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ABSTRACT

Understanding the microbial world is key to understanding global biogeochemistry, human health and
disease, yet this world is largely inaccessible. Microbial genomes, an increasingly accessible data source,
provide an ideal entry point. The genome sequences of different microbes may be compared using the
tools of population genetics to infer important genetic changes allowing them to diversify ecologically
and adapt to distinct ecological niches. Yet the toolkit of population genetics was developed largely with
sexual eukaryotes in mind.

In this work, I assess and develop tools for inferring natural selection in microbial genomes. Many tools
rely on population genetics theory, and thus require defining distinct populations, or species, of bacteria.
Because sex (recombination) is not required for reproduction, some bacteria recombine only rarely, while
others are extremely promiscuous, exchanging genes across great genetic distances. This behavior poses a
challenge for defining microbial population boundaries.

This thesis begins with a discussion of how recombination and positive selection interact to promote
ecological adaptation. I then describe a general pipeline for quantifying the impacts of mutation,
recombination and selection on microbial genomes, and apply it to two closely related, yet ecologically
distinct populations of Vibrio splendidus, each with its own microhabitat preference. I introduce a new
tool, STARRInIGHTS, for inferring homologous recombination events. By assessing rates of
recombination within and between ecological populations, I conclude that ecological differentiation is
driven by small number of habitat-specific alleles, while most loci are shared freely across habitats.

The remainder of the thesis focuses on lineage-specific changes in natural selection among anciently
diverged species of gammaproteobacteria. I develop two new metrics, selective signatures and slow:fast,
for detecting deviations from the expected rate of evolution in ‘core’ proteins (present in single copy in
most species). Because they rely on empirical distributions of evolutionary rates across species, these
methods should become increasingly powerful as more and more microbial genomes are sampled.

Overall, the methods described here significantly expand the repertoire of tools available for microbial
population genomics, both for investigating the process of ecological differentiation at the finest of time
scales, and over billions of years of microbial evolution.

Thesis Supervisor: Eric J. Alm
Title: Assistant Professor of Civil and Environmental Engineering and Biological Engineering
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Overview

This thesis has the overarching aim of harnessing whole genome sequences to gain insight into the
mechanisms of ecological differentiation in the microbial world. Microbes are key players in global
biogeochemical cycles, human health and disease; yet the microbial world is largely hidden from view.
Even with the best microscopes and experimental techniques, it is exceedingly difficult to know the
predominant selective pressures and ecological interactions at play in the wild. Microbial genome
sequences provide a uniquely comprehensive and accessible record of the forces that drive microbial
evolution. The products of evolution are ecologically differentiated populations or species, each under
distinct regimes of natural selection. A typical approach to understanding the genetic basis of ecological
adaptation is to deploy sequence-based statistical tests to identify genes under positive selection. These
genes may have habitat-specific adaptive value, and may help us understand how different microbes adapt

to different niches.

Gaining biological insight from microbial genome sequences and tests for selection poses several
challenges. First, there are challenges arising from the enormous dynamic range of microbial evolutionary
time scales: we may be interested in comparing species that diverged hundreds of millions to billions of
years ago, or that diverged so recently that it is unclear if they constitute separate species or not. Second,
while it was once thought that microbes do not form species in the classical sense because they reproduce
clonally and do not recombine their DNA through sex, the idea is now gaining popularity that they do not
form proper species because they have too much sex, due to their ability to exchange genes by horizontal

transfer spanning great genetic distances.

Taking these difficulties into account, in the first section of this thesis I introduce the predominant forces
shaping microbial evolution and assess current tests for positive selection in terms of their ability to cope
with the peculiarities of microbial recombination (Introduction). A key conclusion of this section is that
because sex (recombination) is in a sense optional for microbes (not required for reproduction),
acquisition of DNA via homologous or illegitimate recombination, followed by its selective retention,

may itself be considered an adaptive event.

In the next section (Chapter 1), I develop a pipeline for quantifying the contributions of mutation,
homologous and illegitimate recombination to the process of ecological differentiation, a key step toward
speciation. The core of this pipeline is STARRInIGHTS, a new method I developed to detect homologous
recombination events. This chapter focuses on a population of Vibrio splendidus genomes, which despite

their very close genetic relatedness appear to have recently split into two ecologically distinct sub-



populations, each with a different microhabitat preference in the marine water column. A key conclusion
of Chapter 1 is that a small number of habitat-specific alleles, often acquired by homologous
recombination, may drive ecological differentiation while most genomic loci are freely recombined across
habitat boundaries. This situation is somewhat analogous to the process of sympatric speciation in animal

populations, where speciation is driven by ecological, rather than physical boundaries to gene flow.

Chapters 2 and 3 turn to more ancient divergences — on the order of hundreds of millions of years — where
species boundaries are more firmly established. In these chapters, I develop two new metrics for detecting
changes in the strength and direction of natural selection at the protein level. Both metrics, selective
signatures (Chapter 2) and the slow:fast substitution ratio (Chapter 3), exploit comparisons of multiple
microbial genomes to identify proteins that deviate significantly from an empirically determined expected
rate of evolution. I focus primarily on instances of lineage-specific evolutionary rate accelerations,
potential indicators of positive selection. In Chapter 2, I demonstrate how proteins of similar cellular
function tend to co-evolve over long evolutionary time spans; thus selective signatures is a powerful
predictor of protein function. In Chapter 3, I show how different functional suites of proteins are subject
to different regimes of selection in ecologically distinct lineages, and give examples from Pseudomonas
and Vibrio. Selective signatures and slow:fast both have difficulty distinguishing positive selection from
relaxed selective constraint, but they have the common strength of detecting lineage-specific evolutionary
rate accelerations, which are informative of the types of proteins that have been fine-tuned specifically in

a species of interest.

A unifying theme of the approaches I describe is that they use whole genome sequences, as opposed to
metagenomic data. For better or for worse, this forces an organism-centered view, rather than a gene-
centered view, of microbial ecology. When genes are freely recombined from genome to genome, a gene-
centered view may be appropriate. Yet, for at least some period of evolutionary time, genes are coupled
with one another in the same genome, and the whole genome becomes the effective substrate of natural
selection. By studying whole genomes, we can achieve a better understanding of epistatic interactions
among genes, and also learn about (and control for) genomewide forces such as changes in population

size or mutation rate.
The thesis concludes with a brief discussion of how STARRInIGHTS, selective signatures and slow:fast

are being applied for a variety of purposes in several organisms, and discusses future prospects for

detecting adaptive events in microbial genomes.
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Introduction:
Looking for Darwin's footprints in the microbial world

Shapiro BJ, David LA, Friedman J and Alm EJ (2009) Looking for Darwin's footprints in the microbial
world. Trends in Microbiology 17:196-204

Abstract

As we observe the 200th anniversary of Charles Darwin's birthday, microbiologists interested in the
application of Darwin's ideas to the microscopic world have a lot to celebrate: an emerging picture of the
(mostly microbial) Tree of Life at ever-increasing resolution, an understanding of horizontal gene transfer
as a driving force in the evolution of microbes, and thousands of complete genome sequences to help
formulate and refine our theories. At the same time, quantitative models of the microevolutionary
processes shaping microbial populations remain just out of reach, a point that is perhaps most
dramatically illustrated by the lack of consensus on how (or even whether) to define bacterial species. We
summarize progress and prospects in bacterial population genetics, with an emphasis on detecting the

footprint of positive Darwinian selection in microbial genomes.
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0.1 Selection as a window into the microbial world

The microbial world is largely hidden from the naked eye, making it difficult to know the selective
pressures acting on a bacterium. Nonetheless, if the genes important to fitness in a particular niche are
identified, they can have a dramatic impact on our understanding of that environment. A few recent
examples from marine environments help to illustrate this point. The discovery of bacteriorhodopsin in
diverse marine bacteria revealed a previously unsuspected evolutionary adaptation that explained the
long-standing puzzle of how such a variety of species can thrive in the nutrient poor open ocean (Beja et
al, 2000, Sabehi et al, 2004). Moreover, spectral tuning of these molecules might help explain the
distribution of different species across different regions and depths in the ocean (Bielawski et al, 2004). In
another example, phosphorous acquisition genes in Prochlorococcus distribute preferentially in strains
living in periodically phosphorus-limited waters, suggesting an obvious link between genetics and
environmental factors (Martiny et al, 2006). Many other cases of gene-specific environmental selection,
however, probably involve more subtle genetic changes than the gain or loss of an entire gene or pathway,

such as amino acid substitutions at specific functional sites (Feldgarden et al, 2003).

While ongoing advances in genome sequencing technologies have made it possible to obtain complete
genome sequences for entire populations of microbes, it is not clear whether genome sequences can be
converted directly into evolutionary insight. One appealing and conceptually simple approach comes from
the emergent field of population genomics: align the genomes of an entire population of individuals, and

use the traditional tools of population genetics to pinpoint loci involved in recent Darwinian selection.

In this paper, we discuss the prospects for uncovering Darwinian selection in microbial genomes, which
are becoming more readily available for a broad spectrum of medically, agriculturally and ecologically
interesting organisms. We focus on genetic adaptations driven by positive selection, and the challenges
involved in detecting them (Box 1). Tests for positive selection will depend on patterns of recombination,
which are expected to differ between asexual microbes and sexual eukaryotes, and also among microbes
depending on their lifestyles and demography. We summarize the different types of tests (Table 0.1),
highlighting their relative merits under different regimes of recombination, and discuss how the interplay

of positive selection and recombination affects the patterns of genetic variation in microbes.

0.2 Detecting natural selection in genomic sequence
Genome-wide scans for positively-selected loci in metazoans, especially humans, have yielded substantial
insights into the functions of unknown genes, and the genetic basis of phenotypic differences between

species. The general approach is to gather genome sequences of related species, compute a sequence-
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based metric to quantify positive selection on each locus, and take outliers from the genome-wide
distribution as candidate positively-selected loci (Black et al, 2001, Luikart et al, 2003). This approach is
exemplified by a recent study of six mammalian genomes, which used the dN/dS metric (Table 0.1) to
reveal that genes involved in immunity and sensory perception played a key role in differentiating
primates and rodents (Kosiol et al, 2008). Genes acting in the same biochemical pathway were also found
to undergo positive selection together, a finding we previously reported in bacteria (Shapiro & Alm,
2008) (see chapter 2). Genome-wide scans for positive Darwinian selection have also been performed on
finer scales — for example, within human populations, revealing very recent positive selection in genes
involved in malaria resistance (Sabeti et al, 2002), hair follicle production (Kelley et al, 2006, Sabeti et al,

2007), and lactose tolerance (Tishkoff et al, 2007).

But are these approaches, which are being applied in earnest to sexual eukaryotes, theoretically justified
in bacteria where recombination might not be frequent enough to provide gene-specific resolution? To
investigate this question, we first review the tools available for detecting selection in different types of

populations.

0.3 Tools for near-clonal populations

In bacteria, patterns of genetic variation depend on the extent to which populations behave clonally. In a
perfectly clonal population, every substitution in the genome will have arisen by mutation, never by
recombination. Every adaptive allele that arises will therefore be perfectly linked to every other allele in
the genome. If the goal is to distinguish adaptive loci from other mutations fixed in the clonal
background, one could look for loci with an excess of functional changes (e.g, dN/dS and other methods
discussed in the 'Detecting selection among species and higher-order groups' section), and/or that show

evidence for convergent evolution.

One advantage of a perfectly clonal population, from a practical standpoint, is that genomes are related by
a single phylogenetic tree, rather than a more complicated network structure that represents
recombination. Alleles that arise independently multiple times in different branches, and are thus
incongruous with the tree, stand out as candidate examples of convergent evolution. In a recent study of
genetic variation among isolates of Salmonella enterica serovar Typhi, convergent evolution was
observed at a few loci (Holt et al, 2008). Recombination was ruled out as the cause of the phylogenetic
incongruence and convergent mutations resulted in amino acid substitutions, two of which have known

adaptive value in conferring antibiotic resistance, further supporting the hypothesis of positive selection.
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Sokurenko et al. introduced 'zonal analysis' to identify mutations of uropathogenic Escherichia coli
associated with recent invasion of a new niche, the human urinary tract (Sokurenko et al, 2004). By
definition, such mutations are recently derived, and are found near the tips of a well-resolved phylogeny.
They also tended to involve repeated (convergent) amino acid changes in variable 'hotspots', and these
occurred in uropathogenic but not commensal strains. The authors could thus conclude that these
mutations conferred a competitive advantage in the uropathogenic niche. This type of analysis —
effectively a special case of convergence testing — could be extended and generalized to identify recently

selected loci across the genome, even when the population structure and/or selection pressure is obscure.

0.4 Tools for sexual populations

A suite of population-genetic tests for non-neutral patterns of evolution have been developed over the past
20 years, and often used to detect positively-selected loci in humans or other sexual eukaryotes. Although
many of these tests are sensitive to various deviations from neutral evolution (Table 0.1), they primarily
detect selective sweeps. These tests can be divided into two main classes: (i) Tajima's D and related
diversity-based tests of deviations from the neutral allele-frequency spectrum (Tajima, 1989, Zeng et al,
2006) or (ii) long-range haplotype (LRH) and related tests (Sabeti et al, 2007). Diversity-based tests
identify alleles that are at unusually high frequency (suggesting a selective sweep of a single beneficial
allele) or intermediate frequency (diversifying selection maintaining multiple alleles in the population).
This class of test can be applied to aligned homologous sequences of any length, assuming that sites
within the sequence are completely linked (no recombination between them). Thus, diversity-based
statistics should be computed within short windows of DNA across the genome. Meanwhile, haplotye-
based tests model the decay of linkage disequilibrium (LD) with physical distance in the genome to
identify haplotypes that are at unexpectedly high frequency for their age, indicating a recent or ongoing

selective sweep.

Both classes of tests should in theory be applicable to populations of bacteria in which homologous
recombination among strains is rampant. Diversity-based tests have been applied to a variety of bacterial
populations, including cyanobacteria (Mes et al, 2006), Buchnera and related insect endosymbionts
(Herbeck et al, 2003), Neisseria (Jolley et al, 2005), and Pseudomonas (Guttman et al, 2006). In a broad
study spanning seven bacterial phyla, Hughes found that Tajima's D tends to be lower in nonsynonymous
sites than synonymous sites, implying purifying selection on slightly deleterious mutations that lead to
amino acid changes (Hughes, 2005). Hughes also observed that this difference between sites implies that

recombination must be occurring at some level in order to allow sites to evolve independently. This
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implies that diversity-based tests have potential to pinpoint selected loci, provided that they are separated

from the clonal background by recombination.

Meanwhile, haplotype-based tests have not been applied to bacterial populations - perhaps because
population sampling has not been performed at sufficient resolution to capture very recent selective
sweeps. Even frequently recombining bacteria differ from sexual eukaryotes in two major ways: (i) in
bacteria, recombination occurs by gene conversion rather than crossing-over and (ii) recombination is
decoupled from reproduction. As a result of gene conversion, linkage between nearby loci is expected to
be higher than between distant loci in bacteria, making haplotype-based tests valid, in principle, over
short genomic distances. But unlike in organisms that recombine by crossing-over, linkage is expected
between all loci not involved in a gene conversion event regardless of their physical distance on the
chromosome (McVean et al, 2002). In other words, a non-recombinant locus might be linked to another
distant locus, but unlinked to nearby loci that have undergone gene conversion. This type of pattern,
called a clonal frame (Milkman & Bridges, 1990), is more likely to occur when gene conversion size
fragments are small (e.g. on the order of ~500 bp in Helicobacter pylori (Falush et al, 2001)), when
recombination is infrequent, or when only certain combinations of two distant alleles are tolerated,
creating linkage between them, with free recombination in the intervening region (Wiehlmann et al,
2007). Such epistatic interactions among alleles could thus affect patterns of LD, and in principle

represent an important determinant of recombination frequency (Kondrashov & Kondrashov, 2001).

0.5 Can recombination maintain diversity in the face of selective sweeps?

Whether diversity- and haplotype-based tests are able to distinguish adaptive mutations within a
population depends on the balance between the opposing forces of positive selection (purging diversity as
a new allele approaches fixation) and recombination (maintaining diversity by unlinking distant regions
of the genome from a selective sweep). The ratio #/s can be used as a shorthand to express this balance
between recombination (r) and selection (s) in a population, and /s is rarely, if ever, measured. Much
more commonly measured is the 7/m ratio, which assesses the relative likelihood that a polymorphic site
arises by recombination versus mutation (m). /m varies widely among bacteria (e.g. #/m is ~ 5-80 in
Neisseria meningitidis, ~ 50 in Streptococcus pneumoniae, ~ 10-50 in E. coli, and ~ 1-3 in Bacillus (Feil
et al, 1999, Didelot & Falush, 2007)), but is generally larger than 1 (per site), suggesting that
recombination is quite strong relative to mutation in many species. But the mutation rate is universally
quite low in bacteria: on the order of 10 mutations per site per generation (Drake, 1991). Even if
recombination generates much more diversity than mutation, is it a sufficiently strong diversity generating

force to maintain diversity in the face of selection? Selective coefficients for adaptive mutations might be
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quite high: on the order of 0.01 or higher (Barrett et al, 2006). Thus, adaptive mutations might become
fixed before recombination has time to act, leading to genome-wide purges of diversity (Atwood et al,
1951, Cohan, 2001) sometimes referred to as periodic selection. This would render diversity- and

haplotype-based tests powerless to discern the selected locus against the background of uniformly low

diversity.

So exactly how much recombination is needed to overcome the purging of diversity that can result from
periodic selection? Figure 0.1A illustrates the level of diversity at a single locus in a population after an
adaptive mutation at a distant gene locus becomes fixed, as a function of r and s. When recombination
rates are low, the resulting diversity at the distant (non-selected) locus is effectively purged resulting in a
clonality of 1, which we define as Zp;, where p; is the frequency of the i allele at the non-selected locus
(also called Simpson's diversity index in ecology). When recombination rates are high, diversity at the
non-selected locus is maintained either through the generation of new mutations or retention of initial
diversity. Simplifying matters, the trends are only weakly dependent on the population size (Figure 0.1B)
when expressed in the natural variables p (=Nr, where N is the population size and 7 is the per gene or
locus per generation recombination rate) and ¢ (=Ns, where s is the relative fitness advantage conferred

by the adaptive mutation).

As illustrated graphically in Figure 0.1, and as previously modeled by others (e.g., (Majewski & Cohan,
1999, Cohan & Koeppel, 2008)), there exist regimes of recombination and selection that allow an
adaptive mutation to purge diversity locally in the genome (at loci near the adaptive site), without
substantially reducing diversity elsewhere in the genome. For this panmictic scenario to be viable, » must
be quite large and/or s must be small. High 7/s or » > s can be used to roughly describe this scenario, but
this shorthand does not do justice to the complex relationship between diversity, » and s (Figure 0.1A).
Panmixis could result from a relatively high population recombination rate, similar to those observed in
promiscuous groups such as Neisseria or Helicobacter (Falush et al, 2001, Feil et al, 1999). Conversely, if
r <<s, a population will be effectively clonal. This type of clonal population has been observed
repeatedly in the context of long-term experimental evolution studies of E. coli. In these studies, adaptive
point mutations are successively fixed in a clonal background, with little or no contribution of

recombination (Rozen et al, 2005, Hegreness et al, 2006, Blount et al, 2008).
0.6 Patterns of recombination and their interplay with selection

Bacterial lineages show substantial variation in population structure - ranging from essentially clonal (e.g.

Salmonella) to panmictic (e.g. Neisseria gonorrhoeae) (Smith et al, 1993). In many recombining lineages
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including Campylobacter (Fearnhead et al, 2005) Neisseria (Jolley et al, 2005), Helicobacter (Falush et
al, 2001), and E. coli (Mau et al, 2006), LD decays with distance in the genome. To illustrate this
distance-dependent decay of LD, we show LD between pairs of genes located throughout the E. coli
genome (Figure 0.2). Genes up to ~20 kilobases apart on the chromosome show LD, but this LD drops off
around 100 kb. However, LD never decays to zero in bacteria because some fraction of very distant loci
will remain together in the clonal frame (McVean et al, 2002). Patterns of LD have a great impact on tests
for selection (Table 0.1, Figure 0.4), and it is thus important to quantify these patterns in the population of

interest.

How can distance-dependent LD be explained? First, some recombination must be occurring although the
clonal frame is still evident since a fraction of even very distant loci may be linked (Didelot & Falush,
2007). Second, the majority of recombinant fragments introduced by gene conversion are probably small
(Fearnhead et al, 2005, Mau et al, 2006, Guttman & Dykhuizen, 1994, McKane & Milkman, 1995).
Third, it follows from the simulation results that » must be large and/or s must be small. This leads to
three different scenarios:

1. the strains in question form an effectively sexual population (» is large),

2. selection coefficients are low or selection is infrequent (s is small), or

3. there are ecological barriers to selective sweeps but not recombination

The first two scenarios are quite straightforward, but the third merits further discussion. In Scenario three,
different populations of bacteria might inhabit different micro-niches, making it rare for a single genotype
to sweep through all populations. How likely is such a scenario? In the coastal water column, at least 15
ecologically distinct subpopulations of Vibrio splendidus co-exist (Hunt et al, 2008a). Because the coastal
ocean is relatively well-mixed, there might be even more opportunity for resource partitioning and niche
subdivision in other (e.g. terrestrial or host-associated) environments (e.g. (Koeppel et al, 2008)).
Therefore, a meta-population model, such as the one described by Majewski and Cohan (Majewski &
Cohan, 1999), could explain the distance-dependent decay of LD. Their model requires two or more
populations, each adapted to a different niche and these niches might only be very slightly different or
even transient niches. Each population experiences independent selective sweeps, purging diversity
within each sub-population, yet genetic diversity remains high when summed over all populations.
Occasionally, a globally adaptive mutant occurs in one of the populations, but cannot sweep through other
populations because its genotype as a whole is relatively unfit in the other micro-niches. But if the
globally adaptive mutation is recombined into the 'native' background of another population, it can confer

a fitness advantage and rise in frequency.
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Eventually, globally adapted mutations can purge diversity locally in the genome without disrupting
unlinked genomic diversity. Thus, Majewski and Cohan's model could explain the observed distance-
dependent decay of LD without invoking a high rate of recombination. Because niche partitioning in the
microbial world likely occurs at a very fine spatial scale (Hunt et al, 2008a, Thompson et al, 2005), it is
probable that many bacterial population samples actually encompass multiple subpopulations, connected

by rare recombination of globally adaptive alleles.

0.7 When is recombination an adaptive event?

Under Scenarios one and two above, neutral recombinational events occur faster than selection, whereas
under Scenario three recombinant genotypes are driven to high frequency by selection. So how much of
recombination is adaptive? On the one hand, recombination across wide phylogenetic distances (by
horizontal gene transfer), followed by conservation of the foreign DNA in the recipient, in itself provides
compelling evidence for adaptive evolution. But the picture is not as clear for homologous recombination

between closely-related strains.

Recent work by Lefebure and Stanhope helps clarify the relationship between recombination and positive
selection (Lefebure & Stanhope, 2007). Recombination and positive selection were both quantified in the
Streptococcus core genome, and it was concluded that genes under positive selection are frequently
recombined, a result recently supported in a study of Listeria genomes (Orsi et al, 2008). Specifically,
78% of genes under positive selection in the S. pyogenes core genome were also inferred to be
recombinant (Lefebure & Stanhope, 2007). Yet, of the genes identified as recombinant within this
species, only a small fraction experienced positive selection (Figure 0.3). Therefore, although positively
selected genes are frequently recombined, a substantial amount of within-species recombination shows no
evidence of direct adaptive value. In other words, recombination within a species could be largely neutral.
But this is not the case for recombination between species (from S. agalactiae to S. pyogenes, or vice
versa). Comparison of between-species and within-species evolutionary events yields a surprising insight
not highlighted in the original work: 81% of all genes recombined between species also experienced
positive selection, whereas only 4% of genes recombined within species also experienced positive

selection (Figure 0.3).

This striking result has several implications. First, it provides empirical confirmation of Scenario three
above and Milkman’s hypothesis that in order for a horizontally transferred gene to be fixed (at least
across species), it must enjoy a “considerable selective advantage” (Milkman et al, 2003). Second, it

furnishes evidence that short-distance recombination events are likely to be neutral and unlikely to be
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under positive selection (Scenarios one and two). Third, it provides inspiration for a new class of tests for
positive selection in bacterial populations: identify positively selected genes in bacterial populations as
recombinant sequences transferred across population boundaries. Fourth, it suggests a pragmatic solution
to the long-standing challenge of defining bacterial species. Sexual eukaryotic species undergo neutral
recombination in each generation. By analogy, a group of bacteria that undergo frequent neutral
recombination could also constitute a discrete species. Recombination between species is not precluded in
this species definition, but would require positive selection for maintenance of the introduced
recombinant sequences (Figure 0.4). While previous studies have shown that clusters of closely-related
strains (or putative species, with more frequent neutral recombination within than between species) can
theoretically emerge and be maintained in the absence of selection, these same studies suggest that neutral
recombination alone is insufficient to explain fine-scale genetic differentiation actually observed among
clusters, supporting the idea that speciation might require population structure (e.g. microepidemics) or

positive selection (Fraser et al, 2005, Hanage et al, 2006, Fraser et al, 2007).

0.8 Detecting selection among species and higher-order groups

Over millions to billions of years of evolution, populations of bacteria have diverged to form distinct
species (although there is considerable controversy over exactly when two populations can be called
independent species (Gevers et al, 2005, Doolittle & Papke, 2006)). This process might occur by
restricted gene flow, followed by neutral drift, or by niche partitioning and natural selection (Hanage et al,
2006, Fraser et al, 2007). Recombination between distant species is relatively rare and often have great
functional consequences (usually deleterious, but potentially positively-selected, as discussed above), and

potentially straightforward to detect using phylogenetic methods (e.g. http://almlab.org/AnGST). While

most distant recombination events will introduce deleterious substitutions, only adaptive events will be

selectively retained, resulting in a greater number of these events being observed.

Substitution patterns indicative of positive selection at long time scales (between rather than within
populations) could be detected using codon-based (dN/dS) and other relative rates-based methods (e.g.
selective signatures, M-K test; see Table 0.1). The ratio of nonsynonymous to synonymous substitution
rates has been widely used in genome-wide scans for positive selection in bacteria, often providing
evidence for function- or gene-specific selection (Lefebure & Stanhope, 2007, Chen et al, 2006). Yet
dN/dS is inappropriate when comparing either very distantly-related strains (dS saturated with multiple
substitutions), or very closely-related strains, within which dN/dS is inflated by segregating

nonsynonymous polymorphism (Rocha et al, 2006, Kryazhimskiy & Plotkin, 2008).
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Metrics that explicitly measure deviations from the expected pattern of amino acid substitution (relative to
a within-species near-neutral expectation as in the M-K test, or to a between-species expectation as in
selective signatures) are perhaps better suited to detecting sequence-level changes associated with
changes in ecological preferences. Recently, such deviations from a protein's expected rate of evolution
(based on the genome and protein family to which it belongs) were quantified as its selective signature,
identifying substitutions with potential ecological relevance ((Shapiro & Alm, 2008); described in
Chapter 2). This approach can yield insights into the cellular functions and pathways that contribute to
niche adaptation. For example, selective signatures showed that glycolysis and phenylalanine metabolism
genes evolve unusually rapidly in Idiomarina loihiensis, mirroring this lineage's shift in carbon source

preference from sugars to amino acids.

Nearly every rate-based test (Table 0.1) has the potential to mistake recombination for positive selection
(e.g. (Yang & Nielsen, 2002, Anisimova et al, 2003)), but it is possible to control for recombination by
ensuring that the correct gene phylogeny is being used while testing for selection. Certain
implementations of the M-K test, for example, assume that all genes in the genomes being compared
diverged at the same time (Bustamante et al, 2005) — an assumption that is violated when genes have
different histories of recombination. Thus, if care is not taken to control for recombination before testing
for selection, these two evolutionary events — both potentially interesting and with adaptive merit — may

easily be confused.

Finally, there is mounting evidence that taxonomic units broader than individual species indeed have
ecological meaning, and thus show similar patterns of selection. For example, clades of bacteria in the
same Family or Order tend to have similar habitat preferences (Mering et al, 2007). In comparisons of
obese (enriched in Firmicutes) and lean (enriched in Bacteroidetes) gut microbiomes, habitat preference
was observed at the level of Division (Ley et al, 2006, Turnbaugh et al, 2006). The genetic basis of these
higher-order habitat preferences is only just beginning to be elucidated, and likely involves both genome

content and sequence-level variation.

0.9 Concluding remarks and future directions

Identifying the signature of natural selection in microbial genomes can help to shed light on the hidden
world of microbes. Which techniques can be used to identify positive selection depends on the rates and
bounds of recombination in microbial populations. The first step in any study of natural selection in
bacteria is to quantify the extent of recombination within a population before moving on to sequence-

based tests. Once recombinant portions of the genome are identified, they can be tested for evidence of
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positive selection using diversity-based methods. Meanwhile, the non-recombinant clonal frame can be
identified (e.g. using the ClonalFrame program (Didelot & Falush, 2007) or STARRInIGHTS, described
in Chapter 1), and tested for convergent evolution or excessive rates of functional substitutions (Figure
0.4). If possible, all tests should be performed genome-wide to estimate and control for demographic

effects (Table 0.1) that might otherwise provide spurious evidence of positive selection.

In his "Difficulties on Theory" chapter in On the Origin of Species, Darwin wrote: "We are profoundly
ignorant of the causes producing slight and unimportant variations [...]"(Darwin, 1859). On the
sesquicentennial of its original publication, we know that random mutation and recombination are the
causes of heritable fitness variations, yet we remain largely ignorant of the selective pressures that cause
advantageous variations to be favored and maintained. Even within our own species, the list of
uncontroversial cases of selective pressures leading to genetic adaptations is not long. Yet the list of
candidate adaptive variations has grown much longer since genome-wide scans for selection became
viable in humans (Sabeti et al, 2006), and we are beginning to see the same happen for microbes.
Metazoans and microbes will soon be on similar footing; with a list of candidate genes in hand, the
challenge will be to translate this list into a meaningful genome-wide map of selection, linking genetic
variation to phenotype and ecology. With such genome-wide maps, we are optimistic that evolutionary
adaptations will be revealed, even at the finest resolutions - for example, among closely-related, yet
ecologically differentiated subpopulations of Vibrio splendidus in the coastal ocean (Hunt et al, 2008a,
Thompson et al, 2005). To encourage efforts in this direction, we and others are establishing a database of
nearly 100 complete genome sequences of marine Vibrio strains encompassing multiple ecologically
distinct populations, which will be freely available to the microbial ecology and population genetics
communities. Darwin was right in saying that many variations are slight (e.g. a single nucleotide mutation
that subtly alters protein structure or expression), but cumulatively they leave a trail of footprints, which,
given the right set of population genomic tools, will ultimately lead us to a better understanding of the

microbial world.
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0.10 Glossary

Positive/diversifying selection: The evolutionary force causing novel alleles conferring a fitness
advantage to rise in frequency in a population. This leads to reduced genetic variation at the selected locus

within the population, but increased genetic variation between populations.

Negative/purifying/stabilizing selection: The evolutionary force selecting against deleterious mutations

and promoting conservation of the ancestral state.

Neutral drift: The process by which mutations with negligible effects on fitness become stochastically

fixed in a population of finite size.

Selective sweep: The process of a positively-selected allele rising in frequency and ultimately becoming
fixed in a population. In the absence of recombination, a single clone will sweep through the population,
purging genetic diversity genome-wide. In the presence of recombination, diversity may be retained at

genomic loci that are unlinked to the selected allele.

Homologous recombination: The exchange of identical or similar (homologous) stretches of DNA,
either between two homologous chromosomes, or between a chromosome and a fragment of DNA taken
up directly into the cell (transformation), DNA introduced by a phage (transduction), or by a conjugative

plasmid (conjugation). The process results in ‘allelic replacement’ of a stretch of the recipient genome.

Illegitimate recombination (horizontal transfer): The acquisition of DNA that previously had no
homolog in the acceptor genome. The process may be mediated by transposons, phage or other mobile
genetic elements, and may result in the acquisition of entirely new genes or operons from very distant

relatives.

Acceptor lineage: In a recombination or horizontal transfer event, the acceptor lineage is the recipient of

a stretch of novel DNA.

Restricted gene flow: The reduction or prevention of recombination between bacterial lineages owing to

physical or ecological barriers, or DNA sequence divergence.

Panmictic population: A population undergoing frequent recombination (e.g. a sexual population in
which recombination occurs every generation). Qualitatively, this results in random association between
loci. More quantitatively, panmixis may be defined as when a single nucleotide change is more likely to

have resulted from a recombination event than a mutation event (#/m > 1).
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Sympatric speciation: The process through which new species arise in the absence of physical barriers to

gene flow between them.

Clonal population: A population that never (or extremely rarely) undergoes recombination. All loci in
the genome are thus in complete linkage, meaning that a selective sweep will affect diversity in the entire

genome, not just at a selected locus.

Globally adaptive mutation: In a meta-population model, a globally adaptive mutation confers a fitness
advantage in all of the sub-populations making up the meta-population. If the mutation is recombined into

a sub-population, it will purge genetic diversity only in the recombined portion of the genome.

Niche partitioning: The process whereby different organisms co-exist in a community rather than
competing for resources. Niches can be partitioned when lineages avoid competition by using different

resources, or restricting their activity to different physical spaces, seasons, times of day, etc.

Tajima’s D: A statistic to measure deviations from allele frequencies expected in a population evolving
under a neutral model. Deviations may indicate purifying selection (D < 0), diversifying selection or

population subdivision (D > 0), or a recent selective sweep or population bottleneck (D < 0).

Long-range haplotypes: A test to detect positively-selected alleles that have risen to high frequency in a
population in a short period of time, so that recombination has not had time to break down linkage to
distant hitchhiking mutations. The test exploits the genome-wide distribution of allele frequencies and

haplotype lengths to detect outlying haplotypes that are at unusually high frequency for their length.

McDonald-Kreitman (M-K) test: A test for selection on protein-coding nucleotide sequences that
measures an unusually high between-species dN/dS, relative to a near-neutral standard of within-

population dN/dS.

Selective signatures: A measure of selection that can be applied to nucleotide or protein sequences from
distantly related species. Selective signatures quantify the extent to which a gene deviates from the
evolutionary rate (number of substitutions per site) predicted by the gene family and genome it belongs

to. Such deviations suggest gene-specific, species-specific changes in the selective pressures on a gene.

Phylogenetic incongruence: If a gene has experienced horizontal transfer, duplication, and/or loss in
some lineages, this will often result in the gene’s phylogeny (gene tree) having a different topology from

the species’ phylogeny. Phylogenetic incongruence is often used as evidence for horizontal transfer.
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Convergence: The independent fixation of the same mutation in two or more independent (distantly-
related) lineages, also called homoplasy, is often used as evidence for positive selection. Because it
generates phylogenetic incongruence (see above), it may also be used as evidence for recombination.
Recombination may be ruled out if the convergence is restricted to a single mutation, rather than a long
stretch of mutations. If the convergence consists of different nucleotide-level mutations that result in
convergence to the same amino acid, this also supports positive selection as a more likely explanation that

recombination.
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Box 1. Key challenges in bacterial population genetics

Compared to eukaryotic systems, our limited understanding of microbial population genetics can be
summarized by several key challenges in studying environmental and host-associated bacterial
communities:

* Limited understanding of gene flow patterns and population boundaries in bacteria. Arguably, a
universally accepted species definition is lacking even for animal taxa (de Queiroz, 2005, Hey, 2006);
however, the problem is exacerbated in bacteria where the rates and bounds (genetic and/or ecological) of
gene flow are not known. Complicating matters further, different natural populations likely occupy a
continuum of recombinational rates from clonal to panmictic.

* Lack of approaches to detect recent positive selection. A wealth of statistical tools based on allele
frequencies or haplotype structure are available for detecting the signature of natural selection in sexual
eukaryotes, but which if any of these tests can be adapted for use in bacteria has not been studied.

* The unknown role of the ‘peripheral’ genome. A large fraction of the genetic diversity within
microbial lineages is contained within the ‘peripheral’ or ‘flexible’ genome -- strains that are nearly
identical in nucleotide sequence at orthologous loci can differ by genomic islands containing megabases
of strain-specific DNA. The extent to which this extraordinary diversity contributes to adaptive evolution

1s not known.
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Figure legends

Figure 0.1. Population diversity following a selective sweep with varying selection and
recombination rate.

(A) We simulated a selective sweep in an initially diverse population of size N=107, mutation rate m=10""
per bp per generation and a range of selection coefficients () and recombination rates (p). The genome
contained only two loci: the foreground locus, which could contain a beneficial allele, and a neutral
background locus. After the beneficial allele has swept through the population, we computed the
population's Clonality as Ep;, where p; is the frequency of the i"™ allele at the background locus.
Populations with small p and large ¢ are dominated by few genotypes, while populations with large p and
small ¢ consist of many genotypes following fixation of a beneficial allele.

(B) Effect of population size on diversity following a selective sweep. p=Nr and 6=Ns are the 'natural’
variables of the system, such that populations of different sizes with same values of p and o (at fixed m)
have similar structure following a selective sweep. Eight combinations of p and ¢ are compared using
simulations with different population sizes. For each population size, we plot the clonality index vs. that
observed for a population of size N=10". Deviations from the dashed line (y=x), are relatively small
indicating that the results hold over a range of population sizes.

Figure 0.2. Illustration of distance-dependent decay of LD in the E. coli genome.

We gathered 1672 core orthologs present in each of 24 E. coli strains, as described in (Shapiro & Alm,
2008). Each unique allele at a given locus was assigned a unique allele number. We then chose pairs of
loci separated by increasing distances in the E. coli K12 reference genome. Pairs of loci on the same
operon and neighboring loci on the same strand were excluded. LD was estimated using the D' metric,
which provides a summary measure of LD between 2 loci, each containing an arbitrary number of alleles
(Kalinowski & Hedrick, 2001). When D,' = 1, linkage is at its theoretical maximum. For pairs of loci
separated by increasing genetic distance (kb, on a log; scale), the proportion of pairs in full linkage (# of
pairs with D,'= 1/ total # of pairs in that distance bin) is plotted on the y-axis. Inset: Distances of 0-100
kb shown on a linear scale (red points).

Figure 0.3. Intersections of sets of recombining and positively selected genes in Streptococcus spp.
Overall, Lefebure and Stanhope (Lefebure & Stanhope, 2007) observed recombination in 753 genes and
positive selection in 217 genes; 72 genes experienced both. The overall dataset (top) was segmented into
a genus-wide core-genome (between species, bottom left) and a species-specific set of genomes (within
species, bottom right). 53 genes were found to recombine between species of which 43 experienced
positive selection. By contrast, 700 genes were found to be recombinant within species, but only 29 of
these experienced positive selection.

Figure 0.4. Flow chart of methods to identify positively selected loci in bacteria.

Tajima’s D and Fay and Wu’s H tests measure unusually high or low allele frequencies within a
population. They require a sample of allele sequences, preferably genome-wide to help quantify
recombination and demographics, representing polymorphism within a population. The tests differ in that
the H test also requires an outgroup species to distinguish derived and ancestral mutations, allowing it to
distinguish positive and negative selection (Zeng et al, 2006). The M-K test also requires a sample of
alleles from a population, and at least one outgroup species, but differs from the diversity-based tests in
that it is restricted to protein-coding genes. The important assumption of the M-K test is that in the
absence of selection, the dN/dS ratio should remain constant over time, and thus be the same for fixed
substitutions (between outgroup and ingroup) as for segregating polymorphism (within the ingroup).
When the ratio of fixed:polymorphic dN/dS exceeds 1, this provides strong evidence that positive
selection has played a role in the divergence the of outgroup and ingroup (McDonald & Kreitman, 1991).
AnGST is a phylogeny-based approach to detecting recombination (http://almlab.org/AnGST). It
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identifies ancestral recombinations and specifies donors and acceptor lineages. See the main text and
glossary for brief descriptions of other methods.

Table legend

Table 0.1. Overview of methods for identifying loci affected by positive selection

*Method cannot distinguish between these events, unless the test is performed genome-wide in order to
account for demographic effects.

® Provided there is no recent recombination with the outgroup at this locus, and that the correct gene
phylogeny is used.

¢ Provided that at least some synonymous and nonsynonymous substitutions have occurred, that dS is not
saturated with multiple substitutions per site, and that time scales are not so short that dV is dominated by
slightly-deleterious polymorphism segregregating within a population.

4 Requires at least one outgroup species.

¢ Complete linkage of all loci on the chromosome results in selective sweeps that purge diversity genome-
wide, preventing selected loci from being identified.

"Will require evaluating the degree of recombination between sites.

£ Recombination might not be sufficient to disrupt the clonal frame, therefore no distance-dependent
decay of LD.

" If gene conversion fragments are large enough so that the pattern of LD is similar to that generated by
crossing-over.
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Chapter 1:
Recombination in the core and flexible genome drives ecological differentiation in sympatric ocean

microbes

Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake S, Polz MF and Alm EJ (2010)
Recombination in the core and flexible genome drives ecological differentiation in sympatric ocean
microbes. in prep.

Abstract

Microbes adapt to changing selective pressures in their natural environments, leading to a dynamic
process of ecological specialization and speciation, even over short evolutionary time spans. Yet little is
known about the microevolutionary processes leading to ecological differentiation of microbial
populations in the wild. In particular, it is unclear how speciation proceeds in a sympatric setting, where
there are no barriers to the homogenizing force of recombination. Speciation has rarely been observed in

the wild; even more rarely in microbes, and in the near absence of genome sequence data.

We sequenced and analyzed complete genomes from 8 closely-related strains of Vibrio splendidus,
representing two nascent populations, that appear to have recently diversified ecologically: 3 strains found
on small particles, and 5 strains found attached to zooplankton in the coastal ocean. We developed a
comprehensive method to assess mutation and gene flow within and between habitats, and inferred -2000
homologous recombination breakpoints. Although gene-flow between populations in the two habitats is
common, we observe a significant excess of very recent recombination within habitats. Barriers to gene
flow between habitats may therefore be emerging, and are likely driven by a few highly divergent habitat-
specific alleles, including genes involved in stress response (rpoS) and chitin metabolism. Adaptation
through gain and loss of ‘flexible’ DNA is also extensive (each genome contains ~100-300 kb of strain-
specific DNA), and a few recently acquired genes may provide habitat-specific adaptive value. For
example, a suite of genes involved in O-antigen and mannose-sensitive hemagglutinin (MSHA)
biosynthesis are absent in small-particle strains but present in zooplankton-associated strains, perhaps

promoting preferential attachment to zooplankton.

Taken together, these results support a model in which ecological differentiation is initiated by the
acquisition of a small number of habitat-specific alleles, gene flow between habitats is gradually
restricted, and populations resembling biological species — with distinct but not disjoint gene pools —

begin to emerge.
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1.1 Introduction

Microbial species outnumber multicellular species by at least an order of magnitude, partly due to their
continued ability to adapt to new environments and diversify both ecologically and genetically (Cohan &
Koeppel, 2008). The identification of functional units — adaptive genes or species — within this diversity is
a key step towards understanding microbial ecology. In the clinical realm, a key question is whether
diagnosis and treatment should be based on presence or absence of particular pathogenic species of
bacteria, or on particular virulence genes or alleles. An obvious example of the importance of genes over
species identity is Staphylococcus aureus infection, the clinical outcome of which is heavily dependent on
antibiotic resistance genes (Weigel et al, 2003). Antibiotic resistance has also been observed to evolve
through an ordered series of mutations acquired over the course of a single patient’s S. aureus infection,
with no evidence for wholesale gain or loss of genes (Mwangi et al, 2007). Whether due to point
mutation or gene transfer, ecological differentiation (in this case from a state of antibiotic sensitivity to
resistance) is clearly possible on evolutionary time scales much more fine-grained than named species.
Sub-populations may emerge into full-fledged species via the process of ecological differentiation; a
fundamental question is whether sub-populations are produced by point mutations and clonal expansions
— the so-called ‘ecotype’ model (Cohan, 2001), or by a more complex interplay of vertical (clonal) and
horizontal transmission of DNA and natural selection. The different models have distinct evolutionary
and epidemiological dynamics (Maiden, 2008, Fraser et al, 2009), and also differ in the genomic

signatures of positive selections they leave in their wake (Shapiro et al, 2009).

Distinguishing between these models of ecological differentiation requires simultaneously measuring
rates of mutation, homologous recombination, and illegitimate recombination (horizontal transfer) within
carefully chosen populations. In microbial ecology, the focus has tended toward the role of illegitimate
recombination in shaping the ‘flexible genome’, as in the example of antibiotic resistance cassettes, but
also in adaptation to more multi-faceted niches (Kettler et al, 2007, Wilmes et al, 2009, Mandel et al,
2009). Mutation plays a clear role in adaptation of clonal organisms such as Salmonella enterica serovar
Typhi (Holt et al, 2008) and also in numerous experimental evolution experiments in the laboratory
(Bantinaki et al, 2007, Barrick et al, 2009). Homologous recombination within the ‘core’ genome
(common to all strains in the population) has generally been considered as a selectively neutral, cohesive
force maintaining genetic homogeneity within a population (Sheppard et al, 2008, Simmons et al, 2008).
Generally underappreciated is the potential for homologous recombination to drive adaptation, as has
been documented repeatedly in animal populations (Turner et al, 2005, Papa et al, 2008, Schluter &
Conte, 2009, Michel et al, 2010). Here we describe a comprehensive and generalizeable pipeline for

quantifying each of these evolutionary forces and their relative contributions to ecological differentiation.
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The pipeline begins with two or more closely related microbial populations that appear to be specializing
ecologically (e.g. strains of S. aureus with different clinical phenotypes). Whole genome sequences are
obtained from a sample of strains in each population, genome sequences are aligned and divided into
regions that are present in all strains (core), and those that are specific to a single strain or a subset
(flexible). The flexible genome is leveraged to assess rates of illegitimate recombination, while the core
genome is tested for evidence of homologous recombination either among the sampled strains, or with an
unsampled relative. Population-specific genes (in the flexible genome) or alleles (in the core genome), if
present, are identified in an unbiased way and tested for evidence of positive selection promoting
ecological differentiation. Perhaps most importantly, the pipeline tests whether the ecological parameter
under study (e.g. virulence, temperature sensitivity, habitat preference etc.) is a major driver of genome-

wide divergence or not.

In this study, we investigate the genomewide evolutionary forces underlying a putative ecological
differentiation between sympatric marine populations of Vibrionaceae. In an earlier study, vibrios were
isolated from different compartments of the coastal water column; some strains were found to be free-
living, while others were associated with particulate matter or zooplankton (Hunt et al, 2008a). Each
compartment, or microhabitat, favors distinct ecological strategies: free living vibrios exploit dissolved,
evenly distributed nutrients at low concentrations, particle-associated strains degrade nutrient-rich but
patchily distributed detritus (Polz et al, 2006), while zooplankton-associated strains attach to and
metabolize chitinous exoskeletons (Hunt et al, 2008b). In many cases, ecological populations mapped to
relatively deep phylogenetic groups, corresponding to named species. More recent habitat switches were
also observed, potentially catching the dynamic process of ecological differentiation — a key first step
toward speciation — in action. In one such case, a zooplankton-associated population of Vibrio splendidus
appeared to have given rise to a small particle-associated population. The populations differed by just a
single nucleotide substitution (SNP) in a region of the marker gene Asp60, suggesting a very recent time
scale for the ecological switch. Here we ask whether this recent ecological switch drives genomewide
divergence, and deploy our pipeline to uncover the genomic changes (due to mutation, homologous or

illegitimate recombination) that promote, or hinder, ecological differentiation.
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Results

1.2 The overwhelming signal of genomewide divergence follows ecological lines

Genome sequences were obtained for three predicted small-particle-associated strains (SP) and five
zooplankton-associated strains (Z). The initial hypothesis that the SP population was derived from the Z
population is not supported by the genomewide data: based on 3.6Mb of aligned 'core' genome
(Methods), the SP and Z strains form two distinct, monophyletic sister clades (Figure 1.1A). The
consensus phylogenetic signal in the genome is dominated by SNPs which distinguish SP from Z strains
(henceforth ‘ecoSNPs’; e.g. a site where all SP strains have an ‘A’ and all Z strains have a ‘G’), with the
ancestral SNP occurring with roughly equal frequency in either the SP or Z population. This phylogenetic
pattern, coupled with a modest genomewide inflation of dN/dS between habitats (Table 1.S5;
Supplementary note 2), is consistent with significant genetic divergence in both habitats. Therefore, the
small particle/zooplankton ecological axis does indeed appear to be a major correlate and potential driver

of genomewide divergence.

1.3 Evidence for frequent homologous recombination

Next, we asked whether the signal of divergence along ecological lines is supported throughout the
genome, consistent with a clonal expansion model, or whether divergence is driven by a few (potentially
recombinant) loci rich in ecoSNPs. While clonal expansions can arise from neutral processes such as
founder effects and bottlenecks, cross-species (or cross-population) recombination events are unlikely to
be successful in the absence of selection (Shapiro et al, 2009). Distinguishing between these alternatives
requires a genomewide analysis of two classes of homologous recombination events: (i) involving
exchange of DNA among the 8 genomes studied, resulting in rearrangements of the tree topology, or (ii)
exchange with more distant relative, resulting in a contiguous region of sequence with a high rate of
substitutions, and possible topology changes. Existing methods consider one class of recombination event
or the other (Didelot & Falush, 2007, Mau et al, 2006); we developed a model that consider both. Our
model, Strain-based Tree Analysis and Recombinant Region Inference In Genomes from High-
Throughput Sequencing-projects, or STARRInIGHTS allows the genome to be divided into recombinant
'blocks,' each with its own local substitution frequency, and each supporting its own, maximum-
parsimony phylogeny. We then use dynamic programming to solve for the optimal number and allocation
of blocks in the genome, followed by Expectation-Maximization to estimate the most likely
recombination rate (Methods). In mostly clonal lineages, the genome is expected to consist of a single
block, with the vast majority of polymorphisms supporting a single phylogeny, and only a few

phylogenetically inconsistent polymorphisms (homoplasies) scattered throughout the genome. As
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expected, this is the case in a population of 19 Salmonella enterica serovar Typhi genomes, previously
shown to evolve essentially by mutation alone (Holt et al, 2008), with negligible contribution from

recombination (Table 1.1).

In contrast, and consistent with previous estimates of recombination rates in vibrios (Vos & Didelot,
2009), the most likely model to account for patterns of polymorphism in the V. splendidus genomes
involves a relatively high rate of recombination. The probability of a recombination breakpoint was
estimated to be 4.90x10™* per site per branch (about one expected recombination event, involving any set
of strains or nodes on the tree, every 50 kb), resulting in ~1000-2000 total recombination events in the
core genome (Table 1.1). The lower bound assumes that one half of the recombinant blocks are in the
‘clonal frame’, consistent with a single phylogeny of vertical descent, whereas the upper bound assumes
no such majority-rule phylogeny. Only 199 (~10%) of recombination breakpoints were due to a change in
substitution frequency, rather than a change in tree topology, between adjacent blocks. This implies that
the majority (>90%) of recombination events in the core genome involved an exchange within the SP/Z

populations rather than with a more distant relative.

Given the substantial role of recombination in shaping the V. splendidus genomes, we wondered what
fraction of the genome contributed to the observed ecological divergence. Surprisingly, of the 1995
inferred blocks, only 234 (<12%) supported an ‘ecological split’ (ECO split, defined as a tree dividing
strains into distinct, monophyletic habitat groupings). Moreover, the remainder of the genome is not
simply ecologically uninformative — 1372 blocks (69%) support trees actively rejecting the ECO split.
This implies that most of the genome experiences ‘mixing’ between habitats: either the genome contains
polymorphism that pre-dates the habitat split, there has been extensive gene-flow between habitats, or
both. As illustration of this mixing, we considered all 10,395 possible unrooted tree topologies for the 8
strains and ranked them according to their popularity among blocks of the core genome (Figure 1.1B).
Strikingly, the top-ranked tree only accounts for 110 Kbp (3% of the core genome), 55 trees are required
to account for 50%, and 438 trees to account for the entire core genome (Figure 1.S4). This highlights the
lack of a clear ‘clonal frame’ phylogeny due to rampant recombination. Moreover, the majority of trees
are inconsistent with the ECO split (grey bars in Figure 1.1B), suggesting that only a few habitat-specific

alleles are responsible for the genomewide signal of ecological divergence.

1.4. Habitat-specific alleles in the core genome
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What are the habitat-specific alleles, and where are they located in the genome? Most of the 2971
ecoSNPs are clustered in 12 regions of the core genome (Table 1.S1), with just 3 regions accounting for

>50% of ecoSNPs. (Table 1.2; Figure 1.1C)

The first ecologically differentiated region, located on the small chromosome, contains 2 genes: a
predicted RNA polymerase stress-response sigma factor, RpoS, and an RTX (repeat in toxin) family
protein. The second region consists of an operon involved in chitin metabolism. The third region flanks
the highly variable O-antigen locus (part of the flexible genome, not the core) and contains genes coding
for phosphoglyceromutase (EC 5.4.2.1), methylated-DNA-protein-cysteine methyltransferase (EC
2.1.1.63), NormM (a putative Na'-driven multidrug efflux pump), and the chaperone protein GroEL
(hsp60) initially used to define SP and Z groups (Hunt et al a). Further details on the genes in these

regions can be found in Supplementary note 1.

While it is unclear which, if any, of these ECO regions provide habitat-specific adaptive value, they
represent promising targets for future investigation. As initial validation of the habitat-specificity of these
regions, we sequenced portions of them in an additional 6 SP strains and 3 Z strains. As a control, we also
sequenced portions of 3 probable ‘housekeeping’ loci (unlikely to be involved in adaptation) in the same
strains. As expected, the housekeeping loci were not diverged along ecological lines (Figure 1.1C; Figure
1.S2). In contrast, SP and Z strains formed separate monophyletic groups in ecological regions 1 and 3.
Intriguingly, the SP strains were polyphyletic at the chitin-related locus (region 2), suggesting that this
locus may be fitness-neutral in the SP habitat. Yet the Z strains are paraphyletic (neither monophyletic
nor polyphyletic, but still forming a coherent group) at the chitin locus, suggesting that a zooplankton-
associated lifestyle may impose certain constraints on the type of chitin metabolism alleles required for
growth. Alternatively, a small-particle-adapted allele of the chitin locus may be in the process of
sweeping through the SP population, but the sweep is still incomplete. Overall, these results support, but

do not unequivocally confirm, the idea that these 3 regions contribute to habitat adaptation.

1.5. Rapid turnover and habitat-specific genes in the flexible genome

Even over the short evolutionary time span separating the SP and Z strains, the flexible genome is
incredibly dynamic. Consistent with previous observations (Thompson et al, 2005), each of the 8 V.
splendidus genomes contains ~130-360 kb, or 300-600 blocks, of strain-unique DNA (Figure 1.S13).
Despite this rapid turnover, there are substantial amounts of habitat-specific DNA unique to either the SP
or Z habitat (Table 1.S2). Of particular interest, a set of 5 loci involved in O-antigen and mannose-

sensitive hemaglutinin (MSHA) biosynthesis are absent in small-particle strains but present in
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zooplankton-associated strains, perhaps promoting preferential attachment to zooplankton (Meibom et al,
2004). We confirmed this result by PCR of the 5 loci in an additional 3 Z strains and 4 SP strains (Table
1.S3).

1.6. Quantifying gene flow within and between habitats

The data presented thus far suggest that, with the exception of a few habitat-specific alleles, the SP and Z
populations share a history of extensive gene flow between habitats. Yet a shared AZistory of gene flow in
the distant past does not preclude restricted gene flow in the more recent past and present, as might be

expected in newly emerging biological species.

To assess the extent of only the most recent gene flow within and between habitats, we considered only
recombination events confidently predicted as recent: events that separate the most recently diverged pair
of strains (1F111, 1F273) in our analysis. This pair of genomes, henceforth ‘sister strains’, have more
shared polymorphism than any other group (7708 SNPs), and represent the two shortest leaf branches in
the tree (343 and 217 leaf-specific ‘singleton’ SNPs in 1F111 and 1F273, respectively, compared to an
average of 6576 singletons in the other 6 strains). Recombination events that split up the sister strains are
rare; only 83 blocks in the genome reject their grouping together. We used these rare blocks, involving
recent recombination events, to ask whether within-habitat recombination events (those involving one of
the sister strains and the remaining member of the SP group) were more common than between-habitat
events. To ensure we were only considering recent recombination, we restricted our analysis to events
involving only pairs of leafs (extant, thus recent, nodes on the tree): one of the sister strains, and one of
the other 6 leafs on the tree (5 Z strains and 1 SP strain). After excluding blocks whose maximum-
likelihood trees included probable recombination events with distant relatives (leaf branches accounting
for more than 50% of the total tree length), which could result in long-branch attraction and spurious
disruption of the sister strain pairing, and merging adjacent blocks attributable to the same recombination
event, we were left with 27 high-confidence events. Despite the small number of events, there was a
marginally significant excess of recombination within habitats (Figure 1.2A; observed 10 within-habitat
events, expected 4.5; Binomial test p = 0.009). Barriers to gene flow between habitats may thus be in the
process of emerging, despite a history of ancestral gene flow between habitats. Yet the gene pools are far

from closed: 17 out of 27 recent recombination events involved exchanges between habitats.
Barriers to gene flow between habitats is a feature of the flexible genome as well as the core. There is

significantly more flexible DNA shared within habitats than between them, and SP and Z habitats

consistently form separate groups (100% bootstrap support) when strains were clustered according to
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shared blocks of flexible DNA (Figure 1.2B). Considering the rapid turnover of flexible DNA (Figure
1.S13), the similarity of gene pools within habitats is not to be taken for granted. For example, the sister
strains differ by only 560 substitutions (or ~8.1e-5 substitutions/site, based on singleton SNPs, and
excluding likely recombinant blocks that break up the sister strains), but each contains ~300 kb of strain-
specific DNA not present in the other sister (321 kb (distributed over 440 blocks) in 1F111; 287 kb (over
590 blocks) in 1F273). This translates to an average gain or loss of ~1 kb (or 1-2 blocks) of DNA for
every single nucleotide change in the core genome — a surprisingly rapid turnover. Thus, similar flexible
gene pools are maintained within habitats despite rapid turnover and limited vertical inheritance. Distinct
habitat-specific gene pools may be maintained in part by selection (e.g. MSHA genes) and in part by
higher encounter rates and exchange of neutral/selfish elements (e.g. phage and transposons) within

habitats (Table 1.S2).

1.7 Discussion

We have presented the first study of a recent habitat switch exploiting ecological data and whole genome
sequencing of very closely related strains. An ecological switch is an important first step for speciation, a
process where an ancestral population splits into new populations with either or both of the following
characteristics: (1) distinct ecological niches, thus allowing coexistence of both daughter species
(‘ecotypes’) without competitive exclusion, (2) restricted gene flow between populations, either due to
physical barriers (allopatry), or not (sympatry). Understanding the relative contributions of these
mechanisms to the speciation process requires surveying diversity across the entire genome of nascent
species, but the discourse on microbial speciation has to date proceeded largely in the absence of genome

sequence data.

Our results support the idea that the initial stages of ecological differentiation may be driven by a few
genomic islands of habitat-specific genes (in the flexible genome) or alleles (in the core genome), despite
the prevailing homogenizing force of recombination acting on most of the genome. We propose a
sympatric-like ancestral population, in which extensive gene flow results in many recombination blocks
supporting many different phylogenies, mostly inconsistent with divergence along ecological lines
(Figure 1.3A). The acquisition of habitat-specific alleles, either by mutation or gene flow from another
population initiates (and later may maintain) the divergence between strains specialized to one habitat or
the other (Figure 1.3B). Finally, gene flow becomes more common within than between habitats (Figure
1.3C), possibly due to reduced opportunity for encounters between strains in different habitats (partial
allopatry). While we have apparently caught a snapshot of speciation in action, the fate of the nascent

species is completely unknown. Speciation rates may be high, but extinction rates may be equally high,
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especially when habitats (e.g. particular types of zooplankton or particles in the marine water column) are

transient or frequently disturbed (Polz et al, 2006).

The chitin operon presents an intriguing candidate for ecological adaptation since zooplankton
exoskeletons are composed largely of chitin, while small particles might contain chitin at lower
concentration, in more degraded forms, or not at all (Hunt et al, 2008b, Velde & Kiekens, 2004). Strains
adapted to these different habitats may have experienced selective pressures to fine-tune their chitin
utilization strategies in different ways. Although the chitin operon contains a few transport proteins, most
of the habitat-specific divergence is confined to 4 enzymes further downstream in the pathway of chitin
uptake and breakdown (Hunt et al, 2008b). These enzymes contain a relatively large number of habitat-
specific amino acid changes, although evidence for positive selection on these changes is inconclusive
(Table 1.2; Supplementary Note 1). Nevertheless, the extreme levels of habitat-specific divergence in the
chitin operon, in contrast with most loci being freely recombined across habitats, is inconsistent with
purely neutral processes. Divergence in the chitin operon also makes sense ecologically in the context of
the flexible genome: MSHA genes, present in Z but not SP genomes, promote attachment to chitinous
particles such as zooplankton (Meibom et al, 2004). Zooplankton-associated strains may therefore by
adapted to attach to and specifically metabolize zooplankton-derived chitin, while small particle-

associated strains may rely less on chitin, or prefer more degraded forms.

High levels of synonymous divergence in the ecologically differentiated regions (Table 1.2) suggest that
they were likely acquired via gene flow from a relative outside the SP/Z populations. Many ECO blocks,
including those in regions 2 and 3, appear to have been acquired early, perhaps helping initiate the
divergence process (the median divergence time in ECO blocks is 6.98e5 generations since the ecological
split, not much less than the estimated number of generations since the most recent common ancestor of
all strains, 7.15e5 generations (Table 1.1). However, certain regions, including the RpoS/RTX locus, have
very little within-habitat polymorphism (Table 1.2; Figure 1.S10), indicating their more recent

acquisition.

The ability of microbes to acquire novel, potentially niche-specifying genes by homologous or
illegitimate recombination may explain their ability to speciate rapidly and invade new niches (Cohan &
Koeppel, 2008, Doolittle & Papke, 2006). Over evolutionary time scales much more ancient than those
investigated here, genes that cross species boundaries by horizontal gene transfer tend to be enriched in
functions that promote rapid exploitation of new niches (e.g. cell-surface and pathogenicity-related

genes), while ‘housekeeping’ genes are transferred only rarely (Nakamura et al, 2004, Pal et al, 2005).
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Although we did not find a strong functional bias in habitat-specific alleles (those in genomic blocks
supporting the ecological split), this is probably due to the relatively recent ecological differentiation, and

that divergence is mostly due to just a few loci (Figure 1.S3).

In sexual organisms, the feasibility of sympatric speciation hinges on the number of adaptive loci required
to distinguish between nascent species: when only a few loci (<10) are sufficient for niche adaptation,
distinct species can be maintained even with high recombination rates (Kondrashov & Mina, 1986,
Kondrashov, 1986). As more loci are required to attain an optimal niche-specific phenotype, speciation is
impeded because it becomes more likely that recombination will degrade this optimal allele combination.
The necessity of few adaptive loci may also be a feature of microbial sympatric speciation, but for a
different reason: even with relatively high recombination rates, the waiting time for all the optimal alleles
to become fixed in a single genome may be very long (Shapiro & Alm, in prep.). Our observation that
only 3 loci account for over 50% of the divergence between SP and Z habitats (Table 1.2) is consistent
with the prediction that sympatric speciation is only possible when just a few adaptive loci are involved,

but further theoretical work is needed to fully understand why.

This study has provided a first glimpse of the early stages of ecological differentiation at the genomic
scale. Even in highly panmictic, sympatric bacteria, ecological differentiation appears to be driven by a
few habitat-specific loci, potentially leading to restricted gene flow between habitats and the emergence
of distinct populations resembling biological species. The generality of this process, the frequency of
speciation with respect to extinction, and the exact number and function of the adaptive loci required for
speciation all remain to be verified in other Vibrio clades and across the microbial tree of life. We have
proposed a general pipeline for population genomic analysis, amenable to identifying the mechanisms of

ecological adaptation across a variety of microbial taxa.
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Methods

1.8. Assembly, alignment and definition of core and flexible genome

Genomic DNA was extracted from isolated Vibrio strains from our strain collection and sequenced at an
average coverage of 30X per bp using the Illumina platform. Genome sequences were assembled de novo
using Velvet (Schmidt et al, 2009). We used Mauve (Darling et al, 2004) to generate alignments (locally
colinear blocks; LCBs) of Velvet contigs. Default parameters were chosen as they produced longer LCBs
compared to other parameter settings. The core genome consisted of LCBs containing all 8 SP/Z strains,
as well as all 3 outgroup strains (12B01, 12F01 and 13B01), while the flexible genome included blocks of
minimum length 500 bp present in only a subset of genomes. Gaps in the core genome (any site with <5X
coverage in any genome) were excluded, and the alignment was mapped to the Vibrio splendidus 12B01
reference genome (GenBank AAMRO00000000), resulting in 14 ‘core’ contigs of total length 3,583,079
bp.

1.9. Inference of mutation rates and recombination breakpoints using STARRInIGHTS
STARRInIGHTS combines aspects of the two major classes of methods to detect homologous
recombination events in microbial genomes: ‘substitution distribution methods’ (e.g. ClonalFrame
(Didelot & Falush, 2007)) and ‘phylogenetic methods’ (e.g. (Mau et al, 2006)). Like substitution
distribution methods, STARRInIGHTS allows the mutation rate to vary along the genome, allowing for
the detection of recombination events that import a large number of substitutions simultaneously into a
stretch of the genome. Like phylogenetic methods, STARRInIGHTS also explicitly models the tree
topology for each stretch of the genome, allowing for detection of recombination events that change the

tree topology without necessarily importing a large number of new substitutions.

The input to STARRInIGHTS is an aligned contig (or set of contigs) of genomic sequences from the
strains of interest, from which we wish to infer recombination breakpoints and relative rates of mutation
and recombination. Our goal was to infer recombination events using phylogenetically informative single
nucleotide polymorphisms (SNPs) in the aligned contigs — in this case, the ‘core’ genome described
above. We propose that the core genome, consisting of G contigs each of length Ls bp, can be divided
into B+1 blocks divided by B recombination breakpoints. Due to recombination between blocks, each
block may have its own phylogeny and substitution rates (branch lengths). We assume each block has
evolved according to its maximum-likelihood (ML) phylogeny. ML trees were inferred using phyML v.
2.4.5 (Guindon & Gascuel 2003) with a JC69 substitution model, a BIONJ starting tree, and two gamma-
distributed evolutionary rate categories. The gamma distribution shape parameter was set to 0.031, the

median value estimated by phyML in 5 kb windows along the core genome (the choice of window size
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was ranged from 500 bp to 20 kb without affecting the estimate). An example of the STARRInIGHTS
procedure is shown in Figure 1.S5. Due to the high sequencing coverage, we do not expect a considerable
amount of sequencing error. Any remaining errors are not expected to introduce spurious breakpoints but
rather to be accounted for by an increased local mutation rate. The only way that sequence errors could
cause spurious breakpoints is if they introduced spatially clustered groups of polymorphisms all

supporting a single phylogeny, an unlikely scenario to occur by chance.

To find the optimal number of breakpoints (B) and their locations in the genome, we define a cost
function C, where both mutation events (on an ML tree within a block) and recombination breakpoints
between blocks contribute to the cost incurred by a stretch of DNA from base i to base j (i <j).
C(i,j)=c, b,
+ ¢, (l; =by) Equation 1.

T Crreei )

where /; is the length, in base pairs, from i to j, c; is the per-site cost of adding a breakpoint, c,; is the cost
for not adding a breakpoint, b; is the number of breakpoints between i and j, and cryeci) is the cost of the
ML tree topology and branch lengths (mutation events) estimated for the alignment between i and j. The

costs are in fact negative log probabilities:

¢,  =-logP(b)
€ = ~log(1-P() Equations 2a-d.
Crreei.jy =—10gP(T,v,01A4, ;)

where P(b) is the probability of a breakpoint and P(7,v,0| 4, ;) is the probability, estimated by phyML,

of the tree topology T, branch lengths v and substitution model 6 given the alignment 4 from i to j. We

then minimize C over the whole genome using the dynamic programming recursion:

M, =min(M_, + C(i,)))

Equation 3.
{i.j;1=i=j}

where M, is the minimum cost for the first j bp, and setting M, = 0.
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The number of breakpoints (B) and their locations will of course depend on the value of P(b). The
probability of a breakpoint, P(b), is estimated from the data using expectation maximization (E-M)

(Durbin et al, 1998). The E-M steps are as follows:

1. Initialize P(b) with a value between 0 and 0.5. (In practice, try 10 different values and check for
convergence).

2. Using the current value of P(b), solve for the optimal number and location of breakpoints using
dynamic programming.

3. Compute the log likelihood of observing all SNPs in all G contigs of the genome:

G
logL = Y log P(b)" B,
g=1
+log(1-P(b)) (L, - B,) Equation 4.
B+l

+ ElogP(rk,vk,H lA,)

k=1

where L, is the length in bp of contig g, B, is the number of inferred breakpoints and B,+1 the number of

blocks in contig g, and T,, v, and A, are respectively the ML tree topology, branch lengths and

alignment within block £.

4. Update the value of P(b) such that:

S B
P(b) = EL—g Equation 5.
g=1"8

5. Iterate through steps 2-4 using the updated value of P(b) and continuing until convergence:

logL, —logL, , =0, where ¢ is the number of iterations.

1.10. Benchmarking on simulated contig sequences and correction for model complexity.

We tested the sensitivity and specificity of breakpoint detection by applying STARRInIGHTS to
simulated contig sequences with predetermined recombination events. Simulated contig sequences of
length 2500 bp were generated using seq-gen (Rambaut & Grassly, 1997), assuming the HKY85

substitution model, a transition/transversion ratio of 2, equal base frequencies, and a tree of 8 genomes. A
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contig consisted of 5 blocks of 500 bp, each generated by an independent simulation run. In all cases,
blocks 1, 3 and 5 constituted the ‘clonal frame’, all sharing the same tree topology and branch lengths
(sampled at random from the distribution of trees observed across subsequences of the core genome). We
investigated two different scenarios: (A) true recombination events: blocks 2 and 4 simulated with a
different tree topology than 1, 3 and 5 (also sampled at random from the observed distribution of trees);
(B) no event: blocks 1, 2, 3, 4 and 5 all simulated along the same tree. The results of 100 simulations for

each scenario are shown in Figure 1.S6A.

As can be seen from this figure, the ML method yields unacceptably high levels of false positive
breakpoints. In Scenario B, where no breakpoints should be inferred, the 100 simulated contigs
collectively contained 593 breakpoints, which translates to a false-positive probability of 0.0024 per site
(593 breakpoints / (2500 sites * 100 simulations). When spurious breakpoints in Scenario A (any
breakpoints in excess of the four expected) are also counted, the false-positive probability increases to
0.0032 per site. For a core genome of 3.5 Mbp, this would lead to an expected 8,400-11,200 false-positive

breakpoints — clearly an unreasonably low specificity.

One reason for spurious breakpoint calls might be lack of correction for model complexity in
STARRInIGHTS. Every time a new breakpoint is included, a new tree topology and branch lengths are
added as additional parameters to the model. Unless this is corrected for, many false breakpoints might be
added in order to increase the likelihood of the model. For example, consider a hypothetical subsequence
of 100 bp containing 10 phylogenetically-informative SNPs. For simplicity, assume that all 10 SNPs
support the exact same tree topology, partitioning the strains into two groups. If by chance 5 of the SNPs
fell within the first 40 bp and the other 5 SNPs in the last 60 bp, the likeliest model might result in two
blocks, each supporting the same tree topology, but with a longer branch length in the 40 bp block (5
SNPs / 40 bp = 0.125 subs/site) than the 60 bp block (4 SNPs /60 bp = 0.067 subs/site). To quantify the
contribution of this effect, we simulated sequences ranging in length from /=10 bp to /=211 kb (in
binned increments each spanning ~10% of the observed core genome subsequences), and ranging in
mutation rate from A = 0.001 to A = 1, where X is the number of SNPs per site. For each combination of A
and / we simulated 100 sequences using seq-gen with a tree chosen at random from the distribution of
trees observed across subsequences of the core genome, and estimated the likelihood of a model with no
breakpoints (L0) and a model with exactly one breakpoint (L/), placed optimally in the sequence to
maximize the likelihood. Note that sequences were simulated using a single tree, so breakpoints
introduced in the L/ model are necessarily due to increased model complexity rather than actual

recombination events. The maximum values of the log (L1/L0) ratio observed in 100 simulated contigs
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for each combination of / and A are shown in Figure 1.S7. This distribution was smoothed and used as an
empirical correction for model complexity. STARRInNIGHTS was modified to include an appropriate
correction factor for the values of / and A in the subsequence being considered, and we again
benchmarked on contigs simulated under Scenarios A and B. The correction for model complexity was
accomplished by adding a penalty, pen(i,j) = log (L1/L0),+, to the cost function C(i,j) from Equation 1,
where log (L1/L0),+ is the observed maximum log ratio from 100 simulations with a given A = A* and /
= [* The designations 1* and /* designate discrete, percentile-incremented parameter values used in the
simulations that most closely match the observed A(k,j) and I(k,j), where k = traceback(i-1) and the
subsequence (k,j) consists of two flanking breakpoints at k£ and j, with a third breakpoint in between at i.
By adding the appropriate penalty, we are correcting for the probability that the breakpoint at i due to
model overfitting (e.g. due to the effect described in the hypothetical subsequence of 100 bp with
unevenly distributed SNPs). Running STARRInIGHTS with the correction resulted in a noticeable
improvement in specificity without a substantial decrease in sensitivity to identify true breakpoints
(Figure 1.S6B). The probability of a false-positive breakpoint improved from 0.0032 per site without the
correction for model complexity to 0.00042 per site with the correction. Only considering Scenario B,
where no true breakpoints are present, the false-positive probability decreased from 0.0024 to 0.000024
per site. Using a strict measure of sensitivity, only counting breakpoints in simulations that yielded <4
breakpoints in Scenario A, the sensitivity went from 6% (in the uncorrected model; Figure 1.S6A) to
16.5% of correctly identified breakpoints in the corrected model. Using a less strict measure of sensitivity
(including simulations with >4 breakpoints, indicating some false positives), the uncorrected model had a

sensitivity of 95% and the corrected model of 88.5%.

Finally, we identified breakpoint probabilities for which specificity was near perfect, either under a strict
definition of specificity (zero false-positive breakpoints in 100 Scenario A simulations (no instances of >4
breakpoints), and zero false-positives in 100 Scenario B simulations), or a more relaxed definition (zero
breakpoints in Scenario B). Under the strict specificity requirement, we found log P(b) =-97.20, and
under the relaxed requirement log P(b) = -10.35 as the maximum log P(b) values that achieved the
desired specificity levels. We proceeded to apply the model complexity-corrected STARRInNIGHTS
algorithm to the Vibrio core genome alignment. Estimating the breakpoint probability by E-M yielded log
P(b) =-6.79 and 4206 inferred breakpoints (compared to log P(b) = -6.38 and 6463 breakpoints in the
uncorrected ML model). Setting log P(b) =-10.35 or log P(b) =-97.20 yielded 3227 or 663 inferred

breakpoints, respectively.
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1.11. Parsimony approximation

A variant of STARRInIGHTS using parsimony trees, which are less computationally intensive to infer
than ML trees, was also evaluated. The parsimony-based method requires the assumption of equal branch
lengths throughout the tree, and the assumption that mutation events occur only once per site per branch.
This allows us to pool all branches together and treat mutation events as a Poisson process, with
homoplasies (convergent mutation to the same base in two or more branches) being more likely as the
Poisson rate parameter (a proxy of the mutation rate) increases. In the transition from one recombinant
block to the next, clusters of homoplasies inconsistent with the first block’s tree will be encountered, and
if these homoplasies are sufficiently dense, a model with a breakpoint separating them into their own
parsimony tree becomes increasingly likely. The model is seriously flawed when the assumptions are
violated; take for example a tree of 8 genomes with a single long internal branch, and all other branch
lengths equal to zero. The mutation rate (Poisson rate parameter) will be estimated as non-zero based on
the single long branch, yielding a non-zero probability of observing a homoplasy. Yet homoplasies will
never be observed in such a tree because it effectively has only two branches, a scenario in which
homoplasy is not defined. It is unclear how the parsimony model will perform when such trees are
encountered. It seems likely that the model will be overly conservative in calling breakpoints because
when stretches of DNA with no homoplasies and a non-zero probability of homoplasy are encountered,
these stretches will be extended, without calling breakpoints, until regions that do contain breakpoints are
included. In practice, the parsimony model does indeed appear to be conservative, calling zero false-
positive breakpoints in the Scenario B simulation (Figure 1.S6C), but with a reduced sensitivity compared

to the ML model.

Applied to the Vibrio core genome, STARRInIGHTS using parsimony infers 1981 breakpoints. Of these
breakpoints, over half (1033) are also identified exactly in the ML+correct model (described above,
yielding a total of 4206 breakpoints). When the criterion for breakpoint overlap is relaxed to a 100 bp
window, 1684 of the parsimony breakpoints are found by ML+correct, and all parsimony breakpoints are
found within a 1 kb window. A full analysis of the Vibrio genome using the ML+correct model is
underway, but the data presented here use the parsimony approximation. Because of the good overlap of
the breakpoints called by both methods, we expect most of the features of the analysis to be preserved

across methods.

The parsimony method is conceptually similar to the ML method, but we assume a block has evolved

according to its maximum-parsimony phylogeny (minimizing the number of inconsistent/homoplasic
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substitutions in the tree). Parsimony trees were inferred using the the DNACOMP program in the phylip
package (Felsenstein, 1993). The cost function described in Equation 1 is replaced with:
C@i,j)=c, b,

/)
+ cnb ’ (lij _bij)

+ ch'h,.j

+ ey (y=hy)

Equation 6.

where /; is the length, in base pairs, from i to j, c; is the per-site cost of adding a breakpoint, ¢, is the cost
for not adding a breakpoint, ¢, is the cost of a homoplasic mutation, ¢, is the cost of no homoplasy at a
site, and b;; and h;; are respectively the numbers of breakpoints and homoplasies between i and j. The costs

are in fact negative log probabilities of breakpoints (), homoplasic mutations (%), or the absence of these

events:

¢, =-logP(b)

c,, =—log(1-P(b)) Equations 7a-d
¢, =-logP(h) |
¢, =—log(l-P(h))

We then minimize C over the whole genome using the dynamic programming recursion described in

Equation 3.

The number of breakpoints (B) and their locations will depend on the values of both P(b) and P(h). The
probability of a breakpoint, P(b), is estimated from the data using expectation maximization (E-M) as

described above, but replacing Equation 4 with:

G
logL = Y log P(h)" B,
g=1
+log(1-P(b)) (L, - B,) Equation 8.
B, +l

+ Y logP(h)- h, +log(l- P(h))- (I, = ;)

k=1

where L, is the length in bp of contig g, B, is the number of inferred breakpoints and B,+1 the number of

blocks in contig g, A, is the number of homoplasies and /; is the length of block %.
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Meanwhile, the probability of homoplasy, P(h) can be estimated based on the observed mutation rate in a
stretch of DNA from base i to base j. Let us begin by defining A, the per-bp rate of mutation from an
ancestral base y to a new base x (x#y) on a maximum-parsimony tree, assuming that branch lengths are

equal and non-zero, and that all types of mutations are equally likely:

A =

1 s .
=T Equation 9.
-3 lij

where s is the number of single-base substitution events observed in the parsimony tree for the stretch of
DNA (i,j) with length /; = j-i+1. The factor of 1/3 is included because there are only 3 available bases x

that differ from the ancestral base y.

Mutations at a single site can be modeled as a Poisson process P(#; A,), where A, is mutation rate to base x
and n is the number of mutation events to base x at the site. Homoplasies are defined as n > 2, meaning
that two or more branches have undergone convergent mutation to base x at the same site. Repeated
mutations at the same site in the same branch are assumed not to occur. Therefore the probability of

homoplasy x in the region (i,j) is:

P(h,1s,l;) = Poisson(n=211,)

Equation 10.
=l-e" - )»xe"\*‘
Given that:
P(hls,l;) =1—[1—P(hx |s,ll.j)]3 Equation 11.
and substituting in Equation 10, we have

P(hls,l;)=1- [e_l‘ +Ae™ ]3 Equation 12.

We can now use P(h|s,/;;) as our estimate of P(%) in Equations 7 and 8 above. This effectively allows a
local estimate of the mutation rate in any stretch (i,j) or block of the genome. In regions with higher

mutation rates, homoplasies will be relatively likely due to repeated mutation events at a site. Conversely,
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in regions with low mutation rates, homoplasies are less likely to occur by mutation, and unparsimonious

SNPs are more likely to be explained by invoking a recombination breakpoint.

To account for the possibility that some sites might be ¢fruly invariant (not just observed as invariant, but
unchangeable for biological reasons), and thus must be considered separately from the Poission mutation
model, we added the parameter a to our model, where a = the fraction of truly invariant sites in the

genome, and modified Equation 12 accordingly:

P(hls,l;) = (1 - a) . (1 - [—e_l‘ - )uxe_'l* ]3) Equation 13.

We tried a range of values of @ between 0 and 1, and conducted the dynamic-programming/E-M
procedure with each, eventually choosing the a yielding the maximum likelihood. We repeated this

procedure, narrowing in on a smaller and smaller range of a until the optimum was found.

1.12. Pre-filtering for regions of phylogenetic incongruence
The cost functions and dynamic programming described above rely on ML trees for each possible
subsequence (i,j) of the genome. This requires precomputing a large number (~L7) of trees. Specifically,

N(T), the number of ML trees to be inferred is:

S L (L, -1
N(T) = E% Equation 14.
g=1

where L, is the length in bp of contig g, and there are G contigs in the core genome. To reduce the
computational burden of building ~O(L?) ML trees, we perform a pre-filtering step to avoid building trees
for subsequences (i,7) that almost certainly contain at least one breakpoint. To search for these clear cases
of phylogenetic incongruence, we slide a 150 bp window along the sequence of informative SNPs and
calculate, for each window, the probability that the SNPs on the left side and the right side of the window
come from the same distribution. This is done by registering the frequency of the different SNPs observed
in the window in a n-row, 2-column contingency table, where n is the number of different SNPs observed
in the window and the columns correspond to the left and right sides of the window. We can then use a 3
test to calculate the significance that the observed SNPs are unevenly distributed over the window. This
gives us a statistical criterion to split the alignment into smaller blocks tractable by the downstream

dynamic-programming algorithm.
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In addition, we distinguish cases of significant unevenness caused by incongruent phylogenetic topologies
from those caused by long branch lengths, by explicitly measuring the average percentage of conflicting

SNPs between all pairs of topologies found in the window:

_ . min(SNP;,,SNP;,) - SNP;,;, S Equation 15.

dis SNP,, + SNP,, — SNP,,,

where SNPr;, SNPr; and SNPr;n7; are the number of SNPs supporting topologies 77, T2 or both T/ and

T2. The average in Equation 7 runs over all pairs of topologies found in the window.

For the analysis presented in the main text, we split the alignment in smaller blocks at all positions with
chi-square p-value < 1e-6 (corresponding to ~1 false positive breakpoint inserted every 1 Mbp, or <4

total in the core genome) and a Fdis of at least 15% discordance between topologies (Figure 1.S8).

1.13. Population genetics and phylogenetic analysis

i. McDonald-Kreitman (M-K) test

Gene calls were obtained from the Vibrio splendidus 12B01 genome annotation (MicrobesOnline taxon
ID 314291) and aligned to core genome contigs with the Smith-Waterman global alignment program
water, part of the EMBOSS 6.2.0 package (Rice et al, 2000). Gaps in the codon sequence, potentially due
low sequencing coverage, were skipped, but a stop codon in any strain always ended the alignment.
Polymorphic substitutions (within ingroup strains) and divergent substitutions (fixed between ingroup and
outgroup) were counted, and assigned to synonymous or nonsynonymous categories, as previously
described (McDonald & Kreitman, 1991b). Only codons for which there were no more than two states
were retained for analysis, and we always chose the pathway between codons that minimized the number
of nonsynonymous changes. We calculated the Fixation Index, FI = (FN/FS)/(PN/PS), where FN and FS
are respectively the numbers of fixed nonsynonymous and synonymous sites, and PN and PS are
respectively the number of polymorphic nonsynonymous and synonymous sites. FN, FS, PN and PS were

corrected for multiple substitutions using a Jukes-Cantor correction:

d= —%ln(l - (% . %)) Equation 16.
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where d is the corrected value of FN, FS, PN or PS, ¢ is the number of observed substitutions, s is the

number of sites (Synonymous or nonsynonymous, as appropriate).

A fixation index greater than one suggests positive selection at the protein level between ingroup and
outgroup, whereas a value less than one suggests negative selection between ingroup and outgroup, or
segregating deleterious polymorphism or balancing selection in the ingroup population. The fixation

index is an Odds Ratio statistic; significant deviations from 1 are evaluated with a Fisher exact test.

Computing FI genomewide requires pooling Fisher test contingency tables for multiple genes, potentially
resulting in artificial inflation or deflation of the genomewide FI due to Simpson’s paradox. To control for
this effect, we calculated the expected genomewide FI by permuting the contingency table for each gene
(e.g. generating a random, ‘neutral’ contingency table with row and column sums equal to those
observed), calculating FI, and repeating this procedure 1000 times to obtain a distribution of expected FI
(Shapiro et al, 2007). In the pooled genomewide analysis, we used 3417 coding genes. In rare cases where

the same codon is used in multiple genes, the codon was only counted once.

ii. Population differentiation (Fs7)

Fgr was calculated within each inferred recombinant block as:

Fy = = Equation 17.

- n
where k = Ek"f / ( 2), and k; is the number of single nucleotide differences between sequence (block)

i<j
and j of the n total sequences. k, is only calculated between pairs of sequences coming from habitat X,

IEY between pairs from habitat Y, and IEXY between all pairs.

iii. Phylogenetics

An approximate maximume-likelihood tree based on a concatenation of the 14 core genome contigs (3.6
Mbp) was constructed with FastTree (settings: -topm 2 —boot 100 —slow —refresh 0.9 —nni 100) (Price et
al, 2010). For shorter sequences, including individual blocks and regions of interest re-sequenced in

additional strains, maximum likelihood trees were constructed with PhyML (Guindon & Gascuel, 2003),
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using the HKY substitution model, 4 gamma-distributed rate categories, transition/transversion ratio and
shape parameter estimated from the data, and 100 bootstraps (settings: 100 HKY e e 4 e BIONJ).
Parsimony trees for subsequences of the core genome were inferred using the DNACOMP program of the
phylip package. The total number of substitutions along the most parsimonious tree were recorded, as
were the number consistent with the parsimony tree (occurring only once), and the number of homoplasic

substitutions (occurring more than once in the tree).

1.14. PCR and sequencing

Primers were designed to test for putative ‘niche-specifying’ alleles in an additional 9 strains: 3 predicted
members of the Z population (ZF28, ZF30 and ZF205), 4 predicted members of the SP population (1F97,
1F124, 1F127 and1F175), and 2 free-living strains falling within the SP clade based on Asp60 similarity
(FF160 and FF274).

The following loci in the core genome were targeted for sequencing: two regions of the chitin operon
(parts of the N-acetylglucosamine kinase (VIMSS2681958) and N-acetyl-hexosaminidase
(VIMSS2681959) genes; primers coreG and coreA, respectively), part of rpoS (VIMSS2678244, primer
coreB), part of pgm (VIMSS2679313; primer coreC), an intergenic region near lactate dehydrogenase
(VIMSS2678827; primer coreD), part of gyrB (VIMSS2682261; primer corel), and part of formate
dehydrogenase (VIMSS2677858; primer corel). Five loci in the flexible genome were also targeted by
PCR to test for presence/absence in each strain: MSHA biogenesis proteins mshN and mshF (primers
flex1 and flex2), probable maltose O-acetyltransferase (primer flex3), a probable glycosyltransferase
(primer flex4), and a putative intercellular adhesion protein (primer flex5). Primer sequences are shown in
Table 1.S4. Core PCR reactions consisted of of a denaturing step (30s at 98°C), followed by 30 cycles of
denaturing (30s at 98°C), annealing (30s at 50°C), and extension (15s at 72°C). Core PCR products were
Sanger sequenced at the MIT Biopolymers laboratory. Sequences were aligned, trimmed and filtered for
any regions of low-quality sequence using CLC DNA Workbench 5. This resulted in 372 bp of high-
quality sequence for N-acetyl-hexosaminidase, 558 bp for N-acetylglucosamine kinase, 674 bp for rpoS,
621 bp for pgm, 425 bp near lactate dehyrogenase, 515 bp for gyrB and 701 bp for formate
dehydrogenase.

Flexible PCR reactions consisted of a denaturing step (30s at 98°C), followed by 30 cycles of denaturing
(30s at 98°C), annealing (30s at the temperature shown in Table 1.S4), and extension (15s at 72°C).
Presence/absence of a PCR product of the expected size was checked on a gel, with previously published

hsp60 primers as a control (Hunt et al, 2008a).
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Supplementary Note 1. Details of genes in 3 ecologically-divergent regions.

Two general features are evident in these 3 regions of high ecological divergence: (1) genetic novelty is
more likely acquired by recombination than mutation, and (2) genetic hitchhiking between linked genes
may obscure the identities of the true targets of habitat-specific selection. Support for the first point - that
habitat-specific genes are commonly acquired by recombination with distant relatives - comes from the
observation that most genes in the ecological regions have very high rates of synonymous substitutions
between habitats (Table 1.2). Given that, on average, the strains in this study are ~98% genetically
identical (Figure 1.1A; Table 1.1), such high synonymous divergence (dS) is best explained by
recombination with relatives beyond the 8 genomes considered here. One consequence of such high dS is
that, despite relatively high nonsynonymous divergence (dN), traditional tests for positive selection at the
protein level (such as dN/dS and the McDonald-Kreitman test) suffer a substantial loss of power. For
example, three chitin-related genes in region 2 with high dN (beta-hexosaminidase, N-acetylglucosamine
kinase and endoglucanase) also have high dS, obscuring any signal of positive selection in the M-K test.
Yet many of the amino acid changes between habitats may have adaptive value and their potential

contribution to speciation should not be ignored.

The second point, concerning genetic hitchhiking, is exemplified by the GroEL gene (Asp60). The 10
habitat-specific substitutions in GroEL were used in the initial identification of SP- and Z-specific strains
(Hunt et al, 2008a), yet it seems unlikely that this housekeeping gene plays a large part in habitat
adaptation. More likely, another gene in this cluster, such as DNA methyltransferase or NormM, confers
the habitat-specific adaptive value while GroEL has simply hitchhiked along with it on the same linked
piece of DNA. Therefore, it was somewhat serendipitous to have chosen GroEL as a putative neutral
marker gene, when in fact it may be linked to genes with habitat-specific fitness effects. The majority of
loci in the genome show little or no support for the partitioning of strains into habitats; had one of these
loci been chosen, the distinction between SP and Z strains would never have been discovered in the first
place. In the future, use of putatively fitness-neutral marker genes (e.g. MLSA genes) should be used with
caution: depending on the degree of recombination in the population of interest, markers could be linked
to recombined, selected loci whose evolutionary history does not reflect the population's history of clonal

descent.

The first region, located on the small chromosome, contains 2 genes: a predicted RNA polymerase stress-
response sigma factor, RpoS, and an RTX (repeat in toxin) family protein. The sigma factor may be
a Vibrio-specific second copy of RpoS (henceforth "RpoS2"), the first copy of which is located on the

large chromosome (Figure 1.S1). RpoS2 contains 26 fixed amino acid (aa) changes between SF and Z
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strains, 3 of which occur in predicted DNA binding domains: positions 141 (SP=His, Z=Arg), 153
(SP=Ser, Z=Asn) and 161 (SP=Thr, Z=Lys) of the T. thermophilus reference sequence (Lee & Gralla,
2002). An additional 2 DNA binding residues differ between RpoS2 and the canonical RpoS, but are
identical in SP and Z strains: positions 140 (RpoS=Phe, RpoS2=Tyr) and 156 (RpoS=Arg, RpoS2=Ala).
These observations suggest, first, that RpoS2 may target significantly different DNA binding sites than
the canonical stress-response sigma factor RpoS, and second, that RpoS2 may have experienced
functional modifications between SP and Z strains - potentially promoting transcriptional activation of

different sets of genes in each habitat.

The RTX family protein adjacent to RpoS2 has similarity to V. cholerae RTX, an excreted cytotoxic
protein (Lin et al, 1999). RTX is highly diverged between habitats, with >200 fixed aa changes (Table
1.2) and significant domain reorganization (the RTX homolog in SP strains is 1505 aa in length, but only

786 aa in Z strains and the 12B01 outgroup).

The second ecologically differentiated region consists of an 8kb operon involved in chitin metabolism.
This locus presents an intriguing candidate for ecological adaptation since zooplankton exoskeletons are
composed largely of chitin, while small particles might contain chitin at lower concentration, in more
degraded forms, or not at all. Strains adapted to these different habitats may have experienced selective
pressures to fine-tune their chitin utilization strategies in different ways. Although the chitin operon
contains a few transport proteins, most of the habitat-specific divergence is confined to 4 enzymes further
downstream in the pathway of chitin uptake and breakdown (Table 1.1). These enzymes are involved in
producing N-acetyl-glucosamine (GlcNAc) monomers from (GIcNAc), 3 oligomers, either in the
periplasm by N-acetyl-hexosaminidase or in the cytosol by diacetylchitobiose phosphorylase, and in
breaking down deacetylated chitin dimers (GIcN), to monomers (by the endoglucanase) and
phosphorylating them (by glucosamine kinase) to be fed into the pentose phosphate pathway (Hunt et al,
2008Db). Proteins in the upstream portion of chitin metabolism (chitin transporters and chitinases) show no
differences between SP and Z strains. Thus, it may be that different selective pressures between habitats
are primarily due to 'downstream' differences in chitin quality (long polymers vs. shorter oligomers) and
acetlyation levels, rather than 'upstream' differences in local chitin concentration. These 'downstream’
differences have the potential to vary widely depending on the chitin source (e.g. shrimp, crab or squid

shell, whether it is mechanically broken, treated with acids or bases, etc.; (Velde & Kiekens, 2004)).

The third region contains genes coding for phosphoglyceromutase (EC 5.4.2.1), methylated-DNA-
protein-cysteine methyltransferase (EC 2.1.1.63), NormM (a putative Na'-driven multidrug efflux pump),
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and the chaperone proteins GroES and GroEL (Table 1.2). Although the functional significance of
habitat-specific evolution of these proteins is unclear, it is worth noting that DNA methyltransferase plays
an important role in repairing damaged DNA - specifically by reversing O-6-methylation of guanine and
preventing G-A transitions from accumulating (Myers et al, 1993). Loss of DNA repair capabilities may
be an important mechanism in generating 'hypermutator' phenotypes, which may promote rapid
adaptation under strong natural selection (Barrick et al, 2009, Visser,J Arjan G M de, 2002, Hazen et al,
2009). The hypermutator state may eventually be reversed by re-acquisition of the lost DNA repair
gene(s), thus rescuing the lineage from eventual mutational meltdown. Our data reveal 25 fixed aa
changes in DNA methyltransferase between SP and Z habitat-associated strains. Both SP and Z strains are
fairly diverged from the 12B01 outgroup, with 14 and 23 aa changes, respectively. Such a high density of
substitutions in a relatively small protein (132 aa) strongly suggests that DNA methyltransferase was
recombined independently into SP and Z strains from distant yet unidentified relatives (because 12B01 is
always the top BLAST hit, but with relatively low identity). Acquisition of DNA methyltransferases from
distant relatives could be explained if hypermutator strains emerge frequently in nature, and eventually
must revert to a normal DNA repair phenotype by re-gaining the necessary genes, potentially from any
available donor. In the case of our ecologically-associated Vibrio strains, we hypothesized that the Z
strains might have hypermutator phenotypes, given that they contain a DNA methyltransferase homolog
with more changes relative to the outgroup than SP strains. If DNA methyltransferase activity were
impaired in Z strains, we would expect an increased incidence of G-A transitions in the recent evolution
of Z strains relative to SP strains. Indeed, we found that Z strains (Ieaves on the phylogeny, recent
mutations) had a transition:transversion ratio (ti:tv) of 2.06, moderately higher than the ti:tv of 1.93 in SP
strains (Fisher test: Odds Ratio = 1.1, p = 0.002). Consistent with a Z strain-specific lesion in DNA
methyltransferase, 43% of recent mutations in Z strains involved G-A transitions - significantly more than
the 33% observed in SP strains (Odds Ratio = 1.55, p <2.2e-16). More generally, there is some evidence
for 'bursts' of evolution (unusually long branches in the phylogeny) to involve elevated ti:tv ratios,
potentially due to hypermutation events. We tentatively conclude that rapid gain and loss of hypermutator
phenotypes may be common in natural Vibrio populations, possibly contributing to rapid adaptation to

new habitats.
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Supplementary Note 2. Genomewide M-K test

Although the M-K test is not appropriate when ingroup/outgroup are not well defined, as is the case in the
majority of genomic blocks that reject the partitioning of genomes along ecological lines, it still reveals a
modest genomewide inflation in dN/dS between habitats (dN/dS = 0.063), relative to within the Z habitat
(pN/pS =0.060; p = 0.008; Table 1.S5). This would be expected as slightly-deleterious nonsynonymous
mutations hitchhike to fixation along with the genome targeted by a selective sweep. Alternatively, the
excess of nonsynonymous changes between habitats could have been driven by recurrent selective sweeps
targeting the amino acid changes themselves. These data are also consistent with an ecotype model of
speciation involving genetic drift rather than selection. The drift model would require that SP and Z
strains undergo population bottlenecks independently of one another. A bottleneck may indeed have
occurred recently in the SP strains, which show a significant excess of segregating nonsynonymous
polymorphism (pN/pS = 0.068; p = 0.001; Table 1.S5), likely due to genomewide fixation of slightly

deleterious nonsynonymous mutations.
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Figure legends

Figure 1.1. Phylogeny follows ecology at just a few habitat-specific genomic loci.

(A) The SP (filled green squares) and Z strains (open red circles) form two distinct monophyletic clades
in an approximate maximum-likelihood tree based on 3.6Mb of aligned 'core' genome. Top tree: support
for tree partitions based 100 bootstraps (branch lengths not to scale); Bottom tree: branch lengths
(substitutions/site);

(B) Many different tree topologies are required to account for most of the core genome. All 10,395
different unique, unrooted trees with 8 leafs were considered. Each recombinant block of the genome was
allowed to ‘vote’ on any tree consistent with the block’s informative SNPs. The tree with the most votes
(accounting for the most bases in the genome) was chosen as the top ranked tree, and removed from
further iterations along with its recruited blocks. The voting process was repeated iteratively, greedily
recruiting blocks to the remaining tree topologies until all blocks were accounted for (requiring 438
unique trees, the top 100 of which are shown; see Figure 1.S4 for all 438 and Figure 1.S9 for the top 20
ranked tree topologies).

(C) Regions of the genome supporting (black line) or rejecting (grey line) the partitioning of strains into
distinct habitats. Core genome contigs are shown as alternating white/dark grey lines along the x-axis.
The right-most (white) contig corresponds to the small chromosome. Tick marks below the x-axis
represent the inferred recombination breakpoints. Black peaks represent uninterrupted stretches of support
for the ecological split, with peak height showing the number of SNPs supporting the split (e.g. all SP
strains have base ‘A’ while all Z strains have base ‘C’) in that stretch. Numbered peaks correspond to the
regions described in Table 1.2 and 1.S1. Grey peaks represent uninterrupted stretches of SNPs
inconsistent with the ecological split. Trees for ‘ecological” and ‘housekeeping’ loci sequenced in
additional strains are shown above and below the plot, respectively (see Figure 1.S2 and Table 1.S4).

Figure 1.2. Recent gene flow is more common within than between habitats.

(A) Core genome recombination events that split up the two most recently diverged sister strains either by
recombination within the SP habitat (green bar), or between habitats (Z strains shown as grey bars).

(B) Distance matrix based on the amount of shared flexible genomic blocks between strains. Similarity
between a pair of strains i and j was defined as 2*( # blocks shared between i and j)/( # blocks in i + #
blocks in j). The heatmap represents UPGMA clustering of the distance matrix (distance = 1 — similarity).
The tree on the left was generated using 1000 bootstraps resamplings (with replacement) of the flexible
blocks and building a Neighbour-Joining tree with the distance matrix. The tree shown represents an 80%
consensus across bootstrap replicates, with percentage support shown above nodes in the tree.

Figure 1.3. Schematic of microbial speciation with gene flow.

Lineages of clonal (vertical) descent are shown as black lines, which become red or green upon
acquisition of habitat-specific alleles (red or green arrows). Recombination events are depicted by vertical
arrows, with grey arrows representing recombination of fitness-neutral alleles and colored arrows
representing habitat-specific alleles.

Table legends

Table 1.1. Recombination and mutation in Vibrio and Salmonella population genomes.

All values and parameters were inferred using STARRInIGHTS. The mutation rate (# substitutions per
site per branch) for V. splendidus represents the median value across all 1995 blocks. The number of
generations to the most recent common ancestor (MRCA) was estimated as (# subs./site/branch) * ( #
sites in core genome) * (300 generations/substitution in genome) after Drake ((Drake, 1991)), with
substitution counts extracted from the block’s parsimony tree.

63



Table 1.2. Divergence and polymorphism in top 3 regions supporting the ecological split.

The degree of population differentiation, Fist between SP and Z, was calculated as described in Methods.
FN, FS, PN, PS and FI are as described in Table 1.S5. Only genes with divergence between habitats (FN
and/or FS > 0) are shown.

Supplementary figure legends

Figure 1.S1. ‘RpoS2’ is a Vibrio-specific second copy of RpoS (sigma 38).

The protein sequences of V. splendidus 12B01 RpoS (VIMSS2680752), RpoD (VIMSS2682712), and
putative second copy of RpoS (‘RpoS2’; VIMSS2678244) were obtained from MicrobesOnline and
BLASTed against the NCBI nr database to obtain homologs in other species (E-value < 1e-20).
Homologous sequences were aligned with MUSCLE (Edgar, 2004), and used to generate a maximum-
likelihood PhyML tree. The SP and Z strains used in this study are highlighted in green and red,
respectively, on the tree. RpoS2 appears to form a distinct clade on the tree, consisting entirely of vibrios.

Figure 1.S2. Trees of ‘ecological’ and housekeeping genes resequenced in additional strains.
Regions of 4 ‘ecological’ genes and 3 housekeeping genes were amplified from additional strains
(indicated with asterisks) using PCR primers described in Table 1.S4, and sequenced as described in
Methods. Trees were built using PhyML, rooted with 12B01 and 12F01 as outgroups. SP strains = filled
green boxes; Z strains = red outlined boxes.

Figure 1.S3. Recombination across COG functional gene categories.

(A) Recombination blocks were classed as either supporting the ecological partition of strains (upper
panel), or rejecting the ecological partition (lower panel). The relative fraction of genes within a given
function that either support (upper) or reject (lower) the ecological split is shown (normalized to the mean
fraction across all functions). Enrichments or depletions of each COG function within each class (ECO-
support or —reject) were assessed using a hypergeometric test. No significant enrichments were found
after multiple-hypothesis correction; individually significant, uncorrected p-values are shown (*p < 0.05;
**p <0.01).

(B) Recombination breakpoints that split between an ECO-supporting and an ECO-rejecting block
(‘between-habitat breaks’; upper panel) and those that split between two ECO-supporting blocks (‘within-
habitat breaks’; lower panel) were counted. We then measured the mean distance from the edges of each
coding gene to a breakpoint of either class (e.g. (distance from start codon to upstream breakpoint +
distance from stop codon to downstream breakpoint) / 2). The y-axis shows (1 - the relative mean
distance to a breakpoint). Distances are relative to the mean across all functions. Higher values on the y-
axis denote COG functions that tend to be closer to breakpoints; lower values denote COG functions that
tend to be further from breakpoints. Differences between each COG function and the mean distance
across functions were assessed using a Wilcoxon test. No functions were significantly different from the
mean after multiple-hypothesis correction; individually significant, uncorrected p-values are shown (¥*p <
0.05; **p <0.01).

Figure 1.54. All 438 different tree topologies required to cover the entire core genome.
See figure legend 1.1B in the main text.

Figure 1.S5. Example STARRInIGHTS calculations and workflow.
See methods for a detailed description.

Figure 1.S6. STARRInIGHTS benchmarked on simulated sequence.
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Frequency of breakpoint calls in simulated contigs using (A) the ML STARRInIGHTS method, (B) the
ML method corrected for model complexity, or (C) the Parsimony method. Contigs of length 2500 bp
were simulated under either Scenario A (two recombination events, yielding four breakpoints) or Scenario
B (no recombination events), as described in Methods. The number of breakpoints at each site, summed
over 100 simulations, is shown as the height of vertical bars along the contig length (x-axis). Boundaries
of simulated ‘true’ recombination events are indicated with blue shading.

Figure 1.S7. Empirical estimates of model complexity penalties.

The log-likelihood ratio of a model with a single breakpoint to a model with no breakpoints is plotted as a
heatmap for different simulated sequence lengths (y-axis) and mutation rates (x-axis). As described in
Methods, high values of log (L1/L0) indicate that introducing a breakpoint in the sequence significantly
improves the likelihood, even though no recombination event actually occurred. Likelihoods were
computed using phyML. The shade of each square in the grid represents the maximum value of log
(L1/L0) observed in 100 simulated sequences with the given length and mutation rate, and each with a
unique, randomly chosen tree topology.

Figure 1.S8. Example phylogenetic incongruence filter applied to contig 56.

The phylogenetic discordance metric, described in Methods, is plotted in the upper panel. The middle
panels displays informative, dimorphic SNPs in the 8 strains (e.g. strains with the same base shown in
white; strains with the alternative base shown in blue). The bottom panel shows the x* p-value for
stretches of significantly discordant SNPs. The yellow highlighted regions show significantly discordant
stretches in which at least one breakpoint must be present (discordance metric > 0.15 and p < 1e-6). The
contig is broken in these stretches such that four different, partially overlapping subcontigs are considered
in the downstream STARRInIGHTS algorithm (horizontal black lines in lower panel). Within each
subcontig, all subsequences (i,j) are used to build parsimony trees and infer further breakpoints.

Figure 1.S9. Top 20 ranked tree topologies.

Trees are ranked as described in Figure 1.1B. SP strains are shown as filled green boxes. Trees that
support the ‘ECO split’ (separate monophyletic clusters for SP and Z strains) are indicated with filled
number boxes. All trees are unrooted and branch lengths are not to scale.

Figure 1.5S10. More divergent ECO blocks also tend to be highly polymorphic.

Each point represents one of the 234 ECO blocks, with blocks within the top 3 densest clusters of
ecological divergence indicated in red, green and blue, respectively. Region 1, consisting of just one
block, is a clear outlier: it is highly divergent between habitats, but contains relatively little
polymorphism, suggesting a relatively recent transfer into one or both habitats.

Figure 1.S11. Schematic of very recent core genome recombination events.

(A) Core genome recombination events that split up the two most recently diverged sister strains (green
squares with bold outline) either by recombination within the SP habitat (green square with light outline),
or between habitats (Z strains shown as red circles). Events are depicted as arrows (within habitat = green,
between habitat = grey), with line width proportional to the number of events.

Figure 1.S12. Distribution of Fgy is skewed toward high values in top 3 ECO regions.
Histogram of Fsr across all 1995 recombinant blocks (empty bars), or restricted to 41 blocks within the
top 3 ECO regions described in Figure 1.1C (black lines).
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Figure 1.S13. Flexible genome sizes.

Flexible genome is defined as any aligned block of DNA not present in all 8 SP/Z strains and the
12B01/12F01 outgroup. Strain-unique DNA 1is defined as a block present in only a single genome.
Flexible genome sizes of each strain shown (A) in amount of DNA (Mb) or (B) number of blocks.

Supplementary table legends

Table 1.S1. Divergence and polymorphism in top 12 regions supporting the ecological split.
See Table 1.2 in main text for description.

Table 1.S2. List of habitat-specific flexible genome blocks.

Flexible genome blocks were identified as described in Methods. Habitat was ‘Z-unique’ if the block was
found in all Z strains and no SP strains, and ‘SP-unique’ if the inverse was true. Annotations of genes in
each block were obtained by blastx against the NCBI nr protein database. Alternating shaded/unshaded
rows distinguish between genes on different blocks, and genes shown in italic were tested for
presence/absence in additional strains using the primer set indicated.

Table 1.S3. PCR assay for presence/absence of flexible genome blocks.
PCR products from the indicated template strain and primer combinations were run on an agarose gel, and
presence/absence of a band of the expected length was scored as +/-.

Table 1.S4. PCR primers used in this study.

Table 1.S5. Genomewide divergence and polymorphism in coding regions.

FN = number of fixed nonsynonymous (ns) sites; FS = number of fixed synonymous (syn) sites; dN/dS =
ratio of fixed ns substitutions per ns sites to fixed syn substitutions per syn site, corrected for multiple
substitutions; PN = number of polymorphic ns sites; PS = number of polymorphic syn sites; pN/pS = ratio
of polymorphic ns substitutions per ns sites to polymorphic syn substitutions per syn site, corrected for
multiple substitutions; FI obs = observed fixation index, (FN/FS)/(PN/PS), corrected for multiple
substitutions; FI exp = expected fixation index based on 1000 permuted resamplings of 2x2 McDonald-
Kreitman (M-K) contingency tables (Methods).
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Figure 1.2
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Table 1.1
Polymorphic sites i i ) ion (within blocks)
organism _# genomes core size (Mb informative non-inform. # homoplasies # events p(Break) subs/site/branch gen.'s since MRCA
V. splendidus 8 3.58 42,873 38,459 1,375 991 - 1982 4.90E-04 6.65E-04 7.15E+05
S. enterica 19 5.8l 473 1,313 13 0 2.10E-07 1.05E-05 |.51E+04
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Figure 1.S51
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Figure 1.S2
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Figure 1.S3

A ECO-supporting blocks

0 (| ]

i DDD DD:_

="n mn

ECO-rejecting blocks

DDD DMDD:DEEDDD

CDEFGHI

o

J KLMNOPQRSTUYV

breakpoints between ECO-supporting and -rejecting blocks

0.2
-0.2 *

breakpoints between ECO-supporting blocks

*
0.2
-0.2 *

CDEFGHI J KLMNOPQRSTUYV

COG functions:

C: Energy production and
conversion

D: Cell cycle control, cell
division, chromosome
partitioning

E: Amino acid transport &
metabolism

F: Nucleotide transport &
metabolism

G: Carbohydrate transport &
metabolism

H: Coenzyme transport &
metabolism

I: Lipid transport & metabolism
J: Translation, ribosomal
structure and biogenesis

K: Transcription

L: Replication, recombination &
repair

M: Cell wall/membrane/envelope
biogenesis

N: Cell motility

O: Posttranslational modification,
protein turnover, chaperones
P: Inorganic ion transport &
metabolism

Q: Secondary metabolites
biosynthesis, transport &
catabolism

R: General function prediction
S: Function unknown

T: Signal transduction
mechanisms

U: Intracellular trafficking,
secretion & vesicular transport
V: Defense mechanisms

71






Figure 1.S4
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Figure 1.S5
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Figure 1.S6

A. ML Scenario A: two recombination events Scenario B: no recombination events
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Figure 1.S7
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Figure 1.S8
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Figure 1.S9
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Figure 1.S10
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Figure 1.S11
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Figure 1.S13

number of blocks

A
5.0

genome size (Mb)
N

4000
3500
3000
2500
2000
1500
1000

500

IF53  IF273 IFIIl  ZFI4 ZF270 ZFI70 ZF264 1F289
] Total [ ] Flexible B Strain-unique

IF53  IF273 IFIll  ZF14 ZF270 ZFI170 ZF264 1F289

I
small particle zooplankton

associated genomes associated genomes

95






Table 1.S1

———o0cocoan

coNNooOO—-——0O0OO

cooco

] SANS022 #

880 i 8l 334 §698€ E9EVE [4
wo 69 61 w0€e 0L1SS €S1TS (4
90 144 (44 88'€T LEEOE €9L6LT

890 (43 el 66'SE 0889¢ y18TEE 8
690 (73 98T [x44 £€9T0F 80¥86€ |
180 €L L01 61T +0L6 SISLIT (4
660 8 88 Wl LuLyee TLeeee |
190 €6 114 9L'S 6888 SEIEY

8610 001 801 £808ET 9TEIET |
180 1433 8LS £6'07 18E6E w9¥81 9T
10 €IS Si8 90°LT SE6v Iy 618L8€

660 1¥L 9L 09% L069LT SO0ETLT |

€303 3e3s

Spoia #

43

85

8s

8s

09

65

65

LS

133

8s

09
13U0d>

uoj3ad

suope;NW Jo JoqUINN

n0.d sueiquaw pavIpald 58l | s z [ 0 0 620 6

asedl| pe (Aug)-dWv  TEE 000 99 oL 6 0 0 86’1 8l
DJuy UNGNS ‘2SEINPIIOPIXO FUOUINDIGN:HAYN PIRIPAId €S 200 14 € vl 8 170 19

aseipuAs aeydsoydoudd AueseBiAuesD  pez 2999900  Jul ¥y 0 | 0 Y 0

aseyauhs axeydsoyd-g-asojnjAxAxoaq 179 | ] LT S [ [ [ S

suo.d pareas pue y asereydsoydouadk(BiApneydsoyy 9| | 0 T T 0 | [ I

aseun| areydsoydouow surwery ) 61€ | 0 0 [} [ [ [ 4

urey>-e1q aseyauds uinegoqry 95| | 0 0 0 0 0 o 0

aselpuds areydsoyd-y auoueing-z-AxopAyip-4'e  99€ | €8l 14 4 0 0 18T |
SSEPISOIAID 195 0L0 150 801 €l | | vI0 w
saspajosd pajas pub aspuadpljo) /€€ | 0 4 0 19 | 0 9T

uIDWop 43Q99 b pup Ty UD ‘UIDWIOP dUDIqWAW D BuluIDIU0D UIRI0Id UORINPSUDIY DUSIS PAIPAL] 619 | 0 ST 0 0 0 0 14
asoNQ wapuadap3y  0LT 1 0 4 € 0 0 0 |

ospawiad pISOIPIN 0T 1 0 z 0 0 0 0 1

asojhioydsoyd supnudyy vy 1 €0 1 z 0 0 or'l z

asoinwowadoydsoyd  £6€ 1 1 z z 0 0 s8T 1

(s3sDq19) 401D} UONDSUO}S UOADSUDI] 8/9 | ] | 0 [ [ [ T

(199N) urer01d [pon310dAY 19 | 0 0 0 0 0 0 [

(1gDN) uir04d jpopawodhy T l 0 1 1 0 0 0 1

sur2104d Suiuipiuos-uibwop Suipuig-yNg 2dAODly 95T V0 Jup z z 0 0 e 0

(1gDN) ui2r0:d jponatgodhy | | 0 0 S 0 | Tu 0

90d5 unaias ‘waroid Aquasso smid iy oy | 0 4 [ 0 0 0 1

oppy uiR10:d Aiquiasso sid djy - 09€ | 0 4 0 0 0 0 |

(192N) aspaajsupnyfsod43 aanoind  goy o i 0 sol 14 4
osoApuowwD aupnsiH SIS 1 ul 6€ 0 0 900 b
suipwop Supuig-yNQ puD ‘aspq 1y 3dA1-yyy 9aa031 axiA3y) Suiuibiuod JowjnSas asuodssy 66| ¥T0 610 € I 0 T 610 9L
| uungns ‘sasopixo jouinbyauiosy>014> adki-1addodjawap 9 850 0 901 3 L € 0 1€

£ 1ungns “asopixo jouinbjawosy>01h> adki-1addodjpwaH  §0T | 0 13 z 0 | 0 L

# uungns ‘asppixo fouinbjawoay01h> adhr-saddodjpwa €0 | 0 H 0 0 | 0 S
(1010} Ajquiassp asppixo awioiy01d) asoiajsunhuaidhiog 06T 100 0 1z 14 | 0 0 8y
aspwydsoydsiq-9°z-asowniy  S0C 1 Jul 1 0 1 1 ozl 95

awydsoyd I»f ap! Msoupy €07 1 0 0 0 0 0 B [

aspyufs wydsoyd-g-uwiopgod  §1T ¥ 0 1 T 8 € 0 z

ase|Ax0q.e29p dulasiApreydsoyd  pOE 1 0 9 1 0 0 0 €

sJa110dsue) 338|AX0QUELI pUE -IQ 65 150 YLT 6 I 0 | 60 €

| ssepo) aseIayauAs yYNWI-IASA| ‘Andeul Ajqissod paresuny)  £7€ | 0 ¥l 9 0 0 0 T

aiungns uie30.doAe ‘aseIonpal 3%e. pAyep 23eudNs /09 8€°0 1 44 1 0 0 850 s

D a1ungns ase1onpad dreseWNg /7| | 0 € | 0 0 0 4

@ ungns asednpas aelewny g | | 0 | 0 0 0 0 4

(v§-419) V§ 40158} uoneNIUl UORE|SURLY/(d-43) 4 40328} uoneBuopd uonejsURll 88| | 0 0 0 0 0 0 [
ssmnwouiwe-g°7 3uIsk]  OpE 50 0 1 z 0 0 0 L

u304d BUBIQUISW PaZIIRIBIRYIUN k43 | 6T | 14 | 0 [ 680 €

(19DN) urs30ad Auxajdwiod-mo| paziaideieyun 58| | 90 3 1 T 0 LE0 L

saseusBoupAyap pIoeAX0IpAY-E1q pareja. put aseuaBo.pAysp a1eiKnqosxoIpAY-E 61T | 0 s 1 | 0 0 ¥
(Apwey 09dSH) T3040 uuosadeyd  gps £0°0 il 9z 0 1 0 190 8

(01dSH) §3049 ulwosadey>-0d 96 1 0 0 0 0 0 T 0
duind xniyo Snapinw UAALP-4EN 80 200 u €€ 0 0 0 S0 66
aseajsuenjAypow aut1skd ui30ud-yNQ PAIRIAPR Skl 00° 60 L 4 0 0 80 S
asenwo.adk|Boydsoyd 90§ 000 16 14 4 0 0 341 3

aseup| auipnsiy uonanpsue. [eudls 67| | 00'l 000 1€ 14 0 0 000 1

usuodwo swseiduiad ‘wasks 1odsuen apndadip 2dh-Dgy 55§ 000 8¢ 1 0 [ 000 1

sjuauodwod aseawiad ‘swaiss 11odsue.a [RIU/3 8T¢€ 000 L 0 0 0 000 1
sjuauodwod aseawiad ‘swaiss 11odsue.a [PIU/3 SEE 000 Sl 0 0 1 000 €
2uauodwod ased |y WwaisAs 110dsue.a [1U/3] Vad3 000 1T 0 ] 0 000 T
1usuodwod ased |y waishs 110dsue. [xpiu/eprdadodijo/spndadip adh-ogy €€ 000 0 0 ] (1] [N} {14
(1gON) uteaoud parejau-aseueonjdopuz  ££§ (<31 6€ 9 0 0 ¥80 ¥9
S5eUD] BUILIESOINZADE-N PAIIPId  b6T 670 44 8 0 0 150 8s
SSTPIUIWESOXDY-TIG-AIEN  Th9 €90 89 14 0 1 S50 16
asejhioydsoyd asoiqojpd 6L 600 09 6 0 0 00 €l
ssmnuwouuewoydsoyd 657 s 0 z 0 0 000 14

( urea0ad Buipuig-uydiuad) asepndadAxoques auuee-g-jAuee-q 8T 00'l 170 € 14 0 T Eidl 4
no.d Apwey X1y 8L 9L10 I's v 1 | 0 €0 Szl
sody Jo1de) ewidls asesowkjod YNY 79T | Jui | 0 0 | 90 €01

susB suopod # ¢ i ~sd Nd — sd Nd SP/NP s

z ds
ISIN-W 3e3qey UM WsiydiowAjod

uonIsod

97






Table 1.S2

block length (bp) habitat

716
3340
3340
3340
581
761
5221
5221
5221
5221
1220

Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique
Z-unique

SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique
SP-unique

primers Annotation

flex|

flex4

flex5

flex3

flex2

No hits found

hypothetical protein VI12B0| 02745 [Vibrio splendidus 12B01]

Predicted amino acid racemase [Vibrio splendidus 12B01]

hypothetical protein V12B0I 02735 [Vibrio splendidus 12B01]

Thi)/Pfpl family protein [Vibrio sp. MED222]

MSHA pilin protein MshB [Vibrio splendidus 12B01]

MSHA biogenesis protein MshM [Vibrio splendidus 12B0I]

MSHA biogenesis protein MshN [Vibrio splendidus 12B0 1]

Type |l secretory pathway [Vibrio splendidus 12B0I]

Type |l secretory pathway, component PulF [Vibrio splendidus 12B01]
Sialic acid synthase [Vibrio splendidus 12B01]

hypothetical protein VI12B0Ol 22960 [Vibrio splendidus 12B01]
hypothetical protein MED222_04835 [Vibrio sp. MED222]

hypothetical protein MED222_ 04835 [Vibrio sp. MED222]
Glycosyltransferase [Vibrionales bacterium SWAT-3]

multidrug resistance protein [Chromobacterium violaceum ATCC 12472]
predicted protein [Aspergillus terreus NIH2624]

hypothetical proteinVI12B0Il 12555 [Vibrio splendidus 12B0I]
hypothetical protein VS 110856 [Vibrio splendidus LGP32]

putative intercellular adhesion protein A [Vibrio splendidus 12B01]

putative glycosyltransferase [Vibrio splendidus 12B0I]

periplasmic protein involved in polysaccharide export [Vibrio sp. MED222]
hypothetical protein VS_110856 [Vibrio splendidus LGP32]

Outer membrane protein [Vibrio splendidus 12B01]

periplasmic protein involved in polysaccharide export [Vibrio splendidus 12B01]
hypothetical protein V12B0|_22960 [Vibrio splendidus 12B01]

putative polysaccharide export protein [Vibrio splendidus 12B0I]
glycosyltransferase [Vibrio splendidus 12B01]

probable maltose O-acetyltransferase [Vibrio splendidus 12B01]

putative membrane protein of ExoQ family [Vibrio splendidus 12B01]
putative hexosyltransferase [Vibrio splendidus 12B01]

hypothetical protein MED222 04835 [Vibrio sp. MED222]

MSHA biogenesis protein MshF [Vibrio splendidus 12B01]

periplasmic protein involved in polysaccharide export [Vibrio splendidus 12B01]

No hits found

permease of the major facilitator superfamily [Vibrio sp. Ex25]
hypothetical proteinVI12G0| 06656 [Vibrio alginolyticus 12G01]
hypothetical protein VPMS16 1245 [Vibrio parahaemolyticus 16]
No hits found

No hits found

No hits found

No hits found

SH3 domain protein [Vibrio cholerae 1587]

ISSod | 3, transposase [Vibrio parahaemolyticus]

No hits found

ISPsy5 [Marinobacter sp. ELB17]

PAS/PAC sensor signal transduction histidine kinase [Saccharophagus degradans 2-40]

transposase [Alteromonas macleodii 'Deep ecotype']

No hits found

No hits found

hypothetical protein VI12B0l 00967 [Vibrio splendidus 12B0I]

No hits found

No hits found

No hits found

No hits found

hypothetical protein PXO 01414 [Xanthomonas oryzae pv. oryzae PXO99A]
putative pore-forming cytotoxin integrase [Shewanella sediminis HAW-EB3]
hypothetical protein VP2137 [Vibrio parahaemolyticus RIMD 2210633]
hypothetical protein VSWAT3 17015 [Vibrionales bacterium SWAT-3]
hypothetical protein VSWAT3 17020 [Vibrionales bacterium SWAT-3]
hypothetical protein VSWAT3 17025 [Vibrionales bacterium SWAT-3]
FG-GAP/YD repeat domain protein [Vibrio splendidus 12B01]

transposase [Vibrio splendidus 12B01]

No hits found

2',3"-cyclic-nucleotide 2'-phosphodiesterase, putative [Vibrio splendidus 12B0|]
transposase [Vibrionales bacterium SWAT-3]

No hits found

hypothetical protein VSWAT3_ 06691 [Vibrionales bacterium SWAT-3]
methyl-accepting chemotaxis protein [Vibrio vulnificus Y]016]

hypothetical protein VI12B0I 09036 [Vibrio splendidus 12B01]

hypothetical protein VSWAT3 12067 [Vibrionales bacterium SWAT-3]
hypothetical protein VI12B0I| 12660 [Vibrio splendidus 12B01]
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Table 1.S3

primers
strain  flexI flex2
ZF28 + + +
ZF30 + + +
ZF205 + + +
1F97 - - -
IF127 - - -
IF124 - - -
IF175 - - -
FF160 + + -
FF274 - - -
Table 1.S4
name direction # bases
coreA F 22
R 23
coreG F 18
R 18
coreB F 18
R 18
coreC F 16
R 16
coreD F 18
R 18
corel F 19
R 19
core| F 18
R 18
flex| F 18
R 18
flex2 F 19
R 19
flex3 F 18
R 18
flex4 F 18
R 19
flex5 F 19
R 18
Table 1.S5

ingroup outgroup

SP+Z
P
z

12BOI+FOI
z
SP

flex4 flex5
+ +
+ +
+ +

annealing temp.

Divergence (in vs. outgroup)

50

50

50

50

50

50

50

54.6

48.2

51.2

522

55

hsp60

FF o+ o+ o+ +

sequence
TTCCTTTTTAACAAA CTG CAT C
TAT CAA GACAGCAAA GACTTA CA
GCG CCTTCRATA GCGTCA
GGCAGT GCCAACATCCTT
TAA ATA AGG ACA AGG AAA
TTM GAMACATTY ACATCC
AGCAGT GAT AAG CAGT
TGAAAT GGCAGCAGAA
GCG GTT GTT GTA GTGAGT
GCA GAG GGT GTATTC GGT
CAT CATACG GCGAGTTTCA
AGA AAG GTAAGCAAGAGCA
GTAAAG CGT AAG GAGTCT
GTTTGA CCT GGA GTA CTG
GTCAAAACA CGCTCT CCA
TCGATCTCG CACAAAACT
TTTTGTTATTTG GAGTGT G
CTTTTT CGA GCAATATAT C
GCATGATCA CCT CCA CGA
ACCTAC CCCACAAAT ACT
ACA CCTTACATC GGATCA
GTA CAACCACACTTTTCCT
CGCTTCGCACTCTTTAACA
CCA CGCAGCATATCCAAT

Polymorphism (within ingroup) Bootstapped M-K test

# sites

FN FS FN/FS dN/dS PN PS PN/PS pN/pS Fl obs Fl exp p synonymous nonsynon.
40,762 336,510 0.12 0.042 7,595 52,238 0.I5 0.050 0.83 < 1.075 <0.001 700,089 2,039,508

369 2,008 0.18 0.063 4,752 24,136 020 0.068 0.93 < 0.989 0.001 701,156 2,042,458

369 2,008 0.18 0.063 8,104 46,594 0.17 0.060 1.06 > 0.989 0.008 701,156 2,042,458
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Chapter 2:
Comparing Patterns of Natural Selection Across Species Using Selective Signatures

Shapiro BJ and Alm EJ (2008) Comparing Patterns of Natural Selection across Species Using Selective
Signatures. PLoS Genetics 4:€23

Abstract

Comparing gene expression profiles over many different conditions has led to insights that were not
obvious from single experiments. In the same way, comparing patterns of natural selection across a set of
ecologically distinct species may extend what can be learned from individual genome-wide surveys.
Toward this end, we show how variation in protein evolutionary rates, after correcting for genome-wide
effects such as mutation rate and demographic factors, can be used to estimate the level and types of
natural selection acting on genes across different species. We identify unusually rapidly and slowly
evolving genes, relative to empirically derived genome-wide and gene family-specific background rates
for 744 core protein families in 30 y-proteobacterial species. We describe the pattern of fast or slow
evolution across species as the ‘selective signature’ of a gene. Selective signatures represent a profile of
selection across species that is predictive of gene function: pairs of genes with correlated selective
signatures are more likely to share the same cellular function, and genes in the same pathway can evolve
in concert. For example, glycolysis and phenylalanine metabolism genes evolve rapidly in Idiomarina
loihiensis, mirroring an ecological shift in carbon source from sugars to amino acids. In a broader context,
our results suggest that the genomic landscape is organized into functional modules even at the level of
natural selection, and thus it may be easier than expected to understand the complex evolutionary

pressures on a cell.
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2.1 Introduction

An enormous genetic diversity exists on earth, particularly in the microbial domains of life - yet how
much diversity is functional, and what are the important adaptations that serve to partition species into
different niches? Adaptive differences can be identified in genes subject to positive Darwinian selection -
the evolutionary force that causes advantageous genetic traits to spread in populations, allowing species to
diverge ecologically. Natural selection acts not just on individual proteins, but on the complex assemblage
of proteins specified by an organism's genome. Thus, looking for natural selection across the entire
genome is valuable for two reasons. First, it allows us to identify systems-level patterns of adaptation - for
example, selection on consecutive enzymes in a metabolic pathway. Secondly, it provides a built-in
empirical distribution against which outliers (candidates for selection) can be evaluated. In addition, by
simultaneously considering multiple genomes, we can compare relative amounts of selection on a gene in

different species subject to different ecological constraints.

Much recent work has focused on genome-wide scans for positive selection in human (Chimpanzee
Sequencing and Analysis Consortium, 2005, Consortium, 2005) and other eukaryotic species (e.g.
Drosophila, Plasmodium (Shapiro et al, 2007, Volkman et al, 2007)). Many of these scans rely on skews
in polymorphism patterns at a genomic locus as a selectively favored allele increases in frequency and
becomes fixed in the population (Thornton et al, 2007). To identify such selected loci requires that their
polymorphism patterns be unlinked from the rest of the genome by recombination, making them stand out
as regions of reduced variation, or unexpectedly long haplotypes (Sabeti et al, 2006). It is thus unclear
whether any of these ‘diversity-based’ tests (e.g. Tajima’s D (Tajima, 1989), Fay & Wu’s H (Fay & Wu,
2000)) for positive selection on sexual genomes - which rely on the assumption that recombination occurs
between genomic loci - will be amenable to bacteria, in which recombination is decoupled from
reproduction, and thus may occur very rarely, or across species boundaries (due to horizontal gene

transfer; HGT).

Alternative ‘rate-based’ approaches to detecting positive selection (in both sexual and asexual species)
include finding genes with high rates of amino acid substitution - relative to (i) the rate of evolution in
other lineages (relative rates), or (ii) the number of silent substitutions in the gene (nonsynonymous :
synonymous substitution ratio; dN/dS) (Anisimova & Liberles, 2007). These approaches may lack power
when positive selection only affects a small number of sites (Sabeti et al, 2006, Hughes, 2007), and the
latter may be inappropriate as dS becomes saturated with multiple substitutions over very long time
scales. Both approaches may have difficulty distinguishing between positive selection (fixation of

beneficial mutations) and relaxed purifying selection (loss of constraint, fixation of neutral or deleterious
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mutations, for example during population bottlenecks). These two types of selection can, however, be
better distinguished by normalizing out species-wide bottleneck effects, and when polymorphism data is
available, using independent methods such as the McDonald-Kreitman (MK) test, which compares the
rate of synonymous and nonsynonymous substitutions within and between groups (McDonald &

Kreitman, 1991).

In this study, we focus on relative evolutionary rates because our model system, the y-proteobacteria, span
a considerable evolutionary time period over which synonymous substitution rates are saturated in many
branches, and because polymorphism data from Escherichia coli provide an independent means to
estimate the relative contributions of positive selection and relaxed negative selection to elevated

evolutionary rates. Nonetheless, we show results from dN/dS profiling for comparison.

The biological factors driving protein evolutionary rates are complex and widely debated (Fraser et al,
2002, Rocha & Danchin, 2004, Drummond et al, 2005, Wall et al, 2005, Saced & Deane, 2006) (for
recent reviews see (Mclnerney, 2006, Rocha, 2006)). In addition, selection may lead to subtle lineage-
specific variation in evolutionary rates. To identify potentially important rate variation from the
background of gene family and genome-specific rates, we factor evolutionary rates into three components
that contribute to the total evolutionary distance (amino acid substitutions per site) as defined in Equation

1 (where r is the total evolutionary rate, and ¢ is time):

evolutionary distance = r - ¢ = p(gene family) - B(genome) - v(gene,genome) - ¢ (1)

The first and most significant background component (p in Eq. 1) is related to the protein family: for
example, the ribosomal machinery is known to evolve slowly across all sequenced microbes, while
surface-exposed proteins often evolve rapidly to avoid recurrent predation and antibiotic recognition. The
second major contribution (B in Eq. 1) is the background rate of evolution that results from the 'molecular
clock' associated with each lineage, perhaps due to between-species differences in population size,
generation time, constraint on codon usage, or environmental factors such as UV light exposure (Mering
et al, 2007). For example, due to such demographic factors, genes from the intracellular parasites of the
Buchnera genus evolve more rapidly than those in other Enterobacteria. This may be due to frequent
population bottlenecks, allowing more frequent fixation of neutral or slightly deleterious alleles, or an
increased mutation rate (Moran, 1996, Itoh et al, 2002). Of course, p and  are not always independent,
and are expected to interact, resulting in evolutionary rate-variation that is both gene-specific and species-

specific (vin Eq. 1). When a gene evolves at the rate predicted by its gene family and genome, v will be

105



equal to one. However, when v deviates from one, this may represent natural selection acting to favor

different functionality in different genomic/ecological milieus,

Deviations from the 'expected' rate of protein evolution can be used to detect positive selection and
functional diversification between orthologous proteins (Sarich & Wilson, 1967, Muse & Weir, 1992,
Jordan et al, 2001), and the 'expected' background is best estimated empirically, by measuring rates across
the entire genome. A recent study demonstrated global differences in evolutionary rate between
environments (Mering et al, 2007), but did not attempt to identify patterns of natural selection on genes in
different genomes. The growing number of organisms with fully sequenced genomes provides an
opportunity to look for patterns of selection on genomes, and to begin to address a question of
fundamental interest: to what extent does differentiation in core, 'housekeeping' genes drive functional
divergence between species across the tree of life? And can we identify genes under selection in different

species, and make predictions about their biological/ecological significance?
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2.2 Results

Using a well-sampled sub-tree of y-proteobacterial genomes, we detected deviations from the 'expected'
rate of evolution (controlling for p and B, as described in the Methods and Figure 2.S1), by estimating v
(Eq. 1) for each of 744 'core' proteins present in single-copy in the majority of species. Of these protein
families, 718 (97%) reject a single molecular clock for all species (Likelihood ratio test, P <0.05),
indicating substantial species-specific rate variation over the long time scales considered here. As recently
shown to be the case among species of fruit flies and fungi (Rasmussen & Kellis, 2007), protein-family
and genome-wide effects account for most (80%) of the variation in evolutionary distances among
orthologous proteins (Figure 2.1; Pearson correlation = 0.89, P <2.2e-16); we used the residual variation
on each branch as an estimate of v, and calculated a Z-score (ratio of the mean of v to its standard
deviation over bootstrap-resamplings from the sequence data) to assess confidence in any deviation from
v=l. As expected, v correlates well with dN (Pearson’s correlation = 0.44, P < 2.2e-16), and the
correlation is improved substantially once dN is also normalized for protein-family and molecular effects
(Pearson’s correlation = 0.78, P <2.2e-16). Interestingly, v correlates less well with normalized dN/dS
(Pearson’s correlation = 0.11, P <2.2e-16), perhaps due to dS becoming saturated over the long time
scales considered, or simply because dN/dS and relative rates (v) detect different types and magnitudes of

selection, thus predicting different sets of selected genes.

When relative rates are overlaid onto the species tree (Letunic & Bork, 2007), patterns of selection across
both genes and species become apparent. For example, genes involved in flagellar biosynthesis (e.g. flgN,
flgA and f1iS) are unusually fast-evolving in species of enterobacteria, while genes putatively involved in
sulfur oxidation (yheL and yheM) are unusually slow-evolving in species of Buchnera (Figure 2.2). As
described below, genes involved in the same biological function (e.g., flagellar biosynthesis or sulfur
oxidation) tend to have a similar ‘selective signature’ (pattern of fast or slow evolution across species). In
other words, they evolve in a manner more similar to each other than to genes of a different function. This
similarity could be due to genes of the same function being encoded on the same operon (as is the case for
flgA/figN and yhelL/yheM, respectively). Yet fIiS, which is encoded on a different operon than flgA/figN,
has a selective signature similar to as the other flagellar genes (Figure 2.2), suggesting selection on gene

function.

2.3 Selection acts coherently at the level of function.

In addition to the anecdotal cases described above, we examined more generally whether genes of
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common function tend to experience similar regimes of selection. Indeed, in our overall data set, pairs of
genes sharing the same COG (clusters of orthologous groups (Tatusov et al, 1997)) functional annotation
have significantly more correlated selective signatures (the vector of v across all species) than pairs with
different functions (Kolmogorov-Smirnov (KS) test, D=0.12, P<2.2e-16; Figure 2.3A). This indicates that
selection can act coherently at the level of function, and across levels of organization larger than single
genes. Considering each functional category in isolation, we find that most functions (11 of 16 COG
function categories, excluding ‘general’ and “‘unknown’ categories) contribute significantly to this effect.
Thus, selective signatures are a surprisingly good predictor of common function — a feature that could be
useful in the annotation of genes of unknown function, provided that they have orthologs in several
species. Correlation in v is also a significantly better predictor of function than correlation in dN/dS
(Figure 2.3A), or raw evolutionary distance, and the predictive power remains strong even after removing
genes used to construct the species tree or genes on the same operon (Figure 2.S3). When dN/dS is
normalized by its median for each ortholog and genome to produce a 'relative' dN/dS measure, it
correlates much better with function, almost equal to v, highlighting the generality of the empirical multi-

species approach used in this study.

Our data set of 744 genes is enriched in highly conserved ‘housekeeping’ genes (median dN/dS = 0.047,
with 70% of dN/dS values (within 1 standard deviation on a log, scale) ranging from 0.005 to 0.26).
Despite this uniformly low range of dN/dS, the subtle rate variation captured by selective signatures is
able to identify co-dependencies between genes of related functions. We explicitly tested the ability to
detect co-dependencies between genes by simulating codon data for 30 species under 36 different models
of evolution, half of which allowed dN/dS to vary on different branches, chosen at random. All models
allowed dN/dS to vary among sites. However, for any site, dN/dS was only allowed to range within 1
standard deviation of the mean of the observed data (0.005 to 0.26). For each of the 36 models, 5
replicate data sets were generated, and we treated replicates as genes with known evolutionary co-
dependence. We computed v for each of the resulting 180 simulated genes, and found that in models with
branch variation in dN/dS, replicates of the same model had significantly more correlated v across species
than expected (KS test versus all models, D=0.58, P<2.2e-16; Figure 2.3B). Thus, when at least some
branch variation is present, selective signatures are able to uncover genes with similar evolutionary

patterns, even amidst a strong background of purifying selection.

2.4 Patterns of selection reflect ecology.

The relationship between selective signatures and gene function is borne out in several genomes in our

study. For example, evolution of flagellar proteins appears to be most rapid in some species of
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Enterobacteria, perhaps reflecting diversifying (positive) selection from ‘arms races’ with hosts or
predators. In contrast, ion transport/metabolism proteins, especially those involving sulfur, are slowest
evolving in Buchnera aphidicola APS (Tables 2.S3), indicating the importance of these proteins in the

lifestyle of this intracellular symbiont.

A deep-sea bacterium that lives at the periphery of hydrothermal vents, Idiomarina loihiensis, presents a
particularly interesting case study. Having lost many genes essential for sugar metabolism, it relies
instead on amino acids as its primary source of energy and carbon (Hou et al, 2004). Consistent with
disuse of sugar metabolism, we find that glycolysis genes, as well as an upstream phosphotransferase
system component (COG2190) have some of the highest values of v in the Idiomarina genome,
suggesting relaxed negative selection on this pathway (Figure 2.4). Moreover, carbohydrate transporters
and key glycolytic enzymes in the pentose phosphate and Entner-Doudoroff pathways have been lost in
Idiomarina, and two of these relatively rapidly-evolving enzymes have been lost (COG166 and
COG2190) in Colwellia, the most closely related sister-taxon of Idiomarina in our study. Taken together,
these results suggest the relaxation of purifying (negative) selection on this pathway resulting from the
disuse of sugars as a carbon source. By contrast, the relatively rapid evolution of amino acid metabolic
enzymes in Idiomarina might reflect adaptation to growth on amino acids, particularly phenylalanine
(Figure 2.4). Further supporting the idea of a species-specific adaptation in /diomarina, none of the
rapidly-evolving phenylalanine metabolism genes are also rapidly-evolving in Colwellia, nor have they
been lost in this sister species. The 7 glycolysis genes and 3 phenylalanine biosynthesis genes were also
analyzed in PAML (Yang & Nielsen, 2002, Yang, 2000), using models allowing dN/dS to vary among
sites and branches, or branches only (Table 2.S4). In the branch-only models, none of these genes had
significantly high average dN/dS in Idiomarina, but the branch-site models found evidence for a few sites
in each gene with unusually high dN/dS in Idiomarina. While selective signatures cannot distinguish
positive from relaxed negative selection on these genes, the known ecology and genome dynamics
suggest positive selection on phenylalanine metabolism and relaxed negative selection on sugar
metabolism. Although the true patterns of selection may be more complex, our results paint a broad
picture of how the I/diomarina core metabolism has been optimized for a diet of amino acids rather than

sugars, and lay a path for more targeted follow-up studies.

2.5 Contributions of purifying and positive Darwinian selection.

For the cases above, we used biological intuition to discriminate the roles of positive and negative

selection on gene evolutionary rates. In general though, natural selection may act to accelerate changes in
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a protein's sequence (positive selection; v > 1) or to slow down and constrain its rate of change (negative
selection; v < 1). Alternatively, when negative selection is relaxed, the apparent rate of evolution may
increase due to fixation of slightly deleterious mutations (relaxed negative selection; v > 1). Because
these scenarios cannot be distinguished by relative rates methods alone, we employed an independent test
for selection (the McDonald-Kreitman (MK) test (McDonald & Kreitman, 1991)) using polymorphism
data from 473 genes from 24 fully sequenced E. coli strains, with Salmonella enterica as an outgroup. In
the MK test, rather than normalizing according to a sample of distantly-related species (as in the selective
signatures approach), we normalize according to the expected dN/dS from a within-species polymorphism
sample. Specifically, the ratio of synonymous (S) and nonsynonymous (NS) changes at polymorphic sites
(within the 24 strains) is compared to the ratio at (non-polymorphic) divergent sites (comparing E. coli to
S. enterica). The Fixation Index is calculated as FI = (divergent NS / S) / (polymorphic NS/ S) [3]. Under
neutral evolution, FI is expected to equal 1; under positive selection it may exceed 1, and under negative
selection it may be less than 1. We compared the FI values of the 473 genes to their corresponding
selective signatures (v) in E. coli and found a significant positive correlation (Pearson’s correlation =
0.23, P = 6.5e-7). Although relaxation of negative selection in either the E. coli or S. enterica lineage
could generate high values of FI, at least some of the genes with the highest values of FI are expected to
be under positive selection (Charlesworth & Eyre-Walker, 2006). This demonstrates that relative rate
acceleration is often associated with positive selection, and deceleration with purifying selection (for a
complete list of selected genes identified by both methods, see Table 2.S5). The correlation between v and
FI is striking because, although the same set of gene families were used to calculate relative rates and the
FI, the former used protein sequence while the latter used DNA, and the alignments were performed
independently using different sets of species. These results imply that many genes have experienced

selective changes since the divergence of E. coli and Salmonella, despite low overall values of dN/dS.

When the distributions of FI values are compared between genes with fast (v > 2) versus slow (v <0.5)
relative rates (Figure 2.5A), the difference is very clear. Fast-evolving genes have significantly higher FI
values than slow-evolving genes (one-sided KS test; D = 0.43, P =4.1e-6). The fast and slow subsets are
also both significantly different from the mid-range (0.5 <v <2) subset of genes (one-sided KS tests: D
=0.17; P=0.04, and D = 0.30; P = 2.7e-5, respectively for fast and slow). Moreover, the distribution of
FI values for fast-evolving genes has a broad shoulder with mean slightly less than 1, and a sharper peak
with mean greater than 1 (note the log, scale in the figure). The simplest interpretation of these results is
that increased relative rate reflects both relaxed negative selection and positive selection. Interestingly,
the two hypothesized distributions appear to contain a similar number of genes, suggesting that positive

selection is about as common as relaxed negative selection as a cause for acceleration of evolutionary
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rate. This result is largely in agreement with the previous finding that ~50% of amino acid substitutions
between E. coli and S. enterica were fixed by positive selection (Charlesworth & Eyre-Walker, 2006),
with the remaining substitutions due to relaxed negative selection, or hitchhiking with positively selected

mutations (discussed below).

Unusually slowly evolving genes (v < 0.5), on the other hand, show greater levels of negative selection
(low FI) than normal genes (0.5 <v <2). While these results may seem unsurprising at first, it is
important to note that our evolutionary rates have been normalized for gene family-specific effects, thus
even the fastest evolving genes (in terms of ‘raw’ rate) will appear ‘slow-evolving’ (v < 1) in about half of
the genomes. Conversely, the slowest evolving genes (e.g., the ribosomal machinery) will appear to be

‘fast-evolving’ (v > 1) in about half of the genomes.

To further investigate the role of negative selection, we used gene deletions within a clade as evidence of
relaxed negative selection, with the expectation that genes under relaxed selective constraint are lost more
frequently. Consistent with a significant role for negative selection in constraining rate variation, genes
evolving much more slowly than expected (v < 0.25) were less likely to have undergone deletion in a
sister clade (Figure 2.5B). Conversely, genes evolving much faster than expected (v > 4.0) were more

likely to have lost their ortholog in a sister clade, pointing toward relaxed negative selection.

2.6 Evidence for genetic hitchhiking in bacteria.

In sexually recombining organisms, positively-selected mutations are thought to sweep rapidly through
the population, lowering effective population size and decreasing the effectiveness of negative selection at
linked loci. When sweeps occur faster than recombination can separate the beneficial allele from
'hitchhikers', clusters of rapidly-evolving genes (i.e., one gene under positive selection, and linked genes
under relaxed negative selection) can arise (Sabeti et al, 2006). Perhaps unexpectedly for an asexual
species, selective sweeps and genetic hitchhiking between linked (~30 kb apart), but not unlinked loci,
have been documented in E. coli (Guttman & Dykhuizen, 1994). Theoretically, there exist regimes of
selective sweeps and recombination in asexual prokaryotes that would be able to produce a pattern of
genetic hitchhiking (Majewski & Cohan, 1999). Early work on variation across ~1700 strains of E. coli
showed genetic linkage between loci separated by ~45 kb (Whittam et al, 1983) - an estimate largely
supported by recent whole-genome scans, which find recombinational segments of up to 100 kb (Mau et
al, 2006). To determine whether genetic hitchhiking was detectable among fast-evolving genes in this
study, we examined proximal pairs of genes (separated on the chromosome by 0-5 genes) and asked

whether they showed a tendency to co-evolve - either both 'fast' (v > 1), or both 'slow' (v < 1). Proximal
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genes are frequently encoded on the same operon, and are thus expected to be under similar selective
pressures due to co-expression and common function. Indeed, we find that pairs of genes predicted to be
on the same operon (Price et al, 2005) co-evolve in the same direction (either both genes with v > 1, or
both with v < 1, Z-score > 1; Fisher's Exact Test: Odds Ratio = 3.1, P <2.2e-16). In fact, selective
signature (correlation in v across species) is a better predictor of operons than dN/dS, and about as
accurate as a small compendium of gene expression data from E.coli under different experimental
conditions (Figure 2.S2). Because these operon effects could confound the detection of hitchhiking, we
restricted our analysis to pairs of genes on different operons, or separated by at least one gene on the
opposite strand of DNA. In this operon-free data set, we observe a slight but statistically significant
tendency for fast-evolving genes (v > 1), but not slow-evolving genes (v < 1), to cluster together in a
genome, not only at distances of 0-5 intervening genes, but even as far as 20-100 genes apart (Figure
2.5C). Assuming an average gene length of ~1 kb in prokaryotes (Xu et al, 2006), clustering of fast-
evolving genes up to 100 genes apart (Figure 2.5C) is very much consistent with earlier predictions
(Majewski & Cohan, 1999, Mau et al, 2006, Guttman & Dykhuizen, 1994, Whittam et al, 1983).
Alternatively, genomic mutational hotspots might explain the observed clustering, but this hypothesis is
currently difficult to test. Therefore, we tentatively conclude that selective sweeps are occurring in a
significant fraction of the 30 species analyzed in this study, and that these sweeps leave a detectable

signal in the form of accelerated evolutionary rates.

Taken together, the observed correlations between v and the Fixation Index (MK test), deletion frequency,
and 'hitchhiking' lead us to conclude that v is reflective of both positive and negative natural selection on

core genes.

2.7 Discussion

We have described an approach to detecting selection across genes and genomes. By applying a simple,
empirical normalization, we have identified unusually fast- and slow-evolving genes in a phylogeny of 30
bacterial species. Many of these genes are likely targets of natural selection, and are thus among the most
important in shaping phenotypic and ecological divergence among species. As genome sequencing
outpaces phenotypic and functional characterization, efforts to identify the genetic basis underlying
ecological differentiation will rely increasingly on sequence-based approaches. Our approach is widely
applicable across the tree of life, as it requires only a set of sequenced genomes with common orthologs.
Selective signatures have the advantage of detecting subtle gene- and lineage-specific variation in
evolutionary rates, but the disadvantage of being limited to core orthologs with representatives in several

genomes. For this reason, the timescale and resolution of our approach will depend on the set of species
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included in the analysis. This study was restricted to extant species (terminal branches), but could easily
be extended to include ancestral species (internal branches), providing insight into ancient selective

pressures and adaptations.

Relative rates provide information about which genes are evolving unusually rapidly or slowly, but not
about what type of natural selection is responsible. We have complemented our between-species relative
evolutionary rate estimations with within-species polymorphism data from E. coli to show that relative
rates are a reasonable and easily-estimated predictor of positive and negative selection. In the absence of
polymorphism data (available for well-studied species such as E. coli, but lacking for most others),
relative rates can still yield high-quality predictions of selected genes, which should be followed up with

further experimentation to test their functional significance.

2.8 Selective signatures as a measure of Natural Selection, or of niche-specific changes in selection

Even for detecting selection in single genomes, the selective signatures approach can be powerful because
it can identify positive (or relaxed negative) selection for genes with low values of dN/dS, while in some
other cases selection is more easily detected using dN/dS with a variable branch or branch-site model. To
illustrate this, we simulated codon data for 180 genes families under different models of natural selection
across our tree of 30 y-proteobacteria, and calculated dN/dS and v in each branch (Methods). In cases
with elevated dN/dS in all branches (Model 1 in Figure 2.6), PAML is able to correctly identify all
branches under selection. Because there is very little variation among branches, v is uninformative,
despite positive selection in all lineages. When branch variation is present, and selection is strong in some
branches but not others (Model 2 in Figure 2.6), both v and dN/dS are able to correctly identify the
species under selection. Yet when branch variation is present but the branch under selection is only
weakly selected (few sites and dN/dS only slightly higher than background), it is identified correctly by v
but not dN/dS (Model 3 in Figure 2.6). Therefore, v is well-suited to detect subtle cases of species-
specific selection, but is powerless to detect uniform positive selection in all species. This is further
demonstrated in an example from a gene family in our data set: Ps¢tC (COG573), which encodes a
permease involved in phosphate transport. This gene is highly conserved across 18 species, with dN/dS
near zero in most species except Xylella fastidiosa and Xanthomonas campestris, which have among the
highest genome-wide average dN/dS, suggesting the high dN/dS of Ps¢C may be due in part to
demographic effects. Despite the lack of information from dN/dS, this gene shows substantial variation in

v across species (Figure 2.6), which may be related to species-specific ecological factors.

Like the Fixation Index computed in the MK test, but unlike dN/dS, selective signatures measure
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selection relative to a baseline. While the MK identifies selection relative to a baseline of within-
population polymorphism, selective signatures test for selection relative to a baseline established by
comparing to related species. Despite their contrasting and independent normalization procedures, the two
measures tend to overlap significantly in their predictions of natural selection. Moreover, the positive
association between them (Figure 2.7; Odds ratio > 1) persists at high, intermediate, and low levels of
dN/dS. The association may be slightly stronger when dN/dS is very high, due to correct identification of
strong positive selection by all three methods. Yet even when absolute dN/dS is low, the FI and v often
agree that evolutionary rate is relatively fast, suggesting positive or relaxed negative selection (or strong
negative selection, when both FI and v are low), perhaps on just a few sites. While the MK test may
wrongly predict selection after a population bottleneck, leading to between-species fixation of slightly
deleterious mutations (Hughes, 2007), selective signatures explicitly normalize out such genome-wide
effects. On the other hand, if demographic effects are not significant, the MK test has the advantage of
distinguishing positive selection from relaxed negative selection, which is not possible with selective
signatures. In addition, HGT (e.g., from Salmonella enterica to E. coli) is expected to reduce the observed
divergence, lowering v without affecting FI or dN/dS. Thus, the intersection of genes predicted by both

high FI and v (Table 2.S5) provides additional confidence in inferring selective events.

Because selective signatures are also lineage-specific, they represent a measure of niche-specific changes
in selection, and have the advantage of being sensitive to substitutions in just a few amino acid sites,
provided these are unexpected relative to the gene-family and genome-specific background rates. For
example, we identified several Idiomarina genes with high values of v, which corresponded to only a few
sites with high dN/dS, while average dN/dS across each gene was low (Table 2.54). Even if rate
acceleration is due to relaxed negative selection rather than positive selection, the change in selection
detected by v is both gene- and lineage-specific, and thus may be relevant to ecological differentiation
among species. Genes with similar values of v in the same species may be part of a co-evolving functional

module, and correlations in v are able to identify such sets of genes (Figures 2.3 & 2.4, Figure 2.S2).

2.9 Genome evolution through horizontal transfer and changes in core genes.

Can horizontal transfer alter effective protein evolutionary rates, thereby affecting selective signatures?
HGT is prevalent in prokaryotes (Susko et al, 2006, Gogarten et al, 2002), especially among closely-
related taxa (Alm et al, 2006). For example, we suspect that homologous recombination (or HGT between
close relatives) within 'species' contributes to the observed clustering of rapidly evolving genes (Figure
2.5C). HGT can also complicate inferred evolutionary rates in two qualitatively different ways: (i)

transfer from distant lineages (or replacement with paralogs) can make distances to sister taxa appear long
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(and disrupt tree topology); and (ii) transfer between sister taxa does not affect tree topology, but can
shorten observed distances. Thus, some of our observed rate variation is likely due to lateral gene flow.
We investigated the extent to which HGT affects our results by repeating our analyses with a set of genes
more likely to include horizontal gene flow, and concluded that our main findings are not easily
attributable to artifacts of HGT (Figures 2.S4-S6). Moreover, our main findings are supported by methods
not directly biased by HGT (MK and dN/dS tests). Even if the selective signatures of core genes are not
directly confounded by HGT of the core genes themselves, they may be indirectly affected by gain and
loss of other non-core genes in the genome. A discussion of the potential for such epistastic interactions

to exert selective pressures on core genes is presented in Supplementary Note 2.

2.10 Summary

Species are believed to diverge only when they gain the ability to exploit a new ecological niche (Cohan,
2001), and this may come about through mutations in existing (core) genes, or acquisition of new genes.
It is gaining widespread acceptance that the latter is responsible for many, if not most adaptations
(Gogarten et al, 2002, Lerat et al, 2005), and possibly ensuing speciation events. Yet, as we demonstrate,
core genes are also subject to selection, and likely contribute strongly to differentiation between species
over long time spans. Much of this selection is positive, leading to novel adaptations in core genes. Thus,
core genes, which are by definition retained in genomes over long periods of time, may be quite dynamic
in terms of functional change. The coherence of selective patterns across genes of similar function (those
with the same operon, functional annotation, or in the same pathway) is exciting because it suggests that
the genomic landscape is organized into functional modules even at the level of natural selection. Thus, it
may be easier than anticipated to understand the complex evolutionary pressures acting on genomes.
Correlations in selective signatures could be used to identify fitness co-dependencies among genes in
much the same way that correlated mRNA expression profiles are used to identify genes connected in the

physical or regulatory networks of the cell.
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Methods.

2.11 Estimation of relative evolutionary rates (v).

To calculate relative evolutionary rates (v), normalized to remove protein-specific 'scaffold' constraints
(p) and species-specific 'molecular clock' (B) effects, we first constructed a 'species tree' for 30 species of
y-proteobacteria (see Table 2.S2 for species names and taxonomy IDs). Our tree is based on a
concatenation of amino acid sequences for 80 housekeeping genes that occur in single-copy in each
genome (Table 2.S1), and have previously been shown to be orthologous and consistent with a single
organismal phylogeny (Lerat et al, 2005). Gene trees were then constructed for 977 putative 'core' gene
families (members of the same cluster of orthologous genes (Tatusov et al, 1997), retrieved from the
MicrobesOnline database (Alm et al, 2005)), each occurring as a single copy in at least 16 of the 30
genomes. Multiple sequence alignments (MSAs) were performed using MUSCLE (Edgar, 2004), and all
gaps were removed, along with one flanking residue on either side. Gene trees were constructed from the
resulting MSAs using Tree-Puzzle (Schmidt et al, 2002)with a JTT amino acid substitution model (Jones
et al, 1992) and 8 y-distributed rate categories. Estimation of v proved to be independent of the
substitution model used (see Figure 2.S7 for comparison with WAG model (Whelan & Goldman, 2001)).
Gene trees were screened to remove genes that may have resulted from horizontal transfer by excluding
all gene families with topologies that conflicted with the species tree topology according to a Kishino-
Hasegawa (K-H) test (Kishino & Hasegawa, 1989) (p<0.05). Of the remaining 744 'core' gene families,
99% of the top BLAST hits were to a member of the same Genus, or to a neighboring branch on the
species tree. For the 744 gene families consistent with the species tree phylogeny, trees were re-built
using the consensus 'species tree' topology, but with branch lengths estimated separately for each gene.
These gene trees were first normalized to remove gene family-specific contributions (p) by re-scaling
each tree such that the sum of all branch lengths in the tree matched that expected by the species tree
(considering only those branches of the species tree that are present in the gene tree). Gene trees were
further normalized to remove 'molecular clock'-type effects (B - ¢) by dividing each branch by the
corresponding branch length in the species tree (Figure 2.S1). Only terminal branches (those leading
directly to extant species) were used in this study, and branches with near-zero sequence changes were
excluded from the analysis. Finally, the resulting relative rates were median centered within each genome,
leaving an estimate of v in which values greater than 1.0 indicate faster than expected evolution (e.g., due
to positive or relaxed negative selection), and values smaller than 1.0 indicate slower than expected
evolution (e.g., due to increased negative selection). To estimate the significance of the deviation from 1.0
(no unusual selective pressures), we computed 100 replicates of our estimate for v by non-parametric

sequence bootstrapping, and computed a 'Z-score' as the ratio of the observed log,(v) to the square root of
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its variance over the bootstrap replicates.

2.12 Estimation of synonymous and non-synonymous substitution rates (dS and dN).

We used the codem! program from the PAML 4.0 package (Yang, 2000) to estimate dN and dS, allowing
their ratio to vary freely along branches of the species tree ('free-ratio' model). Estimates of dN, dS and
dN/dS were made for each of the 744 core orthologs described above. To generate 'relative' values of dN,
dS and dN/dS, each of these values was first normalized by its median value for each genome, then by the
median for each ortholog. Note the order of normalization steps is reversed from that for relative rates,
because there is no prior expectation that dN/dS values across the tree are proportional to evolutionary

time/distance.

2.13 Simulation of genes under different models of selection.

We used the evolver program from the PAML 4.0 package (Yang, 2000) to simulate gene families of 300
codons in 30 species, using the y-proteobacteria species tree topology. In the first set of simulations
(Figure 2.3B), we used two classes of sites (occurring at frequency 0.1 and 0.9, respectively), each with a
different value of dN/dS, randomly chosen from within =1 standard deviation of the mean of the observed
distribution of dN/dS in our data set of 744 genes across 30 species. In 18 of the models, dN/dS was not
allowed to vary among branches; in the remaining 18 a different dN/dS value was chosen at random for
each site class and each branch. For each model, we generated 5 replicate codon sequences in 5
independent runs of evolver. In the second set of simulations (Figure 2.6), we used either 2 or 3 classes of
sites (with frequency chosen within the range of 0.1 to 0.9), each with dN/dS of either 2.0, 1.5, 1.1, 1.0,
0.5 or 0. We generated 180 different models, 45 of which did not allow branch variation, and the
remaining 135 with 1 to 5 branches under selection, with one site class having a higher dN/dS than the
other branches. We generated 12 replicate sequences for each model. For both sets of simulations, we
translated the codons to amino acid sequence in order to calculate v, treating each replicate of each model

as a protein family. We also estimated dN/dS in each branch using the free-ratio model in PAML.

2.14 McDonald-Kreitman tests.

Gene families were retrieved from 24 strains of E. coli (including some strains of Shigella; see Table
2.S2b), and an outgroup, Sal/monella enterica. Each gene had exactly one representative in each strain.
Genes were assigned to orthologous families using OrthoMCL (Li et al, 2003). Only the 473 gene
families corresponding to COGs in the relative rates data set, and not violating the K-H test, retained for
analysis. We tried excluding genes with a large number of divergent sites relative to polymorphic sites,

which might reflect HGT from closely-related species, but this did not significantly affect results.
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Nucleotide sequences were aligned and trimmed using MUSCLE, as described above. Polymorphic
substitutions (within the 24 strains of E. coli) and divergent substitutions (fixed between E. coli and
Salmonella) were counted, and assigned to synonymous or nonsynonymous categories, as previously
described (McDonald & Kreitman, 1991). Only codons for which there were no more than two states
were retained for analysis, and we always chose the pathway between codons that minimized the number
of nonsynonymous changes. An Odds Ratio statistic, the Fixation Index (FI), was then calculated as

described in the main text.

2.15 Simulation of v.

To ensure that the patterns of selection across species were not simply due to an artifact of the species tree
topology and normalization procedure, we simulated sequence data for 744 genes over the tree of 30
species. First, gene presence/absence in the 30 species studied was sampled from the distribution
observed for the 744 gene families. Then branch lengths (B - ) were chosen for each branch by
multiplying the corresponding branch in the species tree by randomly chosen values from the observed
distributions of v and p, respectively. Sequences were then generated based on these trees using Seq-Gen
(Rambaut & Grassly, 1997), with a JTT amino acid substitution model and y-distributed rates and

analyzed as for the actual gene sequences.

2.16 Divergence time estimation.

We used the 'multidivtime' software package (Thorne et al, 1998, Battistuzzi et al, 2004) to estimate
divergence times in the species tree, using a relaxed molecular clock model. The tree of 30 -
proteobacteria was rooted using Neisseria meningitidis MC58 (taxonomy ID 122586) and Nitrosomas
europaea (taxonomy ID 228410) as outgroups. The 30 y-proteobacteria and outgroup species all shared
the 80 single-copy orthologs used to construct the tree. The most likely evolutionary rates and divergence
times were estimated using the Bayesian Markov chain Monte Carlo procedure, as implemented in
multidivtime using the following priors: Mean tree length (root to tips) = 1.75 By (standard deviation =
1.0 By) and rate at the root = 3.9 substitutions/site/By (chosen to equal the median rate at the tips, with
standard deviation = 3.9). Time bounds were set based on the divergence of E. coli and S. typhimurium
between 57 Mya (upper bound) and 176 Mya (lower bound) (Ochman & Wilson, 1987, Ochman et al,
1999). Three independent runs were performed with these settings, and did not differ in the estimated

divergence times.
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Supplementary Note 1. Analysis of Horizontally and Vertically-inherited gene sets.

We repeated many of our analyses with a set of genes more likely to include horizontal gene flow (those
173 genes previously excluded because they rejected the species tree according to a K-H test, see
Methods), and a set of 203 ubiquitous housekeeping genes (of which 161 are present in our data set)
previously reported to be primarily vertically inherited (though the previous study used fewer genomes
within this clade (Lerat et al, 2005)). The results of these analyses (shown in Figures 2.S4-2.S6) suggest
that most of the effects we report cannot be simply explained by HGT: similar results to those shown in
Figures 3 and 5B&C were observed for the non-HGT set, whereas less striking results are observed for
the HGT set. In addition, the dN/dS results reported in Figure 2.3 (main text), which should be less
sensitive to the effects of HGT, confirm our finding that patterns of selection correlate with function.
Thus, we conclude that HGT likely plays a significant role in shaping evolutionary rates, especially
among groups more closely related than our study resolves, but that long-range transfer is not solely

responsible for the patterns observed.

Supplementary Note 2. Patterns of selection across genomes.

To better appreciate the timescale for rate variation across species, we compared the values of v between
orthologous genes in different species. Figure 2.S8 (upper diagonal) shows the correlation in v over all
genes shared by each pair of species. When species are ordered according to their phylogeny, there is a
striking trend: genes in closely-related species appear to be under similar selective pressures (high
pairwise v-correlations are close to the diagonal). The observed pattern is not due to artefacts of the
normalization procedure or phylogenetic inference, as simulated data produce no pattern (lower diagonal;
see Methods). Remarkably, strong positive correlations are observed within relatively ancient clades,
dating as far back as ~900 million years as estimated by a Bayesian relaxed molecular clock model
(Thorne et al, 1998) (e.g., the Colwellia/ldiomarina/Shewanella clade in Figure 2.S8; all correlations
significant with P < le-4). The species within this clade have qualitatively different lifestyles, and differ
greatly in their respiratory capabilities and preferred temperatures ranges. On the other hand, we observe
no finer-scale patterns within these closely-related, co-evolving clades (e.g., Pseudomonas or Vibrio
species; see Figure 2.510). This suggests that, on shorter time scales, evolutionary rate variation does not
correlate with phylogenetic relatedness, but perhaps with fine-scale niche adaptation, or neutral drift.
Indeed, the constancy of (relative) rates within related clades has been recently exploited as a powerful

feature for ortholog identification in several eukaryotic groups (Rasmussen & Kellis, 2007).

Is ecological similarity responsible for the apparent similarity in core gene evolution among close

relatives? Correlations in v are generally observed between species within the same order, consistent with
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the observation that species related at the level of order have more similar habitats than expected by
chance (Mering et al, 2007). If ecological similarity leads to similar regimes of selection, we would also
predict some degree of ecological similarity between the outlying pairs of distantly-related species with
highly correlated v across their genomes. Indeed, the biggest outliers to the trend that ‘rate variation
recapitulates phylogeny’ all involve Coxiella, Xylella, and members of the Buchnera/ Wigglesworthia
clade - all of which are ecologically similar in that they are fastidious, intracellular, host-associated

species (Tamas et al, 2002).

Core genes are highly conserved, and might be affected only indirectly by selection imposed from the
outside environment. Adaptation to a new ecological niche often involves acquisition of new modules of
genes rather than mutational changes in existing genes. However, epistatic interactions between genes
might require bacteria to fine-tune their 'core' genomes to accommodate a new or altered module, and
maintain fitness. On average, epistatic interactions are likely to exist between most genes (as has been
reported for E. coli (Kishony & Leibler, 2003)). Thus, large changes such as the addition or deletion of
genes via HGT may lead to changes in the intracellular environment, and ensuing selection on core genes.
Therefore the relationship between natural selection on core genes and phylogenetic similarity could be

driven by shared gene content.

What are the relative contributions of these factors in modulating the rate of core gene evolution? As
discussed above, similar ecology may contribute to co-evolution of core genes in different species. Other
contributions may come from genetic ‘fine-tuning’ in response to dynamic gene content (quantifiable as
the proportion of shared orthologs between species), and phylogenetic closeness (quantifiable as the
evolutionary distance in substitutions/site or divergence time between species). We compared these
quantitative measures for their ability to predict how strongly values of v are correlated between pairs of
species. Even after controlling for evolutionary distance or divergence time, we found gene-content
similarity to be a better predictor than either evolutionary distance or time alone (Figure 2.59). Thus,
gene-content appears to be a prime determinant of selection on core genes, while phylogenetic closeness
does not contribute as strongly once gene-content is controlled for. As a result, processes that affect gene-
content, such as horizontal gene transfer, duplication and gene loss, may play an under-appreciated role in

the evolution of vertically inherited ‘core’ genes.
Selection on core genes may be imposed either directly from the environment, or to accommodate newly

acquired functions that might otherwise incur a fitness cost. HGT among microbes, analogous to

recombination among viral strains, might reduce fitness by disrupting co-evolved functional modules of
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genes (Martin et al, 2005). Although horizontally transferred genes tend to attach to the periphery of the
cell's metabolic network so as not to disrupt major housekeeping functions (Pal et al, 2005), they still
interact (directly or epistatically (Segre et al, 2005)) with downstream and parallel pathways, perhaps
leading to subtle fitness effects. To compensate for this changing fitness landscape, bacteria may 'fine-
tune' the rest of their genomes accordingly. As we have shown, such selective fine-tuning on core genes is
common enough to be detectable, and is at least partially explained by gene-content variation. Of course,
gene-content similarity may co-vary substantially with ecological similarity, and the lack of sufficient
data or methods to quantify differences between ecological niches prevent us from disentangling these

factors.
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Figure legends

Figure 2.1. Evolutionary rate deviations as evidence of natural selection.

Observed branch length is plotted against the branch length predicted from gene-specific (p) and species-
specific (P) effects (see Methods). A total of 16,681 points are plotted, corresponding to 744 orthologous
proteins present in 16-30 species. Amino acid substitutions per site are shown on a log, scale. The grey

line corresponds to y=x.
Figure 2.2. Genes of common function have similar selective signatures.

Relative rates of evolution are shown for 5 genes across 30 species. Fast-evolving genes (log,v > 0) are
shown as red bars; slow-evolving genes (log,v < 0) as blue bars; genes absent in a given species are not
shown. The time scale for the phylogeny was estimated using a Bayesian relaxed molecular clock model
(Thorne et al, 1998). Flagellar genes: figN (COG 3418; Flagellar biosynthesis/type III secretory pathway
chaperone), figd (COG 1261; Flagellar basal body P-ring biosynthesis protein), fIiS (COG 1516;
Flagellin-specific chaperone). Sulfur metabolism genes: yheL (COG 2168; Uncharacterized conserved
protein involved in oxidation of intracellular sulfur), yheM (COG 2923; Uncharacterized conserved
protein involved in oxidation of intracellular sulfur).

Figure 2.3. (A) Selection acts coherently on cellular functions.

Correlations in v, dN/dS and relative dN/dS (normalized as described in Methods) were obtained for the
109,405 gene-pairs with a COG functional category annotation (16 categories, excluding 'general' or
'unknown' function). Of these pairs, 10,377 have the same COG function, accounting for a proportion of
~0.09 of the total (plotted as a solid grey line). Pairs were binned according to correlation-percentile in
groups of 10 percentile points except for the last three (90-95%, 95-99%, 99-100%). Shown is the fraction
with common function in each bin. To avoid potential bias, percentiles were calculated separately for
genes present in different numbers of species (15 bins ranging from 16-30 species).

(B) Gene families under the same model of evolution have highly correlated selective signatures.
Correlations in v were obtained for all pairs of simulated gene families, with or without branch variation
in dN/dS, and with dN/dS chosen randomly from within +1 standard deviation of the mean of the
observed dN/dS values (range: 0.005 to 0.26). The distribution of correlations is shown for pairs of gene
families with branch variation in dN/dS, and that are replicates of the same evolutionary model (light
blue). The distribution of all pairwise correlations — including gene families with or without branch
variation, and pairs from the same or different models — is also shown (grey).

Figure 2.4. Rapidly-evolving pathways in Idiomarina loihiensis.

Simplified schematic of glycolysis and phenylalanine metabolism in /diomarina loihiensis. Metabolic
intermediates are denoted by white circles; enzymes by arrows. 'Fast-evolving' enzymes, depicted as red
arrows, are defined as those with v in the top 10% of genes in the Idiomarina loihiensis genome. The
names of genes encoding fast-evolving enzymes are shown, highlighted in light blue or orange,
respectively for glycolysis or phenylalanine metabolism. Non-functional pathways (those with many key
enzymes or transporters missing) are shown in grey. Of the 'present’ enzymes shown in black, only one is
slow-evolving (v < 1) in Idiomarina: COG 191, encoding the enzyme fructose bisphosphate aldolase,
which interconverts F1,6P and GA3P. Abbreviations for metabolic intermediates: PEP:
phoshphenolpyruvate, E4P: erythrose-4-phosphate, DAHP: 7P-2-dehydro-3-deoxy-arabinoheptonate,
DHQ: 3-dehydroquinate; DHS: 3-dehydroshikimate, prCat: protocatechuate, shik: shikimate, shik-3P:
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shikimate-3-phosphate, CVPS: 5-O-(1-carboxyvinyl)-3-phosphoshikimate, chor: chorismate, prePh:
prephenate, phPy: phenylpyruvate, Phe: phenylalanine, G6P: glucose-6-phosphate, F6P: fructose-6-
phosphate, F1,6P: fructose-1,6-bisphosphate, GA3P: glyceraldehyde-3-phosphate, DHAP:
dihydroxyacetone phosphate, G1,3P: glyerate-1,3-bisphospate, G3P: glycerate-3-phosphate, G2P:
glycerate-2-phosphate. COG and EC numbers of fast-evolving genes: AroB: COG337, EC4.2.3.4, AroQ:
COG757,EC4.2.1.10, AroE: COG169, EC1.1.1.25, Phed: COG77, EC4.2.1.51, Pgi: COG166,
EC5.3.1.9, Fbp: COG158, EC3.1.3.11, Pfk: COG205, EC2.7.1.11, TpiA: COG149, EC5.3.1.1, Eno:
COG148,EC4.2.1.11.

Figure 2.5. (A) Comparison of relative rates (v) and Fixation Index.

Histograms show the frequency (probability density) distribution of FI values for fast-evolving (v >2;
dark red; N=69) and slow-evolving (v < 0.5; light blue; N=63) genes. Bins are labelled with the FI value
corresponding to their midpoint, on a log; scale. FI was calculated by counting fixed and polymorphic
substitutions at synonymous and nonsynonymous sites, in a sample of 473 COGs (all present in the
relatives rates data set, and passing the K-H test) in 24 E. coli strains, using Salmonella enterica as an
outgroup.

(B) Purifying selection and gene deletions. Fast-evolvers (or slow-evolvers) were defined as those
genes evolving 4 times faster (or slower) than expected (v > 4.0 or v <0.25, respectively for fast and
slow, with a Z-score > 1.0). For the fast and slow sets of genes, we counted the number with lost
orthologs in the closest sister clade in the species tree. When the sister clade contains multiple species,
loss indicates the gene was absent from all species in the clade. Frequency of loss among the fast and
slow sets was significantly different than the average over all other genes: higher in the fast-evolving set
(Fisher's exact test: Odds Ratio = 3.1, P = 2.4e-7), and lower in the slow-evolving set (Fisher's exact test:
Odds Ratio = 0.55, P=0.01).

(C) Evidence for genetic hitchhiking. A binomial test was used to determine whether fast (or slow)
evolving genes tend to be clustered in the genome near other fast (or slow) evolving genes across all 30
species combined (v > 1 or v < 1, respectively for fast and slow, with a Z-score > 1.0). Log p-values are
plotted for pairs separated by distance-windows of 0-5 genes, 6-20 genes, 21-100 genes, 101-200 genes,
and 201-300 genes (points shown indicate the maximum separation). The grey line represents p = 0.05.

Figure 2.6. Detection of positive selection by dN/dS and v under different evolutionary models.

Values of dN/dS and v (mean over 12 replicates of each model) are shown for 3 simulation models.
Model 1: dN/dS =2 at 3/10 of sites and dN/dS =1 at 7/10 of sites, in all species (shown in red). Model 2:
dN/dS =2 at 3/10 of sites and dN/dS =1 at 7/10 of sites, respectively, for the species shown in red. All
other branches had dN/dS = 0 at all sites. Model 3: dN/dS =2, dN/dS =1 and dN/dS =0 at 1/10, 7/10 and
2/10 of sites, respectively, in the species shown in red. All other branches had dN/dS =1 and dN/dS =0 at
8/10 and 2/10 of sites, respectively. Values of dN/dS and v are also shown, as estimated for a real protein
family from our data set of 744 protein families in 30 species.

Figure 2.7. Positive association of selective signatures (v) and Fixation Index, independent of dN/dS.
We counted E. coli genes with FI > 1.2 or FI < 0.6 as ‘high’ and ‘low’, and with log, v> 0.5 (v>1.4) or
log, v<-0.5 (v<0.7) as ‘high’ and ‘low’. The genes were divided into sets with relatively high dN/dS ( >
0.06), medium (0.02 < dN/dS < 0.06), or low dN/dS ( < 0.02). Within each set, counts were binned in 2 X
2 contingency tables to calculate the Odds Ratio statistic, with Odds Ratio > 1 indicating positive
association between v and FI. One-sided P-values of Fisher’s exact test are shown.

Supplementary figures legends.
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Figure 2.S1. Example of tree normalization and calculation of v.

The normalization procedure is illustrated for two example protein families (columns). We begin with a

gene tree of three species ((A,B),C), with branch length ( (substitutions / site) x 10-2) equal to total
evolutionary distance (top row). The gene tree is first normalized so that terminal branches all sum to 1.
The resulting gene tree, normalized to remove gene-family effects (p) is shown in the second row. Each
branch in the normalized gene-tree is then divided by the corresponding branch in the normalized species-
tree (B, shown in the third row) to yield an estimate of v for each branch, shown in the bottom row.
Values of v > 1 reflect faster-than-expected evolution; v < 1 reflect slower-than-expected evolution.

Figure 2.S2. Operon prediction by correlation in v, dN, dS, and dN/dS.

Receiver Operating Characteristic curve of several methods for operon prediction. Pairs of genes
predicted to be on the same operon are considered 'true positives'; pairs on different operons as 'false
positives'. Correlations were computed between the 157,612 pairs of genes for which both gene
expression (from E. coli microarrays under 14-17 different experimental conditions) and relative rate (v)
data was available, and for which the pair is present in at least 16 of 30 species. Of these pairs, 898 are
predicted to fall on the same operon in E. coli (Price et al, 2005). To avoid systematic biases in
correlations (pairs present in fewer species might achieve higher correlations by chance), the correlations
were percentile-ranked together with other genes present in the same number of species. For each level of
percent-ranked correlation (in either v, expression level or raw/normalized dN, dS, or dN/dS, estimated as
described in the Methods of the main text), the percentage of pairs above this level in the different-operon
set is plotted against the percentage in the same-operon set. The solid grey line represents random
prediction (y = x). We also assessed the ability of similarity in Fixation Index (FI) to predict E. coli genes
on the same operon. For each pair of COGs present in E. coli, we calculated ‘delta FI’ as the absolute
difference between the FI of each COG. Delta-FI was percentile-ranked and plotted on the operon-
predicting ROC curve. Similarity in FI is a rather poor predictor of operons, perhaps because it a scalar
value from one species, rather than a correlation across many species. The E. coli gene expression data
was obtained from microbesonline.org. Correlations in expression level (mean log-ratio of experimental
condition to control) were taken between genes for which expression had been measured in at least 14 of
17 experimental conditions, including heat shock (experiment ID 12; (Gutierrez-Rios et al, 2003)), low
pH (experiment ID 40; Blattner lab), UV exposure (experiment ID 46, 7 time points; GEO accession
GSEY), and tryptophan exposure/starvation (experiment ID 47, 8 time points; Geo accession GSE7).

Figure 2.S3. Effect of normalization procedure (A) and COGs used in species-tree construction (B)
on rate-function correlation.

Methods as described in Figure 2.3 of the main text. (A) Comparing normalized rates (v) to non-
normalized 'raw' evolutionary distance. Red lines: Correlation in v between gene-pairs. Black lines:
Correlation in raw evolutionary distance (non-normalized gene-tree branch lengths) between gene-pairs.
Filled circles: including all gene pairs; Open circles: excluding pairs on the same operon. The distribution
of v-correlations among gene-pairs of common function is significantly more biased toward high
correlation than the distribution of raw-distance correlations between gene-pairs of common function (KS
test, D=0.12 and D=0.10, respectively for total and same-operon excluded data sets, both P<2.2e-16),
indicating that v-correlation is a significantly better predictor of function than raw distance, even when
same-operon pairs are not considered. The grey line denotes the mean fraction with shared function, over
all genes. (B) Comparing the full set of normalized rates (shown in red) with the set excluding the 80
COGs used to construct the species tree (shown in blue). The mean fraction of genes with shared function
for each of these data sets is shown in red or blue, respectively. The distribution of v-correlations among
gene-pairs of common function does not differ significantly between these data sets (KS test, D=0.02
P>0.05).
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Figure 2.54. Effect of topology violation (putative HGT) on rate-function correlation.

v-correlations between genes were obtained for gene-pairs falling into 3 categories: (1) Overall: those
among the 744 used throughout this work (red), (2) non-HGT :those among the 161 high-quality
orthologs of Lerat, Daubin & Moran (Lerat et al, 2005) (blue), or (3) HGT: those among the 173
orthologs found to significantly violate the species tree topology by the K-H test (green). Only gene-pairs
with a COG functional category annotation (16 categories, excluding 'general' or 'unknown' function), and
which occur in at least 16 of 30 species, were used. (A) All pairs, including genes on the same or different
operons; (B) Excluding gene-pairs on the same operon. For each case, we binned the pairs according to v-
correlation-percentile (as described in Figure 2 of the main text), and plot the fraction with common
function in each bin. v-correlations are expressed as percentiles to control for possible bias in computing
correlation for different vector lengths (ranging from 16-30 species). Solid horizontal lines represent the
mean fraction of gene-pairs with shared function, averaged over all values of v-correlation. For both (A)
and (B), the distribution of v-correlations differed between same-function and different-function pairs
only for the Overall and non-HGT sets, but not the HGT set (KS tests: P<2.2e-16 and NS, respectively for
Overall/non-HGT and HGT set). The distribution of Overall v-correlations among gene-pairs of common
function is significantly different from the HGT distribution for gene-pairs of common function (KS test,
D>0.12, P<le-4, for both operon-excluded or total data set).

Figure 2.S5. Frequency of lost orthologs in sister taxa for HGT and non-HGT data sets.

Within each of 3 data sets (topology violators (failed K-H test, putative HGT), high-confidence (putative
non-HGT from Lerat, Daubin & Moran, 2003), or Overall (744 genes, passed K-H test)), fast-evolvers (or
slow-evolvers) were defined as those genes evolving 4 times faster (or slower) than expected (v >4.0 or v
<0.25, respectively for fast and slow, with a Z-score > 1.0). For the fast and slow sets of genes, we
counted the number with lost orthologs in the closest sister clade in the species tree. When the sister clade
contained multiple species, the loss was only counted if all species in the clade had lost the ortholog.
Frequency of loss among the fast (red) and slow (blue) sets was compared to the frequency of loss over
all genes (grey) using Fisher's exact test; asterices denote significant differences (P <0.01). In each of the
3 data sets, the proportion of lost orthologs was significantly different between fast-evolving and slow-
evolving genes. The proportion of fast-evolving genes with lost orthologs did not differ significantly
between the HGT and Overall set, nor between the high-confidence non-HGT and Overall set. However,
the proportion of slow-evolving genes with lost orthologs was significantly higher in the HGT set than the
Overall set (Fisher's exact test, Odds Ratio = 3.2, P = 0.009), but not between the non-HGT and Overall
set.

Figure 2.S6. Clustering of 'Fast' genes in HGT and non-HGT data sets.

(A) High confidence data set (161 probable non-HGT genes; Lerat, Daubin & Moran, 2003), (B)
Topology-violating data set (173 probable HGT genes; failed K-H test). For each data set, a binomial test
was used to determine whether fast (or slow) evolving genes tend to be clustered near other fast (or slow)
evolving genes on the chromosome across all 30 species (v > 1 or v < 1, respectively for fast and slow,
with a Z-score > 1.0). The log P-values from the binomial test are plotted against genomic distance
between genes. All pairs were on different operons. The P-values are plotted for pairs separated by
distance-windows of 0-5 genes, 6-20 genes, 20-100 genes, 100-200 genes, and 200-300 genes. Points
shown indicate the maximum separation in each non-overlapping window. The grey line represents a P-
value of 0.05.

Figure 2.S7. Agreement of values of v estimated using JTT and WAG substitution models.
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For each of 744 genes across 30 species, the value of v estimated under a JTT substitution model is
plotted against the value estimated under a WAG substitution model. The species tree topology did not
differ significantly between JTT and WAG models implemented in Tree-Puzzle (K-H and S-H tests, P >
0.05), therefore the same topology was used for both models, but with branch lengths estimated separately
to compute v under each model. The models produce near-identical values of v (Pearson’s correlation =
0.987, R*=0.974, P <2.2e-16, N = 16,681).

Figure 2.S8. Patterns of selection across genomes.

ABOVE DIAGONAL: As a global measure of similarity in selection over all genes between two species,
Pearson's correlations were computed between each pair of species, using the vectors of v for all shared
orthologs of the pair (always in the range of 250-650 orthologs). The pairwise correlations between
species are illustrated, ordered according to the species topology. The time scale for the phylogeny was
estimated using a Bayesian relaxed molecular clock model. BELOW DIAGONAL: Random values of v
simulated along the same species tree show no pattern of correlation between species (see Methods).

Figure 2.S9. Full and partial correlations between co-evolution (v-correlation between species) and
gene content, raw evolutionary distance, and divergence time.

Pearson's correlations and partial correlations were computed between v-correlation (over all genes) and
(i) shared gene-content, (ii) distance, and (iii) time, for all pairs of species. Gene-content varies positively
with v-correlation between species, while distance and time both vary negatively. For simplicity, absolute
values of correlations are shown. All correlations and partial correlations were significant with P <
0.0001, except for v x distance | time, for which P = 0.007. The full correlation of co-evolution (v) with
gene content was stronger than the correlation with either distance or time, with 95% confidence. v-
correlation between each species-pair was computed as for Figure 2.S8. Shared gene-content between a
species-pair was defined as the number of shared orthologs (same COG), divided by the geometric mean
of the total number of COGs in each pair of genomes, excluding multi-copy COGs and genes not
assigned to a COG. Distance was defined as total evolutionary change (amino acid substitutions per site)
estimated to have occurred since the last common ancestor of the pair.

Figure 2.510. No phylogenetic pattern of v-correlation is observed within shorter time scales.

v was calculated as described in Methods, using either a species tree consisting of only the 4
Pseudomonas species (left) or the 5 Vibrio/Photobacterium species (right). 828 or 805 shared single-copy
orthologs were used to build the respective species trees. v was calculated for each ortholog in each
species, provided that the gene-tree did not violate the species topology. As in Figure 2.S8, Pearson's

correlations were computed between each pair of species, using the vectors of v for all shared orthologs of
the pair. The pairwise correlations between species are illustrated, ordered according to the species

topology.

Supplementary table legends.
Table 2.S1. List of genes used to construct the species tree.
Table 2.S2a. Taxonomy IDs of species used in this study.

Table 2.S2b. Taxonomy IDs of strains used in McDonald-Kreitman tests.
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Table 2.S3a. Enrichment of COG functions in top 10% fast- or slow-evolving sets of genes .

Fast and slow-evolving sets of genes were defined as those with the highest or lowest 10% values of v in
a genome, with a Z-score threshold of 1.0. A hypergeometric test was performed to test whether each
functional category was enriched in the fast or slow set, relative to the expected fraction of that category
in the whole genome. p-values are Bonferonni-corrected for multiple tests on 16 COG categories.

Table 2.S3b. List of fast-evolving flagellar genes in 3 species of enterobacteria.

The COG function "Motility & Secretion" is enriched in the fast-evolving set of genes in 3 species of
Enterobacteria: Escherichia coli K12, Photorhabdus luminescens, and Yersinia pestis. The genes
responsible for this trend are all involved in flagellar functions. Different genes are fast-evolving in each
species: these are denoted by asterices in the relevant column.

Table 2.S4. Evidence for site-specific changes in dN/dS in Idiomarina genes.

To support the high values of v observed in glycolysis and phenylalanine biosynthesis in Idiomarina, we
analyzed these genes in PAML under 5 different evolutionary models: (1) No branch variation (single
value of dN/dS for the whole tree); no site variation, (2) Different dN/dS allowed in the Idiomarina
branch (two values of dN/dS in the tree); no site variation, (3) No branch variation; variable selective
pressure among sites allowed (3 categories of sites, each allowed a different dN/dS), (4) Different dN/dS
allowed in Idiomarina; variable selective pressure among sites allowed (3 categories of sites for
Idiomarina and 3 for the rest of the tree, each allowed a different dN/dS), and (5) Same as Model 4, but
fixing dN/dS not to exceed 1. In Test A, Model 2 is compared with Model 1 in a likelihood ratio test
(compare 2(L,— L;) to Xz distribution with degrees of freedom = # parameters in Model 2 — Model 1). In
effect, this tests whether /diomarina has a different dN/dS, averaged over all sites in the gene, than other
lineages. It should be noted that for all genes in the table above, dS is saturated ( > 50 substitutions per
site), perhaps explaining the relatively low average values of dN/dS. In Test B, Model 4 is compared to
Model 3 in a likelihood ratio test (compare 2(L, — L;) to % distribution with degrees of freedom = #
parameters in Model 4 — Model 3). For all 10 genes, this test supports sites under different selection in
Idiomarina. In all cases, there is at least on site category with higher dN/dS in /diomarina than other
lineages. We performed a final test to determine whether there were some sites in /diomarina with dN/dS
> 1. In this test, we compared Model 4 to Model 5 in a likelihood ratio test (compare 2(L, — L;s) to Xz
distribution with degrees of freedom = # parameters in Model 4 — Model 5). For genes with significant
evidence (P < 0.05) for sites with dN/dS > 1, the proportion of sites with elevated dN/dS in Idiomarina
(far right column) is shown in bold.

Table 2.S5. Genes predicted under selection in E. coli by selective signatures and the MK test.

Genes are listed only when the MK test and selective signatures agree, using the same criteria as Figure 7
in the main text (log,FI > 0.26 and log,v > 0.5, or log,FI <-0.74 and log,v <-0.5). For v, * denotes Z
score > 1, ** Z > 2. For FI, * denotes Xz >3.84 (P<0.05with 1 d.f.).

COG functional category key:

Energy Production Transcription
Cell Division DNA replication, repair & modification
Amino Acid Metabolism Cell Envelope

Nucleic Acid Metabolism
Carbohydrate Metabolism
Coenzyme Metabolism
Lipid Metabolism
Ribosome & Translation
Unknown

Motility & Secretion

Protein Modification & degradation
Ion Transport & Metabolism
Secondary Metabolism

General Function

Signal Transduction
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Figure 2.2
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Figure 2.3
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Figure 2.4
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Figure 2.5
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Figure 2.6

Model I: All species under selection
(no branch variation)
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Figure 2.7

high dN/dS medium dN/dS low dN/dS all
hghFl | lowFl hghFl | lowFl hghFl | lowFl hghFl | lowFl
wenv | ]9 4 henv |18 10 werv |5 8 werv | 52| 22
low v 9 13 low v 6 12 low v 9 6 owv | 24 | 4]
Odds ratio : 6.5 3.5 32 4.0
P: 0.005 0.04 0.04 0.00007

141






Figure 2.51
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Figure 2.S2
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Figure 2.S3
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Figure 2.S5
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Figure 2.S6
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Figure 2.S8

Legend:

0.4

0.2

I 0.0 Correlation in v
:8:; between species

Scale:
0.5 billion years
© —
: R N B . Eo ., . .2
c.Q c >, Eo SE <850 o -
kel [72] (e} = S D
582 $08 gg;g‘é’g 288%s_onE825u<mES
20 0e S %ol 5c5ET P LESSGopEse
S ENgELET o= 55EC 2258255 8 g0 0P
oSS855 ESS52302E3S REEESEE Eo
éoo%wzamsog>nocn.Eg%vozg'§ooogmg
A e Q= 3335
OXXXanA o OZ®»H>>>>S0TSa T uWe>uUomams0
Coxiella burn.
X. campestris
X. oryzae —F
I

Xylella fastidi.

P. syringae
P. fluorescens
P. aeruginosa

Colwellia psy.
Idiomarina loi.

H. influenzae
Mannheimia

Pasteurella
H. ducreyi
E. Coli K12
S. typhimurium
Yersinia pestis
Erwinia carot.
Photorhabdus
Buchnera Sg.
Buchnera AP
Buchnera Bp.
Wigglesworthia
Cand. Bloch.

153






Figure 2.S9
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Table 2.S1

Functional
COG Name Category Description
20 UppS I Undecaprenyl pyrophosphate synthase [Lipid metabolism]
30 KsgA J Dimethyladenosine transferase (rRNA methylation) [Translation, ribosomal structure and biogenesis]
48 RpsL ] Ribosomal protein S12 [Translation, ribosomal structure and biogenesis]
51 Rps] ] Ribosomal protein S10 [Translation, ribosomal structure and biogenesis]
52 RpsB J Ribosomal protein S2 [Translation, ribosomal structure and biogenesis]
60 IleS J Isoleucyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]
80 RpIK ] Ribosomal protein L11 [Translation, ribosomal structure and biogenesis]
86 RpoC K DNA-directed RNA polymerase, beta' subunit/160 kD subunit [Transcription]
87 RpIC J Ribosomal protein L3 [Translation, ribosomal structure and biogenesis]
88 RpID J Ribosomal protein L4 [Translation, ribosomal structure and biogenesis]
89 RpIW J Ribosomal protein L23 [Translation, ribosomal structure and biogenesis]
90 RpIB ] Ribosomal protein L2 [Translation, ribosomal structure and biogenesis]
92 RpsC J Ribosomal protein S3 [Translation, ribosomal structure and biogenesis]
97 RplIF ] Ribosomal protein L6P/L9E [Translation, ribosomal structure and biogenesis]
98 RpsE J Ribosomal protein S5 [Translation, ribosomal structure and biogenesis]
102 RpIM J Ribosomal protein L13 [Translation, ribosomal structure and biogenesis]
103 Rpsl ] Ribosomal protein S9 [Translation, ribosomal structure and biogenesis]
124 HisS ] Histidyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]
172 SerS ] Seryl-tRNA synthetase [Translation, ribosomal structure and biogenesis]
177 Nth L Predicted EndolII-related endonuclease [DNA replication, recombination, and repair]
193 Pth ] Peptidyl-tRNA hydrolase [Translation, ribosomal structure and biogenesis]
194 Gmk F Guanylate kinase [Nucleotide transport and metabolism]
195 NusA K Transcription elongation factor [Transcription]
197 RpIP J Ribosomal protein L16/L10E [Translation, ribosomal structure and biogenesis]
198 RplIX ] Ribosomal protein L24 [Translation, ribosomal structure and biogenesis]
199 RpsN J Ribosomal protein S14 [Translation, ribosomal structure and biogenesis]
200 RplO J Ribosomal protein L15 [Translation, ribosomal structure and biogenesis]
201 SecY U Preprotein translocase subunit SecY [Intracellular trafficking and secretion]
203 RpIQ J Ribosomal protein L17 [Translation, ribosomal structure and biogenesis]
211 RpmA ] Ribosomal protein L27 [Translation, ribosomal structure and biogenesis]
216 PrfA J Protein chain release factor A [Translation, ribosomal structure and biogenesis]
222 RpIL ] Ribosomal protein L7/L12 [Translation, ribosomal structure and biogenesis]
228 RpsP J Ribosomal protein S16 [Translation, ribosomal structure and biogenesis]
238 RpsR J Ribosomal protein S18 [Translation, ribosomal structure and biogenesis]
244 RplJ ] Ribosomal protein L10 [Translation, ribosomal structure and biogenesis]
256 RpIR ] Ribosomal protein L18 [Translation, ribosomal structure and biogenesis]
268 RpsT ] Ribosomal protein S20 [Translation, ribosomal structure and biogenesis]
275 MraWw M Predicted S-adenosylmethionine-dependent methyltransferase involved in cell envelope biogenesis
285 FolC H Folylpolyglutamate synthase [Coenzyme metabolism]
292 RpIT J Ribosomal protein L20 [Translation, ribosomal structure and biogenesis]
313 YraL R Predicted methyltransferases [General function prediction only]
319 YbeY R Predicted metal-dependent hydrolase [General function prediction only]
335 RplS ] Ribosomal protein L19 [Translation, ribosomal structure and biogenesis]
336 TrmD ] tRNA-(guanine-N1)-methyltransferase [Translation, ribosomal structure and biogenesis]
354 Ygfz R Predicted aminomethyltransferase related to GevT [General function prediction only]
359 RplI ] Ribosomal protein L9 [Translation, ribosomal structure and biogenesis]
360 RpsF J Ribosomal protein S6 [Translation, ribosomal structure and biogenesis]
361 InfA J Translation initiation factor 1 (IF-1) [Translation, ribosomal structure and biogenesis]
445 GidA D NAD/FAD-utilizing enzyme apparently involved in cell division [Cell division and chromosome partitioning
481 LepA M Membrane GTPase LepA [Cell envelope biogenesis, outer membrane]
482 TrmU J Predicted tRNA(5-methylaminomethyl-2-thiouridylate) methyltransferase [Translation, ribosomal struct.]
486 ThdF R Predicted GTPase [General function prediction only]
495 LeuS ] Leucyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]
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504 PyrG F CTP synthase (UTP-ammonia lyase) [Nucleotide transport and metabolism]

522 RpsD J Ribosomal protein S4 and related proteins [Translation, ribosomal structure and biogenesis]

525 ValS J Valyl-tRNA synthetase [Translation, ribosomal structure and biogenesis]

532 InfB J Translation initiation factor 2 (IF-2; GTPase) [Translation, ribosomal structure and biogenesis]

533 QRI7 (¢] Metal-dependent proteases with possible chaperone activity [Posttranslational modification, chaperones]
536 Obg R Predicted GTPase [General function prediction only]

539 RpsA J Ribosomal protein S1 [Translation, ribosomal structure and biogenesis]

571 Rnc K dsRNA-specific ribonuclease [Transcription]

592 DnaN L DNA polymerase sliding clamp subunit (PCNA homolog) [DNA replication, recombination, and repair]
691 SmpB (e] tmRNA-binding protein [Posttranslational modification, protein turnover, chaperones]

707 MurG M UDP-N-acetylglucosamine:LPS N-acetylglucosamine transferase [Cell envelope biogenesis]

751 GlyS J Glycyl-tRNA synthetase, beta subunit [Translation, ribosomal structure and biogenesis]

771 MurD M UDP-N-acetylmuramoylalanine-D-glutamate ligase [Cell envelope biogenesis, outer membrane]

806 RimM J RimM protein, required for 16S rRNA processing [Translation, ribosomal structure and biogenesis]

812 MurB M UDP-N-acetylmuramate dehydrogenase [Cell envelope biogenesis, outer membrane]

816 YqgF L Predicted endonuclease involved in recombination (possible Holliday junction resolvase) [DNA recomb.]
849 FtsA D Actin-like ATPase involved in cell division [Cell division and chromosome partitioning]

858 RbfA J Ribosome-binding factor A [Translation, ribosomal structure and biogenesis]

1185 Pnp J Polyribonucleotide nucleotidyltransferase (polynucleotide phosphorylase) [Translation, ribosomal]

1207 GImuU M N-acetylglucosamine-1-phosphate uridyltransferase [Cell envelope biogenesis, outer membrane]

1214 Yeaz (e] Inactive homolog of metal-dependent proteases, putative molecular chaperone [Posttrans./chaperones]
1825 RplY J Ribosomal protein L25 (general stress protein Ctc) [Translation, ribosomal structure and biogenesis]
1841 RpmD J Ribosomal protein L30/L7E [Translation, ribosomal structure and biogenesis]

1862  YajC U Preprotein translocase subunit YajC [Intracellular trafficking and secretion]

1932 SerC HE Phosphoserine aminotransferase [Coenzyme metabolism / Amino acid transport and metabolism]

1949 Orn A Oligoribonuclease (3'->5" exoribonuclease) [RNA processing and modification]

2924  YggX S Uncharacterized protein conserved in bacteria [Function unknown]
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Table 2.S2a
Taxonomy ID

Species Name

107806
224915
198804
203907
167879
227377
218491
83333
233412
71421
283942
221988
747
298386
243265
208964
220664
160488
223283
99287
211586
666
312309
223926
216895
36870
190485
291331
160492
273123

Buchnera aphidicola str. APS

Buchnera aphidicola str. Bp

Buchnera aphidicola str. Sg
Candidatus Blochmannia floridanus
Colwellia psychrerythraea 34h

Coxiella burnetii RSA

Erwinia carotovora SCRI1043
Escherichia coli K12

Haemophilus ducreyi35000HP
Haemophilus influenzae Rd KW20
Idiomarina loihiensis L2TR

Mannheimia succiniciproducens MBEL55E
Pasteurella multocida

Photobacterium profundum SS9
Photorhabdus luminescens TTO1
Pseudomonas aeruginosa PAO1
Pseudomonas fluorescens Pf-5
Pseudomonas putida KT2440
Pseudomonas syringae

Salmonella typhimurium LT2
Shewanella oneidensis MR-1

Vibrio cholerae

Vibrio fischeri ES114

Vibrio parahaemolyticus RIMD2210633
Vibrio vulnificus CMCP6
Wigglesworthia glossinidia
Xanthomonas campestris ATCC33913
Xanthomonas oryzae pv. oryzae KACC103
Xylella fastidiosa 9a5c

Yersinia pestis IP32953
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Table 2.S2b

Taxonomy ID

Species Name

358709
362663
405955
37762

344601
340184
199310
340186
340185
331111
340197
331112
83333

155864
386585
364106
316407
344609
300268
300267
198215
198214
373384
300269

99287

Escherichia coli 101-1
Escherichia coli 536
Escherichia coli APEC O1
Escherichia coli B

Escherichia coli B171
Escherichia coli B7A
Escherichia coli CFT073
Escherichia coli E110019
Escherichia coli E22
Escherichia coli E24377A
Escherichia coli F11
Escherichia coli HS
Escherichia coli K12
Escherichia coli 0157:H7 EDL933
Escherichia coli 0157:H7 str. Sakai
Escherichia coli UTI89
Escherichia coli W3110
Shigella boydii BS512

Shigella boydii Sb227

Shigella dysenteriae Sd197
Shigella flexneri 2a str. 2457T
Shigella flexneri 2a str. 301
Shigella flexneri 5 str. 8401
Shigella sonnei Ss046

outgroup:
Salmonella typhimurium LT2
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Table 2.S3a

Species COG function Enrichment Bonferonni-corrected P-value
Haemophilus ducreyi Ribosome & Translation slow <0.0001
C. Blochmannia floridanus Ribosome & Translation fast <0.0001
Xylella fastidiosa Ribosome & Translation fast <0.0001
Escherichia coli K12 Motlity & Secretion fast <0.001
Pasteurella multocida Ribosome & Translation slow <0.001
Photorhabdus luminescens Motlity & Secretion fast <0.001
Mannheimia succiniciproducens Ribosome & Translation slow <0.001
Photorhabdus luminescens Ribosome & Translation slow <0.001
Vibrio parahaemolyticus Amino acid metabolism slow <0.01
Haemophilus influenzae Ribosome & Translation slow <0.01
Buchnera aphidicola str. APS Ion transport & metabolism slow <0.01
Wigglesworthia glossinidia Coenzyme metabolism slow <0.01
Haemophilus ducreyi Cell Division fast <0.05
Vibrio vulnificus Nucleic acid metabolism slow <0.05
Yersinia pestis Motlity & Secretion fast <0.05
Idiomarina loihiensis Carbohydrate metabolism fast <0.05
Xylella fastidiosa Energy production slow <0.05
Idiomarina loihiensis Amino acid metabolism fast <0.05
Photobacterium profundum Cell Division fast <0.05
Table 2.S3b
COG Name E. coli K12 P. luminescens Y. pestis Description
1377 FIhB * * Flagellar biosynthesis pathway
1684 FliR * * Flagellar biosynthesis pathway
3418 FigN * * * Flagellar biosynthesis/type III secretory pathway chaperone
4787 FIgF * * Flagellar basal body rod protein
1261 FlgA * * Flagellar basal body P-ring biosynthesis protein
3190 Flio * Flagellar biosynthesis protein
4967 PilV * * Tfp pilus assembly protein
1815 FlgB * Flagellar basal body protein
1345 FliD * Flagellar capping protein
1516 Flis * * Flagellin-specific chaperone
4786 FlgG * Flagellar basal body rod protein
1706 FlgI * Flagellar basal body P-ring protein
1677 FliE * Flagellar hook basal body protein
2805 PilT * * Tfp pilus assembly protein, pilus retraction ATPase
4969 PilA * Tfp pilus assembly protein, major pilin
1989 PulO * Type II secretory pathway, prepilin signal peptidase PulO and related peptidases
Table 2.54
Test A: Selection on Idiomarina Test B: Site-specific selection on Idiomarina
Different dN/dS dN/dS in Sites with higher Proportion of sites with
in Idiomarina ? Idiomarina dN/dS in higher dN/dS in Idiomarina
Pathway Gene COG (relative to other Idiomarina? (dN/dS > 1 in bold)
lineages)
Glycolysis Pgi 166 yes* 0.0066 (lower) yes*** 0.40
Fbp 158 yes** 0.0022 (lower) yes*** 0.18
Eno 148 yes*** 0.0017 (lower) yes*** 0.08
TpiAd 149 yes* 0.0056 (lower) yes*** 0.26
Pk 205 yes* 0.0038 (lower) yes*** 0.30
NagE 2190 no 0.0185 yes*#* 0.75
Phenylalanine  A4roQ 757 yes* 0.0028 (lower) yes* 0.07
biosynthesis AroB 337 no 0.0044 yes¥** 0.23
AroE 169 no 0.0055 yes*** 0.16
PheA 77 no 0.0115 yes** 0.45
Likelihood ratio test: * P <0.05, ** P <0.005, ***P <0.00001
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Table 2.S5

COG log, v log, F1 dN/dS  Func  Description

112 2,13 ** 2.47 0.12 E serine hydroxymethyltransferase

118 2.02  ** 0.82 0.07 E imidazole glycerol phosphate synthase subunit HisH

150 1.96  ** 0.69 0.03 F phosphoribosylaminoimidazole synthetase

2973 1.86 * 0.41 0.00 K Trp operon repressor

157 1.86 ** 0.68 0.02 H nicotinate-nucleotide pyrophosphorylase

2980 1.73  ** 0.43 0.07 M minor lipoprotein

704 1.54 * 0.84 3.21 P negative regulator of PhoR/PhoB two-component regulator

357 1.51  ** 0.61 0.02 M glucose-inhibited division protein B

99 148 * 0.74 0.24 J 30S ribosomal protein S13

649 1.48 * 1.87 0.02 C NADH:ubiquinone oxidoreductase, chain C,D

196 1.33  ** 0.54 0.03 H hypothetical protein

414 1.30 * 2.02 0.04 H pantoate--beta-alanine ligase

2109 128 * 0.50 0.00 H cob(I)yrinic acid a,c-diamide adenosyltransferase

3123 128 * 0.94 0.02 S hypothetical protein

1214 1.27  ** 0.94 0.05 (¢} predicted peptidase

3159 121 * 0.90 0.09 S hypothetical protein

850 1.19  ** 0.37 0.06 D septum formation inhibitor

221 1.16 1.03 0.09 C inorganic pyrophosphatase

2861 .15 * 0.85 0.63 S orf, hypothetical protein

1983 .12 * 0.93 0.06 KT  DNA-binding transcriptional activator

529 1.11 0.55 0.05 P adenylylsulfate kinase

149 1.07 * 2.08 0.08 G triosephosphate isomerase

205 1.05 * 0.89 0.03 G 6-phosphofructokinase

3076 1.03 0.30 0.02 S hypothetical protein

229 097 * 0.67 0.02 (0] methionine sulfoxide reductase B

540 0.96 * 1.68 0.02 F aspartate carbamoyltransferase catalytic subunit

1005 0.95 1.82 0.16 C NADH dehydrogenase subunit H

751 0.88 * 2.09 0.05 J glycyl-tRNA synthetase subunit beta

17 0.86 1.00 0.05 J asparaginyl-tRNA synthetase

481 0.85 0.94 0.02 M GTP-binding protein LepA

1666 0.84 2.52 0.07 S orf, hypothetical protein

344 0.82 * 1.74 0.08 S hypothetical protein

682 0.80 * 1.93 2.50 M prolipoprotein diacylglyceryl transferase

2377 0.80 ** 0.37 0.01 (¢} anhydro-N-acetylmuramic acid kinase

554 0.74 0.27 0.03 C glycerol kinase

151 0.73 0.29 4.33 F phosphoribosylamine--glycine ligase

233 0.73 0.95 0.07 J ribosome releasing factor

249 0.69 * 1.51 0.02 L DNA mismatch repair protein

66 0.69 0.32 0.08 E isopropylmalate isomerase small subunit

212 0.68 * 0.61 0.01 H putative ligase
bifunctional N-acetylglucosamine-1-phosphate uridyltransferase/glucosamine-1-

1207 0.64 * 0.91 0.06 M phosphate acetyltransferase

2908 0.64 * 0.44 0.06 S UDP-2,3-diacylglucosamine hydrolase

165 0.63 0.37 0.09 E argininosuccinate lyase

468 0.63 0.67 0.01 L recombinase A

3004 0.62 0.66 0.00 P pH-dependent sodium/proton antiporter

2360 0.62 * 0.56 0.04 (¢} leucyl/phenylalanyl-tRNA--protein transferase

1485 0.60 * 0.37 0.04 R conserved protein with nucleoside triphosphate hydrolase domain
N-(5'-phospho-L-ribosyl-formimino)-5-amino-1-(5'- phosphoribosyl)-4-

106 0.58 0.32 0.02 E imidazolecarboxamide isomerase

323 0.58 * 0.60 0.02 L DNA mismatch repair protein

418 0.58 * 0.30 0.02 F dihydroorotase

629 0.56 1.41 0.06 L single-strand DNA-binding protein
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2968
519
2917
2925
262
1188
275
1314
4121
324
2976
93
1212
777
774
5633
2190
4657
360
563
466
3151
4785
101
821
2983
509
287
788
634
283
131
452
41
3317
575
779
539
3117
103
55
1385

0.52
-0.51
-0.52
-0.52
-0.57
-0.59
-0.65
-0.71
-0.73
-0.74
-0.76
-0.81
-0.83
-0.99
-1.04
-1.05
-1.11
-1.13
-1.15
-1.25
-1.28
-1.37
-1.37
-1.41
-1.50
-1.52
-1.58
-1.58
-1.63
-1.69
-1.69
-1.75
-2.01
-2.43
-2.51
-2.60
-2.62
-2.71
-2.77
-2.78
-2.86
-2.89

1.34
-1.10
-1.13
-1.45
-0.91
-1.46
-0.98
-0.87
-0.76
-1.90
-1.58
-2.32
-1.61
-2.35
-1.26
-2.65
-0.99
-2.93
-3.00
-0.85
-3.55
-2.46
-0.99
-1.14
-0.81
-1.84
-2.62
-0.88
-1.34
-1.68
-1.75
-1.71
-1.05
-1.23
-1.52
-1.77
-1.15
-1.32
-1.72
-1.42
-1.16
-1.68

0.02
0.01
0.01
0.01
0.77
2.06
0.01
0.09
0.08
0.05
0.04
0.15
0.00
0.05
0.04
0.08
0.03
0.03
0.06
0.10
0.01
0.02
0.08
1.40
0.01
0.00
0.01
1.62
1.28
0.02
0.01
0.02
0.03
0.04
0.03
1.38
0.03
0.02
0.00
0.06
0.01
1.34
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hypothetical protein

bifunctional GMP synthase/glutamine amidotransferase protein
intracellular septation protein A

exonuclease I

dihydrofolate reductase

ribosome-associated heat shock protein Hsp15
S-adenosyl-methyltransferase

protein-export membrane protein

putative peptidase

tRNA delta(2)-isopentenylpyrophosphate transferase
hypothetical protein

508 ribosomal protein L14

3-deoxy-manno-octulosonate cytidylyltransferase
acetyl-CoA carboxylase subunit beta
UDP-3-0O-[3-hydroxymyristoyl] N-acetylglucosamine deacetylase
hypothetical protein

glucose-specific PTS system enzyme IIA component
Na(+)-translocating NADH-quinone reductase subunit E

30S ribosomal protein S6

adenylate kinase

DNA-binding ATP-dependent protease La

predicted dehydrogenase

hypothetical protein

tRNA pseudouridine synthase A
4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase

orf, hypothetical protein

glycine cleavage system protein H

fused chorismate mutase T/prephenate dehydrogenase
formyltetrahydrofolate deformylase

hypoxanthine phosphoribosyltransferase

cytidylate kinase

imidazoleglycerolphosphate dehydratase and histidinol-phosphate phosphatase
flavoprotein affecting synthesis of DNA and pantothenate metabolism
phosphoribosylaminoimidazole carboxylase catalytic subunit
lipoprotein-34

CDP-diglyceride synthetase

orf, hypothetical protein

30S ribosomal protein S1

hypothetical protein

30S ribosomal protein S9

FOF1 ATP synthase subunit beta

orf, hypothetical protein
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Chapter 3:

The Slow:Fast substitution ratio reveals changing patterns of natural selection in y-proteobacterial
genomes

Shapiro BJ and Alm E (2009) The slow:fast substitution ratio reveals changing patterns of natural
selection in gamma-proteobacterial genomes. ISME Journal 10:1180-1192

Abstract

Different microbial species are thought to occupy distinct ecological niches, subjecting each species to
unique selective constraints, which may leave a recognizable signal in their genomes. Thus, it may be
possible to extract insight into the genetic basis of ecological differences among lineages by identifying
unusual patterns of substitutions in orthologous gene or protein sequences. We use the ratio of
substitutions in slow versus fast-evolving sites (nucleotides in DNA, or amino acids in protein sequence)
to quantify deviations from the typical pattern of selective constraint observed across bacterial lineages.
We propose that elevated S:F in one branch (an excess of slow-site substitutions) can indicate a
functionally-relevant change, due to either positive selection or relaxed evolutionary constraint. In a
genome-wide comparative study of y-proteobacterial proteins, we find that cell-surface proteins involved
with motility and secretion functions often have high S:F ratios, while information-processing genes do
not. Change in evolutionary constraints in some species is evidenced by increased S:F ratios within
functionally-related sets of genes (e.g. energy production in Pseudomonas fluorescens), while other
species apparently evolve mostly by drift (e.g. uniformly elevated S:F across most genes in Buchnera
spp.). Overall, S:F reveals several species-specific, protein-level changes with potential
functional/ecological importance. As microbial genome projects yield more species-rich gene-trees, the
S:F ratio will become an increasingly powerful tool for uncovering functional genetic differences among

species.
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3.1 Introduction

Natural selection is an evolutionary force that promotes the spread of beneficial alleles in a population
(positive/diversifying selection), and impedes the spread of deleterious alleles (negative/purifying
selection). Selection is intimately tied to ecology: depending on the ecological niche of an organism (e.g.
its source of carbon and nutrients, interactions with predators, hosts, competitors, etc.), different
mutations will be favoured by selection. Genome-wide scans for natural selection have the potential to
identify ecologically-relevant genetic adaptations, even when the adaptive traits themselves remain
obscure (Li et al, 2008). Such genome-wide approaches, sometimes referred to as ‘reverse ecology’, thus
have great potential to elucidate the ‘hidden world’ of microbial ecology. Reverse ecology requires a
sampling of related genomes to quantify genetic differences and similarities within or between species,
and an appropriate genome-wide test for selection. Most tests for selection have been developed with
sexual eukaryotes in mind, and may not always be amenable to microbes (Shapiro et al, 2009). Evidence
for selection can be detected over relatively recent time scales by studying allele frequencies within
populations (Sabeti et al, 2002, Zeng et al, 2006), or over longer time scales by studying protein evolution

between species (Shapiro & Alm, 2008, Jordan et al, 2001, Yang, 1998).

At the protein sequence level, natural selection is often quantified using dN/dS (substitutions per
nonsynonymous site/substitutions per synonymous site). The theoretical foundation of dN/dS can be
traced back in the development of the neutral theory of molecular evolution, when Kimura made an
important observation: while not all synonymous mutations are necessarily functionally neutral, "the
possibility is very high that, on average, synonymous changes are subject to natural selection very much
less than the mis-sense mutations" (Kimura, 1977). When an excess of mis-sense mutations is observed
relative to nearly-neutral silent mutations (dN/dS > 1), this provides strong evidence for positive selection
on a protein or portion thereof. Meanwhile, dN/dS close to zero indicates strong selective constraint, and
dN/dS = 1 indicates low or ‘relaxed’ selective constraint (e.g. pseudogenes). Relaxed constraint amounts
to reduced efficacy of purifying selection in purging deleterious mutations from a population. It has long
been recognized that dN/dS loses power to detect positive selection over long divergence times because
dS becomes ‘saturated’ with multiple substitutions. More recently, it has been recognized that dN/dS may
also be unreliable over very short divergence times between species (Nozawa et al, 2009) or when it is
applied within a single population (Kryazhimskiy & Plotkin, 2008). These issues may be particularly
acute in studies of microbial genomes, where populations may be ill-defined, or divergences times may be

ancient (on the scale of millions to billions of years).
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In this work, we introduce the slow:fast substitution ratio (S:F) as a metric for detecting variation in
natural selection on biological sequences - either nucleotides or amino acids — and apply it to detect
variation in natural selection among bacterial species that are sufficiently diverged that most synonymous
sites have undergone multiple substitutions (saturated dS). The logic underlying this new method is
analogous to the logic of dN/dS (see Supplementary Note 3): sequences with an excess of substitutions in
sites (positions of a nucleotide or protein sequence alignment) of probable functional importance (slow-
evolving), relative to the nearly-neutral standard of substitutions in sites of less functional importance
(fast-evolving), are candidate targets of positive or relaxed negative selection. Unlike dN/dS, which
defines site categories based on the genetic code, the S:F ratio instead relies on each site's observed
substitution rate in a phylogeny of many species — and is thus applicable not just to codon sequences, but
also to noncoding or protein sequences. Substitutions are first counted in each branch of the species
phylogeny. For any extant or ancestral branch, we define S as the number of substitutions per 'slow-
evolving' site, F as the number of substitutions per 'fast-evolving' site, and S:F as their ratio (Figure 3.1).
Along with S:F, we calculate an odds ratio and p-value to assess the significance of the branch’s deviation

from the S:F observed for that gene in the rest of the gene-tree (Methods).

A potential limitation of the S:F method is that it condenses all the complexity of a gene sequence into a
single number. Gene sequences contain a multitude of sites, some of which may be under strong purifying
selection, some selectively neutral, and others under strong positive selection at any moment in time
(Hughes, 2007, Hughes & Nei, 1988). Such an intricate pattern of selection across sites cannot be
adequately captured by a simple summary statistic (prompting the development of site-specific models of
dN/dS (Yang & Nielsen, 2002, Massingham & Goldman, 2005), although these model-based methods
may suffer from false-positive and false-negative adaptive site predictions (Nozawa et al, 2009)).
However, S:F is not designed to summarize the complex pattern of selection across the gene, but instead
to quantify the extent of change in that pattern. Thus, S:F is a simple statistic quantifying changes in the
regime of selection, while still acknowledging that this regime may be complex (e.g. sites and lineages

with different selective constraints).

Even if a lineage is found to have a significantly high value of S:F, this may result from either adaptation
(positive natural selection favoring novel mutations), or relaxed selective constraint (accumulation of
neutral or mildly-deleterious mutations). In cases of S:F > 1, positive selection is a likely explanation, but

such cases are expected to be rare. In more subtle cases where S:F is excessively high (but still < 1) in
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one lineage, either positive or relaxed negative selection may be responsible, and S:F alone cannot be

used to discriminate between these possibilities.

In this study, we calculated S:F for ~1000 protein families from 30 species of y-proteobacteria, an ancient
and ecologically diverse group, with evidence for species-specific positive selection on many of their core
genes (Shapiro & Alm, 2008). We aimed to identify which genes — or functional modules of genes —
contribute to species-specific adaptations. More specifically, we tested the hypotheses that (1) selective
constraint, as measured with S:F, varies with protein function, and (2) that ecologically-distinct species
experience different regimes of selection on proteins of different functions. We describe several examples
of elevated S:F in proteins with functions relevant to species ecology, suggesting ecological adaptation at

the protein level.
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Results

3.2 Performance of S:F under simulated evolution

To understand the response of S:F to changing regimes of selection, we generated simulated gene
sequences along the y-proteobacteria species tree (Supplementary Methods). The simulated sequences,
300 codons long, contained 3 default site-classes: (1) dN/dS = 0.2 at 70% of sites, (2) dN/dS = 1.0 at 20%
of sites, and (3) dN/dS = 0.1 at 10% of sites. In the ‘baseline’ scenario, all branches in the tree evolved
according to these site-classes. Under ‘selection’ scenarios, dN/dS was increased to 0.5, 2.0, or 5.0 in site-
class 3 (‘slow’ sites) for the designated ‘target’ branch(es). The resulting codon sequences were translated
to amino acids, and S:F was calculated for each branch, with ‘slow’ and ‘fast’ defined such that sites

ranking among the slowest 33% were considered ‘slow’ (k =0.33).

In simulations mimicking species-specific positive selection, a single ‘target’ species was assigned an
accelerated nonsynonymous substitution rate in the ‘slow’ 10% of codons (site-class 3), which remained
slow-evolving in the other branches (dN/dS =0.1). Even with a moderately elevated dN/dS in ‘slow’ sites
(from dN/dS = 0.1 to 0.5), the median S:F ratio in the target branch increased significantly from the
‘baseline’ scenario in 100 replicate simulations (Kolmogorov-Smirnov test: D =0.22; p =0.016). We
then modeled more dramatic branch-specific positive selection, keeping dN/dS within the range
previously observed (Yang & Nielsen, 2002). Dramatic increases in dN/dS in the target branch’s slow-
sites led to a monotonic increase in S:F (Figure 3.2, light-grey bars). However, when many species (8/30
species, interspersed over the tree) were targeted by selection, S:F became less sensitive to detect
selection (Figure 3.2, black bars). With so many species experiencing substitutions in ‘slow’ sites, they
could no longer be classed as ‘slow’, and thus did not result in high S:F. This illustrates how S:F is
sensitive to species-specific changes in selective pressure, yet relatively blind to positive selection on
many/all branches. In an intermediate scenario (4 species under selection; Figure 3.2, dark-grey bars), S:F

behaves similarly to the 1-target-species case for dN/dS < 2, but plateaus around dN/dS = 5.

3.3 Delineating 'fast' and 'slow’ sites

The S:F approach relies on empirical definitions of 'slow' and 'fast' sites, necessitating an optimal cutoff
(k) between 'slow' and 'fast’ sites. We evaluated both methods for choosing &£ based on mutual consistency,
and consistency with dN/dS. Applied to codon data, dN/dS correlates best with S:F when k= 0.75
(Pearson's correlation =0.92, p <2.2¢-16; Figure 3.S1A). While minSD allows each gene to have a
different £, its average estimates of S:F also correlate best with £ =0.75. This agrees with minFDR, which
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finds the minimum false-positive rate at £ =0.75.

Applied to protein sequence, minFDR converges on k= 0.55 (FDR = 0.18 for p<0.05 and FDR=0.055 for
p<0.005; Figure 3.S1B). However, the minSD method chooses values of & that are on average lower (k =
0.30; Figure 3.S1B). Thus. minSD is ‘stricter’, allocating fewer sites into the 'slow' category.

Nevertheless, the two methods agree fairly well with one another (Pearson's correlation = 0.47, p <2.2e-

16).

Henceforth, we use minSD estimates of S:F as these generally provide a stricter definition of ‘slow’ sites,
and the method makes fewer assumptions about the signature of selection in the data, but we report

minFDR estimates for comparison.

3.4 Regimes of natural selection on different protein functions

We set out to quantify variation in selective pressures on 917 gene families in 30 species of y-
proteobacteria, gathered as described in Chapter 2 (Shapiro & Alm, 2008). For each branch of each gene
tree, we computed S:F (using amino acid and codon sequences), and estimated dN/dS (using codon
sequences). When applied to codon sequences with an appropriate cutoff (k = 0.67, approximating the
expected proportion of nonsynonymous sites), S:F closely tracks dN/dS (Pearson's correlation =0.91, p <
2.2e-16; Supplementary Note 1; Figure 3.S2). Yet applied to amino acid sequences, S:F behaves
differently than dN/dS (Table 3.S1; correlations in range 0.2-0.3, p <2.2e-16). The poor correlation
between the amino acid-based S:F measure and dN/dS may be due to saturation of dS over the relatively

long time scales investigated.

To test the hypothesis that different cellular functions are under different regimes of selection, we
compared S:F ratios among proteins annotated with different biological functions (from the Clusters of
Orthologous Groups (COG) database (Tatusov et al, 1997)). We picked proteins with values of S:F in the
top 10% of their respective branch, and pooled together all branches into a 'high-S:F' subset (Figure
3.3A). We then used a Hypergeometric test to determine if any functional categories were over- or under-
represented in the high-S:F subset, relative to the entire set of proteins. We used a percentile cutoff for
S:F values within a genome to control for any genome-wide inflations or deflations of S:F in a particular
lineage (e.g. inflation in Buchnera likely due to relaxed negative selection). The high-S:F protein set
should therefore reflect protein-specific variation in S:F, rather than genome-wide variations in mutation
rate, generation time, or effective population size. We also applied an additional p-value cutoff, reducing

the size of the data set while preserving its main features (Supplementary Note 2 and Figure 3.S3).
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Most noticeably, genes involved in motility and secretion (function N) are significantly over-represented
in the high-S:F subset (Figure 3.3A). This is consistent with the notion that these genes, which often code
for surface proteins targeted by immune systems, predators or phage, are frequent targets of positive
selection, as has been documented previously in the y-proteobacteria, most notably in plant and enteric
pathogens (Shapiro & Alm, 2008, Guttman et al, 2006, Weber & Koebnik, 2006, Ma et al, 2006).
Nonetheless, this result is not necessarily anticipated because S:F cannot detect genes that are under
positive selection in al/ lineages (Figure 3.2). Thus, not only are motility/secretion genes subject to strong
positive selection, but selection must frequently apply to different genes, or different sets of amino acids,
in each lineage. Elevated S:F ratios in function N are observed using both amino acid (AA) and codon
(DNA) sequences, both estimators of &, and dN/dS (Figure 3.3A), providing evidence for recurrent
diversifying selection spanning ancient to more recent time scales. Motility/secretion genes are also
significantly enriched among the set of genes with dN/dS > 1 (Hypergeometric test, p = 0.005),
supporting the hypothesis of frequent positive selection on these genes, rather than relaxed negative

selection.

Genes involved in cell envelope biosynthesis (M), ion transport and metabolism (P), and signal
transduction (T) also tend to have high S:F, although with less statistical significance. Nevertheless, these
functions may be common targets of lineage-specific positive or relaxed negative selection, constituting a

more 'adaptable’, less constrained, component of these genomes.

In contrast, positive and relaxed negative selection are much less frequent among genes involved in
information-processing and central metabolism (functions C, E, F, G and J). These COG functions are all
under-represented among the 'high-S:F' component of genomes (Figure 3.3A), and are likely under

similar regimes of mostly purifying selection.

3.5 Species-specific, function-specific variation in selection

We next investigated to what extent function-specific selection may also be species-specific. In other
words, does the set of cellular functions with unusually high S:F differ among branches of the y-
proteobacteria species tree? To address this, we again looked for enrichment/depletion of COG functions
in the highest 10% of S:F values in each branch, this time on a branch-by-branch basis. By visual
inspection, branches clearly differ in the set of COG functions with unusually high or low S:F ratios
(Figure 3.3B). This difference is statistically significant: when choosing pairs of genes from the pooled

high-S:F set, pairs from the same branch are more likely to have the same function than pairs from
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different branches (Fisher test: Odds Ratio = 1.33, p < 2.2e-16). For example, the tendency toward high
S:F in motility/secretion genes is attributable mostly to enterobacteria and members of the Vibrio clade
(Figure 3.3B), perhaps due to unusually strong diversifying selection on cell-surface proteins in these

species.

Certain lineages have globally skewed rates of evolution across all their genes, due to species-specific
differences in effective population size, mutation rates, or generation times (Moran, 1996, Ochman et al,
1999). The Buchnera clade of aphid endosymbionts is a classic example: Buchnera experience population
bottlenecks in each transmission cycle, reducing the efficacy of purifying selection, and allowing frequent
fixation of deleterious mutations (Herbeck et al, 2003, Itoh et al, 2002, Fry & Wernegreen, 2005). This is
recapitulated in the genome-wide S:F distributions for Buchnera, as well as the Wigglesworthia and
Candidatus Blochmannia species of insect endosymbionts, which are all biased toward high S:F ratios
(Figure 3.3B). The bias applies across all gene functions: Buchnera show little functional enrichment or
depletion among their high-S:F genes, consistent with reduced efficacy of selection relative to genetic

drift.

In addition to the insect endosymbionts, several other branches are shifted toward high values of S:F. For
example, internal branches often have high S:F (and even higher values of dN/dS), perhaps due to
ancestral sequence reconstruction errors (Table 3.S2). Moreover, short branches have slightly higher
dN/dS than longer branches (Figure 3.54), because purifying selection has had less time to purge
deleterious mutations from the population (Rocha et al, 2006). The short-branch effect, like sequencing
error, is only expected to influence dN/dS or S:F in leaf-branches, because the same deleterious mutation
(or sequencing error) would have to occur twice independently in order to be incorporated into an internal
branch. Because S:F is not inflated in short leaf-branches (Figure 3.S4), it appears that neither sequencing
errors nor unpurged deleterious polymorphisms present a major source of bias in our results. Yet errors in
ancestral reconstruction may significantly bias S:F estimates in internal branches, and although they may

be less biased than dN/dS (Table 3.S2), S:F in internal branches should still be interpreted cautiously.

3.6 Selection example I: Redox metabolism in pseudomonads

Proteins involved in energy production (function C) tend to have low S:F in most species (Figure 3.3),
consistent with uniform purifying selection. The only exception is the Pseudomonas clade, notably P.
fluorescens, which has an excess of high-S:F energy production genes (Figure 3.3B). Many of these genes
are co-expressed on the same operon (Figure 3.4) and tend to have elevated S:F in Pseudomonas but

rarely in other clades (Figure 3.4). This pattern of selection is discernible at the protein level (both minSD
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and minFDR methods), but is weaker at the codon level, partially due to saturation of dS (Figure 3.4,
bottom panel). For example, the pyruvate dehydrogenase E1 component (AceE; COG 2609) has high S:F
at the protein level in P. putida, but codon-level selection is not detectable with dN/dS. Consistent with
species-specific, protein-level adaptation, significant structural differences are known to have occurred in
AceE between P. putida and E. coli (Arjunan et al, 2002). Moreover, pseudomonads often inhabit
oxygen-limited biofilms, where they produce alternative electron acceptors such as phenazines to
maintain redox homeostasis (Price-Whelan et al, 2006, Price-Whelan et al, 2007). Phenazines may
interact with AceE: inhibiting it by generating superoxides, or promoting its activity by re-oxidizing one
of its products, NADH (Price-Whelan et al, 2007). These potentially Pseudomonas-specific biochemical

interactions may impose lineage-specific selective pressures on AceE and other redox metabolism genes.

In another example, we found both transmembrane subunits of the succinate:ubiquinone dehydrogenase
complex, SdhC and SdhD, among the high-S:F subset of P. fluorescens genes (Figure 3.4). This complex
shuttles electrons from succinate to ubiquinone as part of the electron transport chain. SdhC has high S:F
in two Pseudomonas species, but no other lineages (Figure 3.4), suggesting a lineage-specific
evolutionary change. SdhC is in the 1% highest values of S:F in the P. fluorescens genome, due to 3
slow-site substitutions (S:F = 1.5, p<0.05, minSD; Table 3.1). We mapped these substitutions onto the E.
coli Sdh protein structure (Yankovskaya et al, 2003) and discovered that one substitution, Phe—Tyr58, is
in contact with a bound cardiolipin phospholipid (Yankovskaya et al, 2003), while the other two,
Ala—Gly24 and Ile—Phe28, fall in the path of electron transport between the 3Fe-4S cluster and
ubiquinone (Figure 3.5A). The latter site, Ile28, makes up part of the ubiquinone binding site, and is
perfectly conserved across species in this study except P. fluorescens. Further confirming the species-
specificity of this substitution, P. fluorescens Pf-5 (the strain used in this study) and P. fluorescens PfO-1
(the only other P. fluorescens genome in MicrobesOnline) are the only 2 strains harboring the Ile—Phe28
substitution, of 16 total Pseudomonas strains with SdhC orthologs in the database. This also serves as
tentative confirmation that the substitution is fixed in P. fluorescens, and is not simply a slightly-
deleterious polymorphism segregating in the population (Hughes et al, 2008). The substituted side-chain
(Phe) is substantially larger than Ile, and would clash directly with ubiquinone unless there were some
local modification of the protein structure (Figure 3.5A). Moreover, mutations at the equivalent site in
human Sdh cause disease (Astuti et al, 2001), and result in oxidative stress in nematodes (Ishii et al, 1998)
due to electron leakage (Yankovskaya et al, 2003). Often associated with superoxide-producing plants, P.
fluorescens has a number of mechanisms for coping with oxidative stress (Paulsen et al, 2005). The
Ile—Phe28 substitution might therefore be tolerated by P. fluorescens due to relaxed negative selection

against free radical production. However, the occurrence of another nearby substitution in the path of
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electron transport (Ala—Gly24) suggests an adaptive change. Given the diversity and ecological
importance of secondary 'respiratory pigments' produced by pseudomonads (Price-Whelan et al, 2006,
Mavrodi et al, 2006), it is not unreasonable to speculate that central metabolic respiratory pathways
involving redox balance may be under positive selection to better interface with these secondary

pathways.

3.7 Selection example II: Outer membrane in V. cholerae

Another potential ecological adaptation is presented by the outer membrane protein OmpW (COG 3047)
of the human pathogen Vibrio cholerae. Low DNA-S:F and dN/dS show that OmpW is highly conserved
in V. cholerae, with few amino acid-altering substitutions relative to silent substitutions (Table 3.2). Yet
of these few amino acid changes, an unexpectedly high number occur in slow-evolving sites, suggesting
lineage-specific positive or relaxed negative selection (S:F = 1.38, p<0.05, minSD; Table 3.2). We focus
on this protein because it is present in all known V. cholerae strains, is highly immunogenic, suggesting it
may be subject to immune selection (Das et al, 1998), and is up-regulated in related vibrios under high-
NaCl stress (Xu et al, 2005), suggesting a role in osmoregulation Of the 12 substitutions inferred in V.
cholerae using the minFDR method, the 6 in slow-sites cluster slightly more closely with one another in
the 3D structure (Hong et al, 2006) than do the 6 in fast-sites (Mean pairwise Euclidean distance between
C, atoms = 21.5 A for slow-sites; 27.2 A for fast-sites; Two-sample one-sided Wilcoxon test: W=75,
p=0.06), suggesting that the slow-site substitutions may represent structurally-coordinated adaptive
changes. Indeed, the substitutions in the two most highly conserved sites, Leu—Val55 and Leu—Phe83,
are adjacent in the protein structure, despite being distant in the linear protein sequence (Figure 3.5B).
They are localized just below the putative exit channel, where a small molecule may exit the hydrophobic
barrel and enter the outer membrane (Hong et al, 2006). The substitutions might thus alter substrate
specificity or transport kinetics of the channel. All six slow-site substitutions are present in the additional
6 V. cholerae strains (V51, V52, RC385, 0395, MO10 and 2740-80) with sequences in MicrobesOnline,
consistent with functional significance of these substitutions, and confirming that they are not slightly-
deleterious polymorphisms or sequencing errors. However, these substitutions are not all unique to V.
cholerae: Leu—Val55 and Leu—Phe83 both occur in V. splendidus 12B01 and Photobacterium
profundum 3TCK (not in P. profundum SS9, which appears to have lost COG3047). Horizontal gene
transfer could be responsible for this phylogenetically incongruence, but would require two separate
transfer events because V. cholerae contains an insertion of the sequence SGGELG between residues 67
and 68, which is not present in either potential donor, P. profundum or V. splendidus (Figure 3.5B).

Therefore, convergent evolution is the more parsimonious explanation for this covarying pair of
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substitutions, and this likely implies positive selection (Holt et al, 2008, Sokurenko et al, 2004, Falush &
Bowden, 2006).

Discussion

3.8 S:F as a method to detect changes in the regime of selection

We have described a method for detecting selection at the protein or DNA level that is conceptually
similar to dN/dS, but is more general, relying on empirical definitions of 'slow' and 'fast' sites rather than
pre-defined non-synonymous/synonymous sites. In general, S:F identifies deviations from a sequence’s
‘usual’ regime of selection, whether that regime is neutral, involves strong purifying or diversifying
selection, or some complex combination of these regimes. An advantage of S:F over dN/dS is its
suitability to anciently-diverged clades, such as the y-proteobacteria, in which synonymous sites are often
saturated with multiple substitutions. Applied to more closely-related strains, it may lack power due to
paucity of substitutions, but should still be more conservative (e.g. fewer false-positives) than branch- and

site-based models of dN/dS (Nozawa et al, 2009).

As an empirical method, S:F exploits the availability of species-rich protein families, made possible by
whole-genome sequencing of related species. Depending on the diversity and breadth of species included,
S:F will identify different sets of slow- and fast-evolving sites. The method is therefore flexible, and
potentially sensitive to selection at different time scales. In this study, we investigated the relatively broad
hypothesis that patterns of function-specific natural selection vary among ecologically distinct species.

The method also lends itself well to more specific hypotheses, aimed at particular groups of interest.

3.9 Distinguishing adaptive evolution

Elevated S:F may be attributed to either positive selection, or species-specific relaxation of negative
selection. Both scenarios have the potential to be biologically informative, and may suggest ecological
adaptation. For example, the Ile—Phe28 substitution in P. fluorescens SdhC may have been ‘passively
tolerated’ by relaxed selective constraint on this residue, or ‘actively’ pushed to fixation by positive
selection for a novel or improved function. Without within-population sampling (e.g. McDonald-
Kreitman tests; (Shapiro et al, 2009, Li et al, 2008)), it is difficult to distinguish between these scenarios
Yet the substitution is lineage-specific (Figures 3.4 and 3.5A), strongly suggesting some sort of functional
re-wiring of redox metabolism and electron transport in P. fluorescens. The substitution is also gene-
specific: SdhC has an S:F ratio in the top 1% of the P. fluorescens genome (Table 3.1) and therefore
cannot be attributed it to a genome-wide shift in substitution rates, or possible biases in S:F due to branch

length. By further accounting for P. fluorescens’ ecology — a phenazine-producing, plant-associated
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organism with a high metabolic capacity — we gain confidence in the adaptive value of substitutions in an
electron-transport protein. Similar lines of evidence lend support to the hypothesis that OmpW has
acquired ecologically adaptive substitutions in V. cholerae. In both examples, further experimental work

is needed to fully understand and validate the predictions of our ‘reverse ecology’ approach.

3.10 Conclusions

In our analysis of adaptive protein evolution across 30 y-proteobacteria, we were able to glean several
insights, both global and specific. Globally, we found that proteins localized to the cell surface
(functioning in motility/secretion or cell envelope biosynthesis) are frequent targets of positive or relaxed
negative selection, showing elevated S:F ratios across many species, especially those involved in host-
pathogen or host-symbiont interactions. Meanwhile, proteins involved in 'housekeeping' roles tend to be
under purifying selection, which we observe as low S:F ratios. Yet there are exceptions to this rule: we
observe instances of species- or clade-specific reversals of purifying selection, for example the unusually

high S:F ratios observed in a suite of energy metabolism proteins in pseudomonads.

The method we describe is a flexible, empirical approach for detecting varying regimes of natural
selection. It can be applied to study selection on protein-coding sequences, or non-coding genomic
sequences, such as promoters and non-coding RNAs. In this work, we showed how S:F can be applied
over evolutionary time scales beyond the reach of dN/dS. Discriminating between positive and relaxed
negative selection remains a challenge, but we reason that both scenarios are ecologically informative. As
we accumulate whole-genome sequences for more and more ecologically diverse species, the S:F method

will be useful in detecting the protein-level adaptations that functionally distinguish between them.
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Methods

3.11 Data set

A set of 917 gene families (members of the same Cluster of Orthologous Groups (Tatusov et al, 1997)),
each represented by a single copy in at least 16 of the 30 genomes in this study, was retrieved from the
MicrobesOnline database as previously described (Alm et al, 2005). Maximum-likelihood (ML) gene
trees, and a consensus species tree topology were constructed using PhyML ((Guindon & Gascuel, 2003);

Supplementary Methods).

3.12 Calculation of Slow:Fast substitution ratio (S:F)

We performed joint reconstruction of ancestral sequences (Pupko et al, 2000), implemented in PAML:
Phylogenetic Analysis by Maximum Likelihood 4.0 (Yang, 2000) using the ML gene-tree topologies.
Sites in the protein or DNA sequence were rank-ordered (between 0 and 1, with 0 being the slowest- and
1 the fastest-evolving) by the number of substitutions inferred to have occurred in the site in all branches
of the phylogeny (Figure 3.1A). A substitution-rate cutoff (&, also between 0 and 1) was then chosen to
delineate slow (few substitutions in the phylogeny) and fast (many substitutions) sites. Invariant amino
acid sites (with no observed substitutions) were excluded, but invariant nucleotide sites were retained in
the DNA analyses for consistency in comparison with dN/dS. S:F was computed as follows, after

excluding branches with F=0:

Equation 1.

S:F ratio = number of substitutions per slow-evolving site / number of substitutions per fast-evolving site

The number of substitutions per site was corrected for multiple hits using a Poisson correction for protein

sequence (Equation 2) or a Jukes-Cantor correction for DNA (Equation 3).

Equation 2.

-1
d=a(1—5) -1

Equation 3.

-2

183



where d is the corrected number of substitutions per site, ¢ is the number of observed substitutions, s is
the number of sites (fast or slow), and the parameter a is set to 2.4, as suggested for the JTT substitution

model (Nei & Kumar, 2000).

The deviation of each branch from the expected S:F ratio was evaluated using a Fisher Exact test. For
each branch i in a gene tree of N branches, we define S; as the number of slow-site substitutions, and F; as

the number of fast-site substitutions in branch i. We define the total numbers of slow- and fast-site

N N
substitutions in all other branches (x=i) of the gene tree, S,, = » S and F,, = EFX, respectively. We
(i X#=i

compute Fisher’s Odds Ratio statistic, O.R. = (S/F;) / (S,/F:), and associated p-value to assess
confidence in a branch i having S:F significantly greater (O.R. > 1) or less than (O.R. < 1) than the rest of

the gene tree.
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3.13 Setting the cutoff (k) between Slow and Fast-sites

We describe two methods to choose k. The minF’DR method aims to maximize the sensitivity while
controlling for the false-discovery rate (FDR) in the dataset of ~1000 genes. The minSD method aims to
allocate sites into distinct ‘slow” and ‘fast’ distributions, making the distributions as non-overlapping and

as ‘tight’ as possible about their respective means.

In the minFFDR method, we choose & to minimize the false discovery rate (FDR), a measure of the ratio of
signal to noise in the data (Storey & Tibshirani, 2003). To do so, we range k from 0.05 to 0.95 in
increments of 0.05 and re-compute S:F ratios and associated p-values for all branches and gene families
for each value of k. The result is a distribution of p-values (over all genes and all branches) associated
with each value of £. We choose the & yielding the distribution with the highest ratio of true:false
positives, or the minimum FDR (Figure 3.1C; Supplementary Methods). We note that minFDR is only
valid if the data actually contain a detectable signal of selection at the protein level, and the estimated p-

values are unbiased.

In contrast, minSD chooses k& to minimize instances of slow-sites being miscategorized as fast (or vice
versa) within a single gene (thus, a separate k£ can be chosen for each gene). Briefly, for each choice of £,
slow- and fast-sites of the alignment are considered as two separate distributions, each used to infer the
likeliest gene-tree and branch lengths. If an excessively high £ is chosen, some ‘true’ fast-sites will be
miscategorized as slow (and ‘true’ slow-sites miscategorized as fast), thereby introducing greater variance
into both distributions and both branch-length estimates. Our approach is thus to estimate standard
deviations for both slow- and fast-site distributions, and choose the £ that minimizes the standard

deviation of both distributions (Figure 3.1B; Supplementary Methods).

Supplementary methods.

3.14. Construction of gene- and species-trees

Protein sequences were aligned using MUSCLE (Edgar, 2004), and all gaps were removed, including one
flanking residue on either side. Nucleotide alignments were also performed using MUSCLE, ensuring that
codons were consistent with the protein alignment. Gene tree topologies and branch lengths were
estimated using PhyML 2.4.5 (Guindon & Gascuel, 2003) with a JTT substitution model and 4 -
distributed rate categories. As we previously noted, use of the WAG substitution model instead of JTT
did not significantly influence the branch lengths or topologies of these proteins (Shapiro & Alm, 2008).

The consensus species tree topology was estimated as previously described, using a concatenation of 80
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COGs present in single copy in each of the 30 genomes (Shapiro & Alm, 2008). Divergence times in the
species tree were estimated using a relaxed molecular clock model implemented in multidivtime (Thorne
et al, 1998) with parameters rttm = 1.75 By, rttmsd = 1, rtrate = 3.9, rtratesd = 3.9, brownmean = 0.6,
brownsd = 0.6, bigtime = 5.0, and the constraint that E. coli and Salmonella diverged between 0.057 and
0.176 billion years ago (Battistuzzi et al, 2004, Ochman & Wilson, 1987).

3.15. Detailed procedures for choosing k.

For DNA data, & is the (approximate) proportion of sites in the multiple sequence alignment classified as
'slow". k is 'approximate' because multiple sites might be tied at the same rate (substitutions/site), so that
the cutoff is drawn to minimize the deviation from the desired & (i.e. if the desired k£ were 0.67, falling
between sites with rank 0.60 and 0.70, the cutoff would be chosen at 0.70). For AA data, k is the rank-
order of the site where the cutoff is drawn. For example, in an alignment of 10 sites with 1, 2, 3, and 4
substitutions in 4, 3, 1, and 2 sites, respectively, £ would be 0.25 (1/4) if the cutoff were drawn between 1
and 2 substitutions/site, even though this would result in a proportion of 0.40 (4/10) of all sites being

classed as 'slow'.

i. minFDR method

In this method, we compute S:F ratios for all genes in our dataset to yield a distrubutiuon of p-values for
each possible choice of &. We then want to choose the value of &k producing the distribution with the
lowest FDR. This is done by performing a 1-sided Kolmogorov-Smirnov (KS) test of the observed p-
value distribution against a uniform distribution of p-values. The higher the value of the KS test D
statistic, the more favorable the ratio of true:false positives. As verification that the D statistic is indeed a
good indicator of FDR, we plotted the observed p-value distribution (ranging from 0 to 1, binned in
increments of 0.05) for each value of %, and calculated FDR by dividing the average number of counts in
bins with p>0.5 by the number of counts in the p<<0.05 bin. We then chose the value of k that minimized
FDR. These two methods always yielded the same choice of .

ii. minSD method

As in the minFDR method, we vary k& from 0.05 to 0.95 in increments of 0.05. For each £, the sequence is
split into slow and fast-sites, according to their rank-order. Branch lengths are then estimated twice
independently with PhyML, once using only the slow-site distribution and once using only the fast-site
distribution. The result is two gene trees: one estimated using slow-sites, the other using fast-sites. If, for
example, some fast-sites are miscategorized as slow, most of the slow-sites will support short branch

lengths, but a few (miscateogrized) sites will support long branch lengths. So, a branch in the gene-tree
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could be ‘stretched’ (inferred to have undergone more substitutions per site) without significantly
reducing the likelihood. Such 'stretching' of each branch, can be used to estimate the standard deviation of
each branch in the gene tree, which is our goal. Starting from the maximum-likelihood branch length, the
branch length is stretched to 300% of its ML length, in increments of 5%, and then compressed to zero,
also in increments of 5%. The likelihood of the gene tree is re-estimated with PhyML for each
incremental stretch of the branch to produce a distribution of N branch lengths and their associated
likelihoods, for each branch. For branches with non-zero ML lengths, the likelihood of a particular branch
length could be well-approximated by a lognormal distribution, transformed for simplicity such that the
mean (ML branch length) is zero (Equation 4). The log-likelihood distribution can therefore be
approximated by a parabola with L-intercept equal to In (o(27)") (Equation 5).

Equation 4.

L=p.(x)~N(©,0"

Equation 5.

2
X

lnL=ln;——2
o\2n 20

where the likelihood (L) is a function of log branch length (x), given by a lognormal probability density
function with mean set to zero (by subtracting the PhyML-estimated ML branch length) and variance o”.
Letting y = In (6(2x)"?) - In L and m = 1/2¢°, and substituting the estimated maximum likelihood for the

2 yields the parabola y = mx’. We then estimated the variance and standard deviation by

term 1/0(27)
linearizing the parabola and solving for the best-fit slope (m). For each branch, we combined slow and
fast-sites to calculate a pooled standard deviation. We repeated this procedure for a range of values of £,
and chose the & that minimized the mean pooled standard deviation over all branches in the gene tree.

Note that with this method, each gene family can take a different value of .

3.16. Simulated models of evolution

We used the evolver program from the PAML package (Yang, 2000) to generate sequences of 300 codons
for 30 species, using the y-proteobacteria species tree. All simulations had 3 site-classes, as described in
the main text. S:F was computed for each branch as described for the real data. The slow:fast cutoff of £ =

0.33 was chosen using the minSD method (Supplementary Methods).

3.17 Estimation of synonymous and nonsynonymous substitution rates (dS and dN)
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We used two methods to estimate dN and dS for each branch in each gene tree: (i) ML estimation, using
the codeml program from the PAML 4.0 package (Yang, 2000), allowing dN/dS to vary freely among
branches ('free-ratio' model), and (ii) using the NG86 'counting' method of Nei and Gojobori (Nei &
Gojobori, 1986) to estimate dN and dS between each branch and its ancestor sequence (from the joint
reconstruction). Because ancestral reconstructions were performed using PAML's likelihood model,
transition/transversion biases, nonuniform codon usage, and variable rate categories are accounted for in

the NG86 estimates of dN and dS.
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Supplementary Note 1. Validation of S:F by comparison to dN/dS.

We applied the S:F metric to codon sequences of 917 gene families present in at most one copy per
genome in the majority of 30 species of y-proteobacteria (Methods). With the cutoff between slow and
fast-sites set such that 2/3 of nucleotide sites are classed as 'slow' (k= 0.67, based on the rough
approximation that ~2/3 of sites within a codon are nonsynonymous and thus slow-evolving), the S:F
ratio is expected to converge on the dN/dS ratio. Indeed, there is very good agreement between S:F and
dN/dS (Figure 3.S2; Pearson's correlation = 0.91, p <2.2e-16). This suggests that, despite being naive as
to whether a site is synonymous or nonsynonymous, the S:F method still tends to categorize sites
correctly into these categories by virtue of synonymous sites generally evolving faster than
nonsynonymous sites. S:F correlates best with the NG86 method for estimating dN/dS (Nei & Gojobori,
1986), probably due to the similar substitutions models used (Table 3.S1; Methods). Estimates of dN/dS
from PAML are made using a more complex substitution model permitting much higher values of dS
(Yang, 2000). This results in a poorer correlation with S:F, which is improved if branches saturated with

substitutions at synonymous sites (dS > 2) are removed (Table 3.S1).

The agreement between S:F and dN/dS is not exact, probably due to imperfect mapping from 'slow' to
nonsynonymous sites, and from 'fast' to synonymous sites. One reason for this is that 'slow' and 'fast'
labels apply to an entire column (site) of a multiple sequence alignment, whereas a column may contain
some sites that are nonsynonymous and some that are synonymous, depending on the pair of codons
being compared. Therefore, a column may be classified as 'slow' and still contain a mixture of
synonymous and nonsynonymous sites. It is likely that many of the synonymous sites in this 'slow'
column will undergo more substitutions than nonsynonymous sites in the column, resulting in a
systematic inflation of S:F relative to dN/dS. Consistent with this explanation, we observe a slope greater
than 1 in the log plot of S:F versus dN/dS (Figure 3.S2). Nonetheless, this effect is minor, and the strong
correlation leads us to conclude that S:F behaves similarly to dN/dS when applied to codon sequences.
This comparison to dN/dS is intended only to illustrate proof of concept, and we stress that dN/dS is to be

preferred over S:F when (unsaturated) codon sequences are available.

Supplementary Note 2. Additional Fisher p-value filter on Enrichment/Depletion of Cellular
Functions among high-S:F subset of genes.

When we further restrict the 'high-S:F' subset to branches with Odds Ratio > 1 (p <0.05), the same major
results hold, but fewer categories show significant enrichment or depletion (Figure 3.S3). Because the
Odds Ratio cutoff is fairly stringent, the lack of significance may simply be due to an insufficient amount

of data from which to draw conclusions. Nevertheless, even with the additional p-value cutoff, the main
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findings hold: categories N (motility/secretion) and M (cell envelope) are over-represented in the high-
S:F set of genes, while category J (ribosome & translation) is under-represented. The specific differences
between the p-value filtered vs. unfiltered datasets should be interpreted with caution, since lack of
significance in the filtered dataset may often be due to low counts. For example, motility/secretion
enrichment is more significant in the amino acid-based methods, while cell envelope enrichment is more
significant in the DNA-based methods. Yet is this because species-specific positive selection on the cell
envelope is more readily detectable at the DNA level than the protein-level (e.g. selection tends to have
been more recent)? Or is this simply an artifact of low counts in the hypergeometric test? We leave

resolutions to these questions for more detailed future studies.

Supplementary Note 3. Relationship of S:F to dN/dS and other methods.

The theoretical underpinnings of S:F are analogous to dN/dS: namely, that deviations from a nearly
neutral model of evolution can be detected when an excess of substitutions are observed in the most
constrained set of protein or nucleotide sites except that fast-sites may contain a mixture of nearly neutral

and positively selected sites.

The expectation is that substitutions in slow-sites will usually occur as the result of a shift in the strength
or direction of natural selection. By categorizing sites into relatively slow- and fast-evolving classes, S:F
effectively normalizes-out the baseline level of purifying (or diversifying) selection acting on a protein
family in order to identify branches that deviate from the baseline — for example, high S:F values would
result from either excess positive or relaxed purifying selection on slow-sites. Meanwhile, low values of
S:F are expected when purifying selection is consistently strong on slow-sites, as observed in ribosomal

proteins (main text).

The S:F substitution ratio is more general than dN/dS because it is applicable not only to codons, but to
amino acids or noncoding DNA sequences (although it is likely less powerful than codon-based methods
for protein coding sequences with unsaturated dS). In this work, we focus on amino acid sequence
divergence over time scales where dS is often saturated with multiple substitutions, reducing the power of
dN/dS to detect departures from neutral evolution (Gojobori, 1983, Smith & Smith, 1996). In effect, by
applying S:F to protein sequence, we separate dN into its slow- and fast-evolving components. Other
methods have been developed to separate dN into ‘conservative’ and ‘radical’ amino acid substitutions
(Hanada et al, 2007), but these require learning genome-wide substitution matrices that apply to all
proteins. We do not assume that all protein families follow the same substitution rules, and instead define

‘slow” and ‘fast’ sites empirically for each protein family separately. Most protein families contain some
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amino acid sites that are unconstrained, evolving freely over time, and other sites that are heavily
constrained and conserved (Felsenstein & Churchill, 1996). By identifying these sites, we can use the S:F
ratio to detect positive or relaxed negative selection on slow-sites in a protein. Conceptually, this type of
empirical, amino acid-based (as opposed to codon-based) approach to detect selection resembles Coin and
Durbin's technique to distinguish pseudogenes from functional genes - also based entirely on patterns of
amino acid substitutions (Coin & Durbin, 2004). In this earlier work, the authors found pseudogenes to
have distinct substitution patterns from functional proteins, and recognized that a similar distinction might

exist between proteins under purifying selection.

We note that the S:F ratio may be affected if the identities of ‘slow’ and ‘fast’ sites differ between
subclades of the tree, as predicted under the ‘covarion’ model of evolution (Miyamoto & Fitch, 1995).
Provided that subclades contain roughly equal numbers of ‘slow’ and ‘fast’ sites, no systematic bias in
S:F ratios is expected, although their variance could be greatly increased and p-values affected. Covarion
effects are thus worth considering when interpreting S:F ratios, and future work could measure both

simultaneously.
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Figure legends

Figure 3.1. Overview of S:F methodology.

(A) Hypothetical 5-species phylogeny and multiple sequence alignment for a protein of 6 amino acids.
Substituted amino acids are highlighted in black, and substitutions are ranked by the number of
substitutions per site. Excluding the invariant site, there are 2 sites in the slowest category (1 sub/site), 2
sites in the fastest category (3 subs/site), and 1 site in an intermediate category (2 subs/site). If the cutoff
(k) were drawn such that the intermediate category is classed as 'fast', species 1 would have 1 substitution
in 2 slow-sites and 3 substitutions in 3 fast-sites, yielding S:F = (1/2) / (3/3) =0.5.

(B) The minSD method to choose k. The sites in a protein are binned in a histogram (top panel) according
to their evolutionary rate (relative number of subs/site, normalized to range from 0 to 1). Three possible
choices of & are considered. For each k, slow- and fast-sites are considered separately to estimate branch-
lengths and likelihoods for the phylogeny. Branch-length distributions are shown for a representative
branch (bottom panel). In practice, variances of all branch-length distributions in the phylogeny are
computed and pooled. In this example, the intermediate choice (k) yields the lowest pooled variance and
is thus the best choice.

(C) The minFDR method to choose k. For each choice of &, S:F ratios and p-values are computed for all
branches of all gene trees to produce a distribution of thousands of p-values, which are plotted in a
histogram. The false-discovery rate (FDR) for the p<0.05 bin is estimated as the average number of
branches in bins with p>0.5 (dashed lines) divided by the number of branches in the p<0.05 bin. The
value of & producing the lowest FDR (in this case, FDR=0.05, meaning that of the 100 branches with
significantly unusual S:F at the p<0.05 confidence level, 5 are expected to be false positives) is chosen as
the optimal cutoff.

Figure 3.2. Response of S:F to different selection scenarios

S:F ratios for a single branch (V. cholerae) under selection at slow-sites (light-gray bars). 8 branches (V.
cholerae, V. vulnificus, X. oryzae, P. syringae, S. oneidensis, P. multocida, E. coli, B. aphidicola APS)
under selection (black bars). Clade of 4 species (P. syringae, P. aeruginosa, P. fluorescens, P. putida)
under selection (dark-grey bars). The x-axis shows dN/dS in ‘slow-evolving’ sites (class 3), comprising
10% of each sequence, and set to 0.1 in all non-target branches in the tree. Each bar shows the mean S:F
in the target branch(es) for 100 replicate simulations, with error bars showing +/- the standard error of the
mean. When multiple branches are targeted, a single representative branch is displayed, chosen at
random.

Figure 3.3. Enrichment/depletion of cellular functions in the high-S:F subset of genes

(A) Schematic of Hypergeometric test results for enrichment or depletion of COG functional categories of
genes in the top 10% highest values of S:F within each genome, pooled over all 57 branches in the

species tree. Functional categories over-represented in the high-S:F set of genes are colored in maroon,
and those under-represented in blue, with color saturation proportional to the significance of the
Hypergeometric test for enrichment/depletion. The results are repeated using 5 different metrics: (1) S:F
applied to amino acid sequences (AA), estimating k with minFDR (k=0.55), or (2) estimating &k with
minSD, (3) S:F applied to nucleotide (DNA) sequences of the same set of genes, estimating k& with
minFDR, or (4) setting £=0.67, such that 2/3 of sites are considered slow and 1/3 fast, and (5) dN/dS
estimated with the NG86 method.
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(B) Functional enrichment/depletion is mapped onto each branch of the y-proteobacterial species tree,
with branch lengths (time+standard deviation) estimated using a relaxed molecular clock model (Supp.
Methods). The number of genes in each branch for which S:F was calculated (N) is shown below each
branch. Genes were only included in an internal branch if that internal branch was present in the gene
tree, otherwise it was excluded. Enrichment/depletion of each functional category among the high-S:F
gene set (top 10% S:F values in the branch; minSD method) is shown in maroon/blue colored boxes to the
left of each species (terminal branch), or above each internal branch. Branches with positively shifted S:F
distributions are highlighted in maroon (genome-wide distribution of S:F is shifted to higher values than
all-genome pooled distribution; assessed by K-S test D statistic, p < 0.05 after Bonferroni correction for
57 branches).

Figure 3.4. Genes involved in energy production have elevated S:F in pseudomonads

Gene-by-branch heatmap for genes in category C (energy production) in top 10% of S:F in one or more
branches of the Pseudomonas clade (blue box). Columns represent either terminal branches, or internal
nodes (highlighted in grey on the tree). Data is presented for three different methods: S:F applied to
amino acid data using minSD to choose k (top), using minFDR to choose k (middle), or AN/dS (NG86
method) applied to codons (bottom). Red: Gene in top 10% of S:F (or dN/dS) values in the branch, with
saturation proportional to the magnitude of the S:F (or dN/dS) ratio. Black: gene is present in the branch
but not among top 10%. Grey: gene is not present in the branch, or the branch in the gene tree does not
correspond to a monophyetic clade in the species tree. Blue: Ratio not estimated because the denominator
(F or dS) is saturated with substitutions. Genes are listed by the short name of their E. coli ortholog, with
COG number in parentheses. Branch lengths in the species tree are not to scale. Genes on the same
operon in E. coli (Price et al, 2005) are grouped together with curly brackets.

Figure 3.5. Alignment and structure of proteins with high S:F.

(A) Multiple sequence alignment (MSA) of SdhC transmembrane helix I (left), with positions numbered
according to the E. coli structure (Yankovskaya et al, 2003) (right). Columns of the MSA are colored by
conservation, with site categories (slow or fast), as determined by both minSD and minF DR methods, as
well as the majority-rule consensus, shown below each column. Perfectly conserved columns were not
assigned a slow/fast category. Slow-site substitutions in P. fluorescens, assigned by the minSD method,
are boxed in red, P. syringae in yellow. The structure shows subunits SdhC (green), SdhD (blue), and part
of SdhB (grey). Slow-sites with substitutions in P. fluorescens are colored in red, P. syringae in yellow,
and P. aeruginosa in orange. The E. coli side chains, not the substituted Pseudomonas residues, are
depicted. Other molecules in the structure are: ubiquinone (purple), heme b (cyan), cardiolipin (magenta),
and the 3Fe-4S iron-sulfur cluster (yellow/orange spheres). Branch lengths in the species tree are not to
scale. Structure image generated using PyMOL (DeLano, 2002); MSA image using Jalview (Clamp et al,
2004).

(B) MSA of OmpW (left), with positions numbered according to the E. coli structure (Hong et al, 2006)
(right). V. cholerae substitutions in slow-sites are boxed in orange if identified by the minF DR method, or
in red if by the minSD method. The same color scheme is used on the structure, with E. coli side chains
depicted. Species added to the MSA but not among the 30 species used in other analyses are shown in
grey text.
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Table legends

Table 3.1. Substitutions in slow and fast-sites in P. fluorescens SAhC (COG 2009)

Data are shown for S:F applied to amino acid data (AA) and nucleotide data (DNA), and for dN/dS, each
estimated by two different methods. For each method, sites were percentile-ranked based on the number
of substitutions/site, and divided into slow and fast at the rank cutoff (k) indicated (Methods). The 'Rank"
column indicates the percent-rank of the ratio (S:F or dN/dS) among genes in the P. fluorescens genome,
with 1% indicating very high S:F. In the Fisher Test column, O.R. >1 indicate that the S:F ratio is greater
in P. fluorescens than other branches of the gene tree.

Table 3.2. Substitutions in slow and fast-sites in V. cholerae OmpW (COG 3047)
Data as described in Table 3.1 legend. The 'Rank" column indicates the percent-rank of the ratio (S:F or
dN/dS) among genes in the V. cholerae genome, with 1% indicating very high S:F.

Supplementary figure legends

Figure 3.S1. Finding an optimal cutoff (k) between fast and slow-sites.

Choice of slow/fast percentile cutoff (k) vs: (i) correlation between a given fixed k£ and minSD methods
for calculating S:F ratios over all branches and gene families (dashed red line); (ii) true-discovery rate (1 -
FDR), as estimated by the Kolgomorov-Smirnov D statistic comparing the observed distribution of Fisher
p-values for a given k versus a uniform p-value distribution (black line, corresponding to left y-axis
scale); and (iii) correlation of S:F at the given k£ with dN/dS (dotted green line; DNA data only). Pearson's
correlations (right y-axis) and KS test D statistics (left y-axis) are normalized so that the maximum value
(D=0.18) is set to 1. (A) For consistency in comparing to dN/dS, invariant sites (those with no
substitutions) are included. (B) Protein data exclude invariant sites. In both graphs, & is the proportion of
sites classified as 'slow’, treating ties as described in Methods.

Figure 3.S2. Agreement between dN/dS and S:F applied to codons

Values of S:F for all branches in 917 y-proteobacterial gene trees are plotted on a log, scale against
dN/dS (calculated using the NG86 method) for all branches in all gene families for which both ratios are
defined (N = 17,142). Pearson's correlation =0.91, p < 2.2e-16. The gray line represents y = X.

Figure 3.S3. Additional Fisher p-value filter on Enrichment/Depletion of Cellular Functions among
high-S:F subset of genes.

Results of Hypergeometric tests for enrichment or depletion of COG functional categories of genes in the
top 10% highest values of S:F within each genome, pooled over all genomes. Genes in the top 10% high-
S:F set are only counted provided their Odds Ratio statistic is significantly greater than 1 (Fisher exact
test, p<0.05). Because Odds Ratios were not computed for dN/dS, the dN/dS values were instead filtered
in the following way: genes in the top 10% of dN/dS were only counted provided that their value of
dN/dS was above the mean dN/dS for all branches in the gene tree. Functional categories over-
represented in the high-S:F set of genes are colored in red, and those under-represented in blue, with color
saturation proportional to the significance of the Hypergeometric test. Other aspects of the figure are as
described for Figure 3.3 A in the main text.
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Figure 3.54. Relationships between internal and terminal branch lengths, S:F and dN/dS

Branch lengths are plotted against dN/dS (A), S:F applied to amino acid sequences using the minFDR
method (B), and the minSD method (C). Branch length is defined as substitutions per synonymous site
(A) or per fast-site (B,C). Points on the left represent mean values (average over all genes) for each of the
57 branches (30 terminal, 27 internal). The plot on the left shows each individual branch from each gene
tree as a separate point, on a log; scale. Best-fit regression lines and Pearson's correlations (R) are only
shown when a significant (p<0.1) correlation is observed. Error bars represent the standard error of the
mean within each branch.

Supplementary tables legends

Table 3.S1. Pearson's correlations between dN/dS and S:F

Pearson's correlations are reported between 3 S:F methods (applied to DNA with £=0.67, or applied to
amino acids (AA) with & set using minSD or using minFDR, k=0.55) and methods for computing dN/dS
(full maximum likelihood using PAML, or maximum likelihood ancestral reconstruction using PAML,
followed by counting substitutions using the NG86 method). Data are only included if both ratios being
compared are defined (i.e. denominators are not saturated or equal to zero), resulting in some variation in
the sample sizes (N). p <2.2¢-16 for all correlations (r).

Table 3.S2. Comparison of Internal and Terminal branch lengths, S:F, and dN/dS ratios

Values of the ratio (either dN/dS or S:F, as appropriate) or branch length (in units of substitutions per
fast-site (F) for S:F methods, dS for dN/dS) are compared between internal and terminal branches. Values
represent the mean over all branches and all genes. Shown in parentheses are the branch-mean values,
first averaged within each branch, then averaged over the total number of branches (30 and 27, for
terminal and internal branches, respectively). In all cases, internal and terminal branches are significantly
different by both a two-sample t-test and a Wilcoxon rank sum test (p < 2.2e-16 for pooled data; p < 0.01
for branch-means). Branches with saturated values of dS or F were not included in the analysis.
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Figure 3.4
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Figure 3.5
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Table 3.1

slow (S) fast (F) S:F Fisher Test
Method k # subs. # sites # subs. # sites Ratio” | Rank O.R. p
AA minFDR 0.55 5 66 3 37 0.93 2%* 242 0.28
AA minSD 0.35 3 30 5 73 1.50 1%* 5.26 0.043
DNA minFDR | 0.75 17 275 23 88 0.20 61% 0.82 0.63
DNA £=0.67 0.67 8 228 32 135 0.13 55% 0.59 0.22
dN/dS NG86 n/a dN =0.042 dS=0.39 0.11 37% n/a
dN/dS PAML n/a dN =0.042 dS=0.29 0.14 27% n/a

~ Corrected for multiple substitutions
* S:F ratio is among the top 10% highest in the genome

Table 3.2

slow (S) fast (F) S:F Fisher Test
Method k # subs. # sites # subs. # sites Ratio® | Rank O.R. P
AA minFDR 0.55 6 75 6 49 0.63 1.5%* 1.71 0.38
AA minSD 0.35 2 16 10 108 1.38 0.1%* 8.25 0.037
DNA minFDR | 0.75 34 360 86 135 0.07 25% 0.46 0.00015
DNA i=0.67 0.67 25 325 95 170 0.08 49% 0.46 0.00056
dN/dS NG86 n/a dN =0.07 dS >0.75** <0.093 n/a** n/a
dN/dS PAML n/a dN =0.08 dS=3.70 <0.022 42% n/a

" Corrected for multiple substitutions
* S:F ratio is among the top 10% highest in the genome
** saturated in NG86, rank & ratio are only approximate
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Figure 3.S51
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Figure 3.S3
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Figure 3.54
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Table 3.S1

S:F method
DNA, k=0.67 AA, minSD AA, minFDR
dN/dS set of genes r N r N r N
method
PAML all 0.70 | 29298 | 0.22 | 17936 | 0.20 | 27279
dS<2 0.78 | 19651 | 0.33 | 11227 | 0.36 | 17768
NG86 dS <0.75 0.91 17142 | 0.26 | 10163 | 0.31 15495
Table 3.S2
Ratio Branch length
Method internal terminal internal terminal
dN/ds 2.25 (2.31) 0.30 (0.34) 0.48 (0.48) 0.77 (0.87)
S:F minFDR 0.38 (0.41) 0.24 (0.25) 0.26 (0.20) 0.44 (0.47)
S:F minSD 0.23 (0.26) 0.17 (0.18) 0.20 (0.20) 0.32 (0.34)
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Conclusions and future directions

In this thesis, I have described three new methods for comparing microbial genomes and inferring
recombination events or changes in the regime of natural selection. I showed how these methods can be
applied to better understand mechanisms of ecological differentiation, both over very recent or ancient

evolutionary time scales.

While these methods collectively add substantially to the toolkit of microbial population genomics, the
toolkit is still quite sparse. A recurring theme throughout this thesis has been the interplay of
recombination and selection: on the one hand, recombination is essential to avoid genomewide purges of
diversity every time a new adaptive mutation occurs and rises in frequency; on the other hand, some
recombination events are themselves adaptive events and become fixed in a population by positive
selection. We are tantalizingly close to being able to identify these adaptive recombination events, but
still lack robust quantitative tests for their assessment. For example, the habitat-specific alleles discussed
in Chapter 1, which are highly divergent between zooplankton- and small particle-associated populations,
and often have clear origins outside either of these populations, are very good candidate positively
selected recombination events. Yet traditional tests (e.g. M-K test) tend to lack power in detecting
positive selection on such alleles because they have high levels of both nonsynonymous and synonymous
substitutions. More work is needed in developing formal tests for the selective value of recombination
events that we are currently only able to qualitatively label as ‘non-neutral’. Such a test may take the form
of an adapted version of the long-range haplotype test — where exceptionally long recombinant tracts (or
regions with an exceptionally high density of SNPs) that are also at high frequency in a population are
identified as outliers from the genomewide distribution. Assuming that microbial genomes can be
sampled at sufficiently fine time scales, as was shown to be possible for the Vibrio splendidus
populations, such a test might be very powerful to detect recent adaptations, and would be relatively

straightforward to build in to the STARRInIGHTS framework.

The concept of neutral (within-species) versus adaptive (cross-species) recombination might also be
harnessed to address the problem of how to define microbial species. One can imagine a situation in
which housekeeping genes (e.g. DNA replication machinery, ribosomal proteins) are recombined
neutrally within a species, and may even occasionally be transferred between species but will rarely if
ever be driven to high frequency in the acceptor population due to lack of adaptive value. Conversely,
membrane proteins or ‘accessory’ metabolic genes are more likely to become fixed in a new population,
given the right selective pressures. Thus, it might be possible to design a test for unevenness of

recombination frequency across different functional categories of genes. When strains within the same
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species are compared, there should be no unevenness, with all categories being recombined equally.
However once strains from two or more distinct species, subject to different selective pressures, are
included, certain gene functions should be recombined more frequently than others. This type of species
definition assumes that species boundaries are inherently fuzzy, so that differential selection, not
recombination, defines species. Such a definition may be somewhat unsatisfactory, or at least potentially
conservative. For example, there was no significant increase in unevenness across COG functional
categories when the boundary between zooplankton- and small particle-associated vibrios was crossed
(Figure 1.S3). These two populations would therefore, perhaps correctly, not be classed as distinct
species, although they have clear ecological differences. Clearly, more work is needed on this front. Both
empirical work (for example, comparing genomes of more strains from the Polz lab isolate collection,
over a wider range of genetic distances than what was encompassed in the closely-related 8 strains
described in Chapter 1), and modeling will be useful in understanding the process of sympatric speciation

in microbes.

As more and more microbial genomes are sequenced, the main challenge will be in organizing them into
ecologically (and clinically) relevant units. While this can to some extent be achieved by simply
clustering aligned genome sequences, the resulting clusters are still of questionable biological relevance:
Could there be functional diversity, or more fine-scale niche-partitioning within clusters? What is the role
of recombination within and between clusters? While the STARRInIGHTS pipeline represents a step
forward in answering these questions, we still need more refined models of microbial demographics and
recombination. For example, we still do not fully understand the factors that limit homologous
recombination in bacteria. In some bacteria, homologous recombination efficiency drops off
proportionally with genetic distance (Thomas & Nielsen, 2005), but more complex barriers involving
polymorphic competence peptides may come into play in some lineages (Cornejo et al, 2010).
Incorporating such complexity, perhaps in a lineage-specific fashion, will be an important aspect of future

population genetic models.

The methods described here are currently being applied to gain insight into the evolution of several
different organisms. The selective signatures approach is being used to study patterns of lineage-specific
variation of natural selection in mammals (Mar Alba; Evolutionary Genomics Group, Barcelona, Spain). I
have also begun collaborations to apply STARRInIGHTS analysis to populations of Streptococcus
pneumoniae genomes, some highly virulent and others not (with Tiffany Williams and George
Weinstock, Washington University, St. Louis), and Enterococcus faecalis strains which vary in their

levels of antibiotic resistance (with Kelli Palmer and Michael Gilmore, Schepens Eye Institute and
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Harvard Medical School). These projects will hopefully yield biological insight into the evolution and
diversification of different populations, ultimately demonstrating the utility and generality of the new

tools I have developed.
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