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Distributed Random Access Algorithm:
Scheduling and Congestion Control

Libin Jiang, Student Member, IEEE, Devavrat Shah, Member, IEEE, Jinwoo Shin, and Jean Walrand, Fellow, IEEE

Abstract—This paper provides proofs of the rate stability,
Harris recurrence, and �-optimality of carrier sense multiple
access (CSMA) algorithms where the random access (or backoff)
parameter of each node is adjusted dynamically. These algorithms
require only local information and they are easy to implement.
The setup is a network of wireless nodes with a fixed conflict graph
that identifies pairs of nodes whose simultaneous transmissions
conflict. The paper studies two algorithms. The first algorithm
schedules transmissions to keep up with given arrival rates of
packets. The second algorithm controls the arrivals in addition to
the scheduling and attempts to maximize the sum of the utilities,
in terms of the rates, of the packet flows at different nodes. For the
first algorithm, the paper proves rate stability for strictly feasible
arrival rates and also Harris recurrence of the queues. For the
second algorithm, the paper proves the �-optimality in terms of
the utilities of the allocated rates. Both algorithms are iterative
and we study two versions of each of them. In the first version,
both operate with strictly local information but have relatively
weaker performance guarantees; under the second version, both
provide stronger performance guarantees by utilizing the addi-
tional information of the number of nodes in the network.

Index Terms—Congestion control, distributed medium access,
positive recurrent, random access, scheduling.

I. INTRODUCTION

T HE problem of scheduling and controlling congestion
in networks with conflicting nodes has received con-

siderable attention over the last few years for communication
networks such as the Internet (cf., [34] and [53]), stochastic
processing networks (cf., [25] and [24]), and switched networks
(cf., [59]). Chronologically, the major steps have been random
access algorithms, the stability of maximum weight (MW)
scheduling, randomized versions of MW, greedy algorithms

Manuscript received July 04, 2009; revised May 10, 2010. Date of current
version November 19, 2010. This work was supported in part by the National
Science Foundation (NSF) under Projects CNS 0546590, TF 0728554, by the
DARPA ITMANET project, by the AFOSR Complex Networks project, and by
the Multi-disciplinary University Research Initiative (MURI) under Grant BAA
07-036.18.

L. Jiang and J. Walrand are with the Department of Electrical Engineering and
Computer Science, University of California, Berkeley, CA 94720 USA (e-mail:
ljiang@eecs.berkeley.edu; wlr@eecs.berkeley.edu).

D. Shah is with the Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(e-mail: devavrat@mit.edu).

J. Shin is with the Department of Mathematics, Massachusetts Institute of
Technology, Cambridge, MA 02139 USA (e-mail: jinwoos@mit.edu).

Communicated by R. D. Yates, Associate Editor for Communication Net-
works.

Digital Object Identifier 10.1109/TIT.2010.2081490

with good throughput properties, and optimal1 local algorithms.
We provide a brief overview of literature in that order followed
by contributions of this paper.

A number of random access algorithms for scheduling
transmissions of nodes were proposed, starting with the clas-
sical ALOHA protocol [1], [43]. Hajek and van Loon [23]
first showed that an adaptive version of ALOHA achieves
the maximum throughput possible for that particular type of
network. Works by Kelly and McPhee [33], [32], [40], Mosely
and Humblet [48], Tsybakov and Likhanov [65], Aldous [2],
Hastad, Leighton, and Rogoff [26], and Goldberg et al. [20]
establish various negative and positive results about the setup
when time is slotted, packets are unit size, and packets may
be queued or not queued. These papers assume that the nodes
do not sense the transmission of other nodes. For an online
survey (until October 2002) of contention resolution without
carrier sense, see [21]. More recently, Gupta and Stolyar [22]
and Stolyar [62] proposed algorithms that can achieve the ca-
pacity of slotted ALOHA by dynamically adjusting the access
probabilities. However, this adaptation requires information
exchange between nodes. Another class of random access
algorithms are based on carrier sense multiple access (CSMA)
where nodes can “sense” whether any conflicting transmission
is active. Eryilmaz, Marbach, and Ozdaglar [41] showed that
with a particular interference model, by properly choosing the
access probabilities with CSMA, the maximum throughput can
be achieved in the asymptotic regime of small sensing delay and
large network size. A related work by Bordenave, McDonald,
and Proutiére [4] analyzes the “capacity” of large network (or
mean field limit) for a given set of access probabilities.

The MW algorithm was proposed by Tassiulas and
Ephremides [64]. This algorithm schedules the independent
set (nonconflicting nodes) with the maximum sum of queue
lengths. These authors show that the sum of the squares of the
queue lengths is a Lyapunov function, thus proving stability.
Variants of this algorithm have good delay properties (cf., [58]
and [59]). Unfortunately, finding the MW independent set is
NP-complete and requires global information of the queue
lengths, making such algorithms difficult to implement. The
central idea of considering the maximization of the sum of the
user utilities is due to [34]. See also [39] and [45]. Combining
this objective with the scheduling appears in [49], [50], [14],
[15], [61], and [36]. For a related survey, see [8] and [60].

1In this paper, optimal performance means rate stability or positive Harris
recurrence of queueing Markov process in the context of scheduling, and utility
maximizing rate allocation in the context of congestion control. We will also
use throughput optimality to refer to optimality in the context of scheduling
problem.

0018-9448/$26.00 © 2010 IEEE



JIANG et al.: DISTRIBUTED RANDOM ACCESS ALGORITHM: SCHEDULING AND CONGESTION CONTROL 6183

Randomized versions of MW algorithm by Tassiulas [63] and
its variant by Giaccone, Prabhakar, and Shah [19] provide a
simpler (centralized) implementation of MW for input-queued
switches while retaining the throughput property. A distributed
implementation of this algorithm based on distributed sampling
and distributed (a la gossip; cf., [55]) summation procedure was
proposed by Modiano, Shah, and Zussman [46]. This algorithm,
though simple and distributed, requires network-wide informa-
tion exchange for each new scheduling decision. To overcome
this limitation, Rajagopalan, Shah, and Shin [51], [52] proposed
a random access CSMA algorithm in which the access proba-
bility of a node is a function of its own queue size and the es-
timation of the maximum of queue sizes in the network. The
maximum of queue sizes in the network is a global property.
However, as shown in [52], a useful estimation of it can be
maintained at each node through exactly one message/number
(through broadcast transmission) exchange with its neighbor.
This algorithm can be viewed as a continuous-time-reversible
Markov chain on the space of schedules (independent sets of
conflict graph) with time-varying transition probabilities that
are function of the queue sizes. In [51] and [52], authors show
that the average weight of schedule with respect to the invariant
distribution of this Markov chain (also known as the Glauber
dynamics in statistical physics literature) based on the instanta-
neous queue sizes is close to the maximum weight. Therefore,
if this reversible Markov chain is always close to its invariant
distribution, then the algorithm effectively simulates the MW.
However, queue sizes change and hence the transition proba-
bilities as well as stationary distribution of this Markov chain
changes. In [52], through a novel network adiabatic theorem
for reversible Markov chains with time-varying transition prob-
abilities, authors establish that by choosing access probabili-
ties as slowly varying function [like ] of queue
sizes, the above mentioned Markov chain remains always close
to its invariant distribution. This subsequently establishes the
throughput optimality of the algorithm. In summary, the choice
of an appropriate function of the queue size plays key role in
establishing the throughput optimality.

In [52], authors also propose an algorithm in which each node
chooses its access probability as the slowly varying function of
its own queue size only (i.e., ignoring the estimation of max-
imum of queue sizes). This algorithm is totally distributed (no
exchange of information or messages between neighbors). They
conjecture it to be throughput optimal (in a stronger sense of
Harris recurrence). The conjecture, as this paper is written, re-
mains unresolved. Further extensions of the algorithm of [51]
and [52] to circuit-switched networks is provided in recent work
by Shah and Shin [56]. An interested reader can find a sum-
mary of design and analysis of MW-based scheduling algo-
rithms (until 2007) for switched networks in a book chapter by
Shah [54].

Greedy algorithms are simpler than MW. Parallel iterative
matching [3] and iSLIP [42] were shown to be 50% throughput
optimal [9]. Subsequently, Dimakis and Walrand [13] identified
sufficient conditions on the network topology for throughput
optimality of greedy algorithms. Those conditions were fur-
ther weakened to obtain fractional throughput results about a
class of wireless networks by Joo, Lin, and Shroff [31] and

Leconte, Ni, and Srikant [35]. These algorithms are generally
not throughput optimal and require multiple rounds of message
exchanges among nodes.

Another class of local algorithms was proposed by Jiang
and Walrand [29]. The algorithms adjust access probabili-
ties in CSMA for both scheduling and congestion control by
means of a novel optimization problem and its relation to
certain reversible networks. The result is a totally distributed
algorithm. They conjecture it to be throughput optimal and
utility maximizing for scheduling and congestion control re-
spectively. In [30], the authors use a suggestion by Shah to
adjust the access probabilities over increasing intervals, and
they adapt techniques from stochastic approximation to prove
the convergence, rate stability, and optimality of the algorithms
in [29]. Independently, Liu et al. [37] showed that, under some
technical assumptions, the algorithm in [29] converges to an
approximate utility maximizing solution. However, their result
does not establish the throughput optimality (i.e., stability of
queue size in some form). Further, implicitly their algorithm
requires some knowledge about the entire system.

The key idea of [29] is that, instead of using the MW schedule,
the algorithm attempts to improve the schedule to match the ar-
rival rates into the queues. The scheduling algorithm is parame-
terized by the access probabilities or aggressiveness or backoff
time, which decide the rates at which nodes attempt transmis-
sion using carrier sense information. One then defines a distance
between the distribution (over the independent sets) realized by
the current parameters of the algorithm and desired distribution.
The key point of the algorithm is to minimize that distance by
adjusting the parameters. The gradient of that distance with re-
spect to the aggressiveness of one node turns out to be the differ-
ence between the average service and arrival rates at that node.
Accordingly, the algorithm follows the gradient and adjusts the
parameters based on the empirical service and arrival rates at
the nodes and thus is local. Indeed, the queue length reflects
this difference between service and arrival rate. In that sense,
this algorithm can be interpreted as utilizing queue lengths.

The technical challenges in proving the convergence and the
optimality of the algorithm in [29] is as follows. First, given a set
of CSMA parameters (the aggressiveness of the nodes), a node
can only measure the empirical arrival and service rates, but not
the average values of those quantities required by the algorithm
in principle. Second, the algorithm keeps changing the CSMA
parameters. The intuition to overcome the challenges is that if
the parameters remain constant for long enough (i.e., they are
changed slowly), then the distribution of the underlying Markov
chain approaches its invariant distribution. Consequently, the al-
gorithm approaches the desired gradient algorithm. The general
idea of using a random version of the desired gradient is at the
heart of stochastic approximation (see [5], [6], and [37]). Usu-
ally, in such scenarios, when the controlled variables (in this
case the CSMA parameters) are confined in a “compact” set,
then generic results from stochastic approximation (cf., [5] and
[6]) will provide desired convergence result. However, it is not
the case here and therefore additional steps are required to show
that the Markov chain approaches its invariant distribution fast
enough. The needed technical tool is a bound on the mixing
time of the Markov chain. Here, as in [52] and [30], we use
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a uniformized version of the continuous-time Markov chain to
exploit a bound available for the mixing time of discrete-time
Markov chains.

The current paper provides an alternate proof of the rate sta-
bility in the scheduling algorithm. Moreover, it proves the Harris
recurrence of the queue lengths when using a variant of the algo-
rithm that, in addition, requires that each node knows the total
number of nodes in the network. (Under that assumption, we
also show that for any given , there is a congestion con-
trol algorithm that is -optimal.) Both the proof in [30] and the
current proof of rate stability first establish the convergence of
the CSMA parameters to some desired values, and then use this
to prove rate stability. One major difference is that to establish
the convergence, the proof in [30] uses a quadratic Lyapunov
function, whereas the current proof uses a Lyapunov function
related to KL-divergence. The proof of the Harris recurrence
involves constructing a “petite set” that is positive recurrent. In-
tuitively, such a set is a generalization of a recurrent state for
a countable Markov chain. (The state space is not countable in
our problem.) Once the Markov chain hits this set, it starts afresh
with at least some measure, thus leading to the ergodicity of this
Markov chain.

Finally, it is worth taking note of similarities and difference
between the algorithm of Rajagopalan, Shah, and Shin [52] and
the algorithm of Jiang and Walrand [29]. Both of these algorithm
are random access CSMA and adjust the access (or backoff) pa-
rameters adaptively as function of local information. Through
this adjustment, both algorithms induce a time-varying Markov
chain on the space of schedules (independent sets of conflict
graph) that is reversible. However, both algorithms differ in the
way they adjust or adapt the access (or backoff) parameters.
Specifically, to adjust the access parameters, the algorithm of
[52] uses a slowly varying function of instantaneous queue sizes
while the algorithm of [29] (considered in this paper) uses em-
pirical arrival and service rates. While the difference of these
rates has relation to queue sizes induced over the adjustment in-
terval, it is not instantaneous queue sizes considered in [52], if
we use time-varying step sizes and update intervals (as in Al-
gorithm 1). On the other hand, if we use constant step sizes and
update intervals (as in the variant in [28]), then the access pa-
rameters become proportional to the queue sizes (although extra
care needs to be taken to keep the parameters bounded, slightly
decreasing the capacity region).

The paper is organized as follows. Section II defines the net-
work model. The main results are stated in Section III. Some
preliminaries about Markov chains as well as a relevant (CSMA)
Markov chain are introduced in Section IV. The throughput
properties of scheduling algorithms are proved in Section V.
Specifically, rate stability and Harris recurrence properties are
proved in Sections V-A and V-B, respectively. Section VI ana-
lyzes the congestion control problem. Section VII concludes the
paper.

II. MODEL AND PROBLEM STATEMENT

Our network graph is a collection of queues. Time is in-
dexed by . Let denote the amount of work
in the th queue at time and let . Initially,

and , i.e., the system starts empty.2 Work ar-
rives to each queue either as per an exogenous arrival process
or is controlled by each queue as per a certain algorithm. Each
queue can potentially be serviced at unit rate resulting in the de-
parture of work from it. Throughout this paper, we will assume
single-hop network. That is, once work departs from a queue, it
leaves the network. In this paper, we will not consider multihop
network. We strongly believe that the results of this paper can
be extended to multihop network in a straightforward manner
(cf., see [60]).

The queues are offered service as per the constraint imposed
by interference. To define this constraint, let de-
note the inference graph between queues. Here vertices

represent the queues and edges rep-
resent interfering queues: iff transmissions of queues

and interfere with each other (that is, the interference rela-
tionship is symmetric). Let de-
note the neighbors of node . Let denote whether
queue is transmitting at time , with notation that
represents transmission. Let . Then, interference
imposes the constraint that for all

(1)

The resulting queueing dynamics are described as follows. For
and

where denotes the cumulative arrival to queue in the
time interval and denotes the indicator function. Fi-
nally, define the cumulative departure process ,
where

We define the capacity region of such a network. The capacity
region is the convex hull of the feasible scheduling
set , i.e.,

The intuition behind this definition of capacity region comes
from the fact that any algorithm has to choose a schedule from

at each time and hence the time average of the “service
rate” induced by any algorithm must belong to .

Scheduling Problem. In this setup, we assume that the ar-
rival process at each queue is exogenous. Recall that
denotes the work that has arrived to queue in the time interval

represents cumulative arrival process.

2The assumption of system starting empty is not crucial and it is chosen for
the ease of exposition. Specifically, most results stated in this paper remain un-
changed even if the initial queues take any finite values. The only exception is
that, in Theorem 4, the bound on the queue size is increased by the initial queue
size.
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We assume that the increments in the arrival process over inte-
gral times, i.e., for , are independent and
identically distributed (i.i.d.) with bounded support. Moreover,
we assume that and for all
. Note that this setup naturally allows for and to be very

different processes for . Finally, we define .
Under our setup the strong law of large numbers implies that

with probability (2)

Let . We assume that without
loss of generality.3 In this setup, we need a scheduling algorithm
that decides each instant . Intuitively, we would
expect that a good algorithm will keep the queues as small as
possible. To make this notion formal, first note that if ,
then no algorithm can keep the queues finite, where

componentwise, for some

Motivated by this observation, we call strictly admissible if
, where

componentwise, for some

We call a scheduling algorithm rate stable if for any ,
the following holds with probability :

Given (2), this is equivalent to

Rate stability is a weaker notion of throughput optimality or sta-
bility of the network. A stronger notion requires that for any

the underlying network Markov process is positive
recurrent or more generally positive Harris recurrent. This is
a stronger property compared to the rate stability as it implies
existence of unique stationary distribution and in our setup er-
godicity of the network Markov process. Subsequently, it leads
to the finiteness of queue sizes with probability in station-
arity. See Section IV-C for definition and further implications
of Harris recurrence.

In summary, the problem of scheduling requires designing an
algorithm that makes the network-wide decisions
for all so that the network is throughput optimal (rate stable
or positive recurrent). The algorithm should utilize only local
information, i.e., should be based on the history observed
at node only and the sensing information available at node
about which of its neighbors are transmitting at a given time.

Congestion Control Problem. In this setup, unlike the sched-
uling problem, we require each node or queue to control its ar-
rival or data generation process. Specifically, at each node , an
algorithm decides the rate at each time . The data

3Note that, if � � � for some �, then algorithm will ignore such queues by
setting their access probability to �.

are generated at node as per a deterministic process with rate
at time . That is, for any

Given the arrival or data generation process, the remaining
problem is similar to scheduling. That is, an algorithm is
required to make decisions for all using only
local information and so as to keep queues stable. Now in order
to determine the right rate allocation, we assume that all nodes
have some utility. Let be a strictly concave and
increasing utility function of node , with representing
the value of its utility when it is allocated rate . Then,
ideally, we wish nodes to allocate rates where

over (3)

In summary, the problem of congestion control requires de-
signing an algorithm that makes decisions and

for all so that and the network of
queues is stable, i.e., rate stable or positive Harris recurrent. The
algorithm should utilize only local information, i.e., both
and should be based on the history observed at node only
and the sensing information available at node about which of
its neighbors are transmitting at a given time.

III. MAIN RESULTS

This section describes our algorithms and theorems stating
their performance guarantees for scheduling and congestion
control. The algorithms presented here are variants of algo-
rithms proposed in an earlier work [29]. As noted earlier, this
paper provides an alternate proof of the rate stability established
in [30] and the new result of Harris recurrence.

A. Scheduling Algorithm

The algorithm to decide through local decisions
can be classified as based on random access using carrier sense
information or CSMA. The basic operation of each node under
such an algorithm can be described as follows. In between two
transmissions, a node waits for a random amount of time—also
known as backoff. Each node can sense the medium perfectly
and instantly, i.e., knows if any other interfering node is trans-
mitting at a given time instance. If a node that finishes waiting
senses the medium to be busy, it starts waiting for another
random amount of time; else, it starts transmitting for a random
amount of time. The nodes repeat this operation. The difference
between all such protocols lies in the selection of the random
waiting time and random transmission time.

In this paper, we assume that node ’s random waiting time
and transmission time have exponential distributions with mean

and , respectively. Therefore, the performance of the al-
gorithm is solely determined by the parameters .
In essence, our scheduling algorithm will learn a good value
for at each node using only local information, so that the
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performance of the algorithm is throughput optimal. It is some-
what surprising that such a simple class of algorithms can indeed
achieve the optimal throughput.

More precisely, let be the value of parameter at time
. Given that changes over time, the waiting time becomes

distributed according to an exponential distribution with time-
varying rate. A convenient way to think of this is as follows.
Suppose node starts its new waiting period at time and is
still waiting at time . Then, given the history until time ,
the waiting time ends during with probability

.
Given the above description, the scheduling algorithm is com-

pletely determined once we describe how are decided for
all and all . For convenience, we describe the algorithm

for selecting . The algorithm, at each node ,
updates at time instances with .
Also, remains the same between times and
for all . To begin with, the algorithm sets
for all . With an abuse of notation, from now onwards, we de-
note by the value of for all .
Finally, define for . Note that

.
In what follows, we describe two variants that differ in the

choice of and the update procedure . The first variant
uses strictly local information while the second variant uses in-
formation about the number of nodes in the network and a per-
formance parameter . We provide theorems quantifying
the performance of these variants as well.

Scheduling Algorithm 1. In this variant, we use a varying up-
date interval . Specifically, we select

for

Also, we choose a step size of the algorithm as

for

Given this, node updates as follows. Let be
empirical arrival and service observed at queue in

. That is

Then, the update of is defined by

(4)

with initial condition . This update rule is essentially
an approximate gradient algorithm for the optimization problem
(26).

Note that, under this update rule, the algorithm at each node
uses only its local history. Despite this, we establish that this

algorithm is rate stable. Formally, we obtain the following result.

Theorem 1: The scheduling algorithm with updating rule (4)
as described above is rate stable for any .

Remark: In the above algorithm, the update interval ’s
are chosen to be quite large. This may result in large conver-
gence time as well as queue lengths. The purpose of choosing
large ’s is to ensure that the Markov chain corresponding
to the algorithm decisions reaches its stationary distribution
in a given interval so as to allow for accurate estimates of
mean service rates. According to the conservative estimation
in Section IV-B, the worst case mixing time is exponential in
the network size [cf., (23)], which naturally calls for large

’s. This issue may be related to the inherent complexity
of scheduling: Shah, Tse, and Tsitsiklis [57] have established
that in the worst case, no throughput-optimal scheduling policy
can achieve polynomial queue lengths on average. On the
other hand, in reality, the network topologies (i.e., the conflict
graphs) have certain structure and may not be the worst case.
For example, when the conflict graph is a complete graph, the
mixing time is polynomial in . In such cases, it is possible
to modify the parameters of algorithms to achieve smaller
convergence time and queue lengths.

Scheduling Algorithm 2. In this variant, we use for
some fixed . The choice of will be depend on two quanti-
ties—the number of nodes in the network (we assume
here) and that characterizes the approximate stability of
the system. Specifically

(5)

Then, the updating rule becomes

(6)

where (here, is the
Lipschitz constant4 for the cumulative arrival process) and if

then

if

if

otherwise.

(7)

We state the following throughput optimal property of the algo-
rithm using this rule.

Theorem 2: For given , under the above described
scheduling algorithm, the network is positive Harris recurrent
if .

B. Congestion Control Algorithm

The algorithm for congestion control has to select the appro-
priate values of and the arrival rates . These deci-
sions have to be taken so that the arrival rates maximize overall
network utility while keeping the queues stable.

Like in the scheduling problem, the algorithm for congestion
control updates its choice of and at time instances

with . To begin with, it sets
and for all . Again, with an abuse of notation, from
now onwards, we denote by [resp., ] the value of

4A function � � � for some ��� � �, is called Lipschitz with
constant � if ����� � ����� � ��� � ��.



JIANG et al.: DISTRIBUTED RANDOM ACCESS ALGORITHM: SCHEDULING AND CONGESTION CONTROL 6187

[resp., ] for all . As before, define
for . Note that .

In what follows, we describe two algorithms for congestion
control. Like the two scheduling algorithms, the first variant
does not utilize any global information while the second variant
utilizes information about number of nodes and a performance
parameter.

Congestion Control Algorithm 1. Here,
for . The are updated as follows:

for all

(8)

with initially and . Here is an algo-
rithm parameter and it plays a role in determining the efficiency
of the algorithm. As before, each node updates its parameters
based only on local information. Recall that each node accepts
data at rate in deterministically. We state
the following result about the performance of this algorithm.

Theorem 3: Under the above described algorithm, the queues
and arrival rates are such that

and

with probability , where is such that

(9)

Here represents a solution to the utility maximization
problem (3).

Congestion Control Algorithm 2. Here, the step size is
constant, and equals a large value , for all . In addition to the
above, we assume that are such that

(10)

and is known to all nodes. The algorithm performance param-
eter is . The step size is a small, fixed constant in .
Let . Select such that

The updating rule is as follows. For all

(11)

with initially and .

Remark: The dynamics (11) of is similar to that of
queue lengths in [49]. The primary difference arises from the
fact that here is based on empirical service rate induced
by the CSMA algorithm while in [49] it is obtained through a
maximal weight scheduling.

We state the following result about this algorithm.

Theorem 4: Under the above described algorithm 2, the
queue lengths are such that

for all for all

Further, define as

Then, with probability

(12)

Remark: Assuming is fixed (i.e., ignoring its dependence
on ), the above theorem indicates a tradeoff between the utility
gap and the backlog . This is similar to the
observation made in [49]. In particular, a larger gives more
emphasis on the utility, at the cost of larger backlog. The extra
factor here in the queue length is due to the required mixing time
for the CSMA Markov chain to approach its stationary distribu-
tion. Indeed, the exponential dependence of on captures the
hardness of problem similar to that observed in [57] in the con-
text of scheduling. This factor does not show up in [49] because
there the maximal weight scheduling decision is assumed to be
instantaneous.

IV. PRELIMINARIES

This section recalls relevant known results about establishing
bound on mixing time of Markov chains. We will start by setting
up basic notations and recalling known definitions.

A. Markov Chain and Mixing Time

Consider a discrete-time, time-homogeneous Markov chain
over a finite state space . Let an matrix be its
transition probability matrix. If is irreducible and aperiodic,
then the Markov chain has a unique stationary distribution and it
is ergodic in the sense that for any

, where means the element indexed by in the
matrix (where ). Let denote the stationary
distribution of the Markov chain. The adjoint of the transition
matrix , also called the time reversal of , is denoted by
and defined as: for any .
By definition, has as its stationary distribution as well. If

then is called reversible, and in this paper we will
be primarily interested in such reversible Markov chains.

As noted earlier, the distribution of the irreducible and ape-
riodic Markov chain converges to its stationary distribution
starting from any initial condition. To establish our results, we
will need quantifiable bounds on the time it takes for the Markov
chain to reach close to stationary distribution—popularly known
as mixing time. To make this notion precise and recall known
bound on mixing time, we start with definition of distance be-
tween probability distributions.
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Definition 1 (Two Distances): Given two probability distri-
butions and on a finite space , we define the following two
distances. The total variation distance, denoted as ,
is

The distance, denoted as , is

We make note of the following relation between the above de-
fined two distances: for any probability distributions , using
the Jensen’s inequality, we have

(13)

In general, for any two vectors , we define norm

This norm naturally induces a matrix norm that will be useful in
determining rate of convergence or mixing time of a finite state
Markov chain.

Definition 2 (Matrix Norm): Consider an nonneg-
ative valued matrix and a vector . Then,
the matrix norm of with respect to is defined as follows:

where .

It can be easily checked that the above definition of matrix
norm satisfies the following properties.

P1) For matrices and

P2) For matrix and

P3) Let and be transition matrices of reversible Markov
chains, i.e., and . Let both of them have

as their unique stationary distribution. Then

P4) Let be the transition matrix of a reversible Markov
chain, i.e., . Let be its stationary distribution.
Then

where is an eigenvalue of .

For a probability matrix , mostly in this paper, we will be inter-
ested in the matrix norm of with respect to its stationary dis-
tribution , i.e., . Therefore, unless stated otherwise, if we
use matrix norm for a probability matrix without mentioning the
reference measure, then it is with respect to the stationary dis-
tribution. That is, in the above example, will mean .

With these definitions and fact that and have the same
stationary distribution, say , it follows that for any distribution

on

(14)

where we have used (abused) notation and since
, with interpretation . Also, in

the above (and throughout the paper), in the left multiplication
of a vector with a matrix, the vector should be thought of as a
row vector. Therefore, for a reversible Markov chain
starting with initial distribution , the distribution at
time is such that

(15)

Now starting from any state , i.e., probability distribution
with unit mass on state , the initial distance
in the worst case is bounded above by where

. Therefore, for any , we have
for any such that

This suggests that the “mixing time,” i.e., time to reach (close
to) stationary distribution of the Markov chain scales inversely
with . Therefore, we will define the “mixing time” of a
Markov chain with transition matrix as . This also
suggests that in order to bound the distance between a Markov
chain’s distribution after some steps and its stationary distribu-
tion, it is sufficient to obtain a bound on .

B. CSMA Markov Chain and Its Mixing Time

The backbone of our algorithms, for scheduling and conges-
tion control, is a Markov chain with state space being ,
where is the set of independent sets of as defined in (1).
In recent years, this was considered in the context of CSMA by
Wang and Kar [66]. Its transition matrix is determined by the
vector and hence is time varying. However, if were
fixed, then it would be a time-homogeneous reversible Markov
chain. In the context of CSMA, the vector of corresponds
to the aggressiveness of backoff. In what follows, we will
describe this time-homogeneous version [i.e., assuming fixed

] of Markov chain, which was implicit in the description
of the scheduling/congestion control algorithm, its stationary
distribution, and a bound on its mixing time.

To this end, let be fixed. Recall that, under
scheduling/congestion control algorithm, each node does the
following. Each node is either in “transmission” state (de-
noted as ) or “waiting” state (denoted by ). In



JIANG et al.: DISTRIBUTED RANDOM ACCESS ALGORITHM: SCHEDULING AND CONGESTION CONTROL 6189

a waiting state, node has an exponential clock ticking at rate
(mean ): when it ticks, if medium is free,

it acquires and starts transmitting (i.e., now ); else if
medium is busy, it continues the waiting state (i.e., retains

). In a transmission state, node has an exponential clock
ticking at rate : when it ticks, it frees the medium and enters
waiting state (i.e., now ).

This is a continuous-time Markov chain over a finite state
space. It can be easily checked that it has the following product
form stationary distribution : for any

(16)

Here, for vectors , we use notation of dot product
. Under this stationary distribution, the average frac-

tion of time node ends up transmitting, which is its “service
rate,” is given by

(17)

Throughout, we will call as the service rate
vector induced by . To understand the “mixing time” of this
continuous-time Markov chain, first consider its following dis-
crete-time version with transition matrix on . Under ,
the transition from current state to the next state

happens as follows.
• Choose a node with probability

.

• If (equivalently, ), then

with probability
otherwise

and for .
• If and for all (i.e., and

for all ), then

with probability
otherwise

and for all .
• Otherwise .

The above discrete version of the continuous-time Markov chain
is reversible, i.e., . It can be checked that is indeed
the discretized version, i.e., is stationary distribution of .

The continuous-time Markov chain relates to the above de-
scribed discrete-time Markov chain with transition matrix as
follows: think of continuous-time Markov chain making its tran-
sitions when a clock of net rate
ticks. When its clock ticks, the next state for transition is chosen
as per transition matrix . Given this, let be the distribution
over under the continuous CSMA Markov chain at time
. Then, the dynamics of is described as

(18)

where is Poisson random variable with parameter , which
is equal to the number of clock ticks in time .

Given (18) and earlier discussion on matrix norms, mixing
time analysis for discrete-time Markov chain, we obtain that

Therefore, to bound the distance between and , we need
to get a bound on .

Lemma 5: The matrix norm of is bounded as

Proof: Define partition function or normalization constant
of as

It follows that

Therefore, for any

(19)

Now for any such that they differ in only one
component, i.e., it is possible to transit from to and vice
versa in one step, we have

In above, we used the fact that is Poisson random variable
with parameter , which is at most

.
Given above calculations, we are ready to bound the conduc-

tance of defined as

(20)

where . By Cheeger’s inequality
[27], [12], [38], [47], it is well known that5

(21)

5Cheeger’s inequality is about the second largest eigenvalue which is not
equal to � in general. By adding self loop of probability ���, the resulting
“lazy” version of the Markov chain has mixing time that is at most constant
factor larger compared to that of the original Markov chain; it has all eigen-
values nonnegative and hence the second largest eigenvalue equals � . In the
subsequent use of bound on mixing time in this paper, the characterization of
mixing time up to constant factor is sufficient, and the use of (21) is justified.
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where .
Hence, from the properties P3) and P4) of the matrix norm,

we can conclude that

(22)

Using Lemma 5 and the fact that
, we obtain

for

(23)

C. Positive Harris Recurrence and Its Implication

For completeness, we define the well-known notion of pos-
itive Harris recurrence (e.g., see [10] and [11]). We also state
its useful implications to explain its desirability. In this paper,
we will be concerned with discrete-time, time-homogeneous
Markov process or chain evolving over a complete, separable
metric space or Polish space . Let denote the Borel -al-
gebra on . We assume that the space is endowed with a
norm,6 denoted by . Let denote the state of Markov
chain at time .

Consider any . Define stopping time
. Then, the set is called Harris recurrent if

for any

where . A Markov chain is called
Harris recurrent if there exists a -finite measure on
such that whenever for is Harris recurrent.
It is well known that if is Harris recurrent then an essentially
unique invariant measure exists (e.g., see [18]). If the invariant
measure is finite, then it may be normalized to obtain a unique
invariant probability measure (or stationary probability distribu-
tion); in this case, is called positive Harris recurrent.

Now we describe a useful implication of positive Harris recur-
rence. Let be the unique invariant (or stationary) probability
distribution of the positive Harris recurrent Markov chain .
Then, the following ergodic property is satisfied: for any
and nonnegative measurable function

-almost surely

Here . Note that may not be finite.
1) A Criterion for Positive Harris Recurrence: Here we

introduce a well-known criterion for establishing the positive
Harris recurrence based on existence of a Lyapunov function
and an appropriate petite set.

We will need some definitions to begin with. Given a prob-
ability distribution (also called sampling distribution) on ,

6One may assume it to be induced by the metric of , denoted by �. For
example, for any � � � ��� � ������ with respect to a fixed � � .

the -sampled transition matrix of the Markov chain, denoted
by , is defined as

for any

Now, we define a notion of a petite set. A nonempty set
is called -petite if is a nontrivial measure on and

is a probability distribution on such that for any

A set is called a petite set if it is -petite for some such non-
trivial measure , i.e., there exists a measurable set so that

. A known sufficient condition to establish posi-
tive Harris recurrence of a Markov chain is to establish positive
Harris recurrence of closed petite sets as stated in the following
lemma. We refer an interested reader to the book by Meyn and
Tweedie [44] or the recent survey by Foss and Konstantopoulos
[16] for details.

Theorem 6: Let be a closed petite set. Suppose is recur-
rent, i.e.,

for any

where . Further, let

Then, the Markov chain is positive Harris recurrent. In the
above, is an expectation condition on the initial state
being .

Theorem 6 suggests that to establish the positive Harris re-
currence of the network Markov chain, it is sufficient to find a
closed petite set that satisfies the conditions of Theorem 6. To
establish recurrence property of a set, the following Lyapunov
and Foster’s criteria will be useful.

Lemma 7: Let there exist functions and
such that for any

and
a) ;
b) ;
c) for all ;
d) .

Then, there exists finite so that the set
, and the following holds:

for any

V. THROUGHPUT PROPERTY OF SCHEDULING ALGORITHMS

This section establishes throughput optimality for the two
scheduling algorithms proposed in Section III-A. Specifically,
we present proof of Theorem 1 to establish rate stability of the
Scheduling Algorithm 1 in Section V-A and proof of Theorem 2
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to establish positive Harris recurrence of the Scheduling Algo-
rithm 2 in Section V-B. As noted earlier, Algorithm 1 does not
utilize any global information while Algorithm 2 utilizes only
global information in terms of number of nodes in the network.

A. Proof of Theorem 1: Rate Stability

The proof of Theorem 1 consists of three parts. First, we in-
troduce and study a relevant optimization problem whose pa-
rameters are the vector of backoff parameters . On the one
hand, it is related to the classical variational principle studied
in the context of Gibbs distributions or Markov random fields
(e.g., [17, ch. 15.4]). On the other hand, it will suggest that the
optimal solution corresponding to , say , will be such that
the service rate vector , induced by the Markov chain’s
stationary distribution, is the same as the arrival rate vector .
Therefore, if Algorithm 1 adjusts the appropriately so that

converges to , then there is a possibility establishing rate
stability. In the second part, we do so by showing that Algo-
rithm 1 is a stochastic gradient algorithm for the optimization
problem of interest. Finally, in the third part, we conclude the
proof of Theorem 1 by establishing that the system is rate stable
for any .

A Relevant Optimization Problem and Its Properties. We
begin by introducing the optimization problem of interest. Its
relation to variational principle will be alluded to later. To this,
given an arrival rate vector and , define function

, where

(24)

The interpretation of is as follows. Assume that is
strictly feasible, i.e., , so that it can be written as a
positive combination of feasible transmission vectors. That is

for . Therefore, if is scheduled
for fraction of the time, then effective service rate is the same
as arrive rate . Clearly, can be thought of as a probability
distribution on as well.

Now consider the KL-divergence or relative entropy between
this distribution and , the stationary distribution of CSMA
Markov chain with parameters , defined as follows:

It is well known (by Pinsker’s inequality) that

However, is not a metric and it is only premetric. Consider
the following relation between and

(25)

where denotes the entropy of
the distribution .

Thus, for a given fixed , we have that

constant

Therefore, minimizing with respect to parameter is
equivalent to maximizing . As we will show, this op-
timization of leads to so that the equals as long
as . For this reason, the following is the optimization
problem of interest:

maximize

subject to (26)

Now we state the following useful properties of this optimiza-
tion problem.

Lemma 8: Consider a given . Then, the following
holds.

1) The objective function , as a function of is strictly
concave. Moreover

(27)

and

(28)

2) For , the optimization problem (26) has a unique
solution that is attained and . Let

. Then, under the “service rate vector” [as defined
in (17)] equals . That is

for all

3) Further, for any such that

Proof: For simplicity of notation, we will drop the refer-
ence to in and simply denote it as as we have

fixed throughout the proof. We will use additional notation of
the partition function of defined as
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Proof of 1). We wish to establish that is strictly concave as
a function of . To this end, its first derivative can be calculated
as

(29)

Here, we have used the definition of in (16).
To obtain strict concavity, we would like to show that the

Hessian of is negative definite. Now, we compute the second
derivative as [using (29)]

(30)

Thus, the Hessian of , denoted by with
, is the negative covariance matrix of a random vector

with distribution . It is well known that covariance matrices
are positive semidefinite, i.e., is negative semidefinite. For
strict concavity of , we need to show that is negative def-
inite or the covariance matrix of is positive definite. To this
end, let be a vector (of binary) random variables with the
joint distribution . Let be the vector of
its mean. Then, from the above, we have that

. Now consider any vector . To establish
the positive definiteness of , we need to show that

Suppose to the contrary that there exists a vector such
that . Clearly

Therefore, let us assume that

That is, the random variable with probability
with respect to . Now consider vectors , where in

only node is selected; i.e., with th component
and all other components . Now, by definition,

for any . Therefore, the above condition implies that for all
. That is, for all

(31)

That is, for all . Now applying the same argument with
the choice of , we obtain that

This immediately implies that since for any
. Thus, we have proved that if , then it must

be that . That is, is negative definite and hence is
strictly concave. This completes the proof of 1) of Lemma 8.

Proof of 2) and 3). We wish to establish that for , the
optimization problem has a unique solution that is attained. We
will establish this by showing that the optimal solution must lie
inside a closed, bounded, and convex set since . As a
by-product, this will provide (3). Then, the strict concavity of

will immediately lead to the existence of a unique solution,
and the claim that as a result of the local opti-
mality condition. As the first step towards this, we establish that

.
To this end, since , it can be easily checked that there

exists a distribution on such that

(32)

Therefore, using (32) in the definition of , we have

(33)

The last step follows because 1) for any
since any graph has at least two independent sets; and 2)

for some .
Next, we will show that if , then

where (34)

To establish (34), we will show that for any , if a)
or b)

, then . As a
by-product, this will imply 3) of Lemma 8.
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First, for case a), consider a given so that
. Since and , there exists

a nonnegative valued measure on such that

and (35)

This implies the existence of a distribution on defined
as

if

otherwise.

Note that . Therefore

(36)

Now, we prove case b). For this, let be such that
. Let be such that . De-

fine as and for . Clearly,
. Therefore, similar to (35), there exists

a nonnegative valued measure on so that

(37)

Now define a distribution on such that

if

if

otherwise.

Here, as before, refers to the independent set with only
node transmitting. Note that . Now, com-
bined with the fact that , we
have

This completes the proof of b), and subsequently that of Lemma
8.

Convergence of to . The statement of Lemma 8
suggests that if indeed we have algorithm parameter

, then we have a desirable situation where the effective ser-
vice rate equals the arrival rate for all nodes as long as .
To this end, we establish that indeed converges to
with probability . This is because update (4) of Scheduling Al-
gorithm 1 is essentially step of an approximate gradient algo-
rithm for solving optimization problem (26). This is made pre-
cise in the proof of Lemma 9.

Lemma 9: If , then under Scheduling Algorithm 1

componentwise, with probability

Proof: First note that the solution of concave (max-
imization) optimization problem (26) can be found iteratively
using the gradient algorithm with appropriate step size. The ob-
jective is —we will drop reference to since it is fixed
in what follows and use instead for . Now the th
component of gradient vector of , is

For a given , as per (4), the is updated as

where captures the
“approximation” error in estimating the actual gradient direc-
tion given by . Thus, if , then the up-
date of is as per the standard gradient algorithm with step
size . Then, standard arguments from optimization
theory would imply that . But is a random
vector. Therefore, in order to establish the convergence, we will
show that norm of is sufficiently small. Specifically, we es-
tablish the following.

Lemma 10: The following bound holds:

(38)

where constant in -term in the error may depend on .
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The proof of Lemma 10 is stated later in Section V. Now
using the bound of (38), we will establish the convergence of

. To this end, consider evolution of . By
Taylor’s expansion (with notation )

(39)

Here is an matrix as per Taylor’s expansion is eval-
uation of second-order partial derivative of at some values.
Therefore, any element of , say with , is
bounded as [using calculations executed in (30)]

(40)

We also note that each component of vectors and
is bounded by a constant since the cumulative arrival process
is Lipschitz and service process is bounded above by unit rate.
Specifically, for any

(41)

Taking expectation on both sides of (39) and using (40), (41),
and Lemma 10, for all

(42)

Performing summation of (42) from to , we obtain

(43)

since from Lemma 8 and by definition of
the algorithm and . Now since

, we conclude from (43) that

(44)

by Fatou’s lemma. Therefore, using property of concave maxi-
mization, we have that with probability

(45)

Thus, in order to complete the proof of Lemma 9, it is enough to
show that converges with probability . To this
end, consider [with notation

]

In the above, follows from (41), follows from the con-
cavity of , i.e., , follows from
property of update rule that , and from
Lemma 8 that . In application of Lemma 10, we
have that

Since the terms in the above are nonnegative, by an application
of Fubini’s theorem and Markov’s inequality, we have that with
probability

Of course, is finite. Using this, we have that
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where with probability . Now the following (stan-
dard) fact from analysis (proof is omitted) implies that

convergence with probability and completes the proof of
Lemma 9.

Proposition 11: Consider two real-valued, nonnegative se-
quences such that for each

and

Then, exists.

Wrapping Up: Establishing Rate Stability. As an implication
of Lemma 9, we establish the rate stability of the queueing net-
work. The following Lemma implies Theorem 1.

Lemma 12: Given , under Scheduling Algorithm 1

for all

Proof: Given , recall that is the unique op-
timal solution of optimization problem (26) as per Lemma 8. In
the remainder of the proof, since is fixed, we will use notation

, and as before. Now by Lemma 9,
we have with probability as . Now as
noted earlier, . It can be easily checked that

is continuous as function of . Therefore, with probability

(46)

where the equality to , the vector of all ’s, is implied by
Lemma 8. Thus, effectively

(47)

Lemma 10 implies that with probability

(48)

That is, with probability

(49)

From (47) and (49), with probability

(50)

Now consider a node and any time . Let
for some . We will bound next. To

begin with, note that

Note that the service provided to the th node in interval
is . Now, for the purpose of

upper bounding queue, we will assume that this service can
be used only to serve the work that has arrived in interval

. Given this, we obtain the following upper
bound (using ):

Here, we have used definition , the nonnegative
part of , for any . Since and the
cumulative arrival process is Lipschitz, we have

By definition, . Therefore, putting these to-
gether, we obtain

(51)

Consider the first term on the right-hand side of (51). From (49)
and (50), it follows that as ,
and as well as . Therefore, it
easily follows that as , the first term goes to . Now,
consider the second term on the right-hand side of (51). Since

as . In summary,
from this discussion and (51), we obtain that for any , with
probability

This complete the proof of Lemma 12.

Proof of Lemma 10: Note that, as per the update (4) of Sched-
uling Algorithm 1, is such that

Therefore, the statement of Lemma 10 follows by establishing
existence of so that for

(52)

for . In the remaining proof, for simplicity
of notation, we will drop reference and simply use in
place of . We will establish that by arguing separately
that and

.
First, we consider the deviation in . This will immedi-

ately follow from the property of arrival process. By definition,
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is the empirical arrival rate vector over . Now
for any

(53)

Now, are i.i.d. random variables
with , bounded support and hence standard
deviation at most . Using this, we have

(54)

where the last inequality follows from . This
completes the proof of bound on deviation for .

Now, we consider deviations in compared to . For
this, first we establish being close to and then
we establish being close to . Therefore, we start by
evaluating deviation between and . To this end,
consider any . We will establish that

(55)

To establish (55), we will use the mixing time bounds (23) de-
rived in Section IV-B next. To this end, let be the distribu-
tion over of scheduling decisions at time

. By Lemma 8(2), . And is 0–1
valued random variable. Therefore

(56)

where the last inequality follows from (13). Now, from (23), the
right-hand side of (56) is bounded above by as long as

(57)

where . In the above, while applying (23), we
have used the fact . This leads to the following
bound:

(58)

Hence, (55) follows since
due to the choice of .

Given (55), as the last step to establish
, we will show that for any

(59)

Consider (with notation , and
)

(60)
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In the above, follows from choice of as in (56)
and (57). If , then due to the “mixing effect,”

are within of . Now,
(60) immediately implies that

(61)

To conclude, observe that (54), (55), and (61) imply the result
of Lemma 10.

B. Proof of Theorem 2: Positive Harris Recurrence

The goal of this section is to prove Theorem 2, that is, the
positive Harris recurrence of the network Markov process under
Scheduling Algorithm 2. For a countable Markov chain, posi-
tive recurrence means that all states are visited infinitely often,
with a finite mean intervisit time. When the state space is not
countable (as in our case), one cannot expect every state to be
visited infinitely often. However, a small set of states can have
that property. If the transition probabilities out of that set are
similar, then the set plays the role of a recurrent state. Indeed,
the evolution essentially starts afresh once the chain hits that
set. This idea is made precise by the definition of a petite7 set.
Section IV-C has a review of known results about establishing
positive Harris recurrence. In particular, Theorem 6 there states
that the existence of a positive recurrent closed petite set implies
positive Harris recurrence.

The appropriate petite set is the set where the sum of the
squares of the queue lengths is less than some constant . The
positive recurrence is proved using the fact that the sum of the
squares of the queue lengths is a Lyapunov function which tends
to decrease when it is larger than (Lemma 13). Intuitively, this
is true because Scheduling Algorithm 2 tries to balance
and for all , so that on average, the service rate dom-
inates the arrival rate on each queue. The set is shown to be
petite (Lemma 14) by proving that starting from any state in that
set, there is some lower bound on the probability that, at some
later time , the queues become empty, no link is active, and
the parameters of the CSMA backoff delays reach their max-
imum value (Proposition 17). Thus, the evolution of the Markov
chain essentially starts afresh from that set with at least proba-
bility .

To this end, we start with necessary definitions of the network
Markov process under Scheduling Algorithm 2. Let
be the index for the discrete time. It can be checked that the tuple

forms the state of the time-ho-
mogeneous Markov chain operating under the algorithm. Now

where . Clearly, is
a Polish space endowed with the natural product topology. Let

be the Borel -algebra of . Finally, for ,
define norm of denoted by as

where and denote the norm, and is ’s index in
, assigned arbitrarily. Thus, are al-

ways bounded. Therefore, in essence, iff .

7Recall that petite means small in French.

To establish statement of Theorem 2, we need to show that
is indeed positive Harris recurrent as long as .

By Theorem 6, it is sufficient to find positive recurrent closed
petite set. First, we will find closed recurrent set using criterion
of Lemma 7 and then establish that the set is indeed petite. To
this end, define a Lyapunov function as

where

We establish the following “drift” property about .

Lemma 13: Given so that , define

Then, for any initial state

(62)

where is defined as

(63)

Therefore, Lemma 7 implies that for some finite , set
satisfies

for any

Therefore, by Theorem 6, the following is sufficient to complete
the proof of Theorem 2.

Lemma 14: Consider any . Then, the set
is a closed petite set.

In the remainder of this section, we will prove Lemmas 13
and 14.

1) Proof of Lemma 13:

A relevant optimization problem. The basic idea behind the
update algorithm (6) is to design a simple gradient procedure
for solving the following optimization problem:

maximize

subject to (64)

By Lemma 8, it follows that if , then (64) has
a unique solution that is attained; let it be .
Then, from Lemma 8(2), the effective service rate , under
the random access algorithm with fixed , is such that

That is, the arrival rate is less than the service rate by
under this idealized setup. In order to establish the positive

Harris recurrence, we will need more than this—service rate
should dominate arrival rate for small enough time interval to
imply appropriate drift condition desired by Lyapunov–Foster’s
criteria. This is exactly what we will establish next.
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Derivative of Becomes Small. As per statement of Lemma
13, let initial state be . As the first
step, we wish to establish the following:

(65)

In the above and everywhere else in the proof of Lemma 13,
the expectation is always assumed to be conditioned on the ini-
tial state . For simplicity, we will drop reference to this
conditioning. Intuitively, (65) implies that on average and in ex-
pectation, the arriving rate is strictly less than the normalized
service rate within a time interval of length . This will
allow us to establish drift in Lyapunov function. To this end, we
start with definition . We establish
the following useful nondecreasing property of under the
“projection” defined in (7).

Lemma 15: For any and
and .

Proof: is upper bounded by since
by Lemma 8. Further

(66)

Here follows from Lemma 8(3) for (thus
), and the last step has used . Now if

we set and we need to show
. Note that it is enough to show that for any

(67)

where the -projection is defined as

if
otherwise.

Then, we can iteratively apply (67) to complete the proof. When
, desired claim trivially follows as .

Now suppose . By definition, it must be that
or . We prove (67) when

; the other arguments for the other case are very
similar. Consider

In the above, and are due to and

(since by assumption), respectively.
This completes the proof of Lemma 15.

Now consider the relation between and

(68)

where the random vector
is the with for some in

neighborhood of with by (40). In the above,
follows from the fact that

and Lemma 15.8 For , we use that
and the concavity of and

. Finally, follows from
and .

Our choice of the large updating period is merely for
bounding and we obtain the following lemma which is
analogous to Lemma 10.

Lemma 16: If the updating period ,
then for all

8This is the main reason why we consider � instead of � as we cannot
establish monotonicity of � under the projection.
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Therefore, for all

Proof: We provide sketch proof here since the proof of
Lemma 16 is essentially the same as that of Lemma 10—replace

for all and use to obtain
bound of

on mixing time of the Markov chain on using (5). As a
consequence, it follows that by choice of with large enough
constant in its exponent, as stated in Lemma 16, the expectation
of can be made smaller than any given constant. Specif-
ically, it can be made smaller than .

Summing (68) from to

(69)

Taking expectation on both sides and diving by

(70)

since and
Lemmas 15 and 16.

Service Rate Dominates Arrival Rate. Next, we wish to es-
tablish that the average of empirical service rate dominates the
average arrival rate over time interval of length . That is, for
all

(71)

To this end, first note that (using Cauchy–Schwartz inequality)

(72)

where the last inequality is from (70). Therefore

(73)

In the above, follows from Lemma 8(2), i.e.,

and from Lemma 16; and follows from (72).

Wrapping Up: Negative Drift. Now, consider . For
this, suppose . Then, is strictly positive
over interval as service rate is at most . Therefore,
in that case, the queue is fully served in time .
Hence, using (73), we conclude that

(74)

if . In the above, as usual, we have assumed that the
expectation is conditional with respect to . In what follows,
we will use this conditioning explicitly. Given (74), we have

if
if

(75)

(76)
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for all . In the above, is from boundedness of arrival
process and is from (74). Hence

This completes the proof of Lemma 13.

C. Proof of Lemma 14

We wish to establish that set is a
closed petite set. By definition, it is closed. To establish that it
is a petite set, we need to find a nontrivial measure on
and a sampling distribution on so that for any

To construct such a measure , we will use Proposition 17.

Proposition 17: Let the network Markov chain start
with state at time , . Then, there exists

and such that

Here denote the state where all components
of and (i.e., the schedule is the empty independent set) and

for all .
Proof: Consider any . By definition, total amount

of work in each queue is no more than . Consider some
large enough (soon to be determined) . By the property of the
assumed arrival process, there is a positive probability
of no arrivals happening to the system in time . Assuming
no arrivals happen, we will show that in large enough time ,
with probability , each queue receives at least

amount of service; and after that in additional time with
positive probability , the empty set schedule is reached.
Now, after the empty set schedule is reached, in additional time

with positive probability , the empty set schedule
remains; i.e., the scheduling does not change in this time. Since
the empty set schedule remains and no new data arrives, is
increasing by from (6) and finally reaches for a large enough

which depends on . This will imply that by defining
the state is reached with probability at least

This will immediately imply the desired result of Proposition 17.
To this end, we need to show existence of and
with properties stated above to complete the proof of Proposi-
tion 17.

First, show the existence of . For this, note that the
Markov chain corresponding to the scheduling algorithm has
always bounded transition probabilities (since is bounded in
terms of ) and is irreducible over the space of all independent

sets . Therefore, it follows that starting from any initial
scheduling configuration, there exists finite time such that a
schedule is reached so that any given queue is scheduled for
at least unit amount of time with probability at least .
Here, both depend on only (and ), not . Therefore, it

follows that in time all queues become empty

with probability at least . Next, in the exis-
tence of also follows from the bounded property of our
Markov chain. Finally, for , consider the interpretation of
the Markov chain as in Section IV-B using the clock ticks. Note
that no clock ticks in time with probability since its
rate is bounded in terms of . Hence, the empty set schedule
remains in time with probability , where and de-
pend only on . This completes the proof of Proposition 17.

In what follows, Proposition 17 will be used to complete the
proof of Lemma 14. To this end, consider Geometric as
the sampling distribution , i.e.,

Let be the delta distribution on element . Then, define
as

that is

Clearly, is nontrivial measure on . With these defini-
tions of and , Proposition 17 immediately implies that for
any

This establishes that set is a closed petite set and this com-
pletes the proof of Lemma 14.

VI. THROUGHPUT AND FAIRNESS OF CONGESTION

CONTROL ALGORITHMS

A. Proof of Theorem 3: Rate Stable Congestion Control

The proof of Theorem 3 is similar to that of Theorem 1. In
a nutshell, the basic idea is to show that the update (8) solves a
relevant optimization problem through a subgradient algorithm.
That is, converge to the solution of the appropriate
optimization problem with probability . The property of the
optimization problem will imply the goodness of utility of the
convergent arrival rates. Using this convergence property, it will
in turn imply rate stability of queue size.

A Relevant Optimization Problem and Its Properties. Let
be space of all probability distributions on . Given a distri-
bution , recall that denotes its entropy

Consider the following optimization problem:

maximize

over

subject to for all (77)
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Associate a dual variable to constraint . Here
the use of for dual variable is an intentional abuse of notation
and the reason behind this will soon become clear to the reader.
Given this, the result Lagrangian is given by

(78)

Therefore, the dual function is given by

over (79)

Finally, the dual optimization of (77) is given by

minimize over (80)

Now we are ready to state useful properties of the optimization
problems (77) and (80). These properties were presented in ear-
lier work [29].

Lemma 18: The optimization problem (77) is concave max-
imization while the optimization problem (80) is convex mini-
mization. There is no duality gap and hence both have the same
optimal value. They satisfy the following properties.

1) Given dual feasible , the associate primal feasible
assignment is given as follows:

for all (81)

That is, and

(82)

2) The subgradient for , represented as ,
is given by

3) Both problems have unique optimal solutions.
Proof: To begin with, observe that the objective of (77) is

strictly concave as entropy is a strictly concave function over
and so are for all under our setup. Therefore, given the

constraints of (77), the unique optimal exists and is achieved. To
observe the lack of duality gap, note that there exists a
and a that is strictly feasible. Therefore, Slater’s
condition will imply lack of duality gap. We defer the proof of
uniqueness of the dual optimal solution until a little later.

Proof of 1). Given the dual feasible , let be
the corresponding primal feasible solutions that maximize the
Lagrangian . Given structure of as in (78), it follows that

must be such that

for all

For , observe that

Since is maximizing , from the above, it follows that
for all . Therefore, for any

and , it must be that

That is

for all

Thus, .
Proof of 2). Given 1), it follows that

Now the dual variables capture “slack” in the corresponding
constraints of (77). Specifically, for a given , if the corre-
sponding primal solutions are , then the slack in the
th constraint is : if it is positive, should be

decreased and if it is negative, should be increased. This
intuition is formalized in the optimization theory (e.g., see [7])
by establishing that a subgradient of the dual optimization at
is given by vector with

Proof of 3). The uniqueness of solution of (77) was already
explained. To understand uniqueness of , consider indepen-
dent set , which has only node in it; and the null set . Then,
since , it follows that

Now suppose to contrary that there is another optimal solution
of (80), . Then, it will immediately contradict the above
as is unique as discussed above. This completes the proof of
3).

Convergence of . In light of Lemma 18(2), it fol-
lows that the algorithm (8) is motivated by the standard pro-
jected dual subgradient algorithm. The algorithm uses estimated

in place of ; but exact update for . That
is, for all

To this end, define “error” vector

and let
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Now consider the relation between and . Since the
projection is nonexpansive

where we have used the fact that each component of
is . Define, the error in optimal cost at the

th step as

By definition, . Since the dual objective is convex,
and is its subgradient at , we have

(83)

Also, as used earlier, for all . Therefore, from
the above, we obtain that

(84)

Note that the analysis of Lemma 10 applies to bound as
is. That is

(85)

Using this and taking expectation on both sides of inequality
(84), we obtain

Summing the above inequality from to , it follows that

By rearranging the terms and using , it follows that
. Since , we can conclude

that with probability

(86)

where we have used the fact that dual optimization (80) has a
unique solution and it is convex minimization problem. Now,
the rest of the proof of with probability follows

exactly the same set of arguments as those used in the proof
of Theorem 1. The convergence of follows
due to continuity of solution of concave maximization (82) with
respect to .

Utility of , Rate Stability. To begin with, we observe that
convergence and with prob-
ability implies the rate stability using exactly the same argu-
ments as those used in Lemma 12.

To establish goodness of the , note that along with it op-
timizes (77). Now , the optimal allocation [as per (3)] along
with appropriate distribution, say on is a feasible so-
lution. Therefore, it follows that

(87)

In the above, we have used the fact that the entropy is nonneg-
ative and the maximum value of a discrete valued random vari-
able’s entropy is at most the logarithm of the cardinality of the
support set. Equation (87) immediately implies the desired re-
sult. This completes the proof of Theorem 3.

B. Proof of Theorem 4

The proof of Theorem 4 in a nutshell requires us to establish
that the average rate allocation has near optimal total utility.
This follows using similar arguments that we used in proving
Theorem 3. That is, establish that the ends up approximately
solving optimization problem (77). This property follows pri-
marily because the Congestion Control Algorithm 2 with update
(11) is primarily designed as a constant step size dual “subgra-
dient” algorithm. We will formalize this in the rest of this sec-
tion. We begin with a useful property that establishes uniform
bound on components of and subsequently implies uni-
form bound on the components of the queue-size vector
for all time duration. This will be followed by proof of the good-
ness of average rate to conclude the proof of Theorem 4.

Uniform Bound on . We state and prove the fol-
lowing bound on starting with .

Lemma 19: Under the update rule (11), for all

for all

where recall that is defined in (10) and is the constant step
size used in the update (11).

Proof: To prove this Lemma, consider any .
Now for any by the definition [cf., (11)]. To prove

, we will use the principle of mathematical
induction. To this end, for the base case, and

by definition. Suppose, as the inductive hypothesis, that the
property is true for all . Now we wish to
establish this property for . To this end, we consider
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two cases: a) , or b) . First,
consider case a). By (11), it follows that

In the above, we have used the fact that by def-
inition. Now consider case b). For this note that if

, then . This is because by (11),
solves

(88)

and for any

(89)

That is, the optimal solution of (88) is . This completes the
proof of Lemma 19.

Uniform Bound on . We state and prove the fol-
lowing bound on starting with .

Lemma 20: Under the Congestion Control Algorithm 2,
starting with an empty queue, i.e., , the following
holds for all :

Proof: In what follows, we will show that for time in-
stances , for , the queue size is bounded as

for all (90)

Equation (90) along with the bound on implied by Lemma
19 will imply

for all (91)

Finally, by noticing that for all , it follows that
for any . Therefore,
we will obtain the desired result of Lemma 20.

Now we prove the remaining bounded as stated in (90). To
this end, note that

(92)

This follows by imagining that all the arrival traffic in
amount of data, is added to the queue at the end of

the interval; service is used only to serve data that were
present at time .

Based on (92), we will establish (90) by means of the prin-
ciple of mathematical induction. For the based case of ,

we have and . For induction hypothesis,
assume it to hold true for all . For , we wish to
establish that the relation holds. To this end, using (92), it fol-
lows that

(93)

Here the last equality follows by definition (11). This completes
the proof of (90) and Lemma 20.

A Useful Variational Characterization. We state the Gibbs
variational characterization (e.g., see [17]) of the distribution
that will be useful later in the proof.

Lemma 21: Given is the unique solution of

maximize

over (94)

where recall that is the space of probability distributions over
. Further

(95)

Proof: Equation (94) was established implicitly in Lemma
18. To see an explicit proof, consider the following. For any

(96)

In the above, follows from the fact that

and follows from an application of Jensen’s inequality. The
above suggests that the optimal cost of (94) is and
is achieved iff the . This establishes the first claim of
Lemma 21.

To see (95), define as

if
o.w.
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Here . Then, using the above, it fol-
lows that

(97)

In the above, follows from the definition of and the
fact that for any distribution on , the entropy is at the most

; and follows because any is a convex com-
bination of elements in .

Some Properties. Here we state some useful properties that
will be useful in completing the proof of Theorem 4. To begin
with, let be the optimal solution to congestion control
problem (3). At any stage is obtained as

for all

Therefore, it follows that for any

(98)

Since , we have

(99)

Define notation . From (98) and (99), we
have

(100)
We will observe another useful property. By Lemma 19, we have

bounded by . Therefore, using the mixing time
bounds and arguments utilized in Lemma 10, we obtain that by
the choice of appropriately large as

(101)

we have that for all

(102)

In the above, the conditioning represents the filtration (or in-
formation) until time , while recall that the random variable

is the empirical service rate in .

Wrapping Up: Completing the Proof of Theorem 4. A key
element of the following proof is a drift analysis of
similar to that in [49].9 Now, let us start with the algorithm’s

9Two important differences with the proof of [49] are worth noting. 1) As
mentioned earlier, the random access CSMA algorithm takes time to approach
the stationary distribution (which approximates the maximal-weight schedule).
This time contributes to the queue lengths and needs to be quantified. 2) The-
orem 4 establishes pathwise performance guarantees instead of in expectation,
even though the state space of ���� is uncountable.

update rule (11). Specifically, for a given , squaring both sides
of (11) for gives us

(103)

In the above, follows from the fact that and
for all ; and follows from the fact that

for all . From (103), we have that

(104)

By (97) and since , we have

(105)

Therefore, using (100), we have

(106)

Now using (106) in (104) and the fact that because
, we have

(107)

where we have used notation . Now taking
its summation from until on both sides of (107),
the fact that and diving both side by , we have

(108)
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Now, define and
. By definition, is a

martingale with respect to filtration . With this nota-
tion, we have that for any

(109)

In the above, follows from (102) and bound on using
Lemma 19. Finally, note that is a martingale with bounded
increment due to uniform bound on , the fact that
are vectors in and . Therefore, by strong law
of large numbers for martingales with bounded increments, it
follows that

with probability (110)

That is, with probability

(111)

Using (111) in (108) along with Lemma 19, and then taking
, we have that with probability

(112)

Finally, observe that by concavity of function
along with Jensen’s inequality, we have that for

Therefore, the following desired conclusion of Theorem 4 fol-
lows from (112) along with choice of : with proba-
bility

(113)

VII. CONCLUSION

In this paper, we have presented a simple, distributed ran-
domized algorithm for scheduling and congestion control
in a network. Our algorithm is essentially a random access
protocol with time-varying access probabilities. Our algorithm
for scheduling, in the presence of exogenous arrivals, achieves
throughput optimality while our algorithm for scheduling with
congestion controlled arrivals achieves near-optimal resource
allocation when nodes have concave utilities. We believe that

the algorithmic method presented in this paper should be of
general interest.
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