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Abstract

Worm-like micellar solutions are model non-Newtonian systems on account of their
well understood linear viscoelastic behavior. Their high deformation rate, non-linear
rheological response, however, remains inadequately characterized and poorly under-
stood.

In this study, two worm-like micellar systems composed of either cetylpyridinium
chloride (CPyCl) with sodium salicylate (NaSal) or cetyltrimethylammonium bromide
(CTAB) with NaSal have been characterized across several orders of magnitude of
deformation rate (10-2 < i6 < 104 s- 1 ). This range enables us to span both the
linear and non-linear regimes of rheological behavior for both systems. The low
deformation rate rheology was characterized using conventional rheometer fixtures.
The high deformation rate rheology was determined using microfluidic rheometric
devices, which may be exploited to observe the response of a fluid undergoing very
large deformation rates at moderate volumetric throughputs, on account of the small
lengthscales associated with microfluidic devices. In these experiments, micro-particle
image velocimetry (p-PIV) was used to measure the flow kinematics and a commercial
birefringence microscopy instrument (ABRIOTM System, CRi., Inc.) was adapted for
making full-field measurements of flow-induced birefringence (FIB) in order to obtain
high-resolution measurements of the evolution of the average stress and molecular
conformation in the fluids undergoing strong deformations.

First, the shear banding response of the CPyCl:NaSal system and shear thinning
response of the CTAB:NaSal system were observed in Poiseuille flow through a rec-
tilinear microchannel. Then the corresponding behavior in an extension-dominated
flow through a converging microchannel was characterized. Qualitative as well as
quantitative features of the flow kinematics and conformation were assessed in or-
der to understand how the linear rheological properties of these systems effect their



respective constitutive responses in high rate extensional flows.
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Chapter 1

Introduction

"The river flows

It flows to the sea

Wherever that river goes

That's where I want to be..."

- Ballad of Easy Rider

A viscoelastic material is one which may exhibit fluid-like (i.e. viscous) behavior

as well as solid-like (i.e. elastic) behavior. These materials are some of the most

commonly encountered materials in daily life. Many food products, (e.g. peanut

butter and jelly), and consumer products, (e.g. shampoos and cosmetics), may be

classified as viscoelastic. In addition to these examples, other viscoelastic materials

are found in many areas of industry, from polymer processing, to paints and adhesives,

to biological and biomedical devices, and considerably more.

One particular class of viscoelastic materials are surfactant systems, described

by Rehage & Hoffmann (1991) and also Larson (1998). Surfactants are amphiphilic,

rheological modifiers, which may be used to tune the viscosity and elasticity of a fluid.

Surfactant molecules are composed of both hydrophobic and hydrophilic constituent

groups, and as a consequence, under the proper conditions of temperature, salinity



and concentration, they may associate to form large molecular aggregates, known as

micelles. The size and shape (e.g. spherical, bilayer, worm-like) of the micelles which

form in solution, significantly influence the rheological properties of the surrounding

medium, and as such, micellar solutions are of great industrial and practical interest.

Micellar solutions are found in soaps, detergents and shampoos, and are also utilized

in inkjet printing, turbulent drag reduction, as reported by Rothstein (2009), and

even enhanced oil recovery, as discussed by Kefi et al. (2005).

Cow S.Y % Nou n

Gravel placement with VES fluids. Placing gravel in extended-reach highly deviated webores
is alwaystdifficult Using ES fluids for proppanttranspor along wh Altarnate Path tecanologt
engineers can minatnize the risk V~ an incomplate *Wahole gravel pack- Shunt tubes attached to the
outside of the screen (top nghd provide a path for the gravel-packing slurry to flow in the event of a
premature screenout or plugging

(a) Enhanced oil recovery. See Kefi et al. (2005). (b) House-hold products.

(c) Inkjet printer. (d) Lab-on-a-chip experiments.

Figure 1.0.1: Common applications of micellar and surfactant solutions.

The primary focus of this study is in the development and refinement of rheometric

techniques for measuring the rheological behavior of complex fluids undergoing high

rate, or strong deformations, for which the elasticity of a material plays an important

role in its stress response to the imposed deformation. High rate deformations in

complex fluids are commonly achieved even for moderate velocities when the charac-

teristic lengthscale of the flow is small. For example, in the case of the nozzle of an

'Literally having two loves.

- - ... .... ........ .................................................. .11 1 ........... .



inkjet printer, where the length, 1, of the smallest printable feature may be on the

order of tens of microns and ejection velocities, v, are on the order of meters per sec-

ond, characteristic deformation rates, i = v/i, may easily be on the order of 104 s-1

or greater. In this thesis, we focus on the rheology of worm-like micellar solutions.

The experimental techniques used here, however, are amenable to the study of other

transparent, complex fluids.

The strain rates associated with the flow of micellar solutions in microscale geome-

tries are evaluated with micro-particle image velocity (p-PIV) measurements using

standard equipment. The corresponding stresses associated with the flow are inferred

from optically, non-invasive measurements of flow-induced birefringence (FIB) using

the ABRIOTM System (CRi, Inc.). The measurements of stress and strain rate may

ultimately be coupled to the predictions of select constitutive models to test the per-

formance of those models in predicting the high rate rheology of worm-like micellar

solutions.

This thesis is partitioned into six core chapters, including this introductory sec-

tion, Chapter 1. In Chapter 2, an overview of the scientific literature for worm-like

micellar solutions and additional relevant information is presented; some focus is

also given to microscale flows and flow-induced birefringence in micellar solutions.

The experimental methods used in this study are described in Chapter 3 including

a thorough description of current rheometric techniques for classifying the rheologi-

cal behavior of surfactant solutions. Additional attention is given to the fabrication

techniques used to construct the microscale test geometries.

Of concern in Chapter 4, is the calibration of the ABRIOTM System, in order

to demonstrate the suitability of the device for optical, microfluidic rheometry. In

Chapter 4, the rheological behavior of the studied micellar solutions under shear

deformations is also presented. In the penultimate Chapter 5, the rheological behavior

of the studied micellar solutions under extensional deformations is discussed. In the

final section, Chapter 6, concluding remarks are made and perspectives for future

work are considered.



In addition to the core chapters, this thesis includes multiple appendices in which

mathematical derivations of many of the results used in this work along with other

useful reference material may be found.



Chapter 2

Literature Overview and

Background

"Everything should be made as simple as possible, but no simpler."

- Albert Einstein

Micelles and their constituent surfactant molecules are the subject of a substantial

body of literature. Reviews of these systems have been written by Cates (1990),

Rehage & Hoffmann (1991), Cates & Fielding (2006) and Rothstein (2009) among

others. Additionally, both Israelachvili (2007) and Larson (1998) have written texts

which address the rheology of such systems at length. Accordingly, the purpose of

this section is not to describe the known molecular structure and rheological behavior

of micellar solutions in excessive detail, but to provide adequate information so that

the context of this study may be appreciated.

0The reader unfamiliar with non-Newtonian fluid mechanics or rheology may find it instructive

to read Chapter 3 prior to reading this literature overview.



2.1 Surfactant Molecules

The surfactant molecules considered in this study are amphiphiles, being composed

of a hydrophilic head group and a hydrophobic tail group. The molecular structures

of two such common surfactants are depicted in Figure 2.1.1 (a) and (b). The head

group of such a molecule is generally polar or ionic while the tail group is an organic,

covalently bonded, non-polar molecular chain. In a polar medium such as water, the

polar head group will be considerably more soluble than the non-polar tail group

and consequently, if sufficient in number, the molecules will exhibit a tendency to

aggregate in order to maximize exposure of the hydrophilic heads to the surrounding

water and simultaneously isolate the hydrophobic tails from the polar environment.

N Br

(a) Cetyl Trimethyl Ammonium Bromide Molecule (C19H42BrN)

Cl~

(b) Cetylpyridinium Chloride Molecule (C21H38ClN)

0 0

Na OH

(c) Sodium Salicylate Molecule (C7 H5 NaO3 )

Figure 2.1.1: Molecular structures of the surfactant molecules and counterion con-
sidered in this study. In (a) and (b) the positively charged nitrogen, is a constituent
of the hydrophilic, polar head group, while the flexible hydrocarbon backbone forms
the hydrophobic, non-polar tail group.



2.2 Micellar Solutions

A micelle is an aggregate of surfactant molecules, which typically forms spontaneously

in a solvent medium given proper conditions of surfactant concentration and salin-

ity. For a particular temperature, the lowest concentration at which the formation

of micelles is energetically favorable is known as the critical micelle concentration,

or alternatively, for a particular concentration the minimum temperature at which

micelles form is called the Krafft temperature as defined in IUPAC (1997). A micellar

solution is a system that contains these self-assembling molecular aggregates, which

themselves may vary in size and shape, such that the bulk rheological behavior of the

system may be substantially different from that of the pure solvent.

Head
Group

Increased Added
Concentration Counterion

Tail
Group

O O

Surfactant Spherical Entangled, Worm-Like
Molecules Micelles Micelles

Figure 2.2.1: Schematic diagram of various surfactant aggregate morphologies. In-
creased concentration and salinity facilitate the formation of entangled, worm-like
micelles which are responsible for the viscoelastic response of such systems.

Micelles taking the form of worm-like, flexible cylinders are often known as liv-

ing polymers, on account of their ability to associate reversibly and dynamically and

their entangled structure that is topologically similar to that of many entangled poly-

meric solutions. Aside from their applications as rheological modifiers, entangled,

worm-like micellar solutions, depicted in Figure 2.2.1, constitute model systems for

.. ......... I



rheological studies, because these systems exhibit ideal linear viscoelastic behavior,

which can be described by the Maxwell model in the limit of small deformations and

deformation rates. Furthermore, as pointed out by Rehage & Hoffmann (1991) and

later Cates & Fielding (2006), these systems mimic the rheological behavior of other

polymeric systems, yet their ability to self-assemble dynamically makes them suitable

also for the study of non-linear rheological behavior, since, in contrast to a typical

polymeric system which may degrade from high deformation rates, micellar systems

can self-reassemble even after having undergone deformations significant enough to

have broken the aggregates. On account of these attributes, and for reasons that are

described in what follows, entangled, worm-like micellar solutions were selected for

study in this thesis.

2.2.1 Molecular Structure

The morphology and size of the molecular aggregates are dictated by the surfactant

concentration, prevailing ionic activity, law of mass action, and the relative size of

head and tail groups. A schematic depiction of the dependency of the micellar mor-

phology on concentration and salinity is shown in Figure 2.2.2. Possible conforma-

tions include, but are not limited to single molecules, spheres, multilayered spheres,

vesicles, bilayers, and rigid or flexible cylindrical chains.

Although the physics governing micellar conformations is complex, much insight

may be gained if one considers the geometric packing argument outlined by Is-

raelachvili (2007). According to this argument, a single surfactant molecule, depicted

in Figure 2.2.3, is supposed to occupy an effective volume, v, its tail group extends

to some critical length, 1c, and its head group has a surface area, ao, which has been

optimized according to the prevailing ionic activity in the surrounding medium and

ionic character of the head group. In general, increased counterion concentration

tends to increase ionic screening, which lessens the repulsive forces between adjacent



Figure 2.2.2: Schematic diagram of micelle structures for surfactant concentration,
<, and salinity. Image taken from Figure 12.13 in Larson (1998).

head groups, facilitating closer packing and a corresponding reduction in ao.

The packing parameter, v/aolc, may be introduced, which is clearly defined as

the ratio of the actual volume occupied by the molecule to a hypothetical volume

that the molecule would occupy if it were perfectly cylindrical. The value of this

parameter governs the realized morphology of the micellar aggregates'. For packing

parameters smaller than unity, the surfactant molecules take the shape of a cone. In

the case where v/aole < 1 spherical micelles depicted in Figure 2.2.1 are preferred,

for - < v/aole < 1 cylindrical micelles form, while for 2 < v/aolc, vesicles, bilayers

and other conformations are observed.

For the case of cylindrical micelles (i.e. 1 < v/aolc < 1), which are of primary in-

terest in this thesis, the energetically preferred configuration for an individual surfac-

tant molecule is to reside along the length of the cylinder and away from it ends. The

radius of the cylinder is thus roughly equal to the length of a constituent surfactant

molecule. As cylindrical micelles cannot be infinite in length, however, hemispherical

0Refer to Figure 17.2 in Israelachvili (2007) or Figure 12.1 in Larson (1998).



'C

Hydrophobic
Attraction

Hydrophilic
Repulsion

Figure 2.2.3: Schematic diagram of a micelle and its constituent surfactant molecules.
Attractive and repulsive forces between adjacent surfactant molecules are depicted.
The effective volume, v, occupied by a single surfactant molecule is shown in gray,
for which the effective area of the head group is ao, and the critical length of the
molecule is 1e. Figure adapted from Figure 17.1 in Israelachvili (2007).

groups (for which v/aole < j) must cap the cylinder. Accordingly, there is an energy

penalty associated with the end-caps due to their necessary deviation from the pref-

ered cylindrical configuration. Therefore, if conditions are such that the formation of

cylindrical micelles is favorable, there will be a tendency to form lengthy cylindrical

micelles in order to minimize the number of higher energy end-caps in the system. If

the length of the cylinder should be substantially greater than the persistence length2

of the micelle, a flexible or even entangled network of micelles can be expected. It is

this entangled network that gives rise to the viscoelastic behavior of giant, worm-like

micellar solutions.

Among many surfactant molecules that can be used to obtain worm-like structures,

erucyl bis(2-hydroxyethyl) methyl ammonium chloride (EHAC) was used by Yesilata

et al. (2006), cetyltrimethylammonium tosylate (CTAT) by Berret et al. (2002),

cetylpyridinium chloride (CPyCl) by Rehage & Hoffmann (1991) and in this study,

and cetyltrimethylammonium bromide (CTAB) by Shikata et al. (1994) and again

2Persistence lengths are commonly on the order of 10-20 nm, as reported in Cates & Fielding
(2006), but may be as large as 40 nm for neutral worm-like micelles as reported in Berret (2006).

.............. ..11- 11- 1 . ........................................... ................ -.. ....... .



here. Commonly used counterions are sodium salicylate (NaSal), seen in Figure 2.1.1

(c), and sodium (NaNO 3), which may be combined with a sodium chloride (NaCl)

brine.

2.2.2 Rheology of Entangled, Worm-like Micelles

Worm-like micellar solutions have become attractive systems for study due in no small

part to their remarkably predictable linear rheological behavior. A comprehensive

characterization of their non-linear rheological response, however, remains incomplete.

Accordingly, the purpose of this subsection is to outline the most well-established

rheological attributes of these systems, while also presenting areas of research that

are not so well understood and remain open to further inquiry.

Linear Viscoelastic Response

Viscosity is a measure of the internal friction of a material undergoing deformations,

indicating its resistance to flow and its tendency to dissipate the energy of deforma-

tion as heat. Conversely, elasticity is a measure of internal resilience of a material,

indicating its ability to return to its initial shape after having been deformed and thus

its ability to store the energy associated with a deformation. A viscoelastic material

exhibits both viscous and elastic responses to an imposed deformation. In general, if

the timescale of the deformation applied and then removed is short compared to some

characteristic time, a viscoelastic material will respond as an elastic solid and resume

its initial configuration, whereas if the deformation timescale is long, the material will

behave as a viscous fluid and the deformation will be permanent. The characteristic

timescale for comparison is a property of the material and is called the relaxation

time, denoted by the symbol AM. The relaxation time is the timescale on which a

stress decays or grows in a viscoelastic material and its magnitude may be taken

as inversely proportional to the rate at which a material can adapt to an applied

deformation.



Although relaxation processes of many polymeric systems can only be accurately

described by a spectrum of relaxation times, the relaxation process of many worm-

like micellar systems is of particular interest because it can often be characterized

experimentally by a single relaxation time. This unique timescale, however, may be

the result of a combination of timescales associated with different stress relaxation

mechanisms in the system.

" Reptation. According to the theory of de Gennes (1979), the path of movement

of an unbranched polymer chain in a sufficiently entangled polymeric network

may be supposed to be constrained by its neighboring polymer chains to a tube

which encompasses the molecule. If the equilibrium network is perturbed, say by

the application or removal of a stress or a strain, the system will respond to the

change in stress or strain on the same timescale that it takes for its individual,

constituent polymer chains to adapt to that change. In response to the change,

a single chain must alter its configuration in the network by diffusing along the

confining tube to some new preferred configuration. Accordingly, the timescale

on which such an entangled network relaxes is proportional to the time required

for a single chain to move, or reptate3 along the entire length of its confining

tube. The reptation time is denoted Arep.

* Breaking. Since surfactant molecules in a micelle are held together by relatively

weak van der Waals forces, the micelles are capable of breaking and reforming

dynamically. Therefore an entangled system of so called living polymers is ca-

pable of adjusting to a change in stress or strain by breaking and reforming in

order to attain the preferred configuration in response to a stress perturbation.

The lifespan of a typical micelle, being the timescale between consecutive scis-

sion and fusion reactions is the breakage time, Aeak, as first described by Cates

(1987).

" Breathing and Rouse Modes. Other non-reptative relaxation processes pertinent
3From the Latin word reptare, meaning to creep or slither.



to micelles are described by Larson (1998), but the notion of a confining tube

is still useful. Although a chain will relax as a whole via migration through

a confining tube, the constituent elements of the chain are also free to relax

independently of the entire chain. For instance, the extremities of the chain can

diffuse on a timescale, Abreathe, that is different from that of the whole chain,

AM. In this manner, the ends of the chain can retract into their confining tube

such that the effective length of the tube is reduced. When the ends of the

chain advance out of the tube again, the confining effects of the lost extremities

of the tube are forgotten. These relaxation events cause the length of the tube

to fluctuate in time and are known as primitive-path fluctuations or breathing

modes. A chain may also relax via Rouse modes in which only a particular

portion of the chain relaxes on a timescale, ARouse, by reconfiguring itself within

the tube to a more entropically favorable orientation. Both of these relaxation

mechanisms typically occur on very short timescales compared to AM, such that

high rate or high frequency deformations are necessary to observe their effects

on the rheological behavior of a worm-like micellar solution, as considered by

Granek & Cates (1992).

The notion of a relaxation process can be further illustrated if one considers a

micellar solution initially unstrained and unstressed for all times t < 0. If a step

strain of magnitude -yo were applied to the solution at t = 0, the solution would

initially behave elastically having modulus Go, such that the initial stress in the

system would be To = Goyo. If the applied strain were to be kept constant for all

subsequent times, Cates (1987) showed that the stress in the material, T(t), would

decay according to the equation

T(t) e(t/Au) (2.2.1)
TO

In the case where Abreak > Arep, it can be shown that Eq. 2.2.1 becomes a stretched

exponential, with a = 1/4 and AM Arep. In this limit, breaking occurs so infre-



quently that the micelles relax entirely through a reptative process.

In worm-like micellar solutions for which salt concentration is substantial, the

increased ionic screening facilitates faster breaking and accordingly a reduction in

Abreak- With increased salinity, Rehage & Hoffmann (1991) have found experimentally

that a approaches unity4 . In the case that Abreak < Arep, Cates (1987) found that

AM AbreakA rep (2.2.2)

and accordingly

T(t) _(2.23)

70

The monoexponential stress response described by Eq. 2.2.3 has also been found

experimentally by Shikata et al. (1987) and Cates & Candau (1990) among others.

It is clear that if Abreak < Arep, then AM < Arep and the relaxation process is expedited

by breaking. A physical explanation for this resultant geometric mean of the two

timescales has been presented by Larson (1998). Since a micelle can only relax once

it has fully escaped its hypothetical confining tube, a micelle of average length, (L),

must traverse that same distance with respect to the confining tube, in order to

completely relax. As reptation is a diffusive process, occurring on a timescale Arep, the

diffusion coefficient for a reptative process is Drep = (L) 2 /Arep. If Abreak < Arep, then

the micelle will diffuse a distance 1 ~ VDAbreak, between each breaking process. After

each breaking process, however, the length of the confining tube, through which no

end of the micelle will have yet passed, will be reduced by a fractional amount 1/(L),

and any confining effects of the previous tube will be removed so the diffusion process

will then start anew. In order to escape the tube entirely, this process must occur

n = (L)/l times, so the total relaxation time of the whole process is Am = nAbreak.

Substitution of the relevant quantities reveals Am = NAbreakArep as expected. A

graphical depiction of both diffusion processes may be seen in Figure 2.2.4.

4 Refer to Figure 14 in Rehage & Hoffmann (1991).
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Figure 2.2.4: Fraction of average micelle length, (L), traversed by diffusion and break-
ing for a purely reptative process and a combined breaking and reptative process in the
fast breaking limit Abreak < Arep. The system is completely relaxed once l/(L) = 1.
Here, Arep/Abreak = 9, and AM/Abreak = Arep/Abreak = 3. After each breaking
process, a shortened confining tube remains and the diffusive process begins anew
resulting in a reduced total relaxation time.

In addition to determining the relaxation time of a material from its stress re-

sponse to a step strain given by Eq. 2.2.1, the relaxation time may be measured

experimentally by imposing oscillatory shear deformations at different frequencies on

the material, see Section 3.1.2. If the sample exhibits a single predominant relaxation

time, (e.g. a worm-like micellar solution), then the inverse of the frequency at which

the observed elastic response of the material is equal to its viscous response is roughly

equal to its relaxation time, AM, (Bird et al. (1987)). Knowledge of AM is clearly not

sufficient to determine either Abreak or Arep, and to that end methods for determining

these quantities from experimental measurements have been described in the work

of Turner & Cates (1991), Turner & Cates (1992) and Turner et al. (1993). These

methods have been used to determine Abreak and Arep for the systems in this study,

which are described in Chapter 3.
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Behavior in Shear

Like virtually all materials, in the limit of sufficiently small shear deformation rates,

< < A-', worm-like micellar solutions exhibit Newtonian behavior, in which the

shear stress, 'r, is linearly proportional to shear rate, such that T = qo , where qo is

the zero-shear-rate viscosity. Simple fluid theory shows in this slow flow limit that

elastic stresses are of negligible importance and accordingly the material response is

essentially entirely viscous.

For shear deformations that occur on timescales that are roughly equal to or

shorter than the relaxation time of the solution, > A-', a deviation from Newtonian

behavior, typically accompanied by the growth of elastic stresses, is observed. An

appropriate dimensionless group for comparing the two timescales is the Weissenberg

number, Wi, which is defined as the ratio of a relaxation time to a characteristic time

of deformation, or alternatively Wi = AMAc, where c is a characteristic deformation

rate. For Wi > 1, strong deviation from Newtonian behavior can be expected.

In low concentration worm-like micellar systems, such as those studied by Hu et al.

(1998) and Berret et al. (2002), shear thickening has been observed, and the steady

viscosity may evolve over thousands of shear strain units. Rehage & Hoffmann (1982)

and Berret et al. (2002) have proposed that this dilatant behavior results from a

shear induced structure (SIS) described, for example, in Lerouge & Berret (2009) that

effectively thickens the system. At higher shear rates, the viscosity of these semi-dilute

systems is observed to obtain a maximum value and then decrease with increasing

shear rate. For the tallowalkyl ammonium acetate (TTAA) and NaSal system studied

by Hu et al. (1998), this shear thinning was accompanied by a constant stress with

increasing shear rate, which the authors attributed to a mechanical break down in

the form of fracturing of the bulk fluid causing elastically driven flow instabilities.

For concentrated systems, a shear thinning viscometric behavior is generally ob-

served. Indeed, many concentrated micellar solutions exhibit a particularly remark-

able pseudoplastic behavior, in that over a range of shear rates, A1 < i < '2, (which



can often span multiple orders of magnitude) their effective viscosity may be inversely

proportional to shear rate such that a constant shear stress can be applied to deform

the material over that range of shear rates. Typically 1 ~ A-'. The constant stress

is called a stress plateau, and it is a striking example of the non-linear rheological

behavior of worm-like micellar solutions, caused by a non-monotonicity in the under-

lying flow curve of the material, depicted in Figure 2.2.5. A non-montonicity results

in a range of shear rates on the flow curve for which shear stress decreases with in-

creasing shear rate. Such rheological behavior is unstable, since any perturbation in

stress or shear rate about an equilibrium point in this region of the flow curve would

cause the system to jump to one of the neighboring stable branches of the curve.

For average imposed shear rates, A 1 < (A) < 72, depicted in Figure 2.2.6, it is

not possible for a system both to lie simultaneously on a single stable branch of the

flow curve and to satisfy the average shear rate, (A). Consequently, the system must

partition itself into adjacent layers of material, each undergoing different deformation

rates, nominally A1 and A2 as depicted in Figure 2.2.6, yet coexisting at the same

applied shear stress, T. This phenomenon is known as shear banding and has formed

the basis of much experimental studies, theoretical and modeling work by Lu et al.

(2000), Vasquez et al. (2007) and Zhou et al. (2008) for example, and review articles,

discussions and texts including those by Berret (2006), Cates & Fielding (2006),

Fielding (2007) and Olmsted (2008).

One constitutive model that can predict a non-monotonic flow curve in steady

shear is that of Johnson & Segalman (1977). For a solution having a Newtonian

viscosity, y, a "polymeric" viscosity, q, relaxation time, AM and elastic modulus,

Go = /Am, the flow curve of this model has been given by Olmsted (2008), and in

non-dimensionalized form is

=__ - Wi 6 2 + (2.2.4)
Go 1 +Wi2

where c = p/I and Wi = AMA as before. For E < the model may be used to predict



Figure 2.2.5: Flow curve for the Johnson-Selagman model for flow in steady shear
given by Eq. 2.2.4 with E = 0.05. The dashed line indicates the unstable regime and
the solid horizontal line indicates an example value of the stress plateau, -.

an unstable regime of decreasing shear stress with increasing shear rate. In order to

specify a unique, non-hysteretic value for the stress plateau, Tc, stress or strain rate

diffusion terms must be incorporated into the model as outlined in Olmsted et al.

(2000).
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Figure 2.2.6: Schematic diagrams of a homogeneous shear field and a heterogeneous,
shear banded shear field in Couette flow. For the homogeneous case, the average
shear rate () = Ua/H < 1 ~ A-, where AM is the fluid relaxation time. For the
heterogeneous flow, -1 <()b = Ub/H < 2.

To first order, the fraction of the gap height, H, occupied by the low shear rate

band, #1, and the high shear rate band, /2, may be determined by the lever rule such

. "I'll, ...... ........ . ............ .. . ..... ........ . ..... -



that the average shear rate (A) is equal to the imposed shear rate, namely

Ub = (+) =1311+#2i2 (2.2.5)
H

where 31+2 = 1 (Lerouge et al. (2008)). This lever rule was observed experimentally

by Salmon et al. (2003). The coexistence of more than two bands is also possible

as observed by Lerouge et al. (2004) and Miller & Rothstein (2007). Consequently,

Eq. 2.2.5 should be taken only as a simplistic generalization of the shear banding

phenomenon.

For average shear rates on the order of the lower critical shear rate, A 1, the for-

mation of steady state shear bands has been found to develop progressively over

extended periods of time. Decruppe et al. (2001) observed a two phase response

in a CTAB:NaNO 3 system to a step strain rate in the shear banding regime. They

observed an initial stress overshoot and a rapid monoexponential decay in stress, fol-

lowed by a slower sigmoidal decay to steady state, which often occurred on timescales

equal to tens of relaxation times or longer. Similar transient behavior was also ob-

served by Berret et al. (1994), Lerouge et al. (2000) and Becu et al. (2004) among

others. The duration of the transient period is typically reduced as the average shear

rate is increased well above '1.

Cates & Fielding (2006) acknowledged that a universally accepted explanation for

the molecular mechanism behind the shear banding phenomenon has not yet been

found. Berret et al. (1994) and Berret et al. (1997) suggested that the shear bands

may result from a flow-induced transition from a roughly isotropic to a nematic phase.

In two studies of CTAB in deuterium oxide (D20) at 32 "C by Helgeson et al. (2009a)

and Helgeson et al. (2009b), measurements of velocity profiles, birefringence and

small angle neutron scattering (SANS) were combined to observe the microstructural

features of the shear banding fluid. The authors found that shear banding in their

system was coupled to a flow-induced isotropic-to-nematic transition which could be

modeled by anisotropic drag on the chains which led to segment-level flow alignment



of the micelles. In their study, the nematic phase was found to coincide with the high

shear rate band, seen in Figure 2.2.7 (a) and (b). This result seemed to contradict

the earlier work of Fischer & Callaghan (2000) and again Fischer & Callaghan (2001),

however, who also studied the same CTAB:D 20 system between 39 and 41 "C and

found that the highly birefringence bands (indicating high molecular alignment) in a

Couette geometry coincided with a region of low shear rate, seen in Figure 2.2.7 (c).

Fischer & Callaghan (2001) hypothesized that the flow-induced nematic phase had a

higher viscosity than that of the nematic phase in thermal equilibrium and a slip layer

contributed to the bulk rheological measurements. Hu & Lips (2005) have argued that

the steady state interface between the low and high shear rate bands was governed by

chain disentanglement and reentanglement, having found that adjacent layers of high

and low birefringence did not have large difference in shear rate indicating that an

isotropic-to-nematic transition was not exclusively responsible for the shear banding

in their CPyCl:NaSal system.

Hu et al. (2008) also investigated the difference between shear thinning and shear

banding worm-like micellar solutions using 2:1 molar CPyCl:NaSal systems of varying

concentrations in 0.5 M NaCl. They observed two major differences between shear

banding and shear thinning systems: an underlying non-monotonic flow curve was

necessary in order to see shear banding, and that shear bands set in only after an

induction period for applied stresses near the stress plateau. By contrast for the

shear thinning fluid no induction period to obtain steady state was observed nor

were shear bands observed. They proposed that shear bands may occur due to a

combination of stress relaxation by micellar breakage, molecular entanglements, steric

and electrostatic interactions, and local concentration variations across the banding

interface.

First normal stress differences, N1, that were considerably larger in magnitude

than the stress plateau, T, have been observed for shear rates at which the stress

plateau occurred. In certain systems, Larson (1998) reported that Ni increased lin-

early with shear rate. As seen in Figure 2.2.8, the previously mentioned CTAB and
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Figure 2.2.7: (a) From Helgeson et al. (2009b). Velocity proles against normalized
gap position in steady shear for 16.7 wt% CTAB in D2 0 at 32 "C for A1i <A1< 2
Inset graph for data at shear rates less than A1i. (b) From Helgeson et al. (2009b).
Alignment factor (defined in Helgeson et al. (2009b), Af = 0 is no alignment, Af = 1
is full alignment) versus normalized gap position measured using 1 - 2 plan flow-
SANS. Star symbols indicate the location of banding interface at the corresponding
applied shear rate. (c) From Fischer & Callaghan (2001). Order and velocity profiles
across a Couette cell gap, for a 20% w/v CTAB and D2 0 sample with an average
gap shear rate of 51 s-1 at 40 "C. The nematic phase exists at low shear rate near
the inner wall.
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D20 system of Helgeson et al. (2009b), N1 increased quadratically with A, for y < A 1 ,

but for A > '1, N1 scaled sublinearly with '. As shown in Chapter 3, in the systems

studies in this thesis N1 increased superlinearly with shear rate.

Behavior in Extension

The extensional rheology of worm-like micellar solutions has been studied using the

capillary breakup extensional rheometer (CaBER) by Chen & Rothstein (2004), Yesi-

lata et al. (2006) and Bhardwaj et al. (2007) and most recently Kim et al. (2010).

This instrument applies a near step extensional strain on a fluid sample and the

subsequent reduction of the sample midpoint diameter driven by capillary forces is

recorded. In the experiments with worm-like micelles, the filament incurred increas-

ingly higher extension rates, i, as the thinning process proceeded, and the elastic

stresses associated with the stretching of the micelles became significant enough to

resist the thinning. Dramatic extensional thickening was observed. Additionally, sol-

vent evaporation likely contributed to the observed increased extensional viscosity.

Ultimately, the samples were observed to break through elastocapillary thinning.

In the work of Kim et al. (2010), the effect of initial filament diameter and

applied strain in CaBER experiments on the rheological behavior of a 100:50:100 mM

CPyCl:NaSal:NaCl solution was studied. A dependency on the initial configuration

of the material response was observed for small strains, but for strains greater than

E = 5, extensional thickening was observed regardless of the initial configuration in

agreement with the studies of Yesilata et al. (2006) and Bhardwaj et al. (2007).

The relaxation time at large strains was found to be only weakly dependent on initial

configuration, which the authors attributed to the ability of the micelles to break and

reform as a means by which the influence of the initial microstructural configuration

could be rapidly forgotten.

A filament stretching extensional rheometer (FiSER) was also used by Rothstein

(2003) and Bhardwaj et al. (2007). This instrument applies a constant extension rate

to the fluid sample and the subsequent evolution of the applied force and the sample
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Figure 2.2.8: From Helgeson et al. (2009b). (a) Shear stress under steady shear

for 16.7 wt % CTAB in D20 at 32 "C. (b) First normal stress difference. Closed

and open symbols represent measurements made on a cone and plate rheometer and

predictions based birefringence measurements. Lines give corresponding predictions

from the Giesekus-diffusion model under viscometric (dashed) and inhomogeneous

(solid) flow.



midpoint diameter are measured simultaneously. In these experiments, the authors

observed an extensional strain hardening behavior. Above a critical extension rate, all

samples were observed to rupture en masse once a particular stress had been reached.

This rupturing of the material was attributed to the scission of its constituent micelles,

which occurred so violently on account of the flow kinematics and the elastic recoil of

the micelles, that reforming reactions on the timescale of the flow were prevented. The

extensional viscosity measured with CaBER and FiSER were so substantially different

that Bhardwaj et al. (2007) also questioned the viability of using capillary breakup

experiments to measure the extensional rheology of worm-like micellar systems.

Prud'homme & Warr (1994) used a Rheometrics RFX opposed nozzle extensional

rheometer to measure the extensional rheology of worm-like micelles. They found

extensional thickening in the system up to a critical extension rate, above which they

observed strong molecular alignment with the flow accompanied by flow instabilities.

At these high extension rates, extensional thinning attributed to flow-induced scission

of the micelles was observed. This hypothesis was supported by the measurements of

Chen & Warr (1997), who found a decrease in the radius of gyration of the micelles

accompanying the onset of extensional thinning.

2.2.3 Summary of Macroscale Flows

In this section, the rheological behavior of many worm-like micellar solutions has

been discussed. A typical worm-like micellar system exhibits linear viscoelastic be-

havior that can be characterized by a single relaxation time. In shear, deviation from

Newtonian behavior typically occurs for > ; A-'. For entangled systems, shear thin-

ning accompanied by normal stress differences, which may be much larger than shear

stresses at a particular ', is typically observed. In certain systems, a shear stress

plateau over a range of shear rates, -i < y < 2, indicative of shear banding may be

observed. In extension, extensional thickening and strain hardening are commonly

observed in addition to flow-induced scission of the micelles which may lead to large



scale rupture in the fluid sample or flow instabilities.

Macroscale rheometry is typically confounded by the onset of flow instabilities

which place a limit on the value of the maximum deformation rates which can be

attained using macroscale devices. Hence, an alternative approach is necessary to

impose deformation rates beyond this limit.

2.3 Microfluidic Rheometry

Microfluidic rheometry is a rheometric technique in which the stresses and strain

rates associated with the flow of a fluid in a microscale geometry are recorded. This

approach may be used to determine the high deformation rate (104 < - < 106 s-1)

rheology of many fluids and requires relatively small amounts of fluid when compared

to other rheometric techniques, as described in Pipe et al. (2008).

2.3.1 Shear Flows

Typically studies in microfluidic shear rheometry have been in regard to flow in a

straight, high aspect ratio rectangular duct of width, W, height, H and length, L, for

which W < H < L. For such flows, the shear stress at any position along the width

of the channel is known from first principles (see Appendix B) and the shear rate can

be calculated from the velocity profile which is often measured with micro-particle

image velocimetry (p-PIV). Knowledge of the local shear rate and stress is then used

to determine the steady shear viscosity. For shear thinning or shear banding solutions

in pressure driven flow, a transition from a Newtonian, parabolic profile at low flow

rates to a banded profile depicted in Figure 2.3.1, occurs when Wi = Am(U)/W ~ 1.

Shear thinning polyethylene oxide solutions were studied by Degre et al. (2006)

in a rectangular, polydimethylsiloxane (PDMS) microchannel. They demonstrated

the viability of their system, having found good agreement between their measure-

ments of viscosity from the flow in the microchannel and that measured with a con-

ventional Couette rheometer. They also commented on the need for a more rigid



geometry to test highly viscous fluids. Guillot et al. (2006) also studied a worm-like

CPyCl:NaSal:NaCl system flowing in glass and PDMS channels. They found good

agreement between their viscosity measurements in the glass microchannel and from

the rheometer for all shear rates examined. Good agreement for results obtained with

PDMS channel were only obtained at high shear rates. Deviation in the low shear

rate results were attributed to slip.
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Figure 2.3.1: Schematics of a the velocity profile of a system with homogeneous vis-
cosity field and that of shear banding system in Poiseuille flow. For the homogeneous
case, the characteristic shear rate (M)a = (U)/W < '1, where (U) is the average
velocity in the channel, W its width and Am is the fluid relaxation time. For the
shear banding flow, '1 < (i)b = (U)/W < Y2.

Microfluidic rheometry is also unique in the study of complex fluids in that it

may be exploited to probe the behavior of a system when the lengthscale of the

flow geometry approaches the typical lengthscale (e.g. contour length, entanglement

length) of the polymeric or micellar network. Flow in smallscale geometries also

results in very steep stress gradients across devices, for which diffusion of stress may

be important. In this regard, Masselon et al. (2008) studied systems of worm-

like CPyCl:NaSal:NaCl and CTAB:NaNO 3 in a 1 mm x 200 pm glass channel and

observed that the numerical value of the stress plateau varied with flow rate and was

therefore dependent on more than just the local shear rate. They suggested that non-

local (i.e. diffusive) effects were important in their systems. Conversely, Nghe et al.

(2008), examined the same CTAB:NaNO 3 solution as that used by Masselon et al.

(2008) in a 1 mm x 67 pm glass channel and observed a constant value for the stress



plateau, independent of flow rate. The measured plateau was in good agreement

with that measured with a conventional rheometer and so they explicitly stated that

there was no evidence for the importance of diffusion in their system. Nghe et al.

(2008) acknowledged that their results were in contradiction to those of Masselon

et al. (2008), but offered no explanation for the discrepancy. These disparate results

may have been caused by the different aspect ratios of the channels, whose influence

of the flow of worm-like micelles has been investigated by Nghe et al. (2009). They

found that even for a channel with aspect ratio 16:1, the velocity field varied across

the entire width and height of the channel, voiding the assumption of two dimensional

flow necessary for the analyses of Masselon et al. (2008) and Nghe et al. (2008).

2.3.2 Extensional Flows

An introduction to microfluidic extensional rheometry is given in Pipe & McKinley

(2008). For an internal extensional flow, the test fluid typically travels through a

contraction or expansion such that the mean velocity of the fluid changes as it travels

through the microfluidic device. Careful consideration must be given to the shape of

the contraction in order to effect the desired extensional deformation. Much effort

into studying flows of dilute flexible-chain solutions (e.g. polyethylene oxide (PEO)

solutions in water) in planar-contractions has been undertaken by Rodd et al. (2005)

and Rodd et al. (2007). These contractions were used to explore elastically-induced

secondary flows and other instabilities. Additional work on entrance effects in flows

of PEO solutions in microfluidic devices has been completed by Kang et al. (2005)

and Kang et al. (2006). In these studies, large pressure drops in the entrance region

were observed and attributed to large shear stresses at the walls of the channels.

Additionally, the shape of the contraction, (i.e. planar, angled) was observed not

to influence this pressure drop. Groisman & Quake (2004) studied the flow of a low

weight percent polymer solution through a microfluidic rectifier, noting that elastic

stresses induced by extensional and compressive deformations were responsible for a



high degree of anisotropy in the pressure drop due to the flow in the rectifier. The

flow in a cross-slot geometry of the same worm-like CPyCl:NaSal and CTAB:NaSal

solutions considered in this thesis was studied by Pathak & Hudson (2006) in one

of the few papers on the extensional rheology of micellar systems in a microfluidic

device. Their study focused primarily on flow-induced birefringence and is discussed

in Section 2.4.

2.3.3 Summary of Microscale Flows

Microfluidic devices have been used to investigate the influence of non-local effects

(e.g. stress diffusion) on the flow of micellar solutions and to observe the high de-

formation rate rheology of these system. To date, the body of scientific literature

regarding flows of micellar solutions at the microscale is considerably smaller than

that of macroscale flows and much experimental work in this area is warranted in

order to gain greater insight into the non-linear rheology of these materials.

2.4 Flow-Induced Birefringence

Flow-induced birefringence is formally introduced in Chapter 3 and Appendix D.

Birefringence measurements may be used to observe the degree of molecular align-

ment and stretching in a material (i.e. its conformation) and in certain cases these

measurements may be related to the stress in the material with the semi-empirical

stress optical rule, see Fuller (1995). According to this rule, the optical anisotropy

in a material, An, is linearly proportional to its principal stress difference, Ao-, such

that An = CAo-, where C is the stress optical coefficient. Scientific papers in which

birefringence measurements have been used to probe the molecular structure of sur-

factant systems and to test the validity of the stress optical rule for these systems are

now plentiful in the literature.

Wunderlich et al. (1987) performed one of the earliest studies on the flow-induced

birefringence of surfactant solutions using a tetradecyltrimethylammoniumsalicylate



(TTAS) system. They observed the dependence of birefringence on concentration,

deformation rate and temperature. This study was followed by the work of Rehage

& Hoffmann (1991) who studied the same 100:60 mM CPyCl:NaSal system that is

considered in this thesis.

Shikata et al. (1994) studied CTAB:NaSal systems of various concentration ratios,

obtaining, for weak (low) deformation rates, a single value of C that was independent

of the concentration ratio. For strong (high) deformation rates, the stress optical rule

was found to be invalid. Later, Decruppe et al. (1997) tested another CTAB system,

with and without potassium bromide (KBr), finding agreement with the stress optical

rule, independent of temperature, for the data points they considered.

Lerouge et al. (2000) studied a CTAB:NaNO 3 system for which the stress optical

rule was found to hold at shear rates below that corresponding to the onset of the

stress plateau at Au, shown in Figure 2.4.1 (a). At higher rates, the authors observed

a deviation from the predictions of the stress optical rule and experimental results,

which they attributed to a deviation from Gaussian chain statistics for large defor-

mation rates. A shear banding CTAB:KBr:D 20 system was also studied by Lerouge

et al. (2004), who observed striations in the birefringence across the gap for lower

shear rates coinciding with the stress plateau. At the higher shear rates but still

coinciding with the stress plateau, three distinct birefringent bands shown in Fig-

ure 2.4.1 (b) were observed. This result was rationalized by the existence of a third

band separating the highly aligned phase from the isotropic phase.

Decruppe & Ponton (2003) studied four solutions of 100 mM cetyltrimethylam-

monium chloride (CTAC) at varying NaSal concentrations, two of which exhibited a

stress plateau, while the other two were shear thinning. A non-montonic variation in

C with increasing NaSal concentration was observed. The authors also found that

the stress optical rule failed at stresses on the order of the stress plateau for the shear

banding fluids, and for stresses near the onset of shear thinning for the shear thinning

fluids.
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Figure 2.4.1: From Lerouge et al. (2000). (a) Comparison between measured shear
stress and predictions from the stress optical rule. (b) From Lerouge et al. (2004).
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Lee et al. (2005) examined a semidilute solution of 100:60 mM CPyCl:NaSal,

claiming to have obtained the first point-wise measurements of birefringence of a

shear banding worm-like micellar system across the width of a gap in a Couette cell

geometry. The authors claimed that their observations of a change in sign of the

birefringence between the low and high shear rate bands indicated the existence of

two phases, suggesting that a shear-induced phase separation was an underlying cause

of the banding behavior.

One of the few studies of birefringence of a worm-like micellar solution flowing in a

microchannel is that of Pathak & Hudson (2006). In this work, measurements of flow-

induced birefringence were coupled with velocimetry measurements to test the stress

optical rule for extensional and shear flows in a 100:60 mM CPyCl:NaSal system and

a 30:240 mM CTAB:NaSal system. For the extensional flows, the authors observed

that the stress optical rule failed at flow rates for which a sharp birefringence band

appeared, indicating high or nearly saturated molecular alignment with the flow. It

was also found that the stress optical rule failed at a lower extensional Weissenberg

number than corresponding shear Weissenberg number.

2.4.1 Summary of Flow-Induced Birefringence

In general, the flow-induced birefringence in micellar solutions has been observed to

obey the stress optical rule, provided the fluid exhibited linear rheological behavior.

For deformation rates above a certain value (e.g. > 'i) the validity of the stress

optical rule is not universal. Additionally, complex structures have been observed in

banded flows revealing that the assumption that a birefringent band coincides with a

high deformation rate band is also not universally valid.

In summary, measurements of birefringence may be used to gain insight into the

state of conformation of a micellar system, but considerable care must be taken when

attempting to relate material stresses to its optical anisotropy especially for shear

banded flows or flows with considerable extensional characteristics.
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Chapter 3

Experimental Methods

"In theory it works in practice."

- Anon

The development and refinement of reliable rheometric techniques for use in the

measurement of the rheological properties of non-Newtonian fluids undergoing high-

rate deformations is the main focus of this text. Nevertheless, it is fitting that suitable

attention be given here, first, to the commonly employed experimental techniques for

determining the rheological properties of complex fluids. To that end, the first portion

of this chapter addresses the test fluids used in this study along with the conventional

rheometric techniques for the characterization of the rheological characteristics of

these fluids. The second portion of this chapter describes the materials, equipment

and experimental techniques used to observe the high-rate deformation rheology of

the test fluids, which is of primary interest in this work.

3.1 Rheological Characterization of Test Fluids

In this section, many of the most common types of rheological tests are described.

Furthermore, two worm-like micellar solutions and their rheological behavior are con-

sidered.



3.1.1 Rheology and Rheometry

Rheology is the study of anything that flows or can be deformed, (Larson (1998)).

Rheometry is act of quantifying the deformation of a material in order to determine

the material properties of that material, (Macosko (1994)).
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(b) Shear Deformation.

Figure 3.1.1: (a) A material undergoing an extensional deformation, sii in time At.
(b) A material undergoing a shear deformation, Egi in time At.

As such, the purpose of most any rheological test is to determine the material

response of a sample of interest to an imposed deformation, deformation rate or

stress, or a combination of these three. A deformation or strain, is a dimensionless

quantity and is equal to the ratio of a change in length to an initial or reference

length. A deformation is commonly denoted by the symbol eij defined in Figure 3.1.1.

A deformation or strain rate, is typically a quantity, having units of inverse time or

frequency, and it is equal to the ratio of a rate of change in length to an initial

or reference length. A deformation rate is commonly denoted by the symbol sij
again defined in Figure 3.1.1. A stress is a quantity having units of force per unit

area and is commonly denoted by the symbol 7 j depicted in Figure 3.1.1. The

. .. .................... ........... . .. .... .. .. .... ...........



symbols for all three quantities include the subscript ij since in all cases there is an

associated directionality of the imposed deformation, deformation rate and force, and

a directionality of the surface normal vector over which the imposed quantity acts. In

this case, i designates the axis coincident with the outward surface normal vector and

j designates the direction along which the deformation or stress is imposed. If i = j,

the material undergoes an extensional deformation with an imposed normal stress.

Conversely, if i f j, the material undergoes a shear deformation with an imposed

shear stress.

3.1.2 Rheological Tests

The rheometer' is the quintessential rheometric device which may be used to measure

both the viscous as well as elastic properties of a test sample. Common types of

rheometers and tests are described below.

Rotational Rheometer

A rotational, or torsional rheometer is a device which may be used to determine the

rheological behavior of a test sample undergoing a shear deformation2 , is. Shear

deformations are commonly encountered in flows in a pipe or in coating processes.

The archetypal rotational rheometer consists of a stationary plate and an axially

symmetric fixture, illustrated in Figure 3.1.2, separated by some distance, H, which

may vary with radial position. The test material is then positioned between the

fixture and the plate, and the fixture is rotated at either a constant angular velocity

Q or with a constant imposed torque, such that the shear rate and any r and z is

'zo = dv, and the resultant torque or angular velocity, respectively, is recorded. Any

axial loads exerted by the material on the fixture and plate may also be recorded.

These measured quantities are then related to the material functions of the test sample

1A viscometer is also a device which may be used to measure material properties, however, strictly

speaking, a viscometer is only capable of measuring viscosity and typically only under a single shear

rate.



(e.g. viscosity) through appropriate mathematical relations presented, for example,

in Bird et al. (1987) and Macosko (1994).

The two most commonly employed fixtures to measure material properties with a

rotational viscometer are the cone-and-plate and the plate-plate geometries, portrayed

in Figure 3.1.2, (see Macosko (1994) for additional details). A cone-and-plate geom-

etry, depicted in Figure 3.1.2 (a), consists of a flat bottom plate and an upper cone,

whose angle with respect to the flat bottom plate is t9. For small V, the gap height

may be shown to increase linearly with radial position, such that H = r tan'd e~rH,

where H is the gap height at some radial position r. The shear rate imposed by

a cone-and-plate is ',o = Q/V and it is therefore invariant to radial position. A

plate-plate fixture consists of two parallel plates separated by some user-selected gap

height, H, which is constant for all radial positions. The shear rate for a plate-plate

fixture is defined zo = rQ/H, and it varies linearly with radial position.

H H

(a) Cone-and-Plate Geometry. (b) Plate-Plate Geometry.

Figure 3.1.2: Two commonly used geometries to measure viscosity on a rheometer.

Small Amplitude Oscillatory Shear

A small amplitude oscillatory shear (SAOS) 3 test may be used to determine the

linear viscoelastic properties of a material of interest. In this test, a sinusoidally,

time-varying shear strain or shear stress is imposed on a material, such that the

2For describing a shear strain and shear strain rate, is it convention to use the notations 'yjj and

ij, respectively, instead of sij and sjj.
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shear strain of the material, -y, follows the relation -y(t) = Yo sin wt, where -yo is

the applied shear strain amplitude, w is the frequency of the deformation and t is

time. The anticipated shear stress, T, of the material associated with the imposed

deformation is also sinusoidal and time-varying, and it obeys the relation T(t) =

G'(w)yo sin(wt) + G"(w)yo cos(wt). G' and G" are defined, respectively, as the storage

modulus and loss modulus, and evidently they may depend on the frequency of the

applied deformation. For a particular frequency, w, G' characterizes the elasticity of

the material, or alternatively, G' may be thought to characterize the ability of the

material to store the energy required to deform it. Conversely, G" characterizes the

amount of energy loss associated with the deformation through viscous dissipation.

Arguably the simplest model for linear viscoelastic behavior is the Maxwell model

(see Appendix A). A mechanical analogue consists of a linear spring having modulus

Go, and a linear dashpot having damping coefficient r/o = GoAM, where AM is the

relaxation time of the material and is the characteristic time-scale over which a stress

in the material grows or decays. For a material which may be described by the

Maxwell model, the storage and loss moduli are

G'(w) = Go (3.1.1)
( +A M )2

G"(w) = Go I (3.1.2)
1 + (AM)

2

Clearly, when AMW = 1, G' = G" and at this frequency of the applied deformation,

the elastic and viscous properties of the material are of equal relative importance.

For such materials that exhibit Maxwellian behavior, this cross-over frequency, where

W = A-' may be readily identified from measurements with a rheometer and exploited

to determine the relaxation time of the material.

3The use of the phrase small amplitude, as opposed to large amplitude, indicates that the imposed

shear strain amplitude, yo, is small enough such that the test sample exhibits linear behavior and

all of its material functions are independent of -yo. For an introduction to non-linear viscoelasticity

see Dealy & Wissbrun (1990).



Steady Shear: Wall Driven

A steady shear test may be used to measure the viscosity of a material as well as the

shear-induced normal stress difference the material may exhibit. In making any such

measurement with a rotational rheometer, one aims to relate a measured or imposed

stress, Tzo, to a measured or imposed shear rate ze. The coefficient of proportionality

is the aforementioned viscosity, 77, which may itself depend on shear rate, such that

TzO = ?(7 zo)/zo. In rheology, the resultant plot of the measured shear viscosity against

shear rate is called a flow curve.

In the case of a rotational rheometer, a linear velocity profile in the material is

assumed based on the kinematics of the geometry, such that vo = rQz/H(r). This

kinematically driven flow is called Couette flow. In order to determine applied stress,

Tzo, it is necessary to relate the measured torque, F, applied on the sample by the

rheometer to the applied stress. The measured torque is the integral of the product

of the applied force, 2w77(Qzo)-zordr, and radial position, r, from r = 0 to r = R,

where R is the radius of the fixture.

F = 27Ff ,G.zo)Yzor 2 dr (3.1.3)

In the limit of small shear rates, all fluids exhibit a constant viscosity known as the

zero-shear-rate viscosity, 71o. It is only at deformation rates which are roughly equal

to or greater than the inverse of the longest relaxation time of the fluid that the vis-

cosity may deviate from the zero-shear-rate value, corresponding to a non-Newtonian

response. In addition to a viscosity, most non-Newtonian fluids also exhibit a non-

zero first normal stress difference, N1 -=roo - Tzz, and possibly a second normal stress

difference, N 2 = Tzz- Trr. These stress difference are manifestations of shear-induced

tension in the molecules as described in Bird et al. (1987). These elastic stresses are

characterized by material functions called the first and second normal stress coeffi-

cients, T1 and '2 respectively, such that Ni = f1i zo)2 and N2 = F2 (izo) 2 . As

with viscosity, both T1 and T2 may depend on imposed shear rate. The first normal



stress coefficient may be measured for a cone and plate if the rheometer is equipped

with an axial force transducer. Measurement of the second normal stress coefficient

is considered in Macosko (1994).

Steady Shear: Pressure Driven

A capillary rheometer is another device which may be used to determine the viscosity

of a material. This device consists of either a cylindrical or high aspect ratio, rect-

angular duct. The test material is forced through the capillary at either a constant

volumetric flow rate, Q, or a constant imposed pressure gradient, dP/dx. Such a

pressure driven flow is called Poiseuille flow, or Hagen-Poiseuille flow if the flow is

in a cylindrical duct.

One might consider the use of a capillary rheometer to determine the inertia-free,

rheological behavior of a material, especially at high deformation rates as discussed in

Pipe et al. (2008), which would be unattainable with a rotational rheometer due to

the onset of turbulence, flow instabilities caused by the large centrifugal acceleration

associated with high rotation rates or elastic instabilities in the fluid at high shear

rates.

As in the case of the rotational rheometer, the viscosity of a material may be

measured with a capillary rheometer if the applied stress at the wall of the capillary

duct, Twall, can be suitably related to the imposed deformation rate of the material

at the wall, waui. The derivation of this relationship, known as the Weissenberg-

Rabinowitsch-Mooney Correction, for flow in a high aspect ratio capillary duct is

given in Appendix B, and it can be written in the form

Awail = (2 dl) (3.1.4)
3 ( dn Twall

where AN is the wall shear rate of a Newtonian fluid corresponding to the volumetric

flow rate, Q, of the fluid through the capillary. It is shown in Appendix B, that AN =

6Q/HW 2, with H and W being the height and width of the channel, respectively,



and (H > W). Furthermore, the imposed or measured pressure drop, AP, across

the capillary duct of length, L, may be related to the wall shear stress by the relation

rwau APW/2L. This result is true in the limit of H > W, and in that case it is

independent of the material.

Eq. 3.1.4 may be used to determine the viscosity of a material as long as the no-slip

condition is experimentally realized. In order to apply Eq. 3.1.4, one must measure

the wall shear stress, Twall, at multiple flow rates, Q, to evaluate a discretized form of

the differential logarithmic term in Eq. 3.1.4. Evidently, for a Newtonian fluid, this

logarithmic term is unity for all flow rates.

The high shear rate rheological behavior of the fluids tested in this study was

measured with the Viscometer/Rheometer-on-a-Chip @ (VROC), (RheoSense Inc.).

VROC is a high aspect ratio, rectangular capillary rheometer containing four pressure

transducers positioned along the length of the capillary. The device may be used to

measure the transient as well as steady rheological behavior of Newtonian and many

non-Newtonian fluids in shear. The dimensions and features of VROC are listed in

Table 3.1.1. A description of this system is offered in Pipe et al. (2008). The channel

is fitted with four inline, 800 x 800 pm2 microelectromechanical systems (MEMS)

along its centerline which measure the local pressure. The MEMS sensor are posi-

tioned at distances from the entrance of the channel given in Figure 3.1.3. Previous

measurements of the channel roughness and profile obtained with a mechanical sur-

face profilometer are reported in Pipe et al. (2008), who found variations in channel

depth of less than 1% the total depth. Additional measurements of surface asperities

were obtained using a Zygo optical interferometer, in which the surface asperities in

180 pm x 130 pm sample areas at varying postions in the channel were found to be

on the order of 10 nm. A sample profile is given in Figure 3.1.4.

Extensional Rheometry

An extensional rheometer is a device which may be used to determine the rheological

behavior of a test sample undergoing an extensional deformation, iii. Extensional



Table 3.1.1: Dimensions and properties
study.

of VROC MEMS-based devices used in this

Flow

L

Figure 3.1.3: Schematic diagram of the VROC rectangular channel. Four MEMS
pressure sensors are flush mounted along the centerline of the channel with positions
given with respect to the channel entrance.

Channel ID Width Height Length Maximum
W [pm] H [mm] L [mm] P [kPa]

6V10C5100016 50.7 2.83 12.65 40
8VC05100072 51.2 3.308 8.8 125
9VD04100059 40.2 3.2 11 1000

MEMS Pressure Sensors

800jpm

800 pm

2.025 mm 4.525 mm 8.325 mm 10.825 mm

AP

......... .....



Figure 3.1.4: Surface asperity plot of a 180 pm x 130 pm sampling area along the
side wall of the VROC rectangular chip obtained with a Zygo optical interferometer,
20x objective.

deformations are commonly encountered in flows through a nozzle contraction and

in extrusion processes. The measurement of extensional properties of a material is

generally a non-trivial task, because it is very difficult to design a device which can

maintain a constant and homogeneous extension rate, while imposing deformations

in the material for which, at all times, the influence of gravity and fluid inertia are

small compared to the action of viscosity and elasticity.

The extensional viscosity, 77E, is the coefficient of proportionality between an im-

posed extensional strain rate, ii, and a imposed normal stress difference, Ti - rjj,

where the extensional viscosity is defined T E = (Tii - rjjUlii- The ratio of the exten-

sional viscosity to the shear viscosity is called the Trouton ratio. For a Newtonian

fluid in a uniaxial, extensional deformation Trouton (1906) showed that this ratio is

equal to three. Because of the different kinematics, the Trouton ratio of a Newtonian

fluid undergoing a planar, extensional deformation is four.

Transient Extensional Rheometry using Capillary Thinning

The Capillary Breakup Extensional Rheometer (CaBER) is a device which may be

used to apply a near step-extensional strain to a test sample such that the resulting

...........



extensional thinning of the sample due to capillary action can be recorded. In this

test, a fluid sample is loaded between two concentric, circular plates having diameter

ao, as depicted in Figure 3.1.5. A rapid step-extensional strain is then applied to the

sample, occurring on the order of 50 ms. The subsequent transient evolution of the

filament diameter is measured by a laser micrometer.

In general, at times only shortly after the application of the step strain, the thin-

ning process is governed by an interplay between fluid inertia, viscosity and capillarity.

At longer times, when the aspect ratio of the filament length to diameter has become

large, for a Newtonian fluid, the thinning process is governed by a balance between

viscosity and capillarity. For a non-Newtonian fluid, however, elasticity may also be

important as the filament thins, as discussed by McKinley (2005).

ao ai amid

Z Z Z

Lor r r

Figure 3.1.5: Three stages of a typical CaBER test. (Left) Unstrained fluid sample of
diameter, ao. (Center) Fluid sample of diameter, ai, immediately after cessation of
applied extensional strain. (Right) High aspect ratio, thinning filament having time
varying diameter, amid.

Once the filament is of a high aspect ratio, the lubrication approximation may be

applied to relate the experimentally measured thinning rate of the filament diameter

at its mid-section to the instantaneous extension rate of the filament. In the ab-

sence of azimuthal velocity, the continuity equation for solenoidal flow in cylindrical

coordinates is

................... ....... ........ .......



1a(rv,) + vz= 0 (3.1.5)
r ar 8z

Evidently, ioz = izz and if the magnitude of the radial velocity may be assumed to

increase linearly with radial position then Vr dami where amid is the diameterdt amid

of the filament at an instant in time, then Eq. 3.1.5 reduces to

Ezz 2 damid (3.1.6)
amid dt

This result may also be obtained, by noting that, as pointed out by Anna & McKinley

(2001), Ezz = 2ln(ao/amid), which, when differentiated with respect to time yields

Eq. 3.1.6.

The normal stress difference, Tzz - Trr, in the filament may be determined by

noting that because the radius of curvature of the filament is small compared to the

radius of curvature of the fluid reservoirs above and below the filament depicted in

Figure 3.1.5, the Laplace pressure in the reservoirs is negligible compared to that in

the filament, and as such

2o-
Tzz - Trr = (3.1.7)

amid

where o is the surface tension of the fluid. Clearly the influence of hydrostatic pressure

is eliminated in this analysis.

The extensional viscosity, r/E, of the test fluid is simply the quotient of Eq. 3.1.7

and Eq. 3.1.6, whereby

o-
damid (3.1.8)

dt

For a Newtonian fluid, r/E is constant and accordingly the filament diameter, amid

decreases linearly with time, such that

amid= 1 -
(3.1.9)

a0 toc



where tc is the characteristic visco-capillary time and is given by Papageorgiou (1995)

to be tc = 12(1 + O)aoo/u, where qo is the Newtonian shear viscosity of the fluid.

# is a constant which determines the particular similarity solution of the thinning

behavior, and may be taken to be # = 0.175 for CaBER. The analysis for a non-

Newtonian fluid, however, is not necessarily as simple, since the extensional viscosity

may depend on extension rate. In the case where viscous effects are negligible and

the thinning process is governed by elasticity and capillarity, Entov & Hinch (1997)

determined an expression for the time evolution of the filament diameter using a

multi-mode FENE model.

1/3

amid( ai) et/3. (3.1.10)
ai 2Aexto-)

Where ai is the midpoint diameter of the filament immediately after the application

of the step strain is complete, qp = qO - r7 is the effective polymeric viscosity, and

Aext is the longest characteristic relaxation time of the fluid for this extensional flow.

Accordingly, a highly elastic filament thins exponentially in time with a time constant,

Aext, which may be identified experimentally with the CaBER instrument.

Extensional Deformations: Pressure Driven

In the same way that the shear viscosity of a material can be measured with a cap-

illary rheometer, so too can the extensional viscosity of a material, in principle, be

measured with an analogous device. This experimental approach lends itself well

to obtaining large extension rates, which would be difficult to obtain using other

macroscale devices. This form of extensional rheometry, however, is still in its devel-

opmental stages, and due to the complex interplay between viscosity and elasticity

for such flows, experimental results obtained with this approach are generally not as

amenable to simple analysis as are the results of other approaches. In recent work

by Wang et al. (2010), however, an attempt has been made to decouple the vis-

cous and elastic stresses for flow of a foaming-grade polystyrene fluid in a hyperbolic



contraction.

In this study, the flow in hyperbolic contractions is considered, building on the

work of Oliveira et al. (2007). The use of a hyperbolic geometry, depicted in Fig-

ure 3.1.6, to study extensional deformations was proposed by James (1991). For an

antisymmetric contraction depicted in Figure 3.1.6 (b), having length, lc, height, he,

upstream width, we, width at the contraction exit, we, the width, w, at any x obeys

the relation

w(x) = (3.1.11)
S + X

where s = lcwc/(wU - wc) and K = swu. For a given volumetric flow rate, Q, the

extension rate along the centerline of the contraction, i, may be approximated as

the difference between the average velocity at the outlet of the contraction and the

average velocity at its inlet divided by the length, lc, over which the change in velocity

occurs.

Q -- (3.1.12)

The maximum Hencky strain, EH, of a material element flowing through the contrac-

tion occurs at its exit and is

EH= In ( ) (3.1.13)

Finally, if the extra pressure drop, AP, across the contraction can be measured, the

extensional viscosity, T E, of the fluid may be determined with the result derived in

Appendix C.

QAP (3.1.14)

where V is the volume of the contraction, given by Vc = Khe ln[(s + lc)/s]. For the

EVROC contractions, EH = 1.9.



Table 3.1.2: Dimensions and properties of EVROC used in this study. For the anti-
symmetric configuration, s = 140.4 pm, K = 4.072 x 105 pm2 , and V = 1.549 x 108

3
pm.

Channel ID Height Width Width Length Maximum Misc.
he [pm] w., [pm] we [[m] e [pm] P [kPa]

7VBE1000036 200 2900 433 800 40 Symmetric
7VBE1000044 200 2900 433 800 40 Antisymmetric

The high extension rate rheological behavior of the fluids tested in this study

was measured with the Extensional Viscometer/Rheometer-on-a-Chip @ (EVROC),

(RheoSense Inc.). The EVROC is a microfluidic device, which is fitted with MEMS

pressure transducers that are positioned in the same locations as those in the VROC

device. The symmetric contraction is positioned between the middle two transducers,

such that the transducers are approximately 1 mm upstream and downstream of the

contraction inlet and outlet. For the antisymmetric contraction, the upstream trans-

ducer lies roughly 1 mm before the contraction inlet, and the downstream transducer

1.8 mm beyond the outlet. The device may be used to measure the rheological be-

havior of Newtonian and many non-Newtonian fluids in extension. The dimensions

and features of EVROC are listed in Table 3.1.1.

2le le

(a) EVROC Symmetric Channel (b) EVROC Antisymmetric Channel

Figure 3.1.6: Schematics of the EVROC contraction channels.



3.1.3 Test Fluid Formulations and Rheological Properties

Two surfactant solutions have been examined in the experiments addressed in this

thesis. The first solution consists of 100 mM cetylpyridinium chloride (CPyCl) (Alfa

Aesar) and 60 mM sodium salicylate (NaSal) (Alfa Aesar) in de-ionized water. A so-

lution with this composition was discussed at length by Rehage & Hoffmann (1991).

The second solution consists of 30 mM cetyltrimethylammonium bromide (CTAB)

(Sigma Aldrich) and 240 mM NaSal (Alfa Aesar) in de-ionized water. Similar solu-

tions were studied by Shikata et al. (1994). The surfactant and counter ion concen-

tration ratios were selected because it is known that for these ratios the molecules

form worm-like micelles.

The solutions were allowed to equilibrate at room temperature, in a cool, dry and

unlighted environment for many weeks from the time of their preparation before any

experiments were conducted. These two systems exhibit distinctly different rheologi-

cal behavior under shear. Both solutions are strongly shear thinning, but the CPyCl

system exhibits shear banding, a phenomenon which has been described elsewhere in

this thesis, across many decades of shear rates. Furthermore, these micellar solutions

possess large stress optical coefficients, C, which made them ideal for the birefrin-

gence measurements explained below. In this study, the literature values of the stress

optical coefficient for each solution were assumed valid. Rehage & Hoffmann (1991)

have reported the stress optical coefficient for the CPyCl system as -2.3 x 10-7 Pa-1

at 20 "C. Shikata et al. (1994) listed the stress optical coefficient of the CTAB system

as -3.1 x 10-7 Pa-1 at room temperature (~25 0C). Both of these solutions were also

studied by Pathak & Hudson (2006), who considered experiments similar to those

described in this theses.

Linear Viscoelasticity

The linear viscoelastic response of both micellar solutions at 22 0C was measured with

an AR-G2 stress-controlled rheometer (TA Instruments). The resulting data from the



SAOS test have been fitted with a single mode Maxwell model, following the method

of Turner & Cates (1991), according to which, a least squares fit of a single mode

Maxwell model was fitted only to the moduli at frequencies equal to or less than the

frequency at which G" reaches its maximum. From this fit, values of Am, ro and Go

in Table 3.1.3 were determined. Both fluids may be seen to have Maxwell relaxation

times given in Eq. 3.1.1 and Eq. 3.1.2, on the order of one second. In addition to

being the respective Maxwell relaxation time for these micellar solutions, this value

of Am corresponds also to the value in Eq. 2.2.2.

From the work of Turner & Cates (1991), it was also possible to estimate the

breaking time, Ab'reak for each system. On the Cole-Cole plots in Figure 3.1.8, a

line of slope -1 was fit to the storage and loss moduli for which the slope between

adjacent points was -1 ± 0.5. The intersection of this line with the abscissa cor-

responds to an asymptotic plateau modulus, Gpateau. The storage and loss mod-

uli were then non-dimensionalized by Gpiateau, whereby p'(w) = G'(w)/Gpiateau and

p"(w) = G"(W)/Gpiateea. The diameter of the of the fitted semi-circle in the non-

dimensionalized Cole-Cole plots were then related to the breaking time, Abreak ac-

cording to the theory of Turner & Cates (1991). The reptation time, Arep was then

obtained from Eq. 2.2.2. These timescales are listed in Table 3.1.3.

At high frequencies, w > A-', both fluids exhibit a minimum in G", indicating the

importance of the breathing and Rouse relaxation modes discussed in Section 2.2.2.

Estimates of the microstructural features may be made using the theory found

in Doi & Edwards (1986). The correlation distance, (, being the absolute distance

between entanglement points, in an entangled network follows the relation

kBT 3\

G ~ (3.1.15)\Go ,

where kB is the Boltzmann constant4 , T is absolute temperature and Go is the plateau

modulus. Values of ( for both micellar systems in this study are listed in Table 3.1.3.

Furthermore, the entanglement strand length, 1e, being the arc length along the mi-



celle between two adjacent entanglement points may be estimated as

le ~, 53/ 2/3ai (3.1.16)

where lpersist is the persistent length, which may interpreted as the lengthscale on

which the micelle acts as a rigid rod. This quantity can be determined from measure-

ments of optical anisotropy in a material as outlined by Shikata et al. (1994).

An estimate of the average contour length, (1), being the arc length of a fully

extended micelle, may be determined according to the work of Granek & Cates (1992).

In the case of Abreak > ARouse, where ARouse is the Rouse relaxation time of the micelle,

a lower bound for le is

le G"
-i (3.1.17)(l) Go

Here, 1e and (1) have been determined based on reasonable assumptions for lpersist,

all of which are presented in Table 3.1.3.

Shear Rheology

The steady shear rheology of these systems at low to moderate shear rates was mea-

sured on an advanced rheometric expansion system (ARES) strain-controlled rheome-

ter (TA Instruments, New Castle DE, USA). All tests were conducted at 22 oC. Mul-

tiple tests of each solution were conducted to ensure the reliability of the rheological

measurements. The rheological properties of these solutions have been summarized

in Table 3.1.3.

The steady shear data is presented in Figure 3.1.9. In the limit of low shear

rates, both fluids exhibit Newtonian behavior, with zero-shear-rate viscosities listed

in Table 3.1.3. For shear rates of the order ~ A-' or greater, evidently both

systems exhibit a pronounced deviation from Newtonian behavior. The dependence

of the viscosity of both fluids on shear stress, in the shear thinning regime, may be
4 kB = 1.3806503 x 10-23 J/K
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Figure 3.1.7: Storage and loss moduli of 100:60 mM CPyCl:NaSal and 30:240 mM
CTAB:NaSal solutions in SAOS at 22 'C. The notations G. and G' denote the dis-
cretely measured moduli at wj, following the notation in Bird et al. (1987). The solid
and dashed lines are the resultant fit of a single mode Maxwell model with AM, r/
and Go given in Table 3.1.3.
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Figure 3.1.8: Non-dimensionalized Cole-Cole plots of 100:60 mM CPyCl:NaSal and
30:240 mM CTAB:NaSal solutions in SAOS at 22 "C. p'(w) = G'(W)/Gpateau and

p"(w) = G"(W)/Gpiateau. As prescribed by Turner & Cates (1991), the dashed line of
slope -1 denotes the asymptotic behavior of G' and G" as w -+ oc, provided only
reptative processes are prevalent at high frequency.
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fit with the Ellis model, given in Bird et al. (1987), of the form

1 ± (3.1.18)
1 + r

where qo is the zero-shear-rate viscosity as usual, 71/ 2 is the value of the shear stress

at which the viscosity is equal to half its zero-shear-rate value, and a is a fitting

coefficient 5as listed for both fluids in Table 3.1.3. Fits of this model to the flow curve

of each fluid are shown in Figure 3.1.10. It is also apparent from Figure 3.1.9, that

in the regime of rate dependent viscosity, a constant shear stress may be applied to

deform the CPyCl system across nearly two orders of magnitude of shear rates. Such

a stress plateau is the hallmark of a shear banding solution as discussed in Cates

& Fielding (2006) and Rothstein (2009). In this regime, the viscosity of the CPyCl

system is also essentially inversely proportional to shear rate. For the CPyCl system,

shear banding occurs at shear rates above approximately ~ AV ~ 0.25 s-1. These

results for the CPyC1 system are very similar to those of Lee et al. (2005). For the

shear rates measured with the ARES, the CTAB system may be seen to exhibit a

markedly shear thinning, T ~ -0.6, behavior for measured shear rates greater than

0.5 s-1 .

At shear rates greater than i 3AM-~ 1 s 1 , both fluids exhibit remarkably

similar first normal stress differences, N 1, as measured by the ARES rheometer. This

normal stress difference for both fluids may be seen to increase superlinearly with

shear rate, and for the lowest shear rates at which N1 was measured, N1 ~ 2, which

is depicted by the black line in Figure 3.1.9 (a). The quadratic scaling is in agreement

with the predictions of the upper convected Maxwell model, see Bird et al. (1987),
for which the first normal stress coefficient, T1, is predicted to be T1 = 2 qoAM. This

T1 is, however, a substantial over estimate of the actual first normal stress coefficient,

since, for the shear rates at which N1 was measured, the viscosity of neither fluid is

5 The Ellis model reduces to the simpler Power Law model, 'r = mn-1, (Bird et al. (1987)), in
the limit of r >> TF2, for which a = n-1.
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its respective zero-shear-rate value. In reality, for both systems, T1 _ 3 Pa.s2.

For the CPyCl system, at - > 10 s-1, and for the CTAB system at ' > 30 s,

the meniscus of the test fluid becomes unstable and a large fraction of the sample

is ejected from the gap. This instability is not a result of the large centrifugal ac-

celeration associated with the rotational motion of the fluid, but rather the large

normal stress difference associated with the high deformation rate which overcomes

the resisting Laplace pressure of the meniscus. Such edge fracture was initially noted

by Hutton (1963), who proposed that the instability occurred when the first normal

stress difference was

Ni = H (3.1.19)
Hrim

where r, is a value inversely proportional to the fraction of elastic energy converted

to surface energy, o- is surface tension and Hrim is the gap height at the rim of the

fixture. In later work, Tanner & Keentok (1983) found that the second normal stress

difference dictated the onset of the edge instability, whereby

0-
N2 = (3.1.20)

rm

This proposal was supported experimentally by Lee et al. (1992), who have argued

that N2 is the relevant elastic stress which dictates instability, having found that

edge fracture for a selection of six polymer solutions occurred at an approximately

constant value of N2 , though different values of N1 for each fluid. Tanner & Keentok

(1983) also noted that inertia should only be of relevance when !pR 2 W2  /Him

or, alternatively, the critical shear rate at which edge fracture should occur is

20 = (3.1.21)
PHrim

For the systems studied here, the surface tension may be estimated as o- ~ 0.032

N/m as reported in Bhardwaj et al. (2007), p ~ 1,100 kg/m 3, and for a cone and plate



fixture, Hrim = R7, with R = 0.025 m and 19 = 0.0402 rad, thus Hrim = 0.001 m.

Hence the onset of an edge instability due to fluid inertia should have occurred at shear

rates around ', = 440 s-1, and accordingly inertia is not the dominant cause of edge

fracture. Supposing r 1 in Eq. 3.1.19, then the onset of edge fracture due to elastic

stresses would occurr when elastic stresses are of order 32 Pa. As no measure of N 2

was possible in this study, it will suffice to mention that the CPyCl solution exhibits

the edge instability when N1  d 300 Pa and the CTAB solution when N1  - 1000

Pa, and in light of the negligible role of inertia in the instability, it seems likely

that elastic stresses are responsible for the edge fracture. This instability rendered

high shear rate rheometry of these fluids with a rotational rheometer impossible, and

provided further motivation for pursuing microfluidic rheometry.

The high shear rate rheology of both solutions was determined with VROC (chan-

nel 8VC05100072), and the resultant flow curves are presented in Figure 3.1.11. In

these tests, a constant volumetric flow rate through the channel was imposed using

a Harvard PHD 4400 programmable pump (Harvard Apparatus) and a glass syringe

(Hamilton Gastight). The pressure drop along the length of the channel was measured

for each imposed flow rate and related to the wall shear stress. Multiple tests were con-

ducted to ensure repeatability. The Weissenberg-Rabinowitsch-Mooney Correction in

Eq. 3.1.4 was applied to determine the true wall shear rate. A third order polynomial

was fit to five consecutive data points to determine numerically the local differential

correction term in Eq. 3.1.4 for each data point. Due to uncertainty in fit, however,

the correction was only applied to those data points for which 0 < dnQ < 10, all

other data points were left as the apparent Newtonian shear rate.

The temperature of the test fluids were controlled with a thermal jacket system

(Rheosense Inc.), coupled with an F12-ED Refrigerated/Heating Circulator (Julabo

Inc.). The temperatures of the fluid samples within the test channel were recorded

with a sensor in the VROC device, and they varied between 22 and 22.5"C throughout

the duration of the tests.

Similar measurements without the cooling system have been made and a tempera-
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ture rise of 2 to 3C during the test was observed. The influence of viscous heating due

to the high shear rates, (Pipe et al. (2008)), may be considered on non-dimensional

grounds if one considers the magnitude of the Brinkman number, Br, which is the

ratio of viscous heating to conductive heat transfer within the fluid. This ratio is

Br = T (3.1.22)
k AT

where n is viscosity, (U) is a characteristic speed, k is the thermal conductivity of

the fluid and AT is a characteristic temperature drop in the fluid. Evidently, for this

flow, (U) = Q/WH, where Q is volumetric flow rate, and W and H are the width

and height of the channel, respectively. Seeking a conservatively high estimate of Br,

one may assume q is the zero-shear-rate viscosity of the fluid, although in reality the

true viscosity at high flow rates was substantially smaller than the zero-shear-rate

value. For the CPyC1 solution, then, 7 ~ 80 Pa.s, Q = 10 pzL/s, being the maximum

flow rate experimentally realized, W and H given in Table 3.1.1, k ~ 0.6 W/m0 C for

water and AT = 0.5 "C being representative of the temperature fluctuations during

the experiment. In this case, Br ~ 1, and hence in the worst case viscous heating was

adequately balanced by the cooling system and temperature variations in the fluid

may be neglected.

Tests were completed with a sweep of increasing wall shear rate, followed by a

sweep of decreasing wall shear rate in order to check for hysteretic fluid behavior.

It is clear from the flow curve in Figure 3.1.11 (a) that the CPyCl solution ex-

hibits no hysteretic behavior for the shear rates observed with VROC. For the CPyCl

solution a stress plateau at apparent shear rates spanning four order of magnitude is

evidenced in Figure 3.1.11 (a). As before the viscosity at shear rates corresponding

to the stress plateau is inversely proportional to shear rate. At shear rates greater

than approximately ' ~ 500 s-, the stress again increases with increasing shear rate,

indicating a departure from the stress plateau. The viscosity at A > 500 may be seen

in Figure 3.1.11 (b) to decrease further with increasing shear rate, with q ~ <-05.



The CTAB solution exhibits a multi-valued viscosity for 3 < < 30 s-1, as may be

seen in the flow curve in Figure 3.1.11 (c), that is path dependent at the shear stresses

that were minimally, but reliably detectable with VROC. For the sweep of increasing

wall shear rates, the apparent viscosity measured with VROC is considerably lower

than that obtained with the conventional cone-and-plate rheometer. For the sweep

of decreasing wall shear rates, however, it is clear that the flow curve obtained with

VROC superposes nicely with that obtained with the conventional rotational rheome-

ter. The reason for this hysteretic behavior is not entirely clear. It is possible that

in this microscale geometry, a flow instability accompanies the transition from essen-

tially Newtonian behavior at very low wall shear rates to non-Newtonian behavior at

the moderate shear rates for which the multi-valued viscosity occurs. This instability

may be a low shear rate analogue of the vorticity banding instability in a CTAB:N0 3

solution at high shear rates observed by Fardin et al. (2009). For a small range of

shear rates spanning less than an order of magnitude greater than those at which

the bifurcation in the apparent viscosity occurs, the CTAB solution exhibits a stress

plateau indicative of shear banding. At shear rates greater still, 1 > 300 s-1 , the

stress increases with increasing shear rate, but the viscosity as seen in Figure 3.1.11

(d) decreases further with increasing shear rate, having a power law dependence on

shear rate (i.e. r/ ~ ", n ~ 0.4) similar to that at the shear rates at the onset of

shear thinning.

Extensional Rheology

The extensional rheology of the test fluids at low to moderate extension rates and

to large extensional strains was measured with CaBER. The sequence of filament

profiles in Figures 3.1.12 and 3.1.13 are typical of what was commonly observed as

the filament thinned under the action of capillarity. In the tests of the CPyCl solution

shown in Figure 3.1.12, the unstrained filament diameter was ao = 6 mm, the initial

filament height was ho = 2.4 mm and the final gap was hf = 7.1 mm, corresponding

to a Hencky strain of EH = ln(7.1/2.4) = 1.08. For the tests of the CTAB system



Table 3.1.3: Rheological and rheo-optical properties of the test solutions at 22 "C.
*Persistence length for CPyCl has been assumed. *Persistence length for CTAB so-

lution given in Shikata et al. (1994) has been assumed. *Here the stress optical

coefficients given by Rehage & Hoffmann (1991) and Shikata et al. (1994) have been
assumed to be valid at 22 "C.

100:60 mM 30:240 mM
CPyCl:NaSal CTAB:NaSal

Maxwell Model
AM [s] 2.9 1.7

7o [Pa.s] 78 7.5
Go [Pa] 27 4.5

Ellis Model
i 0 [Pa.s] 83 8.3

a 25 2.8
Ti/ 2 [Pa] 15 4.1

T[1 [Pa.s 2 ] 3 3
Abreak [S] 1.5 0.8
Arep [s] 5.5 3.4

Gpiateau [Pa] 33 5.5
G'l [Pa] 2.5 0.6

( [nm] 50 97
1persist [nm] 20* 26*

le [nm] 92 230

(1) [Am] 1.2 1.7
Aext [s] 4.0 2.3

C [Pa-1 ] -2.3 x 10-7* -3.1 x 10-7*



seen in Figure 3.1.13 the unstrained filament diameter was ao = 6 mm, the initial

filament height was ho = 2.1 mm and the final gap was hf = 6.2 mm, corresponding

to a Hencky strain of EH ln(6.2/2.1) = 1.08. The top end plate was displaced to its

final position at an exponential rate over a 50 ms period. The time t = 0 corresponds

to the instant the application of the step strain was complete.

The evolution of the filament diameter for both fluids may be seen in Figure 3.1.14.

In these plots, a1 is taken as the diameter of the filament at t = 0, coinciding with

the completion of the applied strain. The two fluids thin in qualitatively different

manners. The CTAB solution, by virtue of its low viscosity initiates elasto-capillary

thinning shortly after the application of the step strain. It is also clear from the

images in Figure 3.1.13 that the majority of the filament remains on the lower plate

during the test. The considerably more viscous CPyCl solution exhibits a prolonged

period of visco-capillary thinning followed by a relatively abrupt transition to the

elasto-capillary thinning preceding rupture of the filament.

The extensional relaxation time, Aext, given by Eq. 3.1.10 for both fluids was

obtained from the slope of a best-fit line to the results given in Figure 3.1.14 as

indicated on the plots. These values are listed in Table 3.1.3. The determined exten-

sional relaxation times are roughly twice their respective Maxwell relaxation times,

(Aext/AM a 2). This ratio compares well to the work of Kim et al. (2010), who stud-

ied a 100:50:100 mM CPyCl:NaSal:NaCl system and observed Aext/AM ~ 1.3, though

it differs from the findings of Yesilata et al. (2006), who studied EHAC:NH 4Cl sys-

tems and found Aext/AM ~ 0.3. These variations indicate that relaxation processes

in micellar systems depend on the kinematics of the imposed flow field (e.g. SAOS

versus extension flow) as well as the constituent molecules.

For this study, tests with the EVROC were completed using only the antisymmet-

ric configuration. No temperature control device was used during the experiments

during which ambient temperature varied between 21 and 23 'C. No corrections for

decoupling the shear and extensional contribution to the pressure drop, as discussed,

for example by Wang et al. (2010) were applied to the results. The apparent ex-
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Figure 3.1.12: Filament profiles of a CaBER experiment with the 100:60 mM
CPyCl:NaSal solution at 22-23 'C. The time trup is the time at which the filament
ruptures. The applied Hencky strain is EH = ln(hf/ho) = 1.08. Plate diameter was
ao = 6 mm, corresponding to the width of the dark region at the bottom of each
image.

(a) t < 0. (b) t = 0. ()t = 'r4P. (d) t =- 2P. (e) t = 3t. (f u t= t,u,

Figure 3.1.13: Filament profiles of a CaBER experiment with the 30:240 mM CTAB
solution at 22-23 "C. The time trup is the time at which the filament ruptures. The
applied Hencky strain is EH = ln(hf ho) = 1.08. Plate diameter was a0 = 6 mm,
corresponding to the width of the dark region at the bottom of each image.
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Figure 3.1.14: Extensional rheology of 100:60 mM CPyCl:NaSal and 30:240 mM
CTAB:NaSal solutions at 22-23 "C measured with CaBER. Applied cH = 1-08-

tensional viscosity, rE(i), as given in Eq. 3.1.14 are plotted in Figure 3.1.15. The

normal stress difference, N1, obtained from the relation N1 = nE ()t is also included

in Figure 3.1.15. At the lowest apparent extension rates, both fluids exhibit constant

extensional viscosities, having apparent plateau values approximately 100 times their

respective zero-shear-rate viscosities. This considerably large apparent Trouton ratio

has also been observed for a Newtonian fluid by the author of this thesis and is a

result of the mixed nature of the flow leading to a superposition of pressure drops

due to shear and extensional stresses as discussed in Pipe & McKinley (2008). At

increasing apparent extension rates, evidently the extensional viscosity of both fluids

decreases, until at extension rates 10 < i < 100 s-1 (20 < De = AMi < 200), both

fluids exhibit constant apparent elastic stresses. The plateau in stress may coincide

with a critical stress, corresponding to an approximate value of Ni in Figure 3.1.15,

at which the micelles in each system break en masse, in a manner similar to the phe-

nomenon described for the experiments of Bhardwaj et al. (2007) and in simulations

of Cromer et al. (2009). At still higher extensional rates, i > 100 s1, for both

systems, Ni increases with increasing i.
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Figure 3.1.15: Extensional rheology of 100:60 mM CPyCl:NaSal and 30:240 mM
CTAB:NaSal solutions at 21-23 0C obtained with EVROC.

Flow-Induced Birefringence

A birefringent material is one whose ordinary and extraordinary indices of refrac-

tion 6, ni and n 2, are not equal, (Fuller (1995)), as depicted in Figure 3.1.16 (a). This

difference in refractive indices is known as optical anisotropy (i.e. a directional depen-

dence), and it is defined An = ni - n2 . As a consequence of this optical anisotropy,

the state of polarization of a lightwave traveling through the material will change as

it propagates through the material.

Certain polymeric and micellar solutions exhibit flow-induced birefringence, whereby

a deformation imposed on a material induces optical anisotropy in that material as a

result of changes in the molecular conformation. The reader is encouraged to refer to

Fuller (1995) and Larson (1998) for comprehensive treatises on the molecular nature

of the optical properties of complex fluids. The derivation of many of the following

results, however, is discussed at length in Appendix D of this thesis.

In the study presented in this thesis, we are interested in determining the ma-

terial stresses from measurements of flow-induced birefringence, induced by velocity

6Refractive index: ni = c/vp,i where c is the speed of light in a vacuum, op,i is the phase speed
of light in a medium along the i-direction.

N
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Figure 3.1.16: (a) Optically anisotropic material with principal optical axes and in-
dices of refraction, ni~ and ni2 in the xy-plane. A monochromatic, polarized lightwave

propagating along the z-axis is depicted. Projections of the electromagnetic vector of
the light wave onto the xz-plane (red) and yz-plane (blue) are shown. (b) Material
deforming along principal stress axes and with principal stresses, ui and o-2 in the

xy-plane.

gradients in a flowing complex fluid. The stress optical rule provides the link between

stress in the material and its optical anisotropy. The stress optical rule states that

the principal stress difference, Zo- = og- o-2 of a material with principal stresses

ogi and o-2 , as depicted in Figure 3.1.16 (b), is linearly proportional to the difference

between the ordinary and extraordinary indices of refraction, An. The coefficient

of proportionality is the stress optical coefficient, C, which depends on temperature

and other material properties, and is generally an empirically determined value for

a particular material, as for example in the works of Rehage & Hoffmann (1991),

Shikata et al. (1994) and Lerouge et al. (2000).

An =Cao-(3.1.23)

The stress optical rule follows from the assumption that, as the polymeric stress tensor

and the average orientation of a polymer network both obey Gaussian statistics, the



principal optical axes of a polymer coincide with the principal stress axes, as outlined

in Fuller (1995). One may note, then, from Eq. 3.1.23, that if the stress optical

coefficient, C, of a material is known, and An can be ascertained, it is possible

to make optically, non-invasive measurements of the anisotropic state of stress in a

material.

The optical anisotropy of a material An, cannot be measured directly, but an

experimentally measurable quantity, which may be related to the optical anisotropy

of a material is called retardance and is denoted by the symbol 6, given in radians.

The retardance is the phase angle between two mutually orthogonal lightwaves prop-

agating in space, (e.g. the red and blue lightwaves depicted in Figure 3.1.16 (a)). A

dimensional retardance, being denoted r, and having units of length, may be obtained

if one considers the wavelength of the light wave, A, by the relation

6- = 
(3.1.24)

27r A

Retardance may be related to the optical anisotropy of a material, An, if An is known

along the direction of light propagation. In this case of constant An, for a birefringent

sample having length, L, along the direction of light propagation, (e.g. along the z-

axis depicted in Figure 3.1.16 (a)), then the retardance and optical anisotropy are

related by the expression

6 - AnL (3.1.25)
27 A

The principal stress, o and U2, are the eigenvalues of the two-dimensional stress

tensor which characterizes the deviatoric stresses associated with the material defor-

mation depicted in Figure 3.1.16 (b). The principal stress difference, AU = 1 - o2,

may be related to the stresses in the xy-frame via Eq. 3.1.26.

Ao -= Nj + 42 (3.1.26)



Where 'ry is the shear stress and N is the first normal stress difference, as described

in Section 3.1.2, such that N1 = rzz - ryy.

The second quantity of interest is called the azimuthal angle and is denoted by

the symbol x. The azimuthal angle is the orientation of one of the principal axes with

respect to some global laboratory reference frame, and, in the case of Figure 3.1.16,

X is the angle between the first principal axis and the x-axis. The azimuthal angle is

related to rxy and N1 with Eq. 3.1.27.

12r
X = - arctan 2xy (3.1.27)

2 (N1

Since, in general, the stress tensor is symmetric, its eigenvectors, which coincide

with the principal axes, are generally mutually orthogonal. Accordingly the second

principal axis, whose orientation with respect to the x-axis in Figure 3.1.16 is denoted

by #, is related to X by the simple relation # - x + 7/2.

Experimental evidence suggests that the stress optical rule may be assumed valid

for flow of worm-like micellar systems provided the material exhibits predominantly

linear behavior, as seen, for example, in the work of Shikata et al. (1994), Lerouge

et al. (2000) and Decruppe & Ponton (2003). The validity of the stress optical

rule, particularly, in completely describing the non-linear rheology of these solutions,

however, has come in doubt in certain cases by the works of Lerouge et al. (2000) and

Pathak & Hudson (2006) among others, as discussed in Section 2.4. In this study, the

stress optical rule has been used to probe qualitatively the rheology of the systems

studied, and in certain cases quantitative comparisons between experimental results

and predictions of the rule are made.

3.2 Experimental Setup

In this section, the experimental equipment and techniques that were used in this

study are addressed. The basic components for each experiment consisted of a



microscope, an imaging system, test geometry and fluid, glass syringe (Hamilton

Gastight), syringe pump, PHD 4000 programmable pump (Harvard Apparatus) or

Multi-PhaserTM NE-1000 programmable pump (New Era Pump Systems, Inc.). Sy-

ringes were selected appropriately, such that for a specified volumetric flow rate, the

pump functioned well within its limits of operation. Syringes were connected to

test geometries using Tygon@ microbore tubing (inner diameter 0.508 mm (0.020"))

(Cole Parmer Instrument Co.) and metal connector joints (inner diameter 0.254 mm

(0.010")) (New England Small Tube Corp.), which were bent to ensure a good seal,

by reducing the bending moment on the joints due to the weight of the microbore

tubing. In all tests, the length of the tubing was kept to a minimum in order to

reduce compliance in the entire system, thereby shortening the duration of experi-

mental transients. Experiments were performed in climate controlled rooms in which

the temperature was recorded to have fluctuated between 22-24 'C for the duration

of all experiments.

3.2.1 Channel Fabrication

The microchannel rectangular rheometer was manufactured using a technique similar

to that of Guillot et al. (2006). Two anodized, 1 mm x 2 cm x 8 cm aluminum strips

were used to construct the sidewalls of the channel. The inside walls of the channel

were polished with 2000 grit sandpaper and thoroughly cleaned. The two strips were

glued together with a two-part epoxy (Devcon). A spacer was placed between the

strips to ensure a constant width between the strips. Once the epoxy had set, the

spacer was removed and the distance between the strips was checked with an optical

microscope in order to ensure that the channel walls were parallel. Thin layers of

the same epoxy were spread on the top and bottom of the strips and 150 pm thick

microscope cover slips were pressed onto the adhesive. Care was taken to ensure

that no epoxy seeped into the channel. Luer stub adapter syringe tips were then

adhered to the channel at both ends and additional epoxy was added where needed



to ensure the channel was sealed. A step-by-step procedure is given in Appendix F.

The dimensions of the straight channel used in this study were width, W = 130 ± 5

pm, height, H = 1,000 ± 10 pm, and length, L = 5 cm, as depicted in Figure 3.2.1.

epox epoxy cover slip::

H

cover slip

W

(a) Cross-section of straight chan-
nel. Schematic depiction is
roughly to scale.

polished
aluminum
sidewalls

syringe tip cover slip syringe tip epoxy seal

L
(b) Perspective view of straight channel.

Figure 3.2.1: Cross-section and perspective views of the straight, anodized aluminum
rectangular rheometer.

The antisymmetric hyperbolic contraction microchannels were fabricated with

polydimethylsiloxane (PDMS) (Dow Corning) using standard, soft photolithographic

fabrication processes described in Xia & Whitesides (1998). Scott (2004) and Rodd

et al. (2005) have also addressed additional relevant fabrication techniques in the



Figure 3.2.2: Schematic diagram of hyperbolic contraction.

manufacture of the PDMS microchannels used here for rheometry. Each mircochan-

nel was replicated from a male mold consisting of a silicon substrate and cured SU-8

2050 permanent epoxy photoresist (Micro Chem), Figure 3.2.3 (1). A brief proce-

dure outlining the replication process is given in Appendix F. Connector ports in

the semi-cured PDMS were punctured with a 0.50 mm stainless steel Uni-Core punch

(Harris), Figure 3.2.3 (3). Semi-cured PDMS replicates were sealed to a 150 pum thick

microsope cover slip, on which PDMS had been spun coat, Figure 3.2.3 (4). In this

fashion all four bounding walls of the channel where made of the same material. The

surface features of the spun coat layer are shown in Figure 3.2.5, with asperities on

the order of 0.5 pum. The dimensions of the contraction were length, lc = 1100 pm,

height, h, = 35 pm, upstream width, w, = 1000 pm and contraction width, we = 50

pm as depicted in Figure 3.2.2.

(1) PDMS Added (2) Semi-Cured PDMS (3) Punctured Channel (4) Finished
Microchannel

Figure 3.2.3: Simplified PDMS microchannel fabrication process.

............ . ..............



Each mold was fabricated in a Class 100 clean room. SU-8 2050 photoresist

(MicroChem) was spun coat on a bare silicon wafer to obtain a uniform film thickness

on the wafer surface, Figure 3.2.4 (2). A contrast enhancer, CEM 388SS (Shin Etsu

MicroSi) was also used in the fabrication of the mold, Figure 3.2.4 (4). Soulages et al.

(2009) have demonstrated that the use of this contrast enhancer facilitated well-

defined features in the microchannels and near perfectly vertical channel walls. The

presence of the contrast enhancer in the mold fabrication process also necessitated the

use of a BC 7.5 barrier coat (Shin Etsu MicroSi), which was added to the surface of the

SU-8 2050 prior to addition of the contrast enhancer, Figure 3.2.4 (3). The barrier coat

served to prevent cross-contamination of the photoresist and the contrast enhancer.

A high-resolution chrome mask (Advance Reproductions), shown in Figure 3.2.6, was

used in the UV exposure step, Figure 3.2.4 (5). Uncured material was removed with

suitable solvents, Figure 3.2.4 (7), and the resultant mold was examined under a

microscope to determine the ultimate quality of the mold. A more detailed procedure

describing this process is given in Appendix F.

(1) Bare Silicon Wafer (2) SU-8 2050 (3) Barrier Coat (4) Contrast Enhancer

(5) UV Exposure (6) Cured SU-8 2050 (7) Uncured
with Chrome Mask Material Removed

Figure 3.2.4: Simplified overview of mold fabrication process.

3.2.2 Micro-Particle Image Velocimetry

Micro-particle image velocimetry (p-PIV) is a correlative technique, in which one

images the temporal displacement of microscale markers moving in a flowing fluid

L - - Z



Figure 3.2.5: Surface asperity plot of a 900 x 680 pm sampling area of a cured PDMS,
spun coat cover slip obtained with a Zygo interferometer, 20x objective.

10 cm

10 cm

Figure 3.2.6: Depiction of chrome mask used in replication process.
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in order to infer the fluid velocity field, (Raffel et al. (1998)). In this study, p-PIV

has been used to measure the velocity fields in the flow of the two test fluids in each

microscale geometry in order to determine the corresponding strain rates for a given

flow.

In the simplest case, a PIV system consists of a camera, a light source, a transpar-

ent flow geometry and a test fluid that contains tracer particles, whose position the

camera can detect only when illuminated by the light source. In order to determine

the trajectory of the particles, the camera must capture a sequence of image pairs, for

which the elapsed time between the taking of each image is known. For a consecutive

pair of images, i and i + 1, having been taken a time At apart, the velocity, Vj of

the j-th particle in the image pair, having position vector +ri = (zyi, yj,i) in the first

image and position vector 7+,i+1 = (xj,i+1, Yj,i+1) in the second image, may be found

to be 7 j (rh,i+1 - r j,i)/At. A velocity field may then be determined by compiling

the velocity vectors of all the particles in the image pair as depicted in Figure 3.2.8.

If the flow is steady, a time averaged velocity field may be obtained by averaging the

velocity vectors measured over a sequence of image pairs.

Image i Image i+1 Velocity
Profile

Figure 3.2.7: Qualitative depiction of the translation of particle tracers in an image
pair. To aid the eye, the images are subdivided into a 3 x 3 grid, in a similar manner
to the algorithms used by most PIV software.

For experiments in which the scale of the flow is amply large, it is typical to

....... .... ....



use a laser to form a thin, focused light sheet which may be used to illuminate

a particular cross-section of the flow which is of interest. In examining flows in

microscale geometries, however, Meinhart et al. (2000) point out that optical access

may be restricted or the effective thickness of the light sheet may be on the order

of the dimensions of the geometry. Accordingly, an alternative approach for p-PIV

experiments is known as volume illumination, whereby the entire volume of a region of

flow is illuminated and the spatial resolution of all measurements must be controlled

by selecting suitable optical components (e.g. objective, light wavelength, camera

resolution, etc.).

For a particular optical objective and camera, the distance over which sample

features may be considered in focus is called the depth of field. The expression given

by Meinhart et al. (2000) may be used to determine the depth of field, 6z, for a

particular system.

6z = -A + e(3.21)
(NA) 2  (NA)M

In Eq. 3.2.1, n is the refractive index of the observed sample, AO is the wavelength

of imaged light (in a vacuum), NA is the numerical aperture of the objective with

magnification, M. The minimum resolvable feature size is denoted by e, and for a

system using a charge-coupled device (CCD) camera, e is the spacing between pixels.

Although a tracer particle may be fully in focus only in the depth of field, addi-

tional particles beyond the depth of field, though within its vicinity, may also con-

tribute substantially to the overall signal detected by the camera. Accordingly the

true depth over which measurements of the fluid velocity may be resolved is larger

than the depth of field, and it is called the depth of measurement. The expression

for the depth of measurement, 6zm, has also been given by Meinhart et al. (2000),

whereby any particle, having an imaged light intensity greater than 10% of its fully

in focus intensity, is considered to lie within the depth of measurement.



6z = +.++ dp (3.2.2)
(NA) 2  tanO

For this expression, the parameters given for Eq. 3.2.1 are the same, with 0 =

sin-1 (NA/n) and d, is the particle diameter. Eq. 3.2.2 holds in the case where

e/M > dp. Typical depths of field and measurement used in this study are presented

in Table 3.2.1.

Table 3.2.1: Working distance, WD, numerical aperture, NA, magnification, M,
depth of field and depth of measurement for typical experiments in this thesis. PIV-
Cam 14-10 and BlueFox are the two camera systems used in this study. For the [t-PIV
system used here, n = 1.33, A0 = 580 nm, e = 6.8 pm, dp = 1.1 pm.

PIV-Cam 14-10 BlueFox
Objective WD NA M 6z, e/M 6z e/M 6z

[mm] [ym] [ym] [ym] [ym] [yim]
10x 0.25 NA Standard 7 0.25 10 47.3 0.65 15.8 0.74 12.4
l0x 0.3 NA Plan Fluor 16 0.3 10 34.4 0.65 11.4 0.74 8.6
20x 0.5 NA Plan Fluor 2.1 0.5 20 14.5 0.32 3.9 0.37 3.1

40x 0.75 NA Plan Fluor 0.72 0.75 40 7.3 0.16 1.7 0.19 1.4
40x 0.9 NA Plan Fluor 0.3 0.9 40 5.1 0.16 1.2 0.19 1.0

A necessary assumption for the use of pi-PIV in flow diagnostics is that the tracer

particles do not themselves influence either the rheological properties of the test

sample or the kinematics of the velocity field. It is therefore important that the

particles be small compared to the smallest dimension of the flow geometry and that

they not alter the viscosity of the material. In the experiments studied here, both test

fluids were seeded with 0.02 wt.% 1.1 pm diameter fluorescent particles (Invitrogen),

having excitation and emission of 520 and 580 nm, respectively. Since the smallest

dimension of any geometry considered in this thesis was 35 pm or greater, the particles

have been assumed not to have influenced the flow. Furthermore, for particles having

a density similar to that of the test fluid, the volume fraction of the particles may be

approximated as 4 = 2 x 10-, for which the expression given by Einstein (1906) may

be used to predict a minimal increase in viscosity, 7 = 10(1+2.54)+0(4 2 )) = 1.0005,o.
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Figure 3.2.8: Schematic depiction of the depths of field and measurement. The tracer

particles are fully in focus within the depth of field. The tracer particles may still

be marginally resolved in the depth of measurement, though they cannot be resolved

beyond this thickness. The zyz-coordinate system is centered along the centroidal
axis of the channel.

Evidently, the presence of the particles increased the viscosity of the system by a

negligibly small amount.

The p-PIV system used in this study utilizes epifluorescence microscopy7and was

discussed at length in Scott (2004) and more briefly in Rodd et al. (2005). This sys-

tem consisted of a 1.4 megapixel (1376 x 1024 pixels) CCD PIV-Cam 14-10, exposure

time camera (TSI Instruments), a double-pulsed 532 nm Nd:YAG laser with pulse

width, ot = 5 ns. A G-2A filter was also used to allow only the emitted light with

wavelengths, A > 590 nm to impinge on the camera. For a given flow rate, the elapsed

time between consecutive image pairs, At, (1.2 < At < 60, 000 ps), was selected to

achieve a particle displacement (2d, < Ax < 7.5dp) suitable for analysis.

At least 25 consecutive images pairs for the straight channel and 75 for the hyper-

bolic contraction were ensemble averaged to determine full-field maps of the steady

71n epifluorescence microscopy, a light wave is used to excite fluorescent portions of the imaged

specimen, and only the resultant emitted light wave is observed. As a result, for epifluorescence
microscopy the light observed by the photodetector is not the same light that which initially impinges

on the sample.

.................



flow velocity profiles using a conventional cross-correlation PIV algorithm with the

Insight 6 software (TSI Insight). Interrogation windows of 16 x 16 pixels for the

straight channel and 32 x 32 for the hyperbolic contraction were used in the cor-

relation scheme. Each quadrant of an interrogation window was overlapped by the

respective quadrant of an adjacent window. Post-processing to remove spurious ve-

locity vectors and any subsequent data analysis of the velocity profiles was completed

using MATLAB with a script written by the author of this thesis.

Streakline images were obtained with BlueFOX (Matrix Vision) camera and a

continuous illumination mercury lamp with peak emission at 532 nm.

All focal planes were taken with respect to the bottom of each microchannel, which

was identied as the lowest plane for which a stationary fluorescent particles was in

focus. The uncertainty in the vertical position of a focal plane is accordingly of

the order of the uncertainty of identifying the lowest most particles, or equivalently

the depth of field, 6z, which is given for the each objective used in this study in

Table 3.2.1. Additional uncertainty was introduced from the size of a division on the

microscope focussing micrometer, which was determined to be 1.5 Pm.

Measurements of velocity profiles in the straight channel were completed with a

10x 0.3 NA objective. This objective yielded a viewing area encompassing the entire

width (y-axis in Figure 3.2.8) of the channel and approximately 1 mm sections along

the length (x-axis) of the channel. The depth of measurement, 6zm for this system

was 47.3 pm, so measurements were taken at planes above the bottom of the channel

at 50, 100, 150, 200, 250, 300, 350, 400, 450, 600, 750 and 900 pm. Measurement

planes above 450 pm, were found, in general, to capture an insufficient number of

particles to determine velocity fields. This weakened signal was attributed to reduced

light intensity at higher image planes caused by reflection and absorption of light at

lower imaging planes. Interrogation windows were 16 x 16 pixels, hence uncertainty

in the x and y-positions of a velocity vector were the size of the interrogation window,

corresponding to the horizontal error bars in velocity profile plots in Section 4.2.

To determine the average velocity profile for the flow through the straight channel,



the x-components of the velocity profile at a particular y-position were determined

by taking the ensemble average of all the measured x-velocities in the viewing area at

that particular y-position. Error in the value of the x-velocity, therefore, was taken

as the standard deviation of the ensemble average, corresponding to the longitudinal

error bars in velocity profile plots in Section 4.2. y-components of the velocity profile

were found to be negligibly small in comparison to the x-component at any position

in the channel.

Flow through the hyperbolic contraction was observed using similar techniques

as those used with the straight channel, but with a 20x 0.5 NA objective. Full-field

velocity maps were only measured at the centerplane of the contraction. Since the

average fluid velocity increased considerably along the length of the contraction, mul-

tiple images sets were acquired using appropriately adjusted time steps between laser

pulses, At. With the 20x objective used here, only portions of the entire contraction

could lie in the field of view, thus three image sequences of the contraction inlet, mid-

section and outlet, respectively were combined to obtain the velocity profile along the

entirety of the contraction. The x-component of the centerline velocity at a particular

x-position was taken as the average of the x-component of the velocity vectors in the

middle third of the outlet width of the contraction (i.e. y = ±8.3 pm). Error bars

in the velocities seen in the velocity profile plots in Section 5.2 correspond to the

standard deviation of those data points.

3.2.3 ABRIOTM System (CRi, Inc.)

The ABRIOTM imaging system is a commercially available instrument, provided by

CRi, Inc., originally designed to measure the birefringence of biological samples. The

system can make pixelwise resolved measurements of birefringence, and it can measure

retardance to within 0.02 nm.

With little modification this system has been used in the study described in this

thesis to measure the birefringence of flowing complex fluids in microscale geometries.



The basic components of the device are the interference filter and circular polarizer,

the liquid crystal compensator optic and the CCD camera. The optical train, or

combination of optical elements, of this device may be viewed in Figure 3.2.9.

The white light source, interference filter and circular polarizer together provide

a monochromatic (A = 546 nm), circularly polarized light wave. This light wave

then impinges on a sample with retardance, 6, and extinction angle, . The wave

then passes through a liquid crystal compensator containing two birefringent media

with fixed extinction angles and variable, but known retardances, a and 13, and a

linear polarizer with a fixed orientation. The emerging light beam then impinges on a

detector, which measures the intensity of the beam. The ratio of this measured final

intensity, I, and the initial intensity of the beam, 'In depends on these parameters

according to the following relation:

I 1
-= {1 + cos(a) sin(2E) sin(6) + cos(6) cos(3) sin(a) - cos(28) sin(6) sin(a) sin(3)}

lIm 2
(3.2.3)

The operating premise of the ABRIO system is presented in Shribak & Olden-

bourg (2003), but a simplified description of the system will be offered here. In the

taking of a single birefringence measurement of a sample, the ABRIO system actually

takes five images of that sample, varying the birefringence of the liquid crystal com-

pensator according to the five frame algorithm listed in Table 3.2.2. Five separate

measurements are required to apply the background correction as well as account for

any absorbance of light by the sample. Here a and 13 are the variable retardances of

the liquid crystal compensator as described above, while 0 is called the swing angle,

which can also be varied depending on the prevailing specimen retardance, to obtain

accurate measurements, with a typical value around 0.17 radians (100). Once the five

intensities have been measured, the parameters, A and B, may be calculated from

Eq. 3.2.4, from which the sample retardance and extinction angle may be determined

from Eq. 3.2.5 and 3.2.6. Algorithms that require as few as two measurements of in-
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Figure 3.2.9: ABRIO Optical Train.
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tensity are also described in Shribak & Oldenbourg (2003), and although they allow

for faster image acquisition, they are accordingly less accurate.

Table 3.2.2: Five frame algorithm for the ABRIO system.

Measurement a # Measured
Number Intensity

0 r/2
1 7/2-0 7r I1
2 7/2+0 7r 12

3 7r/2 7r - 0 13
4 -r/2 Tr+ 14

A = 1-12 tan = sin(2E9) tan(6)
11+12 210 2(3.2.4)

B t 112 tan = cos(2E ) tan(6)

f- arctan(v'A2 + B 2) if 1i + 12- 21o 0 (3.2.5)

r -- arctan(v/A2 +B 2) ifI 1 +1 2 - 210 < 0

-arctan(A) for A > 0 &B > 0

8) + arctan (A) for B < 0 (3.2.6)

r+ 1arctan (A) for A < 0 & B> 0

For measurements made by the ABRIO system, e always coincides with the orienta-

tion of the slow optical axis.

The ABRIO system can also apply a background correction to account for any

residual birefringence of the sample. This correction is made by taking some user-

specified background image, determining the birefringence in this image, calculating

the initial Abg and Bbg of the image, and then subtracting the values of Abg and

Bbg, respectively, from the Aim and Bim of all subsequent images, to obtain the A

and B, which ABRIO uses for Eq. 3.2.5 and 3.2.6. Although this correction may

seem trivial to make, it is only applicable when the birefringence of the sample and



background are small compared to the wavelength of incident light. The justification

of this background correction is presented in Shribak & Oldenbourg (2003).

For the tests with the straight channel, two sets of experiments with different

background corrections were completed. To determine the evolution of the birefrin-

gence profiles along the length of the channel, a background image was taken without

the channel in view, in order to remove any parasitic birefringence caused by the op-

tical train. Accordingly, any residual birefringence of the channel was not accounted

for in these images so as not to apply a background correction for a particular loca-

tion of the channel to images at other locations. Therefore the results obtained for

the evolution of the birefringence profiles have not been corrected for any additional

birefringence caused by the channel. In a second set of experiments, a single viewing

location along the length of the channel was selected and a background image was

taken of the channel at that location filled with the stagnant test fluid. Accordingly,

in this second set of experiments, the residual birefringence of the channel was taken

into account. In order to minimize possible blurring of the measured birefringence,

as discussed in Appendix E, the aperture of the incident light was reduced to the

minimum amount for which the ABRIO system could obtain a strong enough signal

to take measurements. For the straight channel experiments, the aperture was about

0m, a 20 as depicted in Figure E.2.2 (a). The channel walls were also constructed

of an opaque material preventing extraneous light from entering the field of view.

Glycerine, a non-birefringent fluid, was pumped through the channel at a relatively

high calculated wall shear stress of 30 Pa, in order to determine if stress-induced

birefringence in the channel itself was significant. At this wall shear stress no change

in the birefringence of the channel was observed.

For experiments with the hyperbolic contraction, a background image was taken

with the contraction filled with the stagnant test fluid in view. For the hyperbolic

contractions the aperture of the incident light was around 10.



3.3 Summary

In this chapter, the conventional experimental methods used to measure the rheolog-

ical behavior in shear and extension of the two worm-like surfactant systems studied

in this thesis have been addressed. Furthermore, the techniques for observing their

rheological behavior in microfluidic devices have also been presented. The kinematics

associated with the flow of these systems at this small scale may be determined with

p-PIV and molecular conformation as well as some indication of material stresses

may be observed with measurements of flow-induced birefringence using the ABRIO

system. Combining the measurements, we may begin to probe the poorly under-

stood high deformation rate (i > AQ and i > A-) rheology of worm-like, micellar

systems.



Chapter 4

Shear Deformations

In this section, the results of experiments designed to investigate the rheological be-

havior of the two test fluids undergoing steady shearing deformations are discussed.

Fully developed and developing flow in a long, high aspect ratio rectangular duct

was examined. Velocity profiles were determined from measurements with p-PIV as

described in Section 3.2.2 using fluid samples seeded with fluorescent tracer particles.

In separate experiments using the same rectangular duct and fluid samples without

tracer particles, indirect measurements of stress and molecular orientation in the flow-

ing test fluids were made using measurements of flow-induced birefringence following

the technique presented in Section 3.2.3.

4.1 Dimensional Analysis

Dimensional analysis is the process by which the relevant parameters for a physical

phenomenon (e.g., length, time, mass etc.) may be systematically compared in order

to determine their relative significance in analyzing that phenomenon. If done prop-

erly, dimensional analysis may be used to characterize the phenomenon in a universal

way. Typically, the result of dimensional analysis is a set of dimensionless numbers

which are commonly ratios of lengthscales, timescales, or some other physical quan-

tity.



Flows of complex fluids at the microscale may be characterized by the Weissenberg

number, Wi, Deborah number, De, which are both ratios of a material time scale to

an experiment time scale, the Reynolds number, Re and the elasticity number, El,

which is the ratio Wi/Re as used by Rodd et al. (2005), Rodd et al. (2007) and

Oliveira et al. (2007). Within the framework of this thesis, Wi and De are two

distinct quantities. Wi is the ratio of a material time to a characterisitic time of

deformation, while De is the ratio of a material time to the analogue of a residence

time as described in McKinley et al. (1996). As usual, Re is the ratio of inertial

stresses and viscous stresses and is less than unity for the experiments in this study.

El is commonly viewed as the ratio of elastic stresses to inertial stresses, but it may

also be associated with the ratio between the kinematic viscosity of the material, V,

and a representative elastic diffusivity constant taken as the square of some relevant

length scale, lehar, divided by the relaxation time of the material, Am, such that

El = v/(le,h/AM), ((McKinley (2005)).

For the flow of a micellar solution in the rectangular microchannel used in this

study, the relevant physical parameters are

" the height of the channel, H, [m]

* the width of the channel, W, [Im]

* the distance downstream of channel entrance, where flow is observed, Lobs, [m]

* the imposed volumetric flow rate, Q, [m3/s]

* the density of the fluid, p, [kg/m 3]

* the zero-shear rate viscosity of the fluid, 7o, [Pa.s]

* the relaxation time of the fluid, Am, [s]

Additional relevant parameters, that are not independent of those listed above are

the hydraulic diameter, Dh = 2HW/(H + W) and the average fluid velocity in the

channel, (U) = Q/WH.



According to the Buckingham II-theorem given by Buckingham (1914), for N

parameters described by P fundamental physical dimensions, K = N - P dimension-

less groups are necessary to fully specify a physical phenomenon. Therefore, for the

experiment considered here with the N = 7 listed parameters encompassing P = 3

physical quantities, K = 4 dimensionless groups are required, three of which are the

aforementioned Re, Wi and De, and the fourth is the aspect ratio of the channel, A*.

The aspect ratio of the channel is defined as the ratio of the channel height to its

width.
H

A* = -- (4.1.1)
W

For the channel used in this study, H = 1000 pm, and W = 130 pm, so A* - 8, which

is large enough that the flow can be considered to be predominantly two-dimensional

throughout the majority of the channel. In this limit the hydraulic diameter also

reduces to Dh d 2W.

The Reynolds number is defined using the hydraulic diameter, which is the ap-

propriate lengthscale for relating the influence of inertia and viscosity.

Re = U)Dh (4.1.2)
rIo 7qoHW

For all flow rates observed in this study, Re < 1, indicating that inertial turbulence

was never a possibility. This ratio could also have been defined in terms of a rate

dependent characteristic viscosity, (i.e. 'icq) with -c = (U)/W), in which case the

characteristic viscosity could be taken from the flow curves measured with VROC in

Figure 3.1.11. Even a conservative estimate of highest Re would have been of order

one, which is again far from the critical Reynolds number required for the onset of

turbulence (i.e. Rec ~ 2000). This Reynolds number was also used in the correlation

for small Re given in Pipe et al. (2008) for determining the entrance length for a

Newtonian fluid, Le = Dh(0.6/(1+0.035Re)+0.056Re). According to this correlation,

for all Re observed in this study Le < LobS, and accordingly, neglecting the influence

of elastic stresses on the flow, the flow was taken to be kinematically fully developed.



Since the flow was visualized in two-dimensional planes, the lengthscale in the

Weissenberg number was taken to be the channel width. The characteristic deforma-

tion rate was therefore considered to be At = (U)/W.

Wi = (4.1.3)
W

For Wi ~ 1, deformations occurred on timescales roughly equal to the relaxation time

of the fluid and the onset of non-Newtonian behavior was observed. As the magnitude

of the Weissenberg number was increased, strong departures from Newtonian behavior

were observed, including shear thinning and considerable elastic stresses.

The Deborah number is defined as the ratio of the fluid relaxation time to what

may be considered the residence time of the fluid in the channel for a particular

observation distance.

De = AM( (4.1.4)
Los

The magnitude of De gave an indication for how fully the flow was expected to have

developed at the point of observation. For De < 1, sufficient time had elapsed for

the elastic stresses to have developed and the flow could be taken as fully developed.

An additional dimensionless ratio is the elasticity number which is defined

Wi AMTQ0
El - i-Ao(4.1.5)

Re pWDh

This number is independent of the dynamics of the flow, since it depends only on

the properties of the fluid and dimensions of the channel. For both fluids, El > 1,

indicating that inertial stresses were negligible compared to elastic stresses for the

experiments discussed in this section.

The range of magnitudes of these dimensionless groups experimentally realized in

the study of flow through a straight channel are given in Table 4.1.1.



Table 4.1.1: Range of flow rates and dimensionless parameters experimentally con-
sidered for flow in a straight, high aspect ratio rectangular duct with 100:60 mM
CPyCl:NaSal (El = 7.0 x 107) and 30:240 CTAB:NaSal (El = 2.4 x 106) solutions at
22-234 C.

10 tL/hr < Q < 104 pL/hr
10-8 < Re < 10-3
10-1 < Wi < 103
10-3 < De < 10

4.2 Flow Kinematics

In this section, the simplified governing equations for the flow of the test fluids con-

sidered in this thesis are presented and solved. Experimental results obtained from

micro-particle image velocimetry are also presented and discussed. Information re-

garding the depth of measurement and data processing scheme may be found in

Section 3.2.2. Finally, the experimental results are compared with the predictions of

the Ellis model as a metric for gauging the suitability of this model in predicting the

measured flow-induced birefringence of these fluids that is considered in Section 4.3.

4.2.1 Anticipated Velocity Profiles: Theoretical Formulation

For fully developed, inertialess flow along the x-axis of a rectangular duct having

length, L, width, W, along the y-axis and height, H, along the z-axis and height

depicted in Figure 3.2.8, the governing equation of motion is

0 =TX + Tzx+ _ i (4.2.1)
0= x y az ax

where rg is a deviatoric stress and P is pressure.

Provided the dimensions of the duct are such that W < H < L, which is ap-

proximately the case for the channel used in this study, Eq. 4.2.1 may be simplified

to



p 0(4.2.2)

ax ay

Eq. 4.2.2 may be solved to obtain a velocity profile if a suitable constitutive equa-

tion relating deviatoric stresses to flow kinematics is selected. For this study, the Ellis

model has been used for reasons discussed earlier, but results for both a Newtonian

and a Power-Law fluid, (Bird et al. (1987)), are also considered in Appendix B. The

velocity profile, ux, for an Ellis model fluid in a rectangular duct whose walls are at

y = t1 is derived fully in Appendix B, and it is

Twaul 4y2  2_ Twau 2y~\
U = W 1 - + 21(mi2 ) a 1 -- (4.2.3)4770 W 2 a + 1 71/2 )W

where qo, 71 / 2 and a are fitted parameters from the Ellis model, Twal is the shear

stress at the walls of the channel, which is related to the pressure gradient, such that

Twall =!W! and the no slip boundary condition at the walls is applied.2 dx

The shear rate, xy, at any position across the width of the channel is the derivative

of Eq. 4.2.3 with respect to y

Twall 2y Twall y
72y = 17 + ( 12 W(4.2.4)

Eq. 4.2.3 can also be integrated across the width and height of the channel to

obtain the total volumetric flow rate, Q, from which the average velocity in the

channel, (U), may also be determined

(U) == H "l W 1+ 3 rwau+ (4.2.5)
W H 6770 ae + 2 (71/ 2

In the experiments discussed in this thesis, the volumetric flow rate, Q, was pre-

scribed, not the wall shear stress, Twall. Therefore, in order to determine the velocity

profile for a given Q, the corresponding Twall must be determined by iteration of



Eq. 4.2.5. In this manner, the predicted velocity profiles in Figures 4.2.3 and 4.2.5

were obtained for comparison with the experimentally measured results.

4.2.2 CPyCl Solution

Velocity profiles for the CPyCl solution may be seen in Figures 4.2.1 (a), 4.2.2 and

4.2.3. The most general feature in these profiles is the transition from a mixed New-

tonian and shear banding profile at low Wi to a very markedly shear banding, nearly

perfect plug-like profile, with ux,max = (U) at moderate Wi. At higher Wi > 1 a

departure from perfect plug-like flow, for which ux,max = (U), and increased thickness

of the shear banding layer may be observed.

Three dimensional velocity profiles may be seen in Figure 4.2.2. At the lowest

Weissenberg number, the velocity profile varied considerably along the height (z-axis)

of the channel since this Wi = 1 coincided with the transition from a Newtonian-like

flow profile to a shear banding profile seen at higher Wi. For all higher Wi, the

velocity profiles were uniform, and plug-like throughout the channel height.

An additional noteworthy feature in the velocity profiles, especially at low Wi is

what appears to be evidence of slip between the fluid and the channel walls. This

apparent slip at the lowest Wi was likely an artifact of very thin shear banding

layers, predicted by the Ellis model, which were too thin to be resolved by the p-PIV

system. The thickness of the shear banding layers can be estimated by assuming

the classical picture of a shear banding fluid flowing in a channel as described in

Section 2.3, whereby the shear rate within the band is assumed to be '2 ~ 500 s-

which lies at the end of the stress plateau of the CPyCl system seen in Figure 3.1.11

(a). To first order, this thickness of the shear banding layer is oSB ~ (U)/ 2 . For

Wi = 1 and Wi = 5, (U) = 47 am/s and (U) - 180 pm/s, respectively, and hence

oSB ~ 0.1 pm and 6 SB ~ 0.4 pm, respectively. For the p-PIV system used for theses

experiments, the minimum resolvable feature e/M = 0.65 pm as listed in Table 3.2.1

and accordingly the shear banding layer is too thin to be resolved at low Wi.
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Figure 4.2.1: Representative non-dimensionalized experimental velocity profiles at

increasing Wi in the rectangular duct taken at 200 to 300 pm above the bottom of

the channel. Lob, = 3.5 cm.
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At high Wi estimates of a slip velocity are confounded by the uncertainty in exact

position of the channel walls. This uncertainty can be attributed in part to slight

variations on the order of 5 ptm (0.04W) in the channel width at varying heights

in the channel. Further complexity in deciphering the exact position of the channel

walls may have been caused by reflection and refraction of light off the channel walls

leading to a slight blurring of the walls.

The Ellis model predictions may be seen in Figure 4.2.3 to capture the experimen-

tally measured velocity profiles at low to moderate Wi < 10 to within experimentally

resolvable limits. This result confirms the ability of the Ellis model to predict global

changes in the velocity profile arising from the strongly rate dependent viscosity. The

discrepancy between the model predictions and experimental results especially at high

Wi > 10, however, is possibly due to the confining effects of the upper and lower

channel walls on account of the moderate aspect ratio of the channel, and also the in-

ability of the Ellis model to precisely capture the underlying shear banding dynamics

associated with the CPyCl solution.

4.2.3 CTAB Solution

Velocity profiles of the CTAB solution may be seen in Figures 4.2.1 (b), 4.2.4 and 4.2.5.

The CTAB solution exhibits a very clear transition from a parabolic-like velocity

profile associated with the flow of a Newtonian fluid at low Wi < 1, to a U-like velocity

profile associated with the flow of a moderately shear thinning fluid at moderate to

high Wi > 1.

It is clear from the three dimensional velocity profiles in Figure 4.2.4, that only at

moderate to large Wi > 7 was the velocity profile uniform along the majority of the

height (z-axis) of the channel. The most extreme example of deviation from unifor-

mity along the channel height occurred for Wi = 0.7 and may be seen in Figure 4.2.4

(a). The unusual velocity profiles may caused by the interfacial instability studied

by Fielding & Olmsted (2006) and Fielding & Wilson (2010), although this feature is
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Figure 4.2.2: Non-dimensionalized experimental velocity profiles at increasing Wi for
the 100:60 mM CPyCl:NaSal solution in the rectangular duct taken at 50 < z < 900
tm above the bottom of the channel. Lob, = 3.5 cm.
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(a) Wi = 1, Q = 25 pL/hr. (b) Wi = 5, Q = 100 pL/hr.

(c) Wi = 11, Q = 250 pL/hr. (d) Wi = 45, Q = 1, 000 pL/hr.

0 0.5 1 1.5 '''0 0.5 1 1.5

(e) Wi = 113, Q = 2,500 pL/hr. (f) Wi = 454, Q = 10, 000 pL/hr.

Figure 4.2.3: Representative non-dimensionalized experimental and predicted velocity
profiles at increasing Wi for the 100:60 mM CPyCl:NaSal solution in the rectangular
duct taken at 200 to 300 pum above the bottom of the channel. Lob, = 3.5 cm.

103



particularly perplexing because it occured in a predominantly shear thinning, but not

shear banding fluid. Velocity profiles at lower Wi could not be observed in this fluid

due to limitation in the maximum time step (Atmax = 60, 000 pus) between images

that could be taken with the p-PIV system.

Two dimensional velocity profiles are portrayed in Figure 4.2.5. The Ellis model

is capable of predicting only some features of the velocity profiles observed for the

CTAB solution. In its two dimensional form, it is clearly incapable of capturing

the gradients along the z-axis seen in Figure 4.2.4 (a), which may be related to the

hysteretic behavior for this system seen in Figure 3.1.11 (c) for 5 < Aapparent < 50 s-1.

At intermediate Wi, the experimental and predicted model match, but at the highest

Wi > 27 observed, the measured shear rate near wall is greater than the predicted

value. This deviation from predicted behavior indicates a reduced viscosity than that

predicted by the Ellis model at the corresponding shear rate. Estimates of the shear

rate near the wall at Wi > 27 using the Ellis model are on the order of 100 s-1.

This high rate coincides roughly with the end of the apparent stress plateau observed

for this fluid in Figure 3.1.11 (c). On account of these results, it is evident that for

the Ellis model parameters for CTAB listed in Table 3.1.3, this model is capable of

capturing the experimentally observed velocity profiles most faithfully for Wi = 7.

4.3 Stress and Birefringence

In this section, the methodology for predicting the shear stress and first normal stress

difference in the fluids flowing in the channel is presented. The predicted stresses are

then related to the optical anisotropy by the stress optical rule in Eq. 4.3.3, which

is then compared to the measured results. The background correction discussed in

Section 3.2.3 was applied to all images unless otherwise noted. Finally the suitabil-

ity of the ABRIO system for measuring the flow-induced birefringence of worm-like

micellar solutions in microscale flows is discussed.
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Figure 4.2.4: Non-dimensionalized experimental velocity profiles at increasing Wi for

the 30:240 mM CTAB:NaSal solution in the rectangular duct taken at 50 < z < 900

pm above the bottom of the channel. Lob, = 3.5 cm.
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(a) Wi = 0.7, Q = 25 pL/hr. (b) Wi = 3, Q = 100 pL/hr.

U 0.5 U,/<U> 1 1.5

(c) Wi = 7, Q = 250 pL/hr.

0 0.5 1

(d) Wi = 27, Q = 1, 000 pL/hr.

-0.75,
I0 0.5 1 1.5
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Figure 4.2.5: Representative non-dimensionalized experimental and predicted velocity
profiles at increasing Wi for the 30:240 mM CTAB:NaSal solution in the rectangular
duct taken at 200 to 300 pm above the bottom of the channel. Lob, = 3.5 cm.
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4.3.1 Anticipated Stress Profiles: Theoretical Formulation

In addition to being used to predict the velocity profiles in the channel, the Ellis

model was used to predict the shear and normal stresses in the channel. It is shown

in Appendix B that for fully developed flow of any material in a high aspect ratio

duct, the magnitude of the shear stress, r-, varies linearly with position between

-Twall and Twall and it is therefore necessarily zero at the centerline of the channel.

For a given volumetric flow rate, Q, once Twall is specified for Eq. 4.2.5, the shear

stress at all positions across the width of the channel is known. The shear stress

follows the relation

2 y
rxy= Twall (4.3.1)

The elastic stresses in the channel were predicted by interpolation of N1 with

shear rate, as calculated from Eq. 4.2.4, from the normal stress data obtained on a

rotational rheometer.

At flow rates high enough that the shear rate predicted by Eq. 4.2.4 at a particular

y-value was greater than the shear rates for which data from the rotational rheometer

were obtained, no estimate of shear and normal stresses were made. For this reason

the predicted profiles of retardance and azimuthal angle for high Wi do not extend

completely to the walls in Figures 4.3.4 and 4.3.8.

The calculated deviatoric stresses, Txy and N 1, at any position in the channel were

used to calculate the principal stress difference, Au from

AU = N1 + 4Ty (4.3.2)

This value was then used to predict the optical anisotropy, An, from the stress

optical rule in Eq. 4.3.3, presented previously in Section 3.1.3.

An = CAu (4.3.3)
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Although this rule has been found in the literature to be valid mostly for low Wi

flows of micellar solutions as discussed in Section 2.4, for the sake of obtaining a first

order estimate of the flow-induced birefringence for the experiments considered here,

it's applicability for all Wi in this study has been assumed.

Finally, the optical anisotropy was related to the measured retardance, 3, with the

assumption that gradients in the flow along the height of the channel were negligible

such that An was taken as approximately invariant along the the z-axis. For a

lightwave with wavelength, A, the measured retardance is

H 27rAn- (4.3.4)2A 7

The anticipated azimuthal angle, which indicates molecular orientation, was cal-

culated from Eq. D.1.14. Since N1 for these fluids is positive, the ABRIO system has

been designed to detect the orientation of the slow optical axis, and the sign of the

stress optical coefficient of both micellar systems is negative, the correct expression

for the azimuthal angle is then

yr 1 / 2r2
E)= - + - arcsin T (4.3.5)

2 2 N + 2rf. Nj+ 4T/

For the results presented here, E = 00 coincides with the direction of flow (x-axis),

with E increasing counterclockwise, such that 8 = 900 coincides with the y-axis.

Eq. 4.3.4 and 4.3.5 have been used to obtain the predicted profiles in Figures 4.3.4

and 4.3.8.

4.3.2 CPyCl Solution

Evolution of the Birefringence Profiles

In order to observe the evolution of the optical anisotropy as the CPyCl solution

flowed down the channel, birefringence profiles were measured at LobS = 1.5, 2, 2.5,

3, 3.5 and 4 cm downstream from the inlet of the channel. These measurements were
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made having accounted for the residual birefringence of the optical train only, as the

alternative of applying a background correction for a particular Lob, to all other points

of observation along the channel length would have been inaccurate. Accordingly, the

residual birefringence caused by the channel was not corrected for in the profiles of

Figure 4.3.1.

For a particular value of Wi, the Deborah number, De, is the dimensionless quan-

tity that dictates how fully developed one can expect flow and the optical anisotropy

to be.

At predominantly low Wi < 10, all De corresponding to the different Lob, were

considerably less than unity such that the optical anisotropy is fully developed within

the length of the channel as is evidenced by the superposition of the profiles. Minor

deviations from a symmetric profile for these low Wi were attributed to the resid-

ual birefringence of the channel, whose contribution to the measured signal was not

insignificant at these low flow rates, being as much as 3 residual < 0.05 rad in some

regions of the channel.

For moderate to high Wi > 100, the Deborah number was of order unity within

the channel indicating that within the length of the channel a fully relaxed stress

profile may not have been observable, thus spatially developing birefringence profiles

were observed corresponding to a relaxation of stress within the fluid as it travelled the

length of the channel. At the highest Wi = 454, the peak magnitude of retardance,

occuring in the shear banding layer near the walls as seen in Figure 4.3.1 (f) changed

little compared to the gradual decay in retardance in the bulk of the flow. This result

suggests that relaxation process occur considerably more rapidly in the banded, high

shear rate layer than in the unbanded, low shear rate region of the flow.

Background Corrected Profiles

Measurements of retardance and azimuthal angle, for which the residual birefringence

of the channel was corrected, were taken at Lob8 = 3.5 cm. Pseudocolor plots of CPyCl

retardance, constructed by the ABRIO system, may be viewed in Figure 4.3.2 and
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Figure 4.3.1: Uncorrected retardance ((a)-(f)) and azimuthal angle ((g)-(l)) profiles
at different De (different Lob,) for the 100:60 mM CPyCl:NaSal solution in the rect-
angular duct.
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the resultant spatially-averaged retardance and azimuthal angle profiles at a selection

of Wi may be viewed in Figures 4.3.3 and 4.3.4.

At low Wi < 5, the experimental retardance profiles increased linearly from the

centerline of the channel to the wall, taking on a V-like profile. Since Ty varies linearly

with position for this type of flow, this result indicates that for low Wi, only ,r was

the predominant contribution to Ao-, given by Eq. 4.3.2, and thus the normal stress

difference, N1, were confined to a thin region near the wall and were not detectable

with this measurement system. The linear increase in retardance with position was

also predicted by the Ellis model, although exact quantitative agreement may have

differed on account of the uncertainty in the true value of the stress optical coefficient,

C for this system. A reduction in C by about 50% would have yielded more ideal

agreement.

For increasing Wi > 10, regions of high, but localized retardance near the walls

developed yielding a U-like profile, indicating the growth of high shear rate bands.

The change in retardance in the middle of the channel with increasing Wi was gradual

when compared to the more rapid change in the high shear rate regions. This small

change is qualitatively predicted by the Ellis model and is due to the fact that for

this CPyC1 system the same wall shear stress is able to span a many fold increase in

the average velocity (U) and thus Wi.

As seen in Figure 4.3.2, the retardance increases at all y-values with increasing

Wi except for in the profile for Wi = 1135. This result is likely due to the large

value of the Deborah number (De ~ 5), indicating that at this high flow rate, the

birefringence may not have had substantial time to develop within the length of the

channel. The model predictions are clearly least accurate at very high Wi.

The azimuthal angle profiles exhibited odd symmetry about the centerline of the

channel. At low Wi, the azimuthal angle was 450 and 135' on opposite sides of the

channel width as predicted by the Ellis model. These limiting values for e predicted

by Eq. 4.3.5 reveal that Ty was indeed considerably greater than N1 for this flow

rate, with the change from 450 to 1350 having arisen from the change in sign of Ty
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on opposite sides of the channel.

With increasing Wi, the azimuthal angle approached 900 at all points in the

channel, indicating increased elastic stresses and high molecular alignment in the

direction of flow. The increased contribution of elastic stresses even in regions of low

shear rate can by rationalized by the possibility of diffusion of elastic stresses due to

the importance of non-local effects seen for other systems in the work of Masselon

et al. (2008), for example. Clearly this result was not captured by the predictions

of the Ellis model, and more sophisticated models, such as those of Olmsted et al.

(2000) or Vasquez et al. (2007) are needed to capture stress diffusion.

Deviations between experimental and predicted results may been also due to three

dimensionality of the flow, although velocity profiles given in Figure 4.2.2 indicate that

for moderate to high 5 < Wi < 100 three dimensional effects in the kinematics at the

top and bottom of the channel were confined to around only 10% of the channel height.

Some blurring of the measured signal on account of the finite numerical aperture of

the incident light may have also have occurred, as discussed in Appendix E.

4.3.3 CTAB Solution

Evolution of the Birefringence Profiles

For the same reasons stated before, the residual birefringence of the channel was not

corrected for in the profiles of Figure 4.3.5.

For low to moderate Wi < 10, it is apparent that the retardance profiles for all De

superpose, with the exception of a slight decay in the retardance at the mid-section of

the profile (y/w = 0). Since comparatively little change in retardance with decreasing

De is observed near the walls where shear rates are highest, the decay in retardance

in the middle of the channel suggests that relaxation processes occur more gradually

for this CTAB system in regions of low shear rate than in regions of high shear rate.

Only at the high Wi > 50 in Figure 4.3.5 (f) can appreciable decay in the retar-

dance be observed for the whole profile, which can be attributed to De being of order
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Figure 4.3.2: Pseudocolor plots of retardance for the 100:60 mM CPyCl:NaSal solu-

tion in the rectangular duct. Lob, = 3.5 cm.
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Figure 4.3.3: Superposed representative non-dimensionalized experimental retardance
and azimuthal angle profiles at increasing Wi for the 100:60 mM CPyCl:NaSal solu-
tion in the rectangular duct. Lob, = 3.5 cm.
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Figure 4.3.4: Representative non-dimensionalized experimental and predicted retar-

dance ((a)-(f)) and azimuthal angle ((g)-(l)) profiles at increasing Wi for the 100:60
mM CPyCl:NaSal solution in the rectangular duct. Lb 8 = 3.5 cm.
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unity at all Lob, for this flow rate.

Background Corrected Profiles

Background corrected measurements of the flow-induced birefringence in the CTAB

system were taken at Lob, = 3.5 cm. Pseudocolor plots of retardance may be seen

in Figure 4.3.6 and the resultant spatially-averaged retardance and azimuthal angle

profiles may be viewed in Figures 4.3.7 and 4.3.8.

In Figure 4.3.7 (a), it is apparent that for Wi > 100 retardance throughout the

width of the channel appears to decrease with increasing Wi. This observation was

likely a result of a still spatially developing flow given that De > 1 for these large Wi

at the location of observation.

For all Wi, retardance profiles took on a consistently V-like shape, indicating

that there were no band-like regions of localized, high shear and normal stresses that

would have caused high retardance. At low Wi < 10, agreement between measured

and predicted results is best, although this result is perplexing on account of the

spatial variations in the velocity profiles along the height of the channel as seen in

Figure 4.2.4 (a). For intermediate 10 < Wi < 100, deviation between predicted and

experimental profiles is most pronounced and is likely due to a break down in the

stress optical rule at these high deformation rate. For Wi > 100, some deviation was

likely the result of a still spatially developing flow.

An odd symmetry in the azimuthal angle profiles about the channel centerline may

be seen for this system. For even the lowest Wi examined here seen in Figure 4.3.8

(g), the azimuthal angle did not attain the limiting values of 450 and 1350 , indicating

that even for the lowest Wi considered here, the elastic stresses were substantial

enough to partially align the molecules in the flow direction across all positions in the

width of the channel. For high Wi, the azimuthal angle approached 90" across the

entire channel, indicating high molecular alignment in the flow direction. Excepting

narrow regions for which predicted shear rates were low enough that shear stresses

were predicted by the Ellis model to dominate over normal stresses, the flattening of
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Figure 4.3.5: Uncorrected retardance ((a)-(f)) and azimuthal angle ((g)-(l)) profiles
at different De (different LobS) for the 30:240 mM CTAB:NaSal solution in the rect-
angular duct.
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the azimuthal angle around 90" was more accurately captured by the Ellis model for

the CTAB system than for the CPyCl system. The inability of the measurements

to resolve the thin regions for which the azimuthal angle was predicted not to be

900 , may be attributed to slight blurring of the signal discussed in Appendix E. On

account of the deviations between measured and predicted retardance for this CTAB

system, however, it is difficult to comment with complete confidence on the possible

influence of non-local effects in the distribution of elastic stresses within the channel

width.

Deviations between experimental and predicted results for the CTAB system may

be attributed to reasons similar to those given previously for the CPyCl system.

Additionally, the Ellis model provides an overly simplified description of the shear

rheology of the CTAB system, since it cannot capture the combined shear thinning

and shear banding behavior seen in this system for - > 30 s-1 in Figure 3.1.11 (c).

Clearly a more sophisticated model is necessary to predict the stress field in this fluid

for Wi > 10 in order to predict the flow-induced birefringence.

4.4 Summary

Velocity and birefringence profiles of CPyCl and CTAB micellar solutions spanning

multiple orders of magnitude in flow rates and resulting Wi have been presented in

this section. Shear banding in the CPyCl system was observed from velocimetry mea-

surements, evidenced by high shear rate bands localized near the walls of the channel

and plug-like flow in the bulk. Shear banding was also confirmed from measurement

of flow-induced birefringence, as evidenced by the narrow, localized regions of high

retardance near the channel walls. In contrast to the CPyCl system, velocimetry

measurements of the CTAB solution never revealed plug-like flow profiles even up to

the maximum flow rate (Wi = 67) for which velocimetry measurement were made,

although they indicated strong shear thinning behavior, as expected for this system.

No regions of localized, high retardance were identified in the birefringence measure-
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Figure 4.3.6: Pseudocolor plots of retardance for the 30:240 mM CTAB:NaSal solution
in the rectangular duct. Loob = 3.5 cm.
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in the rectangular duct. Lobs,= 3.5 cm.
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ments of the CTAB system. Both systems exhibited similar behavior in the azimuthal

angle profiles, indicating increased molecular alignment in the direction of flow along

the entire channel width with increasing Wi.

For the flow at low to moderate Wi < 10 and De < 1, at which the Ellis model

was seen to predict most faithfully the measured velocity profiles of the CPyCl and

CTAB systems, the predictions of retardance are also most in line with experimental

measurements. Retardance profiles increased approximately linearly from the channel

centerline to the walls indicating that shear stresses were predominant at the low

Wi. The agreement between the model and experiment at low Wi validate the

use of the ABRIO system, having been originally designed primarily to measure

birefringence in biological systems, (Shribak & Oldenbourg (2003)), for use in rheo-

optical measurements. Sources of error between model predictions and experimental

results at Wi > 10 can be attributed to some uncertainty in the true value of the

stress optical coefficient, C, and the likelihood of a non-affine relationship between

stress and optical anisotropy for high Wi. Errors may also arise from the inability

of the model to predict what may be diffusion of elastic stresses from the regions of

high to low shear rate that is indicated by the high degree of molecular orientation

across the whole width of the channel evidenced in the azimuthal angle profiles.

122



Chapter 5

Extensional Deformations

In this section, the results of experiments designed to investigate the rheological

behavior of the two test fluids undergoing extensional deformations are discussed.

One particular device that can impose an extensional deformation is a contraction

taking the form of a hyperbola. This geometry can be used to impose a nominally

constant extension rate along the its centerline for a given volumetric flow rate, as

discussed in James (1991) and more recently Wang et al. (2010). The validity of

the assumption of constant extension rate has also been previously investigated n a

numerical study by Feigl et al. (2003) and experimentally and numerically by Oliveira

et al. (2007)

In the experiments conducted here, the flow in a microscale, planar hyperbolic con-

traction was examined. Velocity profiles and thus extension rates along the centerline

of the contraction were determined from measurements with p-PIV as described ear-

lier. Indirect measurements of stress and molecular orientation in the flowing test

fluids were made using measurements of flow-induced birefringence.

5.1 Dimensional Analysis

For the flow of a micellar solution in the hyperbolic contraction used in this study,

the relevant physical parameters are
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e the height of the contraction, he, [m]

" the upstream (inlet) width of the contraction, wU, [m]

* the downstream (outlet) width of the contraction, we, [m]

" the length of the contraction, lc, [m]

" the imposed volumetric flow rate, Q, [m3/s]

* the density of the fluid, p, [kg/m 3]

" the zero-shear rate viscosity of the fluid, ro, [Pa.s]

" the relaxation time of the fluid, AM, [s]

For this flow some extra relevant parameters, that are not independent of those

listed above are the hydraulic diameter of the channel, dh = 2hewc/(he + wc) and the

average fluid velocity at the exit of the channel, (Uc) = Q/hewc.

Again, according to the Buckingham II-theorem, for the N = 8 listed parameters

encompassing P = 3 physical quantities, K = 5 dimensionless groups are necessary

to fully specify the flow through the contraction studied here.

The first group is the aspect ratio of the channel is defined as the ratio of the

channel height to its width.

a* ha* = (5.1.1)
wc

For the channel used in this study, hc = 35 pm and we = 50 pm, so a* = 0.7.

The second quantity is the maximum Hencky strain in the channel, which is

derived below in Eq. 5.2.3 and equals

EH= In (5.1.2)

For the channel used in this study, w = 1, 000 pm and wc = 50 pm, so EH = 3.0.
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The Reynolds number is defined using the hydraulic diameter, which is the ap-

propriate lengthscale for relating the influence of inertia and viscosity at the exit of

the contraction.

Re p(U,)dh _ pQdh (5.1.3)
mo rohewe

An alternative definition for Re would have the characteristic speed as that at the

inlet of the contraction (Un) = Q/hews and w, as the characteristic length. This

definition would be redundant, however, since (Uc)we ~ (Us)ws, so the magnitude of

Re using either definition would have been nearly the same.

The Weissenberg number is defined in terms of the characteristic shear rate at the

exit of the contraction, which can be taken to be of order c ~ (Uc)/we.

Wi = (5.1.4)

The Deborah number is defined as the ratio of the fluid relaxation time to a

residence time or equivalently a time of observation. For these experiments the char-

acteristic time of observation is taken as the time required for the material to obtain

one unit of strain, which is equal to i-', where i is defined in Eq. 5.2.2. Accordingly

De is defined

De = AMi (5.1.5)

The elasticity number, which is the ratio of Wi to Re, or equivalently the ratio of

elastic stresses to inertial stresses is defined

El = AMo (5.1.6)
pwedh

For both fluids, El > 1, indicating that in the experiments discussed below inertial

stresses were not of importance.
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The range of magnitudes of these dimensionless groups experimentally realized in

the study of flow through a hyperbolic contraction are given in Table 5.1.1.

Table 5.1.1: Range of flow rates and dimensionless parameters experimentally con-
sidered for flow in a hyperbolic, microscale contraction (EH= 3.0) with 100:60 mM
CPyCl:NaSal (El = 1.9 x 108) and 30:240 CTAB:NaSal (El = 1.1 x 107) solutions at
22-230 C.

1 pL/hr < Q < 103 [L/hr
10-7 < Re < 10-4
10 < Wi < 103
1 < De < 102

5.2 Flow Kinematics

For an extensional flow, a gradient in the velocity parallel to that velocity vector

exists, hence the rate of deformation, i = 8u./&x is non-zero. For a planar hyper-

bolic contractions having length, lc, height, he, upstream width, we, width at the

contraction exit, we, the width, w, at any x takes the form

K
w(x) = K (5.2.1)

S + X

where s = lcwc/(wU - wc) and K = swu. For a constant volumetric flow rate, Q, the

average velocity at any x-position is ux = Q/hew(x), therefore the extension rate, i

is

Q -(5.2.2)
1che we wC

and is evidently independent of x.

The Hencky strain, EH, is a dimensionless quantity, which is a measure of the

fractional amount by which a material element is deformed as it flows through the

contraction. This strain varies monotonically along the x-direction and the average
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Hencky strain is equal to

H,x = f M~t = dux dt- = -In _ In Q/hwu 1. ___
d~u) dux) (U Qhe(xT) (w(x))

o o dx (u) (ux) (UU) Q/heww
(5.2.3)

The maximum Hencky strain occurs at the exit of the contraction and is therefore

equal to

EH = In (U (5.2.4)

For the contraction used to study the flow kinematics and flow-induced birefringence,

EH = 3.0. For comparison, the strain in the EVROC device presented in Chapter 3

is EH = 1-.

5.2.1 CPyC1 Solution

Streakline images of the flow of the CPyCl system through the hyperbolic contraction

are presented in Figure 5.2.1. For the flow rates measured, at De < 10, a steady,

symmetrical flow through the contraction was observed. The steady velocity profile

along the centerline of the mid-plane of the contraction for De = 4 may be viewed

in Figure 5.2.2. At this De, the corresponding nominal extension rate, calculated

from Eq. 5.2.2, was i = 1.4 s-1, but a more accurate fit to the measured velocity

profile yielded strue = 1.7 s-1, which can be rationalized by the confining effects of

the contraction walls, necessitating a slightly higher velocity along the contraction

centerline. The axial velocity increased superlinearly with axial position near the

very exit of the contraction, 1000 < x < 1100 pm, such that ux(EH = 3-0) c 2Uc)

as seen in Figure 5.2.2 (b). This rapid increase in velocity can be attributed to the

confining effects of all four channel walls on the flow near the outlet of the contraction

where the aspect ratio of the channel was nearly unity, a* 1 1. Whereas at the inlet

of the contraction, the vertical walls of the contraction were far removed from the
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bulk of the fluid flow, at the channel exit, for which a* ~ 1, momentum diffusion was

equally rapid in both the y and z-axes, necessitating an increased maximum centerline

velocity.

The onset of a time-varying behavior at the inlet of the contraction occurred

at a critical Deborah number of Dec = 20. Because of this time-varying behavior

for De > 20, the assumption of constant extension rate along the centerline of the

contraction could only be verified with p-PIV at lower flow rates corresponding to

De < 20 and Q < 50 pl/hr. At this onset point, the fluid was periodically partitioned

into regions of rapid flow, corresponding to the upper half of Figure 5.2.1 (e) and

regions of essentially stagnant flow seen in the lower half of the same image, while at

other times the flow was uniform as seen at lower De. The period of fluctuations in

the flow field was on the order of 10 seconds. This evident heterogeneity appeared to

have arisen from the formation of long, entangled viscoelastic streaks extending many

contraction-lengths upstream of the contraction exit. At Dec = 20 the flow at the

outlet of the contraction, however, was steady. At De = 40 (not shown) the flow at

the outlet of the contraction was observed also to be unsteady and three dimensional.

With increasing De, the frequency in the velocity fluctuations increased. For

De > 100, shown in Figure 5.2.1 (g), no flow partitioning was observed, but instead

fluctuations in velocity occurred uniformly in the contraction inlet and outlet with

no transitions between a homogeneous and heterogeneous flow as seen for lower De.

Given the low Re associated with this flow, these velocity fluctuations were likely the

result of elastic turbulence discussed, for example, by Groisman & Steinberg (2000),
Larson (2000) and Morozov & van Saarloos (2007).

5.2.2 CTAB Solution

Streakline images of the CTAB solution flowing through the contraction may be seen

in Figure 5.2.3. At low to moderate De, the flow was steady and laminar. The

axial velocity along the centerline of the contraction measured at two low De are
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(a) De = 4, Q = 10 pL/hr.

(c) De = 10, Q = 25 pL/hr.

(e) De = 20, Q = 50 pzL/hr.

(g) De = 199, Q = 500 pL/hr.

(b) De = 4, Q = 10 pL/hr.

(d) De = 10, Q =25 pL/hr.

(f) De = 20, Q = 50 pL/hr.

(h) De = 199, Q = 500 pL/hr.

Figure 5.2.1: Streakline images of the flow of 100:60 mM CPyCl:NaSal solution at
the entrance (left images) and exit (right images) of a hyberbolic contraction with
EH = 3.0 at increasing De. Flow is from left to right.

129

... ............................ ......



22000-

1500 1.7

1000
04 0.5

-o500 1000 1500 0 0.5 1 1.5 2 2.5 3 3.5
x [gm] EH
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Figure 5.2.2: Velocity profile of the 100:60 mM CPyCl:NaSal solution along the cen-
terline of a hyberbolic contraction with 5H = 3.0. Axial velocity at each x-value
averaged over the middle third of the outlet width of the contraction (i.e. y = ±8.3
pm). Error bars correspond to the standard deviation of those data points.

shown in Figure 5.2.4. For both flow rates, the experimentally realized extension

rates were itrue = 2.8 s-1 for De = 2 and it,e = 7 s- 1 for De = 6, corresponding to

approximately twice the nominal extension rates of i = 1.4 s-1 and i = 3.4 s-1 for

each respective flow rate calculated from Eq 5.2.2. This deviation resulted from the

confining effects of the walls.

At De ~ 10, the flow was still laminar, but no longer symmetrical about the axis

of the contraction as also seen for the CPyCl system. Representative streaklines of

this partitioned flow are shown in Figure 5.2.3 (e).

With increasing De, the velocity profile became time varying and succumbed to

the onset of elastically driven turbulence.

5.3 Stress and Birefringence

In this section, the flow-induced birefringence along the centerline of the contraction

is measured and related to the state of stress and molecular alignment of the micellar

systems as they flow and deform in the contraction. The spatially resolved measure-
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(b) De = 2, Q = 10 pL/hr.

(c) De = 6, Q = 25 pL/hr.

(e) De = 12, Q = 50 pL/hr.

(d) De = 6, Q = 25 pL/hr.

(f) De = 12, Q = 50 pL/hr.

(g) De = 58, Q = 250 pL/hr. (h) De = 58, Q = 250 pL/hr.

Figure 5.2.3: Streakline images of the flow of 30:240 mM CTAB:NaSal solution at
the entrance (left images) and exit (right images) of a hyberbolic contraction with
EH = 3.0 at increasing De. Flow is from left to right.
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Figure 5.2.4: Velocity profile of the 30:240 mM CTAB:NaSal solution along the cen-
terline of a hyberbolic contraction with EH = 3.0. Axial velocity at each x-value
averaged over the middle third of the outlet width of the contraction (i.e. y = ±8.3
pLm). Error bars correspond to the standard deviation of those data points.
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ments of flow-induced birefringence reveal the local evolution of the material stresses

as the fluid undergoes extension.

5.3.1 CPyC1 Solution

Pseudocolor plots of retardance measured for the CPyCl system throughout the entire

contraction are given in Figure 5.3.2. Evidently, a moderate De = 10 was necessary

to observe any birefringence, indicating that a flow of moderate strength was required

to obtain any measurable amount of molecular alignment and thus optical anisotropy.

Increasing the flow rate or De was accompanied by increased retardance throughout

the entire contraction.

The retardance profiles along the axis of the contraction at increasing De may be

seen in Figure 5.3.1 (a), and again depicted in three dimensional form in Figure 5.3.3.

For De = 10 < Dec, the retardance increased approximately linearly with accumu-

lated strain, indicating that the accumulated stress, being proportional to retardance,

was also proportional to strain and therefore primarily elastic in nature.

With slightly higher De = 20 - Dec, a plateau in retardance with increasing

strain occurred, followed by a non-monotonicity in the average retardance profile

with strain at still increasing De > 20 ~ Dec. The subsequent non-montonicity in

retardance seen at the highest De > Dec can be attributed to the relaxation of stress

within the sample prior to attainment of maximum strain.

This relaxation process may be linked with a turbulent mixing of stressed and un-

stressed material, although other relaxation processes may also be important. Given

the high rate of deformations for the large De > Dec for which non-monotonicity

is observed, it is unlikely that reptative processes alone were the predominant relax-

ation mechanism. Given the short flow time scales, i- , at these high De compared

to the relatively long breaking times, Abeak, listed in Table 3.1.3, it is likely that the

micelles were broken apart so strongly by the flow that they were unable to reform

during their residence time in the contraction. In this way, breaking facilitated the
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Figure 5.3.1: Retardance profiles at different De along the centerline of the hyperbolic
contraction with exit Hencky strain, EH = 3.0.
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relaxation in stress and thus the retardance prior to attainment of maximum strain

as reflected in the non-monotonic flow retardance profiles at high De seen in Fig-

ure 5.3.3. This plateau retardance value marking the onset of importance of breaking

processes for this flow was around 0.03 rad, which can be related to the principal stress

difference following the assumption of the validitylof Eq. 3.1.25 and 3.1.23, to obtain

a corresponding Au ~ 325 Pa. From the simulations of Cromer et al. (2009) for

the uniaxial flow of a worm-like micellar system described by the VCM model, peak

principal stress differences were found to be 5Go < Au < 12GO for 2 < De < 100.

These peak stresses correspond to the stresses at which rupture of the long constituent

species was predicted by the VCM model and range from 135 < Au < 324 Pa for the

CPyCl system. These values for Au agree well with the crude calculations from the

stress optical rule, but it should be noted that the experimentally realized flow kine-

matics (three dimensional, turbulent at high De) were not accounted for in the model

predictions. This value of Au is an order of magnitude smaller, however, than the

tensile stresses at which Bhardwaj et al. (2007) observed filament rupture in similar

CPyCl:NaSal systems on a filament stretching extensional rheometer (FiSER). The

slight increase in retardance following the dip near the contraction outlet results from

the superlinear increase in axial velocity near the exit of the channel as seen in the

velocimetry measurements discussed previously.

The peak retardance along the contraction and the retardance at the maximum

strain are plotted against De in Figure 5.4.1 (a) and (b) respectively. Evidently, the

maximum retardance increased slightly with increasing strain rate, but the retardance

at the exit of the channel was nearly independent of De, indicating that the breaking

stress may have varied slightly with De, but that the fluid was able to relax to a

roughly constant stress, neglecting the slight dip near the channel outlet, prior to

exiting the channel.

With increasing flow strength, the measured azimuthal angle along the channel

'This value must be taken as approximate given the three dimensionality of the flow and the
possible break-down of the stress optical rule for strong flows.
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(b) De = 4, Q = 10 pL/hr.

(d) De = 20, Q = 50 pL/hr. (e) De 30, Q = 75 pL/hr. (f) De = 40, Q = 100 pL/hr.

(g) De = 60, Q = 150 pL/hr. (h) De = 70, Q = 175 pL/hr. (i) De = 99, Q = 250 pL/hr.

(j) De 139, Q 350 pL/hr. (k) De = 199, Q = 500 pL/hr. (1) De = 298, Q = 750 pL/hr.

Figure 5.3.2: Pseudocolor retarance plots for the 100:60 mM CPyCl:NaSal solution
flowing in a hyperbolic contraction with exit Hencky strain, 6 H = 3.0. Color scale
ranges from 0 to 0.06 rad (0 to 5 nm).
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centerline shown in Figure 5.3.3 (b) approached 900, coinciding with the y-axis of the

simplified channel depicted in Figure 3.2.2. This result indicates that with increasing

flow strength, the slow optical axis, coinciding with one of the principal strain axes

was oriented perpendicular to the flow direction, and thus the primary strain axis

coincided with the x-axis as expected in for this strong extensional flow.

5.3.2 CTAB Solution

Full-field pseudocolor plots of retardance for the CTAB system may be seen in Fig-

ure 5.3.4. As before, a moderate De = 12 marked the onset of detectable birefrin-

gence. For large De, the region of maximum retardance intensity, indicated by red,

was very clearly near the contraction entrance at EH 1-.5 and x _ 300 pm.

The retardance profiles shown in Figure 5.3.1 (b) reveal a similar transition from

a monotonic at De < Dec to non-montonic behavior with a transitional Dec a 17,

and plateau retardance around 0.04 rad. Again, applying Eq. 3.1.25 and 3.1.23 this

plateau retardance corresponds to Au ~ 320 Pa. This value is again an order of

magnitude smaller than the measured ruptured stresses of Bhardwaj et al. (2007),

but it is far larger than the predictions of Cromer et al. (2009) corresponding to

22 < Ao- < 54 Pa (5Go < Au < 12Go). Clearly further investigation is necessary

to understand the rupturing behavior of this shear thinning system. As before, dips

in the retardance profiles just before the contraction exit were observed, arising from

the superlinear increase in velocity near the contraction outlet.

The behavior of peak retardance and the retardance at the maximum strain are

plotted in Figure 5.4.1 (a) and (b) respectively. The peak retardance exhibited a

plateau with increasing strain rate, indicating that the breaking stress was inde-

pendent of De. The retardance at the channel exit continued to increase with De,

suggesting that the material could recover quickly enough, on account of its shorter

Abreak compared to that of the CPyCl system, from the initial stress overshoot for the

stress to regrow before the the fluid exited the channel.
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(a) Retardance profiles along the centerline of the hyperbolic contraction
at different De.
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(b) Azimuthal angle profiles along the centerline of the hyperbolic con-
traction at different De.

Figure 5.3.3: Retardance and azimuthal angle profiles for the 100:60 mM
CPyCl:NaSal solution flowing in a hyperbolic contraction with exit Hencky strain,

EH= 3.0. Values at each x-value averaged over the middle third of the outlet width
of the contraction (i.e. y = ±8.3 pum).
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(c) De = 12, Q = 50 pL/hr.

(d) De = 17, Q = 75 pL/hr. (e) De = 23, Q 100 pL/hr. (f) De 41, Q 175 pL/hr.

(g) De = 58, Q = 250 pIL/hr. (h) De = 117, Q = 500 pL/hr. (i) De 175, Q = 750 zL/hr.

Figure 5.3.4: Pseudocolor retarance plots for the 30:240 mM CTAB:NaSal solution
flowing in a hyperbolic contraction with exit Hencky strain, 6H = 3.0. Color scale
ranges from 0 to 0.06 rad (0 to 5 nm).
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As observed for the CPyC1 system, the azimuthal angle measured for the CTAB

system approached 900 with increasing De, indicating a high degree of molecular

alignment along the channel centerline.

5.4 Summary

In this section, the results of experimental measurements of velocimetry and flow-

induced birefringence for the flow of CPyCl and CTAB micellar systems in a mi-

croscale hyperbolic contraction were discussed. The experiments spanned a range of

flow rates corresponding to almost three orders of magnitude of De.

Measurements of axial velocity along the centerline of the contraction for both

solutions revealed that at low to moderate De < Dec, a nearly constant extension

rate was experimentally realized as desired. Experimentally measured itrue were

greater than the predicted i based on the average velocity by approximately 20%

for the CPyCl system and 100% for the CTAB system indicating that in this mixed

shear and extensional flow the CTAB system was markedly less shear thinning than

the CPyCl system. For De ~ 10 the flow field was observed to become unstable and

time-varying, with increased frequency of fluctuations and randomness accompanying

increased De.

Qualitatively and quantitatively similar trends with De were observed in the bire-

fringence of both the CPyCl and CTAB systems in this microscale flow. A transition

from a monotonic to a non-monotonic relationship between retardance and strain,

coinciding with De ~ 10, reveals the importance of a rapid relaxation mechanism,

such a breaking of the micelles, in high deformation rate extensional flows. The simi-

larities in the behavior of these two systems in this extension dominated flow could be

anticipated from their nearly identical first normal stress differences in shear, similar

Maxwell relaxation times, AM and breakup times in CaBER, Aext, as well as their

similar behavior in EVROC. This observation is remarkable on account of the highly

disparate shear behavior of these systems and reveals very clearly the need to test
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Figure 5.3.5: Retardance and azimuthal angle profiles for the 30:240 mM CTAB:NaSal
solution flowing in a hyperbolic contraction with exit Hencky strain, EH = 3.0. Values
at each x-value averaged over the middle third of the outlet width of the contraction
(i.e. y = i8.3 pum)
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such system in both shear and extensional flows in order to fully characterize them.
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Figure 5.4.1: Key summarized results of measured birefringence for flow through the

hyperbolic contraction with exit Hencky strain, EH = 3.0.
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Chapter 6

Conclusion

"Science never solves a problem without creating ten more."

- George Bernard Shaw

The primary goal of this thesis has been the development and refinement of rheomet-

ric techniques for measuring the rheological behavior of complex fluids undergoing

high rate deformations in microscale geometries. The resulting analysis combines ve-

locimetry measurements using p-PIV and measurements of flow-induced birefringence

(FIB) of two surfactant, worm-like micellar systems.

The two test fluids, one a 100:60 mM CPyCl:Nasal system and the other a 30:240

mM CTAB:NaSal system, were characterized using conventional macroscale as well

and microscale rheometric techniques in order to determine fully their shear and

extensional rheology. In small amplitude oscillatory deformations (SAOS), a single

mode Maxwell model could capture the response of both systems at low to moderate

frequencies, with both fluids having Maxwell relaxation times on the order of one

second. In steady shear experiments using both a rotational rheometer and a micro-

capillary rheometer, the CPyCl system was observed to exhibit a stress plateau,

indicative of shear banding, across many decades of nominal shear rate, while the

CTAB system was found to be predominantly shear thinning. The behavior of both
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systems undergoing planar extensional deformations in a hyperbolic converging die

was very similar. The extensional relaxation times of both systems, as measured with

a capillary break-up rheometer were roughly twice their respective Maxwell relaxation

times. Extensional thinning was observed for both fluids flowing through a hyperbolic

microscale contraction.

In the experiments combining p-PIV and FIB, both pressure driven flow through

a straight channel and through a contraction were considered, as a means of probing

the rheological properties of the test fluids, respectively in shear and extension. These

two fluid systems were found to exhibit qualitatively different behavior in shear de-

formations in both macroscale devices as well as microfluidic geometries. By contrast

their observed behavior in extensional deformations was remarkably similar, with a

transition from steady, laminar flow to unsteady flow for Dec ~ 10 and ultimately

elastically driven turbulent flow for Dec > Dec. These results demonstrate that

differences in the high rate, non-linear shear rheology of two worm-like micellar sys-

tems do not necessarily manifest themselves as differences in the high rate extensional

response of the materials.

6.1 Use of the ABRIOTM System for Rheometry

Unique to the work discussed in this thesis is the utilization of a commercially available

birefringence microscopy system, originally designed to examine biological systems,

for optical rheometry. The calibration experiments discussed in Chapter 4 utilized a

prototypical flow in a rectilinear channel to compare the flow-induced birefringence

measurements of two worm-like micellar solutions against the predictions of a rela-

tively simple constitutive model in order to demonstrate that the ABRIOTM system

could be reliably used for quantitative optical rheometry. In Chapter 5, the system

was used to take spatially resolved measurements of the evolution of FIB of the same

two fluids in an extensional flow. The greatest strength of the ABRIOTM system

in probing the rheo-optical behavior of complex fluids, is its ability to achieve high

144



spatial resolution measurements of the the spatio-temporal dynamics of a complex

fluid as it deforms in a microfluidic device.

6.2 Relevance to Constitutive Modeling

Worm-like micellar systems are ideal, model viscoelastic fluids for study since they

exhibit idealized linear viscoelastic behavior for small deformations, which can be

predicted by relatively simple constitutive models. The non-linear rheology of these

systems is far less well understood theoretically or experimentally.

One particular model intended to describe the rheology of worm-like micellar

systems is the Vasquez-Cook-McKinley (VCM) model first proposed by Vasquez et al.

(2007). In this paper, the VCM model was used to predict the behavior of a worm-like

micellar system in both SAOS and steady shear. Later Cromer et al. (2009) used this

model to predict the rheological response of such a system in a uniaxial extensional

flow.

The experimental techniques described in this thesis are well-suited to determin-

ing the high deformation rate rheology of many complex fluids, which can assist in

the validation of existing constitutive models, in particular the VCM model, and in

their improvement. Fitting parameters for the models are typically determined from

the rheological properties measured from SAOS, steady shear and transient extension

using the macroscale techniques described in Chapter 3. Based on these measure-

ments, the models may be used to predict the high deformation behavior of micellar

solutions, which may be compared against the measurements using the microscale

flows described in Chapters 4 and 5. For this purpose, the experimental results pre-

sented in this thesis as well future results obtained using the experimental techniques

presented here are amenable to comparison with the predictions of the VCM as well

as other models.
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6.3 Future Work

There are several possible paths for future work based on this study.

Firstly, since relating flow-induced birefringence to stress is of significant interest

in this work, it is highly desirable to measure directly the stress optical coefficient

of both test fluids studied in this thesis and the critical conditions for the onset of

any non-linear behavior between stress and flow-induced optical anisotropy. Clearly,

this characterization would facilitate more accurate prediction of flow-induced bire-

fringence. Systems for making such measurements typically employ a Couette cell

system like those used by Lerouge et al. (2000) and Lee et al. (2005) for exam-

ple, but the author of this thesis did not have access to any such device during the

experiments addressed here.

Secondly, the apparent hysteretic behavior of the CTAB solution, as seen in the

micro-capillary rheometry experiments discussed in Section 3.1.3 merits further in-

vestigation. Velocimetry measurements in a channel of similar construction and di-

mensions of that in the VROC, would greatly provide insight into the the origin of

this observed flow instability which leads to an apparent multi-valued viscosity and

to explore other elastic instabilities including elastically driven turbulence.

In order to understand more fully the rheological behavior of both micellar sys-

tems in the high rate extensional deformations addressed in Chapter 5, it is necessary

to characterize the flow kinematics and onset of elastic instabilities more comprehen-

sively than has so far been completed. Additionally, channels with posts positioned

far upstream of the contraction could be used to disentangle the long strands of the

molecules prior to entering the contraction as a means of potentially delaying the

onset of the instability to a flow rate considerably higher than the onset flow rate

observed in this work.

Finally, the ultimate utility of the ABRIO system lies in its relative ease of use

and its ability to obtain measurements of optical anisotropy with high spatial resolu-

tion. Having demonstrated the suitability and reliability of this system for measuring
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the flow-induced birefringence of two worm-like micellar systems in a relatively sim-

ple straight channel flow, we may be confident in its ability measure flow-induced

birefringence of considerably more complicated flows. Accordingly, in future work

the ABRIO system should be used to examine flows though hyperbolic geometries of

various contraction ratios and the stability of extension dominated complex flows.
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Appendix A

Maxwell Model for Linear

Viscoelastic Flows

A.1 Governing Scalar Equation

While contemplating the possibility that gases could exhibit viscoelastic behavior,

(Bird et al. (1987)), James Clerk Maxwell proposed a scalar, constitutive equation

for the shear stress, T, in a linear viscoelastic material having relaxation time, A and

viscosity mo.

dT
T + A - = noi (A.1.1)

dt

where t is time and - is an applied shear strain rate.

A.1.1 Solving the Maxwell Equation for Simple Deforma-

tions

A commonly employed test in the determination of important rheological properties

of a material is small amplitude oscillatory shear (SAOS). In this test, a material

sample is deformed in shear in a sinusoidally varying fashion. The applied shear
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strain, y, obeys the relation 7y = -yo sin wt, where 'Yo is the shear strain amplitude and

w is the oscillation frequency of the applied strain. Evidently, the shear strain rate,

i, follows the relation - = y0w cos wt. If such a deformation is imposed on a material

governed by the Maxwell equation, Eq. A.1.1 becomes

T + A d= 0-Ow cos wt (A.1.2)

The solution to Eq. A.1.2 consists of a homogenous solution, Th, and a particular

solution, Tp, such that T = Th + Tp.

First, we solve for the homogenous solution:

Th+ A = 0 (A.1.3)
dt

Clearly the Th obeys the relation Th = ro,e-t/A, where TO,h is the stress applied to the

material at t = 0, which is then completely removed for all t > 0. Eq. A.1.3 describes

the scenario in which a material experiences a constant shear stress of magnitude TO,h

for all t < 0, when at t = 0 this stress is instantly and entirely removed. In this case,

for all t > 0, the stress in the material decays exponentially with time constant A as

shown in Figure A.1.1 (a).

For the case of small amplitude oscillatory shear, the homogeneous solution is

not important since the effect of any non-zero TO,h on the material stress, T, decays

exponentially in time, such that in the limit of long times only the particular solution,

T, will be observed. Consequently T = Tp, and we must solve Eq. A.1.2.

Since the imposed shear strain rate is sinusoidally varying in time, it is logical to

seek a solution for the resultant material stress which takes the form T = A sin wt +

B cos wt, where A and B are coefficients yet to be determined. Since the applied

strain obeys 7 = }o sin wt, the magnitude of A distinguishes the elastic or stored

response of the material, and since the applied shear strain rate obeys ' = -yow cos wt,

the magnitude of B distinguishes the viscous or lost response of the material. In this

case, Eq. A.1.2 becomes
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(a) (b)

Figure A. 1.1: (a) Stress decay for a Maxwell fluid. (b) Normalized moduli and phase
angle, in radians, for a Maxwell fluid undergoing a linear oscillatory shear deformation.

A sin wt + B cos wt + A (Aw cos wt - Bw sin wt) = rqoow cos wt (A.1.4)

When the sine and cosine terms in Eq. A.1.4 are segregated, we obtain the follow-

ing two equations which may be used to determine A and B.

A - AwB = 0
(A.1.5)

B + AwA = royow

After some algebra we obtain

-Y (Aw)2A = Goyo ( (Aw)2 (A.1.6)

B = Go-o (Aw (A.1.7)
1 +(Auw)2

where Go is called the plateau modulus and is defined Go = r/o/A. Convention dictates

that A/yo and B/yo are the actual coefficients of interest in characterizing the linear

viscoelastic response of a material to an oscillatory deformation. In this manner the
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elastic modulus or storage modulus, G' is defined

G'(w) = Go (A ) 2  (A.1.8)
1 + (Aw)2

and the viscous modulus or loss modulus, G" is defined

G"'(w) = Go A )2(A. 1.9)
1 + (Aw)

Evidently, the resultant response of a Maxwell fluid to time-dependent, oscillatory

deformations obeys the relation

T = G'(w)-yo sin wt + G"(w)-yo cos wt (A.1.10)

or alternatively,

r = G*yo sin(wt + #) (A.1.11)

where G* is called the complex modulus, such that G* = v'G'2 + G"2 , and # is the

phase angle difference between imposed shear strain and the material response, such

that # = arctan(G"/G').

In the limit of Aw < 1, the elastic response (i.e. C') of the material may be seen to

increase quadratically with increasing w, but the viscous response (i.e. G") increases

only linearly with increasing w. In this regime, the characteristic timescale of the

imposed shear strain (i.e. 1/w) is very large compared to the relaxation time of the

material, and as a consequence the material has ample time to adjust to the imposed

strain and as such the work associated with imparting that deformation on the fluid

is mostly lost through viscous dissipation. Hence in the limit of low W, G" > G'.

In the opposite limit of Aw > 1, the elastic response is invariant to w, while the

viscous response decreases linearly with increasing w. In this regime, the characteristic

timescale of the imposed shear strain is very small compared to the relaxation time

of the material, and as a consequence the material is unable to adjust to the imposed
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strain and as such the work associated with imparting that deformation on the fluid

is mostly stored as elastic energy. Hence in the limit of high W, G' > G".

The magnitudes of G' and G" are equal when Aw = 1. At this cross-over frequency,

1/w = A and accordingly the characteristic timescale of the imposed deformation is

equal to the relaxation time of the material.
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Appendix B

Poiseuille Flow in a Rectangular

Geometry

B.1 Geometry and Flow Fundamentals

A commonly encountered problem in fluid mechanics is that of pressure-driven flow

in a rectangular geometry: a duct depicted in Figure B. 1.1 having width, w, height, h

and length, 1, such that in a typical case w < h < 1. In this depiction, the coordinate

axes coincide with the centroidal axes of the duct. In the general case, the dominant

flow is along the length of the duct.

If the flow within the duct is fully developed, then all fluid elements flowing in

the duct travel at constant velocity, and thus the vectoral sum of the forces acting on

any element is zero. For an applied pressure drop, AP, acting over the cross-sectional

area of the duct wh, along a capillary duct of length 1, there must be an equal and

opposite frictional force acting on the fluid at its boundary. Hence the integral of the

shear stress, Txy, over the surface area of the duct must equal the force due to the

pressure drop. The surface area of the duct is simply the product of its length and

perimeter, s, such that
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APwh = l TXYds (B.1.1)

In the case where h > w, the perimeter may be approximated as s ~ 2h, and if

the shear stress along the perimeter of the fluid may be assumed roughly constant,

the integral in Eq. B.1.1 may be evaluated to obtain

APwh = 2lhrzy (B.1.2)

or alternatively

AP r7= 2 (B. 1.3)
1 w

Since the width of the channel is arbitrary, it may be replaced by the coordinate

2y, where y = 0 corresponds to the centerline of the duct, and the resulting expression

is

AP
roY = y (B.1.4)

Hence, the shear stress, rxy, within the fluid is zero at the centerline of the duct and it

increases linearly with distance away from the centerline. This result is strictly only

valid for ducts where h/w = oc, but it is independent of the rheological properties

of the test fluid and thus independent of the test fluid. It is also this independence

from the test fluid which makes capillary rheometers so versatile.

B.2 Flow of a Newtonian Fluid

For flow of a Newtonian fluid in a duct, the complete equation of motion in the

x-direction is
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Figure B.1.1: Typical rectangular duct for fluid flow.
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where p is the density of the fluid, uxis the x-velocity, y is the viscosity of the fluid

and P is pressure within the duct. If the flow is fully developed and inertia-free (i.e.

Re is small), Eq. B.2.1 reduces to

aP a2 Ux 02 U a2

A + a + (B.2.2)ax z aX2 +ay 2  az2

This result is the Poisson equation and it may be solved by some suitable means.

Further simplifications, however, can be used to reduce the complexity of B.2.2 and

they are described below.

B.2.1 Two-Dimensional Flow

For long ducts, any gradients in the velocity along the x-direction are negligibly small.

Furthermore, the pressure gradient may be assumed to be approximately constant.

If the duct is of a high aspect ratio, such that w < h, gradients in the z-direction are

also minimal and accordingly the governing equation of motion reduces to
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dP d2u,

dx dy 2 (B.2.3)

The general solution to Eq. B.2.3 is

x = dP 2 + Cy + C22 dx (B.2.4)

Applying the no-slip boundary condition requires ux = 0 at y = tw/2 and making

appropriate substitutions, one finds

Ux(Y) = -(U) 1 - 4y
2 w2)

where the brackets () indicate a spatially averaged quantity.

for a given volumetric flow rate Q

Q
(U)=h

(B.2.5)

It may be shown that

w2 dP
12p (dx

(B.2.6)

Of particular importance in what follows, the shear rate, ', along the width of

the duct varies linearly with position and obeys the relation

Q y
y = - 12 Q h

w2h w
(B.2.7)

Since the shear stress, w in a Newtonian fluid obeys the relation T = u, Eq. B.2.7

reveals that the shear stress increases linearly from the one wall of the duct to the

other wall and is zero at the centerline of the channel. This results confirms our

observation in Eq. B.1.4 and is of importance in the discussion that follows on non-

Newtonian fluids.

B.2.2 Three-Dimensional Flow

For channels whose aspect ratios are of order unity, (i.e. w ~ h), Eq. B.2.2 may only

be simplified to
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= p + (B.2.8)
ax2 z2

with boundary conditions ux = 0 at y = ±w/2 and z = ±h/2. Eq. B.2.8 is the

Poisson equation and its solution is composed of a two dimensional Fourier series.

This equation may be solved, and for the case when w < h, White (2003) gives the

resultant velocity as

4w2 dP [ cosh(jwz/w) cos(jiy/w)
/(Y' Z) dx (-1) 2 1 - cosh(jh/2w)(B.2.9)

j odd

with corresponding volumetric flow rate

Q hw dP 192w tanh(jrh/2w) (B.2. 10)
12pF3( dx) r sh Ej

j odd

Evidently, Eq. B.2.10 may be rearranged to obtain an explicit expression for the pres-

sure gradient, which may then be substituted into Eq. B.2.9 to obtain a relationship

between the velocity profile and the volumetric flow rate Q.

Q ( 1 cosh(jirz/w) cos(j7ry/w)

x(YZ) =48Q jodd 2 - cosh j7rh/2) j3 (B. 2.11)
7 3 wh 1 _ 192w oo tanh(j7rh/2w)

Trsh j odd j 5

In the limiting case of w < h, Eq. B.2.11 reduces to the result for two dimensional

flow given by Eq. B.2.5. The three dimensional result is also useful for determining

the approximate boundary layer thickness for the flow in the top and bottom of a

duct where w < h (i.e. the thickness of the region where the flow is fully three

dimensional). This boundary layer thickness is of the order w for a Newtonian fluid,

such that the flow may be approximated as simply two dimensional by Eq. B.2.5 in

the domain -(h - w)/2 < y < (h - w)/2.

0Eq. B.2.9 and B.2.10 differ slightly from those given in White (2003), since the the respective

domains also differ. Here -w/2 < y < w/2 and -h/2 < z < h/2 whereas in White (2003)

-w y w and -h <y < h.
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B.3 Flow of a non-Newtonian Fluid

In general, the governing equations of motion for a non-Newtonian fluid in a rectan-

gular geometry are substantially complicated that it is not possible to reduce them

to simple equations which may be solved analytically. Nevertheless, there exist a few

models which may be used to obtain analytically useful results.

B.3.1 Power-Law Model

The viscosity, q, of a Power-Law fluid, described in Bird et al. (1987), obeys the

phenomenological constitutive equation

72 =mM l-1 (B.3. 1)

where § is an imposed shear rate, m is a positive constant called the consistency

index with dimensions Pa.s" , and n is a dimensionless positive constant. Evidently,

m equals the magnitude of the viscosity of the fluid at ' = 1 s-1. Thus the Power-

Law model may be used to model the deformation rate-dependence of the viscosity of

a material. For a Newtonian fluid, n = 1. For shear thinning fluids, whose viscosity

decreases with increasing shear rate, n < 1, whereas for shear-thickening fluid, whose

viscosity increases with increasing shear rate, n > 1.

Clearly this model has the weakness that for the case of n 4 1, in the limit of

very small or very large shear rates, the viscosity may be seen to obtain unphysically

small or large quantities. Despite this drawback, the Power-Law model is a relatively

simple model which provides useful analytical results.

B.3.2 Flow of a Power-Law Fluid in a Duct

For a long, high aspect ratio duct, the result of a simple linear momentum balance

along the entire length of the channel found in Eq. B.1.4, may be made into a differ-

ential expression such that
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dP dT (B.3.2)
dx dy

It is clear from Eq. B.3.2, that regardless of the fluid type the shear stress is a linear

function of position along the width of the channel. T may be substituted with a

suitable constitutive model, and in the case of the Power-Law model

n-1 n

dP d ( duX dux d dux (B.3.3)
-- m - -- =z- m(B3)

dx dy dy dy dy dy

This equation may be solved easily if one recognizes that the flow must be symmetrical

about the x-axis and then solves for the solution in the domain 0 < y < w/2. The

appropriate boundary conditions are ux = 0 at y = w/2 and dux/dy = 0 at y = 0.

Integrating Eq. B.3.4 once, one obtains

n
duX 1 dP C1-- = ---y+ -- (B.3.4)
dy m dx m

Due to the symmetry of the problem, C1 = 0 and thus

1

dux (ldP n(B35

dy m dx )

Since dux/dy < 0 for 0 < y < w/2, Eq. B.3.5 may be simplified to

1
du, 1 (dP
d ux I - - y n (B .3.6)
dy ~ m dx

Integrating again, one obtains

1 dP n 1 11( = ny +C2 (B.3.7)
m dx 1 +

By the no slip condition at y = 0, C2 = 0, and when suitable substitutions are made,

the resultant equation may be expressed
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1
U /U

Figure B.3.1: Normalized velocity profiles of a Power-Law fluid flowing in a high
aspect ratio duct.

n+1

Ux(Y) = (U) 1 - - (B.3.8)
n + 1 W

where -w/2 < y < w/2. It may be shown that

2+1 1

Q n w n -ldP "
(U) = - - (B.3.9)

wh 2n+1 2 mdx

Eq. B.3.8 and B.3.9 reduce to Eq. B.2.5 and B.2.6 respectively when n = 1. For

the purpose of illustration, representative normalized velocity profiles of Power-Law

fluids of varying n are presented ing Figure B.3.1.

B.3.3 Ellis Model

The Ellis Model, described in Bird et al. (1987), is another phenomenological consti-

tutive equation with three fitting parameters which may be used to predict both the

plateau viscosity of a fluid as well as its deviation from Newtonian behavior. This

162

... ..... . . .....



model relates the viscosity, q, to the shear stress, T, and takes the form

0 =4(B.3.10)

where q0 is the zero shear rate viscosity as usual, T1 / 2 is the value of the shear stress

at which the viscosity is equal to half its zero shear rate value, and a is a fitting

coefficient which correlates to n in Eq. B.3.1 such that a = 1/n. By multiplying

Eq. B.3.10 by the shear rate y and with suitable rearrangement, one may obtain the

following relation

I-1+ -(B.3.11)
770 T1/2

B.3.4 Flow of a Ellis Model Fluid in a Duct

A velocity profile for the flow of an Ellis Model fluid in a rectangular geometry may be

obtained from a rearrangement of the earlier result for the stress profile of Eq. B.1.4

in the channel.

7 Twall (B.3.12)
w

where Twall is the magnitude of the shear stress at the wall for which y = ±w/2.

Inserting Eq. B.3.12 into Eq. B.3.11 and recognizing that i =v-, one obtains

dx = Twall + Twall 2y (B.3.13)
dy 7o W [ o w

for which the relevant boundary condition is ux = 0 at y w/2. The resultant

velocity profile then takes the form

r wall W _y 42+ 2 reau I_26 (B.3.14)
4770 w 2 a+1 T1/2 W
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and the average velocity is

(U) -W
wh

0.5'-
0.2

x

(a)a=1

Twall

6770
1+

0.6 0.8

U /<U> 1 1.5 0 0.s U /<U>
x x

(c) a = 4 (d) a = 10

Figure B.3.2: Normalized velocity profiles of an Ellis Model fluid flowing in a high
aspect ratio duct with varying a and r* = 

-1 /2

These results may be written in more familiar forms if the substitution Twall =

-d-w is made, such that
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a-1 a+1\-
w2 dP 2y2  22-a dP 1 2y

U = 1 - + 11 - (B.3.16)
8770 dx ( w2 a +1I dx 71/2 m

and the average velocity is

(U)=Q w 2 dP 1+21-a 3 dP 1 (3.7

wh 1270 dx a-+ 2 dx 71/2

Notice that in the case where a = 1, Eq. B.3.17 reduces to twice the Newtonian

results in Eq. B.2.6. This apparent anomaly can be rationalized by noting that in

the case of a = 1, Eq. B.3.10 gives a viscosity equal to half qo. Furthermore, it is

not possible to invert Eq. B.3.14 to obtain an explicit relation for Twall in terms of

Q, so iteration is necessary to determine Twall if Q is specified. For the purpose of

illustration, representative normalized velocity profiles of Ellis Model fluids at varying

a and T* = w- are presented in Figure B.3.2.
?-1/2

B.3.5 Weissenberg-Rabinowitsch-Mooney Correction

Derivations of the Weissenberg-Rabinowitsch correction for flow in a circular capil-

lary are given in Bird et al. (1987) and Macosko (1994), but a full derivation of

the Weissenberg-Rabinowitsch-Mooney correction for flow in a high aspect ratio rect-

angular capillary is offered here. Proper use of this correction is dependent on the

experimental realization of the no-slip condition at the walls of the capillary.

A rectangular capillary rheometer consists of a long, high aspect ratio tube along

with a device that can measure the pressure drop, AP, across the capillary duct for

an imposed volumetric flow rate of fluid, Q.

It is logical to suppose that, regardless of the nature of the fluid, the fully-

developed velocity profile of a fluid flowing in a symmetric, planar geometry should

itself be symmetrical about the centerline of the geometry. Consequently, if a velocity

profile, ux(y), may be assumed across the width, w, of the capillary duct, one may
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determine one half of the volumetric flow rate in the duct, Q

1 fW/
2

Q = h J ux (y)dy (B.3.18)

which may be solved using integration by parts to obtain

1
2

-y=w/2

h uxy

y=O

Ux,y=w/ 2

uxyo
yduxj (B.3.19)

and since U = 0 at y = w/2

1 QUx,y=w/2

2 f _=
ydux (B.3.20)

Multiplying the resulting integral by unity, one obtains

1 h /2 du"'
-Q =/ - y dy
2 JO dy)

(B.3.21)

Eq. B.3.2 may be integrated to find that y = (dx/dP)T, since T = 0 at y = 0, due to

the symmetry of the velocity profile. Again, Eq. B.3.2 may be rearranged to obtain

and explicit expression for dy, which may be substituted into Eq. B.3.20, and when

the limits of integration are correctly adjusted, one obtains

Q
2h

jY'=w/2 dx
-- r
dP

dux
dy

dx d-

dP J =Tyw/20

dx
dP

dux TdT
dy)

(B.3.22)

Evidently, for fully developed flow dP/dx is constant, and accordingly Eq. B.3.22

may be rearranged to obtain

i~2

Q dP
2h k dx

Ty=w/2

= 
- f

0

dux
dy

(B.3.23)

Assuming dP/dx = AP/l, and considering the result obtained in Eq. B.1.4, one may

rearrange Eq. B.3.23 to obtain
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2QrW2 = - TdT (B.3.24)
h W-2 wa 11 J0 dy

where Tyw/2 has been replaced by Twall. Eq. B.3.25 may be differentiated with respect

to Twall, to obtain

d 2Q 2 Twall du,, l (B.3.25)
dTwii hw2 wall - J dy

According to Leibniz rule, this equation becomes

2 Twall

4Q, 2T,a dQ du, Tal

h 2 Twa a + wal = - r Twau !walu (B.3.26)
hw2 hw2 dreaul dy0

since the velocity gradient at y = w/2 is negative. One may further simplify Eq. B.3.26

to

6Q 2 + Twall dQ = 3=wau (B.3.27)
hw2 ( Q dreaul

having divided by Twall, factorized Q and multiplied the equation by 3. Setting

y = w/2 in Eq. B.2.7, one obtains the wall shear rate for a Newtonian, N 6Q2hw .

Substituting this result in Eq. B.3.27, noting that for a quantity q, dq/q = d ln q, and

rearranging appropriately, one obtains the following relation for the true shear rate

at the wall

Ntrue . (2 ± n ) (B.3.28)
re3 (d ln rwau

This result may be exploited to determine the true viscosity of any material flow-

ing in a rectangular capillary duct. It should be noted that for a Newtonian fluid

d ln Q/d ln Twall = 1, and on finds that for a Newtonian fluid true = YN, as expected.
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Appendix C

Flow in a Hyperbolic Contraction

C.1 Geometry and Flow Fundamentals

For the hyperbolic contraction depicted in Figure C.1.1 having length, le, height, he,

upstream width, we, width at the contraction exit, we, the width, w, at any x takes

the form

Wu

W(x)

I Wc

Figure C.1.1: Schematic of a hyperbolic contraction.

w(x) K
S + X

(C.1.1)
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where s = lcwc/(we - wc) and K = swa. Given a constant volumetric flow rate, Q,
through the contraction, the average velocity at any x-position is ux = Q/hew(x),

and the extension rate, ix is

EXx = Q(C.1.2)
1che we wC

The Hencky strain, EH, varies monotonically along the x-direction and is equal to

f tft dux Udu (U) (Q/hcw(x) wx

EH,x = xx dt= I t = In = In = In
oodo y ux (UU) Q/hewu wU

(C.1.3)

The maximum Hencky strain occurs at the exit of the contraction and is therefore

equal to

H n (U (C.1.4)

C.2 Determination of Extensional Viscosity

The extensional viscosity of the material may be calculated using an energy argument

outlined in Pipe & McKinley (2008). Consider the control volume depicted in Fig-

ure C.2.1, having initial width, X0 , height, yo, and unchanging length, 1, into the page.

If this volume incurs an infinitesimal change in width and height, Ax and Ay respec-

tively, and the volume is incompressible, it is clear that x0 yo = (Xo + Ax) (Yo + Ay).

Multiplying out this result, and noting that second order terms may be neglected in

the limit of infinitesimal change in volume, one obtains

xoyo = zoyo + AXyo + Ayxo (C.2.1)

Eliminating like terms and dividing Eq. C.2.1 by the initial volume, 'oyo, one finds 0 =

Ax/xo + Ay/yo. Hence the sum of extensional strains is zero. When an instantaneous
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Xo

Ax

Figure C.2.1: Two dimensional deformation of a control volume.

time derivative of this result is taken, one obtains the continuity equation for a two-

dimensional flow

= aatsx,sy-0 (AX
XX + = izx + 4Yy

Furthermore, if the stresses 72x and ry act on the control volume as it deforms,

the net work per unit length into the page for the infinitesimal volume change is

WI = TXXyoAX + TyyXoAy (C.2.3)

where the prime indicates per unit length. Dividing Eq. C.2.3 by xoyo, one obtains

an expression for the work per unit volume.

W = T2- +
0O

Ay
(C.2.4)

where the triple prime indicates per unit volume. Once again, taking an instantaneous

time derivative in the limit of infinitesimal Ax and Ay, one obtains an expression for

the rate of work per unit volume.

(C.2.5)

Noting the result of Eq. C.2.2, one may replace ty, by -ixx to find
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( (C.2.6)

where V denotes a unit volume.

An incremental work must be equal to the mechanical work acting on the material,

OW = P6V where P is pressure and V is volume, or alternatively BW/&V = P.

Substituting this result into Eq. C.2.7, one obtains

dP _

dt = (TXX
- Tyyxx (C.2.7)

The pressure term may be expanded by noting

dP dPdx
dt dx dt

dP
dx

dP Q
dx hew(x)

(C.2.8)

Eq. C.2.8 may be separated and integrated from the appropriate limits of the con-

traction

Q d P= (C.2.9)
J (TXX - ry, )xx hcw (x) dx

Supposing rXX - rY and ixx are constant along the x-direction, solving for the integra-

tion, and substituting for the definition of extensional viscosity, r/E = (TXX - ryy) xx/,

one obtains

QAP
r/E = (C2 0Vit

where Vc is the volume of the contraction and is equal to Vc = kd ln[(lc + s)/s].

The normal stress difference, Ni =rxx - r.y, is therefore

Ni = rE~xx (C.2. 11)
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Appendix D

Relating Optical Anisotropy to

Material Stresses

D.1 The Stress Tensor and Relevant Equations

For a material element in a Cartesian coordinate system, as shown in Figure D.1.1, a

stress tensor may be defined to capture both the directionality and magnitude of all

deviatoric stresses acting on that element. For a generic coordinate system, defined

here as the xy-frame, all components of the stress tensor, Tij, are defined such that

that component acts along j on a surface whose outward facing unit normal vector

is i, where i and j are the unit vectors of the i-axis and j-axis, respectively. Since

the measurement of birefringence typically employs a line-of-sight technique, with

the assumption that the direction of light propagation is coincident with the z-axis

in Figure D.1.1, our attention is restricted only to the xy-plane. This restriction

follows the assumption that a lightwave will only sample material properties in the

plane which is orthogonal to its direction of propagation, as outlined in Fuller (1995).

Accordingly, the relevant stress tensor in the xy-frame for consideration is Eq. D.1.1.

T TXX TYX (D.1.1)[X T Y
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Tyx

Figure D.1.1: Stresses acting on a deforming material element denoted by the dashed
lines.

This stress tensor is necessarily symmetric, and so it should be noted that ry, = rxy.

D.1.1 Relating the zy Stress Tensor to the Principal Stress

Tensor

Calculation of the Principal Stresses

The stress tensor in the xy-frame, may be decomposed into the matrix product of

its eigenbasis, E, eigenvalues, E, and the transpose of its eigenbasis, Et, such that

T = E-E-Et. This matrix product takes the form of Eq. D.1.2.

Fx [ycos x - sinx -1 cos x sin 1xD12[r; ;;I L sinx cos x o-2  - sinx cosx

Here, the two columns of E are the eigenvectors of the stress tensor T, corresponding,

respectively, to the two eigenvalues of the stress tensor T, 1 and -2. Just as the

Ty-coordinate system is composed of two mutually orthogonal vectors, so too are
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the eigenvectors of T mutually orthogonal. Thus the eigenvectors constitute another

coordinate system, unique to the material element, with its own stress tensor E. This

coordinate system is known as the principal frame, since there are no off-diagonal

stresses acting on the material in this reference frame. Indeed, only the diagonal

components, o1 and U2 , of the principal stress tensor, E, may be non-zero. These

components are known as principal stresses.

Keeping in mind that Ty_ = Txy, one may solve for the eignevalues of T, in order

to relate the deviatoric stresses in T to the principal stresses via the relations in

Eq. D.1.3.

01 = 2 + ryy + (rxx - r) 2 + Ar.-)

2 -2I X + TV - (Tx- TYY) 2 +4 )(D.1.3)
These two stresses are the maximum and minimum stresses in a material, as noted

in Parnes (2001). It should be noted here that it is common practice to consider the

first normal stress difference, N 1, such that N1 =-rxx - ry., and the principal stress

difference, Aa, such that AU U1 - U2 . The principal stress difference may be related

to the stresses in the xy-frame via Eq. D.1.4. It is also apparent from Eq. D.1.3 and

Eq. D.1.4 that for all physically meaningful values of Txx, -ry and Txy, Ui will always

be greater than U2 , thus Au > 0.

A07 o1 - 07 2 = N12 +4T2 (D.1.4)

Calculation of the Azimuthal Angle

The orientation of the principal coordinate system with respect to the xy-frame may

be defined by the angles X and #, which are themselves related since 4 X+7r/2, as

seen in Figure D.1.1. These angles are commonly called azimuthal angles or extinction

angles. In this case, the angle x has been defined as the angle between the x-axis and

the first eigenvector, ei, of T, corresponding to the eigenvalue U1, while # is necessarily

the angle between the x-axis and the second eigenvector, e 2 , of T, corresponding to
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the eigenvalue o2. With these definitions in mind, we can write the eigenbasis, E of

T as:

E = ei e 2  =cos X - sin x cos y cos 1 (D.1.5)
sin X cos X sin x sin #

Accordingly, X relates the x-axis to the 1-axis of the principal frame (i.e. the -1-axis

and the ni-axis of the refractive index tensor). Furthermore, in order to fully specify

the orientation of the principal axes with respect to the xy-frame, it is necessary to

determine x or # within a range of 1800, though this range may not necessarily vary

between 0' and 180'. As the principal stress tensors, E, is necessarily symmetric, it

is evident that any relation specifying X or # within a range greater than 180" would

be redundant.

The deviatoric stresses of T and the principal stresses can be related to x by

completing the matrix product T = E - E - Et, as shown in the right hand side of

Eq. D.1.6.

[ rY o-1 COS2 X + -2sin2 .1 - -2) cos X sin X (. 2

TXy r o-1 - 7-2) cos Xsin o 2 cos X+Ui sin 2 2 2 X cossin .6

Equating components of the tensors, one finds:

Ni = (o-1 - o2) ( cos2 X - sin2 X) = (- c02os 2X 7)

= - cos Xsinx = (-1 - -2 sin 2X)

A rearrangement of Eq. D.1.7 yields:

_ N1  2,
ao- =& A- = " (D.1.8)

cos 2X sin 2X

Finally, an explicit equation relating x to Ao, Ni and Txy may be written in three
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ways:

N1 1 Ni
x== -arccos --) =2 arccos K (D.1.9)

1 2r 2 7

X = - arcsin ( = - arcsin 2 TxV (D.1.10)
2 Ao- 2 N + 273

x = - arctan ",x (D. 1.11)2 N

These equations for x cannot themselves fully specify the orientation of the 1-axis

of the principal frame. The equations are inadequate, because all of their solutions

are restricted to a range of 90': a restriction which violates the requirement that the

azimuthal angle be specified within a range of 180". Furthermore, Eq. D.1.9, D.1.10

and D.1.11 may yield different values depending on the signs of N1 and rxy. It is

therefore necessary to construct a logical framework to determine unambiguously the

orientation angle of the 1-axis of the principal frame with respect to the x-axis, given

the deformations and stresses of the material under consideration.

For a generic deformation, each component of the deformation rate tensor may be

defined by Eq. D.1.12, such that the deforming material moves along j and deforms

along i. Thus the sign of ij gives an indication of the molecular alignment.

1 OV OV.
1i = - - + (D.1.12)
2 Boyx Bi~x

For any non-zero value of yjj (i = j), there will exist a shear stress, Tij, which acts

to align the deforming material. Evidently yij = yji, and thus rej = ryj, so the shear

stresses acting on a deforming material will act to align it equally along i and j.
Therefore, on net, shear stresses act to orient a deforming material at ±45' relative

to the i and j axes, depending on the sign of the stress. For polymeric and micellar

solutions, shear flows typically induce normal forces, which themselves act to align

the deforming material in the manner discussed in Larson (1998).1 For a simple shear
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N1> 0
r1,> 0
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Ni <0
rxy> 0
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N1 > 0
'rxy <0
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Figure D.1.2: Representative orientation angle of the 1-axis of the principal frame
depending on the signs of Ni and 2,y.

flow, with velocity in the i-direction and velocity gradient in the j-direction, such that

itj = 8Vi/Oxj, the first normal stress difference Ni 1 rij - Tjj is generally positive

for polymeric and micellar solutions. In this case, a positive value of N1 suggests a

higher degree of molecular orientation in the i-direction than in the j-direction. Thus,

normal stresses act to align a material along the i and j axes.

Since the first normal stress difference has been defined N1 = 722 - ryy, a positive

value of N1 indicates a higher degree of molecular orientation in the x-direction than

in the y-direction. As such, for positive N1 the 1-axis of the principal frame is oriented

closer to the x-axis than to the y-axis (i.e. -45" < X < 450). For the case when Ni >

'See Larson (1998), Section 3.4.1 "The Polymer Stress and Birefringence Tensors."
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0 and Ty > 0, the shear stresses act to align the molecule along the y = x line, so we

would expect the 1-axis to lie in the first quadrant such that 00 < x < 450, illustrated

in Figure D.1.2 (a). Conversely, if Ni > 0, but Ty < 0, the shear stresses act to

align the molecule along the y = -x line, so we would expect the 1-axis to lie in the

fourth quadrant such that -45' < x < 00, illustrated in Figure D.1.2 (b). In these two

cases, Eq. D.1.10 and D.1.11 may be shown to correctly identify the orientation of

the 1-axis, while Eq. D.1.9 fails to predict the correct sign of the angle in both cases.

For the case of negative N1, there is a higher degree of molecular orientation in

the y-direction than in the i-direction. Thus when Ni < 0 and rxy > 0, again the

shear stresses act to align the molecule along the y = x line, so we would expect the

1-axis to lie in the first quadrant and closer to the y-axis such that 450 < X < 900,

illustrated in Figure D.1.2 (c). Finally, if Ni < 0, and rxy < 0, the shear stresses act

to align the molecule along the y = -x line, so we would expect the 1-axis to lie in

the second quadrant such that 900 < x < 1350, illustrated in Figure D.1.2 (d).

In order to determine the correct mathematical expressions for x for the case when

N1 < 0, it is helpful to consider rotating the xy-frame by a counterclockwise quarter

turn such that N1 in this rotated frame is again positive. In this new coordinate

system, the stress tensor is T90 o, where the subscript denotes that its reference frame

has been rotated by 900 with respect to the xy-frame, such that T90 = R(900)t -

T - R(90'), where R(O) is the 2D rotation matrix and T is the stress tensor in the

xy-frame.2 Accordingly, one finds:

Too = TYX (D.1.13)
--TXy TX

The proper equations to relate the orientation of the 1-axis to the x-axis must take

into account the translation by 900 and the change in the sign of the shear stresses

incurred when rotating the coordinate system by 904.

2 R(O) Cos0 -sinO0
sin9 cos0 J
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n2

n1

X

Z

Figure D.2.1: Polarized lightwave propagating through an optically anisotropic sam-
ple.

Finally, the expressions that unambiguously define X may be constructed by the

following equations:

x
arcsin

arcsin

for N ;> 0

for Ni < 0

(D.1.14)

Thus, we have in principle now derived an equation to relate the principal stress

difference to the deviatoric stresses in the xy-frame, namely Eq. D.1.4 and a con-

ditional equation to determine unambiguously the orientation of the principal axes

relative to the xy-axes, namely Eq. D.1.14.

D.2 Optical Anisotropy and the Stress Optical Rule

For the optically anisotropic medium shown in Figure D.2.1, a refractive index tensor,

N may be defined in a manner similar to that for the stress tensor, such that
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N = [ yx X " (D.2. 1)
nxy nyy

As mentioned before, in the case of birefringence measurements, our attention is

restricted exclusively to the xy-plane. Furthermore, this tensor, N is necessarily

symmetric and may be decomposed into the matrix product of its eigenbasis, E,

eigenvalues, n, and the transpose of its eigenbasis, Et, such that T = E -n - Et. This

matrix product takes the form of Eq. D.2.2.

nX[ nyx 1 os cosix -si n cos X s X

nY ny L sin x cos x - [ n2 - L o- sm n X cos X

Here ni and n 2 are the eigenvalues of the refractive index tensor. These refractive

indices are commonly known as the ordinary and extraordinary refractive indices

of a material. It is also no coincidence that the eignenbasis of the refractive index

tensor is identical to the eigenbasis of the stress tensor. Indeed this analogy is the

cornerstone of the Stress Optical Rule (SOR), which provides the link between stress

in a material and its optical anisotropy. SOR states that the principal normal stress

difference, Ao, is linearly proportional to the difference between the ordinary and

extraordinary refractive indices, An = ni - n2. The coefficient of proportionality is

the stress optical coefficient, C, which depends on temperature and other material

properties. Hence the Stress Optical Rule is

An = Ca (D.2.3)

D.2.1 Relating Optical Anisotropy to Retardance

Retardance is a measure of the phase angle shift between two lightwaves, having

entered an optically anisotropic medium in phase with each other, after the waves
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Figure D.2.2: Two lightwaves, initially in phase, traveling from left to right through
a birefringent sample.

have emerged from the sample. Thus retardance is a measure of the amount by which

one lightwave is slowed down, or retarded, relative to another wave, upon exiting a

birefringent medium. Retardance, 6, may have units of radians, or units of length,

in which case it is denoted with r. For a lightwave with wavelength, A, dimensional

retardance can be related to the dimensionless retardance via:

r 6

A 27r (D.2.4)

For a sample of thickness L, whose optical anisotropy is uniform in the direction

of light propagation and which has ordinary and extraordinary refractive indices, ni

and n2, respectively, we may also write:

r A 6
An = - - -

L L 21r (D.2.5)

The derivation of Eq. D.2.5 may be found in Fuller (1995), but a different derivation

is also delivered here. In Figure D.2.2 there are two lightwaves traveling through a

sample of thickness L, with speeds, vi and v2. The light speed in the ambient medium

is c. The time spent by wave 1 in the sample, ti, and the time spent by wave 2 in the

sample, t2 , are:
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L L
t 1 =- & t2 =- (D.2.6)

V1  V 2

Once both waves have reemerged from sample, wave 2 leads wave 1 by distance r,

which is equal to the extra time spent by wave 2 in the sample (ti-t2 ) times the light

speed in ambient medium (c), thus:

r = (ti - t2)c = - - c- c L = (ni - n2 )L = AnL (D.2.7)
V1 V2 V1 V2

which may be rearranged to yield Eq. D.2.5. It is with this equation that optical

anisotropy may be related to the quantity that is measured by the ABRIO system.
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Appendix E

The ABRIO System for Rheometry

E.1 Material Stress and ABRIO Measurements

For a particular data point, the ABRIO system reports a measured retrdance and

azimuthal angle. One may relate the measured retardance to material stresses by

combining Eq. D.1.4, D.2.3 and D.2.5, to obtain

r = LC}N2 +4T2, (E. 1. 1)

Relating x and # to material stresses requires some consideration, however. ABRIO

reports the angle of the slow optical axis as the azimuthal angle. The slow optical axis

has a larger refractive index, since refractive index is inversely proportional to the

velocity of light in that medium. Therefore to determine if ABRIO will report # or x,

one must consider the sign of the stress optical coefficient, C. Recall that we already

proved that Ao- is necessarily positive in Appendix D. Thus if C is positive, then

An is positive, and so ni is greater than n2, and accordingly the u-axis corresponds

to the slow axis, so ABRIO will report x. Conversely, if C is negative, then An is

negative, thus ni is less than n2, and accordingly the o2-axis corresponds to the slow

axis, so ABRIO will report #.

Thus, to relate the azimuthal angle, 8, measured by ABRIO to material stresses,
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the following conditional equation may be used:

x for C> 0

$ = x+ for C< 0

where x has been defined by Eq. D.1.14.

E.2 Making the Birefringence Measurements

Birefringence measurements are typically made by observing the change in the state

of polarization of a light wave after it emerges from a birefringent sample, as we

have described in Appendix D. This measurement technique is known as a line-of-

sight technique, since what is measured results from the birefringence of the sample

integrated along the entire sample in the direction of light propagation. Measurements

performed in this way may yield considerable error in relating the measured optical

anisotropy to the stress in a material, if the optical anisotropy of the material varies

significantly in the direction of light propagation.

E.2.1 Key Assumptions

In order to relate correctly the measurements of optical anisotropy to the stress in

a flowing polymeric or micellar solution, one typically must make the following as-

sumptions:

1) Sample homogeneity in the direction of light propagation: Experimental realization

of this assumption is necessary to validly apply Eq. D.2.7. For polymeric and micel-

lar solutions flowing in a channel, this assumption is an idealization, because a flow

confined in such a geometry cannot be truly two dimensional, but it must be three

dimensional, being affected by all of the channel walls. The inaccuracy of this as-

sumption, however, may be lessened greatly through the utilization of channels with

large aspect ratios. The flow in a channel whose dimension parallel to the direction
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Figure E.2.1: Two rectangular channels of the same width into the page, w, and dif-
fering heights, hi & h2. Birefringence measurements are made with light propagating
in the direction parallel to the heights of the channel. The flow in Channel 1, with
its high aspect ratio, is ideal for birefringence measurements, since the portion of
the flow which is homogeneous, (1, is comparable to the the height of the channel,
hi. The flow in Channel 2 is less suited to birefringence measurements, because the
portion of the flow which is homogeneous, 2, is small compared to the the height of
the channel, h2 -

of light propagation is much greater than its other dimension normal to this direction

will be homogenous along much the the channel height. This point is illustrated in

Figure E.2.1. As the aspect ratio of the channel becomes very large, the ratio of

thickness of the region of homogenous flow to the height of channel approaches unity

and Eq. D.2.7 validly describes the relation between optical anistropy and retardance.

2) Perfectly columnated light: For high resolution birefringence measurements it nec-

essary that the light beam have as small a diameter as possible and that is remain

columnated as it travels through the sample. If these conditions are not met, then

the light wave may sample varying optical anisotropy as it propagates through the

medium, thus the signal will lose some fidelity.

3) Light directed perfectly perpendicular to plane of interest: If the light beam does

not impinge upon the sample while propagating in the direction along which the flow

in the channel is homogeneous, the applicability of Eq. D.2.7 may be compromised.
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4) Minimal parasitic birefringence: Any component in the optical path of the light

beam may have some amount of birefringence. It is necessary to account for the

birefringence of the components other than the sample of interest in order to measure

correctly the actual birefringence of the sample.

Exporting the Results

ABRIO stores image files as .pli files in the directory of the selected user session. Each

pixel in the image has an associated retardance and azimuthal angle value, which the

ABRIO software can readily display. If the user desires to analyze the data in another

program (e.g. MATLAB), however, it is necessary to convert the .pli file to another

file type. This conversion can be accomplished with the PliReadRetFile.m file and

PliReaderMex.dll scripts, which have been provided by CRi, Inc. to the McKinley

Group.

E.2.2 Restrictions on Sample Dimensions

In the case of the ABRIO system, for which birefringence measurements are made

on a microscope, the light impinging on the sample is not perfectly columnated but

rather is a cone of illumination, as seen in Figure E.2.2 (a), whose angle depends on

the aperture of the light condenser of the microscope. For the light condenser of the

Nikon TU-2000 microscope, this angle can be varied between 1 and about 6.40. This

cone shape is a slight non-ideality in measurements of birefringence.

Nevertheless, for very thin samples, it is still possible to obtain birefringence

measurements whose accuracy may not be significantly compromised by the use of

an illumination cone. Consider the sample of height, a, width, b, apect ratio, a* = ,

being impinged on by a light beam with angle of incidence in the air, 0 ai, and angle

of incidence in the sample, Osample, in Figure E.2.2 (b). Ideally, 6 ai, = 0 sample = 00,

upholding assumption 3), but even if ai, / 00 it may still be reasonable to neglect
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this non-ideality. To determine the amount by which the measured birefringence may

be blurred, due to a non-zero 0azr, consider the distance, s, parallel to the width of

the channel, that a light wave will travel in the most extreme case. According to

Snell's Law of refraction:

ni, sin(Oair) = nsample sin(osample) (E.2.1)

where nair and nsampIe are the refractive indices of the air and the sample, respectively.

For our purposes, nai, = 1.0 and nsample = 1.35, being a typical value for polymeric

and micellar solutions. A rearrangement of Eq. E.2.1 and a simple geometric argument

will show that:

a* tan sin-1 ( "i sin(Oair) (E.2.2)
b . (nsample/.

The largest angle of incidence for the collection of light beams impinging on the

sample will be the angle of the cone of illumination, which ranges between 10 and

6.40. From Eq. E.2.2, we find that for 0 ai, = 1", ' = 0.013a* and for 0 ai, = 6.40,

= 0.083a*. Thus in the most extreme case, when the aperture of the light condenser

is fully open, and for a* = 10, which is ideal for upholding assumption 1), a light

beam may traverse over 80% of the channel width. Such a large percentage effectively

prohibits the making of birefringence measurements on high aspect ratio geometries

with high spatial resolution.

We now see that it is effectively impossible to uphold assumptions 1), 2) and 3)

simultaneously with the ABRIO system, but depending on the goals of the experi-

mentalist, such restrictions may not be totally inhibitive. For the straight channel

used in this study, 0 1 20, a* ~ 7.7, so in the worst case a light wave traversed 20%

of the channel width. In the example of flow in the microscale hyperbolic contraction

used here, the height of the channel is 35 pm, while its smallest width at the exit of

the contraction is also 50 pm. Thus the largest aspect ratio along the entire length

of the contraction is only equal to a* = 0.7. So even for fully open light condenser
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Figure E.2.2: (a) Ideal columnated light beam impinging on a sample, and, in the
case of a setup on a microscope, a cone of illumination impinging on a birefringent
sample for varying aperture of the light condenser. (b) Effective sampling distance,
b, of a light beam propagating through a birefringent medium of thickness a.

Oair = 6.40, in the worst case, a light wave would travel across around 6% of the

contraction width.

Example of the Influence of the Aperture on Birefringence Measurements

Here, the observed effect on birefringence measurements of changing the aperture of

the light condenser is illustrated. The 100:60 mM CPyCl:NaSal system was pumped

through a straight rectangular glass duct of height, H = 970 pm, and width, W = 125

pm. In Figure E.2.3, are shown the pseudocolor maps of retardance for this solution

at two different flow rates and with the aperture of the light condenser fully and

minimally opened. Additionally the average retardance profiles along the width of the

channel are plotted in Figure E.2.4. The region of highest stress and thus birefringence

is confined to a narrow section near the walls. It is evident that the measurement

taken with the aperture minimally open, when the incident light was most column-

like, yielded retardance profiles with higher values near the walls. These results

confirmed that a light beam with a smaller angle of incidence samples a narrow

region of roughly constant birefringence over a greater distance of propagation than
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(a) Wi = 0.4. Aperture fully open.

(c) Wi = 0.4. Aperture minimally open.

Figure E.2.3: Pseudocolor maps of retardance of a
tion flowing in a straight rectangular glass channel.
pseudocolor retardance scale.
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(b) Wi = 7.9. Aperture fully open.

(d) Wi = 7.9. Aperture minimally open.
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Figure E.2.4: Retardance profiles measured by ABRIO of a solution of 100:60 mM
CPyCl:NaSal flowing in a rectangular microchannel of height, H = 970 Pm, and
width, W = 125 pm, for fully open and minimally open light condenser. Background
taken with walls and stationary, unstressed fluid sample in view.
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a light beam with a larger angle of incidence. From Eq. E.2.2, it is clear that, even

for minimal aperture, blurring of the signal will occur. It is evident in Figure E.2.4

that a smaller aperture yield less blurring in the signal, however.

E.3 McKinley Group Contact at CRi, Inc.

As of the writing of this work, Leo Mirkin, LMirkin~cri-inc.com, and Cathy Boutin,

CBoutinrcri-inc.com, were CRi, Inc. contacts for the McKinley Group.
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Appendix F

Procedures

F.1 Straight Aluminum Channel

In this section a step-by-step procedure outlining the manufacture of the straight

aluminum microchannel is presented.

1) Prepare sides of aluminum block to have the desired roughness, by either sanding

or machining. The blocks should be at least 1.5 cm longer than the desired length of

the microchannel.

2) Obtain a metal shim with the desired thickness for the spacing between the two

channel walls.

3) Position the shim between the two blocks on a level surface. Make sure the shim

is held tightly by the blocks to ensure that the thickness of the channel will not vary

much along its length. Apply as even a distribution of weight on the two blocks to

make certain that they are as flat as possible. Double check that the ends are all

flush with the level surface, it is possible for epoxy to seep underneath the blocks and

cause them to be glued together unevenly.

4) Place small drops of glue (epoxy) at both ends of the blocks to hold them together.

5) Once the glue has set, remove the shim and check that the spacing between the
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blocks is as desired under a microscope.

6) If the spacing is not adequate, break the epoxy bond and remove the epoxy and

repeat the above process. Use of ethanol is best for removing the epoxy because this

technique does not alter the surface features of the aluminum sidewalls. Another

approach is to sand off the epoxy, but this method can alter the sidewalls.

7) If the spacing is as desired, obtain a microscope cover slip longer than the desired

length of the channel. The cover slip should be roughly 8 to 10 times the width of

the slit to minimize the chance of trapping air bubbles when adhering it to the metal.

Break the cover slip to obtain this width, if necessary.

8) Mix up a two part epoxy and spread a very thin layer with a razor on the bottom

surface of the two blocks near the slit. Make sure the layer is thin and it stops very

near the slit (< 1 mm away).

9) Place the broken cover slip onto of the slit and press down to spread the epoxy.

Ensure good wetting so that there are no points where a test fluid in the channel

could escape during an experiment.

10) Allow the epoxy to cure for the prescribed time.

11) Obtain a second shorter cover slip, and break it along its length so that it is

roughly 8 to 10 times the width of the slit.

12) Spread a thin layer of epoxy as before on the top surface of the blocks.

13) Place the broken cover slip onto of the slit and press down to spread the epoxy.

This shorter cover slip should be centered above the longer coverslip, so that at least

5 mm of the longer cover slip overhangs each end.

14) Once the epoxy has cured, ensure that both ends of the channel have been blocked

with epoxy and attach the two syringe tips that will be used to connect to the syringe

pump.
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F.2 Photolithography

In this section a step-by-step procedure outlining the manufacture of the SU-8 molds

is presented. This process always occurred in the Class 100 clean room in the mi-

crotechnologies lab (MTL) at MIT.

Checklist

" wafers

" tweezers

" MTL card

" procedure

e transparency/mask

" timer(s)

e pen

* safety goggles

o Ziploc for SU-8 masters

Materials

o SU-8 2050 - Permanent Epoxy Photoresist (Micro Chem, microchem.com)

* BC 7.5 - Barrier Coat (Shin Etsu MicroSi, microsi.com)

* CEM 388SS - Contrast Enhancer (Shin Etsu MicroSi, microsi.com)

" acetone

" methanol

" isopropanol

195



* PM acetate

Preparation

1) Clean all tools with ethanol and then dry them with compressed air.

2) Cut pieces of aluminum foil for use in the oven and in the hood near the hot plates.

3) Clean the shinny side of silicon wafer cleaning (hold with tweasers).

a) Rinse with acetone in the hood above the sink.

b) Rinse with methanol.

c) Rinse with isopropanol.

d) Dry with compressed air.

e) Place the wafer on a piece of aluminum foil in the oven (130 "C) for at least 10

minutes to allow it to dry (20-30 minutes is ideal).

4) While the wafer is in the oven:

a) Check that the hot plates are level.

b) Set the two plate temperatures (one to 65 "C and the other to 95 "C).

Turn on -=> Push set button ==> "Plate Temperature" ==> Enter temperature

-- > "Enter"

c) Refill solvent bottles if necessary.

d) Obtain SU-8 2050 from flammables cabinet, avoid shaking it to prevent bubble

formation.

Spin Coating

1) Remove wafer and place it on aluminum foil near hot plates and the spin coater.

2) Go to the computer to log in:

Coral =- MTL -- > EML ==- Photo EML ==: Select item == Equipment

Actions ==> Engage =- Enter values ==- Save

3) Select the correct plate for the spin coating and attach it to the spin coater.

4) Align the wafer so that it is concentric with the plate, shinny side facing up.

5) Practice the spinning ramp sequence if necessary.
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6) Pour approximately 1 mL SU-8 2050/inch of diameter on the wafer, avoid bubble

formation.

7) During the spinning ramp hold a Q-tip near the edge of the chip to catch the

SU-8 2050 that flies off, when the ship is spun at 3000 rpm hold the Q-tip so that it

just touched the edge of the spinning wafer. It is vital that the Q-tip be held to the

edge of the spinning wafer at the very end of the spinning sequence. If the Q-tip is

removed too early, the SU-8 will form a small bump at the edge of the wafer, which

will prevent good contact between the wafer and the mask during the exposure step.

8) Allow the wafer to sit for 20 minutes.

9) Move the chip to the 65 'C hot plate for 3 minutes, make sure it is resting level.

10) Quickly move the chip to the 95 "C hot plate for 7 minutes, make sure it is resting

level.

11) Quickly move the chip to the 65 "C hot plate for 4 minutes, make sure it is resting

level.

12) Allow the wafer to sit for 3 minutes at room temperature.

13) While the chip cools:

a) Clean a 50 mL beaker with actone and dry it with compressed air.

b) Obtain the barrier coat BC 7.5 from the flammables cabinet.

c) Fill the 50 mL beaker with about 10 mL of BC 7.5.

14) Move the wafer to the spin coater and center it on the plate.

15) Pour BC 7.5 from the beaker onto the wafer, cover as much of the chip as possible.

16) Follow the ramp sequence.

17) Allow the chip to rest for 5 minutes.

18) While the chip is resting:

a) Clean the beaker that held the BC 7.5 with water, then acetone and dry it with

compressed air and place it on the drying rack.

b) Obtain a new 50 mL beaker and clean it with actone and dry it with compressed

air.

c) Obtain CEM bottle from flammables cabinet.
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d) Fill the 50 mL beaker with about 10 mL of CEM.

19) Move the wafer to the spin coater and center it on the plate.

20) Pour CEM from the beaker onto the wafer, cover as much of the chip as possible.

21) Follow the ramp sequence.

22) Remove the wafer from the spin coater and allow it to rest for 20 minutes.

23) While the chip is resting:

a) Log off the spin coater on the computer.

b) Clean the beaker that held CEM with water, then acetone and dry it with

compressed air and place it on the drying rack.

Photoresist

1) Clean the mask, especially the dark side, which is the less shinny side (it will be

the side in contact with the wafer), with acetone and then use compressed air to dry

it (any excess dirt or drops can be removed with a Q-tip doused in acetone).

2) Dry the mask in the oven (130 0C).

3) Log on to the microscope.

4) Make sure the Power button is on, set dial on photolithography microscope to

0400m, standing for 4 minutes, keep the Soft Contact button off.

5) Place the wafer (conditioned side up) on the pad to the left of the microscope

stage.

6) Place the mask on the vacuum pad, with the dark side looking away from the

vacuum pad.

7) Turn on the Vacuum Mask button and check that there is a vacuum.

8) Position the vacuum pad into the slots on the microscope stand and tighten the

knobs to keep it in place.

9) Check where the mask is positioned relative to the wafer and adjust accordingly.

If this is one of your first times doing this, at this point you should call a more expe-

rienced FAB user (Kurt) to check over your set up.

10) The Separation Lever should be fully open (i.e. positioned away from the user).
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11) There should also be a small piece to prevent the lever from opening beyond 180".

12) Move the contact lever to the left of the stage and be sure that the mask touches

the wafer when the lever is oriented 1350 away from horizontal when it was initially

pointing toward the front of the microscope, adjust the knob at the front of the mi-

croscope if it does not.

13) Between 1350 and 1800 there should be slightly increasing resistance to opening

the lever and, when fully open, the lever should remain at 1800, without wanting to

move back, if this occurs adjust the knob at the front of the microscope.

14) When ready to expose the wafer, press the Exposure button.

15) When the exposure is complete, lower the contact lever.

16) Remove the vacuum pad and the mask and turn off the vacuum.

17) Remove the wafer and wash it with deionized water at low pressure until the

wafer becomes shinny again (45-60 seconds).

18) Dry the wafer with compressed air at low pressure.

Finishing Steps

1) Place the wafer on the 65 "C hot plate for 3 minutes, make sure it is resting level.

2) Log off the microscope.

3) Quickly move the chip to the 95 "C hot plate for 5 minutes, make sure it is resting

level.

4) Quickly move the chip to the 65 "C hot plate for 3 minutes, make sure it is resting

level.

5) Log on to the spinning coater.

6) Place the wafer on the spinning plate and spin the wafer at 300 rpm.

7) Rinse the wafer with PM acetone applying low pressure to prevent crack formation

for 60-90 seconds.

8) Rinse the wafer with isopropanol.

9) Ramp up the spinner speed until the chip is dried.

10) Place the wafer on a kimwipe.
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11) Log off the spinning coater.

12) Clean tweezer and any other equipment needing cleaning.

13) Inspect the chips quality on the microscope near the flammables cabinet, using

the pinkish light filter.
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F.3 Making PDMS Channel

In this section a step-by-step procedure outlining the manufacture of the PDMS mi-

crochannels used in this study is presented.

Checklist

* SU8 Master

* chlorotrimethylsilane

* PDMS

* glass slides

" plastic pipette

" knife

" needle to punch entry holes in PDMS

" scotch tape

" marker

" legend to masks

1) Check mask for non-uniformities in SU8 (rainbow effect, white parts) and put in

a plastic dish lined with aluminum foil. Cover with a lid.

2) Take mask to a fume hood and add one or two drops of chlorotrimethylsilane into

the dish and wait for it to vaporize enough (approximately 30 minuts). Thie step

changes the surface properties of the master and allows the PDMS to detach more

easily from the SU8, avoiding damage to the master.

3) Put 5:1 PDMS resin:hardener into beaker (5-10 g in total is typical). If the mask

is new, it must be fully covered, requiring around 50 g total.
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4) Weigh beaker with holding beaker and put them into the centrifuge, adjusting for

the correct weight.

5) Spin for 1 minute of mixing with 2 minutes for settling.

6) Pour the PDMS mixture on to the master and put the dish under vacuum for 15

minutes.

7) Mix up a second PDMS mixture, with a different ratio of around 10:1. The different

ratio gives better bonding between the channel and the coated cover slip.

8) Clean a cover slip with compressed air or nitrogen. Place this cleaned cover slip in

the spin coater and pour on a sufficient amount of the PDMS mixture made in the

previous step.

9) Spin the cover slip at around 2200 rpm for 1 minute. Check that there are no

non-uniformities in the PDMS layer.

10) Place the cover slips into a separate Petri dish and put this under vacuum also.

11) Cure de-gassed cover slips and channels for 30 minutes at 80 "C.

12) While the channels are curing, prepare labels for all of the channels, which are to

be replicated.

13) Remove the channels from the oven and cut out appropriate channels. Punch out

holes in the channels for the metal tubes using the sharp syringe tips. Do this quickly

while the PDMS is still fresh.

14) Place the channels on the coated cover slips and cure over night.

202



Bibliography

Anna, S. L., & McKinley, G. H. 2001. Elasto-capillary thinning and breakup of model

elastic liquids. Journal of Rheology, 45(1), 115-138.

Becu, L., Manneville, S., & Colin, A. 2004. Spatiotemporal dynamics of wormlike

micelles under shear. Physical Review Letters, 93(1).

Berret, J-F. 2006. Rheology of Wormlike Micelles: Equilibrium Properties and Shear

Banding Transitions. Pages 667-720 of: Weiss, R. G., & Terech, P. (eds), Molecular

Gels. Springer Netherlands.

Berret, J. F., Roux, D. C., & Porte, G. 1994. Isotropic-to-Nematic Transition in

Wormlike Micelles under Shear. Journal De Physique II, 4(8), 1261-1279.

Berret, J. F., Porte, G., & Decruppe, J. P. 1997. Inhomogeneous shear rows of

wormlike micelles: A master dynamic phase diagram. Physical Review E, 55(2),

1668-1676.

Berret, J. F., Lerouge, S., & Decruppe, J. P. 2002. Kinetics of the shear-thickening

transition observed in dilute surfactant solutions and investigated by flow birefrin-

gence. Langmuir, 18(20), 7279-7286.

Bhardwaj, A., Miller, E., & Rothstein, J. P. 2007. Filament stretching and capil-

lary breakup extensional rheometry measurements of viscoelastic wormlike micelle

solutions. Journal of Rheology, 51(4), 693-719.

203



Bird, R. Byron, Armstrong, Robert C., & Hassager, Ole. 1987. Dynamics of Polymeric

Liquids. 2nd edn. Vol. 1. New York, NY: John Wiley & Sons, Inc.

Buckingham, E. 1914. On physically similar systems: illustrations of the use of

dimensional equations. Physical Review, 4(4), 345.

Cates, M. E. 1987. Reptation of Living Polymers - Dynamics of Entangled Polymers

in the Presence of Reversible Chain-Scission Reactions. Macromolecules, 20(9),

2289-2296.

Cates, M. E. 1990. Nonlinear Viscoelasticity of Wormlike Micelles (and Other Re-

versibly Breakable Polymers). Journal of Physical Chemistry, 94(1), 371-375.

Cates, M. E., & Candau, S. J. 1990. Statics and Dynamics of Worm-Like Surfactant

Micelles. Journal of Physics-Condensed Matter, 2(33), 6869-6892.

Cates, M. E., & Fielding, S. M. 2006. Rheology of Giant Micelles. Advances in

Physics, 55(7-8), 799-879.

Chen, C. M., & Warr, G. G. 1997. Light scattering from wormlike micelles in an

elongational field. Langmuir, 13(6), 1374-1376.

Chen, S., & Rothstein, J. P. 2004. Flow of a wormlike micelle solution past a falling

sphere. Journal of Non-Newtonian Fluid Mechanics, 116(2-3), 205-234.

Cromer, M., Cook, L. P., & McKinley, G. H. 2009. Extensional flow of wormlike

micellar solutions. Chemical Engineering Science, 64(22), 4588-4596.

de Gennes, Pierre-Gilles. 1979. Scaling Concepts in Polymer Physics. Cornell Uni-

versity Press.

Dealy, J. M., & Wissbrun, K. F. 1990. Melt Rheology and Its Role in Plastics Pro-

cessing: Theory and Applications. Van Nostrand Reinhold.

204



Decruppe, J. P., & Ponton, A. 2003. Flow birefringence, stress optical rule and

rheology of four micellar solutions with the same low shear viscosity. European

Physical Journal E, 10(3), 201-207.

Decruppe, J. P., Cappelaere, E., & Cressely, R. 1997. Optical and rheological proper-

ties of a semi-diluted equimolar solution of cetyltrimethylammonium bromide and

potassium bromide. Journal De Physique II, 7(2), 257-270.

Decruppe, J. P., Lerouge, S., & Berret, J. F. 2001. Insight in shear banding under

transient flow. Physical Review E, 6302(2).

Degre, G., Joseph, P., Tabeling, P., Lerouge, S., Cloitre, M., & Ajdari, A. 2006.

Rheology of complex fluids by particle image velocimetry in microchannels. Applied

Physics Letters, 89(2).

Doi, M., & Edwards, S. F. 1986. The Theory of Polymer Dynamics. Oxford University

Press.

Einstein, Albert. 1906. Investigations on the Theory of Brownian Movement. Dover

Publications, Inc.

Entov, V. M., & Hinch, E. J. 1997. Effect of a spectrum of relaxation times on the

capillary thinning of a filament of elastic liquid. Journal of Non-Newtonian Fluid

Mechanics, 72(1), 31-53.

Fardin, M. A., Lasne, B., Cardoso, 0., Gregoire, G., Argentina, M., Decruppe, J. P.,

& Lerouge, S. 2009. Taylor-like Vortices in Shear-Banding Flow of Giant Micelles.

Physical Review Letters, 103(2).

Feigl, K., Tanner, F., Edwards, B. J., & Collier, J. R. 2003. A numerical study of the

measurement of elongational viscosity of polymeric fluids in a semihyperbolically

converging die. Journal of Non-Newtonian Fluid Mechanics, 115(2-3), 191-215.

205



Fielding, S. M. 2007. Complex dynamics of shear banded flows. Soft Matter, 3(10),

1262-1279.

Fielding, S. M., & Olmsted, P. D. 2006. Nonlinear dynamics of an interface between

shear bands. Physical Review Letters, 96(10).

Fielding, S. M., & Wilson, H. J. 2010. Shear banding and interfacial instability

in planar Poiseuille flow. Journal of Non-Newtonian Fluid Mechanics, 165(5-6),

196-202.

Fischer, E., & Callaghan, P. T. 2000. Is a birefringence band a shear band? Euro-

physics Letters, 50(6), 803-809.

Fischer, E., & Callaghan, P. T. 2001. Shear banding and the isotropic-to-nematic

transition in wormlike micelles. Physical Review E, 6401(1).

Fuller, Gerald G. 1995. Optical Rheometry of Complex Fluids. Oxford University

Press.

Granek, R., & Cates, M. E. 1992. Stress-Relaxation in Living Polymers - Results

from a Poisson Renewal Model. Journal of Chemical Physics, 96(6), 4758-4767.

Groisman, A., & Quake, S. R. 2004. A microfluidic rectifier: Anisotropic flow resis-

tance at low Reynolds numbers. Physical Review Letters, 92(9), -.

Groisman, A., & Steinberg, V. 2000. Elastic turbulence in a polymer solution flow.

Nature, 405(6782), 53-55.

Guillot, P., Panizza, P., Salmon, J. B., Joanicot, M., Colin, A., Bruneau, C. H., &

Colin, T. 2006. Viscosimeter on a microfluidic chip. Langmuir, 22(14), 6438-6445.

Helgeson, M. E., Reichert, M. D., Hu, Y. T., & Wagner, N. J. 2009a. Relating shear

banding, structure, and phase behavior in wormlike micellar solutions. Soft Matter,

5(20), 3858-3869.

206



Helgeson, M. E., Vasquez, P. A., Kaler, E. W., & Wagner, N. J. 2009b. Rheology and

spatially resolved structure of cetyltrimethylammonium bromide wormlike micelles

through the shear banding transition. Journal of Rheology, 53(3), 727-756.

Hu, Y. T., & Lips, A. 2005. Kinetics and mechanism of shear banding in an entangled

micellar solution. Journal of Rheology, 49(5), 1001-1027.

Hu, Y. T., Boltenhagen, P., & Pine, D. J. 1998. Shear thickening in low-concentration

solutions of wormlike micelles. I. Direct visualization of transient behavior and

phase transitions. Journal of Rheology, 42(5), 1185-1208.

Hu, Y. T., Palla, C., & Lips, A. 2008. Comparison between shear banding and shear

thinning in entangled micellar solutions. Journal of Rheology, 52(2), 379-400.

Hutton, J. F. 1963. Fracture of Liquids in Shear. Nature, 200(490), 646-648.

Israelachvili, Jacob. 2007. Intermolecular & Surface Forces. 2nd edn. Academic Press.

IUPAC. 1997. Compendium of Chemical Terminology. 2nd edn. Blackwell Scientific

Publications.

James, D. F. 1991. Flow in a Converging Channel at Moderate Reynolds-Numbers.

AIChE Journal, 37(1), 59-64.

Johnson, M., & Segalman, D. 1977. A model for viscoelastic fluid behavior which

allows non-affine deformation. Journal of Non-Newtonian Fluid Mechanics, 2, 255-

270.

Kang, K., Lee, L. J., & Koelling, K. W. 2005. High shear microfluidics and its

application in rheological measurement. Experiments in Fluids, 38(2), 222-232.

Kang, K., Koelling, K. W., & Lee, L. J. 2006. Microdevice end pressure evaluations

with Bagley correction. Microfluidics and Nanofluidics, 2(3), 223-235.

207



Kefi, S., Lee, J., Pope, T. L., Sullivan, P., Nelson, E., & Hernandez, A. N. 2005. Ex-

panding Applications of Viscoelastic Surfactant Solutions. Oilfield review, Winter

2004/2005, 10-623.

Kim, N. J., Pipe, C. J., Ahn, K. H., Lee, S. J., & McKinley, G. H. 2010. Capillary

breakup extensional rheometry of a wormlike micellar solution. Korea-Australia

Rheology Journal, 22(1), 31-41.

Larson, R. G. 2000. Fluid dynamics - Turbulence without inertia. Nature, 405(6782),

27-28.

Larson, Ronald G. 1998. The Structure and Rheology of Complex Fluids. Oxford

University Press.

Lee, C. S., Tripp, B. C., & Magda, J. J. 1992. Does N1 or N2 Control the Onset of

Edge Fracture. Rheologica Acta, 31(3), 306-308.

Lee, J. Y., Fuller, G. G., Hudson, N. E., & Yuan, X. F. 2005. Investigation of

shear-banding structure in wormlike micellar solution by point-wise flow-induced

birefringence measurements. Journal of Rheology, 49(2), 537-550.

Lerouge, S., & Berret, J-F. 2009. Shear-induced transitions and instabilities in sur-

factant wormlike micelles. ArXiv e-prints.

Lerouge, S., Decruppe, J. P., & Berret, J. F. 2000. Correlations between rheological

and optical properties of a micellar solution under shear banding flow. Langmuir,

16(16), 6464-6474.

Lerouge, S., Decruppe, J. P., & Olmsted, P. D. 2004. Birefringence Banding in a

Micellar Solution or the Complexity of Heterogeneous Flows. Langmuir, 20(26),

11355-11365.

Lerouge, S., Fardin, M. A., Argentina, M., Gregoire, G., & Cardoso, 0. 2008. Interface

dynamics in shear-banding flow of giant micelles. Soft Matter, 4(9), 1808-1819.

208



Lu, C. Y. D., Olmsted, P. D., & Ball, R. C. 2000. Effects of nonlocal stress on the

determination of shear banding flow. Physical Review Letters, 84(4), 642-645.

Macosko, C. W. 1994. Rheology: Principles, Measurements, and Applications. Wiley-

VCH.

Masselon, C., Salmon, J. B., & Colin, A. 2008. Nonlocal effects in flows of wormlike

micellar solutions. Physical Review Letters, 1(3).

McKinley, G. H. 2005. Visco-Elasto-Capillary Thinning and Break-Up of Complex

Fluids. Annual Rheology Reviews, 2005.

McKinley, G. H., Pakdel, P., & Oztekin, A. 1996. Rheological and geometric scaling

of purely elastic flow instabilities. Journal of Non-Newtonian Fluid Mechanics, 67,

19-47.

Meinhart, C. D., Wereley, S. T., & Gray, M. H. B. 2000. Volume illumination for

two-dimensional particle image velocimetry. Measurement Science & Technology,

11(6), 809-814.

Miller, E., & Rothstein, J. P. 2007. Transient evolution of shear-banding wormlike

micellar solutions. Journal of Non-Newtonian Fluid Mechanics, 143(1), 22-37.

Morozov, A. N., & van Saarloos, W. 2007. An introductory essay on subcritical

instabilities and the transition to turbulence in visco-elastic parallel shear flows.

Physics Reports-Review Section of Physics Letters, 447(3-6), 112-143.

Nghe, P., Degre, G., Tabeling, P., & Ajdari, A. 2008. High shear rheology of shear

banding fluids in microchannels. Applied Physics Letters, 93(20).

Nghe, P., Fielding, S. M., Tabeling, P., & Ajdari, A. 2009. Microchannel flow of a

shear-banding fluid: enhanced confinement effect and interfacial instability. Un-

publised.

209



Oliveira, M. S. N., Alves, M. A., Pinho, F. T., & McKinley, G. H. 2007. Viscous flow

through microfabricated hyperbolic contractions. Experiments in Fluids, 43(2-3),

437-451.

Olmsted, P. D. 2008. Perspectives on shear banding in complex fluids. Rheologica

Acta, 47(3), 283-300.

Olmsted, P. D., Radulescu, 0., & Lu, C. Y. D. 2000. Johnson-Segalman model with

a diffusion term in cylindrical Couette flow. Journal of Rheology, 44(2), 257-275.

Papageorgiou, D. T. 1995. On the Breakup of Viscous-Liquid Threads. Physics of

Fluids, 7(7), 1529-1544.

Parnes, Raymond. 2001. Solid Mechanics in Engineering. John Wiley & Sons, Ltd.

Pathak, J. A., & Hudson, S. D. 2006. Rheo-optics of equilibrium polymer solutions:

Wormlike micelles in elongational flow in a microfluidic cross-slot. Macromolecules,

39(25), 8782-8792.

Pipe, C. J., & McKinley, G. H. 2008. A microuidic extensional viscosity indexer.

Unpublished preprint.

Pipe, C. J., Majmudar, T. S., & McKinley, G. H. 2008. High Shear Rate Viscometry.

Rheologica Acta, 47(5-6), 621-642.

Prud'homme, R. K., & Warr, G. G. 1994. Elongational Flow of Solutions of Rodlike

Micelles. Langmuir, 10(10), 3419-3426.

Raffel, M., Willert, C., & Kompenhans, J. 1998. Particle Image Velocimetry.

Springer-Verlag.

Rehage, H., & Hoffmann, H. 1982. Shear Induced Phase-Transitions in Highly Dilute

Aqueous Detergent Solutions. Rheologica Acta, 21(4-5), 561-563.

210



Rehage, H., & Hoffmann, H. 1991. Viscoelastic Surfactant Solutions - Model Systems

for Rheological Research. Molecular Physics, 74(5), 933-973.

Rodd, L. E., Scott, T. P., Boger, D. V., Cooper-White, J. J., & McKinley, G. H.

2005. The inertio-elastic planar entry flow of low-viscosity elastic fluids in micro-

fabricated geometries. Journal of Non-Newtonian Fluid Mechanics, 129(1), 1-22.

Rodd, L. E., Cooper-White, J. J., Boger, D. V., & McKinley, G. H. 2007. Role of the

elasticity number in the entry flow of dilute polymer solutions in micro-fabricated

contraction geometries. Journal of Non-Newtonian Fluid Mechanics, 143(2-3),

170-191.

Rothstein, J. P. 2003. Transient extensional rheology of wormlike micelle solutions.

Journal of Rheology, 47(5), 1227-1247.

Rothstein, J.P. 2009. Strong flows of viscoelastic wormlike micelle solutions. Rheology

Reviews.

Salmon, J. B., Colin, A., & Manneville, S. 2003. Velocity Profiles in Shear-Banding

Wormlike Micelles. Physical Review Letters, 90(22).

Scott, T. P. 2004. Contraction/Expansion Flow of Dilute Elastic Solutions in Mi-

crochannels. Master of Science, Massachusetts Institute of Technology.

Shikata, T., Hirata, H., & Kotaka, T. 1987. Micelle Formation of Detergent Molecules

in Aqueous-Media - Viscoelastic Properties of Aqueous Cetyltrimethylammonium

Bromide Solutions. Langmuir, 3(6), 1081-1086.

Shikata, T., Dahman, S. J., & Pearson, D. S. 1994. Rheooptical Behavior of Wormlike

Micelles. Langmuir, 10(10), 3470-3476.

Shribak, M., & Oldenbourg, R. 2003. Techniques for fast and sensitive measurements

of two-dimensional birefringence distributions. Applied Optics, 42(16), 3009-3017.

211



Soulages, J., Oliveira, M. S. N., Sousa, P. C., Alves, M. A., & McKinley, G. H. 2009.

Investigating the stability of viscoelastic stagnation flows in T-shaped microchan-

nels. Journal of Non-Newtonian Fluid Mechanics, 163(1-3), 9-24.

Tanner, R. I., & Keentok, M. 1983. Shear Fracture in Cone Plate Rheometry. Journal

of Rheology, 27(1), 47-57.

Trouton, F. T. 1906. On the coefficient of viscous traction and its relation to that of

viscosity. Proceedings of the Royal Society of London Series A-Containing Papers

of a Mathematical and Physical Character, 77(519), 426-440.

Turner, M. S., & Cates, M. E. 1991. Linear Viscoelasticity of Living Polymers - a

Quantitative Probe of Chemical Relaxation-Times. Langmuir, 7(8), 1590-1594.

Turner, M. S., & Cates, M. E. 1992. Linear Viscoelasticity of Wormlike Micelles - a

Comparison of Micellar Reaction-Kinetics. Journal De Physique II, 2(3), 503-519.

Turner, M. S., Marques, C., & Cates, M. E. 1993. Dynamics of Wormlike Micelles -

the Bond-Interchange Reaction Scheme. Langmuir, 9(3), 695-701.

Vasquez, P. A., McKinley, G. H., & Cook, L. P. 2007. A network scission model for

wormlike micellar solutions - I. Model formulation and viscometric flow predictions.

Journal of Non-Newtonian Fluid Mechanics, 144(2-3), 122-139.

Wang, J., James, D. F., & Park, C. B. 2010. Planar extensional flow resistance of a

foaming plastic. Journal of Rheology, 54(1), 95-116.

White, F. M. 2003. Viscous Fluid Flow. 3rd edn. McGraw-Hill.

Wunderlich, I., Hoffmann, H., & Rehage, H. 1987. Flow birefringence and rheological

measurements on shear induced micellar structures. Rheologica Acta, 26, 532-542.

Xia, Y. N., & Whitesides, G. M. 1998. Soft Lithography. Annual Review of Materials

Science, 28, 153-184.

212



Yesilata, B., Clasen, C., & McKinley, G. H. 2006. Nonlinear Shear and Extensional

Flow Dynamics of Wormlike Surfactant Solutions. Journal of Non-Newtonian Fluid

Mechanics, 73-90.

Zhou, L., Vasquez, P. A., Cook, L. P., & McKinley, G. H. 2008. Modeling the

inhomogeneous response and formation of shear bands in steady and transient

flows of entangled liquids. Journal of Rheology, 52(2), 591-623.

213


