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We propose a design for a conductive wire composed of several mutually insulated coaxial con-
ducting shells. With the help of numerical optimization, it is possible to obtain electrical resistances
significantly lower than those of a heavy-gauge copper wire or litz wire in the 2–20 MHz range.
Moreover, much of the reduction in resistance can be achieved for just a few shells; in contrast, litz
wire would need to contain ∼ 104 strands to perform comparably in this frequency range.

In this letter, we show that a structure of concen-
tric cylindrical conducting shells can be designed to have
much lower electrical resistance for ∼ 10 MHz frequen-
cies than heavy gauge wire or available litz wires. At
such frequencies, resistance is dominated by skin-depth
effects, which prevent the current from being uniformly
distributed over the cross section; this is typically com-
batted by breaking the wire into a braid of many thin
insulated wires (litz wire1), but the ∼ 10µm skin depth
at these frequencies makes traditional litz wire imprac-
tical (∼ 104 µm-scale strands). In contrast, we show
that as few as 10 coaxial shells can improve resistance
by more than a factor of 3 compared to solid wire, and
thin concentric shells can be fabricated by a variety of
processes (such as electroplating, electrodeposition, or
even a fiber-drawing process2–4). Good conductors at
these frequencies are increasingly important, e.g. to make
low-loss resonators for wireless power transfer5,6, or for
other applications (e.g. RFID) operating at ISM (In-
dustrial, Scientific, and Medical7) frequencies (e.g. 6.78
and 13.56 MHz). We derive an analytical expression for
the impedance matrix of both litz wire and nested cylin-
drical conductors starting from the quasistatic Maxwell
equations; in particular, a key factor turns out to be the
proximity losses8 induced by one conductor in another
conductor via magnetic fields. Using this result combined
with numerical optimization, we are able to quickly opti-
mize all of the shell thicknesses to minimize the resistance
with a given frequency and number of shells.

For a cylindrically symmetrical system of nested con-
ductors oriented along the z direction, we first see below
that Maxwell’s equations reduce to a Helmholtz equation
in each annular layer. In the quasistatic limit of low fre-
quency, we show that this further simplifies into a scalar
Helmholtz equation for Ez alone, which can be solved
in terms of Bessel functions, the coefficients of which are
determined by the boundary conditions at each interface:
continuity of Ez and of Hφ ∼ ∂Ez/∂r. Once the solution
for Ez, and thus the current density σEz (for conductiv-
ity σ) and the magnetic fields (from Ampere’s law), are

obtained, the impedance matrix can be derived from en-
ergy considerations. Of course, a real wire is not perfectly
cylindrical because of bending and other perturbations,
but these effects can typically be neglected (e.g., if the
bending radius is much larger than the wire radius).

We start by analytically solving Maxwell’s equations
in each medium (air, copper, and insulator):

∇2E(r) +
(
k2 + 2iκ2

)
E(r) = 0. (1)

Here k =
√
εrω/c, ω is angular frequency, εr is relative

permittivity, c is the speed of light in vacuum, κ = 1/δ =√
ωµ0σ/2 (δ is skin depth), µ0 is the magnetic constant,

and σ is the conductivity (5.9×107 S/m for copper, zero
otherwise). Since the wavelength (λ = 2π/k ' 15 m
in vacuum at 20 MHz) is much longer than the conduc-
tor thickness or the skin depth, the k2 term in Eq. 1 is
negligible for solving within a given cross-section z. The
solutions Ez(r, φ) of Eq. 1 are then linear combinations
of cos(mφ) and/or sin(mφ) (m an integer) multiplied by

Bessel functions Jm(η) and Ym(η), where η =
√

2iκr, or

equivalently Hankel functions H
(±)
m (η) = Jm(η)±iYm(η).

The magnetic field is iωBφ = ∂Ez/∂r. The specific lin-
ear combination is determined by continuity of Ez and
Hφ at interfaces, and by using Ampere’s law to relate a
line integral of the magnetic field around a conductor to
the enclosed current. Finiteness at r = 0 dictates that
the innermost layer must have Ez(η) ∼ Jm(η).

Given a set of N conductors, one can find the
impedance matrix by first using the procedure above
to solve for the electric and magnetic fields associated
with the N distinct cases where a single conductor k
(k = 1, 2 . . . , N) carries a net current Ik exp(iωt). The
impedance matrix can then be derived by enforcing
conservation of energy8. For example, one can find
the complex-symmetric impedance matrix Zk,l by excit-
ing the elements with currents Ik exp(iωt), superposing
the previously computed solutions for the electric and
magnetic fields, and computing the (complex) energy
U of the system by integrating the net Poynting flux



2

FIG. 1: Optimal current density at 10 MHz for a copper conductor with diameter 1 mm when the wire consists of: (a) one piece
of copper (resistance per length of 265.9 mΩ/m), (b) 24 mutually insulated conductive concentric shells of equal thickness 5.19
µm around a solid copper conductor (55.2 mΩ/m), and (c) 25 elements whose thicknesses are optimized so as to minimize the
overall resistance (51.6 mΩ/m). In (c), inset shows radial locations (blue) of interfaces between shells. The overall current is
1 A. For simplicity, the insulating gap between shells is taken to be negligibly small. These geometries were solved analytically
in the text, whereas these images were generated by a finite-element method9 as a check.

S = E × H∗/2 flowing into each shell and integrating
the magnetic energy density B · H∗/4 elsewhere. Zk,l
then follows from U =

∑
k,l IkZk,lI

∗
l /(2ω). Once the

impedance matrix is known, it is straightforward to com-
pute the power dissipated by any currents Ik exp(iωt):
Pdis =

∑
k,l Re {IkZk,lI∗l } /2. Since the total current is∑N

k Ik exp(iωt), the overall resistance is

R = Re


N∑
k,l

IkZk,lI
∗
l


/∣∣∣∣∣

N∑
k

Ik

∣∣∣∣∣
2

. (2)

Alternatively, if the current distribution is known before-
hand (as in litz wire), one can compute the power dis-
sipated and thus the overall resistance of the system by
solving for the fields and integrating the Poynting flux
into each conductor without computing Z.

We begin by reviewing traditional litz wire. It is con-
venient to split the problem into two steps: we first solve
Eq. 1 for an isolated cylindrical strand of diameter d
carrying current I, and then consider the proximity
effect on a single strand from the net magnetic field of
all strands. The first step is cylindrically symmetric,
so Ez ∼ J0(η), Hφ ∼ J1(η) and the power/length
dissipated is Pown = Re {ηsJ0(ηs)/J1(ηs)} |I|2/(πd2σ),

where ηs =
√

2iκd/2. If there are N identical
strands carrying identical currents, uniformly ar-
ranged into a circular bundle of overall diameter D,
then the interior magnetic field at a radius R is
well approximated by Hint(R) = 2NIR/(πD2). If
d/D � 1, Hint is essentially uniform over each
strand, in which case the induced fields in a strand
are Ez ∼ J1(η) sin(φ), Hφ ∼ [J0(η) − J2(η)] sin(φ)
(with φ relative to the impinging magnetic
field) and the resulting loss/length is Pprox =

Re
{
ηsJ1(ηs) [J2(ηs)− J0(ηs)]

∗
/|J0(ηs)|2

}
π|Hint|2/σ.

Summing all these losses, the total resistance/length (ig-
noring a small correction from the finite strand-winding
pitch) is

Rlitz =
2

Nπd2σ
Re

{
ηs
J0(ηs)

J1(ηs)

}
+

N

πD2σ
Re

{
ηsJ1(ηs) [J2(ηs)− J0(ηs)]

∗

|J0(ηs)|2

}
. (3)

In the limit κd � 1, the lowest-order deviation from
the DC resistance of N strands [RDC = 4/(Nπd2σ)] is
Rlitz ' RDC

[
1 + (Nd/D)2(κd)4/128

]
. Thus, to keep the

resistance near the DC resistance of a solid conductor
of diameter D [4/(πD2σ)], one would need the scalings
N ∼ 1/d2 and d ∼ 1/κ2 ∼ 1/ω. For example, with
D = 1 mm at 10 MHz, one would need about N ' 104

strands and d < 10µm diameters in order to have a total
resistance within a factor of 3 of the DC value. Com-
mon commercially available litz wires (∼ 102 strands per
mm2) would typically perform significantly worse than a
solid copper wire of the same overall diameter [Fig. 1 (a)]
in this frequency range.

We now consider concentric shells and solve for the
fields when shell k is excited by a current Ik exp(iωt).
This reduces to two cases: a shell carrying a current
with no external field and a shell carrying no net cur-
rent but immersed in a magnetic field Hφ generated by a
current-carrying inner shell. In either case, the solutions
are determined by continuity and by the fact that the
magnetic field in a non-conductive medium at a radius r
is Hφ = I/(2πr), where I is the total current inside the
radius r. For a shell with inner radius a, outer radius b,
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FIG. 2: Ratio of the resistance of an optimized conducting-shell structure with overall diameter 1 mm to: (a) the AC resistance
of a solid conductor of the same diameter, (b) the DC resistance of the same conductor (21.6 mΩ/m), and (c) the resistance
with the same number of elements, but with shells of (optimized) uniform thickness around a copper core.

and carrying current I, the fields are then:

Ez(η) =

√
2iκI

2πσ

[
C

(+)
a,b H

(+)
0 (η) + C

(−)
a,b H

(−)
0 (η)

]
(4)

Hφ(η) =
I

2π

[
C

(+)
a,b H

(+)
1 (η) + C

(−)
a,b H

(−)
1 (η)

]
, (5)

where the constants C
(±)
a,b are given by

C
(±)
a,b =

∓H(∓)
1 (ηa)/b

H
(+)
1 (ηa)H

(−)
1 (ηb)−H(+)

1 (ηb)H
(−)
1 (ηa)

, (6)

with ηa =
√

2iκa and ηb =
√

2iκb. Similarly, for the case
of a shell with no current but enclosing a total current I,

the fields are identical to Eqs. 4–5 except that C
(±)
a,b are

replaced by

D
(±)
a,b =

∓
[
H

(∓)
1 (ηa)/b−H(∓)

1 (ηb)/a
]

H
(+)
1 (ηa)H

(−)
1 (ηb)−H(+)

1 (ηb)H
(−)
1 (ηa)

. (7)

It is now straightforward to derive the full impedance
matrix, as described previously, to compute the resis-
tance of any given current distribution via Eq. 2. A uni-
form current distribution over N shells of equal thickness
t = D/(2N), for instance, would have losses similar to
those of a litz wire, although with a much smaller num-
ber of components (N ∼

√
Nstrands, where Nstrands is for

litz wire with d = t). Given that the exact impedance
matrix is known, however, elementary calculus yields
the currents Ik that minimize Eq. 2 for a given struc-
ture. A more dramatic reduction in the resistance, es-
pecially when N <∼ κD, comes from letting the geome-
try of the shells vary (changing the impedance matrix)
and then minimizing Eq. 2 using numerical optimiza-
tion10,11. We have performed both a single-parameter
optimization where a fixed number of shells of uniform

thickness (the optimization parameter) surround a cop-
per core (a cylindrical shell with inner radius 0) and a
multi-parameter optimization where the thickness of each
shell is a parameter [Figs. 1(b) and (c) show the result-
ing structures and current densities of, respectively, the
single- and multi-parameter optimizations for 25 shells at
10 MHz]. Although we here model the innermost conduc-
tor as a solid core for simplicity, most of the current den-
sity flows within a skin-depth of this conductor (Fig. 1),
and in practical applications substituting a cylindrical
shell a couple of skin-depths thick or more for the solid
core would result in a negligible increase in resistance.
Fig. 2 compares the lowest resistance (as a function of
N and the frequency) achievable by fixing the overall di-
ameter of the conductor at D = 1 mm and optimizing
both the individual thicknesses of the (N−1) outer shells
and the current distribution Ik to the resistance of: (a)
a solid, heavy-gauge, conductor of the same overall D
[resistance/length ' κ/(πDσ) for κD � 1], (b) the DC
resistance per length of a solid copper wire [4/(πD2σ)]
(corresponding to the N → ∞ limit where proximity
losses vanish and the current flows uniformly over the
cross section), and (c) the optimal current distribution
for N−1 shells of optimal equal thickness around a thick
central conductor. Fig. 2(a) shows that an optimized
cylindrical shell conductor can significantly outperform
a solid conductor (the best currently available solution
in this regime) of the same radius, while Fig. 2(c) shows
that the conductors resulting from the single-parameter
optimization (which may be significantly easier to realize
experimentally) perform nearly as well as the more com-
plex multi-parameter structures. For conductors with
shells of uniform thickness, a regression analysis shows
that the optimal thickness topt is well approximated by
κtopt = 1.104 × N−0.4618 to within < 1% provided that
4 <∼ N <∼ κD.

A potential disadvantage of a concentric-shell struc-
ture compared to traditional litz wire is that the braiding
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of the latter automatically takes care of the impedance
matching. However, one can see from Fig. 2(a) that much
of the relative improvement of an optimized concentric
shell conductor over a solid conductor occurs for struc-
tures with only a handful of elements, where even a brute
force approach of individually matching the impedance
of each shell to achieve the optimal current distribution
could be implemented (similar impedance matching con-
siderations arise in multi-layer high-Tc superconducting
power cables12,13, albeit at much lower frequencies). As

shown in Fig. 2(a), an optimized concentric shell conduc-
tor with 10 elements and overall diameter 1 mm would
have roughly 30% of the resistance of a solid conductor
of the same diameter over the entire 2–20 MHz range.
Equivalently, since the resistance of a solid conductor
in the regime κD � 1 scales as 1/D, our optimized
conductor with ten elements would have the same re-
sistance per length as a solid conductor with a diameter
∼ 1/0.3 ' 3.33 times greater (and ' 10 times the area).

We are grateful to M. Soljačić for helpful discussions.

∗ akurs@alum.mit.edu
1 F. E. Terman, Radio Engineer’s Handbook (McGraw-Hill,

New York, 1943).
2 M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D.

Hart, J. D. Joannopoulos, and Y. Fink, Nature 431, 826
(2004).

3 X. Lin, Y.-W. Shi, K.-R. Sui, X.-S. Zhu, K. Iwai, and
M. Miyagi, Appl. Opt. 48, 6765 (2009).

4 S. Egusa, Z. Wang, N. Chocat, Z. M. Ruff, A. M. Stolyarov,
D. Shemuly, F. Sorin, P. T. Rakich, J. D. Joannopoulos,
and Y. Fink, Nature Mater. 9, 643 (2010).

5 A. Karalis, J. D. Joannopoulos, and M. Soljačić, Ann.
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