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Colloidal particles in electrolytes move in response to electric fields (electrophoresis) and salt
concentration gradients (diffusiophoresis), and related flows also occur at fixed surfaces
(electro-osmosis and diffusio-osmosis, respectively). In isolation, these electrokinetic phenomena
are well understood, e.g., electrophoresis without far-field concentration gradients and
diffusiophoresis without applied electric fields. When the electrolyte passes direct current, however,
concentration gradients accompany the bulk electric field (concentration polarization) and the
resulting particle motion, called “electrodiffusiophoresis,” involves a nonlinear combination of
electrophoresis and diffusiophoresis, depending on ion transference numbers and particle properties.
In this work, we analyze the electrodiffusiophoresis of spherical particles in the limit of thin double
layers, neglecting surface conduction (Du<<1) and convection (Pe<<1), considering both
nonpolarizable (fixed charge) and ideally polarizable (induced-charge) surfaces. Via asymptotic
approximations and numerical solutions, we develop a physical picture to guide potential
applications in electrochemical cells, such as analyte focusing, electrophoretic deposition, and
microfluidic mixing near membranes or electrodes. By controlling the mean salt concentration,
particle size, current, and concentration gradient, significant motion of particles (or fluid) is possible
toward either electrode and toward high or low concentration. © 2010 American Institute of

Physics. [doi:10.1063/1.3496976]

I. INTRODUCTION

When a charged surface is in contact with an electrolyte
solution, an electric double layer (EDL) forms. In this situa-
tion, a distribution of space charge, mainly consisting of
counterions coming from the electroneutral solution, will
balance the surface charge. The characteristic length along
which the electrostatic fields are screened by ions in solution
is the Debye length A, defined by

e,e0kgT
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€, being the relative electric permittivity of the liquid, typi-
cally water, g, the electric permittivity of vacuum, kp is the
Boltzmann constant, T is absolute temperature, cf) and z; are,
respectively, the number concentration and the valence of the
ionic species i, and e is the electron charge. Information
about the electrical state of the interface can be obtained by
provoking the relative motion of the charged liquid with re-
spect to the solid surface. The field of science dealing with
such induced motion comprises the so called electrokinetic
phenomena.] Among these, electrophoresis of colloidal par-
ticles is perhaps the best known and the most widely inves-
tigated. It consists of the motion of colloidal particles in
suspension when an electric field is applied. A simple
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equation relating the velocity of the particle U to a dc applied
field E is the Hemholtz—Smoluchowski formula

=Sty )

n

where 7 is the viscosity of the liquid and ¢ is the electroki-
netic or zeta potential, which is a measure of the electric
potential drop over the EDL. This equation is valid provided
that the Debye length is much smaller than the radius of
curvature at any point of the interface, a (a/\p>1), and the
zeta potential is not very high, in comparison with kzT"/e.
In deriving Eq. (2) it is assumed that the particle surface
charge or zeta potential is fixed, which is determined exclu-
sively by the ionic composition of the liquid medium. Al-
though there exist countless studies, both theoretical and ex-
perimental, on the electrokinetic phenomena of surfaces with
fixed charge (or constant zeta potential), only a few experi-
mental works devoted to polarizable surfaces can be found,
mainly in the Russian literature,™ during the second half of
the last century. A different situation arises when the charge
is not fixed but induced by the externally applied field, and
the externally applied electric field interacts with its own
diffuse charge induced at ideally polarizable (blocking,
fixed-potential) electrodes” or isolated surfaces.” The result-
ing induced-charge electrokinetic phenomena have recently
attained considerable interest, due to the rich physical behav-
ior not shown by constant-charge interfaces.® In particular,
the task of finding how to exploit broken symmetries to in-
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duce liquid flow or colloidal migration from a priori
symmetric and stationary flow regimes has culminated
in important technological developments in microfluidic
pumpingL10 and polarizable particle manipulation.“’12 Re-
cent microfluidic experiments have also tested the theory of
induced-charge electro-osmosis in detail by direct flow
visualization,'*"* although open questions remain, especially
for large applied voltages and concentrated solutions."”

One of the electrokinetic phenomena that has never been
investigated with polarizable surfaces is diffusiophoresis,
where a charged colloidal particle moves under the action of
a gradient of electrolyte concentration, and the related phe-
nomenon of diffusio-osmosis, consisting of the flow of liquid
with respect to a stationary charged surface,'® realized that a
gradient of electrolyte concentration could induce motion
and provided the first theory of this effect.'” Over the past
few decades, a number of theoretical and experimental ad-
vances have been made,'&19 and diffusion-driven motion is
now an active field of res.ealrch,m_23 with results available for
arbitrary values of the zeta potential, Debye length, particle
size, and even volume fraction of solids.

Another missing aspect in electrokinetic analyses of po-
larizable particles is the simultaneous consideration of a far-
field gradient of electrolyte concentration (diffusiophoresis,
diffusio-osmosis) and an applied background electric field
(electrophoresis, electro-osmosis). The coupled phenom-
enon, called “electrodiffusiophoresis™ (EDP), and its related
one, “electrodiffusio-osmosis” (EDO), were analyzed by
Ref. 24 in the context of electrophoretic deposition. Experi-
mental studies commonly mix these effects™?° and, very
recently,27 EDP has been proposed as an efficient and cheap
technique for DNA sequencing. Of course, for small pertur-
bations from equilibrium at uniform concentration, the two
effects can simply be added, but there are nonlinear cou-
plings in larger concentration gradients, which have not been
experimentally accessible.

The advent of microﬂuidics,28 however, presently allows
researchers to achieve and control large electrolyte concen-
tration gradients, which can also be measured by means of
laser interferometry.29 For example, sharp fronts of concen-
tration polarization can be obtained near microchannel-
nanochannel junctions,w*32 which can also propagate as con-
centration shocks under appropriate conditions.™** Large
concentration gradients also appear in electrophoretic depo-
sition of colloidal particles on electrodes,™ playing an essen-
tial role in the correct control of the deposit quality. Under
these conditions, a straightforward combination of electro-
phoresis and diffusiophoresis is not possible, as the boundary
conditions usually applied on these studies are not compat-
ible. Specifically, the constant background electric field as-
sumed in the theory of electrophoresis breaks down in the
presence of a significant gradient of electrolyte concentra-
tion.

In this work we present a study of the electrokinetic
response of an isolated spherical particle in an unsupported
electrolyte, in the presence of both a constant gradient of salt
concentration and an applied electric current, as shown in
Fig. 1(a). The assumption of a constant applied current in-
stead of a constant electric field allows boundary conditions

Phys. Fluids 22, 112109 (2010)

o —

anode
cathode

(@) O

FIG. 1. Schematic picture of electrodiffusiophoresis. (a) Dispersed colloidal
particles in an electrochemical cell perform phoretic motion, while fixed
posts induce fluid flow, in response to a direct current between two elec-
trodes. The former situation finds application in electrophoretic deposition
or analyte focusing, while the latter could arise in electrodialysis with con-
vection enhancing transport to ion-exchange membranes. (b) The model
problem of an isolated particle or post under direct current 7., (taken to be
positive, if it opposes diffusion) and electrolyte concentration gradient g,
(represented by the shading in the background). The far-field concentration
profile is sketched below, with the background concentration ¢, (extrapo-
lated at the particle center) and the gradient concentration c, (change across
one particle diameter) labeled.

on the concentration and current to be made compatible. In
addition to specifying the current, we impose a concentration
gradient, which can be related to the transport number 7, of
(say) the cations, equal to the fraction of the current carried
by those ions. Our model thus is more physically meaningful
for electrochemical cells passing direct current (including
microfluidic systems), since one controls the current exter-
nally and the transport number via the electrochemical selec-
tivity of the electrodes, nanochannels, or membranes in the
cell; in contrast, it is not possible to directly control the elec-
tric field and concentration gradient in the vicinity of a bulk
colloidal particle (or microfluidic post). We consider both
ideally polarizable and fixed charge surfaces, with the former
exhibiting richer behavior, generalizing field-driven induced-
charge electrokinetics in homogeneous solutions. Through-
out the paper, we note various possible applications of our
theoretical results in colloid science and microfluidics.

Our goal is to develop a physical picture and analytical
insights into various different phenomena of EDP. As such,
we make four important simplifications, which are often re-
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alistic, as a first approximation. (i) We consider the limit of
thin double layers (i.e., screening length much less than the
particle radius, \p<<a) and make use of effective electro-
osmotic and diffusio-osmotic slip formulae. This assumption
is ubiquitous in electrokinetics and valid for many situations
of interest. (ii) We assume that surface conduction can be
neglected compared to bulk conduction (i.e., small Dukhin
number, Du=K“/aK,<<1, where K and K, are the surface
and bulk conductivities, 1respectively).l Including surface
condition is nontrivial and leads to secondary flows in cases
of inhomogeneous surface charge,’% but the net effect is typi-
cally to reduce the flow, due to “short circuiting” of the tan-
gential electric field and/or induced-charge distribution.”’
Consideration of surface conductivity on finite Dukhin num-
ber is often complicated by the fact that it may be contribu-
tions from conduction (electromigration and diffusion) by
ions located beneath the electrokinetic or slip plane. Deter-
mination of this so called Stern-layer or stagnant-layer con-
ductivity usually requires information obtained with more
than one electrokinetic technique. (iii) We neglect convective
transport of ions, relative to diffusion and electromigration
(i.e., small Péclet number, Pe <1, defined below). This is a
good approximation for most micron-sized colloidal par-
ticles, but can lead to interesting corrections to electrophore-
sis in larger particles and/or faster flows.”™ On the other
hand, one should consider the opposite limit Pe>1 to prop-
erly describe convective mixing (dominating diffusive mix-
ing) in electrochemical cells. For example, below we pro-
pose the use of microfluidic posts to enhance transport to
electrodes or electrodialysis membranes, near a diffusion-
limited a current, but our results for Pe<<1 can only be seen
as a first approximation to get a sense of the possible flows
available for transport enhancement. (iv) Faradaic reactions
at the surfaces of electrodes are not considered in our analy-
sis either. However, this is not a limitation in microfluidic
systems, as explained below. Therefore, there is an advan-
tage in not considering Faradaic reactions, as it gives the
opportunity of extracting some common insights on the
theory of electrodiffusiophoresis regardless of the specific
environment where it appears.

The article is organized as follows. In Sec. II, we begin
by describing the model, identifying key dimensionless
groups, and solving for the slip velocity profile. In Sec. III,
we proceed to derive analytical results for the particle veloc-
ity (or fluid pumping velocity, for a fixed post), as asymptotic
expansions in various limits of the dimensionless groups. In
Sec. IV, we solve the full problem numerically, validate the
analytical results, and describe diverse phenomena that can
occur as the dimensionless groups are varied across realistic
parameter ranges for colloids and microfluidic devices. Fi-
nally, we conclude with a summary and discussion of pos-
sible applications of the theory.

Il. MODEL
A. Bulk equations

We consider the steady state of a single freely suspended
spherical colloidal particle, or a fixed two-dimensional cylin-
drical post, located in an infinite space containing an electro-
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lyte solution, as shown in Fig. 1(b). Electrokinetic phenom-
ena of particle motion (EDP) or fluid motion (EDO) are
driven by a uniform direct current density /.. passing through
the electrolyte far from the particle. In the special case where
each ion has the same transference number’ (defined below)
and contributes equally to the current, the salt concentration
remains constant far from the particle, and only classical
electrophoresis and electro-osmosis occur. In electrochemi-
cal cells, however, this situation never occurs, as one ionic
species typically carries most of the direct current in steady
state, e.g., if those ions are produced or consumed by Fara-
daic reactions at the electrodes (as in electrodeposition/
dissolution), or if they selectively pass through ion-exchange
membranes (as in electrodialysis). Unequal transference
numbers for the ions in steady state imply the existence of a
certain constant gradient, Vc,, in the neutral bulk salt con-
centration (derived below), which can be in either direction
relative to the applied current. This concentration gradient is
essential to our theory, as it drives additional diffusio-
osmotic flows, contributing to the net effect of EDP.

It is important to note that a concentration gradient can-
not truly exist “at infinity,” since this would imply negative
concentrations on one side of the particle. (This is not a
problem with an electric field at infinity in the case of a
uniform concentration, since the electrostatic potential can
have either sign.) Instead, the concentration around the par-
ticle tends toward an asymptotic linear profile after many
particle diameters, which is cut off by electrodes, walls, or
membranes in the macroscopic geometry, outside the domain
of the present simple model. By considering an infinite sys-
tem in our analysis, therefore, we are assuming that all per-
turbations of the potential, concentration, and fluid velocity
decay sufficiently fast to justify neglecting particle-wall in-
teractions in a realistic finite geometry. For the colloidal
problem of a particle in three dimensions, this can be an
accurate approximation, since flows tend to decay like 1/7°
for classical electrophoresis and like 1/7? for induced-charge
electrophoresis. For the microfluidic problem of a post in
two dimensions, the flows are longer ranged, and walls must
be considered for some aspects, e.g., to compute the force
needed to hold the post in place while driving the flow.”
Nevertheless, it is a reasonable first approximation, consis-
tent with extensive prior theoretical work, for us to focus on
an isolated particle in an infinite electrolyte, in order to bring
out the basic physics of EDP.

We adopt the standard electrokinetic equations for our
model problem. The flux of ions in a symmetric binary elec-
trolyte (z*=-z"=z) is given by the Nernst-Planck equation

+ + + — e + + +
j7=—-D"Vc= F Z_D_C_V¢+C_ll, (3)

where D* are the diffusion coefficients of ions and ¢* their
concentrations, ¢ the electric potential, and u is the fluid
velocity. The three terms on the right hand side of this ex-
pression correspond to diffusion, electromigration, and ad-
vection contributions, respectively. Outside the EDL, electro-
neutrality (¢c*=c¢"=c¢) and charge conservation in the
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stationary state (V-j=0; j=j"—j) lead to the following set
of equations:

De;Vic=u-Ve, (4)
ze

——V -(cV¢)=- BV, 5
ARG )

where we have defined the effective diffusivity and the rela-
tive difference of diffusivities as follows:

2D*D™
DD ©

D*-D~
P=prip @)

The set of equations for the motion of a suspended colloidal
particle (or the flow around a post) in stationary state is com-
pleted by considering Stokes equations for the fluid motion

V-u=0, (8)

7Vu=Vp, )

where the electroneutrality of the bulk has been taken into
account in the second expression. Here, 7 is the fluid viscos-
ity and p is the dynamic pressure.

Let us now define the following quantities:
c

c=
%9 s
U Co

<n
Il
Q
<
=
1l

- ze g,e0( kgT \? U'a
(ZS — ¢’ U* — 0 ( B ) , Pe = )
kgT ma \ ze D

With these definitions, we can rewrite Eqs. (4) and (5) in
dimensionless form

V2 =Pe(i- Vo), (10)

V. (&V§) =-pVe. (11)

We can now simplify them by neglecting convective
transport of ions (Pe=0),

V=0, (12)
V- (@Vd) =0. (13)

B. Boundary conditions

The boundary conditions on the potential derive from
constraints on the current density, which is the primary driv-
ing force for EDP. Neglecting surface conduction and assum-
ing zero conductivity of the particle, the normal current
density must vanish on the particle in steady state, and
the current density far from the particle, j., is a prescribed
constant

ﬁ‘ji|r=a=0’ (14)
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J— Jak, (15)
s
where X is the abscissas unit vector. The boundary conditions
on the salt concentration enforce impermeability of the par-
ticle to normal salt flux in steady state (neglecting surface
transport) and a constant concentration gradient g,, far from
the particle,

i-Ve|,_,=0, (16)

¢~ cotgox (Vew— goX). (17)

r—00

Below we will relate g, to the fraction of current carried by
each ion, determined by the electrochemistry of Faradaic re-
actions and/or membranes in the electrochemical cell far
from the particle. As a result, the steady motion of the par-
ticle is controlled entirely by the electrochemical processes
involved in the passage of direct current through the electro-
Iyte.

The boundary conditions on the fluid velocity express
impermeability in the normal direction,

ﬁ'u|r=a=07 (18)

and the effective tangential fluid slip with respect to the par-
ticle surface, just outside the double layers,

4 kgT \?
u= SVSOQMVSQSS - 8r80<i) ln(cosh el
n n ze 4kgT

)VS In ¢y,
(19)

where subscript s refers to surface values and tangential gra-
dients. This is an equivalent form of the Dukhin—Deryaguin
slip formula for “first kind” electro-osmosis at a thin quasi-
equilibrium double 1ayer,40’41 also derived by Ref. 18 (to be
distinguished from “second kind” electro-osmotic slip for the
nonequilibrium double layer at a limiting normal current).”*?
The first term is the classical Helmholtz—Smoluchowski
electro-osmotic slip velocity (2), which persists in the ab-
sence of a concentration gradient. The second term is the
diffusio-osmotic (or “chemiosmotic”) slip velocity, driven
by a tangential concentration gradient, first derived by
Deryaguin and Dukhin in the 1960s.'®'7 For fixed charge
particles, the zeta potential { is constant, related to the pre-
scribed surface charge density of the particle. For ideally
polarizable particles, the zeta potential is angle-dependent
and related to the total charge of the p211rticle,5’8’1]’15’43 as
discussed below.

Finally, the boundary condition for the fluid flow far
from the particle (u.,) depends on the system under consid-
eration. If one is interested in the motion of a particle with
respect to a fluid which is at rest at infinity, the calculation is
easily accomplished in the case of circular cylinders and
spheres using the following expression obtained from the
reciprocal theorem for Stokes flows:'"*

-1 21
U™ = o f uM(6)de, (20)
0
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-1
UsPh = i f uP(6, ) d Q. (21)
ar

By symmetry, there is no rotational motion. In the case of
microfluidic systems, we consider the flow around fixed
structures rather than particle motion. The problem is then
solved by adding to the motion described above an equal but
opposite fluid flow that holds the particle fixed upon the
combination of those two flow fields. Thus

u,=-U. (22)

Below, we will refer to U as the electrodiffusiophoretic ve-
locity (EDV), with the understanding that it can describe
either the motion of suspended particles (typically spheres)
or fluid pumping by fixed posts (typically cylinders).

C. Dimensionless slip velocity profile

Fortunately, it is possible to obtain an exact solution to
the nonlinear equations for the ionic concentration, Eq. (12),
and electric potential, Eq. (13), in two or three dimensions,
regardless of the boundary condition on the potential across
the EDL (either constant or induced zeta potential). For a
cylindrical post in d=2 dimensions or a spherical particle in
d=3 dimensions, the solution for Laplace equation for the
bulk salt concentration is given by

L Ce 1
c(r,0)_1+200rcos 0<1+(d—1)7d)’ (23)

where we have defined the quantity ¢,=2ag.,. It has dimen-
sions of a concentration and gives information of the change
on the electrolyte concentration due to the gradient along a
distance equal to the particle size. In all previous works con-
sidering diffusiophoresis or diffusio-osmosis, c, has been
supposed to be infinitesimal as compared to the background
electrolyte concentration 60.18720’23 If this assumption is re-
laxed, then Eq. (23) predicts negative values of the electro-
lyte concentration at finite distances from the particle, due to
our neglect of boundaries, such as electrodes or membranes,
in the model problem. Nevertheless, as long as boundary
effects on the concentration, potential, and fluid velocity are
weak, it is still interesting and valid to consider moderate
electrolyte concentration gradients, c, <c.

In steady state, the electrostatic potential is given by the
diffusion potential,39 which reflects concentration polariza-
tion (departures from Ohm’s law),

B (o 2ul ).
g 0

where the prefactor is obtained from the current boundary
condition at infinity, Eq. (15). Due to our simple Neumann
boundary conditions, this algebraic relation between concen-
tration and potential holds in any dimension and can be un-
derstood as a consequence of conformal invariance of the
neutral Nernst—Planck e:quations.45 The parameter c; is de-
fined by
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FIG. 2. Lines of constant electric potential (solid) and field lines (dashed)
according to Eq. (24).

_(1=-Paje.
Cci=

(25)
! Deff

and has, as Ces dimensions of concentration. This new quan-
tity is the current density of ions scaled with the effective
diffusivity and the radius of the particle. Figure 2 illustrates
the structure of field and equipotential lines (out of the EDL)
predicted by Eq. (24). As it can be seen, these lines corre-
spond to those of an insulator. The peculiarity here is the
depicted gradient of electric field, represented by the varying
distance between equipotential lines. As we can see, the field
is stronger in the low concentration region, while it is dimin-
ished where the ionic strength is higher.

Once the ionic and electric problems have been solved,
we need to calculate the slip velocity on the surface of the
particle, Eq. (19), in order to evaluate the integral in Eq.
(20). It is convenient and instructive to cast the slip velocity
in dimensionless form, taking into account the obtained re-
sults for ¢ and ¢, Eqs. (23) and (24), respectively. For that
purpose, we define here three new dimensionless groups

o

~_% ~_S
Cg— s Cj— 5
Co Co

a=-1, (26)
8

o

which generally govern the different regimes of steady state
EDP, as shown below. The first dimensionless group, Eg< 1,
measures the strength of the concentration gradient, as the
ratio of the change in far-field concentration across a dis-
tance of one particle diameter to the background concentra-
tion (extrapolated to the particle center). As noted above, this
parameter cannot get close to 1, or negative concentrations
will be predicted close to the particle, thus invalidating our
neglect of the finite distances to the electrodes. The second
dimensionless group, Ej, which can take any real value (posi-
tive, zero, or negative) measures the ionic flux, j., relative to
a characteristic diffusive flux Dgycy/a at the scale of the
particle. The third dimensionless group, «, which can also
take any real value, is the ratio of the contributions of elec-
tromigration (Ohm’s law) and diffusion to the applied current
far from the particle.
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With these definitions, the dimensionless form of Eq.
(19) can be expressed as
- - c,s8in 0 .
Y =[(a+ B)+4 In cosh({/4) ] —E——, (27)
1+c,cos 6

8

- ~ (3/4)c, sin 6 .
P =[(a+ B) +4 In cosh({/4) ] ———=2——0,
o =llar B (& )]1+(3/4)5g cos 6

(28)

for cylinders and spheres, respectively. In these expressions,

{=(ze/kgT){ is the dimensionless zeta potential, scaled to
the thermal voltage. We see here that o and B play similar
roles in EDP. Of the two, however, « is the more important,
since it can take any value set by the applied current «, while
B is a constant and bounded material property of the electro-
lyte (|8|<1). Therefore, in most cases we restrict ourselves
to electrolytes with both ions having the same diffusivity
(B=0) in order to focus on the novel and nontrivial effect of
varying oa.

D. Transport numbers in electrochemical cells

In electrochemical cells, one always controls the current
via the external circuit, but it is often difficult to impose a
local concentration gradient in the vicinity of a particle or
microfluidic post, as we have assumed in our model problem.
In one-dimensional steady state, however, the concentration
gradient (far from the particle) is unambiguously set by the
electrochemical processes that sustain the applied current.
This is why we view EDP as a well-defined phenomenon of
electrokinetic (coupled electrophoretic and diffusiophoretic)
response to direct current in an electrochemical cell.

To clarify the connection with external electrochemical
processes, we introduce generalized transport numbers, de-
fined here as the fraction of the total current carried by each
ion far from the particle,

_ I

t+=7’ (29)
_ _ I

t_:l—t+=7, (30)

where I=zej, I'=zej*, and I"=-zej~. In the absence of a
background concentration gradient, these definitions reduce
to the standard definition of the “transference numbers” of
each ion, 7, and 7_, in electrochemistry;39 these are material
properties of the electrolyte, each equal to r.=1/2, in the
case that both ions have the same diffusivity (8=0). In our
situation of a steady one-dimensional direct current, leading
to concentration gradients, our transport numbers express the
electrochemical processes sustaining the direct current far
from the particle. For example, in a steady state electrodialy-
sis cell, we have 7,=1 and 7_=0 for the case of an electrolyte
sandwiched between two cation exchange membranes. A
similar situation arises in an electrolytic cell, where only
cations are active at the electrodes, e.g., for metallic ions
consumed by electrodeposition at the cathode and electrodis-
solution of the anode™® or for ions reduced to a neutral
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species at the cathode and produced by oxidation at the
anode.”’

Using Egs. (3) and (24), we can relate the transport num-
bers to the dimensionless groups defined above,

7+=1+B<1+(B—1))’ 31)

2 a

?_=l_ﬂ<1+(ﬁ+1)>. (32)
2 a

With these definitions, the far-field concentration gradient g..
can be substituted by, for example, 7.,

Eg:((1+,8)—2f+)—?. (33)
If B=0, the case ¢,=0 is equivalent to 7,=1/2, i.e., if there is
no gradient of electrolyte concentration, both ions contribute
equally to the electric current. This situation (7,=7_=1/2) is
also verified when ¢;>1. Another interesting limit corre-
sponds to |E] =C,. In this case, as in the examples above, all
the current is carried by only one type of ion (C,=C;=1,
=0, and all the current is carried by anions; Egz—Ej:ﬁJr: 1,
and all the current is carried by cations). Again, we stress
that these definitions of transport numbers apply to the non-
equilibrium situation of a steady direct current, with a non-
uniform concentration profile.

Although the cation transport number and applied cur-
rent naturally specify the model problem for a given electro-
chemical cell, we prefer to solve the problem in terms of ¢,
rather than 7, for mathematical convenience. This approach
also allows us to clearly separate the contributions from elec-
trophoresis and diffusiophoresis to the coupled phenomenon
of EDP. Of course, translation of the results in terms of the
transport number is straightforward to perform a posteriori
by means of Egs. (31) and (32).

c
1-

lll. ANALYSIS

In this section, we derive analytical approximations for
the EDV by asymptotic analysis for various limits of the
dimensionless groups defined above. We focus on cylindrical
posts in two dimensions, since the analysis is more compli-
cated for spheres, and presumably leads to qualitatively simi-
lar results. We divide the analysis into two parts. First, we
consider posts with a constant surface charge, with a fixed
value of £, and then we consider ideally polarizable posts, at
a fixed potential, where { depends on the position on the
surface.

A. Fixed surface charge

In this section, we derive an analytical expression for the
EDP motion of particles with a constant zeta potential. The
fluid flow around a fixed cylinder will be evaluated as a
power expansion, the gradient on electrolyte concentration
using as perturbation parameter. Although more general ex-
pressions are available for diffusiophoresisB’48 and
electrophoresis,‘“9 considering thick double layers, nonzero
Péclet numbers, and even interactions among particles, none
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112109-7 Electrodiffusiophoresis: Particle motion in electrolytes

of them apply for moderate values of the electrolyte gradient.
This consideration justifies the inclusion of this derivation
here.

1. Fixed charge electrodiffusiophoretic velocity
for cylinders and spheres

Considering a fixed zeta potential on the particle surface,
it is easy to integrate Egs. (20) and (21) using Egs. (27) and
(28), respectively, to obtain the net EDV

P

U =[(a+ B){+41n cosh(g/4)]—3 , (34)
g

Ut =[(a+ B
122, + (92, - 16)tanh™' (3¢,/4)
X.

2
9cg

+4 In cosh(Z/4)]

(35)

These expressions predict three different contributions to the
particle motion. The first addend is the purely electrophoretic
one and is the only term that survives in the limit of uniform
concentration ¢, — 0. The second one, which has been called
electrophore51s in absence of external electric fields,”'®' i

due to the interplay between the difference in the dlffuswn
coefficients of ions and the electrolyte gradient and vanishes
in the absence of the latter. Finally, the third term is exclu-
sively driven by the electrolyte gradient and represents
chemiphoresis. These three terms affect the motion of the
particle in different ways. While the chemiphoretic term al-
ways pushes the particle toward higher electrolyte concentra-
tions, the direction of the electrophoretic ones depend on the
sign of particle charge, the value of B, and the sign of the
applied current.

Although the solutions given by Egs. (34) and (35) are
exact, the dependence on ¢, is made more clear by expand-
ing it on powers of €=c, and assuming B=0,

kpT\? -
U ~ sph %< B ) (LJ— +4In cosh(§/4)—>
’)7 ZD CO O

(36)

Note that to first order in the limit of vanishing concentration
gradient, the EDV of cylinders and spheres do coincide.

2. Fixed charge electrodiffusiophoretic flow
around cylinders

Although series expansions exist for the Stokes flow
around a sphere with a prescribed slip Velocity,50 ! they are
cumbersome to apply to our general problem with a highly
nonuniform (although axisymmetric) slip profile. It is con-
siderably easier to solve for the two-dimensional Stokes flow
around a cylinder, so we will focus on this case for analytical
results in this section.

The fluid flow profiles around fixed cylinders may be
written in terms of a stream function, related to the velocity
field by

Phys. Fluids 22, 112109 (2010)

FIG. 3. Flow lines around a fixed, charged cylinder, under the action of an
electrolyte concentration gradient and an electric current. Used values:

¢,=03, &=1, [=—4, and B=0.

u=-— (9_1#)2 &w v (37)
ady ax

Taking the curl of the unforced Stokes equation, Eq. (9), one
finds that the stream function verifies the biharmonic equa-
tion V4=0. Exact solutions to the biharmonic equation in
the plane can be expressed in Goursat form, in terms of two
analytic functions of a complex variable,””? but unfortu-
nately, in this case, the problem becomes intractable due to
the complicated boundary conditions, Egs. (19) and (22).

In order to get some analytical insights, we consider the
limit of small concentration gradients, via a regular perturba-

tion expansion of the stream function in powers of e=c,,

p=U(p+ he+ e+, (38)

n n—2
=2Am{(§> _(§> ]sin(nﬁ). (39)

The coefficients A;, are obtained from power series expan-
sion of the boundary conditions, Egs. (19) and (22),

U= U(ugg+utg €+ U €+ ) 0, (40)

= U (oo g+ Uoo 1 €+ uw,262+ K. (41)

Up to O(€®), we obtain the following values for the coeffi-
cients A; ,;:

Ao,1=%5,-Z,

Ap1=3[B+4 Incosh(Z4)], Ajp=-35,
Ay1 =36 Asp=—3[BL+4 In cosh(Z/4)],

A2,3=é5,-2,

and all other coefficients verify A;,=0,i=2. This stream
function predicts the flow pattern shown in Fig. 3, which is
very similar to the well known stream lines in electro-
osmosis and diffusio-osmosis around a cylinder. The slight
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112109-8 R. A. Rica and M. Z. Bazant

asymmetry in the stream lines depends almost exclusively on
the magnitude of the relative electrolyte gradient, c,.

B. Induced surface charge
1. Induced surface potential

The analysis of polarizable particles is more interesting
and novel, but also more laborious. In the most general case,
{ has its origin in two contributions, each one coming
from each type of charge. If the zeta potential is small
({<kgT/e), it can be expressed as the algebraic sum of those
two terms,

{=0+ & (42)

where {, is due to the pre-existing, equilibrium surface
charge and {; appears as a response to the action of the
electric field on the (polarizable) particle. This component
is angular-dependent and needs to be calculated from
the values of the field-induced electric potential in the par-
ticle (¢) and the potential at the outer edge of the EDL

[¢,(0) = ¢(r=a, )],
£i(0) = ¢y — ¢,(0). (43)

The calculation of the induced potential is based on the
Gouy—Chapman theory of the EDL,' by computing the total
surface charge

0= jg q({)dA, (44)

where dA is the differential element of surface area and the
surface charge ¢(¢) is related to ¢ through

Zsph _

4+a+p(1+ gg)[Z—(l/2)<a+/3)] -(1- gg)[Z—(l/Z)(m,B)]]
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zel
2kgT"

q(§) =4(co+ ¢, cos O)ze\p sinh (45)

In dimensionless form and 2D, we can write
0 = 5(exp(y/2)F; — exp(— ¢y/2)F). (46)

where 0=0/4aze\ pCo and

Fﬁyl: f (1+¢,cos H)exp_qu‘vdG, (47)
FY = " =~ é
= (1+¢, cos fexp 5 deo, (48)
sph _ T . _ - (zs
FP'=2m| sin (1 +¢, cos t9)exp—2 do, (49)
0
sph _ i : ~ é
FP'=2m | sin 6(1+¢, cos f)exp 5 do. (50)
0

Solving for the potential induced in the particle, we
obtain

3 o Fifat 20% *20\NQ*+ F\F,

= 2
Fy

- (51)

As the fixed charge case has been already analyzed in the
previous section, we consider here the case when Q:O (that
is, {=¢;), thus simplifying Eq. (51) to

JT (14, cos §)12+h2 g0
f J7(1+¢, cos o)1/ e+B2) g g

eyl _ 1

o (52)

0o - [4 _ (a + B)][(l + C"g)[2+(1/2)(a+ﬁ)] _ (1 _ Eg)[2+(1/2)(a+ﬁ)]] .

2. Induced-charge electrodiffusiophoretic velocity
for cylinders and spheres

Neither the integrals in Eq. (52) nor those in Egs. (20)
and (21) in the case of ideally polarizable particles can be
evaluated analytically. We obtain approximate expressions in
the following section and compare their predictions to the
numerical solution. The approximate solutions are obtained
in the limiting situations ¢;<<1 and ¢;> 1, assuming in both
cases C,<1. Although we consider such limits, we do not
restrict ourselves to first order perturbations, and results up
to O(€®) are shown, € being the perturbation parameter on
each regime.

a. Small currents ¢;<1. If we fix the exponents of
(1+¢, cos ) in Eq. (52), and then expand the arguments in

(53)

powers of €=c,, that integral can be evaluated. Upon substi-
tution in Eq. (43) the following equation is obtained for the
induced zeta potential in a cylinder:

~ 1 ;
é’fyl:EjCOs 0+ (ﬁcos 0- EEj(l/Z+cosz 0) + ﬁgj)f
+ (__lﬂ(l/2+cosz 0)+l£T COS3 6+ iIBEQ)e_Z
2 3% 128"

+0(€), (54)

where we have also used Eq. (24). In the case of spheres, the
expression is exact,
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gsph . (4+a+P(1+¢ )[2—(1/2 (a+B)] _ (1- 58)[2—(1/2)(a+ﬁ)]] ~ (1 . E’c’ cos 6) (55)
i [4 (a+ﬁ)][(l +C )[2+(l/2)(a+ﬁ)] (1 _Eg)[2+(]/2)(a+,3)]] 4 g .

Once the induced zeta potential is known, and using the
slip velocity on the surface of the particle, Egs. (27) and
(28), the integrals in Egs. (20) and (21) provide the following
expressions for the EDV of an ideally polarizable particle in
the presence of an electric current and a gradient of electro-
lyte concentration:

UY'=- gTe- 5556 +0(€), (56)

U= - 58 €= 135 BT + O(€). (57)

In the case B=0(D*=D~=D) and ¢;<1, the leading term in
this expansion is, including dimensions,

—— Bﬁ(ﬂ)zﬁogw

; 58
32 9 \zeD/) ¢} G8)

Usph —_

617 &8, (akBT>2jozcgoo (59)

1920 7 \zeD /) ¢ °

This expression predicts that, for low electric currents,
an ideally polarizable particle will move toward lower elec-
trolyte concentrations regardless of the direction of the elec-
tric current. It is also worth mentioning the strong depen-
dence of the velocity with the electrolyte concentration,
being larger the lower the concentration.

b. Large currents: ¢;>1. The large-c; approximation in
the case of cylinders is more involved than the previous one.
The starting point of this study requires, as before, an appro-
priate approximation to the value of the integrals in Eq. (52).
For this purpose we take advantage of the Laplace or saddle
point method.” This method allows us to obtain accurate
approximations to integrals of the form

b
f Ny, (60)
a

where f(x) is a twice differentiable function with a local
maximum at x,,,, € la,b[ and N> 1, by doing a Taylor ex-
pansion of f(x) around x,,.. This method has corrections
O[ (x=X,,,)°]. Therefore, we can estimate the integrals in Eq.
(52) and find

L {(1 5z )1 11/2 erf{ —C~j/(1_5g)]
cy ~1n
1+¢ l+a -
=8 erf{z\/ +Z/(1 +Eg)]}
(61)

where the upper (lower) sign corresponds to ¢;>0 (¢;<<0)

and erf is the error function. This result, together with the
potential at the outer edge of the EDL, Eq. (24), provides the
zeta potential from Eq. (43),

(=G cos 0+ (381 —cos® @)+ Bcos OF 1)e
+(gcjcos 0- Bcos 0)e2+0(e3). (62)

In this large-c; regime, the induced zeta potential is also
large, and we can make the approximation In cosh l/4= Z,
—In 2 in Eq. (27). As before, we cannot solve analytically the
integrals (20) and (21) unless we perform a Taylor expansion
of the slip condition in powers of €=c,. After this expansion,
the integrals provide, up to O(€?),

U= (368 + &35 -3) -2 In2)e
+B(56 = (55— 1)) €+0(@), (63)

U = 32(,(53 —365¢) €+ 155 85;€ + O(€), (64)

with the same sign criteria as before. If =0, the leading
term of these expansions are

U = 1sr80(akgr>2jigw (65)
8 m \ zeD cg

U = ﬁ@(akBTingx 66)
160 7 \ zeD 0(3) '

which has corrections 0(c3) and differ from the low-¢; lead-
ing terms, Egs. (58) and (59) only in the numerical factor
and the sign, which is positive here. In this regime, particles
move toward high electrolyte concentration, while the fluid
flow is directed against the concentration gradient. There-
fore, an inversion of the motion is predicted at values of the
electric current ¢;= 1, depending on the value of the gradient

Cg'

3. Induced-charge electrodiffusiophoretic flow
for cylinders

As before, we focus on two-dimensional flows around
cylinders to obtain analytical results, with the expectation
that similar results will hold for spheres, treated numerically
below. Again, we express the fluid flow in terms of a Taylor
expansion of a stream function, Egs. (38) and (39), up to
O(Ez). For these calculations, we also assume a symmetric
electrolyte, 8=0.

a. Small currents: 5j< 1. If the value of E] is low, we
can define a new perturbation parameter €' =c; and neglect
perturbation terms O(&°), where & can be either € or €. In
this approximation, the coefficients A;, are

Downloaded 05 Nov 2010 to 18.100.8.82. Redistribution subject to AIP license or copyright; see http:/pof.aip.org/about/rights_and_permissions



112109-10 R. A. Rica and M. Z. Bazant

__J

—

FIG. 4. Flow lines around a fixed, ideally polarizable cylinder, under the
action of an electrolyte concentration gradient and an electric current in the
low-c; regime. The velocity of a moving particle points toward low electro-
lyte concentration. Used values: Eg=0.05, Ej=0.01, and B=0.

_12
Ao’z— 4Cj’

a 1~2<19 143 )
LU= 6q 6 1925

-1 3 66 _,
A]’3= - 11+ —c; A2,2=

3845 1925

and every other A; ,=0,i=2.

Figure 4 shows an example of the flow lines obtained in
this situation. As observed, the flow is a variation of the well
known quadrupolar flow of an ideally polarizable particle in
a uniform electric field. In that case, the perfect quadrupolar
flow leads to no net motion of the fluid or the particle. The
presence of a the concentration gradient breaks this symme-
try, being responsible of both net fluid flow (osmosis) or
motion of the particle. In this situation, a moving particle
would move to the left [toward low electrolyte concentration,
as predicted by Eq. (58)], while a net transport of liquid far
from the particle would be directed to the right.

b. Large currents: Ejz> 1. This asymptotic solution re-
quires an extra term in the eigenvalues expansion, Eq. (39),
in the form

(2] ) o

2
a .
+ B, ln[1+(—> ]sm 0. (67)
r
With this consideration, the obtained coefficients are
Aoa= 30,
1, 1 2 \_
Aq ch 5—; ¢;=2In2,
N 1_ -3, 4 _
A1,2_ _ZC]‘, A]3=EC‘]~, Bl: ;—2 Cj’
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FIG. 5. Flow lines around a fixed, ideally polarizable cylinder, under the
action of an electrolyte concentration gradient and an electric current in the
large-c; regime. The velocity of a moving particle points toward high elec-
trolyte concentration. Used values: c”g=0.05, ¢;=100, and B=0.

By= * (35— 1),

where the upper (lower) sign corresponds to |6 < /2 (|6
>17/2) and all other A;,, are equal 0 if i=2.

An example of the flows generated in this situation is
depicted in Fig. 5. As is clearly seen, this flow is very similar
to the one described in the low-¢; case. As it is shown, in this
case the velocity of the partlcle points to the right [toward
high electrolyte concentration, as predicted by Eq. (65)].

IV. NUMERICAL RESULTS AND DISCUSSION

Although we have treated separately fixed charge and
ideally polarizable surfaces, such a distinction is not possible
in most practical situations with direct current. (In contrast,
for alternating current, one can neglect the contribution of
fixed charge as a first approximation.)S’45 In general, as al-
ready stated, a polarizable surface will also possess some
fixed charge, even in the absence of an applied field. Hence,
before detailing the characteristic behavior of the two kinds
of surfaces, it is interesting to estimate under which condi-
tions will each type of contribution dominate. Considering
that in the ¢;<<1 regime the induced zeta potential is very

low (in fact Z;<1) a typical value of {,=50 mV will suffice
to make the induced-charge negligible. Hence, we will only
establish the comparison in the case ¢;> 1 by considering the
leading terms of the dimensionless versions of Egs. (36) and
(66),

i}l = %E’.jz'gg’ (68)
00 = %[CYZ() +21In cosh(zo/4)]5g. (69)

If we assume 20:2, then 2 In cosh(gzo/ 4)=1/4, and induced-
charge effects will dominate when the parameters verify
Ef>320/53(a+1/8). Assuming E§< 12, the condition will
be verified if Ej5g>6, or more clearly
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3D
. 2
Jooon > ?co. (70)

According to this, an electric current density of
I1~450 mA cm™ is required to make the induced-charge
dominate over the fixed charge under the following condi-
tions: cp=1 mM KCl, g,=50 mM cm™!, and a=5 pm.
This current can be lowered by increasing a or decreasing ¢,
since the fixed charge contribution is independent of a and
depends on c¢(, while the induced-charge contribution de-
pends on C(3)~ Note that such large currents, especially in the
presence of a low background salt concentration c¢,, would
lead to very large electric fields, which would trigger effects
we have not considered, such as surface conduction, convec-
tion, and possibly ion crowdingI5 and second kind electroki-
netic phenomena.z’54 Nevertheless, it is reasonable to begin
by considering the simple model of this article, based on thin
quasiequilibrium double layers at moderate voltages.

The following subsection presents the main results for
each particular case. Although, for simplicity, we refer
mostly to colloidal particles, all our results have analogs for
flows around fixed structures in microfluidic devices.

A. Fixed charge

Let us start the considerations on fixed charge surfaces
coming back to Eq. (36), where two addends contribute to
the motion (the first one represents the electrophoretic con-
tribution and the second one is the chemiphoretic term). The
dependence of the latter on ¢ is well known from all the
previous studies on diffusiophoresis, whereas there is a sub-
stantial difference between the electrophoretic term with the
Smoluchowski formula due to the presence of ¢ in the de-
nominator. This factor has relevant implications on the be-
havior of both colloidal systems and microfluidic devices.
For example, in the presence of a non-negligible concentra-
tion gradient, ¢y will change as the particle moves, hence
modifying the local electric field responsible for the electro-
phoretic term. Therefore, “accelerations” of colloidal par-
ticles can be observed under the appropriate conditions of a
stationary concentration gradient and constant current along
the system, conditions already achieved in microfluidic
experiments.3 13435

In the limit of small departures from equilibrium
(¢,<1 and ¢;<<1), the response of nonpolarizable, charged
particles is the superposition of the well known mechanisms
of electrophoresis (electro-osmosis) and diffusiophoresis
(diffusio-osmosis). If these contributions act in opposite di-
rections, the competition between them can give rise to op-
posite movements depending on the properties of the consid-
ered system. In fact, there is a value of the applied current at
which the movement (both migration of particles and fluid
flow) is reversed, given by the condition (U=0) in Eq. (34)
(note that only the first factor of the right hand side of this
equation is relevant for the calculation). These considerations
are similar to the well known diffusiophoresis inversion due
to nonzero values of ,8,56
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FIG. 6. (a) EDV of a charged spherical particle in the presence of an elec-
trolyte concentration gradient (g,=50 mM cm™') and the indicated electric
current densities, as a function of the (fixed) zeta potential on the surface.
Other parameters are c¢y=1 mM KCl (Dg=2X%10" m?s™', B=0); a
=1 wm. (b) Value of the electric current density at which the movement is
reversed, I;,,, as a function of the zeta potential. Solid lines: KCl (D =2
X107 m?s7!; B=0). Dashed lines: NaCl (D.z=1.6X10"" m?s7!;
B=-0.2). Thin lines: g.=10 mM cm™'. Thick lines: g,,=50 mM cm™.

2zeD 4 In cosh(Z/4)
Ly =— 1 5) + — 8>
— ﬁ g

(71)

where all the involved quantities have been made explicit.
According to this result, particles with the same type of
charge on their surfaces (positive or negative) can move in
opposite directions under the appropriate conditions, as it is
depicted in Fig. 6(a). Note that significant opposite velocities
can be reached for comparable magnitudes of the charge (for
example, AU=1 um s~! for {==50 mV and {=—125 mV
in the curve I1=0.15 mA cm™>). Therefore, we can define a
map in the /;,, versus { plane delimiting regions with oppo-
site direction of movement, as is depicted in Fig. 6(b) for
suspended colloidal particles (note that the osmotic flow is
always opposite to the movement of free particles).

It is important to address that this result could be useful
for separation purposes. Given a suspension with not equally
charged particles (different magnitudes and/or types, positive
or negative, of charge), some of them can be selected to
move in a desired direction while all the others move in the
opposite, if we properly tune the gradient of electrolyte con-
centration and the electric current. Furthermore, even though
the motion against the gradient is smaller in magnitude than
if the velocity is directed toward higher concentration, it is
worth to realize that the former case, the particle will be
accelerated as it moves toward lower concentration (the de-
crease in ¢, increases the local field for a given current). On
the contrary, the opposite will happen to a particle moving in
the direction of higher concentration, which will undergo
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FIG. 7. Induced-charge EDV of an ideally polarizable, spherical colloidal
particle as a function of the applied density current for the indicated values
of the electrolyte concentration gradient. Other parameters are: a=1 um,
co=1 mM KCl, and 5=0.

deceleration. Consequently, we expect good efficiency in
separating such colloidal particles, by taking advantage of
this technique.

B. Induced-charge

For fixed charge particles, EDP is simply a nonlinear
combination of classical electrophoresis and diffusiophore-
sis, but for polarizable particles the situation of “induced-
charge EDP” is rather different and novel. We consider here
situations where =0, as its effects are of second order on Eg
and almost negligible in presence of an electric current. Be-
fore analyzing numerical results, we insist on the already
mentioned 512 dependence. Although it would require a much
more careful study, the application of an ac field suggests
interesting technological applications. As the motion does
not depend on the sign of the applied current (see Fig. 7),
such a field would provide net motion (whose sign would
depend on the magnitude of the current), while we benefit
from the advantages of an ac signal (namely, avoiding Fara-
daic currents at the interfaces, which degrade the structures
and deliver bubbles to the bulk. Furthermore, an ac field
gives no net motion in the case of fixed charge surfaces. On
the other hand, note that these Faradaic reactions are able to
produce net motion of bimetallic nanorods).””* Roughly
speaking, a finite time 7.~ A\pa/D is needed to achieve the
stationary state here described and hence an optimal fre-
quency would exist that optimizes the effects. Typically, ac
electrokinetics have an optimal performance at frequencies
verifying w7~ 1.

Let us now consider the behavior shown in Fig. 7, where
the velocity is calculated numerically as a function of the
electric current for different values of the gradient. In the
low-¢; and low-C, regime, as predicted by Eq. (59), the mo-
tion is directed toward low concentration (negative sign). As
the current increases, the velocity curve describes a maxi-
mum in the direction opposite to the gradient and then the
movement is reversed. For currents larger than this inversion
value I, the velocity is directed toward high electrolyte
concentration, Eq. (66). Fast motions can be achieved in this
regime, as the velocity increases with the square of the cur-
rent. Note that ¢, only scales the magnitude of the velocity,
as I;,, does not depend on it.
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FIG. 8. Induced-charge EDV for ideally polarizable spheres, as in Fig. 7,
only for different indicated values of the size of the particle and electrolyte
concentration. Other parameters are: g..=30 mM cm™' and 3=0.

The impact of particle size and electrolyte concentration
shows very interesting results, as revealed in Fig. 8. It is
clear from this plot that the transition to the large-c; regime
(motion toward higher concentrations, or positive velocities
in Fig. 8) appears at lower currents the larger the size of the
particle and the lower the electrolyte concentration. In this
regime, large values of particle velocity, or more interest-
ingly, of the induced flow around a fixed post, can be
reached.

This result could have interesting technological applica-
tions in electrodialysis or desalination by perm-selective
membranes, in a similar way as second kind electro-osmosis
was previously proposed.59 Consider a post made of an ide-
ally polarizable material close to a perm-selective membrane
in a desalination device. When the liquid has a large amount
of ions in solution, the electric field drives a large current
associated with these ions, which are removed from the so-
lution through the membrane. In this situation, the flow
around the post is almost zero, as the induced-charge is also
very small (consider the ¢y=5 mM KClI curve in Fig. 8).
When the ionic strength of the solution is lowered via the
desalination process, the conductivity is also diminished, re-
ducing the capability of the field to remove ions by elec-
tromigration. Furthermore, strong concentration polarization
is produced close to the membrane, avoiding the motion of
ions out of the cavity where the solution is contained. On
the other hand, in such circumstances the flow around the
post is “switched on” (curve co=1 mM KCl, a=5 um, or
co=0.5 mM KClI in Fig. 8) and, for large enough current, it
will be directed toward lower electrolyte concentration. Ions
are transported from the high concentration to the low con-
centration side, thus reinforcing the electric current and over-
coming the limiting current present in these processes. Note
that this effect also occurs in the case of fixed charge sur-
faces due to the dependence of the electrophoretic term on
co- This dependence increases the flow generated around
structures when the concentration is lowered, but the
“switching” takes place at larger values of ¢, and more
gradually. In this case, the direction of the flow can be cho-
sen by appropriately designing the device, that is, by control-
ling the signs of both the surface charge and the applied
current.

It is worth emphasizing the c53 dependence of the veloc-
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FIG. 9. EDV of an ideally polarizable sphere in a microchannel as a
function of ¢, for the indicated values of the applied electric density cur-
rent. The upper abscissa indicates the corresponding position, where the
origin of the frame of reference verifies ¢o(x=0)=0. Other parameters are:
8.=50 mMcm™, a=1 um, and B8=0.

ity, especially in the case of moderate and large values of the
concentration gradient. For example, according to Eq. (65), a
polarizable particle that starts moving toward high concen-
tration (large-C; regime) at a position where ¢y=1 mM KClI,
subjected to a gradient g,,.=50 mM KCI, would lose 70% of
its velocity over a distance of 100 wm. This behavior is
depicted in Fig. 9, where the velocity is plotted as a function
of position along a channel and the corresponding electrolyte
concentration (represented by the two abscissas). As it is
seen, the velocity of a particle changes dramatically depend-
ing on its position along the channel. The magnitude of the
applied current has also a crucial effect, as it determines the
regime of movement, as shown in Fig. 7.

It is interesting to observe that, if the current is large
enough, positions of zero velocity can exist where the par-
ticles would accumulate. Note also that these positions are
stable, as any perturbation tends to move the particles toward
this zero velocity position. In connection with that, highly
concentrated plugs have already been observed in the experi-
ments by Ref. 55 in the case of charged species. Although in
their experiments the fluid flow plays an essential role, as
theoretically analyzed by Ref. 32, the present results predict
the possibility of obtaining such plugs made of polarizable
particles.

Finally, we must refer at this point to the differences
between the predicted flow patterns. As shown in Figs. 3-5,
the effects of polarizable surfaces on the fluid flow are ex-
pected to present a richer phenomenology than those due to
surfaces with fixed charge. Such flows and hydrodynamic
interactions among neighboring units would be interesting
topics for further study.

V. CONCLUSIONS

In this work, we have investigated the electrokinetic re-
sponse to an applied direct current for a colloidal particle
(electrodiffusiophoresis) or a fixed microfluidic post
(electrodiffusio-osmosis) in an electrolyte solution, depend-
ing on the associated gradient of salt concentration (or trans-
port number of the current carrying ion). Assuming thin

Phys. Fluids 22, 112109 (2010)

double layers, low surface conductivity (Du<<1) and negli-
gible convective transport of ions (Pe<< 1), we have obtained
approximate analytical expressions and full numerical solu-
tions for the fluid flow and particle velocity for surfaces of
either constant-charge or constant potential (ideally polariz-
able). In the case of fixed charge surfaces, movement toward
high or low electrolyte concentration can be obtained by ap-
propriately tuning the parameters, and even opposite motion
for the same type of charge (positive or negative) can be
achieved. Ideally polarizable surfaces show an even richer
phenomenology. The direction of motion does not depend on
the sign of the current, only on its magnitude, and two re-
gimes of motion are predicted for small and large applied
currents. The strong dependence found for the velocities on
both size and electrolyte concentration suggests interesting
new possibilities for technological applications, e.g., to mix-
ing by posts near membranes approaching a limiting current
or to new kinds of colloidal separations in electrochemical
cells.
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