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Non-linear collisionless plasma wakes of small particles

I H Hutchinson

Plasma Science and Fusion Center and
Department of Nuclear Science and Engineering,

Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
The wake behind a spherical particle smaller than the Debye length (λDe) in flowing

plasma is calculated using a particle-in-cell code. The results with different magnitudes
of charge reveal substantial non-linear effects down to values that for a floating particle
would correspond to a particle radius approximately 10−2λDe. The peak potential in
the oscillatory wake structure is strongly suppressed by non-linearity, never exceeding
approximately 0.4 times the unperturbed ion energy. By contrast, the density peak
arising from ion focusing can be many times the ambient. Strong heating of the ions
occurs in the non-linear regime. Direct ion absorption by the particle is not important
for the far wake unless the radius exceeds 10−1λDe, and is therefore never significant (for
the far wake) in the linear regime. Reasonable agreement with full-scale linear-response
calculations are obtained in the linear regime. The wake wavelength is confirmed and an
explanation, in terms of the conical potential structure, is proposed for experimentally-
observed oblique alignment of different-sized grains.

1 Introduction and Background

The perturbation of a plasma by a moving charge, or equivalently the perturbation of a
plasma flowing past a stationary charge, is a foundational plasma physics problem. For
elementary point charges (electrons or ions), in a weakly coupled plasma, the response of the
plasma, and the resulting drag on the charge, is accurately calculated using linear response
theory. The Vlasov equations for the electrons and ions are solved in the standard linearized
approximation to give a (Fourier transformed) linear dielectric constant ε(k, ω) = 1+χe +χi

(with χ the susceptibility), and the potential at a position x relative to a charge Q moving
at velocity vd relative to the plasma can be written[1]

φ(x) =
∫ exp(ik.x)Q

(2π)3ε0k2ε(k,k.vd)
d3k. (1)

If instead of an elementary charge we consider a charged object, then under some cir-
cumstances it is reasonable to assume that this approach will still give a good approxima-
tion. In particular, if the radius of the object rp is much smaller than the Debye length
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λDe ≡
√
ε0Te/nee2 then it may be possible to ignore its finite size, and the consequent

absorption of plasma that will occur on its surface. If so, then whether or not the linear
response formalism still applies depends just upon the magnitude of the object’s charge.
Dust particles in plasmas often satisfy rp � λDe, but they usually acquire a large charge
sufficient to make the potential at their surface (when floating) typically a few times −Te/e.
It is then clear that near the object surface, linearity practically always fails.

The purpose of the present work is (1) to answer the further question, under what condi-
tions does this non-linearity substantively change the distant response of the plasma poten-
tial, notably in the plasma wake? and (2) to solve the resulting non-linear wake structure.
This enterprise is of considerable importance for understanding dust interactions in plasmas,
since it is known that particles suspended in a plasma sheath, and hence in a region where
ions are flowing with approximately the sound speed, attract other dust particles which lie
in their wake[2, 3]. This phenomenon is attributed to a potential maximum arising in the
wake.

Linear response formalism has long been used to solve for the far wake structure. [We
shall not here address the important question of the change in the ion shielding of the particle
as the ion drift increases from zero. That has been the subject of many studies.] Sanmartin
and Lam (1971)[4] considered the situation of cold ion flow, and predicted a steep wave front
at the ion-acoustic Mach angle for supersonic flow and two sets of waves. In sub-acoustic
flow, waves were also predicted. Warm ions gave rise to wave damping. Chen, Langdon, and
Lieberman (1973)[5] likewise performed analytic studies using linearized formalism, and for
convenience a warm ion distribution that was uniform (a rectangle distribution) in velocity
space. They too found two types of waves of different wavelength and predicted ‘Cerenkov’
(i.e. Mach) cones. Despite the linear approximations, the equations of these authors do
not provide convenient quantitative analytic expressions for the wake form. Ishihara and
Vladimirov (1997)[6] revived interest in this approach in the dusty plasma context as an
explanation for the observed attraction of a downstream grain into the wake of another.
Their analysis led to expressions representing oscillatory wakes with wavelength in the flow
direction equal to

2πλDe

√
M2 − 1, (2)

where M ≡ vd/
√
Te/mi is the drift Mach number (for supersonic flow). Their wakes have

trailing crossed-wavelength oscillatory structures behind a Mach-cone. Xie et al (1999)[7]
revisited this analysis and concluded that the wavelength in subsonic flow is simply

2πλDeM (3)

right up to M = 1. Lemons et al (2000)[8] obtained oscillatory wakes with longitudinal
wavelength simply 2πλDeM (eq 3) for supersonic flow, but with a combination of long and
short wavelengths in two-dimensional cartesian subsonic flow (i.e. flow past charge-rods). For
cylindrically symmetric two-dimensional flow (i.e. past spherical grains) they concluded that
only the simple (3) wavelength contributes, whether subsonic or supersonic, and they ob-
tained analytic approximations to the potential. Lapenta (2000)[9] used fluid approximations
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solved in space (not k-space) and found the simple oscillation wavelength (3) and plotted spe-
cific amplitudes. Hou et al (2001)[10] used ion-fluid approximations in k-space and obtained
similar results. They also considered grains possessing an electric dipole moment. In contrast
to these approximations, Lampe et al (2000)[11] directly performed numerical integrations
of eq (1) for a drifting Maxwellian, and plotted the results for different ion/electron temper-
ature ratios (and collisionalities but here we are focussing on collisionless cases). They found
oscillations with the simple wavelength (3) for both subsonic and supersonic flow, within a
cone-shaped wake structure.

Even assuming a correct linear analysis, the question remains whether it really applies to
practical cases, whether non-linear effects are significant, and if they are, what happens to
the wake? Given how uncertain even the linear analytic analysis has proven to be, heuristic
arguments can’t with confidence estimate the importance of non-linearities or, when they are
important, their effects. Therefore self-consistent non-linear calculations are needed. Winske
et al (2000)[12] performed cartesian particle-in-cell (PIC) non-linear ion calculations in one
and two dimensions: planar charge-sheets and cylindrical charge-rods. The electrons were
taken to have linearized Boltzmann response. In one dimension they found in agreement with
linearized theory a wavelength 2πλDeM/

√
1−M2 for subsonic flow. (Note that the

√
1−M2

factor is in the denominator, unlike the expression 2.) Charge-rods, however, gave wakes
with simple oscillatory wavelength (eq 3) ∼ 2πλDeM . The two-dimensional calculations had
peak potential amplitudes approximately (1−3)×10−2Te/e, but different charge magnitudes
were studied only for the unphysical one-dimensional case. Subsequent numerical studies for
charge-rods have been pursued for example by Miloch et al (2008)[13]. These numerical
investigations considered the qualitative features of the linearized analysis to be verified,
but did not address systematically the quantitative non-linear effects. One should note also
that a charge-rod does not represent the geometry of a sphere, which is what typical dust
grains most closely approximate, and the linearized analysis shows qualitative differences
between charge-rods and point-charges. Hutchinson (2005)[14] observed in two-dimensional
PIC simulations of spherical grains that though the wavelength was approximately as in
eq. (3), the non-linear wake was not at all consistent with the linearized analyses. The
simulation’s wake amplitude was far smaller and it damped out more quickly.

Oscillatory wakes occur only if the ion temperature Ti is much smaller than the electron
temperature Te. This can be interpreted as minimizing ion Landau damping, although
it can also be considered a requirement that orbits remain coherent. The oscillatory wake
studies cited explored ratios typically 25 ≤ Te/Ti ≤ 100. Analytic linearized treatments with
Ti = 0 give rise to a singularity on the symmetry axis that is resolved only with finite ion
temperature. Grain radius smaller than the anticipated oscillation wavelength (rp <∼ MλDe)
appears also necessary to observe oscillations. Both of these quantitative constraints apply
to typical dusty plasma experiments.

Experimental investigation of the wake structure is extremely difficult, and few direct
measurements have been made. The potential can best be deduced from the dynamics of
a second particle moving in the wake. A weakness is that this requires one to assume that
wake-induced changes in ion drag force can be ignored, which is not obvious. Takahashi et
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al (1998) showed by optical manipulation that non-reciprocal effects on particles in the wake
region aligned them with the upstream particle[15]. Melzer et al (1999) showed transitions
(induced by neutral pressure changes) between attracting and repelling wakes[16], and esti-
mated attracting force on a particle with charge 2000e of 1.6 × 10−15N at 40µm horizontal
and 750µm vertical separation. Steinberg et al[17] observed identical particles, suspended
in a sheath, undergoing transitions between horizontal, vertical, and oblique alignment as
the discharge power was varied, as did Samarian et al[18]. Low gas pressure and power
favors vertical alignment. Alignment angles to the vertical less than 45o were not observed.
The (linear response) theory of Lampe et al[19] for like particles in confining wells indicates
that anharmonic (steep wall) well structure is required but can then explain oblique align-
ment. Recently Kroll et al[20] have observed return transitions to vertical alignment from
metastable oblique alignment states that again have angles no less than 45o for like parti-
cles. Hebner and Riley (2003-4)[21, 22], in contrast, observed the dynamics of two interacting
particles at low neutral pressure, moving in one horizontal dimension at almost fixed (but
different) heights determined by the various different sizes of the particles. Like Melzer’s,
their observations were consistent with an interaction consisting of two parts (1) a repulsive
Yukawa-potential force that operates reciprocally on both particles, and (2) a non-reciprocal
attractive force on the downstream particle arising from the upstream particle’s wake. They
were able to deduce quantitatively these potentials (strictly speaking, the forces). The peak
potential was fitted to be 21mV (in a Te = 3eV plasma). They found that for large vertical
separations the particles’ horizontal equilibrium positions became offset from perfect vertical
alignment by angles as small as ∼ 15o which is not explicable by the analysis of ref [19].

The work reported here uses a PIC code in three dimensions to calculate the entire wake
structure in a collisionless plasma behind spherical particles of a whole range of charges and
sizes (smaller than λDe). Subsonic and supersonic drift velocities are investigated. Strong
saturation of the wake amplitude is observed for some experimentally-relevant parameters.
A comparison with linear calculations is shown for small charge-magnitude. The domain of
validity of the linearized approach is identified and the onset of non-linear effects is studied.

2 COPTIC Code

The program used to solve for the non-linear wakes in this work is a new Cartesian-mesh
Oblique-boundary Particle and Thermals In Cell (COPTIC) code. This description refers
to its three-dimensional cartesian grid on which the potential is represented, but that it
can include objects of arbitrary shape whose boundaries can be oblique to the mesh direc-
tions. Many cartesian codes approximate such domain-boundaries rather crudely as stair-
cases of connected cell-boundaries. COPTIC instead uses difference equations for the poten-
tial and electric field equivalent to the Shortley-Weller approximation that gives second-order
accuracy[23] in solving the Poisson equation and interpolating the resulting field adjacent
to oblique boundaries. It uses locally adjusted difference stencils accounting for the actual
position, orientation, and boundary condition on both sides of a boundary that crosses the
stencil. This allows reasonably accurate representation of oblique and curved surfaces such
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as spheres, even when their size is not much smaller than the mesh spacing. Fig. 1 illustrates
the challenging cases used here.

Figure 1: COPTIC representation of spheres of radius rp = 1 and rp = 0.2 on coarse meshes
relative to their size. The wire frame joins vertices consisting of the intersections of the
spheres with the mesh difference stencils. On the rp = 0.2 figure the intercepted stencils
themselves are also drawn.

COPTIC uses continuous analytic objects like spheres or cylinders to define geometric
domains such as the the plasma region outside a particle. It thus knows exactly (to machine
precision, yet with minimal computational effort) when an ion crosses an object boundary,
for example when it hits a solid grain. The mesh can be specified as non-uniform (but still
cartesian), to provide greater field-resolution in important areas such as near the particle
surface. Resulting small self-forces in transitional areas do not prove to be significant.

In addition to finite-size objects, point charges can be incorporated. These are dealt with
through the PPPM technique[24]. The field they give rise to is evaluated analytically for
inclusion in the particle dynamics. Their potential is not represented by the Poisson solution
on the mesh; the analytic potential is added to the potential grid after solution for purposes
of display. In this way accurate dynamics are obtained without the mesh being required to
resolve or represent the point-charge potential.

As in all PIC codes, the particle species, in this case ions of charge q = Ze, are advanced
by the equation of motion

m
dv

dx
= qE = −q∇φ. (4)

In the present work, no magnetic field is present. The potential is found as the solution of

∇2φ = −(qni − ene)/ε0, (5)
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with the ion density, ni, obtained from the particle representation by a Cloud-in-Cell assign-
ment of charge to the mesh. The electrons are taken to be thermal so their density is given
by a (non-linear) Boltzmann factor:

ne = Zni∞ exp(eφ/Te) (6)

relative to the distant unperturbed ion density ni∞. Various types of boundary condition on
φ are possible. In this work, the potential is fixed on the object representing the particle,
and it has a particular component of its gradient set to zero at the outer boundary which is
the mesh outer edge. This component is in the drift direction, ẑ, at the ends (i.e. normal to
boundaries which are perpendicular to the external drift velocity). At the sides (boundaries
tangential to the drift) it is in the direction M ẑ+ r̂, where r̂ is the cylindrical radial direction.
This oblique choice acts approximately as a non-reflecting boundary condition for the ion
acoustic perturbations of the wake, to mock up an infinite plasma domain. On large enough
meshes, the outer boundary condition is unimportant, as has been verified through different
code runs. But the choice here is taking advantage both of the cylindrical symmetry of
the problem (even though the mesh and domain lacks that rotational symmetry and it is
not specifically imposed on the solution) and also of the observed form of the solution, to
provide better accuracy on a domain of limited size. Most calculations are done with 32
million ions on a 44× 44× 96 cell grid chosen to resolve the particle locally and the Debye
length everywhere. This grid has total side length 10× 10× 25 Debye lengths. See Fig. 2.

Particle advance and potential solution are carried out alternately in a standard leap-frog
scheme[24]. Ions are injected from the outer boundary with spatial and velocity distribution
that represents a uniform Maxwellian external plasma drifting in the ẑ-direction. Ions that
leave the plasma domain in the present calculations are lost, being replaced by the constant
injection rate. The code is advanced in time until a steady state is reached, after typically
2000 time-steps. That these states are observed to be steady, rather than unsteady flows,
is a physically significant result. But the demonstration that unsteady fluctuations do not
occur constitutes the only pay-off in return for the computational inefficiency of using a
fully three-dimensional code on what is, short of spontaneous symmetry breaking, a two-
dimensional problem (cylindrically symmetric about the flow direction). In short, COPTIC’s
three-dimensional capabilities are not really essential for this problem. We sometimes plot
quantities averaged over some number of converged particle steps and averaged over the
ignorable angle, to reduce their noise.

3 Non-linear Wake Results

Calculations are performed in normalized units for velocity v → v/
√
Te/mi, and potential

φ → φ/(Te/e). Lengths can be considered normalized to some arbitrary scale length. The
Debye length is set at 10 units of length. A spherical object of radius rp and specified
potential (uniform on its surface) φp relative to infinity, is placed with center at the origin
within a cuboidal domain −50 < x, y < 50, −50 < z < 200. Figure 2 shows a rendering of
the potential on a plane through the domain at x ≈ 0. We see the strong negative potential
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Figure 2: Potential on a fixed, x = 0, plane through the object. Parameters: λDe = 10,
rp = 1, φp = −1, M = 1, normalized units; Ti/Te = 0.01.
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of the sphere itself (truncated at the display box), and then immediately downstream a
positive peak of the potential arising from ion focusing by the attractive (negative) potential
perturbation of the sphere. Thereafter the wake has an oscillatory character with cone-
shaped wave-fronts. The two-dimensional representation resembles a water wake.

Figure 3: Close-up of potential on the plane x = 0, to show unequal mesh spacing. Param-
eters as in Fig. 2.

In Figure 3 we show an expanded view of the region of the object and potential peak.
The individual lines of the web rendering are at the mesh positions, showing how the unequal
mesh spacing is able to resolve the potential locally.

If the wake were linear, then its amplitude would be proportional to the sphere poten-
tial. To illustrate the non-linearity of the present model, in Figure 4 we plot the potential
normalized to the potential on the sphere, which would be independent of φp in a linear
system. (Here and in some other figures the label character λ is shorthand for the electron
Debye length λDe.) We see that even at the lowest potential, this system is not quite in a
linear regime. Normalized potential is not quite independent of φp. The relative potential
perturbation amplitude is slightly higher than the next-lowest potential result. At the low-
est sphere potential, the potential perturbation at the peak is approximately 2×10−2Te/e.
Unfortunately discreteness noise is already becoming significant at these lower potentials,
for this systematic series of runs; so one cannot proceed to still lower perturbation levels
without more expensive calculations using more particles to lower the noise. Such a run,
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Figure 4: Normalized potential along the x = y = 0 axis, for different sphere potentials.
Here Te/Ti = 100, M = 1, rp = 0.02λDe.

at half the lowest particle charge gives a peak normalized potential the same as in figure
4 within uncertainty. So it is a good approximation to take the lowest φp case as linear.
It should be noted that for low φp, noise causes a low level of effective collisionality which
somewhat enhances the spatial damping of the distant wake.

Figure 5 shows contours of potential averaged in angle about the z-axis for two values of
the potential on the sphere. [The plot includes a mirror image plotted at negative r purely
for perceptual and aesthetic purposes. Radii with magnitude greater than 50 — outside the
dashed lines — arise only from the corners of the rectangular grid. They, and the regions
close to the top boundary, might be distorted by boundary proximity.] In 5(a) φp = −2, and
there are strong non-linear effects that limit the amplitude of the wake (as will be shown
in a moment). Nevertheless, the wake’s geometric form is only modestly different from 5(b)
φp = −0.2 which is a case in which the non-linear effects are weak. The non-linear case
shows rather more rapid decay of the wake perturbation in the radial direction.

If finite size of the object were negligible, because rp � λDe, then the wake would
depend only upon the object’s charge, which could be expressed, accounting for the first
order correction arising from Debye shielding, as Q = 4πε0rpφp(1 + rp/λDe). To establish
the extent to which this approximation actually applies, equivalent calculations have been
performed with either of two different finite-radius spheres, rp = 0.1λDe and rp = 0.02λDe,
or with a point charge, which we refer to as rp/λDe = 0. For each of these cases, the effective
charge Q is varied by varying the potential at the object radius. Obviously, the main physical
difference between these cases is that the finite objects absorb ions that collide with them.
The point charge does not.
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(a) (b)

Figure 5: Contours of potential averaged in rotational angle for parameters λDe = 10, rp = 1,
M = 1, φp = −2(a), −0.2(b), normalized units; Ti/Te = 0.01. The shape differences between
a non-linearly saturated form (a) and a nearly linear form (b) are modest.
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As a quantitative measure of the amplitude of the wake, we choose the immediate down-
stream potential peak, which happens also always to be the maximum potential in the
domain, φmax. As Figure 4 indicates, the relative spatial profile shape is fairly constant
along the axis, so a single point can stand for the whole amplitude quite well. Figure 6

(a) (b)

Figure 6: Variation of the wake maximum potential with object charge: (a) in units of Te/e,
and (b) normalized to particle charge. Parameters: Te/Ti = 100, M = 1. Different object
sizes are indicated with different symbols.

shows how the absolute and scaled φmax varies with object charge. We see immediately that
the size of the object is practically irrelevant. All three sizes give the same wake magni-
tude to within a few percent. This shows that absorption by the object is unimportant in
these cases, even when rp is fully ten percent of λDe. Computations on a domain half the
transverse size (−25 < x, y < 25) agree with these results within a few percent, establishing
that the domain size used is big enough not to matter for φmax. The absolute φmax shows a
saturation value just under 0.2(Te/e) at large charges (|φp|rP/λDe

>∼ 0.2). But the nonlinear
effects have begun to be important well before that, as Figure 6(b) most clearly shows. Lin-
ear response would correspond to scaled potential, φmax/Q, independent of |φp|rP/λDe. This
independence is barely reached even for the smallest charges plotted, |φp|rP/λDe = 0.01.

Naturally the shape of the wake depends upon the ion drift velocity (M). Figure 7
shows that the dominant variation is in the angle of the wavefronts in the wake. The angle
between the wave-front-normal (effective k-direction) and the drift direction is reasonably
approximated by tan θ = M . This is not the familiar simple form for a Mach cone, cos θ =
1/M . As has been observed by previous authors, the wake has this conical structure for both
sub- and super-sonic drift velocities, which is of course not the case for a simple Mach-cone.
The reason is presumably that the ion acoustic wave is strongly dispersive when kλDe ∼ 1,
as invoked in [4].
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(a) (b)

(c) (d) (e)

Figure 7: Wake structures for subsonic (a) M = 0.5, (b) M = 0.8, and supersonic (c)
M = 1.2 (d) M = 1.5, (e) M = 1.8 cases. Te/Ti = 100, |φp|rp/λDe = 0.05, λDe = 10,
point-charge.
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(a) (b)

Figure 8: Variation of the wake maximum potential with drift velocity: (a) in units of Te/e,
and (b) normalized to particle charge. Parameters: Te/Ti = 100, point-charge. Different
drift Mach numbers (M) are indicated with different symbols.

At different drift velocities, saturation of the peak potential takes place somewhat dif-
ferently, as shown in Fig. 8. Subsonic cases, M = 0.5, 0.8, are even further from being fully
linear than was the case in Fig. 6, and are not in the linear regime at the lowest plotted nor-
malized charge |φp|rp/λDe = 0.01. The supersonic case is practically into the linear regime.
At high charge, the subsonic cases show strong saturation of the peak potential, at levels de-
creasing, below 0.1Te/e, with decreasing M . The supersonic case does not show saturation of
the absolute peak potential, even above 0.2Te/e. These trends are approximately consistent
with a saturation mechanism that depends upon the ratio of peak potential energy to drift
ion energy. Nonlinearity is significant when eφmax/TeM

2 >∼ 10−2, and saturation is essentially
complete when eφmax/TeM

2 >∼ 0.2. Although the data indicates this latter criterion is an
over-simplification, it makes sense, since it amounts to a statement that the potential peak is
high enough to reduce the particle kinetic energy by a factor of ∼ 2. [An a priori argument
based on the deviation of orbits at a marginal distance of λDe would give a non-linearity
criterion (eφp/Te)(rp/λDe) ∝M2, which is also compatible with the above observations, but
the constant of proportionality would be a guess without quantitative results like these.]

In Fig. 9 is shown the density (normalized to ni∞) for a substantially nonlinear case. The
density enhancement caused by ion focusing immediately behind the particle is very large:
a factor of 10 at the peak. This density peak is at a very short distance z = 1.5 = 0.15λDe

downstream from the particle, much closer than the potential peak, which is at about 1.2λDe

(see Fig. 4). The density peak has an extremely narrow radius, with half-width only about
0.04λDe. Fortunately it does not prove necessary to resolve this peak very well when obtaining
the potential, because of the smoothing effect of the Poisson equation. When the particle
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Figure 9: Normalized density in the y = 0 plane close to a point-charge. Parameters:
Te/Ti = 100, M = 1, |φp|rp/λDe = 0.1, λDe = 10.
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charge is reduced, the linear regime is approached when the peak density is roughly 2.

Figure 10: Velocity distribution functions for the case of Fig. 9 in one velocity-dimension (y
or z) integrated over the other dimensions. The cases marked “wake” are sampled over the
density peak in a rectangular box −2 < x, y < 2, 1 < z < 15. The others are unperturbed
distributions sampled over an equal volume.

The ion velocity distribution shapes in the wake are strongly perturbed. Fig. 10 shows
examples of the distribution averaged over the density peak, compared with distributions for
an unperturbed region of the same case. The unperturbed distributions reflect the shifted
Gaussian shape of the injected particles, with the z-velocity centered on the drift velocity

M = 1. Velocities are normalized to
√
Te/mi. The ordinate is the number of particles in

each of the equal velocity-interval boxes; so the statistical uncertainty is about equal to its
square root. The wake distributions contain substantially more total particles because of
the peaked local density. Their widths are greatly increased, for vz mostly by deceleration,
and for vy by inward lateral acceleration which has produced a double-humped distribution.
Wake effective ion temperatures far exceed the unperturbed 0.01Te. So we expect much
stronger Landau damping than the linearized (unperturbed) distribution would imply. As
the charge value is lowered towards the linear regime (not shown), the distribution shape
perturbation gradually disappears. Thus, a major effect of nonlinearity is local enhancement
of the effective ion temperature and consequent damping.

4 Linear Comparisons

In comparing COPTIC results with prior linearized calculations we can draw some immediate
qualitative conclusions. First, the longitudinal wavelength of oscillation is observed to be
close to 2πλDeM , eq. (3), in agreement with the conclusions of [7, 8, 9, 11, 12, 10] but in
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contradiction of [6] and more straightforwardly than implied by [4, 5]. Essentially all recent
studies, including the present one, are in agreement that the wavelength is given by eq. (3)
not eq. (2). The phase of the oscillations obtained in [9] is however clearly in disagreement
with our results. In that work the first peak is over half a wavelength downstream of the
charge, whereas COPTIC shows it to be no more than 0.2 times the wavelength downstream.
In addition the decay of the oscillations we observe far exceeds that of [9, 10] for the same
conditions (presumably because those approaches exclude Landau damping). Much the
same discrepancies exist in comparison with [8]: its first peak is too far from the object and
damping is much less. All of these differences exist in comparison with low amplitude almost
linear COPTIC calculations, quite apart from issues of non-linearity. Since [7] gives only
approximate forms, and [12] deals only with charge rods, the remaining possible quantitative
comparison with theory appears to be with the work of Lampe et al in [11]. (The plots of
[19] appear qualitatively consistent but include collisions, which are here omitted.)

Figure 11: Comparison of potential along the ẑ-axis of flow. Solid curve is COPTIC’s result
for parameters Te/Ti = 50, M = 1, for a point particle of charge φprp/λDe = −0.005. Dashed
curve is the result of [11] figure 3, for the same parameters.

In Fig. 11 a comparison is shown between the potential along the axis for COPTIC
and the result of figure 3 of [11]. Although it is not specified what the φ-scale of that
figure is, the closeness of the values appears to confirm that it is normalized in the natural
way chosen here. We observe that the agreement, while encouraging, is not perfect. The
COPTIC wake peak amplitude is about 10% lower than the linear response calculation. This
discrepancy might perhaps be attributable to insufficient spatial resolution in the COPTIC
calculation, or low-level noise or non-linearity even at this charge level. The result shown is
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from a computationally intensive run using about 280M particles to minimize the effective
collisionality induced by noise. The error bars’ half-height equals the uncertainty estimated
by its deviation from a run based on 30M particles. The inconsistency in the wavelength,
which is 10% shorter in Lampe et al’s result than from COPTIC, cannot be explained on the
basis of COPTIC uncertainty. The COPTIC wavelength is observed in other runs to be very
insensitive to particle charge and mesh. The wavelength discrepancy’s cause is therefore
unknown. However, uncertainties in the linearized calculation (dashed line) are reported
[25] to be probably 5% in amplitude and up to 10% in wavelength. So it appears that the
discrepancies are within the uncertainty of both results.

Figure 12: Contours of potential from COPTIC (solid curves) for Te/Ti = 25, M = 1.5,
φprp/λDe = 0.01, point-charge, and from ref [11] figure 2 (dashed curves).

Fig. 12 is a comparison of potential contours in radius and longitudinal position. The
contour values of figure 2 of [11] are not specified, but appear to coincide with the spacing
chosen here. In any case, it is the shape that is most significant. Once again the qualitative
features are generally in excellent agreement, but there are small quantitative discrepancies.
The total number of contours along the z-axis between the peak (at about 2.5λDe and the
first subsidiary valley (at about 6.5) are the same. But the dashed contours trail the solid
COPTIC contours behind the first potential peak (around 5.0) by over one contour. In
other words, the dashed contours in that region are at larger z than their corresponding
solid contours. This is the opposite sign of discrepancy to that observed in Fig. 11, in which
the linear-response result leads. The other significant discrepancy is that the linear-response
contours at the leading edge (bottom) of the box extend further to the upstream than those
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of COPTIC. It is hard to know how much significance to place on these minor discrepancies.

5 Consistency with Experiments

Examination of the cone-like form of the potential suggests an explanation of the exper-
imental observations of Hebner and Riley: that dissimilar particles, which naturally float
in a sheath at different heights, sometimes align obliquely at small angles (from 30 degrees
downwards) to the vertical. First we note that, if we suppose that only the electric potential
(not e.g. ion drag force) is important, the natural interparticle distance for two particles
vertically aligned is equal to the distance of the first downstream potential peak. In the
present simulations, this is approximately 1.2MλDe. In [21] the observed distance for verti-
cally aligned particles was observed to be approximately 1.5λDe, which is not unreasonable.
However, one must take into account the external potential well that arises from the balance
of vertical forces. In the limit in which this potential well is stronger than the wake fields,
so that the height is controlled by the external sheath dynamics, we can readily deduce the
horizontal equilibrium position. Incidentally this limit seems likely most often to be appro-
priate, since as has been shown here, the wake potential is severely limited by non-linearities.
In [22] the attractive potential wake peak was estimated to be no larger than 21mV in a
Te ∼ 3eV plasma (consistent with being near the upper limit of the linear regime). If the ex-
ternal sheath structure dominates, the particles are constrained to be at some fixed vertical
distance apart dependent upon their different sizes. The downstream particle is therefore
attracted to the peak of the wake potential at a fixed z-position. The transverse position
of this maximum can readily be deduced from the wake potential contours plotted in prior
figures. When the z-position is such as to intersect the axial wake peak, the particle will
align on axis (angle equals zero). However if the z-displacement is such as to intersect the
positive-potential cone off-axis, then it will align off-axis, at the peak of the cone potential.
Examination of Fig. 5(b) shows that the potential peaks off-axis only for z >∼ 25 = 2.5λDe

when M = 1, while from Fig. 7(b) (or Fig. 12 at higher Ti) when M = 1.5 the condition
is z >∼ 3.7λDe ≈ 2.5MλDe. At M = 1.5, the cone persists at least to z = 8λDe. Mach
numbers below 1, e.g. Fig. 7(a), have flatter cone-angle and less-pronounced cone-structures
but might perhaps be able to sustain off-axis alignment. The experiments of [22] observed
off-axis alignment only for the larger vertical displacements >∼ 3.5λDe (although the value
of λDe itself is subject to considerable uncertainties). This observation favors an effective
M somewhat greater than 1. The angle of the peak potential alignment to the upstream
particle is relatively small. The effects of collisions on the wake and the effect of ion drag on
the forces are of course omitted from this estimate. Moreover the present calculations do not
account for the varying external plasma sheath structure. Nevertheless, this comparison is
encouraging. It appears that the small-angle offset from vertical alignment observed in some
experiments for unlike particles is consistent with the downstream particle being attracted
to the off-axis peak of the wake potential when the flow velocity is mildly supersonic.
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6 Conclusion

The behavior of the wake of a sphere in a flowing plasma has been calculated fully non-
linearly. Quantitative comparisons with linear response calculations using the full kinetic
dielectric response are reasonably satisfactory for small enough charge. But the present
work shows that non-linearity affecting the entire wake begins at quite low charge level,
corresponding to a floating sphere radius about 10−2 of the Debye length. Examples of the
potential, density, and ion velocity distribution show the large perturbations and wide range
of scales that are involved in this complex problem.
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