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The quantum-classical correspondence in the presence of dissipation is studied. The semiclassical
expression for the linear response function of an anharmonic system is expressed in a series
containing classical stability matrix elements, which can diverge due to the chaotic behavior of
stochastic trajectories. The presence of dissipation in most cases removes the divergence of
higher-order correction terms, thus suppressing quantum effects and making the system more
classical. The regime of system-bath coupling, which makes quantum dynamics completely
classical, is obtained in terms of friction, temperature, and anharmonicity. Special cases when bath
coupling may lead to enhancement of quantum effects are discussed. © 2009 American Institute of

Physics. [DOI: 10.1063/1.3154142]

I. INTRODUCTION

The concept of quantum-classical correspondence for
isolated systems has been extensively discussed in
literature.'”’ However, all real systems are open and subject
to the influence of noise from the surroundings. The influ-
ence of noise is especially important in chemistry, where the
coupling between molecular systems and thermal bath is re-
sponsible for fluctuations in the structure and energy levels
of the molecule, the flow of energy into and out of the mol-
ecule, and thermally activated rate processes.

Coupling of quantum systems to the surroundings results
in the loss of quantum coherence.* Many theoretical and
experimental works demonstrated that decoherence plays an
essential role in quantum-classical correspondence and that
in the presence of decoherence the quantum dynamics be-
haves more classically than in the absence of
decoherence.'™"® This suggests that the agreement between
the quantum and classical response functions will improve if
the coupling to the bath is introduced. However, in some
cases, it was shown that dissipation enhances quantum
effects.'®!” It is thus interesting to find the range of param-
eters of dissipative environment that can reduce quantum
effects and, above some threshold, even make the system of
interest classical.

Semiclassical analysis is a promising tool for the analyti-
cal study of the environmental effects on a quantum system.
In recent papelrs7’18 we proposed a semiclassical expression
for the quantum response and correlation functions in the
form of semiclassical corrections to the classical expressions
of response and correlation functions. The proposed semi-
classical series provided exact quantum results for the simple
anharmonic potentials such as Morse potential7 and infinite
square well potential.]8 The quantum coherent effects are
reconstructed in this semiclassical approach due to the de-
pendence of the correction terms on the classical stability
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matrix elements. For instance, the semiclassical expression
for the linear response function'® of a canonically distributed
noninteracting integrable systems20 reads

R(t) = 2 R,(1)e P00,

(1.1)

with microcanonical response function R,(f) in the form’

Ry(1) = f {a(d). (0}( J")dfd ¢
f (a(n)D*a(0)) (’ J")cud ¢
(J J)
~ 1920 a(0)—————dJdgy + -

(1.2)

where the first term is the classical microcanonical response
function, {---} is a Poisson bracket, «(z) is a classical dipole
moment, and é:((é/ @) (d/ a5 —(317)(31 dgp)) is a differ-
ential operator over the classical action-angle variables
{J,@}. The correction terms with coefficients 7" contain
classical stability derivatives d"alt)/ oJ"
~ 'x(1)/ ox(0)" Ip(0)"™", which reflect the coherence be-
tween the n+1 classical trajectories. Quantum coherence is
therefore transformed into the stability of the nearby classical
trajectories. Resummation of all correction terms recovers
the quantum expression of the response function. One can
notice that the quantum coherent effects reside entirely in the
semiclassical terms ~#". If for some reason the magnitude
of these terms is small so that these terms can be neglected
(normally they diverge with time) then the quantum effects
can be neglected as well.

It is straightforward to extend this approach to dissipa-
tive classical dynamics and to study dissipation effects on the
quantum coherence by means of decoherence of classical
trajectories (stability matrix elements). The idea of using
classical Langevin trajectories in semiclassical calculations
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of the dynamics of quantum systems coupled to harmonic
bath was also developed in Refs. 21 and 22. It was shown?
that in the continuum limit of the semiclassical initial value
representation, the path integral over system paths includes
only classical Langevin paths.

Due to the simplicity of the form of semiclassical cor-
rections, which are just functions of stability derivatives, it is
relatively easy to study dissipation effects on quantum-
classical correspondence; when these corrections become
small the effects of quantum coherence are negligible. In this
paper we study the effect of noise from environment on the
temporal behavior of the system’s stability matrix elements
and consider the following question: At what temperature
and friction can the divergence of stability matrices be re-
moved so that higher order semiclassical correction terms
can be omitted?

The paper is organized as follows. In Sec. II we describe
the harmonic bath model and derive the equations of motion
for the stability matrix elements. In Sec. Il we study the
stability of the matrix elements for an isolated system. In
Sec. IV we discuss the stability of matrix elements in the
presence of nonresonant bath. In Sec. V we study the stabil-
ity of matrix elements in resonant bath. The dynamic behav-
ior of higher order stability matrices in the presence of
dephasing is generalized in Sec. VI with numerical results
provided in Sec. VII. The results obtained are discussed in
Sec. VIIL

Il. GLE AND ITS STABILITY MATRIX
A. Model of dissipative system

Dissipative systems are often defined as systems coupled
linearly to a harmonic bath.”® The classical dynamics of
these systems is described by the generalized Langevin equa-
tion (GLE), which is obtained as the continuum limit of an
infinite number of bath oscillators. In this limit, the bath
degrees of freedom are collectively accounted for by the ad-
dition of friction and random force terms to the Newton’s
equations of motion of the system of interest.” GLE is a
convenient analytical tool for describing dissipation effects.
Here we consider an anharmonic system with potential V(g)
linearly coupled to a harmonic bath. The system-bath Hamil-
tonian has the following form:

p? 1 N ci \?
=—+V(q)+—2 (p2»+w2(xj—~1§q> ), (2.1)
Zp 25V U e

where ; is a bath mode harmonic frequency and c; is a
coupling strength. The equation of motion for the system

coordinate g takes the GLE form,23

. dV(g) " "
Mg + +p | di’ fr—1")q(r) = &), (2.2)
0
with the friction kernel,
1 N 2
Y1) = =2 —Scos(w;), (2.3)

M j=1 @;

and random force
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J J

N
&) = E Cj(<xj_
j1

%q(O))cos(ij) + %‘sin(wj;)). (2.4)

The friction kernel is related to the correlation function of
random force via the fluctuation-dissipation theorem,

(&) = pkTy(t—1"),

where T is a temperature of the bath. We take the spectral
density of a harmonic bath to be of the Ohmic form with the
cutoff frequency wC,M

(2.5)

Jo(w) = pyywe™ e, (2.6)
This spectral density results in a friction kernel of the form

270 e
t)=— R
) T 1+ tzwz

(2.7)

which becomes a delta function as w.— 2. In this paper, we
vary o, with respect to the frequency of the system w; to
cover both the resonant case (w.> w,), which allows energy
transfer between the system and the bath, and nonresonant
case (w,<w,), which does not allow energy transfer.

B. Time evolution of stability matrix elements

The time evolution of the stability matrix elements can
be obtained from the Langevin Eq. (2.2),

dq _p

e w’

d v !

&e__ 22 —f di'y(t—1")p(t') + &1). (2.8)
dr 99 | 4=qty  Jo

Considering initial conditions ¢(0) and p(0) as variables, we
take partial derivative of the Eq. (2.8), with respect to g(0)
and p(0), and obtain the equations for the first order stability
matrix elements MZ:&q(t)/&q(O), MZ:&p(t)/&q(O), MZ
=dq(t)/ dp(0), and Mﬁ:&p(t)/&p(O),

d
ZAgq = AgP
dqu_Mq’

t

d
EM{; == V'(gMi- fo dt’ y(t =" )M (1) — (1),

(2.9)

d
— M4 = MP
M =My,

13
%Mﬁ =-V'(gM} - fo dt' y(t—1")M)(1),
where V"(q)=dV/dq*>. The derivatives 9&(1)/dg(0) and
9&(t)/ dp(0) are found by performing differentiation with re-
spect to ¢(0) and p(0) of the expression (2.8) before taking
the continuum limit of an infinite number of bath
oscillators,23 ie.,
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O .
q(0) ~ 076](0); Cj(<xj - ;}%Q(O))Cos(wjt)

N 2
C
+ I—)J-sin(wjt)> =- >, —Scos(wt) = - A1),
j j=1 @

(2.10)

O .
ap(0) mz Cf((xj— ;j%q(o)>cos(wj;)

+ &sin(wjt)> =0.
wj
Considering Eq. (2.9) one notices that, different from the
original equations of motion (2.8), Eq. (2.9) does not have
explicit stochastic terms. The only source of stochasticity
comes through the stochastic behavior of ¢(), which is con-
tained in the anharmonic terms of V(g), i.e., in the derivative
V"(g) (thus, for instance, for a harmonic potential, Eq. (2.9)
is analytical and does not contain any source of stochas-
tisity). It is thus expected that the effect of thermal fluctua-
tions on the propagation of stability matrices is smaller for
systems with lower anharmonicities. Since the propagation
of stability matrix elements explicitly influences the dynamic
behavior of quantum corrections, which are responsible for
quantum coherent effects,”'® we expect that the temperature
effects on quantum decoherence will be smaller for systems
with lower anharmonicity.

C. Markovian limit

Equation (2.9) can be simplified for further analytical
derivations under the Markovian approximation24 to the fric-
tion kernel in the original Langevin Eq. (2.2), [udt' ¢t
—1")g(t") = v'(w,)q(r). The Markovian approximation indi-
cates that the energy loss occurs only when the resonance
condition is satisfied, i.e., there is a bath mode that has the
same frequency as the system’s frequency of oscillations .
Here y'(w) is the real part of the Fourier transform of the
friction kernel, which for the Ohmic friction kernel Eq. (2.7)
reads

Y (@) = ype™ . (2.11)
We thus obtain from Eq. (2.9)

M+ 5 (@) M+ V(@M == 4(1),

Mi+ ¥ ()M} + V' (gM] =0, (2.12)

where (r) is a fast decaying function. Therefore, to study
the stability of the solutions of the above equations, it is
sufficient to study the stability of the following equation:

M+ 9y ()M +V'(gM =0, (2.13)

which is an equation of motion for the damped harmonic
oscillator with the modulated frequency. For the harmonic
potential V(g), the solution of the equation is a simple har-
monic oscillation with the decaying amplitude if y'(w,) # 0.
If V(g) is anharmonic with the cubic anharmonicity &, V(q)
=(wjq?/2)+eq’/3, then Eq. (2.13) reads

J. Chem. Phys. 130, 234107 (2009)

M+ vy (w,)M + wéM: 2eq(n)M. (2.14)

The term 2eq(r)M acts as a driving force to harmonic oscil-
lations resulting in parametric resonance at Fourier compo-
nents of ¢(7) at frequencies 2w, and w0,25 which can lead to
the divergence of solution M(z). The unbound growth of sta-
bility derivatives M{ in time is therefore entirely due to the
anharmonicity of the system’s potential. However, both

damping term y'(w,)M and fluctuations of ¢(¢) can reduce
this divergence. We will study the stability of Eq. (2.13) in
detail in the following subsections.

lll. THE DIVERGENCE OF STABILITY MATRIX
ELEMENTS OF AN ISOLATED SYSTEM

If the system is not coupled to the environment, Eq.
(2.13) reads

M+V'(gM =0, (3.1)

where V(g(7)) is a periodic function for systems with regular
dynamics. Equation (3.1) is of the type of Hill’s equation and
the stability of its solutions can be analyzed by means of
Hill’s matrix.”® To write down Hill’s matrix we need to
specify a particular form of potential V(g). In this paper we
consider a simple analytically solvable anharmonic potential
with harmonic frequency wy=1,
7 &g

V(q)=5+—.

3 (3.2)

The cubic potential represents the first two terms of Taylor
expansion of the Morse potential and is widely used in lit-
erature for the analysis of the effects of anhalrmonicity.zél’27

The analytical solution for the motion in potential (3.2)
is known,28

q(t) = ¢(0) + asn®*(wt,k*), ¢(0)=0, (3.3)

where sn(u,k?) is the Jacobian elliptic sine function and

P=¢gq(0), (3.4)
2
e \/1+ 3(2P’ +2P—1) ’ (3.5)
2 34+ (1+2P)3(1-2P)(3+2P)
w—l\/1+P+l\/3(1—2P)(3+2P) (3.6)
“2\N2 6 ’ ‘
—12P(1 + P) 57)

“= e(\V3(1-2P)(3+2P) +3(1 +2P))’

To write down the Fourier expansion of V"(¢(¢))=1+2eq(7),
we use the cosine expansion of the Jacobian sine function,

©

K-E 27122 nQ"
Kk* K5 1-0

sn?(wt, k%) = 5, cos(nmwt/K),

(3.8)

where K(k) and E(k) are the complete elliptic integrals of the
first and second kind, respectively, k is the modulus, k'
=\1-k? is the complementary modulus of the elliptic func-
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tions, Q=exp(-7K'/K), and K’ = K(k'). The Fourier expan-
sion of V"(¢(z)) is therefore

V"(q(t)) — E Unemwm/K,

n=—00

(3.9)

where

K-FE
vo=1+2¢(0)e +2ae 2 )

(3.10)
dagm nQ"

Up=— K2k2 2(1 _QZH)‘

Hill’s matrix, which is needed to study the stability of
26
Eq. (3.1), reads

D — Uem s

= + R 3.11
nm UO _ (a)7Tn/K)2 n,m ( )

where §, , is a Kronecker symbol, v,,_,=0 at n=m and n,m
go from — to . The solution to Eq. (3.1) is stable (nondi-
vergent) if A=|1-2 sin?(K\v,)det(D,,,)| <1 and exponen-
tially diverges if A>1. The numerical calculation of
det(D,,,) using Eq. (3.11) shows that D,,,—0 as |n|,|m|
— oo, For €=0.5 and ¢(0)=0.7, det(D,),,) is already equal to
2% 107'2 for the 15X 15 matrix of D,,,. This means that for
the regular motion, A=1 and lies right on the border of sta-
bility; it is neither stable nor exponentially divergent. The
solution to Eq. (3.1) should be thus linear, which easily turns
into exponentially divergent function (since the linear term is
the lowest order term of the Taylor series of exponent) if A
becomes greater than 1 and into bounded function if A be-
comes smaller than 1, see Fig. 1. The linear divergence of
stability matrices for regular motion is well known and can
be shown in a much simpler way in the action-angle
representation.30

The key result of the above analysis is that nondissipa-
tive regular motion corresponds to the border of stability of
Hill’s Eq. (3.1), therefore, an external noise is likely to shift
the solution of the Hills equation to the region of stability,
making its solutions bounded. The latter will make the semi-
classical corrections in Eq. (1.2) nondivergent and at some
threshold of noise, even negligible, allowing these correc-
tions to be omitted and thus suppressing quantum effects. In
a special case, external noise of a particular type can shift the
solution for stability derivatives [Eq. (3.1)] to the region of
instability, resulting in stronger divergence of stability matri-
ces and therefore enhancing quantum effects. The influence
of noise on stability of Eq. (3.1) is studied in the following.

IV. STABILITY OF MATRIX ELEMENTS IN THE
PRESENCE OF NONRESONANT NOISE

We now consider a system coupled to the environment.
We return to Eq. (2.13) and consider a nonresonant case, i.e.,
when the cutoff frequency w, of the bath oscillators is much
less than the system’s frequency w,. Relaxation of ¢(7) in this
case occurs only due to the pure dephasing mechanism. In
this case, v’ (w,)=0 and Eq. (2.13) has now the form similar
to Eq. (3.1),

J. Chem. Phys. 130, 234107 (2009)

T
- M(t) i
| BEE

20} ;q':“ :
U\AAAA
.VVVVV

ot R :
- i

0| { ?'
Y DL S

FIG. 1. Solutions of Hill’s equations for the different values of stability
parameter A. The dashed line stands for A=1.01, the solid thin line stands
for A=1, and the solid thick line stands for A=0.99.

M+V'(gM=0, (4.1)

except that g(7) in V"(¢(r)) is stochastic and is subjected to
the pure dephasing mechanism.

The low frequency bath shifts the frequency of system’s
oscillations. Such a blue frequency shift is observed experi-
mentally and is proved theoretically by Levin ef al. in Ref.
27 and Yang et al. in Ref. 31 using the GLE. Following their
derivation, the blue frequency shift is of the order of

~ N

ow, =™ —w ,
2 w,

s s s

4.2)
where w;°" is a new system frequency and w.<w; is the
cutoff frequency. We now check how this frequency shift
influences the stability of Eq. (4.1). In the presence of fre-
quency shift, Hill’s matrix modifies as follows:

vn—m

Dnm = 2 + 511,171’ (43)
T

vy — ((— + 5ws>n)

K

with coefficients v, the same as in Eq. (3.10). In Fig. 2 we
plot the stability parameter A=|1-2 sin?(K\vy)det(D,,,)| as
a function of Sw,. As one can see from the figure, for the
blueshifts dw,>0, the stability parameter is less than 1,
which makes the solution of Eq. (4.1) stable and bounded. In
the sense of semiclassical series (1.2), quantum mechanical
effects are reduced in nonresonant bath.
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FIG. 2. Dependence of stability parameter A on the frequency shift dw;.

Interestingly, if the effect of coupling to bath introduces
a redshift of the system’s frequency, i.e., dw, <0, the semi-
classical correction terms would diverge more intensively
(see Fig. 2), enhancing quantum effects. The enhancement of
quantum effects may be observed for the momentum system-
bath coupling, which has opposite effects to the spacial
system-bath coupling.l

V. STABILITY MATRIX ELEMENTS IN THE PRESENCE
OF RESONANT BATH

A. The case of nonzero friction in the absence
of thermal noise (7=0)

Let us now consider the solution to Eq. (2.13) in the
presence of friction (w.> w,), but in the absence of noise. In
this case ¢(f) dephases due to energy relaxation. The sys-
tem’s frequency w, is usually a slow monotonic function of
energy, we can therefore consider y'(w,) = y'(wy)=7'(1) to
be a constant. Transformation y=exp(y'(1)¢/2)M(t) reduces

Eq. (2.13) to
y'(1) }y N

4 (5.1)

V+ [V'(q)
Since V"(q(t))=1+2eq(r)—1 with ¢(r)~exp(=y'(1)t/2)
—0, then the solution y(¢) becomes a simple harmonic os-
cillation after the time 1/9'(1). Since y(¢) is bounded then
M(t)=exp(—y'(1)t/2)y(¢) decays exponentially. According
to the semiclassical series (1.2), quantum effects are reduced
because in the presence of friction the correction terms in Eq.
(1.2) decay exponentially rather than diverge with time.

B. Combined effects of friction and thermal noise
(T#0)

From the above analysis it follows that if only anharmo-
nicity or energy relaxation of system’s oscillations g(¢) is
present, the higher order corrections in semiclassical series
(1.2) decay with time and the rate of decay is proportional to
the strength of the dephasing rate. However, surprising as it
may seem, the simultaneous presence of both anharmonicity
and relaxation can lead to exponential divergence of the sta-
bility matrices in some cases. We discuss this instability in
the present section.

J. Chem. Phys. 130, 234107 (2009)

The transformation y=exp(y'(w,)t/2)M(r) again con-
verts Eq. (2.13) into

j+ (0% +28q(1)y=0, (5.2)

where we replaced V"(g) with its explicit expression and
introduced @>=1-7'(1)?/4. This is a well known equation
for the Kubo oscillator, in which the harmonic frequency is
modulated by the stochastic process ¢(r). Unfortunately, the
theory of stability of Eq. (5.2) is developed only for the case
when the correlation time of g(z) is short,32 33 i.e., very fast
dephasing of ¢(z). The latter is not applicable to the problem
under consideration because strong noise from surrounding
leads to the fast escape from the cubic potential according to
the Kramers mechanism.** Indeed, for a particle to stay in
the cubic potential one should have temperature that is much
lower than the height of the potential barrier, i.e., T/V
<1, which in this case is V,,,,=1/6&% The border of stabil-
ity of Eq. (5.2) will be shown below to correspond to %,
~ Ce’T, where C~ 1. This gives the critical value of friction
of the order y,<<1/6 (in units of wy=1), which means slow
dephasing rate of the system’s oscillations and long correla-
tion time of ¢(z).

C. Short correlation time of q(f)

Let us briefly recall the results of stability analysis of Eq.
(5.2) when the correlation time of ¢(7) is short.*****>% In
this case, the divergence rate of the second moment of y(z) is
given by the e><p0nent32’33’35’3'6

282 N ' 2 ~_/ 2
No= gfo (q(0)g(t—=1")) —{q(1))")cos(2at")dt

2
<q2> f Cl)cos(2a")dt' = b’sTC(z“’)@ ),

(5.3)

where C(t)=({q()q(t—1"))—{q(1))*)/{g?) is a normalized

correlation function and C (w) is its cosine Fourier transform.
If o> 0 then (y(¢)?) diverges as exp(\f) and the diver-

gence of the original stability matrix element M(z) is then

[M(D)] = (M(1)?) ~ o=y (D72, (5.4)

For converging M(t) we should have \g—7'(1) <0, thus the
border of stability corresponds to

No=7'(1).

The second moment of ¢g(¢) can be found from equipartition-
ing condition {g?/2)=T/2 and y'(1)=7yye " from Eq.
(2.11). With this and Eq. (5.2) the border of stability (5.5)
reads

(5.5)

% =C'(®)&°T, (5.6)
where C'(w)=27CQ2&)e" /&% If v, is lower than that in
Eq. (5.6), then stability matrix elements M(r) exponentially
diverge; if 7, is lower than Eq. (5.6), then M(z) exponentially
decays.
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FIG. 3. The boarder of stability of solution M(z) from Eq. (2.13). The region
above the line is the region of stability and corresponds to exponentially
decaying in time M(); the region under the line is the region of instability
and corresponds to exponentially divergent M(z). Circles denote results for
£=0.2, crosses denote results for £=0.5. The height of the barrier is &2T
=0.166.

D. Long correlation time of q(f)

It is interesting now to obtain similar stability criteria
[Eq. (5.6)] for the case when the correlation time of g(r) is
not short, as in the problem we are dealing with. We obtained
these stability criteria numerically. Consider a particle with
unit mass in the cubic potential (3.2) coupled to the bath of
400 harmonic oscillators. The cutoff frequency was chosen
to be w.=2w,=2 and the largest frequency of bath modes
was taken to be w,,,=5w.=10. The discretization of bath
spectral density [Eq. (2.6)] was made following Ref. 14. We
performed calculation of the second moment of M(¢) using
Egs. (2.8) and (2.12) for different values of temperature T,
friction strength 7,, and anharmonicity parameter &, and re-
corded the step when N=lim,_..(log(\(M?(#)))/t) changed
its sign. Interestingly, positive N stands for the largest
Lyapunov exponent, which in our case is induced by the
dephasing process of the anharmonic one-dimensional mo-
tion. The results are shown in Fig. 3. The relation between
£2T and 7, in the considered range can be described in a
linear form similar to Eq. (5.6), yet with constant coefficient

'=1.8,
Yo=C'€™T. (5.7)

From Eq. (5.7), one deduces the general expression for the
stability exponent of |M(1)],

’y’(l) E_ e‘”“’r

A= +
2 2 2

(= Yo+ C'&T). (5.8)
The comparison of this expression with the numerical values
of \ is given in Fig. 4 and the parameters of numerical simu-
lations were the same as for Fig. 3. One can confirm the
good agreement of expression (5.8) with the numerical cal-
culations.

VI. HIGHER ORDER STABILITY MATRICES

The equations of motion for higher order stability de-
rivatives  @'q(1)/dg(0)*p(0)** and 'p(t)/dg(0)kap(0)"*
can be obtained similarly as in Eq. (2.9) by subsequent dif-

J. Chem. Phys. 130, 234107 (2009)

002}
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FIG. 4. Stability exponent \ of |M(1)|. Vertical axis \y stands for numerical
value, while horizontal axis \; gives the corresponding value from Eq. (5.8).
Circles denote results for e=0.2 and crosses denote results for £=0.5. The
straight line is the line A=Ay

ferentiation of Langevin Eq. (2.8) over initial conditions. For
instance, for derivative g(¢)/dp(0) &p(O)EM]q,p(t), it fol-
lows from Eq. (2.12)

M}, + ¥ (w)M}, + V' (gM}, =~ (Mg)z, (6.1)
where V"(q)=1 for the cubic potential is used. This is the
same equation as Eq. (2.12) except for the driving force. We
know that for a driven oscillator, its solution M[‘ip(t) is a sum
of free oscillations with the appropriate amplitude plus an
oscillation with the frequency of the driving force. In the
absence of friction, the amplitude of M}() grows linearly in
time, therefore the solution Mgp(t) consists of a linearly di-
vergent oscillation (in the absence of driving force) plus qua-
dratically divergent oscillation due to the quadratic diver-
gence of the amplitude of the driven force. Quadratic
divergence dominates over linear divergence and, therefore,
the second order stability derivative M () grows as 1,
which is a well-known result for the second order stability
matrices for systems with regular dynamics.30

In the presence of noise, M}(#) either diverges or decays
as exp(\f) depending on the sign of \ as discussed previ-
ously. Thus, MZp(t) consists of two oscillation terms, with
the amplitude of the first, the free oscillation term, behaving
as exp(\7) and the amplitude of the second, the driving force
term, depending on time as exp(2A#). If N> 0, the driving
force term will dominate and the divergence of Mgp(t) will
be exp(2\t). However, if A <0, which we are mostly inter-
ested in, the decay of M;’,p(t) goes as exp(—\1).

The divergence of the remaining second order stability
matrix elements qu(t), sz(t), MZq(t), MZP(I), and Mﬁp(t)
will be the same as M} (7) since they are obtained from
M7 (1) either by integration or from a similar type of equa-
tions. It is straightforward to extend the same analysis to the
higher order stability derivatives. We thus conclude that an
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nth order stability matrix element M"(r) behaves at long
times as " for an isolated regular system, exp(n\f) for a
dissipative regular system with positive \, and exp(=|\|) for
a dissipative regular system with negative \.

For the analysis in Sec. VII we would also need the
behavior of stability matrix elements at the initial interval of
time. From the physical point of view, the effect of noise
from surrounding contributes to system’s dynamics with
time, therefore at the very first moments of time we may
consider the dynamics of a system coupled to environment to
be similar to that of an isolated system, which means the
divergence of the nth stability matrix as ¢". However, as we
have shown, at long times stability matrix elements decay or
diverge exponentially. The divergence of M"(¢) at all times
can be thus taken as a product of its initial and its long-time
behavior, giving

tneZn}\t’ A > O,
M" (1) =

2
tne—|?\|t, \ < 0. (6 )

Vil. ANALYSIS OF SEMICLASSICAL
CORRECTIONS

Given the dynamic behavior of stability matrices it is
now interesting to see how the semiclassical correction terms
in Eq. (1.2) decay when a system-bath coupling is intro-
duced. The order of magnitude of the first classical term in
Eq. (1.2) is governed by its largest divergent derivative,
|aa(1) | 0J| ~ MV (1) (dw/ 0J)| tyayl» the second is of the order
of its highest divergent derivative |Pa(r)/dl?|~ (MM (r)
X (9! 0J) )| aaxls Where |ay,y is the largest spectral com-
ponent in the Fourier decomposition of «(z) and higher order
derivatives @'w/dJ" are neglected (in particular, for the
Morse oscillator, #w/dJ? is exactly zero). The second term
becomes significant when it is of the same magnitude as
the first term AM V(1) (9001 8T) =3 M)
X (£)3| atax|*(dw/ 3J)3. This equality becomes satisfied at time
* at which MW(r")=1/%|dw/dJ| and, using Eq. (6.2), we
have

(7.1)
Jw
aJ

which is true for both positive and negative \. In the absence
of system-bath coupling A =0, we recovered the result for the
nondissipative regular motion.” The crossover time 7* stands
for the critical time when the classical term fails to describe
further quantum dynamics and higher order semiclassical
corrections are needed. One can see from Eq. (6.1) that posi-
tive N\ reduces ¢* while the negative \ increases 1*. Interest-
ingly, there is a critical value of \, at which * becomes

infinitely large. This happens when max,(r exp(\ 7))
=1/%|dw/ 3J|, which gives
Jw
Ne=—eh|—|. (7.2)
aJ

As N—\,+0, the crossover time ¢*—o0 and for all A<<\,,
the classical term in series (1.2) dominates over the rest of
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the semiclassical terms at all times and the system thus be-
comes completely classical. One can also notice that condi-
tion (7.2) removes the quantum recursion effects caused by
summation over discrete levels in Eq. (1.1). The period of
quantum recursions is inversely proportional to the differ-
ence of phase frequencies of nearby levels, i.e., by Aw
~fi|dw/ 3J|, which follows from Eq. (7.2) and is on the order
of the signal decay time 1/\.. Therefore the summation in
Eq. (1.1) can be replaced with classical integration.

We can illustrate the obtained results numerically by di-
rect calculation of semiclassical terms in Eq. (1.2). We cal-
culate the classical and two correction terms up to the order
of #*, for a single term R, (¢) in Eq. (1.1), i.e., the microca-
nonical response function, of a Morse potential coupled bi-
linearly to the bath of harmonic oscillators described earlier.
The quantum and semiclassical linear response functions of
an isolated Morse oscillator were computed in Ref. 7. The
Morse potential D(1—exp(—ox))? is considered due to the
simple analytical form of its action-angle representation,
however, at the same time, in the low-energy region its an-
harmonicity can be represented by a single cubic term to
make a connection with the results in the present paper. The
parameter of cubic anharmonicity in this case is e=30/4, the
harmonic frequency is Qy=\2Do?/u, and hldw/dJ|
=2x,Q=07/ u, where y, is the spectral anharmonicity and
(. is the mass. To obtain potential (3.2) with a particle of
unitary mass w=1, one needs to rescale the parameters ac-
cording to ' ()=y1)/Q2, t'=Qt, and T'=kT/2Dc>. The
expression (5.8) for the exponent of MV(¢) thus becomes

\ e—Qo/“’c( 9QOkT>

Mfolantutiy
2 Y 32D

(7.3)

From here, the critical strength of friction 7,, which corre-
sponds to the border of stability (\=0) of MV)(7), reads

=

9C" kT

: 7.4
35 D (7.4)

and the critical friction strength that makes the quantum sys-
tem completely classical (\=\_) is obtained from Egs. (7.2)
and (7.3),

’)/(C) = ’)/6 + 4Xeﬂoel+(ﬂo/wc) .

We compare the results of numerical simulations with these
two parameters 7} and ¥} in Fig. 6. The parameters of simu-
lations are D=50, u=100, o=1.4, h=1, Jy=1.5, and the
temperature was taken to be equal to the initial energy kT
=Jo{)y. Both resonant and nonresonant harmonic baths were
considered with the cutoff frequencies w.=2€); and w,
=0.1Q, respectively. Figure 5 shows the nonresonant case;
one can see that the semiclassical expression converges to
the classical one as the coupling strength is increased. In Fig.
6 the results for the resonance case is shown. One can see
that for y,< )/(’) the first two semiclassical correction terms
are unstable. The increase in coupling strength y,> v, leads
to the convergence of the semiclassical result to the classical
one on a longer time scale. The divergence of semiclassical
results at long times is due to the limited number of the
calculated semiclassical corrections. The inclusion of higher

(7.5)
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FIG. 5. (Color online) Linear response function calculated from Eq. (1.2) for the Morse oscillator coupled to a nonresonant bath with w,.=0.1w,. The left
column represents the classical result, while the right column represents the semiclassical result O(%*). Plot (a) corresponds to an isolated system, plot (b)
corresponds to the coupling strength y,=0.03, and plot (c) corresponds to the coupling strength y,=0.5.

order corrections is believed to converge the semiclassical
result on longer time scale similar to the nondissipative case
in Ref. 7. However, the main purpose of the present analysis
is not to calculate the higher order corrections but instead to
indicate when we do not need to calculate them.

VIIl. DISCUSSIONS

In this paper we discuss the effects of dissipation on the
behavior of semiclassical corrections for the systems with
quasiperiodic dynamics. We have shown that the divergence
of the corrections and thus their contributions to the overall
semiclassical expression (1.2) can be significantly reduced
by introducing the dissipation effects. One of the possible

physical reasons for the reduction in divergence of stability
matrices in the presence of dissipation is the increase in di-
mensionality of the system due to the additional degrees of
freedom from the environment. It was shown®* that addi-
tional degrees of freedom result in the decay of classical
stability matrices if the dynamics of classical motion is cha-
otic. The classical response of chaotic systems is beyond the
scope of our current analysis and its quantum-classical cor-
respondence should be further explored.39

In the present analysis we studied the stability of matrix
elements on the basis of stability of their equations of mo-
tion. In the nonresonant case, the process of pure dephasing
leads to the blueshift of system’s oscillation frequency and
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FIG. 6. (Color online) Linear response function calculated from Eq. (1.2) for the Morse oscillator coupled to a resonant bath with w,=2w,. The left column
represents the classical result, while the right column represents the semiclassical result O(%*). Plot (a) corresponds to the coupling strength y,=0.01, plot (b)
corresponds to the coupling strength y,=0.03, and plot (c) corresponds to the coupling strength y,=0.05. The values of the critical coupling strengths are

¥5=0.023 and ¥;=0.20.

therefore to the decay of semiclassical corrections as well as
the convergence of the semiclassical expression to its classi-
cal result. In the resonant case, when the spectrum of the
bath contains modes with system’s frequency, the semiclas-
sical corrections can either diverge or converge depending on
the value of coupling parameters. At values of bath friction
and temperature, given by the criterion vy, > ¥, the contribu-
tion of higher-order #"-terms to the semiclassical series (1.2)
is much smaller than the contribution from the classical
Poisson-bracket term and, therefore, at these and higher val-
ues of friction and temperature, the dynamics of system can
be considered classically. The criterion 7,> v sets simple
limits when the dynamics of quantum system can be de-
scribed in terms of classical mechanics; one needs to com-

pare the anharmonicity of a system with the parameters of
bath and if they satisfy inequality vy,>> 9, then the dynamics
of the system is classical.

The method of semiclassical corrections in the form of
stability derivatives is not a very efficient method from the
computational point of view, since the numerical evaluation
of higher order corrections requires precise calculation of
divergent stability derivatives, the number of which grows
exponentially with correction order. However, it provides an
analytically simple and intuitive way of describing quantum-
classical correspondence, exploring the effects of dissipation,
and deriving an explicit criteria for the suppression of quan-
tum effects.

Our extensive discussions on quantum-classical corre-
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spondence in dissipative systems have important implica-
tions for condensed phase quantum dynamics simulations of
pure liquids, solutions, solids, and polymer systems. The
large number of degrees of freedom involved in these sys-
tems makes it necessary to calculate response functions with
classical dynamics or approximate dynamic methods, includ-
ing centroid molecular dynamics (CMD), ring polymer dy-
namics, Wigner dynamics, and various mixed quantum-
classical methods.*** However, it has been difficult to
formulate a conceptual framework to understand the approxi-
mate nature of various trajectory-based methods. The key
results of our analysis, the concept of crossover time, and its
parametric dependence on the coupling strength to the dissi-
pative environment provide a powerful tool in understanding
and comparing approximate dynamic simulation approaches:

* Most MD simulations compute autocorrelation func-
tions, but response functions are a natural choice for
classical approximations. As explained in Ref. 7, the
system’s response to external perturbation is a physical
process with direct analogy in classical mechanics and
thus serves as a convenient starting point for our analy-
sis. In contrast, quantum correlation functions are com-
plex and cannot be directly accessed experimentally.
For this reason, both CMD and ring polymer dynamics
are designed to calculate response functions, i.e., the
Kubo-transformed correlation function,**°

* The definition of the crossover time confirms that clas-
sical and quantum response functions are identical for
harmonic oscillators, thus suggesting a simple baseline
for comparing various approximations. According to
Eq. (7.1), classical dynamics is accurate at short times,
but the deviation is expected after the crossover time,
which is directly related to the deviation from harmonic
potentials, i.e., anharmonicity.

e As expected, under strong friction, a quantum system
loses phase coherence and assumes the characteristics
of classical dynamics but with the quantum distribution
function. Similar arguments can be applied to many-
body systems, where the large number of degrees of
freedom wash out quantum recurrence and leads to
classical-like behavior. Thus, it is the regime of y> 1y,
defined in Eq. (7.5) that centroid dynamics, ring poly-
mer dynamics, and Winger dynamics can be reliably
applied to condensed phase systems.

These conclusions, in particular, the dissipative effect,
are consistent with earlier observations by several
groups.‘m_44 Our contribution lies in the rigorous formulation
of a quantitative approach built on a systematic expansion of
the exact quantum response function and the asymptotic
analysis of the stability of dissipative trajectories, thus ex-
tending the principle of quantum-classical correspondence to
a broad dynamic regime.
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