpecifiedPriority

Minrtence Not Specified
Priority___________________ 

___

Figure 48 Close up view of the software pop-up screen that facilitates closer inspection of analyzed equipment
performance; this particular view is for AHU 9 in MIT building 46, for a period when the damper pneumatic pressure

supply was removed and the damper control programming was altered.

The vertical axis of both the heating and cooling coil performance graphs are

dimensionless percentages of the corresponding heating or cooling coil capacity rates. This

follows from the dimensionless expert rules defined in chapter 5; the results of analysis are

presented in this dimensionless form so that they can be interpreted relative to the scale of the

equipment under scrutiny. For example, the upper graph in figure 48 shows the peak heating coil

activity as roughly 3% of the heating coil's rated capacity, Ix 106 BTUs per hour; numerically

this is equivalent to 30,000 BTUs per hour, which seems like a large amount of heat exchange,
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but clearly within the context of this equipment it is rather small. Likewise, the peak cooling rate

shown in the lower graph of figure 3 is about 2% of the cooling coil's rated capacity; again

numerically this is equivalent to about 3 tons of cooling, or roughly the peak cooling power

needed by a typical New England family home in the summer time, but within the context of this

equipment it is rather small.

From January 22 ", 2010, through January 26 th, 2010, the control programming for the

damper control signal in AHU 9 was altered to vary as a function of time rather than its nominal

mixed air temperature or CO 2 concentration based control. The effects of that software change

are evident in both the heating and cooling graphs shown in figure 48; the rise and fall of the

cooling and heating power during that period follow the opening and closing of the mixing box
thdampers. Mid-day on January 26 , the damper control signal was restored to its nominal

operation and the pneumatic supply pressure was removed from the recirculation and outdoor air

dampers.

In the absence of supply pressure, the recirculation and outdoor air dampers go to their

nominally fully closed and open positions; these are default values driven by fire safety

standards. The inoperable dampers force the AHU to imbibe more cold air than it would do so

otherwise on a January day, causing the measured heating coil operation to exceed its ideal

predicted behavior; this response is shown in the top graph of Figure 48 starting at mid-day on

January 2 6 th. Despite their manifestation within the analysis results, the software calculates that

very little financial loss is incurred by these faults; there is only a 20% chance that the faults

incurred financial damages of $26.06 or more, and consequently the energy priority is 0.00.

For heating and cooling enthalpy exchange between 0 and 2% shown in Figure 48, the

confidence interval of the predicted heating and cooling enthalpy exchange of the AHU often

exceeds the confidence interval of the measured heating and cooling enthalpy exchange. This

exemplifies a limitation of the modeling and inference approach taken in this thesis; at lower

levels of enthalpy exchange, the predictions about AHU energy consumption become more

uncertain. For example, on January 25th in the upper graph of Figure 48, the dotted red-line,

which signifies the confidence interval of prediction, clearly exceeds the measured quantity of
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heating enthalpy exchange. This effect of increased predictive uncertainty at low levels of

enthalpy exchange was found in many other results from the FD&E systems, and is most likely

due to the uncertainty associated with predictions on the outside air flow required by the AHU.

The uncertainty of outdoor air flow predictions, especially for AHU 9 in building 46 may be

large under certain flow conditions due to the possible influence of CO 2 based ventilation (see

the related discussion in the preceding chapter). Despite the increased uncertainty of prediction,

and hence reduced ability to detect faults at low enthalpy exchange rates, the usefulness of the

FD&E system appears intact as the measured enthalpy exchange increases to more meaningful

levels. Results for Buildings 16 and 56 presented later on in this chapter explore this effect at the

opposite extreme with growing uncertainties at very large measured values of enthalpy

exchange.
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Figure 49 Results screenshot for analysis on air-flows across AHU 9 in MIT Building 46

Like the energy analysis, the results of air-flow analysis are also presented in terms of a

dimensionless percentage of the supply air flow rating; that new graph is shown in Figure 49.

The automated text output for the airflow analysis includes commentary on the relative

magnitudes of some of the flows and inference on any anomalous flow behavior. The text

highlights that the supply air flow rate is on average only 30% of the rated capacity of supply air

fan; this is included to help diagnostic engineers understand the turn down ratio of the variable

frequency drive on the fan. The graph and text also point out that the return air flow is much

larger than the supply air flow; this is immediately surprising since AHUs are typically designed

to intake less return air than they supply to a space. Finally, the supply air flow rate that is

computed from the air flow balance equation in chapter 5 was compared against its measured
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value in order to highlight potential discrepancies in the measurement of air flows relative to the

model describing them (most notably discrepancies in the assignment of flow direction).

Discussions with the building technician for MIT building 46 revealed that the excessive

return air flow to the AHU could be attributed to leaking fire dampers in the basement of the

building. Other phenomena visible in the graph were harder to explain and required more

investigation. For example, from 7:00 a.m. to 9:00 a.m. and again from 4:00 pm to 6:00 pm, the

outdoor air flow (shown in black) appeared to exceed the exhaust air flow (shown in green), and

as one of those flows increased, the other would decrease. This is an intriguing result because

conservation of mass across the AHU prohibits the exhaust air flow from decreasing while the

outdoor air flow increases, and the return and supply air flows remain constant. On the contrary,

conservation of mass requires that the flows follow the dynamic behavior exhibited by the AHU

flows from about 11:00 am to 3:00 pm on January 23d ; the exhaust and outdoor air flows should

increase and decrease together while the return and supply air flows remain constant.

The entire timeframe over which the exhaust and outdoor air flows exhibited their

oscillatory behavior coincides with the time frame when the altered control logic (software fault)

took control of the dampers. In fact, the period of time when the outdoor air flow exceeded the

exhaust air flow corresponds to a period when the damper control signals were roughly equal to

or less than 50%. For that range of damper control signal, the outdoor and exhaust air dampers

should have been at 50% or less open, and the recirculation damper should have been at 50% or

more open. For constant values of return and supply air flow, as shown in the graph, the only

plausible explanation for why the outdoor air flow could exceed the exhaust air flow and

inversely follow its variation, is if the exhaust air flow were actually re-directed to flow through

the outdoor air intake damper. In this case, the erroneous outdoor air flow measurement could be

an artifact of the type of air flow station that was used to measure the outdoor air flow; the

thermal-anemometer outdoor air flow station does not provide a direction of flow, only a

magnitude, and hence flow reversal leading to discharge of air through the outdoor air intake

duct is otherwise indistinguishable from air flow in the proper direction.
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Figure 50 Pictures of faults diagnosed due to inspection of results from software analysis; the right hand image verifies
suspicions of flow reversal in the mixing box, while the left hand image shows evidence of a broken pressure transducer

for the outdoor air dampers.

The graphical and text results of the softwared as pIn inspection of the

equipment with the technical manager for the building. During that inspection, the flow reversal

hypothesis was validated by taping a streamer to the leading edge of the outdoor air intake

damper, and photographing the flow across it. The right hand photograph in Figure 50 validates

the flow-reversal hypothesis; the trailing edge of the flow streamer points towards the intake of

the outside air duct as oppose to the intake of the mixing box, thereby confirming suspicions that

the flow was going in the wrong direction and discharging to the outside from the outdoor air

intake duct.

A closer inspection of the pneumatic damper transducers for the AHU also revealed that

the transducer for the maximum outdoor air damper had failed; it's pneumatic supply pressure

when connected to the pneumatic supply line registered as 0 PSI, despite the fact that the

minimum operating pressure for the transducer is 3 PSI. The broken transducer is shown in the

left hand photograph of figure 5, with its measurement needle resting at 0 PSI; the device was
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confirmed as broken after a manual perturbation of the damper actuator yielded no corrective

response from the transducer. After confirming that the device was broken, the building

technician issued a work order to fix the equipment; the broken transducer was replaced by MIT

several days after it was identified. The flow reversal effect was confirmed both before and after

the outdoor air damper pressure transducer was replaced.

The results presented so far by the software ultimately lead to the diagnosis of two

unexpected faults in the AHU; a design flaw that causes flow reversal, and an equipment failure

that reduced the controllability of the AHU. The serendipitous capture and resolution of these

faults followed from the design intent of the FD&E software; the software tool successfully

identified, ranked and described anomalous equipment behavior, and provided sufficient

information for a trained building technician to diagnose, and in some cases fix, HVAC faults.

Despite these successes in discovering and fixing faults, it is not clear whether fixing the

broken transducer or flow reversal would actually lead to any significant gains in energy

efficiency or annual energy savings. The energy efficiency analysis of the AHU over seven days

in January, which is shown in Figure 48, suggests that there is only a 20% probability of saving

$26 or more in energy costs over that time interval. The result indicates that even if all faults

were corrected on the AHU, at best its energy consumption over that time interval could decrease

by only about $25. The data in Figure 48 and Figure 49 further suggest that even with the broken

transducer for the outdoor air dampers, the AHU could still control the flow of outdoor air

simply by adjusting the position of the recirculation and exhaust air dampers.

The mixing box simulations included in chapter three for northeastern weather also

indicate that the AHU's outdoor and exhaust air dampers would probably only be driven to 50%

or more closed for a small part of the year, primarily in the summertime. The reversal of flow in

the mixing box, which occurs when the exhaust and outdoor air dampers are drawn to 50% or

more closed, is actually a boon to energy conservation during the hot and humid Boston summer.

By excluding outdoor air from the AHU, the flow reversal eliminates energy that otherwise

would have been spent on dehumidifying or cooling air that could be more humid and hot than

the return air alone. While this "fault" could favorably reduce energy consumption during part of
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the year, it could potentially lead to an uncomfortable or even dangerous environment for the

occupants. In the absence of fresh outdoor air, unpleasant orders, noxious vapors and CO2

concentration will increase in the parts of the building served by AHU 9 and potentially harm the

productivity and health of occupants in those spaces.

From February 1st to February 5 th, the damper linkages for the outdoor and recirculation

air damper were also incrementally removed and replaced. Figure 51 includes two graphs for the

AHU heating and cooling activity over that time period; the latter half of the visualized cooling

activity, from February Is to February 5 th, shows a small increase in cooling energy usage

beyond the predicted consumption level. This seems indicative of faulty recirculation and

outdoor air dampers because the fault in this case would theoretically permit more warm return

air to recirculate back into the AHU than might otherwise be allowed; the increased recirculation

flow would require an increase in cooling energy consumption in order to achieve discharge air

conditions. Under normal circumstances, the AHU could use the cool outdoor conditions to

temper the recirculation air stream without any mechanical cooling, but since the recirculation

and outdoor air damper linkages had been removed, the economizing feature was disabled.

With both sets of dampers disabled, the opposite condition of excess heating (instead of

excess cooling) may also have been likely; the AHU could have drawn more cold outside air

than could be properly tempered with warm recirculation air alone, leading to use of the steam

heating coil to properly heat the air. The final outcome of either excess heating or cooling due to

faulty damper linkages is predicated on the pressure distribution within the mixing box, and the

resulting air flow. The presence of excess cooling in this case is likely due to the large return

airflow that is unique to AHU 9; the back pressure from the exhaust air dampers may be

sufficiently large to cause the recirculation air flow to overwhelm the outdoor air flow when their

respective dampers are free to move on their own.
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Figure 51 Results of experimentation on AHU 9 for January 29th, 2010 through February 5th, 2010

The effects of removing the damper linkages were tested twice over the time interval

shown in Figure 51; once from midday on February 1't to midday on February 2 ", and again

from midday February 3rd to midday February 5th. In between, from midday February 2 nd to

midday February 3 r, the fault was resolved (the linkages were re-installed). The data in the

lower graph of Figure 51 reflect this experimentation schedule; the excess cooling effect

disappears when the damper linkages are replaced and then re-appears when they are once again

removed.

In addition to visualizing the effects of broken dampers, the data in Figure 51 from

January 2 9 th though January 3 1 t' clearly shows a brief period of simultaneous heating and

177

.......................................

jWW



cooling activity. The effect seems to disappear in the latter half of the data shown in Figure 51,

and the equipment does not demonstrate the same phenomenon in any other part of the

experimental data set. Furthermore, the simultaneous heating and cooling activity appears to be

the result of purposeful control by the AHU controller; portions of the phenomenon appear to be

in steady state, and the effects are visible over several hours at a time. The ultimate cause of this

phenomenon could not be explained by inspecting the equipment or the software programming

of the controller, however the analytical results suggest that it may not be worthwhile to

investigate or resolve the problem; the energy priority for the week was a seven and valued at

roughly $160.

Despite the demonstration of faulty dampers and simultaneous heating and cooling on the

AHU, the analysis of the faults yields a modest valuation of the equipment in-efficiencies over

that time interval. If the analysis had been carried out over a longer period of time that did not

include more simultaneous heating and cooling, then the valuation would have been even less. In

this case the software and analytical approach has once again raised some awareness about

potentially fault-laden conditions, and then qualified the possible financial value of fixing those

faults against user-defined investment criteria.

The analysis of AHU 10 in building 46, where no faults were ever purposefully applied

during this experiment, exhibited a very similar simultaneous heating and cooling pathology to

what was observed in AHU 9 above. The results of condition monitoring on AHU 10 from

January 2 2 "d, 2010 through January 29th, 2010, are shown in figure 7, and the latter half of the

data show two distinct periods of controlled simultaneous heating and cooling. Once again the

origins of the fault are unknown; the mechanical equipment does not exhibit any clear

deficiencies, and neither does the software programming. Still, despite acknowledging the

existence of a problem, the analysis also suggests that the priority for fixing that problem is not

very high; the energy priority for that analysis time period is a 5.00, and the fault is valued at

roughly $105.
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Figure 52 Condition monitoring on AHU 10 in building 46, from January 22nd, 2010 through January 29th, 2010

6.3.2 Summary of Results for MIT Building 46

Several faults on two AHUs in MIT building 46 were made visible through the building

condition monitoring software. The analysis of that related data was also used to draw inference

about the existence of simultaneous heating and cooling in the equipment. Both experimentally

applied and prior existing faults were detected and evaluated by the software; in some cases the

faults were immediately addressed and resolved, and in other cases the analysis showed that the

faults may not be a high priority to address.
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6.4 Analysis of Buildings 16 and 56

In 2009 Cimetrics Inc. was hired to provide a monthly continuous commissioning service

on MIT buildings 16 and 56; they successfully identified over $250,000 of possible energy

efficiency savings, the majority of which was attributed to simultaneous heating and cooling in a

handful of large AHUs. The same data that Cimetrics collected and used to draw their inference

in 2009 was used in this current research to compare the results of the FD&E software and

analysis against Cimetrics' 3 rd party results. Furthermore, current data for AHU 2 in building 16

was also collected and analyzed to determine if any changes had been on the AHU since

Cimetrics first diagnosed the equipment with simultaneous heating and cooling in the spring of

2009.

6.4.1 Findings on 2009 and 2010 performance data

Analysis of Cimetrics' 2009 equipment data by the FD&E software provided similar

results to what was reported by Cimetrics a year ago; the analysis yields a very high probability

for simultaneous heating and cooling, and an overwhelming financial loss due to that fault.
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Figure 53 Analysis results on AHU 2 in MIT building 16

Figure 53 presents the results of analysis; the graphs of heating and cooling activity show

a consistently large difference between the measured and predicted energy consumption of the

AHU. The upper graph in Figure 53 shows a visibly consistent level of measured heating coil

activity over almost the entire month of April, 2009. The large and nearly constant value of the

measured heating coil enthalpy exchange over the entire month suggests that the steam valve for

the coil may be stuck at 100% open. The measured heating coil activity in Figure 53 fluctuates

about 150% of the coil's nominal heating capacity because the maximum enthalpy exchange rate

of the coil under real operating conditions exceeds the manufacturer's original rating of the coil.

Especially for steam heating systems, the real operating enthalpy exchange of the coil is a
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function of many variables and may not always perfectly mach a manufacturer's specification for

the coil.

The predicted heating coil activity, shown as a red line in the upper graph of Figure 53,

suggests that the outdoor weather during the month was sufficiently cold to require heating,

however not to the extent that it was delivered by the unit. The lower graph in Figure 53 also

shows a large discrepancy between the measured and predicted cooling coil activity; the excess

cooling seems to be a controlled reaction of the AHU to compensate for the excessive heating

coil activity.

In addition to detecting simultaneous heating and cooling, the FD&E analysis also

calculated that the excess heating and cooling activity of the AHU resulted in approximately

$20,000 worth of wasted energy, just for the month of April, 2009. Since one month of

equipment operation already exceeded the $10,000 target for energy efficiency investment at

MIT, this fault was assigned a priority of 10. Using a regression on outdoor air temperature,

Cimetrics extrapolated their data from March, 2009, to the entire year in order to forecast the

annual financial loss due to this fault; they reported an annual loss of $256,686. Because the

heating coil activity is so large and largely overwhelms the effects of changing weather, the

annual impact of this fault could also be estimated simply by multiplying the results from one

month by 12; this alternative extrapolation predicts a potential annual loss of roughly $240,000.

The loss estimates from Cimetrics and the FD&E analysis differ by roughly 5%, but both

approaches find the fault to exceed MIT's $10,000 efficiency payback target by more than a

factor of 20.

In comparison to the results in Figure 48 for AHU 9 that show increased uncertainty of

prediction at low levels of enthalpy exchange, Figure 53 shows the opposite effect at very large

values of measured heating enthalpy exchange; in such instances the uncertainty of measured

performance is much larger than that of predicted performance. The increased uncertainty of the

measured performance at high levels of heating enthalpy exchange is directly due to the large

influence of uncertainty associated with temperature measurements across the heating coils.

Since sensor measurement accuracy is taken as a relative percent uncertainty by the FD&E
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system, temperature measurements made at high temperatures are less certain than those made at

low temperatures; this is why the confidence interval for the cooling coil enthalpy exchange in

the lower graph of figure 53 is much tighter than the confidence interval for the heating coil

enthalpy exchange shown in the upper graph of the same figure. Especially since the heating

enthalpy exchange is over 150% of the coil's rating, we expect the air temperature change across

the coil to be significantly large and in a high temperature range, leading to greater uncertainty

associated with the measurement.

Despite this increased uncertainty, however, the cost differential between the predicted

and measured performance is so large that the increased uncertainty has very little impact on the

final inference; clearly there is a large amount of money and energy being wasted. On the other

hand, however, if the measured and predicted values for enthalpy exchange were both within a

similar range, perhaps both close to 100%, then the amplification of measurement uncertainty in

that range would decrease the ability of the FD&E system to detect and evaluate a fault. By

incorporating sensor and model uncertainties within the fault inference, we may create situations

where faults are indistinguishable due to overlapping confidence intervals; so far we have not yet

encountered a situation where this effect masks or falsely implies a significant level of energy

waste.
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Figure 54 Results of FD&E analysis on AHU 2 in Building 56

Cimetrics' data for AHU 2 in MIT building 56 was also consumed by the FD&E software

and once again the analytical results were similar to what Cimetrics had reported; both

approaches found several thousand dollars worth of energy wasted due to simultaneous heating

and cooling. Figure 54 includes the results of FD&E analysis on Cimetrics' 2009 data for that

AHU, and shows heating and cooling coil activity that are indicative of simultaneous heating and

cooling. AHU 2 in building 56 is roughly an order of magnitude smaller than AHU 2 in building

16, and consequently the financial impact of simultaneous heating and cooling in the former

equipment is about ten times smaller than in the latter. Despite their difference in size, both

AHUs have the potential to pay back $10,000 or more in energy savings if their faults were

corrected; both units exhibit a high probability of meeting the investment pay back target for
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MIT and therefore they both received an energy priority of 10. The results from analyzing AHU

3 in building 56 were very similar to the results for AHU 2 in the same building; both AHUs

exhibited the same fault characteristics and pay back potential.
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Figure 55 Results of FD&E analysis for A HU 2 in building 16, with current 2010 data

In addition to using 2009 data from Cimetrics to analyze AHU 2 in building 16, more

recent data for March and April, 20 10, was also collected from the equipments' building control

system and analyzed by the FD&E software. The results of the analysis are included in figure 10

above for a snapshot of equipment operation during early April. Similar fault characteristics exist

between the recent building control data and the 2009 Cimetrics data; the measured heating coil

activity appears to remain consistently at full bore, and the financial loss extrapolated for the
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whole year remains over $200,000. Evidently no changes or corrections have been made to the

AHU, even after 12 months since Cimetrics first identified that the AHU was hemorrhaging

hundreds of thousands of dollars per year in excess heating and cooling.

6.4.2 Summary of results for MIT buildings 16 and 56

Three AHUs with known pre-existing fault conditions were evaluated by the FD&E

software tool. The tool was used to detect and evaluate the financial loss of simultaneous heating

and cooling within the equipment. Results of the analysis by the FD&E tool matched previous

fault detection and evaluation results provided by Cimetrics Inc.; between both methods, the

predictions on financial loss due to those faults were within 5-10% of each other.

6.5 Results of Monte Carlo Simulations

6.5.1 Introduction

A core assumption in the approach taken to propagate uncertainty through the FD&E

analysis is that all distributions within each step of the analysis are Gaussian. The validity of this

assumption is particularly relevant to the accurate calculation of equipment energy consumption

because of the large number of computations involved in its evaluation; as data is manipulated

through computation, it is not guaranteed that the starting assumptions of normality are preserved

to the final result of analysis.

6.5.2 MC Simulations

In order to validate that assumption, Monte Carlo (MC) simulations were conducted with

bootstrapping of raw data vectors to yield a sample representation of equipment energy

consumption that is free from any assumptions about propagating distributions. The intent of MC
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simulation is to compare the distribution of energy consumption produced by the MC simulation

against a single sample distribution of energy consumption produced by the nominal analysis

with propagating distributions.

The only assumption used in the MC simulation was that the raw data vectors could be

re-sampled, or bootstrapped, to create a sample population of measurements for each real

measurement taken. Sample populations of each measurement were made by random sampling

of a Gaussian distribution of values that was created for each real measurement; the real

measurement value was taken as the mean of that distribution, and the manufacturers' rated

accuracy of the sensor was taken as equivalent to two standard deviations of that distribution.

Gaussian distributions were used to bootstrap the time series because of the starting assumptions

about normality that are implicit to the approximation methods that underlie the propagation of

uncertainty through the single-sample analysis. If the Taylor expansion in Coleman and Steele

(64) were made under the influence of a different distribution, then the time-series bootstrap

would need to reflect that different distribution in order for the MC simulation to compare

against the single sample approximation.

The real time series of data for each measurement was bootstrapped at each timestamp to

create 100 additional time series; the bootstrap created a large population from which total

energy consumption could be directly evaluated for each re-sampled time series and then used to

construct a distribution of possible energy consumption values over the interval of that time

series. The results from the MC simulations were used in two ways to validate the accuracy of

the assumptions that underlie the singe-sample propagation of uncertainty:

1. The distribution of the MC simulation results were tested for normality
2. The single-sample and MC results were tested for homogeneity
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Figure 56 Q-Q plot of empirical CDF on MC simulation results; a Lilliefors test for normality was applied to the
distribution of energy consumption and found the null hypothesis valid at the 5% level

The Lilliefors test for normality, a two-sided goodness-of-fit test suitable for small

sample sizes with unknown parameters (70), was used to test the hypothesis that the MC results

followed a normal distribution. Applied to several different sets of simulation results, the

Lilliefors test consistently found that the null hypothesis was true at the 5% level. Visual

inspection of the quantile plot for the empirical distribution in Figure 56 shows that the tails of

the distribution for N=100 simulations begin to defy the strictly normal distribution. Repeating

the MC simulations with a larger population, N=500, resulted in greater linearity at the tails,

suggesting that the divergent behavior at smaller sample sizes is an artifact of simulation sample

size.
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Figure 57 Two-sample Kolmogorov-Smirnov test of homogeneity between MC and single sample distributions; the KS
test rejeceted the null hypothesis at the 5% level for almost all test samples

The homogeneity of the MC and single-sample distributions was tested with a two-

sample Kolmogorov-Smirnov (KS) test (70). Across a large range of dollar value distributions

for measured and predicted equipment energy consumption, the KS test at the 5% level

consistently failed to find that the single sample and MC sample distributions had identical

distributions. Testing for homogeneity in the -$ 100 range is shown in Figure 57; notice that

while the values for mean and standard deviation are in fact different between the distributions,

their practical difference for estimating the dollar value of large equipment energy inefficiencies

that are financially meaningful to system users is apparently insignificant.

6.5.3 Summary of results from MC simulations

MC simulations were carried out with population sizes extending from 100 to 500, for

distributions of measured and predicted equipment energy costs of operation over the range of $1
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to $1000. The distributions that resulted from MC simulations were all tested for and found to

follow Gaussian distributions at the 5% level by the two-sided Lillefors test. The two-sample KS

test was also used to test for the homogeneity between the MC and single-sample result

distributions; for most sample sizes and range of operating costs, the KS test rejected the null

hypothesis at the 5% level. Despite rejecting the hypothesized homogeneity of the distributions,

visual inspection of the MC and single sample distributions suggested that discrepancies between

them were practically insignificant in the search for energy inefficiencies that are likely to be

valuable to system users.

6.6 Feedback from users on system design features

While most of the tangible results in this research have focused on the objective

analytical results of detecting and evaluating building equipment faults, several important

subjective observations were also made during user testing of the software deployed on MIT's

campus. In particular, several personnel from the MIT facilities department were interviewed to

gain their feedback on the usefulness of the software in detecting, evaluating and ultimately

resolving gross building pathologies. Several important themes were observed in the feedback

from MIT facilities personnel:

Expressing FD&E results in the form of a probability appears to be more palatable to
consumers of that information than deterministic results because the probabilistic form
implies that uncertainty is implicitly embraced by the analysis. Uncertainty seems to be a
significant part of the maintenance culture; facilities personnel appear to acknowledge
that not all measurements can be trusted and that equipment installations are often subject
to installation or programming errors. By formulating the results of analysis within a
context that matches the culture of maintenance, it appears that the results of analysis are
more believable by consumers of that information. Even if the results do not include all
of the uncertainty that a user may expect in a building, the incorporation of just
measurement and model uncertainty at least shows the user that the analysis doesn't
expect to be perfect. While facilities personnel may not have the background to
rigorously interpret statistical results, they are well equipped to consider the chances of
risk and reward in making decisions.
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* Sorting and prioritization of results according to user-defined parameters appears to be a
key feature for system users; while there may be several dozen pathologies in a building,
the system user often only has the time and inclination to address the top 1 or 2 most
pressing issues. Furthermore, user-defined sorting of pathologies according to a dollar
value of annual pay-back on fixing a problem appears to also mesh with the maintenance
culture. Interactions with system users in the MIT facilities department also demonstrated
that the dollar value of fixing a fault is not always the driving factor in deciding to
address a fault; occupant health, safety and comfort is usually more immediately
important than dollars lost to energy inefficiency.

* Automated text generation for interpreting inference is helpful for suggesting to users
where they might find physical manifestations of pathologies that are detected and
evaluated by the software. Furthermore, exposing the actual data graphic to system users
allows them to drill-down from a spread-sheet summary of information into the process
of diagnosing issues.

7 Conclusions

The overarching purpose of this research was to investigate how buildings across the

United States and beyond may be rapidly and consistently assessed for large energy

inefficiencies attributable to the pathological malfunction of HVAC equipment. A key

assumption underlying that goal is the expectation that if building managers and contractors

knew about valuable equipment malfunctions, then they could be more aggressive towards fixing

gross building energy inefficiencies. The process of fixing broken buildings, however, is more

complicated than simply identifying broken building energy systems, otherwise the past twenty

years of successful research in the subject surely would have yielded a fitting technical solution.

A detailed review of the prior art suggests that the lack of widespread use of fault detection

technologies in buildings today may be partially attributed to under-emphasis of the following

factors in fault detection research and development:

1. The social culture and business processes that underlie the physical act of fixing a

broken building (71)
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2. Measurement and model uncertainty that is inherent to inference performed on

complicated systems like buildings

3. Use of simple, yet broadly applicable models to gain bulk information on gross energy

inefficiencies

While the research activities in this thesis focused predominantly on the underlying

physics and mathematics of designing a fault detection system, I also learned through this

experience that the social culture and business process of fixing building faults are equally

important design elements to consider in that system. On the surface it appears that

considerations of the social culture and business process of fixing buildings have little place in

the research and development of mathematical algorithms for detecting building energy

inefficiency. However when the goal of those algorithms is to catalyze the fixing of a building, it

may be more logical to start with the social and business cultures that dominate the fixing of

buildings, and then work backwards to define the mathematics and physics that are also

important in that process.

7.1 Limitations of current approach

While this thesis showed some success at detecting and evaluating faults within a building,

it does not represent a complete solution to total fault detection, diagnostics and evaluation of

building operation. The FD&E approach taken in this thesis is foremost limited by the need for

models that describe equipment behavior. The simple thermal-fluid models used here to analyze

the operation of AHUs do not provide a detailed insight into the origin of faults, but only their

existence. Moreover, the modeling approaches used here are useful for detecting certain types of

gross energy inefficiencies like simultaneous heating and cooling, but are not guaranteed to

identify all possible faults within equipment. For example, the thermal-fluid models used here to

describe AHU operation do not consider the fine-grained control action of PID loops or other
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transient phenomenon which means that faults pertaining to transience or poor control loop

tuning may be overlooked.

In addition to limitations placed by modeling and measurement, the probabilistic

foundation of the FD&E system designed in this thesis makes the system more difficult to judge

for its precise efficacy of detecting and evaluating faults. Since the system reports its findings in

terms of a likelihood of fault existence or value, the actual false positive or negative rate of

inference is more difficult to judge than if the system generated deterministic results.

Consequently, the system may erroneously report a small likelihood of fault existence or

valuation, but its true accuracy is subject to interpretation by the user. This artifact of how the

system operates makes it more difficult to compare directly against other FDD systems that

provide deterministic results on fault existence, diagnosis and value. Over time, with continued

use of the system it will be possible to include user feedback on system accuracy in order to

quantify and refine the statistical power of the system's inference.

7.2 Further Development

The key finding of this research is that the uncertainty of inference plays the central role

in both the judicious algorithmic detection of equipment faults and the effective communication

of the value of those faults to individuals who fix equipment malfunctions. The importance of

uncertainty in communicating the results of fault detection and evaluation stems from the

cultural expectation of building service agents; they know that buildings are complicated and

highly uncertain, and so deterministic results appear far less credible and hence less useful than

those with upfront acknowledgements of their uncertainty.

Furthermore, while a deeper investment in fault detection technology may yield much

improved tools for finding and evaluating building energy inefficiencies, they will always remain

just tools amongst many other tools; if our interest is in fixing buildings and improving energy

efficiency, then our focus must be on how to design tools such that they are put into action and

made to yield results. Through my research activities I have observed several themes of future
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technical research that could potentially aid in creating and putting tools to work for us in fixing

buildings:

1. Maturation of data-driven decision making within the building repair and
maintenance culture

2. Aggregation and dissemination of building performance data

3. Smarter building systems that reduce the labor cost of implementing related control
and fault detection software technologies

Those research themes are further developed below in a series of short, medium and long

term research and development goals:

Short term:

e Standardization of control nomenclature: The lack of standard building system designs
and nomenclature of building equipment and instrumentation is a significant hurdle to the
widespread deployment of software-based building energy models and FDD services.
While upfront costs and design constraints prevent standard instrumentation and
equipment packages from being enforceable across the building stock, a standard
protocol for naming of control points and equipment is more readily applicable simply as
a control programming guide. If consistent nomenclature was applied to control points
that performed the same functions across the entire building stock, then an FDD system
could automatically draw and interpret data from any building control system without
user programming of data composition. In that same vein, if a standard nomenclature was
applied to pieces of equipment as well as their associated control points, then building
energy models and FDD systems could perhaps automatically configure themselves to
the customized design of the building. While we cannot and should not force buildings or
their systems to adhere to a standard set of designs, it would be very useful to building
energy model and FDD system software automation efforts if the nomenclature of
describing buildings and their systems could be standardized. Standards bodies such as
AHSRAE could develop such a nomenclature, as well as software tools to help designers
and installers adhere to that nomenclature.

" Manufacturer characterization and distribution of equipment models: Cut-sheets on
equipment and products from manufacturers that service the building industry rarely

194



include the detailed dynamic response of the equipment to varying input control signals.
Cut sheets typically include the minimum yet most pertinent design data that engineers
need in order to specify equipment for particular applications that are known at the design
stage of a project. This approach to the design and engineering of building systems
follows from the mentality of "up-front" cost and expediency of design; just enough
equipment information is included to quickly finish a design to meet the lowest possible
construction costs for the system design known at that time. Software-based FDD
systems and building energy modeling tools represent a change in the mentality of
building system design; these tools exist in order to manage the life-cycle costs of
building, owning and managing a building. The power of these tools could be enhanced,
and their deployment costs reduced, if building equipment and system manufacturers
provided detailed models to describe the performance of their equipment under different
dynamic and static conditions. 3rd party software-based FDD systems could in particular
leverage detailed equipment models to enable more specific diagnoses and detection of
equipment faults. The equipment response under various dynamic and static conditions
would also be helpful to evaluate how a system should be re-commissioned when the
originally intended building design is no longer applicable. To require manufacturers to
provide mathematical models of every piece of their equipment is impractical and
unreasonable, however, a useful starting point may be with unitary valves, pumps and
fans that are used to build custom hydronic and air systems. Packaged units such as roof
top units, air conditions, and chillers often come pre-packaged with on-board fault
detection systems, but custom designed and installed systems have no such luxury. If
fault detection engineers were equipped with manufacturer's models of valves, pumps
and fans (system actuators), then they could build up "systemic" fault detection models
for custom systems that are analogous to those found on "packaged" products.

e Building Data Warehousin2: Much of this thesis has emphasized the use of data-driven
decision making, and in doing so has exposed that much data in buildings is often created
but never stored, sorted and converted into useful information. Since many building
control platforms have extended logging capabilities, a short term innovation in the
building stock would be to activate those logging features in as many buildings as
possible, and tie that numerical data to categorical information like work-order and
service tickets that describe equipment malfunctions and their resolution. An extensive
database of equipment and system performance could be created simply by taking a
campus of buildings, such as at MIT, and storing all of its historical building control data.
While on its own the data is just bits on hard disk, numerous building control companies
and independent software developers may use such a database to create more
sophisticated FDD tools, or to verify equipment models used in building energy models.
A clear lesson that I have learned from this research is that very little is precisely known
and documented about how buildings operate once they are built and occupied; this is
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especially pertinent to the future of commercial buildings where public and private

entities have made pledges to create or approximate zero-net energy and carbon

buildings. Without measuring, aggregating and reviewing real building system

performance, we cannot confirm whether our buildings work the way in which we

intended them to work, or learn how to improve their performance. Furthermore, by
starting to warehouse and review data, we may also identify the critical set of building

data that is truly needed to improve building performance. At this point, the volume and

typology of data needed in order to improve building performance is relatively unknown;

only by starting down this process of data collection and review can we identify the

important subset of data and eventually reduce the cost of data collection by eliminating

extraneous information.

Medium Term Innovations:

* Smart sensors: The reduced cost of ASICs could eventually allow a practical marriage

of sensors with memory and processing that enables network communication of sensor

data rather than analog data acquisition. One advantage of network based data acquisition

is greater flexibility in sharing of sensor data amongst multiple data consumers

(electronic or otherwise), but a more subtle advantage is the incorporation of sensor meta-

data with measurement results. For example, sensor data today is typically comprised of

voltage or amperage values that are converted at the data acquisition terminal into

engineering values. Furthermore, that data acquisition terminal also handles thresholds

for identifying significant changes in the measurement signal, and the nomenclature for

identifying that sensor data to rest of the control system. This architecture of data

collection requires state implementation within the hierarchy of data collection; a system

user must program sensor characteristics at multiple levels within the system, taking up

time and increasing the cost and complexity of data acquisition. If sensors were not just

analog measurement instruments, but instead included a thin client for communicating

sensor meta-data with measurement values, then perhaps we could eliminate state
programming within the network and define it only at the network boundaries. From a

practical perspective, we might include the following sensor meta-information within

network packets of sensor measurement data:

o Type or class of measurement (e.g. what does the sensor measure in the system?)

o Engineering units of the measurements (e.g. Temperature, pressure, flow)

o Date of sensor manufacturing or commissioning
o Manufacturer model and serial number
o Manufacturer's rated accuracy of the analog instrumentation, and standard by

which that accuracy was determined
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o Manufacturer's rated drift of the sensor, and standard by which that drift was
determined

o Run-time of the sensor, or anther estimate of its health

Smart sensors represent the next step in an evolution of the building stock that would
help facilitate the short term goals enumerated above while also laying the foundation for
the longer-term, next generation of control systems. Furthermore, it may be possible to
push certain elements of FDD out to the fringes of this new building network by loading
smart sensors with some simple algorithms to detect their own health.

" Smart actuators: Complimentary to smart sensors, we could also use implement ASIC
chips to create smart actuators with properties and advantages similar to smart sensors.
For example, we might include the following meta-information in network
communications between actuators, sensors and controllers:

o Type or class of actuator (e.g. what does the actuator do)
o Engineering units for the actuator (e.g. valve stem percent closing, motor

rotational speed)
o Date of manufacturing or commissioning
o Manufacturer model and serial number
o Manufacturer's model of actuator response (e.g hysteresis, valve stem position vs.

voltage, etc.)
o Run-time of the actuator, or perhaps an on-board estimate of its health.

Like the related smart sensors, intelligent actuators can come with their own on-board
FDD, while also providing a central controller with a model of the actuator's response
characteristics.

" Data mining on buildin2s: If we are successful at creating a database of building
performance data it may then be possible to use supervised and un-supervised learning
techniques to identify useful and insightful building performance features. Specifically if
the building database is labeled with categorical information such as periods of time
when certain pieces of equipment were broken, or occupants were uncomfortable, or
energy consumption was too high, then modem techniques for black-box modeling may
identify features of numerical data that identify those categorical inferences. This thesis
has discussed some of the shortcomings that befall first-principle modeling techniques,
and we may overcome those limitations by subscribing to completely data-driven
approaches to building modeling and inference.

Longer term innovations:
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* Perturbation based fault detection and control: One logical extension to identifying a

strong fault signal within building data is to create a closed loop system to perturb fault

signal sources in order to forcibly test potential fault conditions. For example, the
algorithms used in this thesis compute a probability of simultaneous heating and cooling;

the existence of a stuck valve contributing to that fault signal could be tested simply by at
perturbing the valve position to measure the response of the coil. If under that scenario

perturbation of the valve positions yields no significant change in the fault signal, then
there is substantial evidence that the fault signal is true and attributable to broken

equipment.

* Collaborative control and fault detection: From a growing database of labeled data that

represents the state of building equipment, properly normalized data and labels could be
used to collaboratively detect undesirable equipment states across equipment in different
buildings or even from different manufacturers. In many ways this longer term
innovation seeks to replicate in a database the experiential knowledge that engineers and

technicians use on a daily basis to detect, diagnose and fix faults in buildings. For
example, if a database included the lifetime history of 10 different chillers within
buildings in a similar climate zone, then perhaps that historical numerical and categorical
data could be used to troubleshoot and diagnose another chiller within a different

building in that climate zone.

* Control Optimization: A fresh perspective on building controls and fault detection is to
look at them as two sides of the same coin. In today's control industry, software
programming of control systems follows traditional control theory with error signals that
drive PID loops or other similar systems. Fault detection, however, must incorporate
user-definitions of faulty or otherwise undesirable system operation (for example
simultaneous heating and cooling that wastes over $10,000 a year). In that way, fault
detection poses system objective or loss functions that can measure the ability of a
building system to meet supervisory-level numerical or categorical goals for operation.
Combining the previous ideas on collaborative and perturbation based fault detection

could yield a new approach to building control systems; fault detection could perhaps
form the basis for finer tuning of conventional control systems to meet objective
functions that are otherwise difficult to encode within the classical control architecture.

For example a collaborative database could include the performance of PID-controlled

heating and cooling systems for a wide variety PID-gain values in different buildings. A
perturbation fault detection system could test the efficacy of those collaboratively known

PID values against the PID gain values originally programmed into the control system
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and determine which PID gain values were best for the building by measuring the
building's response along energy, maintenance and comfort heuristics.

7.3 Final Remarks

There are several obstacles that stand in the way of applying the lessons learned in this

thesis to buildings across the world and having an impact on their energy consumption. Most

notable amongst those obstacles, I believe, is the need to educate building stakeholders on the

potential value of using real time building data and analysis to help better manage building

operations. As was discussed previously, building operations management is far more reactive

than proactive, and justifiably so; occupants matter most in a building, and for a building with

limited human resources, the only possible management practice is to react quickly to the critical

aspects of an occupant's experience in the building. The best way to educate building

stakeholders on the value of a data-driven approach to proactive building management is to lead

by example; only by piloting, testing and widely publishing the results of research and

development on these ideas will we manage to convince a meaningful number of stakeholders of

the value in building data and its analysis.

Other obstacles, however, cannot be influenced by any further testing or development of

these ideas. Most notable amongst that of type of obstacles, I believe, is the low cost of energy

(at least here in the US). Despite concerns over rising energy costs, the actual financial burden of

energy on most buildings pales in comparison to other operational expenses that they bear; for

example commercial building owners are far more concerned about vacancy rates and tenant rent

than they are about the energy cost of lights and HVAC being left on. Other building owners or

managers care more about the experience that the occupant has in the building much more than

the amount of energy consumed in order to yield that experience (take a restaurant or clothing

store for example). Regardless of our motivations or aspirations for improving building energy

efficiency, the simple reality is that energy is cheap in many places around the world, and we

build buildings so that people will have a place to live out their life's goals and dreams as they

see fit. Energy efficiency will not succeed if it gets in the way of how people want to live their

lives, run their businesses, or enjoy their freedoms. If energy were more expensive, then energy
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efficiency would play a larger role in the daily practice of using a building, however, for many

people and buildings today this is just not the case. Given this tremendous obstacle it seems very

clear that one of the best strategies for achieving energy efficiency is to make it the ancillary

benefit of meeting other needs of a building that are more important.

Another large obstacle to using the ideas in this thesis across the building stock is the

inherent business model for making buildings; so long as the people making a building are not

affected by its lifetime costs then there is little motivation to include the infrastructure for

improved energy efficiency. The most natural feedback loop for including lifecycle

considerations within construction is for customers to demand that from their contractors. Once

again though we face the complicating factor that customer might not care about the energy

implications of construction, either because energy is cheap or they won't be paying the utility

bills once the space is rented or purchased.

The path going forward to transition the technology in this thesis into practice includes a

number of goals designed specifically to overcome these critical obstacles:

" Pilot testing and deployment of the system: the software technology must be
demonstrated on a large scale to clearly show how data driven decision making in
buildings is significantly more profitable and useful to building stakeholders than
alternative management practices

e Multiple value propositions: the software system was designed from inception to include
nominal maintenance and occupant health issues that were completely isolated from any
energy implications. Ironically, we may achieve more widespread energy efficiency by
not focusing on energy as the core objective of any fault detect technology, but as the
ancillary benefit to some other application of FDD.

* Interaction at the ground level: people, not software, fix buildings; this means that in
order to be effective, a software technology destined to fix buildings must be embraced
by the fundamental group of people who fix buildings. By working closely with those
people to demonstrate the value of data in buildings, we may form a strong grass roots
effort to use tools like the one developed through this thesis to better manage and fix
buildings around the world. In that same vein, close interaction at the ground level of
fixing buildings will help focus software development on the most user-friendly and
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intuitive interface for communicating and using the results of FDD; the ease of use of
such software solutions are as much, if not more so important to the success of FDD than
even the content of the analysis.
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