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SUMMARY

We present a model reduction approach to the solution of large-scale statistical inverse problems in a
Bayesian inference setting. Key to the model reduction is an efficient representation of the nonlinear
terms in the reduced model. To achieve this, we present a formulation that employs masked projection
of the discrete equations; that is, we compute an approximation of the nonlinear term using a select
subset of interpolation points. Further, through this formulation we show similarities among the
existing techniques of gappy proper orthogonal decomposition, missing point estimation, and empirical
interpolation via coefficient-function approximation. The resulting model reduction methodology is
applied to a highly nonlinear combustion problem governed by an advection-diffusion-reaction partial
differential equation. Our reduced model is used as a surrogate for a finite element discretization of
the nonlinear partial differential equation within the Markov chain Monte Carlo sampling employed
by the Bayesian inference approach. In two spatial dimensions, we show that this approach yields
accurate results while reducing the computational cost by several orders of magnitude. For the full
three-dimensional problem, a forward solve using a reduced model that has high fidelity over the input
parameter space is more than two million times faster than the full-order finite element model, making
tractable the solution of the statistical inverse problem that would otherwise require many years of
CPU time.

Copyright c© 2000 John Wiley & Sons, Ltd.
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1. Introduction

Effective computational tools to support decision-making under uncertainty are essential
for the design and operation of engineered systems, as well as for predictive modeling of
scientific phenomena. However, characterizing uncertainty for large-scale models is a significant
challenge—even with simplified (e.g. two-dimensional) analyses, the many thousands of
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GALBALLY ET AL. 1

function evaluations required to sample the uncertainty space (e.g. via Monte Carlo sampling)
present an intractable computational burden. Here we present a model reduction approach
that is a key enabler for uncertainty quantification via Monte Carlo sampling for problems
described by large-scale nonlinear systems.

The problem of estimating inputs to a simulation model from observations is fundamentally
an inverse problem. The forward problem seeks to predict the system outputs given the inputs
(including parameter, state, or source inputs) by solving the governing equations. The inverse
problem, on the other hand, reverses this relationship by seeking to estimate uncertain inputs
from measurements or observations. The inverse problem is often formulated as a deterministic
nonlinear optimization problem that seeks to minimize the misfit between observed and
predicted outputs in an appropriate norm while also minimizing a regularization term that
penalizes unwanted features of the inputs. When the forward model is governed by a set of
partial differential equations (PDEs), the result is an optimization problem that is large-scale
in the state variables, even if the number of inversion variables is small.

Estimation of inputs using the regularization approach to inverse problems as described
above will yield an estimate of the “best” input values that simultaneously fit the data and
minimize the regularization penalty term. However, we are interested in not just point estimates
of the best-fit inputs, but a complete statistical description of the input values that is consistent
with the data. The Bayesian approach does this by reformulating the inverse problem as a
problem in statistical inference, incorporating the forward model, prior information on the
inputs, and uncertainties in the measurements. The solution of this inverse problem is the
“posterior” joint probability density of the inputs, which reflects the degree of confidence in
their values [20, 30]. Thus we are able to quantify the resulting uncertainty in the inputs,
taking into account the model, prior information, and uncertainties in the data.

The Bayesian inverse problem framework, in conjunction with Markov chain Monte Carlo
(MCMC) methods for sampling the posterior density, has been employed successfully in
numerous settings; for representative applications, see [20]. However, it remains an outstanding
challenge to apply these methods to large-scale problems with high-dimensional input spaces,
such as those arising from discretization of PDEs, due to the necessity of solving the forward
problem at every sample point. Recently, the use of lower-fidelity models has been proposed
to decrease the cost of sampling [2, 21], by using spatial discretizations that are coarser than
those usually necessary for accurate solution of the forward problem. Unfortunately the level of
mesh coarsening required for decreasing the computational cost of these problems to acceptable
levels typically results in large errors that are often hard to quantify or that even yield unstable
numerical schemes. Recent work has explored acceleration of the Bayesian solution of inverse
problems through the use of stochastic spectral methods [24], exploiting advances in polynomial
chaos representations of random variables and processes for forward uncertainty propagation
[16, 4]. In [13], a coarse model is used to pre-screen acceptance during MCMC sampling,
thereby avoiding the cost of a full model solve on proposals that would be rejected. In this
approach, convergence is proven by showing that “false negatives”—that is, rejecting a proposal
that would have been accepted if it were evaluated with the fine model—do not occur. This
property holds only for certain problems with coarse models of a specific nature.

In this work, we pursue the approach of accelerating the solution of the forward problem
using projection-based model reduction, in which a model of reduced complexity is derived
using projection onto a reduced subspace (as opposed to the coarse-grid reduced models
employed in [2, 21]). In particular, we employ the proper orthogonal decomposition (POD)
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2 NONLINEAR MODEL REDUCTION FOR UNCERTAINTY QUANTIFICATION

method, which uses an ensemble of representative high-fidelity solutions to derive a set of
basis vectors [23, 19, 29] onto which the governing equations are projected. Projection of any
nonlinear terms must be handled carefully, or the result is a reduced model that is of small
dimension but whose solution cost still depends on the dimension of original full model. In
[31], model reduction based on the POD is used to accelerate forward model simulations for
solution of a radiative source statistical inversion problem; however, a specific approach to
reduce the complexity of the projected nonlinear term was not employed in that work.

Efficient nonlinear model reduction has been addressed by several authors. If the problem
under consideration is weakly nonlinear, efficient reduced models can be obtained by retaining
low-order terms in the Taylor series expansion of nonlinear terms [11]. Another approach is to
use the trajectory piecewise-linear scheme, which employs a weighted combination of various
linear models, obtained by linearizing the nonlinear system at selected points along a state
trajectory [27]. Other approaches propose approximating the nonlinear term through selective
sampling of a subset of the original equations [6, 3, 5, 17]. In [3], the missing point estimation
approach, based on the theory of gappy POD [14], is used to approximate nonlinear terms in
the reduced model with selective spatial sampling, while in [5, 17] the Empirical Interpolation
Method (EIM) is used to approximate the nonlinear terms by a linear combination of empirical
basis functions for which the coefficients are determined using interpolation. Here we present
a formulation that employs masked projection of the discrete equations; that is, we compute
an approximation of the nonlinear term using a select subset of interpolation points. We use
this formulation to show similarities among the existing nonlinear model reduction techniques
discussed above.

Section 2 of this paper describes the form of the general nonlinear models considered, while
Section 3 presents the inverse problem formulation and solution approach via MCMC sampling.
Section 4 describes the nonlinear model reduction approach, which in Section 5 is applied
to advection-diffusion-reaction systems representing a jet diffusion flame in a combustor.
Three-dimensional results for a system of over 8.5 million degrees of freedom demonstrate
the scalability of our approach and the immense computational gains that can be achieved
using model reduction. Finally, Section 6 concludes the paper.

2. General Nonlinear Forward Model

We first describe the forward problem that represents systems of interest. To illustrate the
applicability of our approach, we present a general nonlinear model in discrete form. This
general form might result from spatial discretization of a PDE (using, for example, a finite
element or finite volume method), or it might represent a set of differential-algebraic equations
(such as arises in circuit modeling). The nonlinear model is written

R(u;µ) = R0 + Au + s(u;µ) = 0, (1)

where u ∈ R
N is the discrete state vector of N unknowns, and µ ∈ R

p is the vector of
parametric inputs that varies over some parameter domain D. The nonlinear residual vector
R ∈ R

N in (1) is divided into three components as follows. First, R0 ∈ R
N is a source

term that is independent of the state. Second, Au is the contribution from those terms in
the governing equations that have linear state dependence, where A ∈ R

N×N is a constant
(usually sparse) matrix. The third component, s(u;µ) ∈ R

N , is the contribution of all nonlinear
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GALBALLY ET AL. 3

terms. The specific form of the nonlinear term depends on the particular governing equations
at hand. The computational cost of solving (1) depends on both the number of states, N ,
and the complexity of the nonlinear term (which might, for example, involve quadrature
approximations of integrals requiring evaluation of the nonlinear term at many quadrature
points).

Outputs of interest are assumed to be linear combinations of states (general nonlinear
outputs could also be considered). Thus, the output equation is given by

y(u(µ)) = Cu(µ), (2)

where y ∈ R
q is a vector of q outputs of interest and C ∈ R

q×N is a constant matrix that
maps states to outputs. For simplicity of notation, we will write y(u(µ)) as y(µ).

3. Inverse Problem

Given a parameter vector µ ∈ D, the forward problem involves solving (1) to determine
the state u and applying (2) to calculate the output vector y ∈ R

q. Conversely, the
associated inverse problem involves determining an unknown parameter vector µ∗ given a
set of measurements of the outputs ȳ ∈ R

q.
A deterministic approach to solving the inverse problem leads to an optimization problem,

which yields a “best” value of the parameter vector by minimizing the discrepancy between the
measurements and the numerical prediction. However, to handle the effects of experimental
error and/or incomplete knowledge of the parameters due to sparse measurements, a
deterministic formulation can at best incorporate error covariances as a weighting in the
optimization objective. Thus, deterministic results fail to capture comprehensively how
experimental errors propagate through the numerical model underlying the inverse problem,
and they do not quantify the uncertainty associated with the point estimate that results from
solution of the deterministic optimization problem. These shortcomings motivate a statistical
approach to the inverse problem. In particular, we will pursue a Bayesian formulation,
which, rather than determining a single “best” value, incorporates the effects of measurement
uncertainty to yield a probability density function for the parameters µ∗. This section first
presents the deterministic inverse problem formulation, and then describes the Bayesian
formulation and solution method for the statistical inverse problem. Additional details on
the approach can be found in [25, 30].

3.1. Deterministic inverse problem

Given a set of measurements of the output, ȳ ∈ R
q, the deterministic inverse problem seeks

to estimate the input parameters by solving the optimization problem

min
u,µ

‖y − ȳ‖2
2 (3)

subject to R(u;µ) = 0, (3a)

y = Cu, (3b)

µ ∈ D. (3c)

This inverse problem is often ill-posed and some form of regularization is needed to ensure a
unique solution.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:0–0
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4 NONLINEAR MODEL REDUCTION FOR UNCERTAINTY QUANTIFICATION

3.2. Statistical inverse problem

The solution to the statistical inverse problem takes the form of a posterior probability, p(µ∗|ȳ),
which encapsulates the uncertainty in inferring the inputs from the set of measured outputs.
Using Bayes’ theorem, the posterior probability can be expressed as

p(µ∗|ȳ) =
1

p(ȳ)
p(ȳ|µ∗)p(µ∗), (4)

where p(ȳ|µ∗) is the likelihood function, which is the conditional probability of the outputs
given a set of input parameters. The prior probability, p(µ∗), contains all available information
on the distribution of µ∗ before any measurements have been incorporated into the inference.
The remaining factor p(ȳ) is determined by normalization of the posterior probability.

We consider the case where the error in each output measurement is normally distributed
with zero mean, that is,

ȳ = y(µe) + ε, (5)

where µe is the “exact” parameter vector that would have generated the measurements in
the case of zero noise, and ε ∈ R

q are the normally distributed errors with zero mean and
covariance Γε ∈ R

q×q. In the case that the errors are uncorrelated and all measurements have
the same standard deviation, σ, then Γε = σ2I and the components of ε each have distribution
N(0, σ2). In this case, the likelihood function is given by

p(ȳ|µ) ∝ exp

[
−

1

2σ2
(ȳ − y(µ))T (ȳ − y(µ))

]
. (6)

In the general case, no information is assumed about µ except that it must reside in the
parameter domain D. Thus, the prior p(µ) is a uniform distribution over µ ∈ D. (If additional
information about the distribution of µ were available, it would be incorporated into the prior.)
Applying (4), the posterior probability density in the case of uniform prior and Gaussian noise
is

p(µ|ȳ) ∝

{
exp

[
− 1

2σ2 (ȳ − y(µ))T (ȳ − y(µ))
]
, if µ ∈ D

0, otherwise.
(7)

3.3. Markov chain Monte Carlo sampling

The Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithm [18] is used to
numerically sample the posterior distribution in (7), with the goal of using these samples
to estimate statistics of interest. Denote by {µi}Nm

i=1 a Markov chain of Nm parameter samples.
Given a parameter sample µ = µi, the Markov chain algorithm generates a new sample µi+1

by the following two steps:

1. Generation Step: Sample µ′ from a proposal distribution, q(µ′|µ). Also calculate
q(µ|µ′).

2. Acceptance Step: With probability

α(µ′|µ) = min

[
1,

p(µ′|ȳ)q(µ′|µ)

p(µ|ȳ)q(µ|µ′)

]
, (8)

accept the proposal (µi+1 = µ′). Otherwise, reject the proposal (µi+1 = µ).

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:0–0
Prepared using nmeauth.cls



GALBALLY ET AL. 5

Note that if the proposal µ′ falls outside the parameter domain D, p(µ′|ȳ) = 0, and µ′ is
immediately rejected. Otherwise, the calculation of p(µ′|ȳ) by (7) requires a forward solve to
determine y(µ′). This forward solve at every step is the most expensive part of the MCMC
algorithm, often making MCMC impractical for problems governed by large-scale models. We
address this issue in the next section, by deriving an efficient reduced-order model that will
be used for the forward solve, cutting the computational time by several orders of magnitude.

The proposal distribution q(µ′|µ) used in the generation step governs the exploration of the
parameter space and has a direct impact on the acceptance probability, α. If q(µ′|µ) is a very
narrow distribution around µ, exploration of the parameter space will proceed very slowly,
requiring a large Nm (and thus many forward solves) to obtain useful statistics. Conversely, if
q(µ′|µ) is close to uniform over the entire parameter domain, the acceptance ratio will likely
be very small, and Nm will again need to be unnecessarily high for useful statistics.

Two different proposal distributions are used in this work. The first is a uniform distribution
over a hypercube of dimension ∆ ∈ R

p centered at µ in parameter space, so that µ′ is generated
by

µ′ = µ + diag(∆)r, (9)

where the components of r ∈ R
p are drawn from a uniform distribution on [−1/2, 1/2]. Note

that for this proposal, q(µ′|µ) = q(µ|µ′), so that these terms cancel in (8).
The locally-uniform proposal distribution described above will be inefficient at sampling a

posterior distribution that exhibits a high degree of anisotropy. For example, for the posterior
distribution shown in Figure 1, only proposals aligned with the stretched direction have a
reasonable chance of being accepted; the majority of proposals will have α ≪ 1. To improve
the acceptance rate, a second proposal distribution is considered, in the form of an anisotropic
Gaussian centered at µ:

q(µ′|µ) ∝ exp

[
−

1

2δ2
(µ′ − µ)T H(µ)(µ′ − µ)

]
, (10)

where δ is a dimensionless step-size parameter that can be varied to tune the acceptance rate,
similar in role to the size of ∆ for the uniform proposal. The matrix H(µ) ∈ R

p×p represents
the anisotropy of the posterior distribution: its eigenvectors point in the principal stretching
directions, and its eigenvalues control the magnitude of the stretching. It is given by

H(µ) =
1

2σ2

[
∂y

∂µ
(µ)

]T
∂y

∂µ
(µ), (11)

where the Jacobian ∂y/∂µ can be calculated using finite differencing or analytical sensitivites
(e.g. computed using an adjoint approach). The choice of H(µ) in (11) corresponds to a Gauss-
Newton approximation of the Hessian of the outputs with respect to the inputs, and it makes
q(µ′|µ) in (10) a local approximation to the posterior distribution in (7). Specifically, the iso-
probability curves of q(µ′|µ) in parameter space will be stretched ellipses, with the stretching
controlled by the Hessian approximatation. Details on the derivation can be found in [10]. For
this proposal distribution, µ′ is generated by

µ′ = µ + δL−1w,

where H(µ) = LT L is the Cholesky decomposition, and each component of w ∈ R
p is drawn

from N(0, 1). Note that now q(µ′|µ) 6= q(µ|µ′), so that these terms do not cancel in (8).
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Posterior PDF contours

Uniform proposal boundary

µ

µ

2

1

Current
 sample ∆

∆

2

1

Figure 1. Inefficiency of uniform proposal for a sample anisotropic posterior distribution in a two-
dimensional parameter space. Black dot denotes the current sample value in the Markov chain,
µ = µi. Outside the curved contours, the posterior PDF is assumed negligible, so that the acceptance

probability of a random proposal within the square boundary is very small.

However, the calculated H(µ′) matrix can be reused following an accepted proposal, so that the
number of forward solves per MCMC step using the stretched Gaussian proposal is 1+dim(D)
if ∂y/∂µ is approximated by finite differences. Although the per-step expense of using this
proposal is greater than that for the locally-uniform distribution, a net computational decrease
is expected for highly-anisotropic posteriors due to significantly fewer rejected proposals.

3.4. Sampling statistics

The samples {µi}Nm

i=1 are drawn from the posterior probability distribution, so that for
large Nm, the distribution of the samples is expected to converge to the actual probability
distribution of µ∗. However, for any finite Nm, statistical quantities calculated from {µi}Nm

i=1

will only be estimators of the true statistics. Confidence in these estimators is measured by
treating them as random variables and estimating their variances, as described below.

Treating the components of µ as random variables, an estimator for a statistical quantity is
defined by

f̄ ≡
1

Nm

Nm∑

i=1

g(µi), (12)

where g(µ) is the kernel of the estimator. For example, for an estimator of the mean of
parameter µj , where j = 1, 2, . . . , p, g(µ) = µj . For the variance of µj , g(µ) = (µj − µ̄j)

2,

where µ̄j =
∑Nm

i=1
µi

j/Nm is the sample mean. The estimator defined in (12) is itself a random
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GALBALLY ET AL. 7

variable in the sense that different MCMC chains will produce different f̄ . The variance of f̄
with respect to different MCMC chain realizations is a measure of accuracy of the estimator
for a given finite Nm. For Nm → ∞, this variance can be calculated as [25]

var(f̄) =
τgvar(g(µi))

Nm

, (13)

where τg > 0 is the integrated autocorrelation time,

τg = 1 + 2

∞∑

s=1

ρg(s), (14)

and ρg(s) is the normalized autocovariance function for a lag of s,

ρg(s) =
1

var(g(µi))
cov(g(µi), g(µi+s)). (15)

For finite Nm, the estimates for ρg(s) become noisy with increasing s, and hence the sum in
(14) is truncated when noise begins to dominate. In this work, this truncation is performed
heuristically by monitoring the decay of ρg(s) versus s. Such a procedure is deemed sufficient
since the purpose of the estimator variance calculation is to gain insight into the credibility of
the estimator for finite Nm. Note that calculation of a statistic estimator itself requires only
(12).

The MCMC approach to solving the statistical inverse problem may require tens of
thousands of forward problem solutions—making it computationally intractable for the large-
scale systems that result from PDE discretizations. In the next section, we present a model
reduction approach that provides dramatic reductions in the cost of a forward solve. This
reduced model will be used in place of the full-order system within the MCMC sampling.

4. Model Reduction

This section presents a reduced-basis approximation of the general nonlinear system in (1).
The key to the success of the model reduction is an online operation count that is independent
of the number of full-order degrees of freedom and the number of evaluations of the nonlinear
term s(·,µ) in the full-order system.

4.1. Reduced-basis approximation

In the reduced-basis approximation, the state is constrained to lie in an n-dimensional space
spanned by basis functions φj ∈ R

N , 1 ≤ j ≤ n where n ≪ N . The expansion can be written
in compact form as

u ≈ ū + Φur, (16)

where Φ = [φ1, . . . ,φn] ∈ R
N×n, and ur ∈ R

n is the vector of reduced states. The particular
solution ū ∈ R

N is included for discretizations that enforce the Dirichlet boundary condition
strongly, since the basis functions are chosen to satisfy homogeneous boundary conditions.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:0–0
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8 NONLINEAR MODEL REDUCTION FOR UNCERTAINTY QUANTIFICATION

The discrete reduced model is obtained by substituting (16) into (1) and, in standard
Galerkin projection fashion, requiring the resulting residual to be orthogonal to the space
spanned by the basis vectors φj , yielding

Rr + Arur + ΦT s(ū + Φur;µ) = 0, (17)

where Rr = ΦT (R0 + Aū) ∈ R
n, and Ar = ΦT AΦ ∈ R

n×n. Efficient evaluation of the
nonlinear term will be addressed in the next subsection. The reduced model approximation of
the outputs defined by (2) is given by

yr(ur(µ)) = Crur(µ), (18)

where yr ∈ R
q is the reduced model approximation of the q outputs of interest and Cr = CΦ.

The n basis vectors φj can be obtained by many methods. In this work, we use the proper
orthogonal decomposition (POD) [23, 19, 29]. Using the method of snapshots [29], the basis
vectors are computed from a set of K > n solution snapshots, {uk}K

k=1, where uk ≡ u(µk) is
the state solution computed for the kth parameter sample, µk. The parameter sample points are
chosen by grid-sampling when the parameter space dimension is low (≤ 3), or an optimization-
based adaptive sampling technique [9, 15] otherwise. The POD procedure consists of finding
a set of orthonormal basis vectors that most accurately represent the snapshots in a mean-
square error sense. Specifically, the basis vectors are chosen such that the sum of the square-
magnitudes of the snapshot projections onto the basis set is maximum. In this work, the
continuous L2 inner product over the domain Ω is used for the projections.

4.2. Interpolation of nonlinear term by masked projection

While (17) represents n discrete equations in n unknowns, the cost of its solution still depends
on the size of the original problem through the evaluation of s(·;µ) and its projection onto the
reduced basis. For large problems, these computations will dominate the online cost of solving
the reduced model. In this work, an online cost independent of the size of the original problem
is achieved by combining the reduced basis approximation with the empirical interpolation
method of [5, 17]. Here we present an interpretation of that method as a masked projection,
that is, evaluations of the nonlinear term over a subset of points, as described below.

The starting point for this construction is a set of K snapshots of the nonlinear term,
{sk}K

k=1, where sk = s(uk;µk) is the nonlinear term corresponding to the kth state snapshot.
From these snapshots of the nonlinear term, a set of m < K POD basis vectors is computed,
where m is chosen so that the basis vectors accurately span the space of the snapshots. The
resulting expansion of a nonlinear vector s ∈ R

N takes the form,

s ≈ Φssr, (19)

where Φs = [φs
1, . . . ,φ

s
m] ∈ R

N×m contains the orthonormal basis functions resulting from the
POD applied to the snapshots of the nonlinear vector, and sr ∈ R

m is the vector of expansion
coefficients. As in (16), the approximation sign indicates that a general nonlinear vector s will
not lie exactly in the span of {φs

i}
m
i=1.

The approximation in (19) does not in itself yield an efficient reduced model because
calculation of the expansion coefficients via projection, sr = (Φs)T s, depends on N . An N -
independent reduced model is obtained by applying masked projection [14, 8, 32, 3] to calculate
sr approximately; that is, an approximation of sr is computed using a small subset, m << N ,

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:0–0
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GALBALLY ET AL. 9

of the components of s. Note that the number of components of s used to calculate sr is the
same as the number of basis vectors for the nonlinear term. Using fewer then m components
of s would result in an under-determined system for sr. On the other hand, using more than
m components would result in an over-determined system, which could yield a more robust
solution. This possibility has not been explored in the present work. We denote the indices of
the sampled components of s used for creating sr by zi ∈ 1, . . . , N , where i ∈ 1, . . . ,m. That
is, for each i in 1, . . . ,m, the sampled index zi is an integer that gives the row number at which
the column vector s ∈ R

N is sampled. The full set of these sampled indices is then defined by
the mask matrix Z ∈ R

m×N whose ijth entry is

Zij = 1 if j = zi,

Zij = 0 otherwise.

We now compute s̃r, the approximation to sr, using just the m sampled indices in the mask.
Multiplying (19) by Z yields

Zs ≈ ZΦssr, (20)

where ZΦs is a square matrix. Assuming that this matrix is invertible, we solve for sr,

s̃r ≈ (ZΦs)
−1

Zs. (21)

Substituting back into (19) yields the approximate representation

s̃ ≈ ΨsZs, (22)

where Ψs = Φs (ZΦs)
−1

∈ R
N×m, and s̃ denotes the approximation to s due to masked

projection. Note that the columns of Ψs form a cardinal basis set with respect to the sampled
indices in the sense that ZΨs = Im×m, where I is the identity matrix. This property explains
the use of “interpolation” to describe the approximation of the nonlinear term.

Finally, we substitute s̃ from (22) for s in (17), to yield the reduced model

Rr + Arur + ΦT ΨsZs = 0. (23)

Evaluation of Zs is efficient when the calculation of each component of s is local (that is,
based on only a few components of u at a time). Then only O(m) components of u are used
to compute Zs. This is the case in many problems where interpolation is used to compute the
nonlinear contributions. For example, quadrature is often employed to approximate integrals
that arise from a finite element discretization of nonlinear governing equations. In that case,
the full discretized model might have a nonlinear term of the form

s(u;µ) = Ef(Du;µ), (24)

where any integrals contributing to this nonlinear component are assumed to be evaluated
using numerical quadrature with a total of M quadrature points over the numerical domain.
Thus, D ∈ R

M×N in (24) is an interpolation matrix mapping the discrete unknown states (e.g.
nodal values of u) to values of u at the M quadrature points. The vector f(·,µ) is the nonlinear
term: it is evaluated at all components of its first input argument. Thus, f(·,µ) ∈ R

M contains
the evaluation of the nonlinear term at the quadrature points, and E ∈ R

N×M prescribes how
the M evaluations of the nonlinear term enter into each algebraic equation. Both D and E are
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10 NONLINEAR MODEL REDUCTION FOR UNCERTAINTY QUANTIFICATION

typically sparse, and they are not constructed in practice. However, the cost of solving the full
model in this case depends on both the number of states, N , and the number of evaluations
of the nonlinear term, M . The reduced model in this case is constructed using snapshots of
f(·,µ) to compute the basis Ψs, and reads

Rr + Arur + Er fr(ūr + Drur;µ) = 0, (25)

where

Er = ΦT EΨ ∈ R
n×m,

Dr = ZDΦ ∈ R
m×n,

ūr = ZDū ∈ R
m,

and fr ∈ R
m contains the nonlinear terms evaluated only at the mask sampled indices, that

is, fr = Zf .
All of the matrices and calculations in (25) are independent of N , and hence the reduced

model is inexpensive to solve. The matrices in (25) can be computed in an offline stage, so
that each online calculation requires solving a system of just n nonlinear equations, with just
m evaluations of f(·;µ) per residual evaluation.

4.3. Mask construction

The idea of using masks has been explored previously in the contexts of reconstructing missing
data and model reduction. Everson and Sirovich applied a least-squares variation of (21), in
which Z contained more than m rows, to reconstruct facial images from ones with missing pixels
in a technique termed gappy POD [14]. This technique was subsequently applied to steady
and unsteady aerodynamic flow reconstruction problems using data from a limited number of
sensors [8, 32]. Astrid et al. applied a similar idea to reduce the cost of an inner-product between
two vectors by sampling the vectors at masked indices, using a least-squares variation of (21)
to obtain the approximate orthonormal basis coefficients, and evaluating the dot product
between the resulting coefficient vectors [3]. In a continuous setting, a mask consists of a set
of interpolation points, and (22) becomes the coefficient-function approximation of [5, 17].
As mentioned in [3], reconstruction of information using gappy spatial data is a reasonable
strategy since, for those applications for which model reduction is effective, the basis vectors
are often relatively smooth in space and thus amenable to interpolation.

The accuracy of the reduced model depends on the choice of the mask Z. Indeed certain
choices can make ZΦs singular or severely ill-conditioned. Astrid et al. [3] and Willcox [32]
use this observation directly to drive a greedy algorithm that chooses sampling points to
minimize the condition number of ZΦs. In a continuous setting, Nguyen et al. [26] propose
two alternate mask-selection techniques: the Best Points Interpolation Method (BPIM), and
the Empirical Interpolation Method (EIM). The BPIM consists of solving an optimization
problem to minimize the error between the masked projection and the full projection of the
K snapshots of the nonlinear term. Applied to the problem at hand, this means choosing Z as

Z = arg min
Z

K∑

k=1

(
ΦsT sk − (ZΦs)−1Zsk

)2

, (26)

which can be an expensive least-squares minimization problem. Alternatively, the EIM is a
greedy algorithm that is sub-optimal but less expensive. In the EIM, the mask is built in a
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GALBALLY ET AL. 11

recursive manner, with the i+1st sampling point chosen at the location where the error between
φs

i+1 and its reconstruction using the first i sampling points is maximum. For example, provided
with an additional basis function, φs

m+1, the m + 1st sampling point would be chosen as the
index where the norm of the following error vector is maximum:

∣∣φs
m+1 − Φs(ZΦs)−1Zφs

m+1

∣∣ ,

and Z would be augmented with an additional row accordingly. In this work, both the BPIM
and the EIM are used.

5. Results

In this section we present results for an advection-diffusion-reaction system that represents a
jet diffusion flame in a combustor. The governing equations are given by

∇ · (Uu) −∇ · (ν∇u) + f(u;µ) = 0 in Ω,

u = uD on ∂ΩD, (27)

∇u · n = 0 on ∂Ω\∂ΩD,

where the field variable u represents the concentration of fuel in a domain Ω. The velocity field,
U, and diffusion coefficient, ν, are taken as constant. The field is specified with u = uD on the
Dirichlet inflow boundary ∂ΩD, and zero diffusive flux is prescribed on all other boundaries.
The nonlinear reaction term f(u;µ) is of Arrhenius type and is given by

f(u;µ) = Au(c − u)e
−E

d−u , (28)

where c and d are known constants and the system parameters µ = (ln(A), E) can vary
within the parameter domain D ≡ [5.00, 7.25]× [0.05, 0.15] ⊂ R

2. Physically, u represents fuel
concentration, while c−u is the oxidizer concentration. In practice, the Arrhenius parameters
A and E are unknown and are inferred from experimental data, which often consist of average
concentration measurements along lines or planes in the domain. Hence, this example is well-
suited for the inverse problem context.

Figure 2 shows the combustor domain. A constant flow velocity of 0.2 m/s is imposed in
the positive x direction. The diffusivity is set to ν = 5 × 10−6 m2/s, and the fixed Arrhenius
parameters are c = 0.2 and d = 0.24. At the Dirichlet boundary on the left of the domain,
uD is set to c at the fuel inflow, and to 0 at the oxidizer inflow. The output vector consists of
average fuel concentrations at the measurement planes.

In the following, we first present a Streamline Upwind Petrov-Galerkin (SUPG) finite
element discretization of (27) on a simplified domain in two dimensions. The resulting system
of N = 3, 383 equations allows for detailed comparisons between full-order and reduced-order
results. Second, we present a discontinuous Galerkin (DG) discretization of (27) on the full
three-dimensional domain, which leads to a very large system with more than 8.5 million
degrees of freedom. For both formulations, the discrete full-order and reduced-order equations
are solved using a damped Newton method.

5.1. Model problem in two dimensions

The two-dimensional domain is formed from a vertical slice at constant y in the center of the
combustor shown in Figure 2. Thus, the output vector consists of 17 average concentrations
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Figure 2. Combustor model domain and problem setup.

measured on vertical lines at the equally-spaced x locations shown in the figure. All reduced-
order approximations were constructed using a set of K = 196 snapshots generated with
parameter vectors µk on a uniform 14 × 14 grid in the parameter space D (one snapshot per
parameter point). Although the choice of snapshots is important for adequately capturing the
relevant physics, there are no rigorous error guarantees for the problem at hand. Instead, in
this work we rely on grid-based sampling, and we check the errors a posteriori.

5.1.1. SUPG discretization An SUPG finite element discretization of (27) in two dimensions
is defined on standard linear triangles. The total number of degrees of freedom, N , is the
number of nodes in the mesh, not including the nodes on the Dirichlet boundary. For the finite
element mesh used in this work, N = 3, 383. The spatial resolution of the mesh is uniform
along the x direction, as the location of the reaction front varies significantly for the parameter
range considered. In the z direction, the mesh has less resolution away from the centerline since
the reaction front extends minimally into this region [15]. The solutions at various parameter
samples were examined visually to deduce that the chosen resolution adequately captured the
physics of the problem, and the set of equations arising from the finite element discretization
was treated as the “true” system for the projection-based model reduction.

Denote by VD the approximation space of piecewise linear functions satisfying the Dirichlet
boundary conditions, and by V the piecewise linear space of test functions satisfying the
homogenous form of the Dirichlet boundary conditions. For w ∈ VD and v ∈ V , the semilinear
form obtained from (27) reads

R(w, v;µ) =

Ne∑

k=1

∫

Ωk

(vU · ∇w + ν∇v · ∇w + v f(w;µ)) dx

+

Ne∑

k=1

∫

Ωk

τkU · ∇v (U · ∇w + f(w;µ)) dx, (29)
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GALBALLY ET AL. 13

where Ne is the number of elements, Ωk denotes the kth element, and τk is a SUPG stabilization
parameter required to prevent spurious solution oscillations for advection-dominated flows. In
this work, the following choice of τk, due to Brooks and Hughes [7], is used

τk =
hk

2||U||

(
coth(Pek) −

1

Pek

)
, Pek ≡ ||U||hk/(2ν),

where hk is a measure of the size of element k.
In the general discrete form (1), this SUPG discretization leads to the following terms

that comprise the nonlinear residual vector: R0 is zero and A is formed from all the terms
containing ∇w in (29). The nonlinear contributions are approximated using quadrature, thus
giving a term of the form (24), where D consists of the finite element basis functions evaluated
at the element quadrature points, and E is DT multiplied by the quadrature weights. Four
quadrature points are used for each element, giving M = 26, 784 for the mesh used here. One
particular solution satisfying the Dirichlet boundary conditions is chosen for ū in (16).

5.1.2. Performance of the reduced model To test the accuracy of the model reduction
technique for the forward problem, reduced models of various sizes, n and m, were constructed
using the set of K = 196 snapshots. In addition, the EIM was compared to the BPIM for
creating the projection mask for the nonlinear term. The accuracy of each reduced model was
assessed by computing an average relative error norm of outputs over a set of test parameters:

εrel = mean
µ∈Ξtest

‖y(µ) − yr(µ)‖

‖y(µ)‖
, (30)

where the test set Ξtest consists of a 23 × 23 grid in parameter space and contains different
parameter samples from those used to create the POD basis.

Figure 3 shows εrel as a function of n and m for reduced models using both the EIM and
the BPIM. For a given value of m, the error decreases as n is increased until a point is reached
where the convergence stalls: the error remains constant regardless of the number of basis
functions added to the approximation space. Convergence stalls when the error in the solution
is dominated by the error due to the approximation of the nonlinear term. Using BPIM to
create the reduced model approximation only has an effect on the point where convergence
stalls. That is, for a given value of m, the minimum achievable error (for sufficiently large n)
when using BPIM is less than when using EIM. Note that before the error curves level off both
methods provide almost identical results.

To provide additional insight into the point at which the curves in Figure 3 start to level off,
the singular values of the state snapshot matrix, {uk}K

k=1, and of the nonlinear term snapshot
matrix, {sk}K

k=1, are plotted in Figure 4. The singular values are normalized by the largest
singular value in order to compare the decay rates. The slower decay rate in the singular values
of {sk}K

k=1 suggests that the space spanned by the nonlinear term snapshots is richer than the
space spanned by the state snapshots, and hence that it is advantageous to use m > n.

Figure 5 shows sample concentration profiles for both full and reduced solutions, and Table I
presents a summary of the numerical results obtained with the reduced models. Shown are the
maximum and average relative errors in the output over the test space Ξtest, and a comparison
of the online computational time of the reduced model versus the full model. Note that outputs
can be computed more than 50, 000 times faster using the reduced model than using the full
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Figure 3. The average relative error norm of the output, εrel, for the two-dimensional problem as a
function of n and m when the nonlinear term projection mask is built using EIM (solid lines) versus

BPIM (dashed lines).
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Figure 4. The singular values of the state snapshot matrix and of the nonlinear term snapshot matrix,
normalized by the largest singular value in each case.

Copyright c© 2000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2000; 00:0–0
Prepared using nmeauth.cls



GALBALLY ET AL. 15

Figure 5. Comparison of full model (left) and reduced model (right) solutions for two-dimensional
problem with µ = (ln(A), E) = (6.4318, 0.1091). The reduced model was constructed using n = 40,

m = 50, and the EIM for creating the projection mask.

n m Avg. rel. error Max. rel. error Online time
5 50 2.25E − 02 9.73E − 02 1.59E − 05
10 50 3.03E − 03 2.78E − 02 1.61E − 05
20 50 1.18E − 04 2.00E − 03 1.63E − 05
30 50 1.26E − 05 4.48E − 04 1.71E − 05
40 50 2.47E − 06 1.34E − 04 2.00E − 05

Table I. Maximum and average relative errors in the output of the reduced model for the two-
dimensional problem over the parameter test grid Ξtest and online computational time required by
the reduced-model solver as a function of n for m = 50 and using the BPIM to create the projection
mask. Computational times are normalized with respect to the time required by the full model to

compute the solution at µ = (7.25, 0.05).

model for all values of n and m shown in this table. Furthermore, the convergence of the
reduced-model approximation is excellent as n is increased.

The offline cost for building a reduced model in this example consists of 196 full model
snapshot solutions, plus the (relatively small) computational cost of forming the POD bases
that span the state and nonlinear term spaces. In multiple-query contexts such as the MCMC
sampling considered in the next section, this up-front cost is quickly amortized. Furthermore, in
real-time applications, building a reduced model may be the only viable option for computing
results in the required amount of time.

5.1.3. Inverse problem solution The reduced model generated with n = 40 and m = 50
was used to solve the statistical inverse problem via the Bayesian inference approach. A set
of measurements was generated according to (5) using µe = (6.7386, 0.0727) and normally-
distributed errors with standard deviation σ = 3.54×10−3 (1.5% of the output mean). The goal
of the inverse problem was to determine the posterior probability distributions of the Arrhenius
parameters µ∗

1 = log(A∗) and µ∗

2 = E∗. To this end, a Markov chain of size Nm = 50, 000 was
generated according to the MCMC algorithm presented in Section 3. The uniform proposal
distribution was used for sample generation, and ∆ in (9) was set to one quarter the dimensions
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(b) Variance

Figure 6. Normalized autocovariance functions for mean and variance estimators for the two-
dimensional problem.

of D based on empirical trials.

To assess convergence of the Markov chain, the integrated autocorrelation time, τg, was
calculated for the mean and variance of both input parameters, according to (14). The values
of τg were all between 222 and 304, significantly less than Nm. Figure 6 shows the normalized
autocovariance functions for mean and variance estimators, as defined by (15) for two different
Markov chain realizations. The normalized autocovariance functions can be seen to approach
zero smoothly and then to oscillate randomly due to noise. In addition, no obvious trend is
apparent in the sample sequences, which are shown in Figure 7. These checks imply that the
computed Markov chain is adequate for obtaining reliable posterior probability distributions
for the unknown input parameters of the inverse problem.

The marginal posterior histograms for both parameters are shown in Figure 8. The mean
values associated with the calculated distribution of µ∗ deviate from the original values in
µe because the inversion was performed for one realization of the measurement errors. In
particular, the mean estimates for the parameters computed from the Markov chain samples
are 6.70±.013 for ln(A) and .068±.0015 for E. The standard deviation estimates are .086±.007
for ln(A) and .0095 ± .0007 for E. The accompanying intervals are the 95% credible intervals
obtained from the estimator variance calculation outlined in Section 3.4.

An important question is the effect on the inference results of using the reduced model in
place of the full CFD model for the sample evaluations. From Table I, it can be seen that the
n = 40, m = 50 reduced model exhibits an average relative error of 2.47×10−6 and a maximum
error of 1.34×10−4 compared to the full finite element model solution over the parameter test
set. We can determine the effect of reduced model error on the computed statistics by using the
full model to solve the statistical inverse problem for the same output measurement vector and
realization of experimental error. Using the full model, a Markov chain of 10,000 samples was
generated, again using the uniform proposal distribution for sample generation. The number
of samples was limited by computational time, as the full model is several orders of magnitude
more expensive compared to the reduced model. Convergence of this Markov chain was verified
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Figure 7. Markov chain samples from posterior probability distribution for the Arrhenius parameters
obtained using the reduced model with n = 40 and m = 50 for the two-dimensional problem.
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2 = E∗ for the two-dimensional
problem with an NM = 50, 000 Markov chain generated using the reduced model with n = 40
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2) can vary within the system parameters domain D ≡
[5.00, 7.25] × [0.05, 0.15] ⊂ R

2.
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Figure 9. 95% credible intervals for the mean of µ∗

1 = log(A∗) and µ∗

2 = E∗, computed using Markov
chains with 10, 000 and 50, 000 samples for the two-dimensional problem. The reduced model was

constructed using n = 40 and m = 50.

using the criteria discussed in Section 3.4. Figure 9 illustrates the estimated means of the two
parameters with 95% credible intervals for the full model MCMC. For reference, results from
a 10,000-sample reduced model MCMC are also shown.

It can be seen from Figure 9 that for the 10,000-sample case both the parameter mean
estimates and 95% credible intervals are in good agreement between the reduced and full-order
models. Further, as expected, the credible intervals are wider for the five-fold shorter Markov
chain. This empirical validation shows that a reduced model with high levels of accuracy over
the parametric input space can provide an accurate solution to the statistical inverse problem;
however, in the general case no rigorous guarantees can be made regarding the effects of model
reduction error. An interesting future research direction is the inclusion of estimates of reduced
model error as an additional source of uncertainty in the Bayesian formulation (although again,
in the general nonlinear case, any model of reduction error will be heuristic and provide no
rigorous guarantees). However, despite the lack of a priori guarantees, it is important to note
that the reduced model delivers the statistical inverse problem results approximately 4,000
times faster than the full model. This points to model reduction as a key enabler for solving
statistical inverse problems involving large-scale systems that would otherwise be intractable.
The full three-dimensional model of this combustor system is such a case, as described in the
next section.

5.2. Three-dimensional demonstration case

In three dimensions, the computational domain is the parallelepiped shown in Figure 2. The
flow velocity U is uniform in the positive x direction, and the inflow consists of a center square
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on the minimum-x boundary face. The output vector consists of 21 average concentrations
measured on cut planes taken as shown in Figure 2. All reduced models were constructed
using a set of K = 169 snapshots generated with parameter vectors µk on a uniform 13 × 13
grid in the parameter space D. The size of this grid was in part driven by computational
resource limits, although the errors were checked a posteriori.

5.2.1. Discontinuous Galerkin discretization A DG finite element discretization of (27) in
three dimensions is performed with hexahedral elements. The solution/test space, V DG,
consists of piecewise-discontinuous tensor-product polynomials of order pDG over the elements.
On each element the basis is formed from tensor-product Lagrange functions, so that the total
number of degrees of freedom is N = Ne(pDG + 1)3, where Ne is the number of elements.
N discrete equations are obtained by multiplying (27) by the basis functions and integrating
over the computational domain. Pure upwinding is used for the advection term, and interior-
penalty stabilization is used for the diffusion term. Details on the DG discretization can be
found in the literature [12, 1]. For completeness, the semilinear form for general w, v ∈ V DG

is given below:

R(w, v;µ) =

Ne∑

k=1

∫

Ωk

(−∇v ·Uw + ν∇v · ∇w + v f(w;µ)) dx

+

∫

Γ

(v+ − v−)F̂(w+, w−) · n ds − ν

∫

Γ

JwK · {∇v} ds

− ν

∫

Γ

JvK · {∇w} ds + ν

∫

Γ∪ΩD

ηf (hf )−1JvK · JwK ds

+

∫

∂ΩD

vuDU · n ds − ν

∫

∂ΩD

(w − uD)∇v · n ds, (31)

where Ωk denotes the kth element, Γ denotes the set of interior faces, (·)+/(·)− refers to
quantities taken from the left/right sides of an interior face, n is the face normal vector,

JwK = w+n+ + w−n−, {w} = (w+ + w−)/2, F̂(w+, w−) is an upwind flux corresponding to
Uw, hf is a length measure for face f based on the face area and adjacent element volumes,
and ηf is a stabilization constant [28].

Using (31) the discrete matrices and vectors in (1) are constructed similarly to the SUPG
case, with the exception that R0 now contains the weakly-enforced Dirichlet boundary data.
Also, as the boundary conditions are enforced weakly, ū = 0 in (16). In the reduction of the
nonlinear term, the EIM was used to create the projection mask. The finite element mesh
contains 314,928 quadratic elements, spaced uniformly over the domain, for a total of over
8.5 million unknowns. For each element, 64 quadrature points were used to approximate the
nonlinear term, giving M = 20, 155, 392. The large number of unknowns ensures adequate
resolution of the reaction front for the parameter range of interest and demonstrates the
applicability of the model reduction technique to a large-scale problem.

5.2.2. Parallel implementation To enable large-scale simulations, the DG solver and offline
model reduction were implemented for parallel computation on distributed-memory clusters
with MPI communication. The underlying premise of the implementation is that all operations
involving N or M should be parallelized. Thus, solution of the full-scale system of equations
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20 NONLINEAR MODEL REDUCTION FOR UNCERTAINTY QUANTIFICATION

during snapshot generation was performed using a parallelized Newton Generalized Minimal
RESidual (GMRES) solver, using ParMetis for mesh partitioning [22]. All K snapshots were
then loaded from disk and partitioned, with each processor storing a partition of every snapshot
vector. The POD coefficient matrix was constructed by performing K2 inner products in
parallel and gathering the resulting K × K matrix onto the root processor for eigenvalue
calculation. The POD basis was then formed by broadcasting the eigenvectors of the POD
correlation matrix to all the processors and calculating the appropriate linear combinations of
snapshots in parallel.

The reduced quantities Rr and Ar in (25) were created in parallel by evaluating the linear
residual n+1 times to obtain R0 and AΦ, and then dotting these vectors with Φ. Snapshots of
the nonlinear term were computed locally at element quadrature points on each processor, and
then reduced via POD in the parallel manner described above to yield Φs. The mask Z was
created via the EIM in parallel, using straightforward vector operations and maximizations.
The matrix Er in (25) was first formed locally on each processor by looping over the quadrature
points of the processor-local elements, and then gathered/summed onto the root processor.
Finally, rows of Dr were created by the processors containing the unknowns corresponding to
the mask Z, and they were assembled on the root processor. Note that ūr is zero because ū is
zero.

5.2.3. Performance of the reduced model Reduced models of various sizes, n and m, were
constructed using the set of K = 169 snapshots and the EIM. The accuracy of each reduced
model was assessed by computing an average relative error norm of outputs according to (30),
using a 17 × 17 grid in parameter space for Ξtest. Sample concentration profiles are shown in
Figure 10, for both full and reduced solutions.

(a) Full finite element (b) Reduced model

Figure 10. Concentration contours of three-dimensional full-model and reduced-model solutions for
µ = (ln(A), E) = (5.5625, 0.14167), including an iso-surface at u = 0.17. The reduced model was

constructed using n = 40, m = 50, and the EIM for creating the projection mask.

Figure 11 shows εrel as a function of n and m. As in the two-dimensional results, for a given
value of m, the error decreases as n is increased until a point is reached where the solution is
dominated by the error due to the approximation of the nonlinear term and convergence stalls.
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Figure 11. Average relative error norm of the output, εrel, as a function of n and m for the three-
dimensional example. The EIM was used to construct the nonlinear term projection mask.

As in two dimensions, the convergence of the reduced model with n is excellent. Furthermore,
the relative computational time savings is even greater in three dimensions: all reduced models
ran in under .023 seconds CPU time on a single processor, whereas each forward solve of the
full-order model required a wall clock time of 13 hours when run on 26 processors. Thus, an
average relative error of 10−6 can be achieved with a reduced model that is more than two
million times faster than the full-order model. Note that the symmetry of the problem chosen
is such that only a quarter of the domain needs to be modeled. The fact that the entire domain
is considered in these runs adversely affects the full-order computation time, whereas in the
reduced model the symmetry is accounted for in the basis functions. Nevertheless, with a factor
of four adjustment, or even one or two orders of magnitude if adaptive mesh refinement were
employed, the speedup of the reduced model would still be crucial for the inverse problem
application at hand.

5.2.4. Inverse problem solution The statistical inverse problem was solved using the Bayesian
inference approach with the reduced model generated with n = 40 and m = 50. The large
cost of each full-order solve prohibited an inverse calculation with the full-order equations—
even a 1000-sample MCMC would require approximately 1.5 years of CPU time. A set of
measurements was generated according to (5) using µe = (5.625, 0.1) and normally-distributed
errors with standard deviation set to 1.5% of the output mean. To determine the mean and
variance of the input parameters, a Markov chain of size Nm = 50, 000 was generated using the
uniform proposal distribution with ∆ set to one quarter the dimensions of D. The Markov chain
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Figure 12. Markov chain samples from posterior probability distribution for the Arrhenius parameters
obtained using the reduced model with n = 40 and m = 50 for the three-dimensional example. The
uniform proposal was used in the Markov chain generation step, yielding an acceptance rate of 3.6%.

was deemed converged, as the autocorrelation time, τg, was calculated to be less than 250, the
sample sequences shown in Figure 12 show no obvious trends, and the autocovariance function
was found to decrease smoothly with the lag before being dominated by noise. The marginal
posterior histograms for both parameters are shown in Figure 13. The mean estimates for the
parameters computed from the Markov chain samples are 5.512±.011 for ln(A) and .093±.0015
for E. The standard deviation estimates are .075± .0056 for ln(A) and .0107± .0008 for E. The
accompanying intervals are the 95% credible intervals obtained from the estimator variance
calculations. As in the two-dimensional example, the mean values deviate from the original
values in µe because the inversion was performed for one realization of the measurement errors.

The Markov chain acceptance rate, defined as the number of accepted proposals divided
by Nm, was observed to be 3.4% for the uniform proposal. This low acceptance rate can be
attributed to the anisotropy in the posterior distribution, which is shown in Figure 14. To
improve the acceptance rate, a stretched-Gaussian proposal was implemented, as described in
Section 3.3, using δ = 1.5 for the dimensionless step-size parameter and finite differencing for
calculation of ∂y/∂µ in (10). MCMC experiments indicated an acceptance rate of 27% using
this stretched proposal, and hence many fewer samples were required for the desired statistics.
Specifically, using Nm = 5, 000, the calculated statistics were: mean estimates of 5.514± .0075
for ln(A) and .0936 ± .0011 for E; standard deviation estimates of .078 ± .0054 for ln(A) and
.0111 ± .00075 for E. Note that the estimator credible intervals are tighter compared to the
Nm = 50, 000 Markov chain, even though an order of magnitude fewer samples were taken.
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Figure 13. Marginal posterior histograms for µ∗

1 = log(A∗) and µ∗

2 = E∗ for the three-dimensional
example with an NM = 50, 000 Markov chain generated using the reduced model with n = 40 and

m = 50 and the uniform proposal.
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Figure 14. Iso-probability contours of the posterior distribution (7) in parameter space, generated
by sampling the parameter space with a 256 × 256 grid, for the three-dimensional example with
µ

e
= (5.625, 0.1) and σ = 1.5% of the output mean. The reduced model with n = 40 and m = 50 was

used for the sampling.
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Figure 15. Markov chain samples from posterior probability distribution for the Arrhenius parameters
obtained using the reduced model with n = 40 and m = 50 for the three-dimensional example. The
stretched-Gaussian proposal was used in the Markov chain generation step, yielding an acceptance

rate of 27%.

Accounting for the finite differencing in the linearization calculations, using the stretched-
Gaussian proposal yields a cost savings of over a factor of 3. Furthermore, the Markov chain
was deemed converged, as the autocorrelation time, τg, was calculated to be less than 10, the
sample sequences shown in Figure 15 show no obvious trends, and the autocovariance function
was found to decrease smoothly with the lag before being dominated by noise. The resulting
marginal posterior histograms for the two parameters are shown in Figure 16.

6. Conclusions

This paper presents an application of nonlinear model reduction to an inverse problem solution
in a Bayesian inference setting. The inherent multiple-query context of the Bayesian approach
makes model reduction an attractive option for large-scale problems. Indeed accurate results
are obtained by using the reduced model in MCMC simulations at computational costs several
orders of magnitude less than that of the full-order model.

The nonlinear model reduction is presented in a discrete projection framework in which
masked projection is used to reduce the number of evaluations of the nonlinear term.
Similarities between this method and existing techniques, such as gappy POD, missing
point estimation, and coefficient-function approximation, are identified. In addition, a parallel
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Figure 16. Marginal posterior histograms for µ∗

1 = log(A∗) and µ∗

2 = E∗ for the three-dimensional
example with an NM = 5, 000 Markov chain generated using the reduced model with n = 40 and

m = 50 and the stretched-Gaussian proposal.

implementation of the reduction procedure is presented and demonstrated on a large-scale
problem with 8.5 million degrees of freedom. Although only steady-state test problems are
considered in this work, the discrete projection framework extends naturally to unsteady
problems, where the discrete system is augmented by a mass matrix multiplying the time
derivative of u. In this case, the accuracy of the reduced model will depend on how well the
chosen basis represents the time history of u.

While grid-based parameter sampling for the snapshots was sufficient for the two parameters
considered in this work, a model-constrained adaptive sampling approach [9, 15] will be
necessary as the number of parameters is increased. In addition, although relatively high-
accuracy reduced models were used in the Markov-Chain Monte Carlo approach, further work
is required to quantify the effect of model reduction errors on the statistics of interest.
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