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Abstract

This dissertation extends the classical inventory control model to address stochastic
inventory control problems raised in market-making and robust supply chains.

In the financial market, market-makers assume the role of a counterpart so that
investors can trade any fixed amounts of assets at quoted bid or ask prices at any
time. Market-makers benefit from the spread between the bid and ask prices. but
they have to carry inventories of assets which expose them to potential losses when
the market price moves in an undesirable direction. One approach to reduce the risk
associated with price uncertainty is to actively trade with other market-makers at the
price of losing potential spread gain.

We propose a dynamic programming model to determine the optimal active trad-
ing quantity, which maximizes the market-maker’s expected utility. For a single-asset
model, we show that a threshold inventory control policy is optimal with respect to
both an exponential utility criterion and a mean-variance tradeoft objective. Spe-
cial properties such as symmetry and monotonicity of the threshold levels are also
investigated. For a multiple-asset model, the mean-variance analysis suggests that
there exists a connected no-trade region such that the market-maker does not need
to actively trade with other market-makers if the inventory falls in the no-trade re-
gion. Outside the no-trade region. the optimal way to adjust inventory levels can be
obtained [rom the boundaries of the no-trade region. These properties of the optimal
policy lead to practically efficient algorithms to solve the problem.

The dissertation also considers the stochastic inventory control model in robust
supply chain systems. Traditional approaches in inventory control first estimate the
demand distribution among a predefined family of distributions based on data fitting
of historical demand observations, and then optimize the inventory control policy
using the estimated distributions. which often leads to fragile solutions in case the
preselected family of distributions was inadequate. In this work, we propose a min-
imax robust model that integrates data fitting and inventory optimization for the
single item multi-period periodic review stochastic lot-sizing problem. Unlike the
classical stochastic inventory models, where demand distribution is known, we as-



sume that histograms are part of the input. The robust model generalizes Bayesian
model, and it can be interpreted as minimizing history dependent risk measures. We
prove that the optimal inventory control policies of the robust model share the same
structure as the traditional stochastic dynamic programming counterpart. In partic-
ular, we analyze the robust models based on the chi-square goodness-of-fit test. If
demand samples are obtained from a known distribution, the robust model converges
to the stochastic model with true distribution under general conditions.

Thesis Supervisor: David Simchi-Levi
Title: Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

In supply chain management, inventory refers to raw materials, work-in-process goods
and finished products which are held available in stock and will be used to satisfy
production needs or customer demands in the future. Inventory enables businesses to
cover the needs for stock occurred during the manufacturing or delivery lead times. It
also provides a buffer to protect against fluctuations in customer demands as well as
uncertainties in the supply process. These two aspects imply that inventory ensures
satisfying demand from customers or downstream production processes. In addition,
it enables taking advantage of economies of scale in purchasing, production, trans-
portation and storage by ordering or producing more than immediate demands and
storing the rest as inventory. That is, inventory management strategies can also con-
tribute to reducing total supply chain costs. Indecd, according to the U.S. Census
Bureau [52], manufacturers’ and trade inventories were estimated at $51.35 trillion in
April 2010. and this figure is 1.23 times the sales in that month.

Unfortunately. it is usually costly to hold inventory. This cost includes the op-
portunity cost associated with the capital invested in inventory, the cost of capital to
finance inventory, warehousing cost, handling cost, costs associated with obsolescence
and shrinkage, and insurance and taxation. Atkinson 5] pointed out that the annual
inventory holding cost is approximately 15~35% of the goods” actual value.

Therefore, the key in inventory management is to achieve a tradeoff between the

benefits and the costs of holding inventory, which implies the need to have the right



amount of inventory at the right place and at the right time so as to balance system-
wide cost and the service level. The vast amount of money invested in inventory —
inventory holding cost is a significant percentage of the inventory value — is critical
to the success of any business. Indeed, the success stories of giants such as Wal-
Mart, Dell or Amazon demonstrate the importance of effective inventory management
strategies.

The literature on inventory theory can be dated back to the beginning of last
century. It is widely believed that the first inventory model is the economic order
quantity (EOQ) model attributed to Harris [22]. The EOQ model assumes a constant
and deterministic demand, and identifies a closed form solution which corresponds
to the optimal tradeoft between an inventory holding cost and a fixed ordering cost
representing economies of scale in ordering.

Wagner and Whitin [54] introduced the dynamic economic lot-size (DEL) model
which considers an inventory system with deterministic time-varying demands over
a discrete finite planning horizon. The cost structure is similar to that in the EOQ
model and a shortest-path algorithin is developed to solve the problem.

The seminal papers of Arrow et al. [3] and Dvoretzky et al. [16] explicitly model
stochastic demands using discrete-time dynamic programming formulations. Most
stochastic single-commodity single-location inventory models including those pro-
posed in this dissertation can be regarded as extensions of this fundamental model.
In particular, Scarf [47] studies a stochastic counterpart of the DEL model in Wagner
and Whitin [54]. He shows that an (s, S) policy is optimal by introducing and apply-
ing the notion of /K-convexity. In such a policy, whenever the inventory level drops
below s, an order is placed to raise the inventory level to S. Otherwise, no action is
required.

Other influential research. especially those studying multiple-location inventory
models, include but not limited to Roundy [39] which develops a 98% optimal strategy
for the single warehouse multiple-retailer inventory system under assumptions similar
to the EOQ model, and Clark and Scarf [15] which establish the optimal policy for

a serial system with stochastic demands. Detailed surveys in inventory theory are

14



provided in Porteus [42], Simchi-Levi et al. [49] and Zipkin [55].

In this dissertation, we extend the line of research in stochastic inventory control
started by Arrow et al. [3] and Dvoretzky et al. [16] to investigate inventory problems
associated with market-making in finance and robust systems in supply chains. Sim-
ilar to the early works, we adopt the discrete-time dynamic programming framework
to formulate these problems. Our objective is to identify the structures of optimal
control policy in each case, and investigate properties of these policies so that efficient
algorithms can be developed.

The thesis is organized as follows. Inventory management problems in market-
making are analyzed in Chapter 2, where we focus on a single asset with an expo-
nential utility objective function, Chapter 3, where we consider a single asset with
a mean-variance objective function, and Chapter 4, where the focus is on the mean-
variance analysis for multiple assets with correlated price movements. Chapter 5
considers the applications of inventory model in robust supply chains where the com-
plete information about demand distributions, i.e., the cumulative distribution func-
tions of the demands, is unknown. We conclude the dissertation in Chapter 6 with a
discussion of possible directions for future research.

In the rest of this chapter, we introduce the background and motivation for this
research as well as our contribution in each area: market-making and robust supply

chains.

1.1 Market-Making

Investors trade foreign currencies, securities and other financial products frequently.
Unfortunately, there is no guarantee that every investor who wishes to buy (or sell)
a certain amount of asset will find a counterparty willing to sell (or buy) the same
amount at that time. This is exactly the objective of the so-called “market-makers™:
to facilitate the trading process for most financial products. That is, the market-
maker is ready to assume the role of a counterparty when one wishes to buy or sell

financial products. For example, each stock traded on the New York Stock Exchange



(NYSE) has a market-maker called “specialist”, whose sole responsibility is to serve
as a market-maker for this particular stock.

Typically, market-mnakers quote a pair of bid/ask prices to clients and have the
obligation to buy/sell at the quoted prices if their clients wish to deal at these prices.
Over time, market-makers buy at bid price and sell at ask price, which is higher than
the bid price at any given instant. Their objective is to profit from the “spread”
between bid and ask prices. not from price movements. In that regard, they are
different from ordinary investors, who seek to profit by betting on price moves.

Market-makers encounter difficulties when receiving consecutive trades in the same
direction. For example, suppose a foreign currency market-maker holds no foreign
currency initially and receives a series of sell orders afterwards (i.e., the clients sell
to the market-maker), the market-maker’s holding position becomes very large and
positive.! This is potentially very risky because if the foreign currency depreciates,
the market-maker will lose a considerable amount. For a risk-averse market-maker.
this is certainly undesirable. Thus. he cannot simply wait for the arrival of a client
(who wishes to buy the foreign currency from him) and sell to this client to bring his
holding position back to zero.

To reduce the risk and avoid such situations, the market-maker may consider
selling certain amount of the foreign currency to other market-makers to lower his
position instead of waiting for sell orders. This option is available when there are
multiple market-makers providing liquidity for the same asset, which is true for the
foreign currency market and some stock markets, e.g., National Association of Secu-
rities Dealers Automated Quotations (NASDAQ). Of course. when the market-maker
adjusts its position by selling to other market-makers, he becomes their client and
has to sell at others” bid prices. As a result, he forgoes the possibility of selling to his
own clients at the ask price and taking the spread. More importantly, when doing

an adjustment, the market-maker will sell at the other market-makers’ bid prices and

YAlthough at the beginning of this chapter we define inventory in supply chains as physical
commodities held in stock, inventory also refers to the assets held or short sold by a financial
institute or an individual in finance. In this particular example, the foreign currencies held or short
sold by the market-maker can be regarded as inventory.

16



buy at the other market-makers’ ask prices, thus is likely to encounter a loss. So
here we have a typical trade-off between profit and risk. Our goal in this research is
to apply dynamic programming techniques in order to investigate when and by how
much a market-maker should sacrifice profit to reduce risk.

The observation that market-makers may carry unwanted inventories has long
caught the attention of the research community, and most previous work investigates
how inventories influence the market-makers’ behavior when quoting bid and ask
prices, in other words, it studies how to control inventory via pricing decisions. The
theoretical analysis in Ho and Stoll [24] shows that risk-averse market-makers will
actively induce movements toward a desirable inventory level by setting favorable
bid/ask prices. Stoikov and Saglam [50] considers a market-maker in both an option
and its underlying stock, and analyze the role of the derivatives of option price on
the bid/ask quotes of both the option and the stock.

Empirical studies suggest that the impact of inventory levels on pricing is rather
weak compared with the impact of other components such as asymmetric information
(c.f. Stoll [51], Madhavan and Smidt [33], Foster and Vishwanathan [18], and Mad-
havan and Smidt [34]). In a later paper, Ho and Stoll [25] introduces a model that
includes both the ability to change the bid/ask prices as well as opportunities to trade
with other market-makers. The result suggests that trades among market-makers are
necessary under certain conditions. Unfortunately, their solution is for models with
only two periods.

A survey of US foreign exchange traders (c.f. Cheung and Chinn [13}) indicates
that the market norm is an important determinant of the bid-ask spread and only a
small proportion of bid-ask spreads differ from the conventional spread. Specifically,
only 2% of the respondents in that survey reported that inventory related factors
have an impact on their bid-ask spreads. This is because quoting volatile bid/ask
spread may damage the market-maker’s reputation and drive away potential trading
opportunities. Also, many of the traders reported that they are reluctant to reveal
adverse positions by quoting non-conventional spread. Thus, this empirical study

implies that at least in the foreign exchange market, inventory is not managed by
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quoting bid/ask prices. Rather, it is controlled by trading with other market-makers.
This is also supported by other evidence, for example trading volume. Indeed. trading
volume is extremely high in the foreign exchange market and is believed to be a result
of market-makers passing unwanted inventory from one to another (c.f. Lyons [32]).
Finally, the survey of Cheung and Chinn [13] also states thal more than half of
respondents believe that large players dominate dollar-pound and dollar-Swiss franc
markets. Therefore, many small and medium-sized players have no market power,
i.e., they have no impact on future price movements when actively trading with other
market-makers.

Our study is motivated by a practical problem faced by a major investment bank.
Here we consider an electronic market-maker in the foreign exchange market which
serves small retail orders. Since the market-maker only captures a very small fraction
of the entire foreign exchange market, it quotes the conventional spread and has no
market power. In this case, the primary decision the market-maker needs to make is
how much to trade with other market-makers in order to limit its market exposure.

Thus, our objective is to identify effective strategies for a market-maker who does
not control prices and can merely adjust inventory through active trading. In this
sense, the market-making problem shares some important features with the classical
inventory control problem. We need to determine the amount of assets to buy or
sell during market-making process, which is analogous to the ordering quantity in
inventory control. Indeed, in our case, the risk induced by inventory is analogous
to the inventory holding cost, and the sacrificed spread profit due to active trading
plays a similar role to the linear ordering cost. The sacrificed spread profit is the
loss of spread encountered by a market-maker who sells/buys a unit of inventory to
other market-makers (at their own prices) rather than holding that unit of inventory
and profiting from the spread in the future. Of course, there are some important
differences: in the classical inventory control model. the order quantity must be non-
negative and the unit inventory holding cost is deterministic, which as we shall see,
are essentially different from the market-making situation.

To present our contribution, we need to define a threshold policy. Such a policy
) A
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is defined by two parameters, an upper limit and a lower limit. Whenever the inven-
tory is higher (lower) than the upper (lower) limit. the market-maker will decrease
(increase) the inventory to the upper (lower) limit. Otherwise, i.e., when inventory
level is between the two limits, the market-maker will not change its position. We
call the region where the market-maker does not adjust its inventory, the “no-trade
region.” When the inventory of the market-maker falls in the no-trade region, the
market-maker will not actively trade with other market-makers, but will still accept

trades from its customers. Our contributions are summarized as [ollows.

When the market-maker manages a single asset, we propose dynamic programming
models for the market-making inventory control problem, where an exponential utility
function or a mean-variance utility are used — utilities that have been applied to
model risk averse decision makers. Threshold policies are proved to be optimal for
both models, and the special properties of the threshold levels are also analyzed.
In particular, we identify conditions under which the threshold policy is symmetric,
investigate the risk neutral model, and establish various monotonicity properties of

the optimal threshold levels for the mean-variance analysis.

When the market-maker manages multiple assets simultaneously, we focus on the
dynamic programming formulation which optimizes the linear tradeoff of mean and
variance. The optimal policy shows that there exists a simply connected no-trade
region for each period and the optimal adjustment quantity is obtained directly from
the no-trade region. In addition, we identify conditions under which the the no-trade

region is symmetric with respect to 0.

Based on these structural properties of the optimal policy, we develop efficient
algorithms to solve the corresponding dynamic program whose computational com-
plexity is linear in the number of periods. Numerical results are also presented to

illustrate properties ol the optimal policies.
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1.2 Robust Stochastic Lot-Sizing

The stochastic lot-sizing model has been extensively studied in the inventory litera-
ture. Most of the research has focused on models with complete information about
the distribution of customer demand. However, in most real-world situations, the
demand distribution is not known; ouly historical data is available. A common ap-
proach is to hypothesize a family of demand distributions and then to estimate the
parameters specifying the distribution using the historical data. Once the probability
distribution has been identified, the inventory problem is solved following this esti-
mated distribution. This implies that the inventory policy is determined under the
assumption of a perfect demand distribution.

We consider a different approach recognizing that the estimated demand distri-
bution may not be accurate. We analyze the single-item stochastic finite-horizon
periodic review lot-sizing model, under the assumption that demand is subject to an
unknown distribution and only historical demand observations (given by histograms)
are available. Rather than first estimating the demand distribution and then op-
timizing inventory decisions, as is the case in the classical approaches, we combine
these two steps to minimize the worst case expected cost over a set of all possible
distributions that satisfy a certain goodness-of-fit constraint. In this way, we combine
distribution fitting and inventory optimization, and characterize a robust inventory

o

control policy based on the historical data.

The novelty of our approach is the starting point of histograms. All practitioners
in inventory control start with histograms and then they fit an underlying demand
distribution (e.g., Crystal Ball from Decisioneering, Inc. allows selecting a distribution
family among several listed families). Finally, based on the fitted distribution, the
lot-sizing problem is solved.

The problem, of course, is that this distribution may not be the correct one.
For this purpose, we develop a model that integrates both distribution fitting and
lot-sizing — we refer to this model as the robust lot-sizing model. This novel idea

of using histograms as a source of input and concurrently considering replenishment
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quantities and distributions leads to interesting insights. For example, as in the
classical stochastic inventory setting, our results indicate that an (s,S) policy is
optimal for the robust model as well. We also discuss the impact of the sample size
on model performance.

The main contributions of our work are as follows

1. We develop a robust minimax model that only requires historical data, and
allows correlated demand. Note that most minimax models (see, e.g., Notzon
[38] and Ahmed et al. [1]) as well as Bayesian inventory models (e.g.. updating

the demand distributions in the way provided in Iglehart [27]) in the literature

could be interpreted as special cases of our framework.

2. The optimal policy of the robust model has the same structure as the corre-
sponding policy in the classical stochastic lot-sizing model. In particular, the
optimal policy is a state-dependent base-stock policy for the multi-period in-
ventory problem without fixed procurement costs. and a state-dependent (s, S)

policy if the fixed procurement cost is considered.

3. To illustrate the general framework. we consider the special case when the set
of demand distributions is directly related to the chi-square goodness-of-fit test.

This set can be defined by a set of second order cone constraints.

We also prove that the robust model converges to the stochastic model with true
demand distribution if samples are drawn from this distribution and sample size grows
to infinity. In particular, if the demand distributions are discrete, the robust model
converges to the stochastic model with the true demand distribution as the number
of independent samples drawn {rom the true distribution for each period tends to
infinity. Moreover, the rate of convergence is in the order of 1/ VE. where k is the
number of samples. Slightly weaker results are obtained for continuous distributions.

The performance of the robust model is illustrated by means of computational
experiments. We argue that the robust model outperforms the traditional approach,

which optimizes the inventory decisions by using fitted distributions. We also provide
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insights on the performance of the robust model with different parameters and sample

S1zZes.
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Chapter 2

Single-Asset Market-Making with

Exponential Utility

As we mentioned in Chapter 1, the multi-period stochastic inventory control problem

55] for a detailed review of risk-

i
|
L

has heen extensively studied since 1950's, see Zipkin
neutral models. In the last two decades. a number of papers have been devoted to risk
aversion in inventory management. Bouakiz and Sobel [10] focuses on minimizing the
expected exponential utility of the linear ordering costs and inventory holding costs
incurred during a finite or infinite planning horizon, and proves that a base stock
policy is optimal. Chen et al. [11] considers risk-averse inventory (and pricing)
models where the utility functions are time-separable. They show that the structure
of the optimal policy is almost identical to the structure of the optimal policy in the
risk-neutral counterpart, see also Simchi-Levi et al. [49].

In this chapter, we study the inventory problem in market-making introduced in
Section 1.1 under the assumption that the decision maker manages a single asset and
has an exponential utility function. We introduce the stochastic inputs and decision
variables for the market-making inventory control problem in Section 2.1. Section 2.2
presents the dynamic program which maximizing the exponential utility throughout
the planning horizon, and proves that a threshold policy is optimal for the general
model. Furthermore, we discuss the special cases where the dimensions of the states

determining the threshold levels can be reduced in Section 2.3, and identify sufficient



conditions for the threshold policy to be symmetric in Section 2.4. Finally, Section

2.5 concludes this chapter.

2.1 Formulation

In this chapter. we consider a time horizon of one day, which reflects the observation
that market-makers tend to “go home flat”, i.e., market-makers prefer clearing their
inventory at the end of the trading day in order to avoid significant market price
movements overnight (c.f. Hasbrouck [23]). We divide the trading day into N discrete
small time intervals.

The sequence of events is as follows: At the beginning of period k, we observe the
current inventory level . Unlike the classical inventory model, 2, can be negative
as the market-maker can take a short position. Next. the bid and ask prices quoted
by the dominant player, pi and p{ are observed. After that, we adjust the inventory
by the amount g, which is the decision variable. Note that ¢ represents the amount
the market-maker buys or sells (to other market-makers) at that period. We let
gr be positive if the market-maker buys ¢, units of asset, and ¢ is negative if the
market-maker sells |gx|. The market-maker, as a price follower, quote the same bid
and ask prices p} and p¢ as the dominant player. Clients arrive and they sell s, and
buy d; units of the asset to/from the market-maker. Obviously the inventory at the
beginning of period &+ 118 2301 = 71 + @ — dy + 5p.

Siiilar to Stoikov and Saglam [50], we consider the dynamics of the mid price
pe= (Pl +p8)/2, k=1,..,N + 1, which is the average of the bid and ask prices. Let
the mid price at period k + 1, be pyiy = pr + 0. ) can be dependent on the mid
price py, and we assume that d; conditional on pg is independent of dz conditional
on p; for any k # k. Note that a large family of stochastic processes satisfies this
assumption. For example, suppose that p, follows a geometric random walk, i.e.,
Die1 = prexp(p + 5;) where 4 is the drift component and 51{. is i.i.d. distributed
for any k. It is straightforward that o, = py (exp(ﬂ 0 — 1) conditional on py, is

independently distributed for any k. Of course, a random walk is also a special case
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of the mid price model if we assume that & is i.d.d. distributed for any k. Within

a day, the geometric random walk is almost the same as an ordinary random walk if

the price change at each stage is small (¥ = 1+ z if |2 < 1).

We introduce another parameter ¢, to model the bid and ask prices. For any
period k. ¢ is defined such that the bid and ask prices at period k for any market-
maker are pﬂ'f, = . — e and pf = pj. + € respectively. Note that ¢, is the transaction
cost the client pays when he or she trade one unit of the asset with the market-
maker, or the transaction cost the market-makers pays when it trade one unit with
other market-makers to control its inventory. We also refer to €, as the transaction
cost in period k. For any period k, €, must be strictly positive so that the bid price
is always lower than the ask price. Similar to the price movement o, we also assume

that ¢, conditional on py, is independent for any k. For example, we can choose

v = O(pr) + o where dr(py) is a given function and ¢y, is an independent random

)

variable for any k. When ¢ = 0, €, = ¢x(pr) becomes a constant once py is known,
e.g.. €, can choose to be 0.01% of the mid price. Moreover, if all the foreign exchange
market-makers quote the conventional spread, then e, = ). is a constant equal to a
half of the conventional spread.

To model orders from clients, we use the random variables s, and dj. to denote the
amounts the clients buy from and sell to the market-maker in period £ respectively.
We also refer to sp and dy as the supply and demand from the clients respectively,
since these amounts increase or decrease our inventory levels. Both s, and dj. should
be nonnegative, and s, and dy can be correlated for a given period k. For the time
being, we assume that s, and dj. conditional on p; are independent for each period
k. but we allow non-stationary distributions for s, and dj, across different period & in
order to model the intraday pattern in the trading volume, e.g.. the trading volume
is higher when the market opens or closes.

So far we have defined two random processes: (i) pp and ¢, which jointly define
the bid and ask prices of the underlying asset and (ii) sx and d; to model the orders
from clients. These two processes can be dependent on each other in order to capture

the correlations between the trading volumes and price movements, i.e.. the four



random variables dx, €, sp, dj conditional on pj can be correlated for any given k.
For example, if we observe that the amount of sell orders s; is significantly higher
than the amount of buy orders dy, we expect that the market price is more likely to
go down, i.e., the probability that J; is negative should be higher than the case when
the reverse is true. In addition, all these random variables can also depend on p; [or
any k as we stated in their definition.

In any period k, the profit we obtain from the bid-ask spread by trading with our
clients is (dj + si)ex. Note that we trade |g| at the price quoted by other market-
makers, and hence the transaction cost is |gi|e;. In addition, the market-maker’s
inventory is subject to the risk of price uncertainty, and hence it may incurred a
profit or loss of the amount (zj, + ¢, — di. + s1.)0;. As a result, the one-period profit

at period k, k=1,...,N is

T = (Th + qp — dp + )0 + (di + S5 — || ) eh

To simplify the notation. let L, = 1 + ¢, be the inventory level after adjustment,

Sk =dj, + s and Ay = s, — d;,. Then

Th = (L 4+ Ap)0s + (Sk — | Ly — @] )es. (2.1)

Note that here we do not consider the fee the market-maker pays to short the asset.
This is because the fee is neglectable for liquid assets, e.g., foreign currency. In
addition, the structure of our problem remains the same and the optimality of the
threshold policy still holds even if we consider a linear short fee.

We let x 1 = v(Tny1, envsq) denote the profit or loss at end of the planning
horizon, where v(2y+1.€x41) IS a concave function with respect to zy,;. Note that
Ty4+1 also depends on pyyq if ey depends on py.q. If the positions at the end of
the trading day can be clear at the mid price, or we mark to the mid price at the
end of the day, then 7y ; = 0. If the inventory position at the end of the day. zy.4
is cleared at the price quoted by other market-makers, the market-maker incurs a

salvage cost of eyp1|2np1], e, Tvg = —enar|onay].
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We adopt two approaches to characterize the risk-averse attitude of the decision
maker: exponential utility function and mean-variance analysis. The objective func-
tions as well as the properties of the optimal control policies under the exponential
utility criterion are presented in the remaining part of this chapter, and we discuss

the corresponding results for the mean-variance analysis model in Chapter 3.

Before we end this section, we would like to point out that most of our results
are not restricted by the assumptions we present here, and the generalizations are
discussed in details in Section 3.7. For example, we can also allow auto-correlations
in the movements of prominent bid/ask prices as well as the client orders, i.e., d,
€r 5p. dy conditional on py can be correlated across the period k. Furthermore, the
bid /ask spread a market-maker charges its clients can be different from the spread
charged by other market-makers, i.e., the bid and ask prices quote by other market-
makers are pl, = pp — ¢ and p{ = py + ¢, while the bid and ask prices we quote to

A1 . b o SO 4 1 Sa
our clients are p; = pr — €, and P, = pr + €.

2.2 Optimality of the Threshold Policy

Suppose that the market-maker has an exponential utility function U(7), i.e.,
U(r) = —exp(—pm), where p > 0 denote the risk-aversion parameter.

Note that large p implies higher risk aversion. Since the time horizon is one day, the
market-maker does not care how much profit a particular strategy generates in the
due process. Instead, he only looks at the profit at the end of the day. We should
choose the amount g to maximize the expected utility of the total profit generated

in the day, i.e., the objective function is

N+1
max F |—exp —/)E ™) (2.2)
Gk
k=1



Note that Bouakiz and Sobel [10] considers a similar objective function for the classical
inventory model. As a result, the corresponding Bellman equation is

Ji(zk, pr. €r) =min F { e Tyt (g + qr — dg + Sk, pr + O, 6;{:+1)|pkg Gk}

dk

for any b = 1,..,N, and Jys+1(@n+1, D1 €ns1) = exp(—pans1). The state in
the dynamic programming model consists of xj, p, and ¢, because we observe the
iventory position x; as well as the bid and ask prices defined by p, and €. before
we decide the adjustment quantity g, which is our decision variable. Note that we
consider the expectation conditional on p;, and €, because the distributions of ;. Sj
and Ay, depends on p and ¢;.

Similar to (2.1), we define Ly = xj, + ¢, Sy = dp + s and Ay, = s — dj.. Inserting

in (2.1), the Bellman’s equation is reduced to

Ji(@y, pr. €;) = min E {(”(”’HAK)C‘H(SkLka:k{m)
’ e Lk

—~
®)
o

=

X i1t (Ly + Ag, pre + Ok €41)

Pk 67\'}

Under the exponential utility objective function in (2.2), we obtain the following

forall k=1,...,N.

optimal inventory control policy.

Theorem 2.1. The optimal control policy for the dynamic programming model in
(2.2) is as follows. For any period k, there exist threshold levels, independent of the
inventory level xy, T (pp.ex) and TFHpy. ) where T (pr, ¢x) = T (pr. ci) for any
given py., such that the optimal order quantity q; = T}Hpr, €x) — a1 if 21 < THpps €1),

G = Tf( Dy €)=y if @y, > T,f(]:)k, er), and g = 0 otherwise.

In other words, given the current mid price p;, and the half of the spread ¢;,, which
specify the market bid and ask prices, the optimal policy is to keep the inventory
level ) within a certain interval [T} (py. ), T¢ (pr- €x)]. When ap < TH(py, €x), the
inventory level is too low and the market-maker will lose a significant amount if

the market price increases. Therefore, it is willing to pay the transaction cost and

o
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increase the inventory upto T (py., €4). Similarly, if the inventory level is too high, i.e.,
2 > TE(pr. €1), the market-maker should decrease its inventory to T (pr. €r) s0 as to
protect against the case that the market price decreases drastically. Otherwise, the
inventory is contained in the interval T p, €1), T?(py. €;)] and no action is required,
i.e., the market-maker only needs to accept the orders from its clients and carry the
inventory to the next period. We refer to the interval ([T} (ps. €x). T (i, )] as the
no-trade region, where it is optimal not to actively trade with other market-makers.

In the rest of this section, we prove Theorem 2.1 by induction on the number of
periods. &, and illustrate it using a numerical example.

Before we jump into the technical details of the proof of Theorem 2.1, let us first
introduce the following notation, which will be used in the remaining part of Chapters
2 and 3. Since the functions we consider here may not be differentiable everywhere,
e.g., the absolute value function, for any function f(z). we let f'(x) denote its left-

hand derivative, i.e..

f'(x) = lim fla) = Sl = d)

dio d
which always exists if f(z) is convex.

Futhermore, for a multivariate function f(axy, @o, ..., &y, ), We use ;—;j—l(zl Lo oo y,)
to denote the left-hand derivative of f(x1. 1o, ....x,,) with respect to the variable x;,
i1=1,....m.

Another important property for convex functions is that we can interchange the
expectation and differentiation operators. To be precise, suppose that f(z,y) is a

convex function with respect to z. Y is a random variable, and g(z) = E[f(x.Y")]

is well-defined. According to the monotone convergence theorem. we have g'(x) =
EfL% "(2,Y)]. sce also Bouakiz and Sobel [10].

To prove Theorem 2.1 by induction, we start by assuming that
(A1) Jyer(z,p.€) is nonnegative for any ., p and e,
(A2) e Jp (L = A, p,e) is a convex function in L for any given a, A, p and €.

We would like to show that (i) Theorem 2.1 is valid for period A and (ii) Ji(Zx, pi. €x)
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also satisfies the induction assumptions (A1) and (A2). The proof is complete once
we establish that Jyii(@vey, pys1. €v+1) has the properties (A1) and (A2).

Note that in the classical inventory problems. e.g., Scarf [47] and Bouakiz and
Sobel [10], the initial inventory position z) defines the constraint that the order
upto level is greater than wy, but it does not appear in the objective function of the
Bellman equation. However, in our Bellman equation (2.3), we cannot pull a; out of
the objective function because it is included in an absolute value function.

Let us define the functions fE(Ly, pr. ex) and f2(Ly., py. €1) as

) \ —of AN )0+ (Se— Ly e -
filLy.prex) = E {e P Bidior (5= L) k)Jk+1 (Li + Ap, pr =+ Ok €121) | D ekJ
9 =LA+ (Sut LyYen ] N N
fla.‘(.thpk‘ C},-) =F I:C P(( ' POk St L) L)-]lﬁ-l (;Ll.', + Almpk + 0. 61\7—1—1) P, Ck:‘ .
(2.4)

It is easy to show that the Bellman equation (2.3) is equivalent to

3 . . —or o] . 7 2D
Ji(Tps prs €x) = mlll{ min e "k fH( Ly, py, Ek)-,Lln},ll PR fi (L, iy Ek)}

s L@y,

|

= min {e”""‘*"‘ (Lmin fH(Ly.. . ek)> , ePerek (Lmin f2( L, pre, ck)> } .

(=2 kS ’

After reformulating the Bellman equation, we decompose it into three sequential opti-
mization problems. The problems ming, >, f,i(Lk, Pr, €r) and ming, <., / g‘f(Lk, Dk €1)
minimize a single variate function subject to a single constraint, whose structure is
the same as the optimization problems in the classical inventory control models. How-
ever, we have another minimization operator which compares the optimal solution of
these two problems. In this sense, the problem in (2.5) is more challenging than those
in the classical inventory models.

For any given py, and e, let T} (py, ;) and T2 (py, €.) be the global minimizers of

fE(Ly. pr.€x) and f2(Ly., pr, ;) respectively, ie..
Ji ) S I \
T,} (pr. €p) = arg n}in f,}.(’Lk,pk, €p) and Tf(pk, (p) = arg n]'{in ff(L;,:.‘p;,, €).
. .

We would like to establish the following properties for the functions f}(Ly., pr, ) and
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F2(Ly. i, €) as well as the minimizers Tp!(px. €) and T¢ (p, €x).

Lemma 2.1. Suppose that Jy1(Tpe1, Prs1. €k1) Satisfies the induction assumptions
(A1) and (A2). Then (i) fH(Ly.pi-€x) and J2(Ly, pr. €x) are convex functions with
respect to Ly, and (i) T (p, €) < T (pw, €x) for any given py and €y,

Proof. Let us consider these two functions

1 5 3 —p(Bp—ex) L ; s
hy (L prs €k Ap, O, €141) =€ A0k —ck) *Jre (Li + Ap,pr =+ Op, €r11)

2 S~ —p(0k+er) Ly , <
]7‘A:(Lk::17kr7 € Ap, Ops ) =@ POk ter) *Jier (Li + A, pr =+ Ors i) -

According to (A2), hi(Ly, pr. éx, Dk, O €5p1) and D3 ( Ly, pr. €x, Ag. Op, €141) ave convex
in L.

(DRdk+Sker)

If we multiply both functions by e™” , we have

1/ ) o (ALY LS 1 . T
G (L, Pre €as Sty A, O €01) = e PERTS (L. pre. €y Ay Og, €1)
P (Li+D4)0k+(Sk—Li e c
=€ ( >J1.-,+1 (Li = Dp,pr + 0 €441)

{/fé(Lk,pk, € Sk Ag, O €p41) = E‘pmkéﬁskm]7»%-,(_/:1\-,Pk-, €y A Op, €1t1)

—p{ (Le+2p) 8+ (Sk+Lx ek
el )J;:‘Tl (L

+ Ap, pr+ Ok €g1) -

Note that e P80k t5x) does not depend on Ly.. Hence, gi(Ly. pr. €5, Sk, Dp. Op, €141)
9 K . .
and g7 (L, Pr. €k Sk D Op, €p41) are convex functions with respect to Ly.

By definition. we have
2 . N e - ’
G2 (L, Pis € Sies Ap. O €101) = €% gi (Lo s €00 Sy Ap O €x41).

Since both functions are convex in Ly, their left-hand derivatives with respect to Ly

exist. Therefore,

g3 ; i \ oy . :
ﬁ(Lk:pk’ ey St A, O €pa1) = — 2pepe™ P45 g ( Ly i, €k, Sk, A, O €rs)

gt
—2pep Ly Y9k c \
PekSk =2 (L, Dhs €k Sky Dk, Ok €41)-

+ e
© aLk .

gL (L. Dr €k Sky A Oy, €41 18 nonnegative since Jypy (Ly + Ay, pi + Ok, €1 18 nOD-
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negative by the assumption (Al). It follows directly that

dg;
OLy

2p€ 7
B (L. Phes €es St Dy O €401) > e 2PrL L, E (L, Dis €y Sis A O €01). - (2.6)

According to (2.4), it is straightforward that

f;xl.(LA:-j-'k. &) =FE [!]i([/ka]-’lm N TAVIR 6A:+1)‘PA»- 51.-]

FR(Le.pi€) = E [ g3 (L, P €r S i O €1) | D €] -

Recall that both g}(Ly,pr, €k, Sk Ok, Op, €p+1) and G2 (L, Prs €1y Sky Dk, Ok €141) ave
convex in Lg. Therefore, [}(Ly, px, ex) and f7(Ly, py. €x) are also convex in Ly, which

implies that

aJ}

|
dLA(LA Procx) = E [al (Ly, pr, €x+ Sk A, Op. (?A—;-l)]pkaﬁl\}

5 ag;, 1
> C’V“I’WL"‘E{ 5 (L Pros €y Sty Dy O, €x4e1)

oLy,

Pi\,tk}

—2p¢ 0 3
— e A-Lkéz—’;(LA-,pAnfkr)v

where the inequality is obtained from (2.6). Since e=2/%Lk > 0, it follows directly
that ——A-(LA . €r) < 0if %(Lk,p,\.,q) <0.

Consider any given p; and ¢,. According to the convexity of fl(Ly,py,€) in
L, and the definition of T}}(p. €x), we know that - dL (L; P, €r) < 0 for any Ly €
(—oc, T}Hpr, €r)]. Consequently, %(Lk,pk,q) < 0 for any Ly € (—oc, THpr, €x)],

e., fH(Ly.pi-€y) is decreasing in L) € (—oc, T (pr- €)]. Note that T (pr.er) <
TZ(pg, ¢x) is the global minimizer of (L. pe. ¢x) with given py and ¢, we obtain

that T (pr, €x) < TE (ks €1). O

Next, we are going to show the optimal policy for period & under the assumptions

(A1) and (A2).

Proposition 2.1. Suppose that Jy.1(Zy11, Prit €xs1) satisfies the induction assump-

tions (A1) and (A2). Then, given px and cx, the optimal solution Ly lo the problem

32



Tl-} (‘pk:‘ ek) Zf Lk S Tlil (pk’ 61\?)‘
Z‘ = Tl UL TAl(pL Ck.) < T S T]xz(p]‘ 61")’ ( .
TE (])ke 61\‘) [f Ty > Tkz (pk fk):

o
-1
—

and the corresponding optimal value 1s

r , N . — .
e~rrrek fH T pryen)opr-€) i @ < Ti(prs 1),

\ e Pk [l (T, pr, €x) = €7k [ (Th, i €x)
J(xr, prs €x) = S

if THpr. ex) < o < T2 (pr, €x),

\ Pk [T Py en) e ee) o T > TR (e )

—_
o
[os]

~—

Proof. It is equivalent to show that the results defined in (2.7) and (2.8) hold for the
optimization problem in (2.5). Let us consider the following three cases.
e Suppose that x;, < T3 (pk. €1)-

We proved in Lemma 2.1 that f}(Ly, px. €x) is convex in L. Therefore, for the
optimization problem ming, >., fi(Lk, k. €x), the optimal solution is THpr. €x)

and the corresponding objective value is f(T} (py, ). Di- €1).

Lemma 2.1 also shows that fZ(Lg.pk,€;) is a convex function with respect
to Ly, and T (pr, ex) < T2(px, ). As a result, for the optimization problem
ming, <o, f, 2(Ly., pr. €1), the optimal solution is x) and the corresponding objec-

tive value is f7 (@, pr, €x)-

The definition of f}( Ly, pr, ex) and fZ(Ly, Pr. €x) in (2.4) suggests that
E,—p:E;\C;‘. f]\l (:Ek: Pk, EL') = Eiprl“ﬂ"f’g(l'};, Prs E;;).

Note that e %% > 0 and fH (g, pr. €x) = fH(T (P €x). pr. €x) by the definition

of T} (pr, ). It follows directly that

G_}m}cekfkl-(T]} (pk: Elx’:)t Pk, Ek) < €_p$k€kfé(~tk:-, Pk Ck) = ef"rek fﬁ (\I’k'* D Ek,)'



Le., the optimal solution to (2.5) is T} (p, €x) and the value of Ji(xy, py, €r) i

e~ #mek fH T (- €x) Pi- €x).-

e Suppose that T} (py, ex) <z < TA(pr, €). The results of Lemma 2.1 show that
the optimal solution for both ming, -, j‘,} (Li. pr. cx) and ming, <, f,f,( Ly, pr.€x)
is 7. It follows immediately that the optimal solution to (2.5) is x; and the

corresponding value of Jy(wy. pr. ) is e™# fl(wy, pr.e) = /™% f2(Ly., pr.. €)).

e Suppose that zy > TZ(pk, €x). The result can be established by an arguement

similar to that in the case x;, < T} (pg, ). O

Note that Ly, is defined as xj, + g4 Therefore, the optimal inventory control policy
shown in Proposition 2.1 is exactly the same as that in Theorem 2.1. However, in
order to complete the induction proof for Theorem 2.1, we need to show that the

value function Ji (24, pr. €x) satisties the assumptions (A1) and (A2).

Proposition 2.2. Suppose that Jj1(Zr+1. pra1. €he1) satisfies the induction assump-
tions (A1) and (A2). Then (i) Jy(x,p,€) is nonnegative for any x, p and €, (i)

e“J (L + A p,€) is a convex function in L for any given a, A, p and e.

Proof. The part (i) of Proposition 2.2 follows from the definition of Jy, (2, pr, €x) in
(2.8), the definition of [ (Ly,pk.ex) and fZ(Ly. pr.€r) in (2.4), the assumption (A1)
and the fact that the exponential function is nonnegative.

For the part (ii), given a, A, p and ¢, let us consider the functions hy(L), ha(L)

and hs(L) such that

hi(L) = etb=pTrae sl (Tl (p. o), p, e)
/ZQ(L) _ E”‘L_p(L_’_A)é]U];L(L + A?p’ 6) _ 6«2‘L+/)(1L+A)elf'];%([/ + A7p7 6)

ha(L) = et TPLa0e g2(T2 (5 ¢) pe).

Note that f}(T(p,€).p,¢) is a constant, and the exponential function is convex.

Therefore, iy (L) is convex in L. By the same argument, hs(L) is also convex in L.
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Next, we would like to prove that hs(L) is convex. In this case,

ho(L) = e f(L + A pse)
= ettt | oS g (L A Bt Br) J
!

. G:l.

= TSI oL (L4 B+ )

(2.9)

The assumption (A2) shows that

P f (L + A+ Agyp+ Ok €pst)

«p((A—i—A;\,)&k-#-Ske)

is convex in L. Since ¢ is independent of L.

—p((A+ AL +5
o K10k “)e" PRI T o (L+ A+ ANpop + Op€01)

is also convex in L. The definition of ho(L) in (2.9) immediately yields its convexity

in L.

Let us define A(L) = e"FJu (L + A, p,€). According to (2.8), we have

hi(L) if L+A< Th}(p, €),
ML) = e J(L+Ape) = q ho(L) if THp.e) < L+A<TE(pe),  (210)
]13([/) if L+A> TAE(])], E],«).

We would like to prove the convexity of (L) by showing that its left-hand derivative
is non-decreasing, i.e., h'(L) < h'(L) for any L < L. Tt is sufficient to consider the

following five cases.

e Suppose that L+ A < T} (p.€) and L+ A < T}(p, €). The definition of h(L) in
(2.10) implies that h'(L) = R(L) and K'(L) = R, (L). We obtain h'(L) < W(L)
since 7y (L) < k(L) by the convexity of (L)

o Suppose that L+A < T(p.¢) and TE(p.e) < L+A < T{(p.€). We have i'(L) =
R (L) by the definition of ~(L) in (2.10). Moreover, since T (p,e) — A < L, the

or
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right-hand derivative of ho(L) at T} (p, €) — A is no greater than the left-hand

derivative of ho(L) at L (c.f. Artin [4]). i.e.,

—dlo d
= (a = pe)elr e ra=ede BTl ), p.e)

o BT+ )~ T
dj0 4/

Given p and €, T} (p, €) minimizes the function f}(Ly, p, €). Therefore, the right-
hand derivative of f}(Ly.p,€) with respect to L; is nonnegative at the point

THp,e). ie.,

lim fAl(TLl(,U‘ E) T d,[), 6) - f}l (7}1 (p E)apv E)
dlo d

> 0.
Since the exponential function is nonnegative, we obtain
(L) 2 (a = pe)ele=eTEa=rde LTl o) g,
The definition of (L) in (2.10) and the convexity of A (L) also imply that
W(L) = h,(L) < B(THp,e) = A) = (a — pe)el@ PITwa=ple fLiTL(p oy 1 e).

As a result, we have A'(L) < h'(L).

o Suppose T}(p,e) < L+ A < TZ(p,¢) and T}(p,e) < L+ A < T3(p,¢). We can

prove h'(L) < h'(L) by the same argument as the first case.

e Suppose TH(p.e) < L+ A < TZ(p.e) and L+ A > T¢(p.¢). According to the
definition of A(L) in (2.10) as well as the convexity of ho(L) and hs(L), we

obtain

W(L) = Hy(L) < Wy(T3(p.e) = A) = (a+ pe)e PO TRCIPA (T2 o) o)

IA

V2 of? .

| (u+ps)T:(p,€)—pAe( ko2, .

-+~ € k — (T (p,€).p,€
0[k( i (pi€).pe)

36



and
W(L) = hy(L) = hy(TE(poe) — A) = (a + pe)elaTPITEwe)=phe £2(T2(1 ¢) ).

Note that T?(p,€) = argming, f7(Lx,p.€). and hence

9L, (TE(p.€).p.e) <0.

2
<

Since the exponential function is nonnegative, we have hy(T7(p,¢) — A) <

hG(T2(p,€) — A) and hence R'(L) < I/(L).

e Suppose L + A > TZ(p,e) and L + A > TZ(p.€). Similar to the first case,
R'(L) < h'(L) can be proved by the definition of h(L) and the convexity of

From the results of these cases, it follows directly that A'(L) is increasing in L and
so h(L) is a convex function with respect to L, which completes the proof of part

(ii). O

Lastly, we complete the proof of Theorem 2.1 by showing that the end of planning
horizon value function, Jy.1(@xr1, Pyi1, €v+1) has the properties described in (Al
N+ +1 +1 +

and (A2).
Proof of Theorem 2.1. Consider period N + 1. By definition. we have
v]‘\r+1(47.7A\'+1,])A’\.'_é_l., (’:A\"-!-l) = eXI)<_/)7T.’\"+1) = exp(—/)'z)(;r‘\u;_l. Ej\f_;_l))A

Obviously, Jy+1(Tx41, Pye1: €x+1) 1S always nonnegative as the exponential func-
tion is nonnegative. i.e., it satisfies the induction assumption (Al).

For any given a, A, p, €, let us define
hL) = el J(L+ A, p,e) =eTexp(—pe(L + A.pe)) =explal — pe(L + A p,e)).

Let u(L) = aL — pu(L+ A, p.¢). Obviously, u(L) is a convex function of L since p > 0
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and v(xy41, €x+1) 18 concave in zy.;. Consider any Ly, Ly and s € [0,1]. According

to the convexity of w(L), we obtain

u(kLy + (1 = K)Ly) < ku(Ly) + (1 — K)u(Ls).

Therefore,

WrLy+ (1 = K)Ly) = exp(u(kly + (1 — £)La)) < exp(ku(Ly) + (1 — &)u(Ly))

< wexp(u(Ly)) + (1 — k) exp(u(La)) = kh(Ly) + (1 — k)h(Ls),

where the first and second inequalities follow from the monotonicity and convexity of
the exponential function respectively, and hence h(L) is a convex function of L, i.e.,
Ine1(Z N1, DN+1- €ns1) satisfies the property specified in the assumption (A2).

As a result, the properties (Al) and (A2) hold for Jy,i(wn1.Pas1s ene1). Com-
bined with the results in Propositions 2.1 and 2.2, the theorem can be proven by

induction. O

Theorem 2.1 shows that we can obtain the optimal quantity to adjust the inven-
tory level once we know T} (py, €4) and T (py., €1.). We effectively reduce one dimension
of the optimal solution since the values T} (py. €.) and TZ2(py, €,) are independent of
xp. For any period k, given the function Jyp1(2rs1, Prs1. €141), we only need to (i)
compute T} (py. ex) and T2(py, ex), which are the global minimizers of SH( Ly, vy, )
and fZ(Ly, pr, €x), and (i) compute Ji (2, pr. €) using the closed form (2.8). There-
fore, we only need to deal with three dimensional functions in each period k. We
avold “the curse of dimensionality” in the sense that the dimension of the functions
does not grow with the number of period. The computational load for each period is
the same, and hence the computational complezity is linear in the number of periods
N.

Next, we present an example which could be helpful to further understand the

key tradeoff in the market-making inventory control problem.

Example 2.1. Consider a numerical example with N = 100 periods. Suppose that
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the distributions for d,, €5, s and dp are stationary for any k =1...., N.

We consider the case that s, and dj. are either 0 or 1. They are independently

distributed and

Plsp=1) = P(s; = 0) = P(dy = 1) = P(dy, = 0) = 0.5,

i.e., the distribution for Sj and Ay is

P(S,=0,A,=0)=P(Sp =14,

l
—
=z
Il
T
—
o
o
I
—
L
L4
Il
|
—_
=

For the purpose of generality, we did not specify the unit of the demand and supply.

e.g.. sp and d can be either 0 or 1 lot, i.e., 0 or 100,000 units of base currency.

Note that the smallest commonly quoted change of exchange rates. a percentage
in point (pip), is 107 for all major currencies except the Japanese yen. We restrict
the mid price py to integral multiples of 107%. The support for §; is defined to be

{down(py). 0, up(pi)} where
up(ps) = —down(py) = [p] % 107*, (2.11)

i.e., 10~*p; rounded down to the closest integral multiple of 107*. We suppose that
the price is more likely to move up if A, = s — d;, is negative, i.e., when more clients

buy from the market-maker, and vice versa. In particular. let

P(5 = up(py) | Ap = —1) = 0.5
P(CSL =0 I Ak = —1) = P((Sk = dOWIl(pk) ‘ AA- = —1) = (.25,
P =0]Ar=0)=05

P(6, = down(py) | Ar = 0) = P(0 = up(ps)

Ag = 0) = 0.25,
P(6, = down(py) | Ay =1) =05

P((Sk =10 | A]\ = ].) = P((XL» = up(})k) | A;,v = l) =().25.
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We assume that the spread is a known function of the mid price plus a random

variable. In particular, let

€r = Op(pr) + o where o4 (py) = [0.5p; | x 1074, (2.12)

i.e.. 0.5 x 107%p; rounded down to the closest integral multiple of 1074, and ¢y is a
random variable independent of py, 0y, sp and d;, with the probability mass function
Plpr =107%) = P(p, = 2 x 1074) = 0.5.

In addition, we set the risk aversion parameter p = 100 and consider two situations
for the profit or loss at end of the planning horizon: (i) 7y = v(Zyi1, €ve1) =
—€nt1]Zy+1], L.e., the inventory is cleared at the bid or ask price quoted by other
market-maker, (i) my11 = v(zyi1,envs1) = 0. ie., the inventory is marked to the

market mid price.

Table 2.1: T} (p.ex) and T2 (py, €;) for Example 2.1 with p = 100 and 7y =
—€N+I|17N+1l

pr = 1.999 e = 2.001
€. = 0.0001 ¢ = (.0002 e, = 0.0002 e, = 0.0003
kT T; T, T T 17 ., I
—4.72 359 | —7285 71.34 | -459 1.77| —20.89 17.49
50 | —4.11 4.01 | =72.07 71.70 | =3.61 2.70 | —20.01 18.64
100 | —1.00 1.00 | —59.42 5942 | —1.00 1.00 | —18.24 1824
The threshold levels T} (py, €x) and TZ (pr, 1) for iy 1 = —enyi]2 ~N+1] are shown

in Table 2.1 and Figure 2-1. We present the results when p, = 1.999 or 2.001 for
any k& =1,...,100. According to (2.12), ¢1(1.999) = 0 and ¢,(2.001) = 1071, Hence,
e = 107 or 2x 107 when p;., = 1.999 and ¢, = 2x 107 or 3 x 10~* when p;, = 2.001.

As shown in Figure 2-1, for any given p;, and ¢, the threshold levels T} (py, €;) and
T?(py. €2,) are relatively stable with respect to & when & < 90. However, when k& > 90,
Tt (pr, €4) is increasing in k while TZ(pr, €x) is decreasing in &, i.e., the no-trade region
decreases as k increases. This is because x4 is cleared at the cost of €, at the end
of planning horizon. For any period k, the maximum cost associated with one unit of

on-hand inventory 2y is ¢;, because we always have the option to trade off this unit
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Figure 2-1: T}(p,€ex) and T7(px, ;) for Example 2.1 with p = 100 and 7y4, =

—ens1|Tnl
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by paying the transaction cost €;. Note that our input parameters are stationary, and
hence period N + 1 has the highest cost associated with one unit of the inventory.
Moreover, this cost decreases as k decreases, because we have more opportunities to
trade off the inventory in later periods when we are further away from the end of
the planning horizon. As a result, we can afford to have more inventory for earlier
periods, which explains why the no-trade region deceases in k.

Also note that for the last period, T%,(1.999,107%) = —1 and Tj;(1.999,107%) =

1. Suppose that x19p = 2. Let us consider the following two options.

o We pay the 10™* transaction cost to sell one unit in period 100. After receiving
the demand and supply from the clients, we hold either zero or two units to the
end of planning horizon since both s, and dj. are either zero or one, and clear

these zero or two units at the transaction cost €y.; per unit.
e We do not actively trade with other market-makers in period 100. After receiv-
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ing the demand and supply from the clients, the inventory position will be either
two or three units, and we clear these two or three units at the transaction cost

€n4+1 Per unit.

Comparing these two options, the transaction cost for the first option is no greater
than that of the second period as ey+1 > 1074 as pgy = 1.999. The expected return
from price movements are the same since E[§; | pr = 1.999] = 0, but the first option
holds less inventory which implies lower risk. As a result, a risk-averse decision maker
will always choose the first option. Following this argument, we can establish that
T00(1.999,107%) > —1 and T3,(1.999,107%) < 1. Note that this property does not
hold when pigo = 1.999 and €190 = 2 x 1074, since e¢y+; < 2 x 107 and so we have
the incentive to hold the inventory in order to save the transaction cost. The case
when pipo = 2.001 is the same and we omit the discussion here.

Table 2.2 and Figure 2-2 present the threshold levels when 7y = 0. Contrary to
the situation with 7y = —eysi|ensy|, when & > 90, the no-trade region expands
as k increases since T/ (py, ¢;) decreases in k and T7?(py, €x) increases in k. Under
the situation my.; = 0, the inventory is cleared for free at the end of the planning
horizon, and so we always have the incentive to hold the inventory towards the end of
the planning horizon to save the transaction cost. This incentive is stronger in later
periods since we bear the inventory risk caused by price uncertainty for fewer periods.
As a result, we would like to hold more inventory and have a larger no-trade region
as k increases. In addition, we have Tl (pioo, €100) = —oc and Tfm(pm@./ €100) = OO
for both pigo = 1.999 and p1gy = 2.001. It indicates that in the last period, the
transaction cost to trade off the inventory cannot be compensated by the reduction
in the inventory risk. Therefore, we simply hold the inventory for one more period
and clear it at zero cost at the end of the planning horizon.

If we compare the threshold levels for different 7y.;, the threshold levels are
very close for given p, and ¢, when &k < 50, c.f. Tables 2.1 and 2.2. The Bellman
equation (2.3) indicates that the impact of myoy on Jy(wp. pi. €2) fades as k decreases,
and hence the values of T,}(_ph ) and T, ',f(pk, ¢) are less affected by the end of the

planning horizon profit or loss 7y for smaller k.

42



Table 2.2: T} (ps, €) and TZ(py, €) for Example 2.1 with p = 100 and 7x41 = 0

pr = 1.999 pr = 2.001
e, = 0.0001 ¢, = 0.0002 e = 0.0002 e = 0.0003
k I, TI: T; T; I, T¢ T; I;
11 —-4.74 3.56| —72.80 71.32| —4.65 1.71 | —20.94 1743
50 | =4.40 4.19 | =72.11 71.70 | —=3.69 2.62 | —20.07 18.56
100 —00 oC —oC o0 —00 o0 —0 e

Both Figures 2-1 and 2-2 show that given py, T} (py, €x) is higher for lower ¢, while
T?(py, €1) is lower for lower €, i.e., the no-trade region is smaller for lower ¢. The
market-making inventory control is to find a tradeoff between the transaction cost
and the inventory risk due to price movements. When the transaction cost, € is
lower, we could afford to trade with other market-makers more frequently in order to
reduce the inventory risk. Consequently, we should have a smaller no-trade region.

Also note that the T3}(1.999,2 x 107 is significantly low (at most —59.42) and
T7(1.999,2 x 107%) is significantly high (at least 59.42) for both definitions of my1.
This is mainly because there exists a 0.5 probability that the transaction cost in the
next period & + 1 will drop to 1074, therefore we can save the expected transaction
cost by adopting a wider no-region in period k. If we modify the example so that
P(or = 107" = 0 and P(pr = 2 x 107%) = 1,' we cannot save the transaction cost
by expecting the transaction cost to decrease, and the no-trade region for p, = 1.999
and €, = 2 x 107% will shrink significantly, e.g., T1(1.999,2 x 107) = —5.96 and
T2(1.999.2 x 107%) = 5.00 when we consider Ty = —€xi1|zv]. and 731(1.999. 2 x
107%) = =5.94 and T2(1.999,2 x 107*) = 5.05 when we have myy = 0.

Moreover, for both Ty = —enei|zne] and 7y = 0, we have

TH(1.999, 61(1.999) + ) < TH(2.001, ¢x(2.001) + o)

T2(1.999, 65(1.999) + 1) > T2(2.001, 64 (2.001) + 23

where ¢, = 1074 or 2 x 1074, c.f. Tables 2.1 and 2.2 as well as Figures 2-1 and

 In other words, we choose smaller no-trade region when py = 2.001 even though

n this case, the threshold levels are independent of ¢, c.f. Corollary 2.1.
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Figure 2-2: T}(px, €x) and T?(px, €;) for Example 2.1 with p = 100 and x4 =0
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it corresponds to higher transaction cost. According to (2.11), the support of J; is
{0, £2 x 107*} when p, = 2.001, and it is {0, £107*} when p, = 1.999. Therefore,
pr = 2.001 implies higher risk in price movements, and so we need to trade with other
market-makers more frequently to reduce the risk, which implies a smaller no-trade

region.

2.3 Reduction of the State Space

In the Bellman equation (2.3) and Theorem 2.1, the state for the dynamic program-
ming model is @y, pp and €. However, we can easily reduce the dimensions of the
state space by imposing minor assumptions on the random variables. The following

result can be established by the same proof as that for Theorem 2.1.

Corollary 2.1. If o, €, Si and Ay are independent of pr for any k, then the state

of the Bellman equation (2.3) is reduced to xyp and €p. Therefore, the functions Ji(-)
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in (2.3), fL() and f2(-) in (2.4) only depend on xy and €y, and the threshold levels
TE(:) and TE(:) in Theorem 2.1 only depend on ey

If ey is a given function of py Jor any k, i.e.. ¢ = &r(pr), then the state of the
Bellman equation (2.3) is reduced to xy and py. Therefore, the functions Ji() in
(2.3), fL(-) and f2(-) in (2.4) only depend on x) and py., and the threshold levels
Tl(-) and TZ(-) in Theorem 2.1 only depend on py.

If €, is a given constant and &y, Sy and Ay, are independent of py. for any k, then
the state of the Bellman equation (2.3) is reduced to ). Therefore, the functions Ji.(-)
in (2.3), fA) and f2) in (2.4) only depend on xx. and the threshold levels Ty (:)

and T2(-) in Theorem 2.1 are reduced to constants for any k.

Let us consider an example where the threshold levels are independent of the

mid-price py.

Example 2.2. In Example 2.1, we define the support &, and ¢ as functions of py
presented in (2.11) and (2.12). Now let us consider the same stochastic input in
Example 2.1 except that the functions up(py), down(ps) and ¢p(pr) in (2.11) and
(2.12) are replaced by up(p;) = —down(py) = 107* and ¢y (pr) = 0.

Under the assumptions, all the random variables 8. ex, Sy and A, are independent
of py for any k. According to Corollary 2.1 the threshold levels only depend on ¢, and
we denote them by T2(e;.) and T7(e;). Again, let us consider N = 100 and p = 100.
The corresponding threshold levels for mxiy = —exs1]2y41] and w1 = 0 are shown

in Table 2.3 and Figure 2-3.

Table 2.3: T} (ex) and T7(e;) for Example 2.2 with p = 100

TN+l = —€EN+1|TN41] Ty =0
. = 0.0001 e = 0.0002 e = 0.0001 e = 0.0002
T v T S T A v N P A
—4.06 4.07 | =71.77 71.79 | —4.08 4.09 | —-71.78 7T1.78
50 | —4.00 4.01 | =71.77 71.78 | —4.31 4.32 | =71.78 TL.7¢
100 | —1.00 1.00 | —59.42 59.42 -0 o0 —0G ¢

The change in the threshold levels with respect to A in Table 2.3 and Figure 2-3

is the same as that in Example 2.1. In fact, for ¢100 = 107* or 2 x 1074, the values of

45



Figure 2-3: T}!(e;) and T?(ex) for Example 2.2 with p = 100
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Tyo(€100) and Tfm{r;m”) in Table 2.3 are the same as T}y, (p100, €100) and Tfoo(pmn, €100)
with prgo = 1.999 in Example 2.1 with the corresponding 7.1, because Example 2.1
specifies up(py.) = —down(pi) = 107 and o (px) = 0 for any pi < 2, and the relation
between my.1 and pyo solely depends on the value of ey..

Similar to Example 2.1, we also observe that the no-trade region for any period k
shrinks as the spread decrease from €, = 2 x 107 to ¢, = 107*, since we can afford
to control our inventory in a tighter region with lower transaction cost.

Also note that T} (e,) &~ —T7(ex) for any k and 7y, in Table 2.3. In our input,
the marginal distribution of the price movements is symmetric with respect to zero,
and the demand and supply from the clients have the same marginal distribution. In
other words, the marginal probability for the price to increase or decrease a certain
amount is the same, and the marginal probability for the clients to buy or sell a
certain amount is also the same. Hence, the risk associated with holding an inventory
of . units measured by expected exponential utility is very close to that of —x;
units. As a result, the threshold levels should have the similar absolute values. We

will formally prove the symmetry of the threshold levels, i.c., T} (ex) = —T7(ez) later
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in Proposition 2.3.

Next, we introduce an example where the threshold levels are independent of the

spread defined by ;.

Example 2.3. Similar to Example 2.2, we also consider a simplified case of Example
2.1. The stochastic input is the same as those in Example 2.1 except that (i) we let
up(py) = —down(py) = 107* instead of the definitions in (2.11), and (ii) ¢y is defined
to be a constant instead of random variable. Note that the condition (ii) is sufficient
for the threshold levels being indepedent of €.

We consider two cases @, = 107* and ¢, = 2 x 107 respectively, and for each case
we let the end of the planning horizon profit or loss be either 7y = —ens1|ona]
and my-; = 0. The threshold levels are denoted by 7} (px) and T2(py) since they are
independent of ¢,. We display the results for ¢ = 107% in Table 2.4 and Figure 2-4

and those for ¢, = 2 x 107* in Table 2.5 and Figure 2-5.

Table 2.4: T} (px) and T?(py) for Example 2.3 with oy, = 10~% and p = 100

TNyl = '_5N+1!$N+1| Tyg1 =0
pre=1.999 | p.=2.001 pre=1999 | pp=2.001
k I; TI¢ T, I¢ I, T: L, I:

1] =536 346 | —6.16 4.82| —5.54 3.33 | —6.43 4.66

50 | —4.48 4.05 | =5.41 519 | —4.80 4.29 | —6.96 6.61
100 | =1.00 1.00 | —=1.00 1.00 —o¢ oC —0C oC

=

Table 2.5: T}}(pr) and TZ(py) for Example 2.3 with o = 2 x 107 and p = 100

TN+l = —€N41|TN41] vyl =0
pr = 1999 | p,=2.001 pr=1.999 | pp = 2.001

T R Y N FE R VT A
1] —-6.29 477 | —6.78 549 | —6.67 4.61 | —7.23 547
50| =549 5.10 | —6.00 6.00 | =7.20 6.67 | =947 9.07
100 | —=1.00 1.00 | =1.00 1.00 —0 oC -0 ¢

The trend of threshold levels with respect to the period & is very similar to what

we observed in Examples 2.1 and 2.2. Moreover, we observe that the no-trade regions
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Figure 2-4: T} (px) and T7(px) for Example 2.3 with ¢ = 107* and p = 100
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Figure 2-5: T (pr) and T2 (px) for Example 2.3 with ¢y = 2 X 10~* and p = 100
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are increasing in both py and ;. To be specific, the threshold levels have higher
absolute values when p; = 2.001 than when p;, = 1.999 for both values of ;. and both
definitions of 7y, which is obvious from Figures 2-4 and 2-5. In the meantime, the
absolute values of threshold levels are higher when ¢ = 2x 107* than when ¢ = 1074
for both values of p, and both definitions of 7y 1 which can be observed by comparing
the numbers in Tables 2.4 and 2.5. The reason behind these two observations is that
higher values in py or ¢ are associated with higher value of €1, 1.e., it is more expensive
to trade with other market-makers to actively adjust the inventory. Therefore, the
market-maker will tend to actively trade less frequently. It results in a larger no-trade
region, which implies higher absolute values for the threshold levels for this particular

example.

2.4 Symmetric Threshold Policy

Example 2.2 shows a case where the threshold levels, T} (py. ¢x) and T¢ (p, 1), have
very close absolute values. According to the proof of Theorem 2.1, these levels are
the global minimizer of the functions (L, pr. €x) and f2(Ly., pr, ex) when given py
and ¢,. Obviously, if these two functions satisfy fE(Lg, . ex) = fF(—=Li. pr ex) for
any Ly, pr and €., then the threshold levels, Tk} (pr. €) and T2 (py, ex). have the same
absolute value, i.e., T} (px. €x) = =T, Z(pr. €). In this case, the threshold levels are
symmetric with respect to zero and we refer to it as the symmetric threshold policy.
To establish sufficient conditions for the symmetric threshold policy to be optimal,
we require that (i) 0y, €, S and A, are independent of the price p,, for any k., and
(i) the last period profit or loss fuention 7y as well as the conditional distributions
of Ay and d; for any k are symmetric with respect to zero. Under these assumptions,
the risk associated with holding an inventory position is solely determined by the
absolute value of the inventory position, and hence the no-trade region as well as the
threshold levels should be symmetric with respect to zero.

Formally, we denote the cumulative distribution function of the random variable

8, conditional on Ay, Sy and ¢, as Fj,ja, 5,6, (0x), and the cumulative distribution
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function of the random variable A, conditional on 6y, S). and €, as F. Aplsi.Spoen (Ak).

Let us consider the following assumptions.
(B1) 0k, e, Sy and A are independent of pj, for any k.

(B2) v(zns1.cn41) = v(—2Zni1,engr) for any zyey and ey.q. ie., the function

Tne1 = V(TN41. En41) 18 symmetric in xy ¢ with respect to zero.

(B,B) ngmhsk.fk((sk;) + deiAka‘Sku5k<—6}-') =1+ (ZngiAkﬁgk’fk(csA.) for any k and (S;,,, le.,

the conditional distribution of d; is symmetric with respect to zero.

(Bﬁl) FAL-I(SMSI\-»Ek(Ak) -+ FA,‘.M,‘.,,SA..Q(_AH =1+ dFA;\.]O';\.,S;‘.,ek(\Ak) for any k and Ay,

Le., the conditional distribution of A, is synmunetric with respect to zero.

The condition (B4) is equivalent to that s, and d;, have the same distribution
conditional on &, and ¢,. Let Fio alon.c (Sk, dy) denote the cumulative distribution

function of the random variables s;. and dj. conditional on &, and .

Lemma 2.2. Fa 5, 506 (Q%) + Fags, e (—Ar) = 1+ dFa, 15,5, (Ar) for any k
and Ay if and only if Fy, a, 16, . (Sk, di) = Fo appre (di, si) for any k., s, and dy.

Lemma 2.2 can be easily proved using S, = s, + dp and Ay = s, — dp as well
as the definition of cumulative distribution function, and hence the proof is omitted
here.

Now let us prove the symmetry of the threshold level under the assumptions (B1),

(B2), (B3) and (B4).

Proposition 2.3. Under the conditions (B1), (B2), (B3) and (B4), a symmetric
threshold policy is optimal for the problem in (2.2). In particular, Jy(xp.€) =

Je(—ap, ex) and Tl (e) = =T3er) for any k, x5 and .

Proof. According to Corollary 2.1, the condition (B1) implies that the functions .Ji( )
in (2.3), fi(-) and f2(:) in (2.4) only depend on z; and ey, and the threshold levels

T} (-) and TZ(-) are functions of ¢, only.



From the condition (B2) and the definition of Jyii(2y+1. €x41), We obtain

Jn1(@nsr evi1) = exp(—pr(Tnsn, evsa))

= exp(—pv(—2xns1. exe1)) = Inpi(—Tyaa, €N+1)

Now let us suppose that Jy 1 (xpi1. €p41) = Jpr1(—2pe1, €521) for any wpyr and €441

]

Consider the condition (B4) that the conditional distribution of A is symmetric,

.

Note that Jye (Thet. €xe1) = Jrs1(=Tpat, €p+1) by assumption. We have

The condition (B3), the symmetry of the conditional distribution of J; ensures us to

The definition of f!(Ly. px. €x) in (2.4) shows that

fi(Lper) = E [e“’((L“A‘”**“’*“L““‘) Jisr (Lp = Apepit)

which means we can flip the signs of A, inside the expectation, i.e.,

j;%(LL ¢) =E [6—/1((Lk-'ﬁk)5k+(_3kLk)sk)JH_l (Ly — Ay €5s1)

L) = E [e“’((“‘A’**"‘”““‘L*”“) Jrst (=Li+ B i)

flip the sign of ; inside the expectation, and hence

Tt Ly ex) =FE {G_p<(*LNAA‘)OH(SPL”%) Jp1 (=L + Ay, €341)

6,\,} = [2(=Ly. cx).

where the second inequality follows from the definition of f7(Lg, €;) in (2.4). It follows

directly that T} (ep) = —T7(ey) for period k.

Let us consider Jy(zx, €x). For any x;, € [0, T2(ex)], ie., —ay € [Ty (er). 0],
.]k((l‘,k, 6'1\.) = epall"ﬂ"ff(l?k* El.‘,) = eprkc‘)\:fl\l.(‘_a;kq 61.“) = Jk(:—g:kt 616)5

where the first and last equalities follow from (2.8) and the second equality is obtained

since we have shown f!(Ly, ex) = [2(—Lg, ex). Similarly, for xp > T (ex), Le.. =y <



Telwns e) = €% fL(TE (en). o) = ek =T} (&), ex) = €% fH(Ti(er). &)

= Jp(—xp, ep),

where the first and last equalities follow from (2.8), the second equality is obtained
from T} () = —T}?(ex), and the third equality is due to the property that Ji(Lg,eg) =
fE(=Ly, ). These results show that the induction assumption holds for period k,

ie, Ji(ay, ex) = Ji(—ay, €4), which completes the proof. O

Next, we present an example for the symmetric threshold policy. It also illustrates

how the threshold levels change with respect to the risk aversion parameter p.

Example 2.4. Consider an example with N = 100 periods. Similar to Example
2.1, we assume that the distributions for the stochastic input are stationary and
independent across k. In addition, we let ¢, = 107 for any k and suppose that &,

s and dj are independently distributed with the probability mass functions

P(s,=1) = ./D('s;C =0)=sand Pldp=1) = P(d O)

| —
NI*—‘

Note that ¢4 is a constant and dy, s, and dj, are independent of p.. It follows from
Corollary 2.1 that the threshold levels are independent of both p; and €, and we
denote them by T}} and T}}. Moreover, Proposition 2.3 shows that T} = —T7.

Again, we consider two situations of Ty 41, Le., Tys1 = —eya1|ryar] and Ty =
0. For the risk aversion parameter p = 80,90, 100, 110, 120, the corresponding thresh-
old levels T are shown in Table 2.6 and Figure 2-6. Note that the second row in
Table 2.6 represent the values of p, and the corresponding T7 are shown in the last
three rows for £ = 1,50 and 100

It is easy to see that the threshold levels change as k increases in the same manner
as that in Examples 2.1, 2.2 and 2.3. Moreover, the threshold level T2 decreases as p
increases. Note that a more risk-averse attitude is associated with a higher value in p.

A more risk-averse decision maker is willing to sacrifice more transaction cost in order



Table 2.6: T for Example 2.4

TN+l = —€N4+1|TN41 Tv+1 =0

p| 8 90 100 110 120 8O 90 100 110 120
Bl T T T B Tl BT 3 : I
1469 447 428 4.12 4.00 468 448 430 4.14 4.01
50 | 4.73 4.46 4.24 4.07 4.00 | 5.07 4.75 449 4.29 4.11
100 | .00 1.00 1.00 1.00 1.00| oo oc o o o0

Figure 2-6: T¢ for Example 2.4
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to protect against price uncertainty. Therefore, he or she will trade more [requently

with other market-maker to reduce the inventorv risk caused bv price movements,
. . . ) . - .

and so the no-trade region will be smaller. Since T} = —T7. it follows immediately

that T} is increasing in the risk aversion parameter p.

2.5 Extensions

This chapter investigates how to control the inventory position of a single asset in the

marketing-making process, where the exponential utility function is applied to model



the risk-averse attitude of the decision maker. We prove that the optimal policy is
a threshold policy and demonstrate that the policy can be further simplified under
certain circumstances. In particular, we can reduce the dimensions of the states which
determine the threshold levels, and identify conditions under which the threshold
levels can be symmetric with respect to zero. The structural properties of the optimal
policy lead to a computationally efficient algorithm to compute the threshold levels,
which allows us to present numerical examples to illustrate the optimal policy.

As we mentioned in Section 2.1, the optimality of the threshold policy can be
extended to the following settings: (i) the price dynamics and the client order pro-
cesses are auto-correlated, and (ii) the spread the market-maker quotes to his or her
clients are different from the spread he or she pays when actively trading with other
market-makers. These extensions are discussed at the end of Chapter 3 (Section 3.7)
since the results are identical and the proofs are similar for exponential utility and

mean-variance models.
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Chapter 3

Single- Asset Market-Making with
Mean-Variance Tradeoff

Chapter 2 studies the inventory control problem in market-making with an exponen-
tial utility objective function. Another common approach to model risk-aversion is
the mean-variance tradeoff. In this chapter, we adopt such an objective function for
the inventory problem presented in Section 2.1 of Chapter 2. The dynamic program-
ming formulation for the mean-variance analysis model is introduced in Section 3.1.
We present the optimal threshold policy in Section 3.2, and the properties of the
threshold levels are investigated in the following sections. In particular, Section 3.3
shows how to reduce the state space for the threshold levels under various condition,
Section 3.4 studies the risk-neutral model which is a special case of the mean-variance
model, and the symmetric and monotone properties of the threshold levels are iden-
tified in Section 3.5 and Section 3.6 respectively. Finally, Section 3.7 sumnimarizes this

chapter and presents extensions of our results.

3.1 Mean-Variance Analysis

Assume that the utility function of the market-maker is a linear trade-off between

the expectation and the variance of the total profit. Adopting the notations used in

Ut
o



Section 2.1 of Chapter 2, the objective function is defined as

]\(T
max E E {E [Telpes &) = A x Var (7| pr, ek)} +TNe ] (3.1)
14 . v
" k=1
where the parameter A > 0 represents the decision maker’s risk sensitivity. Obviously,

the decision maker is risk neutral when \ = 0.

We consider the expectations and the variances conditional on p;, and € because
the random variables in period &, i.e., &, S, and A, are correlated with p; and ey,
and py, and ¢ jointly determine the bid and ask prices in period k., which are observed
before we make the decision to actively trade g units with other market-makers. Note
that z; is also observable before making the decision, but it is independent of other

random variables defining 7.

In addition, the profit and loss in period N + 1, w1y = v(@yg1. ena1) is de-
fined to be a deterministic function of zy.; and ey, and it follows directly that
Elnyiilens1] = mngr and Var(myyilen 1) = 0. Also note that py,, can only affect
the value of my.; through the correlation with exyy, and so E[ryai|pyir eve1] =
mne1 and Var(myiipysi.€v41) = 0. That is why we have the term 7y, in the

objective function (3.1).

It is well known that if the distribution of 7, conditional on p,, and €, is a normal
distribution, the mean-variance analysis in (3.1) is equivalent to maximizing the sum
of exponential utilities in each period k. Also note that this objective function is
very similar to that in Stoikov and Saglam [50]. Moreover, the mean-variance type
objective is also commonly adopted in the optimal order execution literature, e.g..

Almgren and Chriss [2] and Engle and Ferstenberg [17].

Consider the expectation and variance of one-period profit 7, conditional on the

price pr and the spread ;. According to 7 defined in (2.1), it is straightforward to
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obtain
E[?’T;;,ka. 6;“} = LA»E[O‘H]);,. E;,,] - lL;, — ;l?;,.|6k + F {&A; -+ S},f;;‘ P E},-J
Var(mlpr. €r) = LiV(zxr('()Hpk, ex) + Var (0pAr + Skeklpk, ek)
+ 2[/),, (E’{O%Ak!p;;,7 6;,-,] - E{(S};lpk-, E};]Ewk.ﬁﬂpk, EM)

+ 2Ly (E[(SA.S;,. i, 1] — Elulpre o E[Sulpn, fk]) .

Let‘ ﬂ‘k(]-"lm El.') = E[{S/« lpl.t~ EA‘J‘ (‘Ti (,1)1-35 61.‘) = "/r(”'(éklpk, El.‘) and Vl»'(plfv Ek‘) = l/lz (pls'? EAT) +

exli (P, €,) where
Vi \ Pk €k >

v (Drs €x) = ( (07 Ak |pe. €x] — [(Skfpk«,fk}E[(sl:AH'pk:Gh])

Vi (pr.ex) =2 (E[‘Slugklpkv ex] — Eo|pr. €x] E[Sk|pe. €A:]) :

Since the rest terms in E[mp|py, €x] and Var(my|pr, ) are independent of the

decision variable L = x + q, the problem in (3.1) is reduced to

mm F

N
Z {61\:11»;; — 2k + (e €)= 1 (Drs €6)) Lic + A3 (Dr- ek)Li} - 77[\'-)—11‘ :

Note that the random variable S;, is no longer included in the optimization problem.

Accordingly, the Bellman equation reads

Je{xg, proe) = n}Jin {ek‘Lk — ]+ (/\z/k(_pk. ) — pa(Drs e;,.)> Ly + Ao (pr. ex) L7
}‘- .

+FE { Jpe1 (L + Qg pr + O, EA:+1)|pk, fl.'}}
(3.4)

for any k= 1..... N, and Jy1(Zye1.PN41, €EN41) = — el = —0(TN11: EN1)-

In the next four sections we establish the optimality of the threshold policy and
analyze properties of the optimal policy. Numerical examples are also presented to

illustrate the analytical results.

n
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3.2 Optimality of the Threshold Policy

Let us define the following functions

2

filLisprs€x) = (/\L’k(m, €x) — fir(pr, 6k)> Ly + Ao (pr &) L,
+F { i1 (L + Dy, pre + 0y, Ek-{»l)‘pk’a t’k} .
Sy prs ex) = fe(Lioprs €x) + €Ly and  f2(Ly. pr- ) = fu Ly pr, €) — 5Ly
(3.5)
Fix p. and ¢, let

T (pr. ex) = arg min Se( L, pr; €1),
k

TH(pr. ) = avgmin £ (Li. pr. 1),
.

Tf (pr. €r) = arg niin f,f(L;,,‘ Dy €1).
k

Again, the optimality of the threshold policy is proved by induction on the number
ol period £, and we suppose that Jyi (241, pre1) is convex with respect to ap.,.
Similar to the Bellman equation with an exponential utility function in (2.3), the
inventory position z; is embedded in an absolute value function and it cannot be
separated from the objective function. In Chapter 2, we prove the optimal policy
by first analyzing the optimal Ly in two cases, L, > a5 and L < a3, and then
comparing these two solution in order to decide whether to buy from or sell to other
market-makers. In this proof, given xy, we first determine which direction to adjust

our inventory, i.e., whether the optimal L is greater than z; or less than z;.

Lemma 3.1. Suppose that Jyi1(Tpe1, Prr1. €xe1) 18 conver with respect to xy.q. Let
L}, denole the optimal solution of Ly in (3.4). For any given py and €, L < ay, if

2 > T (pryer), and L > ay if 2 < TP (pr, €x).

Proof. Consider the function fi.(Ly, pr. €;) defined in (3.5). Since

TP x) = Var(Slpr. ex) > 0,

we know that (Avg(pk. €x) — p(Pr. €x)) Ly + Aoi(px, €x) L3 is convex in L;. Notice

o
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that E {Jyr1 (Ly = Ap.pr + Ok, €541) } 18 also convex in Ly, since Joi1 (Tha1 Dhits €ht1)
is convex in xp41 by assumption, and hence fi(Ly, pr. €x) 1s a convex function of L.

Recall that T2 (px. ¢x) is the global minimizer of fi.(Ly, py. ¢x) for any given Ly and
pr. Suppose that xp > TP (px, ex) and Ly > x5 Consider the objective function of
(3.4). The convexity of fi(Lg.pr. €;) implies that fel Ly proex) = frl@p, pr.ex). Also

note that the absolute value function is nonnegative, we obtain
i i ~
x| L — x| + frlLr. oy 6) 2 fi(@n. pr. k)

and hence L} < wy if @y > T} (pe- ).
We can prove the other part of the proposition, Li > xy if xp < TY(pr, €x), by the

same argument. O

Lemma 3.1 shows that the market-maker will not increase inventory (through

trading with other market-makers) when the inventory is greater than TP (py., €1). and
will not decrease inventory when the inventory is less than T))(ps. €). With this
result, we can replace the absolute value function in the Bellman equation (3.4) by a
linear function, and hence we can pull the term x; out of the objective function. The

following proposition shows that the threshold policy is optimal with the threshold

level T (pr. €1) and T (pr. €x).

Proposition 3.1. Suppose that Jy1(2ht1, Drer. €hs1) 8 conver with respect to g1
Let L; denote the optimal solution of Ly in (3.4). For any py and €. there evists
threshold levels T} (pr,ex) < TZ(py.. €x) such that Ly = THpr, ex) if 2 < THpr. €x),

P =Ty ex) if x> T?(pr,er), and Ly, = x otherwise.

Proof. Suppose that x;, > T2(px), Lemma 3.1 shows that

J(@y,pr) = min {en(an = Li) + fulLp. proe)} = e + min fi(Li. i er). (3.6)
kZTk

kST

Note that ff(Lk,pk‘e;,) = fu(Ly, Py, €) — €Ly 1s defined in (3.5). It is a convex

function of L; because fi(Ly, Py, €x) is convex in Ly.
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Note that we have shown that fi(Lg. pr, €;) is a convex function with a global
minimizer T)(py. ex) for any given pp and €. Since ¢, > 0. for any fixed pp and
¢ky J2(Lg, pr, €x) achieves its global minimum at T2pr, k) = T (pr, ex). It follows
directly that L = T?(py, €x) if 2 > T2 (pr, ex), and L = ay, if TR (pr) < ap < TEpy).

Similarly, we can show that Lj = T} (py) if 2y < T)M(py), and L} = 2, if THp,) <
£ < T9(pe). where T}(py) < T (). O

Proposition 3.1 implies that

;

—epp + [H(TEHpe. en), o ex) i < T (prs €r),

—€pTy + fﬁ (T, i €r) = pTy + f;?(!J:k-,pI\:s €r)
Ji(h: prs €1) = _ .
Ty (preex) < ap < T (pr, ),

= fE(TE (ns ) peser) i @ > T2 (pa- €1).
(3.7)

Next we complete the induction proof by showing the convexity of Jy(zg, pr, ).

Proposition 3.2. If Ji i ((Tps1. Dis1. €141) 18 conver in x4y for any given pi., then

Ji (&g, P, €x) is convez in zy for any given py and €y,

Proof. Here we show that Ji(xy, pr, €;) is convex and increasing in @y, > TP (py, €1)
for any given p; and cy.

Let us define

i v ) = ewi + [ (@0 D &) = fl@n s ex)

Tl pe, ) = exan + [L(TE(Prs i) Drs €x).

According to (3.7), we have

( Tk o er) i T proer) < ap < TEHpr. )
Ji (g, e, 6A:) = ) . S
Ji(ep. proer) i ag > T (pe, en).

For any given p, and €., Jf(xp, pr.€r) is increasing in T (pr-€1), T2 (prs )] as
Ji(Ly, pr. €x) is convex in Ly, and has global minimum at Tp (px. ex). JP(2p, pr. €x) is

2

also increasing as ¢y > 0 and [Z(TZ(py, €1), pr, €2 ) is a constant for fixed py and ¢,. We
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obtain that Jy(ar, pr, €) is increasing in [T (px, €x), 00) since J2(TZ(Pr. ), Dk, €1) =
JHTEpr. €)- Pr- €1)-
Note that 4(T,}( Pr€x). P k) < 0 as TZ(py, ¢) minimizes f2(Ly, pr, €x) with
given pi and ep,} and hence
o.J? L0 fA .3

D, M (T pr. ex ) preex) = 0L (TE(pre. cx) s proer) < € = amk(TE(]‘)AwéA-,):]7A~€A-,)-

Besides. JZ(x1. pi. €) is a convex function in x; since fr(Ly, pr-€) is convex in Ly,
and JZ(xp, pr. ) 18 a linear function with respect to w;. It follows directly that
Ji(p, pi, €x) is convex for oy € [T5 (pr). 20).

Similarly, we can show that Ji(xy, pi. €;) is convex and decreasing in x; < T2 (pr),

which completes the proof. a

Obviously, Jve1(Zyi1, Pyet. €x+1) = —v(Znv+1, €v+1) 15 a convex function with
respect to Ty41, since v(wy.1. €y41) is concave in xy4y by definition. Therefore, we

establish the same optimal control policy as that in Theorem 2.1:

Theorem 3.1. The optimal control policy for the dynamic programming model in
(3.1) is as follows. For any period k, there exist threshold levels, independent of the
inventory level zy., THpy. €) and T (pr. ex) where TiH(pr.€) < T (pr.€), such that the
optimal order quantity g = THpr.€) — xx if 2p < Tip(pro€), @ = T pr.€) — o if

2 > T2 (pr.€), and g = 0 otherwise.

Observe that the proof of this theorem is signiﬁcantly simpler than Theorem 2.1,

that in the current case, the objective function is a summation of convex functions
while in the former case, it is a multiplicative function of convex functions.
We use the stochastic input in Example 2.1 presented in Chapter 2 to illustrate

the threshold policy for the mean-variance trade-off model in Theorem 3.1.

Example 3.1. Consider a probelm with N = 100 and A = 100. We assume that

the random variables 8y, sk. d) and ¢ follow the stationary distribution defined in

Similar to Chapter 2, we use f'(x) and 5 (r1 Ta,...,&m) to denote the left-hand derivatives of
the functions f(z) and g(Jfl,.lg, vy L) Iupectnel}.
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Example 2.1. Analogous to Tables 2.1, 2.2 and Figures 2-1, 2-2 in Example 2.1, we
present the results with 7y = —ey41ley41| and 7x+; = 0 in Tables 3.1, 3.2 and

Figures 3-1, 3-2 respectively.

Table 3.1: Tl(pr,er) and T7(py.€x) for Example 3.1 with A =
—EN+1 1117;’\:'-4"1 I

100 and 7y =

P = 1.999 pe = 2.001
e, = 0.0001 €, = 0.0002 e = 0.0002 e, = 0.0003
k[ T TE[ T TF| T T T TP
1] —3.21 324| —40.21 40.21 | —2.41 2.47| —10.21 10.21
50 | —=3.19 3.21 | —40.21 40.21 | —2.41 2.46 | —10.21 10.21
100 | —=1.00 1.00 | —40.00 40.00 | —1.00 1.00 | —10.00 10.00

Figure 3-1: T} (pk, €x) and T7(py.€) for Example 3.1 with A = 100 and my4; =
—ens1|Tnsl
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Compared with the result in Example 2.1, the no-trade regions are smaller for

both definitions of 7x,;. In particular, the no-trade regions when & = 100 and

mn+1 = 0 are finite in Table 3.2 whereas they are the entire real line in Table 2.2. This
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property indicates that the mean-variance model with A = 100 is more conservative

than the corresponding exponential utility model with p = 100 for the random inputs

we choose. The rest observations are very similar to those in Example 2.1 and the

discussions are omitted here,

Table 3.2: T (p. €x) and TZ(pe, ¢x) for Example 3.1 with A = 100 and Ty =0

p = 1.999 P = 2.001
e = 0.0001 €, = 0.0002 e = 0.0002 e = 0.0003
k 15 T T Tz T 5 T 1z
11 =321 324| —4021 40.21| —-241 247|-10.21 10.21
50| —3.24 326| -40.21 4021 | -242 247|-1021 10.21
100 | —=80.00 80.00 | —160.00 160.00 | —40.00 40.00 | —60.00 60.00

Figure 3-2: T} (p, €) and T (pr, €x) for Example 3.1 with A = 100 and mx =0
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3.3 Reduction of the State Space

Similar to the analysis of the exponential utility function, we can also reduce the
dimensions of the state space in the dynamic program (3.1) by introducing indepen-

dence conditions on the random variables. Specifically,

Corollary 3.1. If 6y, e, Sk and Ay are independent of py for any k, then the state
of the Bellman equation (3.4) is reduced to xy and €. Therefore, the functions Ji(+)
in (3.4), fL(-) and f2(-) in (3.5) only depend on x; and ey, and the threshold levels
TEH:) and TA(+) in Theorem 3.1 only depend on €.

If € is a given function of py for any k, i.e., ¢ = dp(pi), then the state of the
Bellman equation (3.4) is reduced to xy, and py. Therefore, the functions J.(-) in
(3.4), f() and fZ() in (3.5) only depend on wj, and py, and the threshold levels
T () and TZ(+) in Theorem 3.1 only depend on py,.

If € is a given constant and 0y, Sy, and Ay are independent of py for any k, then
the state of the Bellman equation (3.4) is reduced to xy.. Therefore, the functions Ji(-)

in (3.4). fi(") and f2(-) in (3.5) only depend on xy, and the threshold levels T}(:)

and TZ(-) in Theorem 3.1 are reduced to constants for any k.

We use the stochastic inputs in Examples 2.2 and 2.3 shown in Chapter 2 to

illustrate Corollary 3.1.

Example 3.2. For an example whose threshold level only depends on ¢;, we consider
the same stochastic input as Example 2.2 with N = 100 and A = 100. Table 3.3 and
Figure 3-3 present the threshold levels for both my = —enyi|ony1| and 7y, = 0.

The observations from these results are very similar to those of Example 2.2,
except that the no-trade regions in Table 3.3 and Figure 3-3 are smaller compared
with their counterparts in Example 2.2, which agree with the observation we obtained
by comparing Examples 2.1 and 3.1: the mean-variance model with A = 100 is more
conservative than the corresponding exponential utility model with p = 100.

We would like to point out that the threshold levels have very close absolute values,

Le., Tl ey) ~ —T(cx). Similar to the exponential utility model, there also exist
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50

Table 3.3: T}}(e;) and T?(ex) for Example 3.2 with A = 100

TN+l = —€N41|TN4] vy =0
¢, = 0.0001 e = 0.0002 e, = 0.0001 . = 0.0002
k ‘T;} T;? T,\.l TE T,} T; T,} i3
1| =321 321]-40.21 4021 | -3.22 3.22| —40.21 40.21
50 | —3.19 3.19 | —40.21 40.21 | -3.25 3.25| -40.21 40.21
100 | —1.00 1.00 | —40.00 40.00 | —=80.00 80.00 | —160.00 160.00

Figure 3-3: T}(ex) and T?(ex) for Example 3.2 with A = 100
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certain conditions under which the mean-variance tradeoff model returns svmmetric

threshold levels, and we present the theoretical result in Proposition 3.3.

»
Example 3.3. Let us use the stochastic input defined in Example 2.3 to illustrate

the situation that the threshold levels are independent of €;. Similar to Example 2.3,
we consider the cases ¢ = 1071 and 5, = 2 x 107% respectively, and allow w1 to be
either —exs1|zn+1| or zero. The results for ¢ = 107 (¢, = 2 x 107, respectively)
are shown in Table 3.4 and Figure 3-4 (Table 3.5 and Figure 3-5, respectively).

We observe the same trend in threshold levels when the period Ak changes as in the

previous examples. Moreover, similar to Example 2.3, the absolute values of threshold



levels for p, = 2.001 are higher than those for p, = 1.999, and the absolute values of
threshold levels for ¢, = 2x 107* are higher than those for ¢ = 107% In general, the
no-trade regions are also smaller than the counterparts in Example 2.3, which agrees

with the observations from Examples 3.1 and 3.2.

Table 3.4: T}(py) and TZ(px) for Example 3.3 with o, = 107* and A = 100

TN+l = —6;\'+1|1UN+1| Tne1 =0
pr = 1.999 pr = 2.001 pr = 1.999 pr = 2.001
v I P v+ D S - N Y v
1 —-342 344 | —4.43 447 | —-343 3.44 —4.44 4.47
50 | —3.42 343 | —4.42 444 | —-3.45 3.45 —4.70 4.70
100 | —1.00 1.00 | —1.00 1.00 | —80.00 R80.00 | —160.00 160.00

Table 3.5: T}(py.) and T (px) for Example 3.3 with pp = 2 x 107% and \ = 100

TN4+1 = —€N+1]TN+1] Tyyr = 0
pr = 1999 | p. = 2.001 pr = 1.999 pr = 2.001
k I, T7 . T? T, T; T 17
1| —-444 446 | -5.10 5.13 —4.45 4.46 —5.19 5.20
50 | —4.42 444 | -5.02 5.00 —4.70 4.70 —5.96 5.96
100 | —1.00 1.00 | —=1.00 1.00 | —160.00 160.00 | —240.00 240.00

3.4 Risk Neutral Model

A very interesting case for the mean-variance model in (3.1) is when A\ = 0, which
gives the risk neutral model. Let us start with the special case that 7y.; = 0, ie.,

the inventory is marked to the market mid price at the end of the planning horizon.

Example 3.4. Consider the case when A = 0 and 7wy.; = 0 for the model (3.1).

Suppose that the function Jyi1(Zpt1. prat. €xe1) I8 linear in the inventory ..

ie.,
T 1 (Tpgr, Drsr,s 5L~+1) = Tpr101 (Dhs1s €h1) + Br (Dr+1- €7A:+1)1
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Figure 3-4: T}(pi.) and TZ(py.) for Example 3.3 with ¢ = 107* and A = 100
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Figure 3-5: T} (px) and T72(py) for Example 3.3 with o = 2 x 107* and A = 100
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where apy1(Prs1. €r+1) and Firq(pri1. exy1) are functions of pry1 and €,.1. Note that

InN 1Nt PN EN) = =Tvgg = 0

obviously satisfies this assumption.

Let us move on to period k. We have

Jel L pr, €1) = (*Hk(])k: ) + B [Q‘k+1(pk + O, €k+1)tpk> ﬁkb Ly,

+FE {Akﬂ’kﬂ(pk + Ok, €p41) + Brr1 (P + Ok, €541)

Pr, 6]\}

and hence both f}(Ly, py,e) and fZ(Ly, pr, €) are linear functions of Ly, which im-

plies T (py, €1) and TZ(py, €).) are either —oo or +0c. In particular,

o If I {akﬂ(pk + Op. ekH)’pk, e;\} > fue(Pr. €x) + €x, then both f(Ly, pr, ) and
J#(Ly, pr, ) ave linearly increasing in Lj and hence T, (s k) = TR (pr.ex) =
—o00. Moreover, Ji(Ly, pi. €;) = —o0. Note that ug(pr, ex) = E[0|pr, €x], which
is the drift in the mid price. The intuition behind this result is that when we
have very large negative drift, we always have incentive to short the asset if we

are risk neutral.

o If B\ cppr(pr + O, €4a1)

Dk, q} < fu(pr, €x) — €x, then both fL(Ly, pr, €x) and
fi(Li, pr, €x) are decreasing. Therefore, T} (pr. €1) = T3 (pr. €) = +0oo, and we
have Ji(Ly, py, €;) = —oc. Similarly, this may happen when the drift in price,
t(pr, €), is a large positive number. In this case, we would like to hold as

much asset as we can to gain the expected profit.

|
o If wy(pr,er) — e < F {CYA:+1(])I{: +Ok>5k:+1)!pks‘,5kl < pu(prs €x) + €, we have
Tg (pr.€x) = —oc and T (py. ¢x) = +00 since f,}(Lk,pk, €r) is decreasing while
o . . . . . . .
Ji (L, pi. €r) is increasing. In this case, the no-trade region is the entire real
line, i.e., we just receive the orders from our clients and never trade actively
with other market-makers. This corresponds to the scenario that the gain in

the price drift cannot compensate for the transaction cost, and a risk neutral

decision maker will just keep the inventory.
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At the same time, the corresponding value function is
ek, prs k) = ful@hs Prs 1) = Teow(prs 1) + Si(prs 1)

where

ar(pe, ex) = —pn(prs€x) + B [kar+1(]7k' + O Ek+1)1pk- Ek}

) [ . ‘ -

Pe(pr, k) = E [Ak&kﬂ(m + Ok, €hst) + Brrr(Pr + Ok EL:—:—l)iva: Ekj} :
Obviously, Ji(xr. pr. €x) is linear in x), which satisfies the induction assumption.
As a result, as long as Jy(zp, pr. €x) is well defined, there is no need to actively

trade with other market-makers from period % to the end of planning horizon.

In fact, the results in Example 3.4 hold for any my., linear in xy.;. For any
Tner = U(Tnat. ever) concave in xyir, Jp(@g, pr, €) 1s well defined, ie., Ji(@k. pr, €r)
> —oo for given ay., pp and e, if and only if (i) Jys1 (Le — Dp, pr + g, €441) > =0
for any given i1, pre1 and epry, (1) fi (L, pr, €x) is not decreasing in L. and (iil)
f(Ly, pr. ex) is not increasing in Li. The conditions (ii) and (iii) are equivalent to

, 0 N )
—u(pr. €x) + €+ lim —F { i1 (L 4 A, pre + Ons €1g1)| Pres EA«} >0
L —+oc ()Lk i

, 0 | , 1
—pesex) — e+ lim o F { T (L + Bg e + Ops €x1) | P €k} <0
Ly——nc 0Ly, !

for any pp and €,. Moreover, the no-trade region has a lower bound, i.e., T pr. ex) €
. k

(—~c.+o0) if and only if the conditions (i), (i), (iii) and

— 1 pr, €r) + €x + lim —('—E { Jra1 (Lk + Ap.pr + O, €k+1) Pk 61\-} <0
L 0L,

f—— 0

2
2

are satisfied. Similarly, the no-trade region has an upper bound, ie., T¢(pr. €1) €
(—oc. +o00) if and only if the conditions (i), (i), (iii) and
—[,L(])A-. fk) — € + lim —a—E { .];;_;_1 (Lk - Ak-pk + (5;\\ 6},..4.1) ‘ Dr, 61,-} > {
S Ly—+ac OLy, ' ' ' : o
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are satisfied.
Next we present the results for the risk neutral model with the stochastic input

used in Examples 2.1 and 3.1.

Example 3.5. Consider the problem described in Example 2.1 and suppose that the

decision maker is risk-neutral. Note that pg(py, cx) = E[dx|pr. cx] = 0. According to

Example 3.4, it is straightforward that T} (py, ) = —oc and T2 (py,, 1) = +oc for any
pr and e if we let myyy = 0. We will focus on the situation that Ty, = —eyq|oya].
We have T} (py. ;) = —o0 and T (pr, ex) = +oc when ¢, = 2 x 1074, i.e., when

(i) pr = 1999 and €, = 2 x 107" and (ii) p; = 2.001 and ¢, = 3 x 1074, For these
two cases, there exists a 0.5 probability that o, will decrease to 1074, i.c., the
transaction cost in the next period may be reduced by 1071, Since the expectation of
the price movement is 0, there is no expected loss associated with holding inventory.
Therefore, the decision maker has no incentive to trade off the inventory in period £,
and hence the no-trade region is (—ac, +oc).

The threshold levels when (i) py = 1.999 and ¢, = 107 and (ii) p;, = 2.001 and

e = 2 x 1071 are shown in Tabel 3.6 and Figure 3-6.

Table 3.6: T} (pr, 1) and TZ(py, €;) for Example 3.5

pr = 1.999. ¢, = 0.0001 | p, = 2.001. ¢, = 0.0002

2 7 T? Tx 17

1| =37.00 35.00 | —xc >
50 | —26.00 25.00 | —o0 0
100 | —1.00 1.00 | —1.00 1.00

The threshold levels are always bounded for p, = 1.999 and ¢, = 10™*. However,
T#(2.001,2 x 1071) and T2(2.001,2 x 107) are bounded only when & > 92. When
E>92 forany k=k+1,....N+1, the probability for pr < 2 given p;, = 2.001 is very
low, which, according to the definition of ¢; in (2.12), implies that the probability for
the transaction cost to drop to 107 is low. Meanwhile, if pr=2.001 and ¢, = 2x1074,
it is possible that e; where k = k-1, ..., N+1, the transaction cost in any future period

k, may increase to 3 x 1074, Therefore, when k > 92, pr = 2.001 and ¢, = 2 x 1074,

the decision maker has the incentive to actively trade with other market-makers in
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Figure 3-6: T} (ps, €x) and 'Tf(p;\.. i) for Example 3.5
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period k. On the other hand, when & < 92, pr = 2.001 and ¢, = 2 x 1074, there may
exist some k € {k+1,..,N+1} that p, <2 and ¢} = 1074, i.e., the transaction cost
may decrease to 107 in some future period k:, and hence the decision maker would
choose to hold the on-hand inventory in the hope to save the transaction cost.

In addition, we would like to point out that the no-trade region decrease as k
increases, which agrees with what we observed in previous examples when 7y, =

—ens1]|Tn4al-

3.5 Symmetric Threshold Policy

The symmetric threshold policy is also optimal for certain special cases if we consider
the mean-variance tradeoff model in (3.1). Here we establish a result analogous
to Proposition 2.3 for the exponential utility model (2.2). Note that the threshold
policy characterized in Proposition 2.3 is symmetric with respect to zero. For the
mean-variance model, under slightly different conditions, we can generalize to the
case that the threshold levels are symmetric with respect to a known constant Y. i.e.,
X — Tﬁ(p,—,,, €r) = Tf(pk, i) — x for any k., pr and €.

In the Bellman equation (3.4). we take the expectation of Jiy1(Lps1, Pret- €6+1)
conditional on pp and €, with respect to dy, Ay and €p41. Since €pyq and Ay are
independent. it is sufficient to consider the distribution of A; conditional on dx, py
and . Let Fa, i, ppe (Ax) denote the cumulative distribution function of the random

variable A, conditional on d,. pp and €.
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For a given constant y, we consider the following assumptions.

(C1) v(x+ans1, enve1) =v(X —ani1, enq1) for any zx4q and x4, i.e., the function

V(ZN41, €n1) 1S symmetric in 2y, with respect to the point v.
(C2) Avr(pr- €x) — ti (P €1) = =2\ 07 (pr, €x) for any k and €.

(C3) Fauseppc (D) + Fagsemmer (=A%) = 14+ dFa 5, e (Ar) for any k and Ay, ie.,

the conditional distribution of Ay is symmetric with respect to zero.

Proposition 3.3. Given a constant x, under the conditions in (C1), (C2) and (C3).
a symmetric threshold policy is optimal for the problem in (3.1). In particular, Jy(y +
Ty P k) = TN — Zry prs ex) and X — THpg, er) = T2 (prs cr) — \ for any k, ax, pr

and €.

Proof. Consider the period N + 1. Since Jyi1(@ni1, Pyt €xe1) = —0(2x11, €x41).

the first condition (C1) shows that

Ine1(X + onen pverever) = I — 541 pyvat ene)

for any xn.q, pyyr and ey,

Let us assume that Jyy (X + @ra1s Prsts re1) = Tt (X = Trots Prests €hee1) fOr any
Tpi1. Pra1 and epoq. We can prove the proposition by induction on the number of
period k.

Consider the function fi,(Ly,px, €,) defined in (3.5). The condition (ii) implies

that

2

fkj(LA-7])A-§ EA-) = —L/\X’Ug(pk, Ek)Lk + /\U}f(})}w 6},-,)Lk
+E { Jrv1 (Lk + Ak,pk + Oy 6L:+1)

Dk €k }

= Ao} (pr- &) (L — X)? = AN 0i (pr, &) + E { Jps1 (L + Ag, pr + O, EL:H)EPk:, f’k} .
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Similar to the proof of Proposition 2.3, we have

e+ Ly, pr. €x)

2

= /\Uz(p}' GL')LL? - ’\ngi(pkw 613) + E { J’H—l (K + Lk T AA‘:PI: - (Sl.‘,w Ek‘+1) Pk E/\‘}

= A2 (pr. ) LF — N Coi(pr,ex) + B { Jes1 (X — Ly — Dpype + O, €141) | Pres 61;}

2

= ,\Ui(pk, €y) Ly — /\xvzcri(pk, ep)+ F { Jesr (v = Ly + Dpypr + Ok, €601) | ks Ek}

fk (\ - le‘,-,pl.:- 61\7)7

where the second equality follows from the assumption Jy1(X + Zps1. Pes1s €hs1) =
Jpi1(X = @hgr. Pre1s €101), and the third inequality can be proven by the condition
(C3).

According to the definition of f}(Lg, px, €x) and fZ(Lg. pr. €x) in (3.5),

Folx + L. pesén) = filx + Li, pr-ex) + ex(x + L)
= [i(X = L, prs €x) — (X — Li) + 2exX
= fl:z(\/ - Ll;:pkﬁ Ek) -+ 261.‘,\-
Given py, and e, T} (pr, €x) and TF(py, €;,) are global minimizers of FH(Ly., pr, ) and

F2(Ly. pr €1), and it follows immediately that x — T} (pk, €x) = T2 (e €£) = X

To complete the induction proof, we still need to show that Jy(x + @p, pr. €x) =
Ju(X — @k, prs €x). Without loss of generality, we assume that o > 0. Note that the
proof of Lemma 3.1 shows that fi.(L, pk. ¢x) is convex in Ly, and we have shown that
fe(x + Ly, pr-€x) = fe(x — Li. pr, €x). Therefore, for any given p, and ¢, the global
minimizer of fi(Ly. pr. €x) is \. i.e., T2 (pr. 1) = x and hence T (pe, ex) > \. As a

result, we can consider the cases zj € [0, TZ(pr. ) — \] and @y > T2 (py, €5).

For any 2 € [0, TZ(pr, ) — \], the function Ji(zy. pr. €x) defined (3.7) shows that

Je(X + 2 prser) = (X + xw) + SR+ Ta Dk )
= fiolx = &% 0r €)= frlX — Tk, Pi 1)
= —en(x — @) + fr(X — 2 e €8) = Ju(X = Tus Prs 1),
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where the first and last equalities follow from (3.7). the second and the forth equalities
are immediate results of (3.5), and the third equality is obtained by the proven fact
Jelx + Lo ) = frolX = Li. pis €r).

Similarly, for z;, > TZ(py, 1) — X,

Je(\ + T pre €)= (X + ) + FETE(prs €1) Pre. €1) (3.8)
= er(x +ap — To(pes ) + FulTE by, €x). prs €5).

According to the result fi(\ + Ly, pi.€x) = fi(N\ — L, pr. &) and x — T} (pr. ex) =

TZ(pe, €x) — \, we can show that

2 2

ST (s €0). oo €)= FrlX + (T Pk 6) = X)s ks €x) = fulX = (T (Prs €x) — X), P €)

= fl.(\ - (X - Tl.l(pk 6/\’))7})}\‘7 Fk) = fk(T}.l(pk EA:)J)A',> 6;\7),

and hence by (3.8),

Jo(X + 2, Pr. €x) = e (Y + 2y — T;?(Pk: €)) + fk(Tﬁ(Pk: €k)s P €x)
= 657(_X + o+ TA1 (pka 67\?)) + fk(Tl} (_pkv ‘:k,): Pk (:1\7)

= _Ek(.;\/. - [Ek) + jl}(Tkl(p/\ Ek):l)k:s Ek) = J/\(\/ = Ly Phs El\')v

where the second equality is obtained from the symmetry of T} (pi, cx) and T2 (pg. ci.),
the third equality is due to the definition of f}(Ly, px. €;) in (3.5), and the last equality

follows from (3.7). O

We use the same stochastic input as in Example 2.4 presented in Chapter 2 to

illustrate the symmetric threshold policy in Proposition 3.3.

Example 3.6. Let us consider the stochastic input defined in Example 2.4. According
to Corollary 3.1 and Proposition 3.3, the threshold levels T} and T? are independent
of both pp and €., and we have T,;} = —T,?.

Table 3.7 and Figure 3-7 display the threshold levels 77 for A = 80, 90, 100, 110,
120 when we consider my41 = —enii|Tys1] or Ty = 0. Let us compare the results

here with those for Example 2.4 shown in Table 2.6 and Figure 2-6. We observe that
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T? changes with respect to the period k in a manner similar to that of Example 2.4.

Another observation analogous to Example 2.4 is that T deceases if the decision

maker tends to be more risk-averse, i.e., the value of the risk aversion parameter A

increases. Also note that the values of T,;“’ in Table 3.7 are lower than those in Table

2.6, which means that the mean variance model with A = 80. 90, 100, 110, 120 is more

conservative than the exponential model with p = 80, 90,100, 110, 120.

Table 3.7: T7 for Example 3.6

TN4+1 = —€n+1|Tn41] i1 =0
A 80 90 100 110 120 30 90 100 110 120
K| IF 12 17 1z 1| I 1 TF ¥ T}
1364 349 334 322 311| 364 349 334 322 312
50 | 3.67 3.49 3.33 3.20 3.09| 368 351 337 324 313
100 | 1.00 1.00 1.00 1.00 1.00 |93.75 83.33 75.00 68.18 62.50
Figure 3-7: T¢ for Example 3.6
Threshold Levels Whenn = -g, x|
ar T T T T T T T 1
o 4 g e 1t 4 4 et ety e e, —s— T2 witn A= 80
3 B PR T O | .
T with A= 80
ax 251 2 with A= 100
5l weaees T2with A= 110
) T with A =120
s i x £ : % % = = % 0
Threshold Levels When =, , =0
10 T T T T T T 7
;h ‘ —— T with A= &0 |
e T2 with &= 90
g T2 with A= 100
= 3
' ‘:~+——T;v.m-k=1m
5 T2 with A= 120
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3.6 Monotone Properties of the Threshold Levels

The numerical examples presented in the previous sections provide us lots of insights
about the monotonicity of the threshold levels with respect to different model param-
eters. In this section, we identify the sufficient conditions under which the monotone
properties of the threshold levels could be established analytically. In particular, we
are going to investigate monotonicity with respect to the risk aversion parameter \,

the bid/ask spread determined by ¢, as well as the market mid price p;.

3.6.1 Monotonicity with Respect to the Risk Aversion Pa-

rameter

As shown in Example 3.6, more risk averse market-makers, i.e., market-markers with
larger A, should be more willing to sacrifice the transaction cost in order to reduce the
inventory risk, and hence they would like to choose a smaller no-trade region. Here
we identify certain sufficient conditions for this property to hold mathematically.

In particular, consider two risk aversion parameters \; and A\, such that 0 <
A1 < Ao Let Ji (@, pr. €1) denote the function Jy (24, pr. €1) defined in (3.4) with the
parameter A;, i = 1, 2.

Given two constant Y1 and o, we consider the following asswmptions which are

analogous to the assumptions (C1) and (C2).

(C) Inyril@nsr, v exe1) = —vi(@ns, exe1) where v (G + 2 v41, exg) = i\ —
Tyg1.€v41) forany i = 1,2, 2y4; and exaq, ie., the function v (xxi1, €x41) is

symmetric in x4 with respect to the point y;. Moreover, we assume that

vy vy \
01‘7\'1 ) (X1 + & engr) 2 - 'L'N7 1 (N2 + 2. exg1) (3.9)
L T o +
for any o > 0.
(C27) Nvw(pw, ex) — pw(pr. €x) = =2\ 0% (pr, €x) for any k and ¢;,.

We also replace the assumption (C3) by a stronger assumption.



(C3’) For any k, suppose that A; conditional on o, pr and €. is a continous ran-
dom variable with the probability density function fa,is, pe.c. (Ar). Moreover,
fAk}‘SkapksEk(Ak) - fAkwkePkwﬁk(_Ak) and fikwk:lik,ék(AL‘) > fAk[(skspA:ek (/17\) for any
Eand 0 < Ay < Ay, i.c., the conditional density distribution fa, s, p,.e. (%) 18
unimodular and symmetric with respect to zero, e.g., A conditional on 5, py

and €, is subject to a uniform or normal distribution with zero expectation.

Proposition 3.4. For any 0 < Ay < Ay, let Tﬁi(pk,ek') and fZ‘,‘i,I-‘(pk,ek) denote the

threshold levels in Theorem 3.1 corresponding to the risk aversion parameter \;, i =

1,2. Under the assumptions (C1°), (C2') and (C3°), T¢ (pk, ) — Tiq(pr cx) =

T35 (pr ex) — Ty o(prs 1) for any k, py and ey,

Proof. Consider the induction assumption
81] ; az]«;. 2 . -
—M(U + X Prgs Er1) S —M(Xz + 2, pry1s €x41) for any @ > 0. (3.10)
O 1 JTpry

To initiate an induction proof, we consider the period N + 1 and show that
the function Jyy1,(2yi1, €y21) satisfies the induction assumption. The definition

of Jnari(ye1, pyer- €ver) in condition (C17) implies that

O JN+1. vy
- (Xi + 2, pyvet Ent1) = — . (i + 2 evg1)s
0rx 1 OrN+1

and (3.9) in the condition (C1") immediately yields

OJni11 OIn112, . -
(X1 T PNl Envel) < (X2 + &, pyy1. Eva1) Tor any @ > 0.
Or N1 Orni1

Suppose that the induction assumption holds for period & + 1, we are going to
show that T2, (pr.x) — T (ks €x) = T3 o(r. €x) — Tt (pr. €x) for period k.
Let fﬁi(L;\,, pi, €) denote the function JE(Ly, pr.€x) n (3.5) with the risk aversion

7
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parameter A;, i = 1,2, and hence

81“?[ C)J. 1,4 N
- k (Xi + 2, pr, &) = E{ Ly 4 2+ D Pr + Ok €x1) | i Gk} o
oy, 041 (3.11)

+ 2003 (Dr, €8)T — €.
In order to simplify the notation, let us define

OJrgr12

‘ . 0411
'l"k:(ila})k'+1: €hr1) = ar_(,\z + T, Prils €prl) —
dh+1

™ (\1+ 2, Pht1- €rp1)-
07111

According to Proposition 3.3 and the assumptions (C1%), (C2') and (C3'), it is staight-
forward that Jyoy i (2r+1, Prsr, €p+1) s symmetric in 241 with resepct to the point y;

for i = 1,2, and hence

OJp+1i , OJis 1.
O (Xi + @ Pryts €ppt) = —5—— N (Xi = @ Phs1s €hv1)
L)Ll.k+1 0.1k-+]

if Jyx1i(@rs1, praa. €x11) 1s differentiable with respect to @y at the point @ = y;+
x, for i = 1,2, Given pgyy and epyq, Jrw1 i (Cpe1, Pret. €4e1) 18 convex in a4, which
implies the countability of the set that Jriy;(@ss1, pert, €xe1) 18 not differentiable
in 341 (c.f. Roberts and Varberg [43]). Therefore, we have wi (2, pri, 1) =

—Up(—2. Pr+1, €r+1) for any x and pryg at any x except for a countable set.

Let us consider the following function
~ v - N - — [ . $ S - -
'U‘k(flr., Pk €k ()k: tkz+1) =L [u'k(l + Ak::pk + Olm 6k:+1)| Ok«, €ht+1s Pk tk] .

Note that A, contional on pj. is independent of €,,; conditional on py.1 = pp + 3.

The condition (C3’) implies that

ﬂ'k(il’-, Ph €k Ok, f:'k.+1) = / ug (@ + Ap,pr + O (‘A¢+1)fAk.[(sk7;—,Mk(AA=)11AL-
Jay

= / “k(Ak:pk + 6}&7 Ek+l).fAA,|5A.,}7k.€k (Ak - 'T',)dA/{*
Ag
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where the second equality is obtained by replacing « 4+ Ay by A, Obviously, we have

(2, Pr. €k O €he1) = / g (Ag, pr + O Ek"‘l,\)fAlc]&k-Pkfk(Ak — x)ddy
ERAVAY

+ / “k(Ak:pk + O, Ek%-l)f.’.lkicsk,p;\.,ek(ﬁk - JJI)dAk-
JAR20

If we replace Ay by —Ay in the first integral and replace Ay by A; in the second

integral, it follows that

ﬁ}» (_‘7:', ])}x 61.:7 51.,- 6]\7—§-1) - / lu’k( _AA pl\‘, + (-Sk‘, Ek-i-l)fﬁké(sk.,p;‘.,t'k ( _AA - ‘T\)(IAL
JAR=0

+ / (A P+ Ok €k21) fay s, pren (D — 2)dA.
J AR >0

Since wp(x, pr, €k, Or) = —wp(—2. py, €. 6)) at any 2 except for a countable set, we

obtain

ﬂlﬁ(l‘-pk“ €k 51\%-, 61\"4—1) = / (fAkiék,‘pk,,ek(Ak - ’LU) - fAkicsk:pk,sk (_Al.t - L))

A >0

U (Als‘-. Py + (Slr: Ek+1)dAk .

According to the condition (C3°), the conditional distribution of Ay is symmetric,
which implies fa, (5, prep (Dr — ) = Fanisepees (188 = 2]) and fa 5 ppe (=8 — r) =
Iantss pee (A8 + 2]). Note that [Ap — x| < Ay + 2 for any @ > 0 and Ay 2 0, and
hence the unimodularity of fa, 5,y (A) stated in the assumption (C3’) shows that
Faise e (D =) = fayse e (A% — x) > 0. Moreover, the induction assumption
in (3.10) implies that uy(Ag, pr + 0k €x41) > 0 for any Ay > 0. Therefore, we obtain

(2, Pr. €x. Opy €p1) > 0 for any = > 0.

The first derivative of f,‘f.’,f(:l:;.‘ Pr.€x) in (3.11) suggests that

(()flk;:(’\z + Lo Ples Ek) - ajz;(\l -+ X, Pr, Ek.)

Pk fk} .

=2\ — M)oi(pr-ex)r + E {’ﬂrk(}lﬁpm €k Ok, €ps1)
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Note that Ay < Ay and o (py., €2) = Var(Sx|pr. €x) > 0. It follows immediately that

afis _ ] Ofi,
‘B—L;(,\z + &, pr, ) — oL,

( X1+ &, Pr. €x) = 0 for any = > 0. (3.12)

For contradiction, let us suppose that T, (pr, ¢x) — \1 < TZo(Px, cx) — \2. Then
there exists some x such that 0 < T2 (pr.er) — x1 < @ < T2y(pr.€x) — \2. For
1 = 1,2, Proposition 3.3 shows that the threshold level T~ (i, €x) > xi corresponds
to the global minimizer of the convex function fi(@n.pr, €x) for any given py and €.

(\H‘l Prs€x) > 0, and yotz < Tﬁg(})k, €r)

Therefore, yi+z > Tk Lprs )

,;‘Lk: (X2 + 2, px, &) < 0, which c:ontradlc:ts (3.12). As a result, we proved

that Tﬁl(ﬁkﬁk:) b S Tﬁ,z(pk- k) — 2, which yields T):?,l(])k'e er) = Tpi(prer) 2
T2 (e k) — Tho(pr, €2) by Proposition 3.3.
Next we complete the proof by showing that the induction assumption in (3.10)

also holds for period k. According to (3.7), we have

—Ck if ;1"1\ < Tl\l (pkf: Ek)e
0.J), A (34, P, € (7 o Dy €) — € _
La_,k(’l‘»k:])k; ) =14 b b €)= dL" e P ' ) (3.13)
Tk if Tl(pk: E)\T) < Ty (S Tf(Pk: 61»')7
{ € if . > T,?(]JL €4 )
IF0<a < TEo(pr k) — X2 < T2 (pry k) — X1, we have
a.J a']c‘Q
L+ 2 1) — 2 (2 + 2. )
oz )
OfE, o OfE,
= —(v1 + 2. pr. s 9+ 2, p <0,
L, (x1 42, pr. ) — oL, =(X2 + @, Pro )
where the inequality is yielded by (3.12).
Suppose that T7,(pr, €5) = X2 < @ < T2, (pr, €1) — x1. Since Jy.(xp. pr. €x) is convex
n xp, :j;’]* (k. pr, €r) 1s non-decreasing in x;. According to (3.13), we know
oJy. \ 0.2
o I(M + o, €p) S = ~(x2 + , k. fk)
ouy duy.

[o7¢]
fan)



where the equality follows from = + \2 > TZ4(ps. ;) and (3.13).

It 2> T2 (o) — X1 = T o(pro €x) = X2, (3.13) shows that

al]k:,l ) 8‘]’»‘:2 . | y . .
—— (X1 + T, P €k) = (X2 + T, P &) = €.
()Ik 0;731(,
< ST S SN TS AR . AJk 1 - « o, . _
Summerizing the three cases, we have B (X1 + @ prep) < T (X2 + @ pp €1)
for any = > 0, which completes the induction proof. O

Suppose that E[0g|pr, e1] = E[Ak|px. €x] = 0 and the distribution of ¢, conditional
on py and € is independent of the conditional distribution of Sy and Ay, which,
together with the assumption (C3’), are the sufficient conditions for . (pr. ) = 0
and vi(py, er) = 0 for any & and ¢,. In this case, the increase in the risk aversion
parameter \ is equivalent to increasing the conditional variance of 0. i.e., o (proer) =
Var(Si|p, ex), while keeping the value of the risk aversion parameter. Following the
proof of Proposition 3.4, we can establish the following monotonicity property with

respect to the conditional variance ol Jj.

Corollary 3.2. Consider 8, and g such that Var(dp|pe. €x) < Var(dpalpr. ),
E[0wilpe, ex) = 0, and the distribution of dy; conditional on py and €y is independent
of the conditional distribution of Sy and Ay for any k and ¢ = 1,2, Lel T} (pr- k)
and T¢ (pr, €x) denote the threshold levels in Theorem 5.1 corresponding to the price
movements 8y.; for any k and i = 1,2. Under the assumptions (C1), (C2) and (C3’),

Tr (ks ) = =T (i €x) < Ty o(pro &) = —T2,(pr- €x) for any k, py. and €.

The more volatile the underlying asset price, the more risky to hold the inventory.
Therefore, with the same risk aversion parameter \, the decision maker is more likely
to actively trade with other market-maker to control the inventory risk, i.e., the no-
trade region shrinks as the variance of the price movement 4, increases, which agrees

with Corollary 3.2.

o0
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3.6.2 Monotonicity with Respect to the Spread

Examples 3.1 and 3.2 show that for any given period k& and mid price py, the threshold
level T} (py.. ex.) is lower while T?(py, €;) is higher for greater e;. The intuition behind
this property is clear. If the spread is high, the cost of adjusting inventory is high
and hence the market-maker will try to avoid trading by widening no-trade region.
Formally, we can prove the following monotonicity property with respect to the spread

defined by €.

Proposition 3.5. If ¢ is independent of 6y, Sp and Ay in period k, then the thresh-
old level TH(py, 1) in Theorem 3.1 is non-increasing in e if vi(pe, €x) > 0, while

T (pr. €x) is non-decreasing in €, if v (pr, €1) < 0, where vZ(py, ) is defined in (3.3).

Proof. 1f € is independent of oz, Sy and Ay, then py(py, €1.), 03 (Pr. €x), Vi (pr, €x) and
Vi (p. €r) are also independent of ¢,.. To simplify the notation, we denote them using
te(pr). on(pr), vi(prk) and vE(py) respectively, and so vi.(pr, ) = vi(pe) + ex/Z (pr)-

When ¢, is independent of 4, and A,, we also have

E { i1 (i + Ap, pr + 0p. €p41)

Pk} .

Pks fk} =F { Jiw1 (L + Ap, i + O, €641)
Therefore, the function fi(Lg, pr, €) can be reduced to

Se(Le, prs ) = (A(l/l%(l7kt> + i (pr)) — ,Mk(pk,)) Ly

+ \ojL; + E { Jie1 (L + A, pre + O, €k+1)|pk} ;

and hence

19 .
d? (Li, pr.cx) = f\(,Vi(_]?At) + ffk”]i(l’k)) — 1e(pr) + 2 ap Ly,
3] .
+ TE { i1 (L + Appre + Ok, €p41) Pk} -

The definition of fl(L;.p,€r) and )‘,f (Li. pr, €x) in (3.5) immediately shows that

ofl
02} (L, i cx) = 0; (L, pr) + ¢, and

aft o Ofk
N (L. . €1 L — €,
‘C)L;,.(‘ ke Phy €) = sz( ks Pk) — €k
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and it follows that

—%(Lk“pk“ﬂ'):'\’/?(])A~)+1 and ——-Bzf"z (Ly. pr. ex) = M\ (pg) — L.
OLyer 7 R DLpdey " HETE »

Since A > 0, r,T[ﬁ(Lkvpkfk) is increasing in ¢, if vi(pr) > 0, and Fl(‘Lk,p;},,tk) is
decreasing in € if v7(py) < 0. Note that T (pr. er) and TZ(py. 1) correspond to global
minimizers of f}(Ly,py, €x) and J2(Lg, pr,€). Following the argument in the proof
of Proposition 3.4, we can prove that T} (py, ) is non-increasing in ¢, if v (pr) > 0,

and T2(py., €x) is non-decreasing in ¢, if v (py) < 0. O

Proposition 3.5 deals with the case that we increase the spread in period & while
keeping the spreads in the rest periods. Next we would like to investigate the case
when we shift the spreads upwards for all periods. For instance, in Example 3.3,
we consider both ¢, = 107 and ¢, = 2 x 107 which correspond to a parallel
shift in the spread. The computational results indicate that the lower limits TY(py)
(the upper limits 77 (py.). repectively) have greater (smaller, respectively) values when
¢ = 107* than when ¢;. = 2 x 107%, which is analogous to the monotonicity property
in Proposition 3.5.

Formally, let us consider the following assumptions.

(C4) The end of the planning horizon profit or loss function v(wy.i1, €vy1) satisfies

v ) du
—eNi1 S 7 (TN+1. PN+1,€) — 3
(.)(ll\h;.] C)I:\f_{_l

(Cn41.PN+1, €+ €pp1) < enva

for any ox4+1. pPy+1, € and egpq > 0.

(C5) vi(pr,er) =2 (E{ékSkipk,ek] — Elb5k|pr. ek]E{Sklpk.ek]) = 0 for any k. p, and

Cheo

Proposition 3.6. For any period k, consider a random variable &, = €. + €, where
er 15 a given constant and ep > exry > 0. Let TA}(pk,F:k) and Ti;’(p;.,ék) denote the

threshold levels in Theorem 2 where the spread in period k is defined by the random
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variable &, for any k. Under the conditions (C4) and (C5), THpr.€) > THpr. €+ ex)

and TA(pr.€) < TR (pr. € + €x) for any k, py and €.

Proof. Similar to Proposition 3.4, let Jy(zy, pr, &) denote the function Ji (. py, ex)
in (3.4) with the spread defined by the random variable &. for period k. For the

induction proof on the number of period k, we consider the following assumption

8:]},; +1 (.C)J_A».;_l . \
=1 < 5 (Cpa1, Prr1, €) — 3 (Tps1, Prer- €+ err1) < €rpa (3.14)
OL+1 Qupyy

for any zp.1, pr+1 and e

Note that the definition of Jyi1(2y4+1, Pye1s eve1) and the assumption (C4) im-

plies
OJN41 0y
—ent1 € —(TN41, PN+1.€) — 2 (ZN41. DN1. €+ Enpr) S e,
C) LIN+1 TN+1
i.e., the induction assumption (3.14) holds for period N + 1.

Let us consider period k. Similarly. fi(Lx, pr. &), ﬂf(Lk,pk, &) and f2(Ly, pp. &)
are used to denote the functions fi(Ly, pr. €x), [ (L, P, €x) and S2(Lg, py. €x) in (3.5)

with the spread defined by the random variable .

Since €, = €, + €5, we have

1Py €) = E[01 | pro e = €] = E[0y | pr. & = € + &4

oi(prs€) = Var(Op | prex =€) = Var(0p | pr. & = € + ey)
and

vi(pr. €) = Vi (pr, €) = 2 (E[é’i&k | prsex = €] — Elox | pr.ex = €)E[0r Ay | & = 6‘])

2 (E[()Nfﬁk { Dk, € = €+ Gk] — E[ék 1 Dk, € = € + EA;]E[(SkAA. | D, € = € + t?k]) .
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It follows immediately that

A

oLy L (Lo pr. € + €x) = Ai(pro €) — i (pr, €) + 2707 (pr, ©) L

a.J, 5
+E { S (L A+ By i) DB = € e*}
k+1

= M\ (pr, €) — pe(pr, €) + N3 (pr, €) L

a7, 5 '
+E{ "+1(L1+Ak-,pk+‘5k=5k+1) pk,,ek:e}a
0T

where the second equality is also obtained by &, = €; + ex. Note that

d
O Lopis ) = Al ) = (o ) + 2E L
k
dJys |
+ E{@"} Ly + Dk pr + Sk 1) | Prs € = t}
Lhi [
Therefore,
Ofs . Ofk
— (L ) — —(L
OL}(LPA €) OL( b Do €+ €r)
a.J T .
=F bl (Li 4 Ao pr + Ops €11) — = 1(Lk + Dp, P+ O, €1} | Prs €x = € ¢
Orpr1 0L gt

According to the induction assumption (3.14), it follows immediately that

0k
T

()fk

— Ly, pr. € +er) < epeq for any Ly, p, and €. (3.15)
0Ly

——(Ly. pr.- 6)

As a result, the definition of f}(Ly, px, cx) and [Z(Ly, pr, ;) in (3.5) and the assump-

tion that e, > e,y implies that

d AL Of. .
di (Lipro€) — ii‘(Lk-plw €+ep) = 6—2%@;0-,]%-6)

O fy
oL, (LA D€+ €r) — €

<eppp —er <0

af? ) f? o0 f
i Dk €) — ;{/l;v(‘Ll.::pk-é‘%‘@k) OIIZ (Li.pi-€) — oL, ——(Ly,, pr. € +e1) + e

> ep — erer = 0.

oo
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Following the arguement in the proof of Proposition 3.4, we can show that T} (p. €) >
Tl(pr,e+er) and T2 (py.¢) < T2(pp. € + ;) for any k, py and .
Now let us consider
Tho Phs €) — — (T, Dp. € €L
01,,; ks Phs OM. ks Dk-
For any given py and ¢, we have T} (py, e +ep.) < T (pg €) < T2 (pr, €) < T2 (pr. €+ ex),

and hence there exists five cases.

o If wp < THpp. e + ep), we obtain from (3.13) that (,)’—JL(LA i) = —e and
ng:(lk Dr, €+ €r) = —€ — g, le.,
0J a.J,
Tpy Phs €) — ——(Th, P € + €1) = €4
d.z,k< kP ©) chk( ke Ph € F €8) = €

o Suppose that T} (px. € + ex) < wp < Tt (pr, €).

The proof of Theorem 3.1 shows that Ji(xx, pr, € + €x) is convex in zy,, and so

its first left-hand derivative with repect to . should be non-decreasing in ay,

which implies %(q D, € +ep) > —e — ¢ by (3.13). (3.13) also shows that
g{t (Tp. pr, €) = —e. As a result, we obtain
OJ d.Jy,

— (T, pp, ) — —(x e+er) < —e—(—€—¢) = 6.
dl"k(lk,kat) a“(kpk k) €—(—¢ k) k

Note that T} (pi. €) = argminy, f}(Lk, pr. €;), and hence x; < T} (py. €) implies

O fi O fr AJy,

c?fL
< — (v, pr.€) < —e = — (24, ppe, €).
0[;}” s P t)'i‘t 0, a[k('«k,[’w)v € 01%(11»,1% E)

o i) =

Moreover, we have %(wk Dro €+ €) = %(Lk, P, €+ €x) by (3.13). It follows

directly that

0., T, J
= k(lk Prs €) — = (T, P € + €4) > Of ]\(Lk Dis € + €))
C). OJ,;L )L;\

(]kl)k 6) )L

v

—Cpey 2 —Cks



where the second inequality follows from (3.15) and the third equality is yielded

by e 2 ept1.

o If T} (pr,€) < xp < T7(pr. €). (3.13) shows that

oJy s . ofi \ Ifr
—(Tp Pr.€) — — Tk, P+ ) = —— (g, P €) — — (k. Pr. € + €1).
al‘k(ibpk €) dwk(lk.l)k €+ ep) aLk(lk,Pk ) (._)Lk(lk.l)k €+ eyp)

The result in (3.15) as well as the assumption that e > €54, imply that

af]k aj} :
—ep < —epy1 < ——(@p, P €) — —(Cp. D€ T ) Sepy < e
Owy. oz

o Il T2 (pr,e) <y < T2 (py, € + er). we can show

0y

- k : .
—ep < —(@p, pro€) — = (Tr,pr. e +er) < ey
dxy, Pi:€) dxy, )

using an arguement similar to that of the second case when T} (py, ¢ + €;) <

z, < T (ps €).-

o If 2, > T2(pr. ¢ + ep), it follows immediately from (3.13) that

... . OJ
-.gll—]?;;(ilfmpkf) - T@TZ(QTA-,PM €+ep) =¢€—(e+ep) = —eyp.

As a resull. we complete the proof by showing that the induction assumption (3.14)

holds for period k. O

3.6.3 Monotonicity with Respect to the Mid Price

Let us consider the following assumption.

(C6) For any period k, €. = ox(pi) + wr where ¢p(py) is a given function of py and
2 18 a random variable independent of py and pp for any & # k. In addition,

O, S; and Ay are independent of py for any £.
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Under certain conditions, the monotonicity of the threshold levels with respect to the
spread €, can be transformed into the mononiticity with respect to the mid price p.

For example, Example 3.2 satisfies the condition (C6), and €, is non-decreasing
in py by the definition of ¢p(py) in (2.12). Figures 3-4 and 3-5 show that —T, or)
and TZ(py) are higher when p, = 2.001 compared with the case when P = 1.999,
because the higher transaction cost, i.e., €, caused by increase p; prevent us from
trading frequently with other market-maker to control the inventory. This property

can be generalized to any 0 < pp1 < pi.o under some additional conditions.

Proposition 3.7. Suppose that (i) op(py) is non-decreasing in py for any k, (ii)
Or1(Pr2 + k) — drr1 (P + ) 15 convez in &, for any 0 < ppy < pro and k, and
(112) On(pr2) — Or(pra) is non-increasing in k for any 0 < pr1 < pro. Under the
conditions (C4), (C5) and (C6), if Elor|ox] = 0 for any pr, then the threshold level

TZ(py, €) in Theorem 3.1 is non-decreasing in py for any k and e,
k g ke Y k

Proof. The proof for Proposition 3.7 is very similar to that of Proposition 3.6. We
adopt an induction proof under the following induction assumption

a']k—f-l

O p41

; \ OJrs1
(Crt1: Pra11s Phr1(Pra11) + 98) — - -
0-’1'1\:-}-1

(Cht1s Phe1.2, Phor1(Prs12) + ©k)
2 Oks1(Prr1) — Grr(Prer2)
(3.16)
for any 0 < pra11 < Prg12, e and pp.

According to the condition (C4), the same argument in the proof of Proposition
3.6 shows that the induction assumption (3.16) is valid for period N + 1. i.e., when
E = N. Next, we are going to show that the monotonicity properties stated in
Proposition 3.7 holds when the period %k + 1 satisfies the assumption (3.16). Let us

consider any py.1 and pgo such that 0 < prq < pro.

The condition (C6) states that ¢, = @p(pr)+pr, and oy, Si and Ay, are independent

of py for any k. According to the definitions of uy(ex), o7(ex) and vi(ex) as well as

0¢]
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the condition (C5), it is straightforward to show that

ll.l:(])k-, €r) = E{O—;.: I Dis O (PA-) + ”“k] = E[CS;.—,]W}

oy er) = Var(O | pr dr(pr) + 1) = Var(deler)

vi(pr.ex) =2 (E (620 | pr. &k (pr) + ) — El0k | prs On (1) + 4]
X E[0x Dy | prs o (pr) + PA@)

= 2 (Bl Aslon] = Eelvrl EGedlon))

for any pr and e, = or(pr) + pr. Moreover, we have

OJ14 N 0 Jys ‘
E{ ,le (L — Dpo i+ O 1) | Dis 61,-,1 =E { ( il (L + Ap.pr =+ 0p €11)
Oxp1 | f OTk41

\:f}k‘,} .

for any Ly, pr and €, = on(pr) + .

Therefore, the definition of fi.(Lg. pr, €x) in (3.5) immediately shows that

Afi, , Ofr : .
0_Lk(Llc-,pk.1-, Or(pra) +¢r) — 8—Lk('Lk’pk'2’ Or(pe2) + o)
OJpr1, . OJpiq i
=L {%—1([/1«- 4 Appra + O €51) = oot (L Ay iz + O, €s1) 991.:}
Tr41 Opsy

> E{ori1(pra + k) — Ore1(pro + 0n)| @rt
> Ope1(pra + Elokler]) — Ora1(pea + Eldi]vr])
= dpi1(Pra) = Ok (Pr2) 2 Or(Pra) — Gk(Pra2).

(3.17)
where the first inequality follows from the induction assumption (3.16). the second
inequality is vielded by the Jensen’s inequality and the assumption (i) that ¢p1(pra+
O) — Ops1(pra +0x) is convex in 8y, for any 0 < prq < pro. the last equality is obtained
from the assumption that E[d;|ox] = 0 for any ¢y, and the last inequality is due to the

assumption (iii) that éx(pr2) — @x(pr.1) Is non-increasing in & for any 0 < pr1 < pra.
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Similar to the proof of Proposition 3.6, we obtain

()f7 i 9 f2 .
L, (Li.prs dr(pra) + o) — ;L\ (Li, pr2. O (Pr1) + @n)
A af ,
=2 Ji ——(Ly. pr1s Oi(pra) + on) — %‘}l(Lk P2 Or(Pr2) + @) + Or(Pr2) — Ou(pra)
0L dL,
>0,

and hence T72(px, €x) is non-decreasing in py, for period k.
Now let us complete the proof by showing that the induction assumption (3.16)

holds for period &, i.e.,

Ok
C)lvk

d.J,
— Tk Pty On (D) + 1) — E)J_:(Linpl\ Oe(pra) + ox) = drlpra) — On(pr2)

where 0 < py; < pro. We can consider the two cases: Tk, ex) < T, L (pr2. €x) and
T (pra.€x) > THpro. €x). The proof is very similar to that in the proof of Proposition

3.6 and hence it is omitted here. O

—

Note that a large family of ¢ (px) satislies the conditions stated in Proposition 3.7.
Suppose that ¢y.1(prs1) is differentiable and ¢, (pr+1) is convex. Given py1 < py.2.

let 0.(03) = Opa1 (P + 0k) — ox(pra + O). For any 81 < Jp2, we have

(011) — O (Ok2) = Grp1(Pro + Ok1) — Gx(prt + Ox1)

— dps1 (P + Or2) + Gu(pra +0r2) <0

since &,y (Pr1 + Ok2) = Phay (Pea + Okt) < Oy (Pr2 + Ok2) — Gy (Pr2 + 0k1) by the

L2 T 0k) —

4

convexity of ¢} _;(pr+1). The increasing fist derivatie shows that o1 (pk
or(pp1 + 0;) is convex in 8y for any pr1 < pr2. As a result, any linear, quadratic,
exponential and logarithmic function satisfies the condition (ii) in Proposition 3.7. In
addition, the condition (i) and (iii) are valid it ¢op(pr) = cw@(pr) + B where o(py) is

a given increasing function and oy > -+ > ans 2 0.
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Furthermore, we can also achieve

One1(Pr1 + EBloilpr]) — Ovs1(pr2 + Eldilen]) > Ore1(Pra) — Orr1(pr2)

in (3.17) if E[dx|ps] = 0 and éy(px) is convex in pp. Therefore, the condition
E[d;]2x] = 0 in Proposition 3.7 can be replaced by the nonnegativity of E[ox[yx]
and the convexity of ¢ (py) in p.

Symmetrically, we obtain the sufficient conditions under which the threshold level

THpy, €x) is decreasing with respect to price.

Corollary 3.3. Suppose that (i) ¢p(pr) is a non-decreasing function of py. for any k,
(1) dpsr(Pra + k) — drsr(Pra + 0k) is concave in &, for any 0 < pry < pro and k,
and (111) or(pr2) — @x(pra) is non-increasing in k for any 0 < ppy < pro. Under the
conditions (C4), (C5) and (C6), if E[dx|pr] = 0 for any op, then the threshold level

TY(pr, ) in Theorem 3.1 is non-increasing in py for any k and ¢

If we combine the result in Proposition 3.3 with those in Proposition 3.7 and

Corollary 3.3, it immediately yields the following corollary.

Corollary 3.4. Consider the conditions in (Cl~6). Suppose that (i) & (py) is non-
decreasing in py. for any k, (i) Ope1(Pr2+ 0k) — Gr1(Pe + 0i) is either convex in dy,
for any k or concave in 8y for any k, and (iti) ¢r(pr2) — @r(pPr,1) i non-increasing
in k for any 0 < pr1 < pro. If Eldeler] = 0 for any ¢, then the threshold level
THpr, €x) in Theorem 3.1 is non-increasing in py for any k and €, while T: (prs€r)

is non-decreasing in py for any k and €j,.

On the other hand, the monotonicity properties also holds when ¢ (py) is non-

increasing in pg. In particular,

Corollary 3.5. Consider the conditions in (C4), (C5) and (C6), and suppose that
(i) On(pr) is mon-increasing in py for any k. (i) op(pe2) — @r(pra) is non-decreasing
in k for any 0 < pr1 < pra, and (iii) E[d;|ex] = 0 for any k and ;.

With the additional condition (1) dre1(pra + Or) — Gkt (Pra + 0p) is concave in
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O for any 0 < pr1 < pro and k, then the threshold level T2 (py, €x) in Theorem 3.1 is
non-increasing in py for any k and €.

With the additional condition (v) dpi1(Pr2 + 0) — Grs1(Pr1 + On) is convex in 5y
for any 0 < pry < pro and k, then the threshold level T} (py., €r) in Theorem 3.1 is
non-decreasing in py for any k and €.

With the additional conditions (C1), (C2), (C3) and either (iv) or (v), then the
threshold level T} (pr, €x) in Theorem 3.1 is non-decreasing in py for any k and €,

. 0 . . . .
while T (py, €x) is non-increasing in py, for any k and ¢,
E\ . ) [

Now consider the case that the spread ¢ is independent of p; for any k, ie.,
¢i(pr) = 0 for any £ and p,. Note ¢p(pr) = 0 for any k and p;, satisfies all the
conditions regariding to ¢, (px) in Proposition 3.7 as well as Corollaries 3.3 and 3.5.
Therefore, the threshold levels must be both non-decreasing and non-increasing in py,

i.e., they are independent of p;, which agrees with the result in Corollary 3.1.

3.7 Extentions

We analyze the optimal inventory control policy in single-asset market-making for
a mean-variance analysis model, which identifies the best trade-off between the in-
ventory risk associated with the price uncertainty and the potential loss of spread
corresponding to a change in market position because of unwanted inventory level.
The optimality of a threshold policy is established, where the threshold levels can be
computed using an algorithm linear in the number of periods. The symmetry and
monotonicity of the threshold levels are also investigated.

Although our analysis is based on the assumption that the stochastic inputs are
independent across different periods. the optimality of a threshold policy can be
extended to the case when the random variables are auto-correlated for both the
mean-variance tradeoff discussed in this chapter and the exponential utility model
analyzed in Chapter 2. Suppose that the price movements 6, the orders from the
clients s, and di as well as the spread ¢ are correlated across k. Let us define the

vector hy, representing all realized information before we make our decision at period
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h, = {]71~, ey Pl €10 €y d oy dp—1.51, ... Sk~1}-

Following the proofs in Sections 2.2 and 3.1, it is straightforward to establish that a
history-dependent threshold policy is optimal, which means that the threshold levels
T}(h,) and T7(hy,) are functions of the history vector hy.

In particular, suppose that there is a stochastic process I, k = 1, ..., N, measuring
the market state, e.g., we may consider four states of market: (i) low volume low
volatility, (ii) low volume high volatility, (iii) high volume low volatility and (iv) high
volume high volatility. The process I, is auto-correlated and the autocorrelation of
the stochastic inputs is solely determined by ;. i.e.. d;, sk, dip and ¢, conditional
on I are independent in k. In this case, the threshold levels in each period & are
functions of py., ¢ and [, which can be denoted by TA}(pk. e, Ip) and T;f(pk, €rs I1)
respectively.

We also mentioned in the end of Section 2.1 that we can allow the decision maker
to quote bid and ask prices different from the market leader, i.e., the decision maker
trades actively with other market-makers based on the bid and ask prices b= pr—ey
and p{ = pp + €, while the bid and ask prices the decision maker quotes to the
clients are i, = pp — & and pf = py + €, where ¢, & and & are positive random
variables. Note that this modification preserves the convexity of the objective function
in the Bellman equation and hence the optimality of the threshold policy still holds
for both an exponential utility function and a mean-variance analysis model. The
threshold levels are T} (py. €;,) and T? (py. €;) if the prices quoted to the clients b and
p¢ are observed after the decision maker actively trades with other market-makers.
Otherwise, p and pf are observed before the active trading decision is made, and the

threshold levels are functions of py, €, €l,j, and €}.
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Chapter 4

Multiple-Asset Market-Making
with Mean-Variance Tradeoff

Chapter 3 considers the case that the market-maker only manages a single asset. In
practice, market-makers may deal with multiple assets whose prices are correlated,
which requires a multiple-asset inventory model hedging the price movements of dif-
ferent assets. In this chapter. we propose a mean-variance model to address this
issue.

This chapter is organized as follows. First, we present a brief review of the related
literatures in Section 4.1. The dynamic programming formulation is introduced in
Section 4.2. In order to present the optimal policy for the multiple-asset model,
we start with the simplified single-period model in Section 4.3 where the planning
horizon only contains one period, and then in Section 4.4 we move onto the general
model with multiple periods in the planning horizon. Finally, some extensions of the

multiple-asset model are presented in Section 4.5.

4.1 Literature Review

One category of multiple-item inventory models in supply chain management is the
economic warehouse lot scheduling problem (EWLSP). where the orders of different

items are scheduled to minimize the cost while satistying the warchouse capacity



constraint. The strategic version of the EWLSP considers the warehouse capacity as
a decision variable and minimizes an objective function including a cost component
related to the warehouse capacity, e.g., the cost to lease the warehouse. A massive
literature has been accumulated ever since Churchman et al. [14] introduced this
problem. Simchi-Levi et al. [49] provide a detailed review.

Another line of researches in multiple-item inventory models studies jointly replen-
ishment inventory models which explores the economies of scale to jointly replenish
several items, i.c.. it is possible to share the fixed ordering cost if a number of items
are replenished simultaneously. The joint replenishment inventory models with de-
terministic demands usually adopt the EOQ assumptions for each item, and consider
a fixed ordering cost for each replenishment, which is independent of the number of
items ordered. Although the optimal solutions to these problems are very complex
and difficult to compute, various heuristics have heen developed in the literature. As
for the joint replenishment inventory models with stochastic demands, a large num-
ber of works focus on the (S, ¢, 5) policy, i.e., a replenishment is triggered when the
inventory position of item i drops below s; to raise the inventory level of item i upto
S;, and any item j whose inventory position is below ¢; is also ordered upto S;. Goyal
and Satir [21] review the related literature for both the deterministic and stochastic

models.

Recently, inventory models with substitutable products, especially those in the
EOQ or newsvendor settings, have attracted considerable attention. For example,
McGillivray and Silver [36] investigated the effects of substitutability for two prod-
ucts in the EOQ context, where substitution occurs when one product is out of stock.
Parlar and Goyal [40] considered a single-period model with two substitutable prod-
ucts, where the substitution occurs with a constant probability il one product is in
shortage, and the revenue is not affected by the substitution. Bassok et al. [6] studied
a newsvendor problem with N substitutable products under a full downward substi-
tution rule, i.e. excess demand for product i can be satisfied using product j for any
i>i

Note that the issues studied in multiple-item inventory models in supply chain
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management, i.e., shard warehouse capacity or fixed ordering cost as well as demand
substitutions, are not applicable in the inventory problem in multiple-asset market-
making. However, we still cannot decompose the multiple-asset market-making inven-
tory control problem into several single-asset problems because the price movements
of different assets are usually correlated. For example, if the price movements of two
asset i and j are negatively correlated, positive inventory positions in both assets
can hedge the price movements of these two assets to certain extent. The pioneer-
ing work by Markowitz [35] proposes the mean-variance model for portfolio selection
which determines which assets and how much of each asset to hold in the portfolio
in order to achieve a tradeoff between expected return and risk in price uncertainty
under a budget constraint. The inventory control problem in multiple-asset market-
making also determines how much inventory to hold for each asset, and hence it can

be considered as an extension to the portfolio selection model in Markowitz [35].

4.2 Formulation

As in the single-asset model presented in Chapters 2 and 3, we consider a time horizon
of one day and divide it into N discrete small time intervals. Suppose that the market-
maker manages M assets. For any asset ¢, ¢ = 1...., M, the sequence of events is the

sane as that in the single-asset model, and we use the following notations:

rp; the inventory position of asset 7 at the beginning of period k&

pri the market mid price of asset ¢ in period &

qri  the amount of asset 7 the market-maker actively trades with other market-

makers for inventory control purpose

sp; the amount of asset ¢ the clients sell to the market-maker in period &

dr; the amount of asset i the clients buy from the market-maker in period k.
To simplify the notation, we let xx, P, di, s¢ and d; denote the vectors consisting
of x4, Pris Qi Sk and dy; respectively.

We introduce the random vector 6, = [dy.1, ..., O p7] to model the evolution of the

market mid price, and hence the mid price at period k + 1 is pr+1 = Pr + 0x- Op are
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assumed to be identical and independent random vectors in &, but the components
in J; can be correlated. In addition, the market price process can be correlated with
the client orders, i.c., s;, dy and d; can be correlated. However, unlike the dynamics
of the mid price considered in Chapters 2 and 3, here we assume that §; and p;, are
independent for any £, i.e., the asset mid prices follow a random walk. The purpose of
this assumption is mainly to simplify the notation in the analysis — we will discuss in
Section 4.5 extensions to models where this assumption can be easily relaxed without
changing the structure of the optimal control policy. Also note that Madhavan and
Smidt [34] assumes the changes in price are independent and identical normal random

variables with mean 0, which is a special case of our price model.

Similar to the single-asset model in Chapters 2 and 3, the bid and ask prices at
period & for any market-maker are assumed to be p; + ¢, and p;, — ¢, respectively.
Here €, is a nonnegative vector, and each of its component €, denotes half of the
bid/ask spread for asset i. Again, we restrict ¢; to be either a vector of constants
or a known funciton of the mid price py, i.e., e = ¢p(ps), in order to simplify the

notation, and the relaxation of this assumption is discussion in Section 4.5.

As for the client orders s; and dj, we allow correlation within the vectors s; and
d;., and the two vectors s, and dj, can also be correlated. That is, the amount of asset
¢ that the clients sell to / buy from the market maker at period k can be correlated
with the client orders of asset j, where j = 1,..., M and it is possible for j = i.
The vector [sg, d] is supposed to be independent across the time period k, and we
also assume [s, dg] independent of py for any k. Note that the second assumption,
independence between [s;., d;] and py, is for the purpose to simplify the notation and

it can be easily relaxed (c.f. Section 4.5).

For any period k., the profit we obtain from the bid-ask spread is (d; + s;)%¢;.
Note that we trade |qx| at the price quoted by other market-makers, and hence the
transaction cost is |q|Te;. In addition, the market-maker’s inventory is subject to

the risk of price uncertainty, and hence he may incurred a profit or loss of the amount
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(xp + i — dp +5,)7;. As a result. the one-peribd profit in period & is
T = (X + ap — dy + 83) 70 + (d + s, — au]) T e (4.1)

Similar to the single-asset model in Chapters 2 and 3, 7y, denote our profit or loss
at end of the planning horizon. We assume that

M
TN+1 = E 7%(:77‘\41.1:6*\"‘-:-1.11) (4.2)

=1
where v;(2y.14, €ve1) 18 a concave function with respect to xyiy; for any @ =
1,...., M. Note that here we consider ex.; to be a contant or a known function of

p~y+1. Therefore, 7y is well defined once Xyi1 and py .y are given.

In this chapter, we focus on mean-variance analysis to cater for the risk-aversion in
market-making, i.e., a term of the profit variance is subtracted from the risk-neutral

objective function, and the resulted objective function is

N

max F Z {E [melpe] = A x Var (m.jp;:)} + TN s (4.3)

qk
k=1

which is an immediate extension of the mean-variance objective function for the
single-asset model defined in (3.1). It is straight forward that the state variables are
the inventory position x; and the market mid price py, and the decision variable is

the quantity to adjust the inventory by active trading q.

Let us consider the expectation and variance of the one period profit conditional
on the market mid price py, for any k =1, ..., N. To simplify the notation. we define
S, = s, +dp, Ay = sp —d; and ¥, to be the variance-covariance matrix of Jj.
Without loss of generality. we let the diagonal components of ¥, be all ones, which

can be easily obtained by rescaling the units of the assets. According to (4.1), it is
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easy to establish that

Elme | pr] = (% + ai) E[0] — |a|"er + E[A] 6] + E[Si])Ter
Var(m, | X, pr) = (% + ai) T Si(xp + qi) + Var(ALS,) + TVar(Sy)ex
+2(xs + qp)  E[(0r — E[0]))(A] 8, — E[AL8:])]
+2(xy, + qi) T E[(8, — E[0:])(Sk — E[Si]) €]

+2E[(A 0 — BIALS])(Sk — E[S])" e].
Note that the terms E[A] 6] + E[S;]Tex in E[my. | xi, qz] and
Var(Afdy) + €' Var(Sy)e, + 2E[(AT 6, — E[AL5,])(Sy, — E[Sy]) ex]

in Var(r

Xp, i) are independent of the state and decision variables. Therefore,

defining L; = x;, + q, and
Yo = —E[6] + 2AE (8 — E[0: )AL 8, — E[AT )]+ 2\E (8 — E[5%])(Sk — E[Sk]) T el
our objective function in (4.3) is equivalent to

min £
LA-

N
Z {/\L{EkLk + 7 Ly + |Ly, — XHT%} - 7"N+1} , (4.4)
k=1

In the remaining part of this chapter, we first analyze properties of the optimal
solutions to (4.4) for the single-period model, i.e., when N = 1, and then extend the

results to the multiple-period model.

4.3 Single-Period Multiple-Asset Model
When N =1 and 7y, = 0, the objective function in (4.4) is reduced to

m&n E [;\LTEL +9TL+ |L - x|Te .
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Since the absolute value functions are convex, it is equivalent to
nﬁin {E [/\LTZL ++TL + zTc'] z>L—-xz22>x— L} . (4.5)
\Z

Note that ¥ is a variance-covariance matrix, and hence it is positive semi-definite.
Therefore, (4.5) is a convex quadratic optimization problem subject to linear con-
straint. It follows directly that the KKT condition is the sufficient and necessary
condition for optimal solutions. Let a and 3 denote the Lagrangian multipliers of the

constraints (4.5). The KI{T condition reads

2\ L+~v4+a—-8=0

e—a—0=0
z>L-—x
z>x L (4.6)

(L —z —a) =0 Vi=1,.. M
ljl(L( -+ i = Cl?b') =0 Vi= 1, M

a3 > 0.

Also note that z = |L — x| in any optimal solution to (4.5). and therefore the KKT

condition in (4.6) is equivalent to

; = 0 if L,,' < T
2A\YXL + v = ¢ — 2a where ¢ o; = ¢ if L, >a, fori=1 .. M.

0 <o L€ if L,,' = I;

Here ¢, is the ith component in the vector e. Let ¥; denote the 1th row of the variance-
covariance matrix ¥ and +; be the ith component in v. It follows directly that the
optimal inventory control policy is as the follows.

Theorem 4.1. Under single-period mean-variance analysis, there exists a parallelo-

tropic no-trade region defined by R = {x : —¢ < 2AEx + v < €}, where ¢ can be a

given vector or a given function with respect to the marketl price p.
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Outside the no-trade region, the inventory is adjusted to the boundary of the no-
trade region. Let L™ denote the optimal adjusted inventory level. For any asset i,
i=1,.... M, the optimal adjusted inventory level L satisfies the following conditions:

T, > L: 'Iﬁ{_),/ SiL* —+ Yi =€, Ty < Lj [ﬁg/\S,If + Vi = —€;.

For each asset 7, Theorem 4.1 indicates that the no-trade region is defined by an
upper limit 2A¥;x + v = ¢, and an lower limit 2\%;x + v; = —¢;. These two limits
are parallel straight lines. Consider any two assets 7,7 where 1 # j. We can fix the
components in x except for z; and z;, and focus on the (x;,2;) plane. Let p;; denote
the correlation coefficient between d, and J;. Since we choose the units of assets so
that the variances of d; and d; are both ones, the limits defining the no-trade region

on the (z;,z;) plane is parrelel to the line

2Ax; + 2Mpx; = 0. which is equivalent to @; = —pax;.

If we interpret the limits of ; on the (w;,x;) plane as funcitons in «;, the slope of
the limits is alway flatter than the 45° line as |p| < 1.

In addition. when the inventory position is not contained in the no-trade region,
Theorem 4.1 implies that the optimal solution only allows two types of inventory

adjustment: for any asset ¢, ¢ = 1,..., M,

e increase the inventory of asset ¢ to hit the lower limit of asset 7 on the boundary

of no-trade region

¢ decrease the inventory of asset 7 to hit the upper limit of asset ¢ on the boundary

of no-trade region.

Obviously, the optimal policy is reduced to a threshold policy if we only have
one asset in the portfolio. Theorem 4.1 with two assets is illustrated in Figure 4-1.
The thin solid lines and the dash lines correspond to the limits for asset ¢ and j
respectively. Hence, the no-trade region, which corresponds to the intersection of the
area between asset i’s limits and asset j's limits, is the parallelogram defined by the

four vertices yi, y2, y3 and y;. The arca outside the no-trade region is divided into 8
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Figure 4-1: Illustration of Optimal Solution for Single-Period Model

Yo 2AExty =-¢ 2Zx +y,=¢

Area b

2ATx + ¥, =e

No-Trade Region

HEx+y =—¢

Area 7

subareas by the bold lines. The adjustment of inventory is indicated by the arrows.

More specifically,

e if the inventory is in Area 1 (Area 2, resp.), the inventory of asset 7 is decreased
(increased, resp.) and the inventory of asset j is unchanged so that the inventory

after adjustment lies on the straight line between y; and yz (ys and yq, resp.)

e if the inventory is in Area 3 (Area 4, resp.), the inventory of asset j is decreased
(increased, resp.) and the inventory of asset 7 is unchanged so that the inventory

alter adjustment lies on the straight line between y, and y4 (y2 and ys, resp.)

o if the inventory is in Area 5 (Area G, 7, 8 resp.), the inventory of both assets

are modified so that the inventory after adjustment is y,; (y2, ys, y4. resp.).
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4.4 Multiple-Period Multiple-Asset Model

When N > 1, we define Jy(x;., pi) to be the optimal mean-variance value when the
initial inventory at period k is x, the price at period £ is py and we act optimally

from period k onwards, i.e.,

N
Je(Xp, Pr) = min< E z {/\LITEILI +4f Ly + L, — XI;TQ}
L I=k

It follows directly that the dynamic programming model in (4.4) has the following

Bellman’s equation

Tl py) = win {AL{ELLA. + 4T Ly + Ly — x5
k

Tey + El ey (L + Ay, pr + 5A~)]}

(4.7)
where £ = 1,..N, and Jyx1(Xny41.PN+1) = —7ns1. Note that we assume that
Ini1(Xy+1:PN+1) = —7ve; = 0 in this section. However, all the results can be

N+I\AN+1y PN+ N+1 ’

established for my.; defined in (4.2) where v;(zx114, €x414) IS concave in xy.1; for

any ¢ =1,.... M.

In this part, we establish the structural property of optimal solutions by induction.
The induction asswmptions and proofs are presented after we discuss the optimal
policy.

First, let us consider the notations used to characterize the optimal inventory
control policy. We use @y, &k, € and v, to denote the elements corresponding to
asset ¢ in the vectors xy, dp, € and 4. The row in ¥, corresponding to asset 7 is
denoted by ;. Let pg,; denote the correlation coefficient between d; ; and Op; for
any two assets i, j where 7 # j. Moreover, we let V,Jp(x,p) = 0Jp(x.p)/0x;,; and

VJi(x,p) be the vector consisting of V;J,(x.p).

The following theorem presents the optimal policy for the multiple-period model.

Theorem 4.2. Under mean-variance analysis, for any k = 1,...,N, there exists a
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connected no-trade region without holes defined by the following inequality
Ry = {x: —e; <2ATpxp + n + E[V I (X5 — Ap pr + 08)] < ex}

where €. can be a given vector or a gwen function with respect to the market price

Pk

Outside the no-trade region, the inventory is adjusted to the boundary of the no-
trade region. Let L* denote the optimal adjusted inventory level. For any asset i,

i=1,...M, the optimal adjusted inventory level L} satisfies the following conditions:
o 2y, > Ly, iff 20551y + s + E[Vidipr (L + Ap.pr + 0)| = ex,
o api < L, iff 20T + i + BV (L + A pi + 08)] = —€4

Similar to the single-period model, again we can consider the no-trade region as

imposing an upper limit

max {.’l"k:i : 2/\2]\,‘1)(;,{ + Ve T E{V,:J;H_l (Xk + Ag P+ (SL)] = € given L5 V} 7é 7}
and an lower limit
min {;z:k?,; DA Xe + Vi + EVidier (X + Ap pr + 0)] = —er given oy ; V) £ j}

for the inventory of asset i. Outside the no-trade region, we trade actively to adjust
our inventory. The optimal adjustment is the same as the single-period model: for

any asset i, 1= 1,..., M,

e increase the inventory of asset 7 to hit the lower limit of asset 4 on the boundary

of no-trade region

e decrease the inventory of asset 7 to hit the upper limit of asset 7 on the boundary

of no-trade region.

Note that for the single-period model, the upper and lower limits of each asset are

hyperplanes, which does not hold for the multiple-period model. To characterize the
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properties of the limits in the multi-period model, we focus on the (2, xi,;) plane

for any assets ¢ and j by fixing the inventory level of the rest assets in the portfolio.

Proposition 4.1. Consider any pair of asset i and j, i # j. For any inventory level
of the assets other than asset i and j, the upper and lower limits of asset i on the
(i wn) plane are functions in @y ; denoted by w(wy ;) and Uz ;).

If pri; =2 0, u(xy;) and l(ay;) are continuous non-increasing functions. For any
>0, ulzpy) +c = ulep; —c) and zy;) + ¢ > Uxp,; — ).

If prij <0, uley;) and Uz, ;) are continuous non-decreasing functions. For any

>0, ulzyy) +c > ulzy; +¢) and ) + ¢ > ulzy; + ).

Note that the relationship between w(xy ;), (xh;) and u(wy; +¢), {(@g; +¢) essen-
tially says that u(ax; ;) and () are flatter than the 45° line. Also, when py,;; = 0,
the limits are both monotone non-increasing and non-decreasing, which implies that
they are constants, i.e., the no-trade region on the (@, ;, x4 ;) plane (if exists) is a
rectangle. This property agrees with the single-asset result, which implies that the
no-trade region is a hyperrectangle if the price movements of all assets in the portfolio
are independent.

Again, Theorem 4.2 implies that the optimal policy is reduced to a threshold
policy when the market-maker only manages a single asset since a connected region
in one demention is an interval. Figure 4-2 illustrates Theorem 4.2 and Proposition
4.1 when the market price movements of these two assets are positively correlated.
Similar to Figure 4-1, the thin solid lines and the dash lines correspond to the limits
for asset ¢ and j respectively, and the no-trade region is the shaded area with corner
points y;. y2, y3 and ys. The area outside the no-trade region is divided into 8
subareas by the bold lines. The adjustment of inventory is indicated by the arrows.

More specifically,

o if the inventory is in Area 1 (Area 2, resp.), the inventory of asset ¢ is decreased
(increased, resp.) and the inventory of asset j is unchanged so that the inventory
after adjustment lies on the section of the upper limit of asset 7 between y; and

ya2 (the lower limit of asset i between y3 and yy4, resp.)
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Figure 4-2: Illustration of Optimal Solution for Multiple-Period Model

X, lower limit of x, upper limit of x,

Area 3 Area b

upper limit of %,

Area 2 No-Trade Region Area 1
lower limit of X
Area7 Area 6

e if the inventory is in Area 3 (Area 4, resp.), the inventory of asset j is decreased
(increased, resp.) and the inventory of asset 7 is unchanged so that the inventory
after adjustment lies on the upper limit of asset j between y; and y4 (the lower

limit of asset j between y» and yg. resp.)

e if the inventory is in Area 5 (Area 6, 7, 8 resp.), the inventory of both assets

are modified so that the inventory after ajustment is y; (¥2. ¥3. ¥4, resp.).

In order to prove Theorem 4.2 and Proposition 4.1, we consider the following

induction assumptions.
Assumption 4.1. The function Ji (x4, pi) is convex and continuously differentiable
n x.

Assumption 4.2. For any asset i, V;Jp(X), pr) 1s monotone non-decreasing in xy ;
for any asset j such that p,;; > 0, and it is monotone non-increasing in xy ; for any

asset j such that Phk.ij <0.



Assumption 4.3. Consider any asset : = 1,..., M and ¢ > 0.
For any asset j such that py,; > 0, ViJu(xk, pr) < ViJu(x5.pr) where 5, =

Tpi e =

= Tk —C and the rest components in x§ are the same as those in x;.

For any asset j such that py;; < 0, ViJu(xe, pr) < ViJp(x$, pir) where af,; =
xp; + c and the rest components in x§ are the same as those in x;.

T oo, Ty =

Note that Jyi1(Xne1, pyer) = 0 satisfies all induction assumptions. It is sufficient
to i) prove that Theorem 4.2 and Proposition 4.1 for period k when they are true
for period £ + 1 and the induction asswmnptions hold for period k& + 1. and ii) prove
Je(xx, pr) satisfies the induction assumptions.

First, let us prove Theorem 4.2 for period %k assuming that Assumption 4.1 and

4.2 hold for period k + 1.

Proof of Theorem 4.2. Assumption 4.1 implies that E[J41 (X, + Ak, Pet0x)] is convex

in x;. According to the monotone convergence theorem, we have

13)
Jz;

ElJee1(xy + A pr + )] = EV W Jpm (x4 + Ag, i + 1)

for any ¢ = 1,..., M. Therefore, E[Ji41(x+ Ak, pr.+0x)] is continuously differentiable
in x;.. Applying the same argument as in the single-period model to the Bellman’s
equation in (4.7). we obtain the inequalities defining the no-trade region R; as well
as the optimal rules to adjust the inventory outside the no-trade region.

To simplify the notation, let us define

filxi) = 208 ,x5 + Vi + EIViJier (X + Apypr + 01)].

Assumption 4.1 implies that V;Jio (X + Ak, P + 0x) is non-decreasing in xy ;. As-
sumption 4.2 assumes that V,;Ji (X, + Ay, pr + 9;) is monotone in any x),; where
J # t. Note that 9, are iid random vectors and hence py;; = ppi1,; for any i, 7.
Therefore, ¥ ,;x; has the same monotonicity in xy; as ViJei (X + A, pr + 1),
where j = 1,..., M. Tt follows directly that f;(x;) is also monotone in x;; for any

j=1,..., M.



Also note that Ry = {x;. : —er; < filxy) < e Vi = 1..... M} Since fi(xz) is

monotone in . ; for any 4,7 = 1...., M. Ry, is connected without holes. O

Next, we prove that Proposition 4.1 holds for period k under Assumption 4.1, 4.2

and 4.3.

Proof of Proposition 4.1. Here we assume that py,; > 0 and consider the upper limit.
The results for the lower limit when py;; > 0 as well as the case when p.;; < 0 follow
from the same argument.

Let x;, —;; denote the inventory level of the assets other than asset 7 and j. The

upper limit can be defined as
w(wg,;) = max {;zrkﬂ; : fi(Xy) = €4 given ay. ; and X;‘-._U} A

It follows directly that u(xy ;) is continuous as fi(xy) is continuous by Assumption
4.1.

To prove the monotonicity of u(zy;), let us consider x} < ;z:'f». Let x! be the

vector such that the ith component is u(:)ﬁ}), the jth component is ;1:]1« and the rest

components are set to xz _;;. According to the definition of u(x).;), we know that
fi(x}) = ;. Let x? denote the vector such that the jth component is ;z:? and the rest
components are equal to that of x!'. The proof of Theorem 4.2 indicates that f;(xy)
is non-decreasing in ;. Therefore, we have fi(x?) > fi(x') = €ex;. Note that we
also prove that f;(x;) is non-decreasing in xy; in the proof of Theorem 4.2. It follows
directly that u(x}) > u(23), ie., u(wy;) is non-increasing in ;.

Let x5, be the vector such that the ith component is u(x;, ;), the jth component is
xy; and the rest components are equal to x;,_;;. For any ¢ > 0, define xj, such that
the ith component is u(xy ;) + ¢, the jth component is @ ; — ¢ and the rest elements

are X —;;. Assumption 4.3 implies that

EViJis1 (X + Ap, pr + 08)] < E[Vidrar (X = Di, Pr + O8]
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Also note that

YpiXp — DXy, = (T ;) + prijTry — (W(@n,) + ¢) — praj(@ny — ¢) = (pri; — 1)e < 0.
It follows directly that f;(x)) < fi(x%). Note that fi(x;) = €,; by definition. Since
fi(xx) is non-decreasing in z,;, we have u(xy ;) +c¢ > (g, — c). O

To complete the induction proof, it remains to show that the function Ji.(xy. pr)

satisfies all the induction assumptions.

Proposition 4.2. Suppose that Jii1(Xiy1, Prst) has all the properties specified in
Assumption 4.1, 4.2 and 4.5, then Jy(Xg, pi) also salisfies Assumption 4.1, 4.2 and

4.3

Proof. To prove the convexity of Jy(xy, py), let us consider any x*, x? and » € (0,1).
Let x = rx! + (1 — k)x®%. Given the market price py, suppose that L' and L? are
optimal solutions to the optimization problem in (4.7) corresponding to x' and x>

respectively, i.e.,

Je(x! pa) = AL L + 4L + L' = x'["ep + E[Jiar (L' + Ap.pi + 61)] (4.8)
8
Je(x*,pi) = ALTEL? 4+ 3 L% + |7 = x| e + B[Sy (L7 + Ay i+ 6.

Let L = kL' + (1 — x)L2 Tt follows directly from the definition of J,(x, px) that

Ju(x,pr) < ALTS,L + v, L + L — x[Te;,‘ + El i1 (L + Ap,pr + 1)) (4.9)

Note that for each asset i, we have
|Li = 2| = (KL} + (1= R)LY) = (kaw} + (1= m)2)| < KLY - )| + (1= m)| L] — 27,

and hence
n y 2 2
IL —x|"¢, < kL' —xTe, + (1 - ®)|IL" — x“‘Tq..
Also note that ¥ is positive semi-definite and Jyo 1 (Xp11, Prs1) IS convex in x;. Ac-
+I\AR+1s Ph+1,
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cording to (4.8) and (4.9). we have

Ju(x,pr) < kI (xE pr) + (1 — £) (x5, i),

and hence Ji.(xz, pr) is convex in xy.

To prove the differentiability of Ji(xs, px), let us focus on the two-dimensional
plane (2., z; ;) by fixing the inventory of the assets other than asset 7 and j. Accord-
ing to the definition of the first derivative, it is straightforward to obtain V,;Ji(Xz. px)

in Figure 4-2.

o ViJiu(Xp, pr) = —¢pi il xg is in Area 2, 7 and 8.

Vi Ju(Xs, pr) = €x; if xx is in Area 1, 5 and 6.
Vide(xe, Pr) = filxg) if x4 is in the no-trade region.

e For any x; in Area 3, define xj such that a7 ; = a5; + ¢ and 2, = Tpm
for any m # j. If x{ is also in Area 3, then V,Ji(xx, i) = ViJi(x5. pr). In
other words, for any two points in Area 3, if they only differ in the component
corresponding to asset j, they have the same first derivative of Ji(xy, px) with

respect to the inventory of asset .

e Similarly. for any x;, in Area 4, define x¢ such that 2§ . = 2. ;+cand 25, = 7y,
J ) k k.j 3] hom k,m

for any m # j. If x§ is also in Area 4, then V,Ji(xx, pr) = Vide (X} Pr).
k ;

Since f;(x;) is continuous, it follows directly that Ji.(xz, py) is continuously differen-
tiable with respect to x;; on the plane (xy,, 24 ;). Similar results can be obtained
for the case when the plane (wy;, 2 ;) does not intersect with the no-trade region.
Because this property holds for any asset ¢ and j, we conclude that Jy(xp.pr) is
continuously differentiable in xy.

Note that we establish the monotonicity of fi(x,) in the proof of Theorem 4.2.
Assumption 4.2 can be verified using the properties of V,.J.(x;. px) in the previous
part to prove continuous differentiability as well as the inequalities to define the no-

trade region.
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Now let us prove the validity of Assumption 4.3. We consider p;;; > 0 and
restrict to the case illustrated in Figure 4-2. For any x;, and ¢, we define x§ such that
Tj; = i+ & = @ — ¢ and the rest elements in X, are the same as those in x;.
Assumption 4.3 holds as long as we can prove that V;Jy(xs, pr) < V,Ju(x5, pi) for

any ¢ > 0.

o If x; isin Area 2, 7 and 8,V,Ji(Xy, Px) = —€; which is the minimum value of

Ji(Xg. pr), and hence V,;Ji(xg, pr) < Vi Jp (x5, pr) for any ¢ > 0.

o If x; is in Area 1, 5 and 6,Proposition 4.1 implies that x§ is also in Area 1,
5, and 6 for any ¢ > 0. Therefore, V,Ji(xy, pr) = V Ju(X5. pr) = € for any

c>0.

o If x; is in Area 4, Proposition 4.1 shows x§ must be in Area 4 or Area 6. It is
sufficient to consider the case that xj, is also in Area 4 as V,;Jy(x§. px) achieves
its maximum in Area 6. Consider xj such that ), = @ ; — ¢ and @), = T
for any m # j. We know that V,Jy(x,pr) = V,Jiu(X}..pr) < ViJi(x5,pr)
where the equality follows from the results when proving the differentiability of

Ji(xk. pr), and the inequality is obtained from the convexity of J.(xy. pr).

o If x; is in the no-trade region, we know that xj must be in Area 1, 4, 6 or
the no-trade region by Proposition 4.1. Again, it is suflicient to consider that
xj. is also in the no-trade region. In this case, V Ji(xs,pr) = fi(xx) and
Vide(x5, pr) = fi(x{). Similar to the arguement in the proof of Proposition

4.1, we can show that f;(x;) < fi(x7), and hence V,.J.(xx, pr) < Vo (X{, Pr)-

o If x; is in Area 3, similarly, it is sufficient to show V,;J.(xx, pr) < V,Ji (X5, Pr)
il xj is also in Areca 3, which can be proved by an argument similar to that in

Area 4.

The other situations, i.e., when p;;; < 0 or the (xy,;, 2 ;) plane does not inter-
sect with the no-trade region. can be proved following the same argument, and this

completes the proof. O



4.4.1 Symmetric Optimal Control Policy

In the single-asset model. we identified the conditions under which the threshold
levels are symmetric. For the multiple-asset model, we can also show that the no-
trade region is symmetric with respect to 0. i.e., X is in the no-trade region if and

only if —x is in the no-trade region, under the following condition:

(D1) The market price movements are independent of the order arrivals, i.e., [si, d

and & are independent for any k=1,..., V.

(D2) The market price process is a symmetric random walk, i.e.. P(d; < v Vi =
1...M) = P(0y,; > —v; ¥i = 1,.., M) for any [v1,....vp] € RM and k =

1,...,N.

(D3) The buy and sell orders from the clients are subject to the same distribution, i.e.,
Plspi<v¥i=1,....M)=Pld.; <v;Vi=1...,M) for any [vy,.....v5] € RM
and k=1,....N.

Proposition 4.3. Under assumptions (D1), (D2) and (D3), for both single-period
and multiple-period models, the no-trade region is symmetric with respect to 0 and so

is the optimal control policy.

Proof. Note that 4, = 0 for any k = 1, ..., N under assumptions (D1). (D2) and (D3).
It follows immediately that the single-period model has a symmetric no-trade region
and a symmetric optimal policy.

For the multiple-period model, we prove the proposition under the induction as-
sumption that Ji(xg, px) is symmetric in x; with respect to 0. ie., Jiu(Xp. pi) =
J(=X1.Pr). Ina1(Xne1. Pyer) = 0 obviously satisfies the induction assumption.

Suppose that Jy 1 (Xpe1, Pra1) = Jrs1(—Xps1. Pr+1) for any x40 and pgps1. The
assumptions (D1), (D2) and (D3) specify that Ay and 0, are independent random
vectors and their distributions are symmetric with respect to 0. According to The-
orem 4.2, the no-trade region Rj, is symmetric with respect to 0. The symmetry

of the optimal control policy as well as the function Ji(x;. px) can be established

straightforwardly, which completes the induction proof. O
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4.4.2 Numerical Results

Theorem 4.2 also suggests an efficient algorithm to compute the optimal solutions.
Suppose that we are given Jy.1(Xpi1,Pre1) and VJp 1 (Xps1, Prer). Theorem 4.2
shows that the no-trade region of period % can be obtained from V.J,o i (Xpt1. Prs1).
Outside the no-trade region of period k, the optimal adjusted inventory can also be
obtained directly, and hence we can compute the value function of period & from
the value function of period k + 1, i.e., Ju(xs, px) from Jy o1 (Xpi1. Pas1). To calcu-
late VJ;.(xx, pi). besides the numerical methods, we can also utilize the property of
V. Ji(xi. i) discussed in the proof of Proposition 4.2. It is straightforward that the
computational complexity of this approach is linear in the number of periods N. In
fact, according to Theorem 4.2 and the proof of Proposition 4.2, we only need the
values of Jyi1(Xgs1, Prs1) and VJgp1 (Xpp1, Pret) within the no-trade region of period

k =+ 1 to compute Ji.(x;., pr) and V.J,(Xk. D).

In the remaining part of this section, the algorithmn is implemented for a 6-period
problem with two assets, which helps us to further understand the properties of the

no-trade region.

We assume that the independence and symmetry assumptions hold for this exam-
ple and the input parameters arc stationary throughout the whole planning horizon.
The difference between sell and buy orders from the clients, A. has a uniform distri-

bution among the vertices of the {—1, 1} square, i.e.,

1 1 -1
PlA= =Pl A= =P|A=
1 -1 1
—1 1
-1 4

The correlation coefficient between the market price movements of these two assets
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Figure 4-3: Illustration of Optimal Solution for Multiple-Period Model
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is set to 1/4, and hence the variance-covariance matrix of the price movements is

1
e L

P

The vector ¢ determining the bid/ask spread is independent of the market price, and
we let € = 3 and €, = 2, which correspond to half of the spread for asset 1 and 2
respectively. Moreover, the risk aversion parameter is set to A = 1/2.

Suppose that we can clear our inventory at the end of the planning horizon with-
out additional cost, i.c., clear the position at the market price. It implies that
Jns1(Xne1.Pv+1) = 0. The no-trade regions for period 1 to 6 are shown in Fig-
ure 4-3. The no-trade region in period k is the area defined by the intersections of 4

lines in the corresponding sub-figure. There are three important observations here.

e The no-trade region for period 6 is significantly larger than those of the previous
periods, which is analogous to the observations in the examples of Chapters 2
and 3 when we mark to the market mid price at the end of the planning horizon.

Note that the axes are from —4 to 4 in the sub-figure corresponding to period
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6 while those for the rest periods are from —2 to 2. Here we do not have
transaction cost at the end of planning horizon. In period 6, we only need
to hold the inventory for one more period and clear it without incurring any
spread loss. Therefore, the optimal policy would actively trade less frequently

and result in a larger no-trade region.

In general, the no-trade region is longer along the horizontal axis corresponding
to asset 1 and narrower along the vertical axis corresponding to asset 2. Note
that the spread of asset 1 is higher than that of asset 2, i.e., the transaction
cost is higher to actively adjust the inventory of asset 1. Therefore, we adjust
the inventory of asset 1 less frequently and hence the no-trade region is slightly

wider along that direction.

The no-trade region has greater area in the 2nd and 4th quadrants than the
Ist and 3rd quadrants. The 1st and 3rd quadrants correspond to the portfolios
with two assets having positions with the same sign while the 2nd and 4th
quadrants correspond to the portfolios with positions having opposite signs.
Therefore, this property implies that we trade the portfolios with positions in
the same sign more frequently. Note that the price movements of the two assets
are positively correlated in this example. As a result, a portfolio with positions
in the same sign implies higher risk compared with a portfolio with the same
absolute positions but in opposite signs, which explains why we actively adjust

portfolios having positions with the same sign more frequently.

Similar to the examples in Chapters 2 and 3, we also consider the case that the

inventory at the end of the planning horizon is cleared at the bid/ask price quoted by

other market-makers, i.e., Jyi1(Xn4+1, PN+1) = €y +1/%X~n41]. The corresponding no-

trade regions are shown in Figure 4-4. Note that the last two observations for Figure

4-3 are also applicable to the no-trade regions for period 1 to 5. The no-trade region

for period 6 is the {—1, 1} square corresponding to the support of A. To understand

this property, let us investigate a simple example. Suppose that we have 2 units of

asset 1 at the beginning of period 6. Consider the following two options.
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Figure 4-4: Illustration of Optimal Solution for Multiple-Period Model
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Option 1. We actively sell 1 unit in period 6. After receiving the orders from the
clients, our inventory is 0 or 2 units. We hold 0 or 2 units for 1 period and clear

the inventory at the end of the planning horizon.

Option 2. We do not adjust inventory actively in period 6. After observing the
orders from the clients, our inventory is 1 or 3 units, which is held for 1 period.

We clear 1 or 3 units at the end of the planning horizon.

These two options have the same transaction cost, but option 1 holds less inventory.
Therefore, a risk-averse decision maker would always go for option 1. The same
argument also applies to asset 2, and hence the no-trade region should be contained
in the {—1,1} square. Moreover, our risk aversion parameter A = (.5 is not very
conservative, so the no-trade region for this example is the {—1,1} square. Notice
that this argument is very similar to how we explain Tl0(1.999, 107%) = —1 and
T%,(1.999,1071) = 1 in Example 2.1 of Chapter 2.
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4.5 Extensions

In this chapter, we analyzed the multiple-asset inventory model in market-making
under the assumption that the market-maker is risk averse. The optimal policy is
fully characterized and can be computed efficiently. We show that the no-trade region
Ry, depends on the market mid price py if the spread determined by ¢, is a function
of pr. Otherwise, i.e., when ¢ is a vector of constants, the no-trade region in period
k is the same for any realized market mid price p;.

As we pointed out in Section 4.2, the optimal policy characterized by Theorem

4.2 and Proposition 4.1 is valid under more general assumptions.

o The random walk assumption of the market mid price can be relaxed. We can
assume that the price movement d, depends on the market mid price py, and
O conditional on py. is independent in k. As we mentioned in Section 2.1, the
geometric random walk is a special case of this price dynamics. Under these
assumptions, Theorem 4.2 characterizes the optimal control policy where the
no-trade region R; relies on the realized market mid price p; for any period
k. In addition, Proposition 4.1 also holds if the correlation coefficient of & ;|p
and 0y ;|pr has the same sign for any pair of assets i and j, for any period k

and any market price py.

e We can allow the spread in any period k to be a random vector correlated with
other stochastic inputs, i.e., €, is a random vector correlated with py, ., s, and
di. As long as €, conditional on py is independent across the period k&, e.g.,
€ = Op(Pr) + i where ¢ (py) is a givn function and ¢, is a random vector
independent in %, the optimal policy described in Theorem 4.2 and Proposition
4.1 still holds except that the no-trade region Ry is determined by the realization

of both the mid price and the spread in period k, i.e., pi and €.

e Suppose that the orders from the clients are correlated with the market mid

price, i.e., [s;.d;] and ps are correlated. If [sy, dy] conditional on pj are in-

dependent in A, we have the same optimal policy as that in Theorem 4.2 and
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Proposition 4.1. Notice that under the correlations between [s;. d,] and py, the

no-trade region depends on py. even if ¢ is a constant vector for any k.

Similar to the single-asset model, if we consider auto-correlated stochastic random
inputs, then Theorem 4.2 holds with the no-trade region Ry depending on all realized

information before we make our decision in period k, i.e., the vector

h-k = {pls vy PRy €14 one €k dl~, dl\‘-—l‘, 81 eees Sk—l}‘

In order to obtain Proposition 4.1, we also need the assumption that the correlation
coefficients of 6, ,|hy. and d; ;|hy. have the same sign for any pair of assets 7 and j, for
any period k and any history hy.

Finally, the optimal policy is the same if the decision maker quotes bid and ask

prices different from the prices at which he or she trades with other market-makers.
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Chapter 5

Robust Stochastic Lot-Sizing by

Means of Histograms

Recall the discussion in Section 1.2 that most inventory model relies on the com-
plete distribution functions of demands, which are usually not available in practice.
Therefore, in this chapter, we investigate how to find a robust solution to the classical
inventory model of Scarf [47] when only historical data is available and the demand
distribution functions are not explicitly given.

This chapter is organized as follows. The literature related to robust inventory
control is briefly reviewed in Section 5.1. In Section 5.2 we describe our robust model,
which incorporates historical data and present the optimality equation in a compact
form. The structure of the optimal policies is characterized in Section 5.3. Section
5.4 considers a special case with robustness defined by the chi-square goodness-of-lit
test. We also discuss selected convergence results for the chi-square test based models
in the same section. The computational results are presented in Section 5.5. Finally,

additional extensions are presented in Section 5.6.

5.1 Literature Review

The notion of robust inventory control is not new in the literature. The earliest

work in minimax inventory control is attributed to Scarf [46], where minimization

121



of the maximum expected cost of the newsvendor model over all distributions with
a given mean and variance is considered. Gallego and Moon [19] present another
proof of Scarf’s result and consider various extension of the model. The recent work
by Natarajan et al. [37] extends the result of Scarf [46] by considering the set of
distributions with a given mean, variance and semivariance information. Perakis and
Roels [41] minimize the maximum regret of the newsvendor model over a convex set of
distributions with certain moments and shape. Notzon [38] considers a multiple period
model where the demand in each period is assumed to be independent. The demand
distribution function is ambiguous, but it is within a specified class of distribution
functions. The minimax control policy minimizes the maximum expected cost. The
optimality of (s, S) policy is proved. In addition, Gallego et al. [20] propose the
minimax finite-horizon inventory models where the set of distributions is defined
by linear constraints, and solve the optimization problems by a sequence of linear

prograims.

Bertsimas and Thiele [7] analyze distribution-free inventory problems, in which
demand in each period is assumed to be a random variable that takes values in a
given range. The demand is assuimed to be a random variable controlled only by two
values: the lower and upper estimators. To capture the trade-off between robustness
and optimality, a parameter is defined to control the budgets of uncertainty at every
time period. They show that for a variety of problems, the structures of the optimal
policy remain the same as in the associated model with complete information about
the distribution of customer demand. A related model from the base stock perspective
is analyzed in Bienstock and Ozbay [8].

See and Sim [48] consider a factor-based demand model with given mean, support,
and deviation measures. To obtain tractable replenishment policies, the worst case
expected cost among all distributions satisfying the demand model is minimized by
solving a second order cone optimization problen.

Ahmed et al. [1] propose an inventory control model which minimizes a coherent
risk measure instead of the overall cost function. They show that risk aversion treated

in the form of coherence risk measures is equivalent to the minimax formulations, and
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it is proved that the optimal policies conserve the properties of the stochastic dynamic

programming counterparts. They do not consider demand dependent evolutions.

Liyanage and Shanthikumar [30] first provide concrete examples in a single period
(newsvendor) setting, which illustrate that separating distribution estimation and
inventory optimization. as done in the classical approach, may lead to suboptimal
solutions. They propose the use of operational statistics where it is assumed that
the demand distribution function belongs to a specific (predetermined) family and

estimate the (single) parameter of the family within an inventory optimization model.

In addition, selected recent papers also consider lost-sale inventory problems with
censored demand data, i.e.. the observed historical demand data excludes the lost-
sale information as the lost sales are not observable. Huh and Rusmevichientong [26]
propose nonparametric adaptive policies to solve this problem and provide a bound

for the asymptotic performance, which interestingly is the same as the converenge

rate of our model under discrete distributions.

The models by Notzon [38] and Ahmed et al. [1] do not take historical data into
account, and they predefine the class of distribution functions. The robust optimiza-
tion approaches from Bertsimas and Thiele [7] as well as See and Sim [48] do not
use any historical data except to determine the support, expectation and deviation
measures. On the other hand, Liyanage and Shanthikumar [30] use historical data
but predetermine the family of distributions. In fact. they consider only distribu-
tions characterized by a single unknown parameter. This is the only work besides the
one proposed in this chapter that concurrently optimizes the expected cost and the
distribution or the parameter to determining the demand distribution. Our research
combines both strategies by integrating distribution fitting with robust optimization.
Specifically, we consider the set of demand distributions that satisfy a certain data
fitting criterion with respect to historical data and characterize an optimal policy

that minimizes the maximum expected cost.
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5.2 Formulation of Robust Stochastic Lot-Sizing

The classical multi-period inventory problem considers a finite planning horizon of
T periods. For each period t = 1,...,T, let D, be a random variable representing
demand in that period. The sequence of events is as follows. At the beginning of
each period ¢, the decision maker reviews the inventory level 2, and places an order
for ¢; (possibly zero) units. Since lead time is assumed to be zero, this order arrives
immediately and hence increases the inventory level up to y;, where y, = x,+¢,. After
observing demand D;, the net inventory at the beginning of period t + 1 is reduced
t0 Tpey =y — Dy

The procurement cost in each period t = 1,...,7 — 1 includes two components,
a fixed procurement cost A if ¢; > 0, and a unit procurement cost ¢; for each unit
ordered. Inventory holding cost is charged at a rate of hy for any unit of excess
inventory at the end of period ¢, and a unit back-order cost b, is incurred for any
unit of unsatisfied demand. We assume that all shortages are backlogged. Thus, the
total cost for period ¢ given the inventory levels before and after ordering (x; and y,

respectively) as well as demand D; in that period is

. N+ N -
Cy (‘It~, Yt Dt) = Kl(y: — 24) + co{yy — 2¢) + by (yt - Dt) + by (yt - Dt) (5.1)

for any t = 1,....T, where 2% = max(z,0), 2~ = max(—2,0), [(z) = 1 if z > 0 and
I{z) = 0 otherwise.

In the standard dynamic programming formulation, we consider Vi(z) for any
t = 1,..., T, which denotes the optimal expected cost over horizon [t, T], given that
the inventory level at the beginning of period ¢ is a; and an optimal policy is adopted
over horizon [t, T]. We assume Vi 1(z741) = 0. Let 6 € 0, 1] be the discount rate.

The optimality equation reads

(]
)

Vi(2:) = min {E [C, (:zr,g,yt,f)tﬂ—i—ﬁE [ﬁ;ﬂ (g/t—bt)}} t=1,..T. ¢

Ye 2Tt
Note that the distribution of Et, t =1,...,T is required to solve this dynamic pro-
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gramming formulation.

In practice, the demand distribution is not known. Rather. an inventory manager
has at her disposal only historical data. Depending on the realized past demand in
the planning horizon, the manager may choose different aggregations of historical

data to forecast the demand distribution. For example.

e the demand data of the last n observations are considered. which is analogous

to the moving average forecast, or

o the realized demand in periods 1 to t — 1 is accounted for when forecasting the

demand in period .

Historical observations are often aggregated. Let [D;,. Dy 1) denote the ith pos-
sible range of the demand in period 7 (all observations within a given range are
indistinguishable), and let the vector d; = [dy, ..., di—1] denote the realized demand in
periods 1 to t — 1, where d,, 7 = 1,...,t — 1 corresponds to the realized demand in
period 7. The number of observations that fall within [D;;, Dyi+1) is a function of the
realized demand d; and is denoted by N;;(d;). Finally, we define n,(d;) = >, Nii(dy),
which corresponds to the total number of available observations under the realized
demand d;.

Hypothetically we can think of N;,;(d:) as forming a histogram with respect to
unknown distribution D;. The bins are [Dy.i. Dy i) and the number of values falling
within the ith bin is Ny;(d;). In practice, the decision maker observes only these
histograms, i.e., the historical samples.

We assumne that D;; = 0 and Dy y,41 = +0oc¢, where M, corresponds to the number
of bins in the histogram for time period t. Let P, = P (Dt € Dy, Dt,iﬂ)) be the
probability that demand in period ¢ falls in the interval [Dy;. Dy v1) under the fitted
distribution. Clearly, ns(d;)P;; is the expected number of observations that fall in
this interval according to the fitted distribution.

The classical approach to identify the best distribution representing the observed
data is to use a goodness-of-fit test. The objective is to fit a distribution that “closely”

follows the observed data. Under this criterion, there should be a set of distributions



depending on d¢, which satisty the given goodness-of-fit test. We denote this set by

Py(d;). Throughout this paper, we assume that P,(d;) is compact for any ¢t and d,.

As defined in the dynamic programming field, a decision rule ji; at time t is a
function of inventory x,, which decides the ordering quantity at time ¢ given z,, i.e.,
ye = (). We formally state our problem in the context of a two-player game,
which is also presented in Iyengar [28]. The first player chooses the decision rule g
at time ¢ and pays the cost. The second player chooses a distribution of D, in Pid,)
after observing the order quantity, and receives a reward equal to the cost paid by
the first player. Therefore, the second player may select a different distribution for
different x; and yi;. Given decision rule fi, the set of all distributions player two could
choose is

Ot = {P (. pre(a)) € Pe(dy) over all ay,d;}.

In Q*t we merely express that for each xy, ji¢, dy, we might have a different distribu-
tion. Moreover, a policy 7 is defined as the decision rule to be used at every period,
fe, m= (p1,....pr). A policy 7 also yields a set of distributions Q™ which can be

used by the second player or adversary, where

Q" = Q" x Q% x - x QU (

(@]
&

As the second player will maximize her reward, given policy 7, inventory x;, and

realized demand d;, the cost paid by player one from period t to T is

Vi (2, d¢) = max EQD 29 e, ( ji-(x,). D ) + 07 Wi (a1, drga)

QeQ™

where C; (;1?,, pr (), DT> denotes the total cost incurred in period 7 defined in (5.1),
and Vo (x4, dry) is the terminal cost. Also note that Q defines the distributions

D, 7 =t...,T. Unless stated otherwise, we assume that Vr_;(-) = 0. We also have

Trog = fir(x,) = D, and d,q = {d,,f),.} )
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Since the first player will choose a policy that minimizes the cost, the optimal
cost from period  to T given inventory x; at time f, and the realized demand d; from

period 1 to ¢t — 1, is

© Qedr

T

V,(z;.d;) = min max EQP Z 0t (:ZTT, j (). fb) + 0T "V (2raa, dTH)} .
T=t

4)

—~
[

for t = 1.....,T. Note that the model minimizes the maximum expected cost aris-
ing from any distribution in the set P;(d,), which is known as the minimax robust
approach. We next state an optimality equation, which is essential to establish the

optimal control policies.

Proposition 5.1. The optimality equation of the robust model 1s

yezre PeePy(dy)

Vi(as.dy) = min_max ) Z P (Ct(iﬂt: Yr. Dii) + Vi (ye — Dy, [dts Df,i]))
' (5.5)
fort =1,...,T, where P(d;) is the set of distributions satisfying the goodness-of-fit
condition at period t, and Ci(xs, ys, Di i) is defined by (5.1).

Proof. Tt follows from Theorem 2.1 in Iyengar [28] when P;(d;) is arbitrary. If Py(d;)
is convex, the proposition can also be proved by the Von Neumann’s minimax theorem

(see, e.g., Von Newmann [53]). U

An immediate observation from Proposition 5.1 is that we minimize the worst
case expected cost over a set of distributions. Therefore, our robust stochastic model
may not be as conservative as the classical minimax models, where the worst case
is defined by the realized demand instead of distribution, e.g., the minimax model
discussed in Section 2.4 of Notzon [38].

Note that the Bayesian inventory models assume a prior demand distribution, and
the posterior distribution at time # is obtained by updating the prior distribution using
d,, e.g., Iglehart [27] updates the demand distribution belonging to the exponential
and range families after observing realized demand information. Our model only

requires the set of distributions P(d;) to be a function of the realized demand d;.
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Therefore, we can define it as a singleton updated by a Bayesian rule. In this case,
the robust minmax model is reduced to a Bayesian inventory model, which indicates
that the Bayesian models are special cases of our minimax model.

Proposition 5.1 also gives us an interpretation of the robust model from a risk
measure perspective when set Py(d;) is convex. Ahmed et al. [1] establish the corre-
spondence between coherent risk measures and minimax models over convex sets of
distributions. From this perspective, our minimax robust model essentially minimizes
a coherent risk measure with respect to the total cost. If we consider P,(d;) = P, for
any d¢ and ¢, then our minimax robust model (5.5) minimizes a coherent risk measure
in any period t and it reduces to the model considered in Ahmed et al. [1]. In the case
when the set of distributions in our minimax model depends on demand realization
d;, our robust model is to minimize a coherent risk measure in every period t. The
risk measure we consider in period ¢ is updated by the realized demand in previous
periods. Intnitively, if the decision maker lost a significant amount in the previous
period, he or she would tend to be more risk-averse in subsequent periods. Therefore,
it is reasonable to adjust the risk measure based on the realized demand information

d;.

5.3 Properties of Optimal Policies

In this section we study optimal policies of the general robust stochastic model (5.5).
Notzon [38] and Ahmed et al. [1] show the optimality of (s..S) policy when the
set of distributions in the minimax model is independent of the realized demand d,
(Ahmed et al. [1] also assumes the set of distributions is convex). Here we extend
the optimality of (s, S) policy to the more general model in (5.5).

We assume that the reader is familiar with standard concepts in inventory theory
such as K-convexity and (s, .S) policies (see, e.g., Zipkin [55] and Porteus [42]).

Let us define

Ui(l/: d) = hy (Z/t - Dt,i)+ + by (Z/t - Dt,i)_ + 9Vt+1 (,;Ut - Dt,i: [dt» Dm‘]) ; (56)
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which corresponds to the expected cost incurred from period t to T if the inventory
level after receiving the order in period t is y and the demand in period f is Dy ;.
Consider the function

= max Ti(y,d) Pk
fly.d) nax Ui(y,d) P,

Since optimality of the (s.S) policy follows directly from K-convexity, first we are

going to establish that the function f(y.d) is K-convex in y.

Lemma 5.1. If U;(y.d) is K-conver iny for any given d, then f(y,d) is a K-convex

function in y for any given d.
Proof. Consider the function

U.d) = max U'P
(U 4) = pma,

Note that f(y.d) = g(U(y.d).d).
We first show that ¢(U, d) is an increasing function of U for any given d. Suppose

that U; € U, and ¢(U;,d) = UTP3. Since P; > 0,
9(U1.d) = U[P; < UJP; < g(Us. d).

Consider now the value of ¢g(U + Ke), where e is the vector with all entries of 1.

Let P* denote the maximizer of g(U + Ke,d). We have

g(U+Ke.d) = (U+ Ke)TP* = UTP" + Ke'P* < g(U.d) ~ K. (5.

[
=~
——

where the last inequality follows from ¢(U,d) > UTP* and e’ P* =}, P" = 1l as P*
defines a distribution.

For any 41 < y» and A € [0,1], since Us(y. d) is K-convex in y for any given d, we
have

Ui((L = Nyr + Az, d) < (1= NUi(yr, d) + AUi(ye. d) + AR

Note that Liere we drop subscript ¢ in order to simplify the notation.
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As ¢(U,d) is increasing in U,
g(U((1 = Nys + Aye,d).d) < g((1 = \)U(y, d) + AU(y2.d) + AKe.d).

It is straightforward to show that g(U,d) is a convex function of U, as it is the

maximum of linear functions of U. Therefore,

g((1=NU(y1. d)+AU(y2. d)+AKe.d) < (1-N)g(U(y,d), d)+Ag(U(ya, d) + Ke. d).
According to (5.7) we have

9(U(y2.d) + Ke,d) < g(U(y2,d).d) + K.

As a result, it follows
UL = Nyr + Ao, d), d) < (1= Ng(U(yr. d),d) + Ag(U(ya. d),d) + \K.

and therefore f(y,d) = g(U(y,d),d) is a K-convex function in y. O

Base on this property, we show the K-convexity of the cost-to-go functions.

Proposition 5.2. If V. (2441, dsy1) is a K-conver function in x,q for any fized
d;11, the cost-to-go function Vi(xy, d;) is a K-convex function in @, for any fived d,,

and for anyt =1,....T.

Proof. The proposition is trivially true for t = T + 1. Suppose that the proposition
holds for period ¢ + 1, and consider period (.

To simplify the notation, let us define

fe(ye, di) = crye + Pfglfii\;lt,) Z B, [ht (e — Dei)™ + b (ye — Dyi)” (

+9‘/;+1 (yt - Dt,i7 [dta Df-,i])] .

o
o0
—
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Therefore, the optimality equation in (5.5) is equal to

Vilae. dy) = —cree + min {KL(y — @) + filye.de) }-

U=ae
According to Lemma 5.1, if Viyi(2e1,deyr) is K-convex in @y, fi(y.dy) is K-

convex in y;. Let S¢(d;) be a global minimizer of fi(y:.d¢) for any given d;. Moreover,

let s;(d;) be the smallest element of the set {s;(d;) | s:(d;) < S;(ds), fe(si.dy) =

f:(S,.d,) + K}. According to the properties of K-convex functions (see, e.g., Zipkin

[55] and Porteus [42]), we have

Ve d,) = K — ey + fi(Si(dy), dy) if @ < s4(dy),
—cry + il dy) otherwise.

K-convexity of Vi(xs. dy) follows from K-convexity of fi(ye. dy). O
From the structure of V;1(+), we can derive an optimal policy.

Theorem 5.1. A stale dependent (s, S) policy is optimal for the robust stochastic
model. More precisely, for any t and d;, there exists Si(d;) and s¢(dy) such that

Sy(ds) — ¢ unils are ordered in period t if vy < si(d¢) and no order is placed otherwise.

Proof. The structure of the policy follows directly from the proof of Proposition 5.2

and general theory of K-convexity (see, e.g., Zipkin [55] and Porteus [42]). O

If there is no fixed cost, then Vi(x;, d;) is convex in @y for any t. Therefore, a state
dependent base-stock policy is optimal, and the base-stock level given the realized
demand d; is Si(d;).

A drawback from the practical point of view is the fact that s; and S; depend on d;.
We next characterize a special case when this is circumvented. Suppose that d; and d]
denote two different demand realizations from period 1 to t — 1. Let us assume that if
demand realizations in periods 1 to t—1 are d, or dj. then the same demand realization
in period t to T generates the same histogram in any period ¢,...,7. Then vectors

d; and d} correspond to the same (s, S) levels. To formalize this property, let s;(d;)

and Si(d;) (respectively si(d;) and Si(d})) denote the (s,S5) levels corresponding to
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history d; (respectively d;). For any 7 > ¢, let the vector [d;, (it, citH, ci,,~1] denote
the realized demand up to period 7 — 1 where the demands from periods 1 to t — 1
are aggregated in vector d;, and the realized demand in periods ¢t to 7 — 1 is labeled

by di, diyq, ..., d.—y, respectively.

Proposition 5.3. Let Vi i(rry1,dry1) = Veg(@rpr.dyy) for any xriy, dra,

d7,,. and consider any 7 = t...,T. Suppose that realizations d; and d} give the
same number of samples in interval (D, ;, D; ;1) for any i as long as the realized

demand in periods t to T — 1 is the same, i.e.,

Nr,i({dte ('Zr,e JH»L J’T—l]) = Nr.i([d;, (Zm (Zr,+1g Jr—l])

for any i and any realization [dy, disr, ..., dr1] of [Ds, Diyas ..., D-_1]. Then we have

se(dy) = s¢(dy), Si(de) = Se(d}), and Vi(ze, dy) = Vi(ay, d}) for any x,.

Proof. Consider period T'. According to the assumption stated, Np,;(dr) = Np;(df)
for any ¢, and hence we have ny(dr) = np(dy) and Pr(dr) = Pr(ds). By assumption
on Vyii(-), we obtain sp(dy) = sp(dy) and Sp(dy) = Sp(df) from Theorem 5.2,
Moreover, the result Vp(xr,dr) = Vr(er, d)) follows from (5.5).

Suppose that the proposition is true for any period 7 > t, which implies that
Vier (@1, [dy, Dyyl) = Ve (egr, [df, Dey]) for any @44y and i. Moreover, we have
Nii(dy) = Nyi(dy) for any i, which implies ny(d¢) = ni(d}) and Pi(d;) = Pi(d}).

According to Theorem 5.2 and (5.5), the results hold for period ¢. O

Suppose that we use the same bin intervals [D;;, D; ;1) for any period t in the
planning horizon. Furthermore, let us assume that we update the histogram in time
period ¢ only based on the realized demand in periods 1 to t —1, or, for example, given
a fixed n, we update the histogram in time period ¢ only based on realized demand in
time periods t — n through ¢ — 1. Observe that these two scenarios do not allow any
forecasting based on the just realized demand. From Proposition 5.3, it now follows
that the number of different (s, 5) levels at time ¢ cannot exceed the number of bins

to the power of t. This observation substantially reduces the computational burden.
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5.4 Robust Models Based on Chi-Square Test

The most widely used goodness-of-fit test is the chi-square test (see. e.g., Chernoff

and Lehmann [12]) with the statistical test

Z (Npi(de) = ”’f(df)Pt’i)z < 2

) t=1...T,
n.t(rdt)Pt.’,- - \t ) o

where parameter \? controls how close the observed sample data is to the estimated
expected number of ohservations according to the fitted distribution (F;)i=1....az-

More specifically, suppose that & is the number of bins, ¢ is the number of esti-
mated parameters for the fitted distribution (e.g.. ¢ = 2 for normal distributions due
to the mean and variance), and consider the null hypothesis Hy that the observations
are independent random samples drawn from the fitted distribution. Chernoff and
Lehmann [12] show that if Hy is true, the test statistic converges to a distribution
function that lies between the distribution functions of chi-square distributions with
k—1and k—c—1 degrees of freedom. Let v denote the significance level. and consider
\7_11_o such that F(x7_;;_,) = 1—a, where F(z) is the distribution function of the
chi-square distribution with & — 1 degrees of freedom. It is often recommended that
we reject the null hypothesis at the significance level o if the test statistic is greater
than \",’\2,,_171_0 (see, e.g., Law and Kelton [29]). In our context, k = M; and «, whose
interpretation is as above, is given by the decision maker.

Since P,; should define a probability distribution, we have Y. P, = Ll and I%; > 0.
Let P, denote the vector of (P ;);. The set of distributions that satisfy the chi-square

test is

(]Vt;i(:dt) - 71z,(dt)Pt,i,)2
77/t(df)P[’i

Pi(dt) = {Pt AgPt = bt: Z S \fz Pt Z 0} (59)

for any t = 1,....T. The linear constraints AP, = b, capture at least the fact that
S . P = 1. They can also be used to model more complicated properties of the
distribution set, such as constraints on the expected value, any moment or desired

percentiles of the distributions. It is straightforward to establish the compactness of
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Pi(dy).
We next give an alternative optimality equation that exploits the structure of
(5.9). We first provide an alternative characterization of Py(d;). We assume that

every norm is the Euclidean norm.

Lemma 5.2. The set of demand distributions Pi(d;) defined in (5.9) is equivalent to

the projection of the set
(Ph Qt) |AP, =Dy, Z N’t,i(dt)QQt‘_i - nt(dt)z < nt(dt)X?

= Qu <P+ Qs

on the space of Ps.

Proof. Since ), P,; =1 and Y, Nyi(d;) = ny(d;), we have

(Afti(dt) - ‘Ilt(dt)Pt.i)Q _ A'Vt.,i(dt)z IN, . Y i
A C AT B W BELLORD DLILALE

= Z Nes(dy)* —ny(dy).

Tt df Pf,

As \f and n,(d;) are finite, we have F;; > 0 for any i. Therefore,

Nei(d)? 2
Y —n(dy) €87
L an, =

is equivalent to

1 i
> Neilde*Qu, = ne(d)* < mifdo)xi. 5= < Quis P Qi > 0.

t.i
i :

Obviously, the constraints 2 < Q;, and P,;, Q;; > 0 are equivalent to
Y Pri ' tis W,

FiQui 2 1 By Qi 20, & - 0.
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B, 1
Note that the eigenvalues of the matrix ! are

1 Qt,m

P+ Qi * \/(Pm — Qi)+ 4

2

<

therefore the positive semidefinite constraint is equivalent to

P i + ) 3 (P 4 Qf 7
t, Qf? \/ ti = Qt) > U — H _<- Pm’ + (Qt,
2
which proves the proposition. O
Lemma 5.2 shows that the set P;(d;) can be defined by a set of linear and second

order cone constraints (see, e.g., Lobo et al. [31]). Note that the second order
cone constraints are a special class of positive semidefinite constraints and they have
better computational properties than general positive semidefinite constraints. This

alternative definition of the set P;(d;) also suggests a compact optimality equation.

Proposition 5.4. The optimality equation of the robust stochastic model (5.5) is

equivalent to

Yyt Ut Pt Us, At

Vi(ze, de) = min Ky — @) 4 ce(ye — 1) + ptht -2 Z 1y, Ny (dy)
/\f(“t(df) ‘T??f(df)\f)

T U A=\ ||
s.t. i Hrifes A | <pT—UAi+ A Vi
1}

2ug
Ui = he (yr — Dy) + 0Vie1 (yr — Dy [dy, Dy il) Vi
Ui > b (ye — Dy ) + 0Vie1(ye — Dy, [dy, D)) i
Yt 2 T,
(5.10)
foranyt=1,...T.

Note that this is not the standard optimality equation since Vi q(-) is present in
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constraints and not the objective function. We use it later to obtain computationally

tractable control policies.

Proof. The optimality equation defined in (5.5) is equivalent to

Vifer,dy) = min Kl(ys — 2¢) + ¢ (yr — 2¢) + max E PU.,;
' ye=we Uy ) ) PiePi(de) = ' /
K

St Ui >l (g = Dpg) + Vi (i — Dy [di. D) for every i
Uti 2 b (yr — D) + 60Viga(ye — Dy [de, Dy j]) - for every i
(5.11)
According to Lemma 5.2, the maximization problem maxp,ep,(d,) »_; I+iUs; is the

second order cone problem and hence it is equivalent to its Lagrangian dual

min p?bt -2 Z we,; Nea(de) + A\ (n,(dt)2 + nt(‘dt)\f?)

Pt U, At
¥
/ 5192
5.12
" I)fT - I:/Tt,iAt,i — A ( )
S.T.

<pf —UiAei+ M for every 1,
Q‘Ut,,‘ I

where A;,; denotes the ith row of matrix A; (see, e.g., Lobo et al. [31]).

Note that (5.10) is obtained by replacing the maximization problem in (5.11) by
(5.12). Therefore, the proposition is equivalent to proving that problem (5.10) is
equivalent to problem (5.11). Let 27 and 23 denote the optimal values of problems
(5.11) and (5.10), respectively.

We first show that 27 > z3. Let yf, U; and P; denote an optimal solution for
problem (5.11). Problem maxp,cp,(da,) >, F+,Uri has a finite optimal value if we set
Uii to Uf;. Therefore, there exists an optimal solution p;, uy, and A; for its dual,
problem (5.12), and the corresponding optimal value is 27 — K1(y; —2;) — c;(y] — x4).
Obviously y;, Uy, p;, uy, and A; is a feasible solution to (5.10) with the objective

*

value z{, and therefore we have z; > zJ.

It remains to show z] < z3. Let y*, U*, p*, u* and \* be an optimal solution
for problem (5.10). Problem (5.12) with U;; = U}, has a finite optimal value, and
therefore the problem maxp,ep,a,) »_; Pr:U;; has an optimal solution P* with the

optimal cost 25 — KI(y; — ;) —ce(y; —2¢). Since y*, U*, and P* give a feasible solution
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to problem (5.11) and the corresponding objective value is 23, we have 27 < z3. [

5.4.1 Computation of (s, S) Levels

Next we give a computational approach to compute s;(d;) and Si(d,).

Theorem 5.2. Let S,(d;) be an optimal solution to the minimization problem

ue,Ut,pe e At

min ey +piby — 2 Z i Nia(dy) + Ny (ne(dy )2+ 7'1,t(dt)\'f)

P;‘rAt.f —Uii— N\

s.t. <prA—Ui+ N\ for every i
2y 4

Ui > hi (yr — Dig) + 8Viea(ur — Dy [dy. Dy i) for every ¢

Ui 2 b (Dyy — ) + O0Vis1 (e — Dy [de, D) for every i,

and let s¢(d;) be the smallest elemenl of the sel
{s¢(dy) | se(dy) < Sy(dy). felse.dy) = fi(Sr.di) + K},

where fi(ye. dy) is defined by (5.8).
A state dependent (s, S) policy is optimal for the robust stochastic model (5.5)
with Py(dy) defined by (5.9), and the (s,S) levels are given by s,(d;) and Sy(d;)

respectively. If there is no fived cost, a state dependent base-stock policy is optimal,

and the base-stock level given the realized demand dy is S¢(dy).

Proof. The minimization problem to calculate Si(d;) follows from the alternative

optimality equation (5.10). O

Consider the models where the historical data used for period f is independent
of the realized demand from periods 1 to t — 1, i.e., the number of observations Ny;
in the ith bin and the total number of available observations n; are constant for any

realized demand d,;. Therefore, the set of distributions that satisfy the chi-square test
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is defined by

Pt={Pt

In this case, the optimality equation of the robust model is reduced to

(‘]Vt,i — 77vtpt.i)2 2 1 > o
Ai‘Pt = bf', Z_—];T S ‘\t7 Pt Z 0 f = l.,T (1)13)

Vi(z¢) = min max {Z =% (Q e, Y, Diy) + 0Vieq (g — D“))} t=1,....T,

yr2we PrePy

(5.14)
where P, and Cy(xy, yr, Dy ;) are defined by (5.13) and (5.1) respectively.
Alternatively, it can be written as
Vle) = gmin, Bl =+l = 20) + pb=2 ) e
\f N+ X7
s.t. Pi — Uik = <pl —UA;+ )\ forevery i
Uy
Uti 2 he (e = Dri) + 0Vea (e — Dr) for every i
Uti = b (Dry =) +0Viea(ye — Dy y) for every i
Yp = T4,
(5.15)

foranyt=1,....7T.
The corresponding optimal (s, .S) policy levels are also independent of the realized

demand d;.

Theorem 5.3. The (s, S) policy is optimal for the robust stochastic model (5.14). In
particular, let Sy be the optimal solution to the minimization problem
. T . \ X 2 9
min Y P b — 20Y  w Ney + A (0 +ne\s
Y. Us,peur A bt T Py D Z e ‘ ( f t\t)

P?Am‘. - Ui —

s.t. <plA;; — Ui+ N\ for every i
2y

Ui > e (ye — Dri) + 0Viea(ye — Dyy) for every i

Ui 2 00 (Dri = ye) + O0Vig1(ye — Dyy) for every 1,
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and let s; be the smallest element of the set
{s¢ ] 50 < Sp filse) = fe(St) + K},
where

felys) = ey + max Z Py [hi (ye — Dia)™ + b (e — Dii)™ + 0Viga (e — Dia)]

1

The policy is to order Sy — xy units in period t if x, < s¢. and no order 1s placed
otherwise.
Without fized procurement cost, a basestock policy is optimal, that is. S, — x; units

are ordeved in period t if zy < St, and no order is placed otherwise.

5.4.2 Convergence of Robust Models Based on Chi-Square
Test

Up to this point we assumed that the bins are given. In this part we shed light
on the robust models based on the chi-square test with varying number of bins and
their sizes. In particular. we explore the case when the number of samples increases
and accordingly the bin sizes tend to 0. The main results concern with such a case
when \? also converges to 0. We show that the cost-to-go function of the robust
model converges to the cost-to-go function of the nominal distribution under mild
technical assumptions. In a special case we are able to establish a rate of convergence
result. The convergence study does not only provide the asymptotic performance of
the robust model when the sample size approaches infinitely, but also indicates to
select small bins and y? values in the presence of a significant number of samples.
In this part our starting point is that the demand random variables Di.D>....,Dy
are subject to some multivariate distribution. Although the distribution may not be
known, we assuine that histograms pertaining to the robust model are obtained from
samples from these distributions. We study the behavior of cost-to-go functions as

the number of samples increases.
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Let Elt = [[71, [Dt,l}, and let F} (D;

&t = dt> denote the conditional cumula-
tive distribution function of demand D, given realized demand d; from periods 1 to
t—1. Assuming that the conditional distribution function is known for each t and d,
we can solve the corresponding dynamic programming problem, and obtain V(2. d;)

for each period t,

T/;(J:ts dt) = min {/ (Gt(l%»yt-, D) + 0‘/—/;%‘1 (y+ = D, [dts Dt]_)) ar; (Dt
Dy

Yt Tt

at:dt>}ﬁ

wheret =1,....T.
We investigate how accurately the value functions Vi(zy,d;) of our robust model
approximate the true cost-to-go function V (xy, d;) if histograms are based on samples.
We start by analyzing the convergence of the robust model as 7 converges to
0. Let V}(;ltt,df) denote the cost-to-go function of the stochastic model with the

distribution defined by

Formally,

Yt 2t ny (dt)

o Noody) /o } r
‘/t(‘ljts dt) = Ill\ill {Z t’?( t) (Ct(a:iv Yt Dl‘.i) -+ 9"4-{—1 (:_l/l‘ - Dt.i*, ldt7 Dtl})) } 3

foranyt=1,....T.

Proposition 5.5. If Vi, (+) = V?1~+1(f), then for any x¢, d¢, and t, we have

lim V(. dy) = Vi(zs, ds).

X2—0 7t

Proof. The proposition clearly holds for ¢ = T+ 1. Suppose that it holds for any 7

such that 7 > . To simplify notation, let

["Tf.,i(fl?ta ’!/t) = C‘vt(}l't-, Ut Dt,i) + HVtH ((yt - Dt,i)+~, [dr«, Dm]) (5-17)
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and therefore

Vi(zy,dy) = min

max
ye>ae PrePr(dy)

{ZP{, /f,(]f Yt } t = llT

According to the definition of P;(d;) in (5.9), we have

(“'Vt.,i(dt_) - 71t(dt)Pt,'i)2

Pr(dy) C {Pt

Let P,, and Py; correspond to the solutions of ¢

- 2 -
< x; for every 'z} .
77't(dt)Pt.i

Nti— 77tPt1)

V2
E T X Les

P, .(d) = Nyi(dy) i \/4\ i(de)x7 + (\F)?
e n(dy) 2'77't(:df) 2n,(dy)
‘p (df) — l\7t7f(df:) + \%} \/ fl( f)\(f X?))z
R ne(de)  2m4(dy) * 2n4+(dy)
It follows directly that
T(df) CP df {Pf(df tpf( <Pfl S-Pfl(df) h)l every l}
Therefore we obtain
Pflel?‘Paﬁl,) {Z Pt,,z:(,/rt,qi(;lit-, Ll/z‘)} < Ptl;%:?dt) {Z Pt.illft,n(;17ta Ut)}

= D

U (e ye )50

Minimizing both sides over

Vilze, di) = min - max
yi 2ot PrePe(dy)

2.

Ui (e ,y¢)

< min
Yt 2ae

Bt.i(dt)Ut,i(l’n Yt) +

<0

P, (d)U,,

D

i:Ui‘i (:L't .yt)>O

{ze|ye > x4} yields

{ZPMDM lrwl/r }

2.

iUy, i (xe,yt) >0

(@ ye) +
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Let y; > x; be a minimizer of ‘?t(;lft, d;). Then

Vi ds) < Y Pd)Uilaey))+ Y. Puld)Uleny;).  (5.18)

iU g (we,yy ) <0 i:U¢ i (weyy ) >0

Taking the limit on both sides yields

Lim_ Vi(zy, dy) < bm, Z Bt,,:(dt)Ut.i(iEt»y;)
x>—0, x5 —0, P .
Yrit VTt il (fl?h?JZ)SU
+ Fz‘,i(dt)[’rt,i(l"t: yI)

LU (weyy ) >0

Note that

. .= Nti(dt)
1 P, (dy) = lim P, (d;) = =22
x‘flmo—t'b( ¢) Xgll}o 1i(de) e( 1)

and by the induction assumption

lim Uy (an ) = Cilay yf, Dyy) + 9‘;}“ ((U; - D))", (d,, D,,!,,-]) :

Y2 —0VT>t

By the definition of y;,

lim  Vi(ay,dy) < V}(;lr,«, dy).

VZ—0¥r>t

Since the distribution defined by (5.16) is in P;(d;), it is easy to verify that

Vi(ze. dy) < Vi(zp.d;). Therefore, we have

lim  Vi(z, dy) = Vt(a?,,dt). a

Now suppose that for cach period ¢, we have a sequence of samples. For any

k=1.2,... we have the set of m} available samples for period ¢,

k k k
dt = {dt.l’ dt,mf} !
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The samples are drawn from the distribution D, conditioned on realized demand d;.
Therefore, given realized demand d; from periods 1 to t — 1, and the kth sample set
d* for period ¢, we can construct a histogram such that the total number of samples
selected in the histogram is nf(d;), the boundary of bins are {Dﬁfl, D::A ff}’ and
the number of samples falling in the ith bin [Df,, DY, ) is denoted by N/, (d,). This
histogram naturally defines an empirical distribution with the conditional cumulative

distribution function FF (Dt !&t = dt> defined by

i*(Dy)

- 1
_ = / ﬂ‘u.
dt df ) 71;" (df) E :\ () (d!‘)

=1

FF (Dt

where i* = i*(D;) is such that Dﬁ, <D< Dfﬂ-wl.

Note that the Ath set of samples df, ¢t = 1,..,T. also defines a robust model
V¥ (2. dy) based on the just described parameters nf(d;) and NF,(d;). In the remain-
der of this section we analyze under what conditions Vi¥(z;, d;) converge to Vi, dy),
which denotes the cost-to-go function of the stochastic model with respect to true dis-
tributions. We always assume that the distribution of D; has finite support 0, Dipax]
for any t, and Vroq(v) = \:"‘ff+1(~) = Vr(s). We first study the case with general

distributions, and we derive stronger results when the distributions are discrete.

General Distributions

We first show convergence under general distributions. We only need the distribution
functions of samples to converge pointwise to the distribution function of the true

distribution and y7 — 0.

Proposition 5.6. Suppose that for any d; and t we have

lim F} (Dt

k—n

d, = dt> = F (D,

d; = df)
for every Dy. If there is no fived procurement cost, then
lim  lm V(2 de) = Ve, dy).
k—oo y2—=0 V72t ’
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Furthermore, the convergence is uniform with respect to k.

In the proof, we need some concepts from measure theory and a known result.
A sequence of measures ju converge to a measure j weakly if [ fdyuy, o [ fdu
for every continuous bounded function f. A sequence of measures py, converge to a
measure p setwise if ju.(B) g 1(B) for every measurable set B.

It is well known that convergence in distribution does not imply setwise conver-
gence of the underlying probability measures. Indeed, convergence in distribution is
equivalent to weak convergence. It is not difficult to see that setwise convergence
implies weak convergence.

The following result can be found in Royden [45], page 232.

Proposition 5.7. Let iy be a sequence of measures converging setwise to a measure
t. Let {fitr, {gxtr be two sequences of measurable functions converging pointwise
to [ and g respectively. Furthermore, let |fy| < g for every k and limy, ] grduy =
[ gdu < >. Then

li};{n / fediy, = / fdp.

Next, we will give the proof for Proposition 5.6.

Proof of Proposition 5.6. Let I:’tk(:vt, d;) denote the cost-to-go function of the stochas-

tic model with respect to the empirical distribution F* (DT d, = df> for any 7 > t.

As shown in Proposition 5.5 we have

lim V(. dy) = V(2. dy)

NE=0.Vr >t
. Dmax ~ . ~
:;n\in {/ (C}(a‘,t, Y, Dy) + GV;’il(yt — Dy, [dy, Dt])) dF} (Dt d; = dt> } .
todt 0 :

Therefore, it is sufficient to show that

lim VF(zq, dy) = Vi(ze, dy).

k—oc
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Let us fix 2p. Then under an optimal policy the inventory is always within

T T
{xo = DB gg Y DR (5.19)

r=1 T=1

Therefore we can assume that y; and 2 = y — Dy are always within this range for

ViF (. dy)| < M(xg) < oo, where M (a)

any t. It is easy to show by induction that

is a constant depending only on zg.

Note that as Vyo () = Ve (1) = Vg (), the proposition holds for period 7'+ 1.

Suppose that for any 7 > t, Vf’ (x,,d,) — Vi(z,,d,) pointwise.

Let
D . -
ftk(l"t:yh dt) =/ (Ct(l‘vn yt, D) + m"’rzil(yt = Dy, [ds. DtD) dF‘tk (Dt d: = df) ;
0 ~
‘D;Tlax _ v ‘ -
felwye.di) = / (Cilae ye, Dy) + 0Viea (yr — Dy, [dy, Dy))) dF; (Dt d; = dt) .
Jo
(5.20)

Note that Vf‘“(a;t, d;) = min,, >, fE(xe, yt, dy) and Vi(ze, dy) = ming, s, fe(@e, ye. dy).

[~ Y
Let ,u?i. be the Lebesgue-Stieltjes measure based on F} ( %dt = df): and we

define similarly pd* with respect to Fy ( d; = d,). By assumption, F} converge
pointwise to F; at any point. It is now easy to see that as a result uf_*k converge
ot dy
setwise to [ .

Let now g,x(D;) = M(xp), .., a sequence of constant functions, and
ody, rk r
/f}f yt<Dt) = V;,H(Z/t — Dy, [dt-, Dt}>~

By definition we have 5‘ j}flk’,‘y*(Df) < ger(Dy). Let also g(Dy) = M(xg). Clearly

: : . . . ds \
grx converge pointwise to g, and by the induction assumption [0 (Dy) converge

pointwise to [ (D) defined by deve (D) = Vet (e — Dy, [dy. Di)).

Furthermore, [ gtr;;du?_’;,‘ = M(zo) = | gidpt. Thus we can apply Proposition 5.7,

2uflf‘k([a. b)) = F} (b i&t = dt> — FF (a [Elt = dt,). and then ,u?l is extended by the Riesz repre-

sentation theorem.
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which implies

_D;‘nax X .
lim / V. (ys — Dy, [dy, D))dFF (Dt dt:dt)
v OO 0
D;udx _ N
- / Toaa (e = Do de, D)AF, (D[ = ).
0

Note that this holds at every y; and d;.

Since setwise convergence implies weak convergence and since Cy(x¢, vz, Dy) is con-

tinuous and bounded, by weak convergence we obtain

,D;na:{

C'Vf(:xh Yt Df)de (Dt

lim /‘D;mx Celxe, s, Dt)dF,,k (Dt }af = dt) = / d, = dt> .

k=oo Jy 0

Therefore, we have

1122 F @y di) = filaeye. de).

Note that if finite convex functions fy(x) — f(x) pointwise, then fi.(x) — f(x)
uniformly on each compact subset of the domain (see, e.g., Rockafellar [44]). Since
there are no fixed costs, both f}‘(a:hyt,dt) and fi(2¢, y, dy) are convex in both z;
and y;. Therefore, given dy, ff(a,yedi) — fi(xe.ye, di) pointwise implies that

IRy, dy) — fi(z, v, dy) uniformly.

Let yf(x;,d;) and y;(w,. d;) denote the minimizers of f/;k(wt,dt) and V;(xy, dy),

respectively. Clearly,

Vtk(ﬂlt:dt) = ffk('a:l‘:yf(lttf dy). dt) and Vt(mt:dt) = ft(JFn lj:(lfp ds), dy).

According to uniform convergence, for any e > 0, there exists a positive integer
K such that

lftk(ajtﬁ Yt df) - ft(:ct: Yt df)‘ <€
for any @y, y;, and k > K. Therefore,

Je(@e, Z/f(ifr«, di),di) — €< ff,k(wtv 'yf"(:zfn di). di) = I‘;';,k(fl’t«, dy).
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Note that fy(ee, yf (2. d), dy) > felweyi (@ dy).d) = Vi(a.dy) and therefore we
have

Vi(ze. dy) — € = fol@e yF (2, dyp), di) — € < V(2. dy).
Also note that
ftk(:r’ft y:((l;tw dt)t df) Z ftk(att: yf(a:t: d-t): df) = ‘;/;‘,]\:(_Ih df)
and
./‘t.k(il‘t: Yy (e, de), de) < filae, yi (2, dy), di) + €= Vilwe, de) + €.

Thus
V;k(yrt, d,) < Vi(z.d,) +e

As a result, for any ; and k& > K, we have
L’;k(l'ta d,) — Vilz,. dy)| <,
ie., V}k(;z:t, d;) — Vi(ay, dy) uniformly for any given d;, which completes the induction

step. O

If F, is continuous, then the following result is obtained.

Corollary 5.1. If FF ( 1&, = dt> converge in distribution to Fy (
d; and ¢, and F; (

d, = d1> for any

&t = dt> is continuous for any d; and t, then

lim  lim I/’;k(:z:,, d;) = Vil dy).
k—00 \2—0.V7 2t
.. . . . . s
Proof. The definition of convergence in distribution implies that Ff ( . Id; = dt> con-

. . | ~ . .
verge to Fy ( d; = df) at any point D; where F} ( ‘dt = df> is continuous. Since

by assumption F} ( ;Elf = df> is continuous, it follows that £ ( d, = df) converge

d, = df) and thus we can apply Proposition 5.6. O

pointwise to Fj (

Now suppose that the demand distributions for each time period are independent,

and let Fy(D,) denote the cumulative distribution function of D;. Let {d1.deo, .}

147



denote a sequence of random samples drawn from the true distribution D,. We can
define the kth sample set for period t as df’ = {di1.,.....ds}. Consider the robust
model independent of realized demand. The histogram for time period ¢ is based on
d¥ with the bins’ boundaries being all distinct elements in this set. The corresponding

empirical distribution is defined by
k 1 -
Fﬁ (Dt) = Z X HdtJ . dt,j S Dt:] = l.k}l

Let V() denote the cost-to-function of the robust model defined by the histogram
based on the kth sample set, and let V; () denote the cost-to-go function correspond-

ing to the stochastic model given distribution functions Fy(Dy).

Corollary 5.2. If F; is continuous and there is no fived procurement cost, then

lim  lim V,""( 2¢) = Vi(z4) a.s.
k—ce x2—=0Nvr=t

Proof. As k — oo, the Glivenko-Cantelli theorem (see, e.g., Billingsley [9]) shows
that F/'(D;) converges to Fy(D;) uniformly a.s. at every point D; where Fy(D;) is
continuous. The result follows immediately from Corollary 5.1. d
Discrete Distributions

Under the setting of Proposition 5.6, consider the case of D; being subject to a discrete

distribution with finite support {Dy 1, ..., D¢ ag, } C [0, D], and let

P (Dt =D,

d, = dt) = pr(dy).

Without loss of generality. we let this finite support be the boundaries of the bins for
all the histograms associated with time period t. A result similar to Proposition 5.6 is
next proved for the robust stochastic model with both fixed and variable procurement

cost.

Proposition 5.8. Suppose that for any d¢, © and {, NF.(d:)/nF(d;) converge to
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pei(dy). Then with fived and variable procurement cost, we have

lim  lim V¥, dy) = Vi, dy).

k—oo \Z—0.¥r>t '
Proof. Consider f(xs yi. dy) and fi(zs, s, dy) defined in (5.20). Following the proof of
Proposition 5.6, it is sufficient to show that ff (@, v, di) — fi(2¢. e, d¢) uniformly for
any fixed dy, under the induction assumption that Y;"T""(x,,, d,) — V.(z,,d;) uniformly

for any given d, and 7 > .

As k — oo, NF,(dy)/ni(ds) — pri(de) uniformly with respect to i (note that there
are only finitely many i’s). That is, for any € > 0, there exists a positive integer A}
such that
A’f.’fi(dl‘)

S TY e (d
'n,f(dt) prilde)

< €

for any ¢ and k > K.
The induction assumption implies that for any ¢ > 0. there exists a positive integer
K such that
Tk o [/ e
W+1(ﬁl»i+1~,dt+1) - Vt+1(»7/t+1¢dt+1)1 <€
for any ¢y and kb > K.

Consider & > max{K. K,}. Given d;. for any x; and 1y we have

i.ff(fl%: yr, d) — il v, dt)‘

My lvk‘,[(‘dt) , o g .
- ; Ay (7ege = De)* + by = De)™ + 0V (o — Dy b D..)))
M,
- me(dt) (Re(ye — Dy)* + bilys — Dyi)™ + OVia(yr — Dy [dr. D”D)[
1=1

AL NE(d |
Z (’lt(yr = Dy )T+ by — Dt,i)_> (ﬂ - Pm‘(dt)> ]

<
B i=1 n’f(df,)

+

6 i Nty e Do e Dusd) = piald) Vowa (i — Do [, Di)
3 ) k(e tis (des Draf) — pralde) Vier (U tis (A Deal) ) -

According to (5.19), |he(ye — D)™ + by — Dii) ™| < M'(0) < o0 where M'(xg) is
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a constant depending on the initial inventory z,. Also note that

Nf,‘:i(dt)/nz{‘:(dt) - pt,i(dt)‘ <€

and hence

M NF(dy) S
Z (ht(yt _ Dtj)-f- + bt(.yt — Dtﬂ’)‘) (""‘—_nk,(d ) pﬂ dt < Z \[’ 70
i=1 t t

= .v",\ffﬁ”[,(iﬂo)ﬂ

Since y and D, ; are bounded again by (5.19), t—l-l( Tiiqs d,+1)i < M(xy) < oo, Also

note that

M,
> pia(d) =1,
i=1

Vi (@i, dic1) = Vigr (g1, dest) | < e

]Vf (dy) /nt (dy) pt’,,r(dt)l < €.

We obtain

VtAé(d ) Ik ; P § r 7
_“—‘ t+1(Ur Dy ;. [dtﬁ DmD - ]~)t,i(dt)"'t+1(yt - Dm-, [du Dr,;;;])

=1 nf(dt)
M S
: NF(dy) .
SZ ‘//1.11( — Dy, [dtsDt,i])I n,’”(<d:) — pril(dy)
i=1 T .

M

+ Zpu dz l t+1 (yr — Dy [dth.iD - Vt+1(’l/t — Dy, [dt Dy, L])!

My
<Y M(xo)e + € = (MM (o) + 1)e.
=1

As a result,
'ff(”"t ye. de) = felze, ur, dt)‘ < MeM'(xg)e + O(M M (20) + 1)e,

and heuce fF(x;, ;. d;) converge uniformly to f, (.. yr, dy). O
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So far we assumed that \? converges to zero. Next we establish a convergence

result for any fixed 2. We must require that the number of samples goes to infinity.

Proposition 5.9. Suppose that for any d., i and t, ;\"'Zf,,(dt)/'n,f(dt) converge to
pei(ds), and that the number of samples nk(ds) converges to infinity. Then for any

fired X7 and with fived and variable procurement cost we have

l‘limp VE(ze, dy) = Vilay, dy).

Proof. Since V£, ,(-) = Vr41(+), the proposition holds for period T'4 1. Suppose that
for any 7 > t, V"(;r.r, d;) — Vi(2,,d,) uniformly for any fixed d,. Consider period t.
According to the definition of the distribution set PF(d;) for Vi*(x;, d;), similarly

to the proof of Proposition 5.5, we have

PEd,) © Pr(d,) = {Pt Pt.(dy) < Py < P (dy) for every 7:}

where
PF(dy) Nf(d) 3 \/ ANE (A + (\F)?
ST k() 20k (dy) 2n (dy) 7 (5.21)
P (d,) = NF(dy) \¢ " \/ENJZ:(CIA),‘\/? + (x7)?
ST TRy T 2nf(dy) 2nf(dy) '

Consider V;*(z, dy) as defined in Propositions 5.6 and 5.8, which denotes the cost-
to-go function of the stochastic model under the empirical distribution. Note that

V‘;’*(;ztt, d;) < Y/;k(a:t, d;), and hence

A_limﬂ V;’*(art., di) < klim\ Vi (2, dy).

NE (d

i

i (de)
'ntlt"(clf) - Pt,i(dt)«

Proposition 5.8 shows that limy_ VF(x,. dy) = Vi(z;, d;) whenever
and we obtain

V(. dy) < ,\,hm. V;’”' (4, dy).

. \ Tk Ak N ; X} 4Nk:i(dt)\(?ﬂ+(\2)2
Also note that Nyy(d:)/ni(d¢) — pri(d:) and mray T tzn,f(dt) L 0 as
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k — oc. Therefore,

A}i;n_ Bf’_i(dt) = klim_ ?f,i(dt) = pei(dy)

Following the same argument as in the proof of Proposition (5.5), it is easy to see
that

lim X{‘_k’(;zft,df) < Vil dy),

k—oc

which completes the proof. O

Now consider the setting of Corollary 5.2, where the demand distributions are
assumed to be independent, and the Ath sample set is defined to be the first £ elements
in a sequence of independent random samples drawn from the true distribution. Using
Proposition 5.8, we can obtain a result analogous to Corollary 5.2. We also establish

the rate of convergence.

Corollary 5.3. With fired and variable procurement cost, we have Alim vk (1) =
" — O

Vilzy) a.s., and the rate of convergence is 0(1/\/E).

Proof. The convergence follows from the Glivenko-Cantelli theorem (c.f. Billingsley

[9]) and Proposition 5.9.

Since V£, (-) = Vpyi(), the rate of convergence holds for time period T + 1.
Suppose that it holds for any time period 7 > t.

Consider the set of distributions P} defined for the robust model V(z;). The

definition in (5.9) shows that

A/VA:,» —LP 7_’ 2 N2

Dk
: P
Peoq B | kP, M,



: oo (NP RPN
The inequality —=5—— < 77 I8 equivalent to
vt ¥

P NF. \; /My \/4foi\’§/i?\ft + (X7/My)?
D, ot At - :
ST T Tk ok

NE a3, | AVEEM s /M

K 2% 2k

Therefore, the rate at which P shrinks to the single point
gle [

in Aﬂc:
Pt: {Ptl = _%{!"..Pt.)\’jf = tl;:\[t}

is O(1/VE). According to the law of large numbers, Nf,/k converge to p.; =

P (ﬁ, = Dt_,v) exponentially (see, e.g., Billingsley [9]). As a result, for sufficiently

large k, PF contains vector p; a.s.. and hence Vi(2;) < Vi (a2y) as.

As shown in (5.18),

— \ Ak .k * Sk 7k 5
V) < Vi) < Y PhUSew)+ Y. PLUL(eew)  as.

’L':Ut“:i(;vf.yf)’\_fo i:’.ft‘fi(xt.g:)>0

where UJ;(x¢, ;) is defined in the same way as (5.17), and y; denotes an optimal

solution to Vi(zy).
Note that
1}211 Uf:@(lvtg ur) = Ci(@s, y7, D) + Vi ((Uf - Dm‘)+) .

The rate of convergence of U (x;, y) is determined by the convergence rate of VE(),
t,i Y J t+1

and hence it is in the order of O(1/VE).

: o , =k . ; . —k
According to the definition of Ei‘y,—/ and P, in (5.21), both P}, and P, converge

to e at the convergence rate of O(1/ VE), since NF,/k converge to p; exponentially.
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Finally, note that

- ) A . ‘ =k ok .
Vi(ae) = lim Y. PLUSey)+ Y PLUNnw)

“UE (rey) <0 BUE (zey;) >0

We conclude that the rate of convergence of Vi*(a;) is in the order of O(1/v/k). O

5.5 Computational Results

In this section, we describe computational experiments and present numerical results
to support the effectiveness of the minimax robust model based on the chi-square test.
As we have mentioned in the previous sections, the traditional approach is to fit the
historical data with a distribution and then apply stochastic inventory optimization
using the fitted distribution. The main objective of our experiments is to compare
performances of this separated approach and the studied minimax robust model with
respect to optimality and robustness. At the same time, we would like to assess
sensitivity of the robust model to the choices of the bin sizes and y? parameters, and
provide an empirical approach to choose these values.

We consider inventory control problems without fixed ordering costs. Following
the notation in the previous sections, we let T denote the planning horizon and ¢,
ht, by denote the variable order cost, unit inventory holding cost, and backorder cost
for any period ¢, t = 1,..., T, respectively. The demand distributions for any period ¢
are assumed to be i.i.d. In the robust model, we restrict ourselve to the case of equal
bin sizes and these, together with y?, are the same for every period in the planning
horizon. To simplify the notation, pair (¢, x?) denotes the choice of the bin size and

\? in the robust model, where the first parameter ¢ denotes the bin size.

The procedure of the computational experiments is as follows.

Step 1. Suppose that the underlying demand distribution has support {0, 1,..., D}.

We randomly generate a distribution among all distributions whose support is
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a subset of {0.1,..., D}. In particular, we pick distribution

R U,
]);ZP(Dt:Z):—T—T
Z?:o Ui

for any i = 0,1, ..., D, where U; for all i are i.i.d. random variables uniformly
distributed in the interval [0, 1]. We refer to the distribution p = {p;}; as the

true distribution.

Step 2. Generate n random samples according to the true distribution selected in

Step 1.

Step 3. Fit the samples obtained in Step 2 using Crystal Ball and then choose the

[ best fitted distributions according to the x? goodness-of-fit statistic.

Step 4. Solve the standard stochastic inventory control problem with distributions

generated in Steps 1 and 3.

Step 5. Solve the robust inventory control model using a set of bin-size and y?

combinations.

Step 6. Evaluate the total expected cost with respect to the true distribution p cor-
responding to the policies of the stochastic models and robust models computed
in Steps 4 and 5. We use this step to investigate the optimality of the robust

models.

Step 7. The n samples generated in Step 2 define the empirical distribution p such

that
the number of times value 7 appears in the n samples

Pi =
V2

for any i = 0.1,....D. Let § = p — p. We generate m random permutations
of vector ¢ and denote the jth permutation of the coordinates by 8/. Vector

p’ = p + &7 also defines a distribution.®> Note that p’ is equal to p if &/ = 4,

i.e., when &/ is not permuted.

31f p? contains any negative component, we set p’ to be the positive part of p7 plus a random
perinutation of its negative part, and we repeat this process until p’ > 0.



For each distribution defined by vector p’, we can evaluate the corresponding
cost for each policy computed in Steps 4 and 5. Therefore, we obtain m costs
for each policy and we report the conditional value-at-risk® (CVaR) at the 5%
level of the m costs for each policy. The purpose of this step is to understand

the robustness of different approaches.

Let us consider a 10-period problem. The support for the demand distribution is
assumed to be the set {0,1....,29}, i.e., D = 29. The cost parameters ¢, h, and b; are
generated independently according to the uniform distributions within the intervals
[12,15], [2,5] and [22,25], respectively. Following the computational procedure, we
first draw n = 20 samples from the selected true distribution. Fitting the samples
using Crystal Ball, the three best fitted distributions according to the chi-square
values are negative binomial, Poisson, and beta. The true distribution p, sample

frequency p and the three distributions are displayed in Figure 5-1.

Figure 5-1: True Distribution, Frequency and Fitted Distributions with 20 Samples
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In Steps 4 and 5 of our procedure, we compute the base stock levels corresponding
to different models: the stochastic model using the true distribution, the stochastic
model using the three best fitted distributions, and robust models with different bin-
size and \? value combinations. In particular, the following set of bin-size and \*
value combinations are considered: (3, 1), (3,3), (3,5), (5,1), (5,3), (5,5).

As stated in our analysis, the robust model picks the demand distribution based

on the on-hand inventory after the order is received, i.e., the order-up-to level y,.

*Given random variable X, the conditional value-at-risk at a quantile-level ¢ is defined as
E[X|X < p] where p is defined by P(X < p) =gq.



Although we use the same histogram in each period, the demand distribution returned
by the robust model depends also on . We use the robust model with the bin-size/?
value (3, 3) to illustrate these properties.

In Figures 5-2 and 5-3, and Table 5.1, we use a simple representative sample of
cost parameters. Figure 5-2 shows the robust distributions for the last period t = 10
and the first period ¢ = 1 when the inventory levels after receiving the order y, are 0
and 20 respectively. For both periods, the distributions returned by the robust model
for y; = 20 have lower probabilities in the region 15 to 26 than those for y, = 0. The
intuition behind this observation is that the robust model picks a demand distribution
maximizing the expected cost. For any possible value of the demand, we incur a
certain cost corresponding to Uy ;(yr. d;) defined in (5.6). Therefore, the robust model
chooses a lower probability for demand values with lower costs. Value y; = 20 is very
close to the demand when the demand falls in the region 15 to 26. The amount we
over- or under-order is low and hence the corresponding over- or under-order cost is
also low.> Therefore, the corresponding costs associated with the demand values are
lower than the costs corresponding to other demand values. As a result, the robust

model assigns lower probabilities in these regions compared with the case when y; = 0.

Figure 5-2: Demand Distributions Returned by the Robust Model with Bin Size = 3
and 2 =3
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If we compare the robust distributions when g = 20 for period 10 and period 1,

we observe that the probability for period 10 is higher for small demand values. This

5Tn this sectiow, the over-order (under-order, respectively) cost includes not only the inventory
holding cost h; (backorder cost by, respectively) incurred in period ¢, but also the impact of over-order
(under-order, respectively) in period ¢ based on the cost-to-go funetion Vi1 (+).
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can also be explained by the tradeoff between the over- and under-order costs. In the
last period, the over-order cost is ¢yp + hyo and the under-order cost is by since we set
Vr+1(+) = 0. For any carlier period ¢ < 10, the over-order costs are significantly lower
as we can carry the inventory to the next period and save the order cost ¢, but the
under-order cost is b; + ¢;,1 since we not only pay the backorder cost but also procure
the product in period ¢t + 1 to satisfy the unmet demand in period t. When y; = 20,
we pay the over-order costs when the demands are low (e.g., in the region 0 to 11),
and the under-order costs are incurred when the demand are high (e.g., in the region
21 to 26). As the over-order costs are higher and the under-order costs are lower in
the last period, it implies that the ratio between the costs for low demands and the
costs for high demands is greater in period 10 than period 1. This is the reason why
the robust model assigns higher probabilities for low demands in period 10.

On the other hand, the robust distributions when y; = 0 are almost the same for
the two periods with t = 10 and t = 1. In this case, we only have the under-order
cost no matter if the demand is high or low. Although the under-order cost is higher
in period 1 than period 10, the ratios between the costs for low and high demands
are almost the same for period 1 and 10. Therefore, the worst case distributions are
similar for these two periods.

The hasestock levels computed in Steps 4 and 5 are displayed in Figure 5-3. For
any of the stochastic or robust models, the basestock level for period 10 is significantly
lower than the remaining periods. As explained before, this is caused by the fact that
the overorder cost is much higher while the underorder cost is lower in period 10
because of Vr—1(-) = 0, and thus we should order less in that period. In addition,
the basestock level for period 4 is slightly lower for most of the models since period 4
has the highest order and inventory holding cost while its backorder cost is relatively
low.

For the three robust models with the bin-size 3, the basestock levels are nonde-
creasing with respect to the \? value, since the sets of distributions are inclusion-wise
increasing in the y* value. In our instances, the backorder cost is much higher than the

inventory holding cost. Intuitively, the worst case distribution should assign higher
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Figure 5-3: Basestock Levels Computed Using Different Models

24 B 1 L\ S T
? D 7 T 7 = Stachastic: True Distnbution
. 21 /; 'R/ - 4 s ] 7] .\"a‘- mmmm Stochstic Best Fit
2 7 IR 7 7 % % 7 | TR e Stachsnic: 2nd Best Fi
j 18 4 '? § ? g 2 ? g §fg czra Stochastic. 3rd Best Fit
B Z | IR 2 7 | N 7 Y ——Robust 31>
@15 7 % f« 'é ? % %? e RODUSE <335
& //’ § ,//| f % ? §4 —ar-=Robust. <35>
2 Z | BN 7 % 7 | PRV s meus 2
12 7, % % 2 ? z\\‘?‘ —.—Pobust <513, <533, <55
AN NN ) | I N
NN RN N \
[ B 7 v Y
< U % LN | R NZER N7 7N 78 7 78
1 2 3 4 5 & 7 8 9 10

Penod

probabilities for high demand values. Therefore, the larger the \* value is, the higher
the probabilities for high demand values in the worst case distribution, and hence
we should order more to minimize the worst case expected cost. As a result, the
basestock levels are higher for the robust models with greater 2 values. However, if
we set the bin-size to 5 for the robust models, the basestock levels are the same when
the \2 values are equal to 1, 3 and 5. This observation indicates that the basestock
levels are less sensitive to the y? values when we have larger bins.

We use Steps 6 and 7 to understand the performance of different models. The
results are summarized in Table 5.1. The first four columns correspond to the results
for the stochastic models using true distribution p and the three best fitted distri-
butions, respectively. The next four columns show the results for the robust models,
Note that the last column corresponds to the robust models with bin-size 5 and \
values 1. 3 and 5. These three robust models have the same performance for this
example as they have the same basestock levels. We show the expected cost for dif-
ferent models with respect to the true distribution in the first line, which corresponds
to the output of Step 6. In the second line, we report the output of Step 7, i.e., the
CVaR at 5% level for the costs of m = 1000 distributions generated by p plus random
permutations of p — p. For the purpose of comparison, the numbers in Table 5.1 are

calculated by subtracting the cycle stock order cost, i.e., (Z;‘;l cf) (Zﬂl 'fpf)= from

159



the original cost or CVaR, and normalizing with respect to that of the stochastic

model using true distribution.

Table 5.1: Performance of Different Models for the Instance in Figure 5-1
Stochastic Models Robust Models
True Best 2nd Best 3rd Best (5,1 or
Dist  Fit Fit Fit (3,1)  (3,3) (3,5) 3orb)

Cost 1 1.0595 1.1834 1.0582 | 1.0415 1.0211 1.0249 1.1511
CvVaR | 1 1.0486  1.1802 1.0511 | 1.0356 0.9774 0.9739 1.1662

Obviously, the stochastic model using the true distribution gives the lowest ex-
pected cost. The output of Step 7, CVaR, also indicates that this model is robust with
respect to perturbations in the input distribution as it has the third lowest CVaR,
which is only 2.61% higher than the lowest C'VaR.

For the three stochastic models using fitted distributions, the models using the 1st
and 3rd best fitted distributions have a very similar performance. The best-fit case
has the best performance among the fitted stochastic models as its CVaR is 0.25%
better than the 3rd best-fit stochastic model and the cost is only 0.13% higher than
that. The performance of the model using the 2nd best distribution is much worse
compared with the other two. Its cost and CVaR. values are at lest 12% higher than
the remaining two models.

The three robust models with bin-size 3 outperform all of the stochastic models
using fitted distributions in terms of both optimality (cost) and robustness (CVaR).
The robust models with bin-size 5 also have better values of the cost and C'VaR than
the stochastic model using the 2nd best fitted distribution. In particular, the robust
models with bin-size/\? value combinations of (3,3) and (3, 5) are significantly better
than the stochastic models using fitted distributions. They reduce the cost by more
than 3% and CVaR by more than 7% when comparing with the fitted stochastic
models. Among the robust models we prefer the model with bin-size/\? value com-
bination (3,3), since it improves the cost by 0.38% at the price of a 0.35% increase
in CVaR.

Next we repeated the experiment from Step 1 to Step 7 for 10 times, i.e., each
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time with a different true distribution, demand data and cost parameters. Table
5.2 shows the average and standard deviation of the cost and CVaR values for the
10 data samples for the stochastic model using the true distribution, the stochastic
model using the best fitted distribution as well as the 6 robust models already consid-
ered. All robust models have lower average and standard deviation of cost and CVaR
compared with the stochastic model using the best fitted distribution. In terms of
both optimality (cost) and robustness (CVaR), the performance of our robust models
is better on average (smaller average) and more stable (smaller standard deviation)

than the stochastic model using the best fitted distribution.

Table 5.2: Performance of Different Models in 10 Instances

Stochastic
Models Robust Models

True Best
Dist Fit 3,1y  (3,3) (3,5) (5.1) (5.3) (5.9)
Cost Ave. 1 1.0902 | 1.0412 1.0361 1.0499 1.0725 1.0597 1.0570
Cost Stdev. 0 0.0893 | 0.0210 0.0302 0.0330 0.0736 0.0511 0.0519
CVaR Ave. 1 1.0894 | 1.0014 0.9745 0.9746 1.0648 1.0281 1.0212
CVaR Stdev. 0 0.1142 1 0.0507 0.0327 0.0355 0.0917 0.0639 0.0618

The robust models with bin-size 3 have lower values of average and standard
deviation of both measures than the robust models with bin-size 5. Moreover, the
robust models with higher \? values, e.g., when x? is set to 3 or 5, have lower CVaR
than those with \? values set to 1. This observation agrees with our understanding
that increasing \? values can improve the robustness of the models. However, it may
also affect the cost of the models, e.g., the average cost for the (3, 5) robust model is
0.8% higher than that of the (3, 1) robust model.

The robust model with bin-size 3 and y? value 3 has the lowest average cost,
lowest CVaR, and lowest standard deviation of CVaR among all robust models, and
its standard deviation of the cost is the second lowest. This agrees with our suggestion
drawn from Figure 5-1: the robust model with bin-size/\? value combination (3,3)
should be the best among the robust models.

Figure 5-4 shows the cost and CVaR values for the stochastic model using the best
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fitted distribution and the (3,3) robust model in each of the 10 instances. The cost
values of the (3,3) robust model are at least 7.5% lower than the stochastic model
with the best fitted distribution for instances 5, 8, 9 and 10. The improvement in
instances 9 and 10 even exceeds 20%. The cost values of instances 2 and 3 are almost
the same for both models. Instance 7 is the only case where the cost of the robust
model is more than 2% (2.04% to be exact) higher than the cost of the stochastic

model.

Figure 5-4: The Stochastic Model Using Best Fitted Distribution vs. the Robust
Model with Parameters (3,3) for 10 Instances
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The values of CVaR for the robust model are less than one for 7 out of the 10
instances, they are very close to one (at most 0.04% higher than one) for the other
2 instances, and the largest value is 1.0150. On the other hand, the values of CVaR
for the stochastic model with the best fitted distribution is less than one only for 3
instances and the largest value is 1.2923. We conclude that the (3. 3) robust model is
much more robust compared with the stochastic model using the true distribution.

In order to understand the sensitivity of different models with respect to the
nuimber of samples drawn from the true distribution, we ran 10 additional experiments
in which we generate n = 40 samples [rom the true distribution in Step 2.

Table 5.3 summarizes the main statistics of the stochastic model using the best
fitted distribution and our robust models. Similar to the result in Table 5.2 where we
have 20 samples from the true distribution, all of the robust models outperform the
stochastic model with the best fitted distribution in both the average and standard

deviation of the two measures.
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Table 5.3: Performance of Different Models for 10 Instances and 40 Samples

Stochastic
Models Robust Models
True Best
Dist Fit (3.1 (3.3 (3,5 (5, 1) (5.3) (55
Cost Ave. 1 1.0749 | 1.0278 1.0223 1.0364 1.0457 1.0317 1.0304
Cost Stdev. 0.0500 | 0.0232 0.0262 0.0346 0.0353 0.0297 0.0297
CVaR Ave. 1.0820 | 1.0141 0.9901 0.9832 1.0539 1.0167 1.0091
CVaR Stdev. 0.0765 | 0.0406 0.0268 0.0217 0.0433 0.0167 0.0127

(-

O = O

As expected, the average cost of all robust models and the best fit stochastic model
improves when the sample size increases from 20 to 40. The robust models with bin
size 5 have a slightly greater improvement than the remaining models. For the other
three statistics, we also observe improvements for the stochastic model using the best
fitted distribution as well as the robust models with bin-size 5 when the sample size
is increased to 40. Again, the robust models with bin-size 5 show slightly better
improvements in these statistics.

If we compare the robust models with different bin sizes. those with bin-size 3
still perform better than those with bin-size 5. However, compared with the case of
20 samples, the differences are slightly smaller for all statistics, which suggests that
the robust models with bin-size 5 improve faster as the sample size increases. Similar
to the experiments with 20 samples, the increase in y* values also helps to improve
the robustness of the models, which is measured by CVaR. The improvements in
robustness as \” values increase are more significant for 40-sample experiments than
those with 20 samples. In addition. the increased x* may also increase the cost. e.g.,
the average cost increases from 1.0278 to 1.0364 if we increase the \* value from 1 to
5 for the robust models with bin-size 3.

The robust model with parameters (3,3) has the lowest average cost, the second
lowest average CVaR and the second lowest standard deviation of the cost. Besides.
its standard deviation of C'VaR is less than 3%. We still consider it as the most
efficient model among all the robust models and the stochastic model using the best

fitted distribution.
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To summarize the numerical results, the computational experiments show that the
robust models outperform the stochastic models using fitted distributions in terms
of both optimality and robustness. The robust models with a lower bin size perform
better than those with a larger bin size, but an increase in sample size may decrease
the difference in performance caused by the choice of the bin size. In addition. a
higher x? value helps to increase the robustness but it may sacrifice the cost of the

robust models.

5.6 Extensions

In this chapter, we propose a robust stochastic model for the multi-period lot siz-
ing problem, in which the demand distribution is unknown and the only available
information is historical data. The convergence results for the chi-square test based
models suggest that the solutions to the robust approach are very close to the opti-
mal stochastic programming solutions when the sample size is sufficiently large. This
robust framework based on historical data can be extended to many more general
finite-horizon dynamic programming problems. and the convergence properties can
also be extended to more general problems.

Although we consider back-order models, most of our results can be extended
to lost sales models if the historical data also reflect the amount of lost sales. In
particular, for lost-sales models with only linear procurement cost and under the
same technical assumptions, the optimal policy under the robust model is a state-

dependent base-stock policy.
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Chapter 6

Conclusions

This dissertation considers two applications of inventory control models. which are
both formulated as discrete-time finite-horizon dynamic programs. We analyze the
Bellman equations of the dynamic programming formulation. fully characterize the
optimal control policies, and investigate various properties of these policies. The two
applications naturally partition the dissertation into two parts.

In the first part, the inventory control problem in market-making is analyzed,
where the decision maker, i.e., the market-maker, controls the inventory in order to
limit the exposure to market price movements at the risk of losing possible gain of the
bid/ask spread. We prove that a threshold policy is optimal for risk-averse inventory
control in market-making when considering a single asset, and we establish sufficient
conditions for the threshold levels being symmetric or monotone.

For the market-making problem with multiple assets, the optimal policy shows
that there exists a simple connected no-trade region, which is proved to be symmetric
under certain conditions. The boundaries of the no-trade region also determine the
optimal quantity to actively trade with other market makers if the inventory position
falls outside the no-trade region. The optimal policies lead to efficient algorithms
to solve the dynamic programming problems, and the computational complexity is
linear in the number of periods. The structural results of the optimal policy provide
insights to significantly reduce the search region if the market-makers would like to

identify an inventory control strategy by simulation or backtesting.
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Of course, important limitations of our model exist. For example, we assume that
the decision maker is a small player in the market, which means that the decision
maker follows the bid and ask prices quoted by the market leader, and its actions
to trade with its clients or other market-makers have no impact on the future price
movements. In the case that the decision maker is a market leader, it can determine
the bid and ask prices as well as the amount of active trades with other market-
makers, and it needs to take into account their impact on the price movements. For
these big players in the market, we need to optimize the pricing and inventory decision
simultaneously. This type of results also benefits the small players as it quantifies the
loss of efficiency of being the price follower. The joint pricing and inventory problem

for big players are left for future research.

In the second part, we return to the single-item single-location inventory problem
in supply chain management, where the assumptions are the same as the classical
inventory control model except that the future demands are specified by historical
data instead of cumulative distribution functions. We propose a minimax model
which optimizes the worst-case expected total cost over a set of demand distributions
defined by the historical data. We show that the corresponding optimal control policy
is the same as the stochastic counterpart in the inventory control literature, ie., a
basestock policy is optimal if there is no fixed ordering cost and an (s,5) policy
is optimal when a fixed ordering cost is considered. One way to construct the set
of demand distribution using historical data is to consider the test statistics in data
fitting. In particular, we present how to define the set using y* test and prove that the
minimax robust model converges to the stochastic model as the number of available
data points goes to infinity. The computational procedure adopted in Section 5.5 also
serves as an empirical approach to determine the parameters such as the bin sizes
and v? values in the robust model.

In Section 5.6, we mentioned that most results for back-order models can be
extended to lost-sale models. Note that this is under the assumption that we have
historical demand data which also includes lost sales. However, in practice, lost sales

may not be observable and we only know the amount sold during a period, i.e., the
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available historical data is sales data instead of demand data which consists of both
sales and lost sales. Therefore, future research could study the lost sales models with
historical sales data.

Moreover, incomplete distribution information is not unique to the stochastic
inventory control problem. Many problems in supply chain management, such as
network design. production sourcing, and process flexibility, to name a few, require
stochastic input data, i.e., information on the distribution of various parameters, such
as demand, lead time, vield and etc. Unfortunately, much like the inventory control
problem analyzed in this dissertation, in most cases, only historical data is available.
Therefore, the idea to integrate inventory optimization with data fitting presented in
this dissertation can be extended to other supply chain problems, where we choose
the supply chain decision by optimizing the worst-case expected cost or profit over a
set of distributions generated by the available data. The structure of the correspond-
ing minimax or maximin models may vary from problem to problem and thus require
carefully applying various optimization techniques besides dynamic programming.

Also note that the minimax inventory control model proposed in Chapter 5 re-
turns not only the optimal robust inventory policy but also the demand distributions
corresponding to the worst-case scenario associated with this policy. An interesting
question is whether it is possible extend this approach to demand forecasting, which
provides an indispensable input to supply chain models. Although most forecasting
tools are based on the point-of-sale data, store shipment information is also available
in the retail industry, and it is usually more accurate and reliable than the point-of-
sale data. In this case, shipment data corresponds to the quantity ordered for each
item in each period, which is determined by the inventory control policy. Our robust
inventory model takes historical data as input and returns demand distribution and
inventory policy as output, i.e., it establishes a relationship among historical data,
demand distribution and inventory control policy. Therefore, this approach may help

to develop forecasting models utilizing shipment data.
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