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A Distributed Newton Method for Network Utility Maximization∗

Ermin Wei†, Asuman Ozdaglar†, and Ali Jadbabaie‡

Abstract— Most existing work uses dual decomposition and
subgradient methods to solve Network Utility Maximization
(NUM) problems in a distributed manner, which suffer from
slow rate of convergence properties. This work develops an
alternative distributed Newton-type fast converging algorithm
for solving network utility maximization problems with self-
concordant utility functions. By using novel matrix splitting
techniques, both primal and dual updates for the Newton step
can be computed using iterative schemes in a decentralized
manner with limited scalar information exchange. Similarly,
the stepsize can be obtained via an iterative consensus-based
averaging scheme. We show that even when the Newton
direction and the stepsize in our method are computed within
some error (due to finite truncation of the iterative schemes), the
resulting objective function value still converges superlinearly
to an explicitly characterized error neighborhood. Simulation
results demonstrate significant convergence rate improvement
of our algorithm relative to the existing subgradient methods
based on dual decomposition.

I. INTRODUCTION

Most of today’s communication networks are large-scale

and comprise of agents with local information and heteroge-

neous preferences, making centralized control and coordina-

tion impractical. This motivates much interest in developing

and studying distributed algorithms for various problems,

including but not limited to Internet packets routing, collab-

oration in sensor networks, and cross-layer communication

network design. This work focuses on the rate control

problem in wireline networks, also referred to as the Network

Utility Maximization (NUM) problem in the literature (see

[1], [5], [12]). In NUM problems, the network topology

and routes are predetermined, each source in the network

has a local utility, which is a function of the rate at which

it sends information over the network. The objective is to

determine the source rates in the network that maximize the

sum of the utilities, subject to link capacity constraints. The

standard approach for solving NUM problems relies on using

dual decomposition and subgradient (or first-order) methods,

which through a dual price exchange mechanism yields

algorithms that operate on the basis of local information [11],

[12], [13]. One major shortcoming of this approach is the

slow rate of convergence.

In this paper we propose a novel Newton-type second

order method for solving the NUM problem in a distributed
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manner, which is significantly faster in convergence. Our

method involves transforming the inequality constrained

NUM problem to an equality-constrained one through in-

troducing slack variables and logarithmic barrier functions,

and using an equality-constrained Newton method for the

reformulated problem. There are two challenges for imple-

menting this method in a distributed way. First challenge is

the computation of the Newton direction. This computation

involves matrix inversion, which is costly and requires global

information. We solve this problem by utilizing an iterative

scheme based on novel matrix splitting techniques, which

enables us to compute both primal and dual updates for

the Newton step using decentralized algorithms that involves

only limited scalar information exchange between sources

and links. The second challenge is the global information

required to compute the stepsize. We resolve this by using a

consensus-based local averaging scheme.1

Since our algorithm uses iterative schemes to compute

the stepsize and the Newton direction, exact computation

is not feasible. Another major contribution of our work is

to consider truncated version of these schemes and present

convergence rate analysis of the constrained Newton method

when the stepsize and the Newton direction are estimated

with some error. We show that when these errors are suffi-

ciently small, the value of the objective function converges

superlinearly to a neighborhood of the optimal objective

function value, whose size is explicitly quantified as a

function of the errors and bounds on them.

Other than the papers cited above, our paper is related to

[3] and [9]. In [3], the authors have developed a distributed

Newton-type method for the NUM problem using belief

propagation algorithm. While the belief propagation algo-

rithm is known to converge in most practical applications,

there is no provable guarantee. Our paper differs from this

by developing a standalone distributed Newton-type algo-

rithm and providing analysis for the convergence properties

thereof. Similarly, [9] considers applying distributed Newton

problem to an equality-constrained network optimization

problem under Lipschitz assumptions. Our analysis is novel

in that we have an inequality-constrained problem and with

the usage of barrier functions, Lipschitz-based results cannot

be applied, instead we use properties of self-concordant func-

tions to analyze the convergence behavior of our algorithm.

Due to space constraints, some of the proofs and results are

omitted in this paper, interested readers should refer to [18]

for the complete version.

1Consensus-based schemes have been used extensively in recent litera-
tures as distributed mechanisms for aligning the values held by multiple
agents, see [8], [9], [15], [16], [17]
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The rest of the paper is organized as follows: Section

II defines the problem formulation and equivalent transfor-

mation. Section III presents the exact constrained primal-

dual Newton method for this problem. Section IV presents a

distributed iterative scheme for computing the dual Newton

step and the decentralized inexact primal update. Section V

analyzes the rate of convergence of our algorithm. Section

VI presents simulation results to demonstrate convergence

speed improvement of our algorithm to the existing methods.

Section VII contains our concluding remarks.

Basic Notation and Notions:

A vector is viewed as a column vector, unless clearly stated

otherwise. We write R+ to denote the set of nonnegative

real numbers, i.e., R+ = [0,∞). We denote by xi the ith

component of a vector x. When xi ≥ 0 for all components i
of a vector x, we write x ≥ 0. For a matrix A, we write Aij

to denote the matrix entry in the ith row and jth column,

and [A]i to denote the ith column of the matrix A. We write

I(n) to denote the identity matrix of dimension n × n. We

use x′ to denote the transpose of a vector x. For a real-valued

function f : X → R, where X is a subset of R
n, the gradient

vector and the Hessian matrix of f at x in X are denoted

by ∇f(x) and ∇2f(x) respectively.

A real-valued convex function g : X → R, where X is

a subset of R, is said to be self-concordant if |g′′′(x)| ≤
2g′′(x)

3

2 for all x in its domain2. For real-valued functions

in R
n, a convex function g : X → R, where X is a subset

of R
n, is self-concordant if it is self-concordant along every

direction in its domain, i.e., if the function g̃(t) = g(x+tv) is

self-concordant in t for all x and v. Operations that preserve

self-concordance property include summing, scaling by a

factor α ≥ 1, and composition with affine transformation

(see [4] Chapter 9 for more detail).

II. NETWORK UTILITY MAXIMIZATION PROBLEM

We consider a network represented by a set L = {1, ..., L}
of (directed) links of finite capacity given by c = [cl]l∈L,

where these links form a strongly connected graph. The

network is shared by a set S = {1, ..., S} of sources, each

of which transmits information along a predetermined route.

For each link l, let S(l) denote the set of sources using it. For

each source i, let L(i) denote the set of links it uses. We also

denote the nonnegative source rate vector by s = [si]i∈S . The

capacity constraint at the links can be compactly expressed

as Rs ≤ c, where R is the routing matrix3 of dimension

L × S, i.e.,

Rij =

{

1 if link i is on the route of source j,
0 otherwise.

(1)

We associate a utility function Ui : R+ → R with

each source i, i.e., Ui(si) denotes the utility of source i

2One alternative definition is a real-valued convex function g : X → R,
where X is a subset of R, is said to be self-concordant, if there exists a

constant a > 0, such that |g′′′(x)| ≤ 2a− 1

2 g′′(x)
3

2 for all x in its domain
[14], [10]. The definition we adopt is a special case of this one, in particular
a = 1. We choose to not use this general definition, because it introduces
unnecessary complications for the convergence analysis.

3This is also referred to as the link-node incidence matrix in the literature.

as a function of the source rate si. We assume the utility

functions are additive, such that the overall utility of the

network is given by
∑S

i=1 Ui(si). Thus the Network Utility

Maximization(NUM) problem can be formulated as

maximize

S
∑

i=1

Ui(si) (2)

subject to Rs ≤ c, s ≥ 0.

We adopt the following standard assumption.

Assumption 1: The utility functions Ui : R+ → R are

continuous, strictly concave, monotonically nondecreasing

on R+ and twice continuously differentiable on the set of

positive real numbers, i.e., (0,∞). The functions −Ui :
R+ → R are self-concordant on the set of positive real

numbers.

To facilitate development of a distributed Newton-type

method, we reformulate the problem into one with only

equality constraints, by introducing nonnegative slack vari-

ables [yl]l∈L, such that
∑S

j=1 Rljsj + yl = cl for l =
1, 2 . . . L, and using logarithmic barrier functions for non-

negativity constraints. We denote the new decision variable

vector by x = ([si]
′
i∈S , [yl]

′
l∈L)′. Problem (2) then can be

rewritten as

minimize −
S

∑

i=1

Ui(xi) − µ

S+L
∑

i=1

log (xi) (3)

subject to Ax = c,

where A = [R I(L)], and µ is a nonnegative constant

coefficient for the barrier functions. We denote by f : R
S
+ →

R the objective function, i.e.,f(x) = −∑S
i=1 Ui(xi) −

µ
∑S+L

i=1 log (xi), and by f∗ the optimal objective value

for the equality constrained problem (3). Notice that by

Assumption 1 and the properties of logarithmic functions,

the objective function f(x) is separable, strictly convex,

twice continuously differentiable, and has a positive definite

diagonal Hessian matrix on the positive orthant. The function

f(x) is also self-concordant for µ ≥ 1, since it is a sum of

self-concordant functions.

We denote the function h : R
S
+ → R to be h(x) =

−∑S
i=1 Ui(xi), and let h∗ be the negative of the optimal

objective function value for problem (2). We write the

optimal solution of problem (3) for a fixed barrier function

coefficient µ as x(µ). One can show that as the barrier

function coefficient µ approaches 0, the optimal solution of

problem (3) approaches that of problem (2) [2], [7], and

hence by continuity from Assumption 1, h(x(µ)) approaches

h∗. Based on results from [18], we can achieve an error

bound in the form of
h(x(µ))−h∗

h∗
≤ a for any positive scalar

a while keeping µ ≥ 1, which preserve the self-concordant

property of the function f , which is in turn used to prove

convergence of our distributed algorithm. Therefore, in the

rest of this paper, unless clearly stated otherwise, our goal

is to investigate iterative distributed methods for solving

problem (3) for a given µ ≥ 1, when the function f is self-

concordant.
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III. EXACT NEWTON METHOD

We consider solving problem (3) using a (feasible start)

equality-constrained Newton method (see [4] Chapter 10). In

our iterative method, we use xk to denote the solution vector

at the kth step.

A. Feasible Initialization

To initialize the algorithm, we start with some feasible and

strictly positive vector x0 > 0. For example, one possible

such choice is given by x0
i = mink{ck}

S+1 for i = 1, 2 . . . S,

and x0
i+S = ci−

∑S
j=1 Rij

mink{ck}
S+1 for i = 1, 2 . . . L, where

ck is the finite capacity for link k, S is the total number of

sources in the network, and R is routing matrix [cf. Eq. (1)].

B. Iterative Update Rule

Given an initial feasible vector x0, the algorithm generates

the iterates by xk+1 = xk + sk∆xk, where sk is a positive

stepsize, ∆xk is the Newton direction given as the solution

to the following system of linear equations4:

(

∇2f(xk) A′

A 0

) (

∆xk

wk

)

= −
(

∇f(xk)
0

)

, (4)

where the vector [wk
l ]l∈L are the dual variables for the link

capacity constraints. The dual variables associated with each

link can be viewed as a price for using the link, we will use

the terms ”dual variable” and ”price” interchangeably in the

rest of the paper. We denote Hk = ∇2f(xk) for notational

convenience. Solving for xk and wk in the preceding system

yields

∆xk = −H−1
k (∇f(xk) + A′wk), and (5)

(AH−1
k A′)wk = −AH−1

k ∇f(xk). (6)

Since the objective function f is separable in xi, the matrix

H−1
k is a diagonal matrix with entries [H−1

k ]ii = ( ∂2f

(∂xk

i
)2

)−1.

Therefore given the vector wk
l for l in L(i), the Newton

direction ∆xk
i can be computed using local information

by each source i. However, the computation of the vector

wk at a given primal solution xk cannot be implemented

in a decentralized manner, in view of the fact that the

evaluation of the matrix inverse (AH−1
k A′)−1 requires global

information. The following section provides a distributed

inexact Newton method, based on an iterative decentralized

scheme to compute the vector wk.

IV. DISTRIBUTED INEXACT NEWTON METHOD

Our inexact Newton method uses the same initialization

as presented in Section III-A, however, it computes the dual

variables and the primal direction using a distributed iterative

scheme with some error. The construction of these schemes

relies on novel ideas from matrix splitting, a comprehensive

review of which can be found in [6] and [18].

4This is essentially a primal-dual method with the vectors ∆xk and wk

acting as primal and dual steps.

A. Distributed Computation of the Dual Variables

We use the matrix splitting scheme to compute the dual

variables wk in Eq. (6) in a distributed manner. Let Dk

be a diagonal matrix, with diagonal entries (Dk)ll =
(AH−1

k A′)ll, and matrix Bk be given by Bk = AH−1
k A′ −

Dk. Let matrix B̄k be a diagonal matrix, with diagonal

entries (B̄k)ii =
∑L

j=1(Bk)ij . By using the splitting scheme

(AH−1
k A′) = (Dk + B̄k) + (Bk − B̄k). (7)

we obtain the following result.

Theorem 4.1: For a given k > 0, let Dk, Bk, B̄k be the

matrices defined as above. Let w(0) be an arbitrary initial

vector and consider the sequence {w(t)} generated by the

iteration

w(t + 1) =(Dk + B̄k)−1(B̄k − Bk)w(t) (8)

+ (Dk + B̄k)−1(−AH−1
k ∇f(xk)),

for all t ≥ 0. Then the sequence {w(t)} converges as t → ∞,

and its limit is the solution to Eq. (6).

There can be many ways to split the matrix AH−1
k A′, the

particular one in Eq. (7) is chosen here due to three desirable

features. First it ensures convergence of the sequence {w(t)}.

Second, with this splitting scheme, the matrix Dk + B̄k is

diagonal, which eliminates the need for global information

and computational complexity when calculating its inverse.

The third feature is related to the concept of a dual (routing)

graph and its graph Laplacian matrix (see [18] for more

detail).

We next describe a distributed information exchange and

computation procedure for the dual variables. In order to

express the procedure concisely, we define the price of the

route for source i, πi(t), as πi(t) =
∑

l∈L(i) wl(t); and

the weighted price of the route for source i, as Πi(t) =
(H−1

k )ii

∑

l∈L(i) wl(t). Then at each primal iteration k, the

dual variable can be computed as follows:

1. Initialization

1.a Each source i sends its (Hk)ii and ∇if(xk) (the

ith component of the gradient vector ∇f(xk))
to the links it is using, i.e., l ∈ L(i). Each

link l computes (Dk)ll,
∑

i∈S(l)(Hk)−1
ii and

∑

i∈S(l)(H
−1
k )ii∇if(xk).

1.b Each link sends a pilot price of 1, i.e., wl(0) = 1,

to the sources that use it, i.e., i ∈ S(l). The sources

aggregates the prices along its route to obtain

πi(0) =
∑

l∈L(i) wl(0) and computes Πi(0) =

(H−1
k )ii

∑

l∈L(i) wl(0).
1.c The weighted price of route of source i, Πi(0) is

sent to all the links source i uses, i.e., l ∈ L(i).
Each link l aggregates the total prices and computes

(B̄k)ll =
∑

i∈S(l) Πi(0) − ∑

i∈S(l)(Hk)−1
ii .

1.d Initialize an arbitrary value of dual variables at each

link l as wl(1).

2. Iteration.

2.a Each link sends wl(t) to the sources that use it,

i.e., i ∈ S(l). Each source i aggregates the prices
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along its route to obtain πi(t) =
∑

l∈L(i) wl(t) and

computes Πi(t) = (H−1
k )ii

∑

l∈L(i) wl(t).
2.b The weighted price of route of source i, Πi(t)

is sent to all the links source i uses, i.e.,

l ∈ L(i), then each link l aggregates the total

prices from all the sources and updates wl(t +
1) = 1

(Dk)ll+(B̄k)ll

((B̄k)llwl(t) −
∑

i∈S(l) Πi(t) +
∑

i∈S(l)(Hk)−1
ii wl(t)−

∑

i∈S(l)(H
−1
k )ii∇if(xk)−

(H−1
k )(S+l)(S+l)∇S+lf(xk)).

It can be shown that the above procedure can be imple-

mented in a distributed way and it coincides with iteration

(8), and hence generates the desired solution to Eq. (6) for

each primal iteration k (see [18] for more detail).

B. Distributed Computation of the Newton Primal Direction

Once the dual variables are obtained, the primal Newton

direction can be solved according to (5), with (∆xk)i =
−(Hk)−1

ii (∇if(xk)+(A′wk)i) = −(Hk)−1
ii (∇if(xk)+πi),

where πi is the last price of the route computed from

the dual variable computation procedure, and hence the

primal direction can be calculated in a distributed way also.

However, because our distributed dual variable computation

involves an iterative scheme, the exact value for wk is

not available. Hence, the resulting Newton direction may

violate the equality constraint in problem (3). Therefore,

the calculation for the inexact Newton direction, which we

denote by ∆x̃k, is separated into two stages to maintain

feasibility.

In the first stage, the first S components of ∆x̃k is

computed via Eq. (5) using the dual variables obtained in

the preceding section. Then in the second stage, the last L
components of ∆x̃k, corresponding to the slack variables,

are solved explicitly by the links to guarantee the condition

A∆x̃k = 0 is satisfied. This computation can be easily

performed due to the nature of slack variables.

Our distributed Newton-type algorithm is defined as: start-

ing from an initial feasible vector x0, the primal solution x
is updated as follows,

xk+1 = xk + sk∆x̃k, (9)

where sk is a positive stepsize, and ∆x̃k is the inexact

Newton direction at the kth iteration. As we will show in

Theorem 4.3, we can choose our stepsize to ensure the primal

variables xk > 0 for all k, and hence all the logarithmic

barrier functions in the objective function of problem (3) are

well defined.

We refer to the exact solution to the system of equations

(4) the exact Newton direction, denoted by ∆xk. The inexact

Newton direction ∆x̃k from our algorithm is a feasible

estimate of ∆xk. At a given primal vector xk, we define

the exact Newton decrement λ(xk) as

λ(xk) =
√

(∆xk)′∇2f(xk)∆xk. (10)

Similarly, the inexact Newton decrement λ̃(xk) is given by

λ̃(xk) =
√

(∆x̃k)′∇2f(xk)∆x̃k. (11)

Observe that both λ(xk) and λ̃(xk) are nonnegative and well

defined, due to the fact that the matrix ∇2f(xk) is positive

definite.

Our stepsize choice is based on the inexact Newton

decrement λ̃(xk) to ensure the quadratic rate of convergence

of our algorithm, as we will show in Section V. Therefore,

we first need to compute λ̃(xk) in a distributed way, which

is the norm of weighted inexact Newton direction ∆x̃k

and hence it can be computed via a distributed iterative

averaging consensus-based scheme. Due to space constraints,

we omit the details of the consensus algorithm, interested

readers should refer to [16], [8], [15] for further information.

We denote the computed value for λ̃(xk) from consensus

algorithm as θk. The stepsize in our algorithm is given by

sk =

{

c
θk+1

if θk ≥ 1
4 ,

1 otherwise,
(12)

where c is some positive scalar that satisfies 5
6 < c < 1. The

lower bound 5
6 is chosen here to guarantee xk > 0 for all k,

and also convergence of the algorithm.

Due to the iterative nature of our algorithm in both primal

and dual domains, in practice infinite precision of the dual

variable vector wk, primal direction ∆xk and stepsize choice

sk cannot be achieved. We quantify the bounds on the errors

as follows.

Assumption 2: For all k, the inexact Newton direction

∆x̃k produced by our algorithm can be written as ∆xk =
∆x̃k + γ, where γ is bounded by |γ′∇2f(xk)γ| ≤
p2(∆x̃k)′∇2f(xk)∆x̃k + ǫ. for some positive scalars p < 1
and ǫ.

The constant ǫ is here to prevent the requirement of

vanishing error when xk is close to the optimal solution,

which is impractical for implementation purpose. We bound

the error in the inexact Newton decrement calculation as

follows.

Assumption 3: Denote the error in the Newton decrement

calculation as τk, i.e., τk = λ̃(xk) − θk, then for all k, τk

satisfies |τk| ≤
(

1
c
− 1

)

5
4 .

The constant 5
4 is chosen here to ensure our objective

function f is well defined throughout the algorithm, as we

will show in Lemma 4.2 and Theorem 4.3. For the rest of the

paper, we assume the conditions in Assumptions 1-3 hold.

We now show that the stepsize choice in (12) will guaran-

tee positivity of the primal variable, i.e., xk > 0, which

in turn ensures that the logarithmic barrier functions in

the objective function of problem (3) are well defined. We

proceed by first establishing a bound on the error in the

stepsize calculation.

Lemma 4.2: Let λ̃(xk) be the inexact Newton decrement

defined in (11), θk be the computed value of λ̃(xk) and

c, satisfying 5
6 < c < 1, be the constant used in stepsize

choice (12). For θk ≥ 1
4 , the following relation holds (2c −

1)/(λ̃(xk) + 1) ≤ c
θk+1

≤ 1/(λ̃(xk) + 1).
With this bound on the error in the stepsize calculation, we

can show that starting with a positive feasible solution, the

primal variable generated by our algorithm remains positive

for all k, i.e., xk > 0, as in the following theorem.
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Theorem 4.3: Let x0 be a positive feasible primal vari-

able, xk be the sequence of primal variables updated using

iteration (9), i.e., xk+1 = xk + sk∆x̃k, where ∆x̃k be the

inexact Newton direction defined in Section IV-B, and sk is

defined as in (12). Then for all k, the primal variable satisfies

xk > 0.

Therefore our algorithm guarantees the objective function

of problem (3) is well defined throughout.

V. CONVERGENCE ANALYSIS

We next present our analysis for convergence results for

both primal and dual iterations. We first establish conver-

gence for the dual iterations.

A. Convergence in Dual Iterations

In this section, we present an explicit rate of convergence

bound for the iterations in our dual variable computation

procedure described in Section IV-A.

Lemma 5.1: Let M be an n × n matrix, and assume that

its spectral radius, denoted by ρ(M), satisfies ρ(M) < 1.

Let λi denote the set of eigenvalues of M , with 1 >
|λ1| ≥ |λ2| ≥ . . . ≥ |λn|. Assume the matrix has n
linearly independent eigenvectors. Then for the sequence

w(t) generated by the following iteration w(t+1) = Mw(t),
we have ||w(t) − w∗|| ≤ |λ1|tα, for some positive scalar α,

where w∗ is the limit of the preceding iteration as t → ∞.

Our dual variable computation algorithm implements it-

eration (8), using the above lemma it can be shown that

||w(t) − w∗|| = ||u(t) − u∗|| ≤ |λ1|tα, where λ1 is the

eigenvalue of the matrix (Dk +B̄k)−1(B̄k−Bk) with largest

magnitude, and α is a constant depending on the initial

condition. Note that the matrix (Dk + B̄k)−1(B̄k − Bk) is

the weighted Laplacian matrix of the dual graph, hence the

rate of convergence depends on the spectral properties of the

dual graph (see [18] for more detail).

B. Convergence in Primal Iterations

We next present our convergence analysis for the primal

solution generated by the inexact Newton algorithm defined

in Eq. (9). For the kth iteration, we define the function f̃k :
R → R as

f̃k(t) = f(xk + t∆x̃k), (13)

which is self-concordant, because the objective function f
is self-concordant. Note that f̃k(sk) − f̃k(0) measures the

decrease in objective function value at the kth iteration.

For the rest of the analysis, we employ theories of self-

concordant functions and properties of the Newton decre-

ment, a comprehensive review of which can be found in

[18]. Our analysis comprises of two parts, the first part is

the damped convergent phase, in which improvement in the

objective function value at each step is bounded below by

a constant. The second part is the quadratically convergent

phase, in which the suboptimality in the objective function

value, i.e., f(xk) − f∗, diminishes quadratically to an error

neighborhood of 0.

1) Damped Convergent Phase: In this section, we con-

sider the case when θk ≥ 1
4 and stepsize sk = c

θk+1
[cf. Eq.

(12)]. We prove the improvement in the objective function

value is lower bounded by a constant.

Theorem 5.2: Let f̃k be the function defined in Eq. (13),

and λ̃(xk) be the inexact Newton decrement defined in Eq.

(11). Let p and ǫ be the scalars defined in Assumption 2.

Assume that 0 < p < 1
2 and 0 < ǫ <

(

(0.5−p)(6c−5)
4c

)2

,

where c is the constant in stepsize choice [cf. Eq. (12)].

Then for θk ≥ 1
4 and t = 1/(λ̃(xk)+ 1), there exist a scalar

α > 0, such that the following relation holds, f̃k(t)−f̃k(0) ≤
−α(1+p)( 6c−5

4c )
2

(1+ 6c−5

4c )
.

Note that our algorithm uses the stepsize sk = c
θk+1

for

this damped convergent phase, which is an approximation

to the stepsize t = 1/(λ̃(xk) + 1) in the previous theorem

and the error between the two is bounded by Lemma 4.2.

By using the convexity of the function f , Lemma 4.2

and the preceding theorem, we obtain f(xk+1) − f(xk) ≤
− (2c−1)α(1+p)( 6c−5

4c )
2

(1+ 6c−5

4c )
. Hence in the damped convergent

phase we can guarantee a lower bound on the object function

value improvement at each iteration.

2) Quadratically Convergent Phase: In the phase when

θk < 1
4 , we show that the suboptimality diminishes quadrat-

ically to a neighborhood of optimal solution. We proceed by

first establishing the following lemma for relating the exact

and the inexact Newton decrement.

Lemma 5.3: Let p and ǫ be the nonnegative scalars defined

in Assumption 2. Let functions λ and λ̃ be the exact and

inexact Newton decrement defined in Eqs. (10) and (11)

respectively. Then the following relation holds:

(1 − p)λ̃(xk) −
√

ǫ ≤ λ(xk) ≤ (1 + p)λ̃(xk) +
√

ǫ, (14)

for all xk in the domain of the objective function f .

We impose the following bound on the errors in our

algorithm when θk < 1
4 .

Assumption 4: In the quadratic convergence phase, i.e.,

when θk < 1
4 , there exists a positive scalar φ, such that

φ ≤ 0.267 and the following relations hold for all k,

(1 + p)(θk + τ) +
√

ǫ ≤ φ (15)

p +
√

ǫ ≤ 1 − (4φ2)
1

4 − φ, (16)

where τ > 0 is a bound on the error in the Newton decrement

calculation, i.e., for all k, |τk| = |λ̃(xk) − θk| ≤ τ , and p
and ǫ are the scalars defined in Assumption 2.

The upper bound of 0.267 on φ is necessary here to

guarantee relation (16) can be satisfied by some positive

scalars p and ǫ. By Assumption 4, the Newton decrement is

sufficiently small, so that we can bound suboptimality in our

algorithm, i.e., f(xk)−f∗, using the exact Newton decrement

(see [4], [18] for more detail).

Theorem 5.4: Let λ and λ̃ be the exact and inexact

Newton decrement defined in Eqs. (10) and (11) respectively.

Let f(xk) be the objective function value at kth iteration for

the algorithm defined in Section IV and f∗ be the optimal
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objective function value for problem (3). Let Assumption

4 hold. Let ξ = φp+
√

ǫ

1−p−φ−√
ǫ

+ 2φ
√

ǫ+ǫ

(1−p−φ−√
ǫ)2

, and v =
1

(1−p−φ−√
ǫ)2

. Assume that for some δ ∈ [0, 1/2), ξ + vξ ≤
δ
4v

. Then for all k with θk < 1
4 , we have for m > 0,

λ(xk+m) ≤ 1

22mv
+ ξ +

δ

v

22m−1 − 1

22m
,

and

limsupm→∞f(xk+m) − f∗ ≤ ξ +
δ

2v
.

The above theorem shows that the objective function value

f(xk) generated by our algorithm converges quadratically to

a neighborhood of the optimal value f∗, with the neighbor-

hood of size ξ + δ
2v

, where ξ, v, δ are defined as above.

Note that with exact Newton algorithm, we have p = ǫ = 0,

which implies ξ = 0 and we can choose δ = 0, which in

turn leads to the size of the error neighborhood being 0. This

confirms with the fact that exact Newton algorithm converges

quadratically to the optimal objective function value.

VI. SIMULATION RESULTS

Our simulation results demonstrate that the decentralized

Newton method significantly outperforms the existing meth-

ods in terms of number of iterations. For a comprehensive

comparison, we count both the primal and dual iterations for

our distributed Newton method. In the simulation results, we

compare our distributed Newton method performance against

both distributed subgradient method [12] and the Newton-

type diagonal scaling dual method developed in [1].

To test the performances of the methods over general

networks, we generated 50 random networks. The number

of links L in the network is a random variable with mean

40, and number of sources S is a random variable with the

mean 10. Each routing matrix consists of L × R Bernoulli

random variables. All three methods are implemented over

the 50 networks. We record the number of iterations upon

termination for all 3 methods, and results are shown in Figure

1 and Figure 2. Figure 1 shows the number until termination

on a log scale. We can see that overall distributed Newton

method is about much faster than subgradient methods,

and the diagonal-scaling method’s performance lies between

the other two, with a tendency to be closer to the first

order subgradient method. Figure 2 shows the histogram

for the same set of data. This figure shows on average our

method is about 100 times faster than subgradient method

for these relatively small networks. Diagonal scaling method

has performance on the same order of magnitude as the

subgradient method, but slightly faster.

VII. CONCLUSIONS

This paper develops a distributed Newton-type second

order algorithm for network utility maximization problems

that can achieve superlinear rate of convergence to some

explicitly quantified error neighborhood. We show that the

computation of the dual Newton step can be implemented

in a decentralized manner using matrix splitting technique

with very limited scalar information exchange. We show that

even when the Newton direction and stepsize are computed

with some error, the method achieves superlinear conver-

gence rate to an error neighborhood. Simulation results also

indicates significant improvement over traditional distributed

algorithms. Possible future directions include to analyze the

relationship between the rate of converge and the underlying

topology of the network and to give explicit bounds on

iteration count for the entire algorithm.
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