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Abstract

We consider a dynamic panel AR(1) model with fixed effects when both n and T are large. Under

the "T fixed n large" asymptotic approximation, the maximum likelihood estimator is known to be

inconsistent due to the well-known incidental peirameter problem. We consider an alternative asymptotic

approximation where n and T grow at the same rate. It is shown that, although the MLE is asymptotically

biased, a relatively simple fix to the MLE results in an asymptotically unbiased estimator. The bias

corrected MLE is shown to be asymptotically efficient by a Hajek type convolution theorem.

Key Words: dynamic Panel, VAR, large n-large T asymptotics, bias correction, efficiency
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1 Introduction

In this paper, we consider estimation of the autoregressive parameter of a dynamic panel data model

with fixed effects. The model has additive individual time invariant intercepts (fixed effects) along with a

parameter common to every individual. The total number of parameters is therefore equal to the number

of individuals plus the dimension of the common parameter, say K. When the number of individuals (n)

is large relative to the time series dimension (T), a maximum likelihood estimator of all n+X parameters

would lead to inconsistent estimates of the common parameter of interest. This is the well-known inci-

dental parameter problem.^ Inconsistency of the MLE under T fixed n large asymptotics lead to a focus

on instrumental variables estimation in the recent literature. Most instrumental variables estimators are

at least partly based on the intuition that first differencing yields a model free of fixed effects.^ Despite its

appeal as a procedure which avoids the incidental parameter problem, the instrumental variables based

procedure is problematic as a general principle to deal with potentially nonlinear panel models because

of its inherent reliance on first differencing. Except for a small number of cases where conditioning on

some sufficient statistic eliminates fixed effects, there does not seem to exist any general strategy even

for potentially nonlinear panel models.

In this paper, we develop such a general strategy by considering an alternative asymptotic approxi-

mation where both n and T are large. We analyze properties of the MLE under this approximation. It

is shown that the MLE is consistent and asymptotically normal, although it is not centered at the true

value of the parameter. The noncentrality parameter under our alternative asymptotic approximation

implicitly captures bias of order O {T~^), which can be viewed as an alternative form of the incidental

parameter problem. We develop a bias-corrected estimator by examining the noncentrality parameter.

Our strategy can be potentially replicated in nonlinear panel models, although analytic derivations for

nonlinear models are expected to be much more involved than in linear dynamic panel models. We can

in principle iterate our strategy to eliminate biases of order O {T~^) or O {T~^), although we do not

pursue such a route here.

Having removed the asymptotic bias, we raise an efficiency question. Is the bias-corrected MLE

asymptotically efficient among the class of all reasonable estimators? In order to assess efficiency, we

derive a Hajek-type convolution theorem, and show that the asymptotic distribution of the bias-corrected

MLE is equal to the minimal distribution in the convolution theorem.

Our alternative asymptotic approximation is expected to be of practical relevance if T is not too

small compared to n as is the case for example in cross-country studies.^ The properties of dynamic

panel models are usually discussed under the implicit assumption that T is small and n is large relying on

T fixed n large asymptotics. Such asymptotics seem quite natural when T is indeed very small compared

to n. In cases where T and n are of comparable size we expect our approximation to be more accurate.

'See Neyman and Scott (1948) for general discussion on the incidental parameter problem, and Nickell (1981) for its

implication in the particular linear dynamic panel model of interest.

^For discussion of various instrumental variables estimators and moment restrictions, see Holtz-Eakin, Newey, and Rosen

(1988), Arellano and Bond (1992). Chamberlain (1992), Ahn and Schmidt (1995), Arellano and Bover (199.5). Bhmdell and

Bond (1995), and Hahn (1997).

^Inter-country comparison studies seems to be a reasonable application for such perspective. See Islam (1095) and/or

Lee. Pesaran. and Smith (1998) for recent examples of inter-country comparison studies.



It should be emphasized that some of the results in Sections 3 are independently found by Alvarez

and Arellano (1998). They derived basically the same result (and more) for the MLE and other IV

estimators under the assumption that (i) the initial observation has a stationary distribution, and (ii)

the fbced effects are normally distributed with zero mean. Although our result is derived under slightly

more general assumptions in that we do not impose such conditions, this difference should be regarded

as mere technicality. The more fundamental difference is that they were concerned with the comparison

of various estimators for dynamic panel data models whereas we are concerned with bias correction and

efficiency. Phillips and Moon (1999) recently considered a panel model where both T and n are large.

They considered asymptotic properties of OLS estimators for a panel cointegrating relation when both T
and n go to infinity. This paper differs from theirs with respect to the assumption that < lim n/T < oo

whereas they assume hm n/T = as n,T -^ oo. It is shown in Section 3 that the asymptotic bias of

the MLE (OLS) is proportional to ^njT. Phillips and Moon (1999) showed that the OLS estimator

is consistent and asymptotically normal with zero mean. Although their setup is different from ours

in the sense that their regressor is assumed to be nonstationary, it is plausible that their asymptotic

unbiasedness of OLS critically hinges on the assumption that lim njT = 0.

2 Bias Corrected MLE for Panel VAR with Fixed Effects

In this section, we consider estimation of the autoregressive parameter ^o in a dynamic panel model with

fixed effects

3/it
= ai + yif-i^o + 4. i= 1,.-. ,n; < = 1,... ,r, (1)

where yn is an m-dimensional vector and e\^ is i.i.d. normal. We establish the asymptotic distribution

of the OLS estimator (MLE) for ^o under the alternative asymptotics, and develop an estimator free

of (asymptotic) bias. We go on to argue that the bias corrected MLE is efficient using a Hajek type

convolution theorem, and provide an intuitive explanation of efficiency by considering the limit of the

Cramer-Rao lower bound. Finally, we point out that the asymptotic distribution of the bias corrected

MLE is robust to nonnormality by presenting an asymptotic analysis for a model where z\^ violates the

normality assumption. We leave the efficiency analysis of models with nonnormal innovations for future

research.

Model (1) may be understood as a parametric completion of the univariate dynamic panel AR(1)

model with additional regressors. If we write yn = {Y^i,X[^J^^ , then the first component of the model

(1) can be rewritten as

yit = Ci+/3o-y,t-i+7oX,<+e,,, 2 = 1,... ,n; f = 1,... ,T (2)

where Ci and (/3q, 7o)'denote the first component of q, and the first column of 9'^. This implies that, under

the special circumstances where Xj( follows a first order VAR, we can regard model (1) as a completion

of model (2). Under this interpretation, model (1) encompasses panel models with further regressors such

as (2).

Even more generally, model (1) can be parametrized to be the reduced form of a dynamic simultaneous

equation system in y,, allowing for higher order VAR dynamics as well as exogenous regressors. This



requires imposing blockwise zero and identity restrictions on ^o- It is well-known that MLE reduces to

blockwise OLS as long the restrictions are block recursive. Even though we do not spell out the details

of this interpretation of our model it is clear that extending our results to this more general case is

straightforwEird

.

If we assume en is i.i.d. over t and i, and has a zero mean multivariate normal distribution, then the

MLE (fixed effects estimator/OLS) takes the form

where yi = ^ X]t=i Vitt Vi- — ^ St=i Vu-i- We examine properties oiG under potential nonnormality of

£it under the alternative asymptotics. If the innovations en are not normal then the resulting estimator 9

is a pseudo-MLE, and does no longer possess the efficiency properties of the exact MLE. For this reason

we impose the additional assumption of normality for om discussion of asymptotic efficiency later in this

section. We impose the following conditions:

Condition 1 (i) en is i.i.d. across i and strictly stationary in t for each i, E \eu\ = for all i and t,

E\eue'J = Ql{t== s}; (ii) < lim^ = p < oo; (in) lim„^oo^o = O/ °-^d (iv) ^ ^."1=1 \y^o? = 0(1)

The innovations e,( are uncorrelated but not independent. Their higher order dependence allows for

conditionaJ heteroskedasticity. In order to be able to establish central limit theorems for our estimators

and to justify covariance matrix estimation we need to impose additional restrictions on the distribution

of the innovations. The dependence is limited by a fourth order cumulant summability restriction slightly

stronger than in Andrews (1991). These conditions could be related to more primitive mixing conditions

on the underlying en as shown in Andrews(1991). We define u*^ = Yl'jLo^o^a-j-

Condition 2

oo

y^ |cumj,,...,j, (7i*,,,eit2."*(3'^io)| < oo Vi andji,...,jk S {1,...,to} .

tl,*2.<3=— oo

In the same way as Andrews (1991), we define zn s (/ igi u*(_j) £n and impose an additional eighth order

moment restriction on eu , which takes the form of a fourth order cumulant summability condition on zu .

Condition 3

oo

|cumj,,...,j^ {zH,,zn2,Zit3,Zio)\ < oo Vz" ond ji, ..., jt € {l,...,m}.

oo

'j,'2.'3=-00

Renicirk 1 In Condition 1, our requirement that < lim :^ = p < oo corresponds to the choice of a

particular set of asymptotic sequences. The choice of these sequences is guided by the desire to obtain

asymptotic approximations that mimic certain moments of the finite sample distribution, m our case

the mean of the estimator. Bekker (1994. P-661) argues that the choice of a particular sequence can be

justified by its ability to "generate acceptable approximations of knoivn distributional properties of related

statistics ".



In our case it seems most appropriate to investigate the properties of the score related to the dynamic

panel model. After concentrating out the fixed effects, we are lead to consider the normalized score

process S^t = -7^ Y^=i St=i {^ ® [Vit-i —Vi-)) (^a —£i)- In the appendix, we show that^ SnT -^ S

under the alternative asymptotics with n/T -^ p, where S has a normal distribution with mean equal

to —y/p{I <Si I — {I ® ^o))~ vec (O). Clearly, under fixed T large n asymptotics the score process has an

explosive mean leading to the inconsistency result. The exact finite sam,ple bias for the score is given

by E [5„rl = -^^7^T-l Y^^, Y.]=o (^ ® ^0) vec (fi). The term -^pT'^ YJ=i EJ=o (^ ® ^0) vec (fi)

converges to —y/p{I'S>I — (/® ^o))~^ vec(n) = E[S] by the Toeplitz lemma as T —
> 00, and is closer

to E[S\ for small values of 6q. In other words our asymptotic sequence preserves the mean of the score

process in the lim.it. The form of the approximation error also may explain simulation findings indicating

that the approximation improves for larger values of T and deteriorates with 6 getting closer to the unit

circle.

Our asymptotics may also be understood as an attempt to capture the bias of the score of order

O (T~^) . We show in the appendix that the score process is well approximated by a process, say Sil^-p,^ such

that E [S:,^] = -yfi YlLi Ej=o {l ® ^0) vec (fi).^ Because the term ^ J2j=i Ej=o (^ ® ^0) vec (fi)

is of order O (1), the approximate mean of the normalized score process can be elicited only by considering

the alternative approximation where n and T grow to infinity at the same rate. The mean of the score

process that our asymptotics captures may also be identified as the bias of the score up to 0(T~^).

Because the score —^=sSnT is approximated by -^^S^j-, and because

E SnT
nT 'tt

T 4-1

EE (^ ® ^0) vec (Q) = -(-(/ ® / - (/ ® Oo))-' vec (fi) + o (1)) ,

t=l j=0

we may understand -^ (/ (g) 7 - (/ ® ^o))~^ vec (Jl) as the bias of the score of order O {T~^).

Remctrk 2 Condition 2 implies Yl'jL-oa ICovj-j.fcj {zit,Zit-j)\ < 00, because

Covk,,k2{zit,Zrt-3) = cum,,,..,,^ {u*t_-^,eu,u*t_i_^,£it-j) + Covi^^i^ (u*t_],u*t_i-j) ^ovi^j^ {eit,ett-j)

+ Cov^j,,, {u*^_^,Cit_j) Covi^^i^ «<_i_j,eit)

,

where ki = lim + 12 + 1 and k2 = l3ni + I4 + I vnth li, ...,14 e {0,1, ...,m}. In this sense our Condition 2

is stronger than the first part of Assumption A in Andrews (1991). Condition 3 is identical to the second

part of Assumption A in Andrews (1991).

Remark 3 In the special case where Eu is iid across i and t Conditions 2 and 3 are equivalent to

E A3)\ < 00 for all j where e\j is the j-th element in e^t- See Lemma 1 in Appendix A.

We show below that the MLE 9 is consistent, but v^nTvec io - 9'q\ is not centered at zero:

''Lemma 6 in Appendix A.

^The exact definition of S*j. is given in (12) in Appendix A.

^See Lemma 3.



Theorem 1 Let ya be generated by (1). Under Conditions 1, 2 and 3, we have

V^vec (e -9'^-*N (- Vp(/ ®T)-^ {1 ® I - [I ® 0o))~'^ vec (fi)
, (/ ® T)"' (fi ® T + /C) (7 ® T)"^)

,

whereT = Q+^o«^o+^o« (^o)'+-
'

' , ^ = E^-oc^(«'0)' ^ (^i-^z) = E [(/® <,,_i) e„,4, (/ ®<,_i)]
— jE [£'itifit2] ® -^ ["i^o'^iol' '^"'^ "it — Yl'jLo ^o^it-j- U in addition all the innovations eu are independent

for all i and t then

VnTvec (o - e'^] ^ M (-^{I ® T)"^ (7 ® / - (/ ® ^o))"' vec (fi) , O ® T"^) .

Under our alternative asymptotic sequence the MLE is therefore consistent but has a hmiting dis-

tribution that is not centered at zero. The non-centrahty parameter results from correlation between

the averaged error terms and the regressors j/it-i- Because averaging takes place for each individual

the estimated sample means do not converge to constants fast enough to eliminate their effect on the

limiting distribution. Under our asymptotics the convergence is however fast enough to eliminate the

inconsistency problem found for fixed T large n asymptotic approximations.

When the irmovations are not iid then the limiting distribution is affected by higher order moments

reflecting the conditional heteroskedasticity in the data. The limiting covariance matrix n<SiT + Kl can

also be expressed as limT""^ Ylut2=-T ^ [{^ ® "iti-i) ^J'i^it2 (-^ ® "itj-i)] Standard tools for consistent

and optimal estimation of fi®T + /C were discussed in Andrews (1991). Under our conditions the results

of Andrews are directly applicable.

Our theorem 1 roughly predicts that

yec(9 -e'o)^Af(-^{I®T)-^I®I-{I®eo)r'yec{n),^{I®T)-'{n®T + JC){I®rr'Y

Therefore, the noncentrality-parameter -i/p(7 ® T)~^ {J ® I - {I ® do))'^ vec (fi) can be viewed as a

device to capture bias of order up to O [T~ ^

)

.

Our bias corrected MLE is given by

-1"

7(

/2'

vec
I 9

f ;^EE (2^''-' - 2/,-) [yu-i - 2/.-)'

j

i=l t=l

, (3)

I'here

n T

^^^EE(2/''-i-y-)(y"-i-^-)'' and vec(n) = (707-(^®^))vec(f). (4)

i=a <=i

We show below that the bias-corrected MLE is consistent, and VnTvec io - 0[^ ]
is centered at zero



Theorem 2 Let yn he generated by (1). Then, under Conditions 1, 2 and 3, we have

V^wecCe -e'o] -^7V('o,(7®T)~^(n®T + /C)(/(8.T)"M.

// in addition all the innovations Su are independent for all i and t then

We now show that the bias-corrected MLE is asymptotically efficient. We do so by showing that the

asymptotic distribution of the bias corrected MLE is 'minimal' in the sense of a Hajek type convolution

theorem/ We show that the asymptotic distribution of any reasonable estimator can be written as a

convolution of the 'minimal' normal distribution and some other arbitrary distribution. In this sense, the

bias-corrected MLE can be understood to be asymptotically efficient.

Condition 4 (i) en ~ Af{0,9.) i.i.d.; (ii) < lim^ = p < oo; (Hi) lim„_«, ^o = 0/ «"<^ 0'")

i Er=i \y^o\' = o (1) and 1 Er=i l".l' = 0(1).

In order to discuss efficiency we naturally have to guarantee that 6 is the exact MLE. For this reason

we impose the additional requirement of normal innovations in condition (4).

Theorem 3 Let y^ he generated by (1). Suppose that Condition (4) is satisfied. Then, the asymptotic

distribution of any regular estimator ofvec{9o) cannot be more concentrated i/ian A/" (O, O® T~^).

Proof. See Appendix C.3.

It should be emphasized that Theorem 3 in itself does not say anything about the attainability of the

bound 0(g) T~^ . The asymptotic variance bound it provides is a lower bound of the asymptotic variances

of regular estimators. On the other hand, it is not clear whether such a bound is attainable. Comparison

with Theorem 2 leads us to conclude that the bound is attained by the bias corrected MLE as long as

the innovations en are iid Gaussian.

Corollary 1 Under Condition 4, the bias corrected MLE 6 is asymptotically efficient.

3 Application to Univariate Dynamic Panel Model with Fixed

Effects

In this section, we apply Theorems 1 and 2 in the previous section to the univariate stationary panel

AR(1) model with fixed effects

y^t = Q^ + 9Qyit_x+eit, I = 1,... ,n; t = 1,... ,r. (5)

We also consider estimation of fixed effects q; in the univariate contexts. Finally, we examine how the

result changes under the unit root. It turns out that the distribution of the MLE is quite sensitive to such

'See Appendix C.l for the exact sense under which the asymptotic distribvition of bias corrected MLE is 'minimal'.



a specification change. As such, we expect that our bias corrected estimator will not be (approximately)

unbiased under a unit root.

We first apply Theorems 1 and 2 to the univariate case. Obviously, Condition 4 would now read

(i) e^t ~ 7V(0,fi) i.i.d.; (ii) < limf = p < go; (iii) |6»o| < 1; and (iv) ^ Er=i 2/^) = 0{\) and

i Er=i "? = d (1). Note that the MLE (OLS) is given by

- _ :^ Er=i ELi ivit - Vi) (j/^t-l - y^-)

7^ Er=i Er=i [y^t-i -Vi-)

Applying (3) and (4) to the univariate model, we obtain

^^^(^ttiy^^-^'-y^ynT
K l= \ t=\

^ "
1 " ^ 1

-1

1=1 1=\

where

\ 1=1 t=l /

Therefore, our bias corrected estimator is given by

Because T = _„; in the univariate case, we can conclude from Theorem 2 that

At^^-^o) -^M{o,i-el)

Prom Theorem 3, we can also conclude that 9 is efficient under the alternative asymptotics where n,T ^>

CO at the same rate.

Our theoretical result may be related to Kiviet's (1995) result. He derived an expression of some

approximate bias of the MLE, which depends on the unknown parameter values including ^o- He showed

by simulation that the infeasihle bias-corrected MLE, based on such knowledge of ^o, has much more

desirable finite sample properties than various instrumental variable type estimators. Because his bias

correction depends on the unknown parameter value ^o, feasible implementation appears to require a

preliminary estimator of ^o- He considered instrumental variable type estimators as preliminary esti-

mators in his simulation study, but he failed to produce a theory for the corresponding estimator. Our

bias corrected estimator, which does not require a preliminary estimator of 6o, may be understood as

an implementable version of Kiviet's estimator. Also, our convolution theorem may be understood as a

formalization of his simulation result.

We now consider estimation of fixed effects q^. Recently, Geweke and Keane (1996), Chamberlain

and Hirano (1997), and Hirano (1998) examined predictive aspects of the dynamic panel model from

a Bayesian perspective. FVom a Frequentist perspective, prediction requires estimation of imlividiial

specific intercept terms. We argue that intercept estimation is asymptotically unbiased to begin with,

and is affected very little by bias corrected estimation of ^o- K follows that estiniation of ^o can be



separately Einalyzed even for the purpose of prediction. Observe that the MLE of a, is given by

T -, T 1 T
1

ai J2 {yn - hit-?) = "i + ^^ £,t - p - ^o) ^ j] vit-i. (7)

(=] t=\ t=i

so that

(1)

1 ^

Because -t XltLi ^i* converges in distribution to N (O, CTq) as T -> oo, the MLE is asymptotically

unbiased. Furthermore, we have

1 "^

VT'(aj - Qi) = —= ^£i« + Op (1)

,

V -^ t=i

where Sj denotes the estimator of Oi obtained by replacing the MLE 6 in (7) by the bias corrected

estimator 9. It follows that more efficient estimation of ^o does not affect the estimation of a^.

We now consider the nonstationary case where ^o = 1- We first consider a simple dynamic panel

model with a unit root, where individual specific intercepts are all equal to zero but the econometrician

does not know that. The econometrician therefore estimates fixed effects along with 9.

Theorem 4 Suppose that (i) en ~ M (O, a^) i.i.d; (ii) ai = 0; (Hi) Oq = 1; and (iv) n,T -^ oo.^ We

then have

V^T'{i-e„.^)-.^f{o.'j)

Proof. See Appendix D.l.

One obvious implication of Theorem 4 is that the bias correction for the stationary case is not expected

to work under the unit root. In order to understand the intuition, it is useful to note that Theorem 4

roughly predicts that

which indicates that the bias only depends on T. For example, Theorem 4 roughly predicts that the MLE
is centered around | if T = 5. The bias correction for the stationary model critically hinges on the fact

that the rough bias in a finite sample is a function of n and T, and hence, is not expected to be robust

to the unit root specification.

We now consider the case where individual specific intercepts are nonzero, and the econometrician

estimates them along with 9.

Theorem 5 Suppose that (i) £,t ~ N (0,0^) i.i.d; (n) Jim ^ YTi^i «? > 0; (ni) 9q = 1; and (iv) lim y^
exists. We then have

^ ' \ lim - > _i of Inn - >

'No particular rate on the growth of n and T is imposed.



Proof. See Appendix D.2.

Although Theorem 5 shares the same feature as Theorem 1 as far as the asymptotic bias being

proportional to lim .^y, it is quite clear that the bias correction for the stationary case does not work

because the asymptotic bias under the unit root depends on lim - Y!d=i **?•

4 Monte Carlo

We conduct a small Monte Carlo experiment to evaluate the accuracy of our asymptotic approximations

to the small sample distribution of the MLE and bias corrected MLE. We generate samples from the

model

Vit = cti + Ooyu-i + Sit

where yit £ M, ^o € {0, .3, .6, .9}, a^ ~ ^(0,1) independent across i, and e^ ~ TV (0,1) independent

across i and t. We generate q^ and su such that they are independent of each other. We chose yio\ Oi ~

M (yr^' ^r-P'
'
'

)- The effective sample sizes we consider are n = {100,200} and T G {5, 10, 20}.^ For

each sample of size n and T we compute the bias corrected MLE 6 based on the formulation (6). We also

compute the usual GMM estimator 9gmm based on the first differences

Vrt -Vzt-l = OoiVit-l -yit-2)+£it

using past levels {yio,--- ,J/it-2) as instrvunents. In order to avoid the complexity of weight matrix

estimation, we considered Arellano and Dover's (1995) modification. ^°

Finite sample properties of both estimators obtained by 5000 Monte Carlo runs are summarized in

Table 1. We can see that both estimators have some bias problems. Unfortunately, our bias corrected

estimator does not completely remove the bias. This suggests that an even more careful small sample

analysis based on higher order expansions of the distribution might be needed to account for the entire

bias. On the other hand, the efficiency of measured by the root mean squared error (RMSE) often

dominates that of the GMM estimator, suggesting that our crude higher order asymptotics and the related

convolution theorem provided a reasonable prediction about the efficiency of the bias-corrected MLE.

5 SumniEiry

In this paper, we considered a dynamic panel model with fixed effects where n and T are of the same order

of magnitude. We developed a method to remove the asymptotic bias of MLE, and showed that such a

bias corrected MLE is asymptotically efficient in the sense that its asymptotic variance equals that of the

limit of the Cramer-Rao lower bound. Our simulation results compare our efficient bias corrected MLE

to more conventional GMM estimators. It turns out that our estimator has comparable bias properties

and often dominates the GMM estimator in terms of mean squared error loss for the sample sizes that

we think our procedure is most appropriate for.

'A more extensive Monte Carlo results are available from authors upon request.

'"Arellano and Bover (1995) proposed to use the moment restrictions obtained by Helmerl's transforiiialion of the same set

of information. Strictly speaking, therefore, their estimator is not ba-sed on the first differences with past level instrumenls.



One advantage of using bias corrected MLE as the guiding principle for constructing estimators is that

it can more naturally be extended to nonlinear models. GMM estimators on the other hand ultimately rely

on transformations such as first differencing or similar averaging techniques to remove the individual fixed

effects. Such transformations are inherently linear in nature and therefore not suited for generalizations

to a nonlinear context.

Our technique can in principle be generalized to remove bias of higher order than T~^ by repeating the

alternative asymptotic approximation scheme for an appropriately rescaled version of the bias corrected

estimator. We are planning to pursue this avenue in future research.

Our bias corrected MLE is not expected to be asymptotically unbiased under a unit root. We leave

development of a bias corrected estimator robust to nonstationarity to future research.
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Appendix

A Proof of Theorem 1

Theorem 1 is established by combining Lemmas 6 and 7 below. Note that

Vit = elViO + {/ - ^0)~' (1 - ^o) a. + ^0~'^il + C^f.2 + • • • + Sit. (9)

In the stationary case where lim„ 6q = 0, we work with the stationary approximation to yu which is

given by

oo

y*=(/-0o)" ai+<„ t>0.

The vectorized representation of the OLS estimator for 6q is given by

(10)

(11)

vec [o-o',)

/ n T

^® \JZYl(y''-^ -j/,-)(2/2*-i -Vi-)'
\t=i t=i

J2J2i^® (j/,t-l - y^-)) {£^t - £,)

1=1 t=l

where fj = J; J^ffif. We define the joint cumulant next. Let .^ = {£,-[, ,(,k) ^ K*" and e = (sll^ ',..., ell''')

is the joint characteristic func-where e^' is the j-th element of £t, then
<Ajj,...jt,t,,...,«t (0 = E e'^

^

tion with corresponding cumulant generating function In</>jj
.. j^,<j_ ..^t^ (0- The joint v-th order cross-

cumulant function is

0Vj + ...+Vk

cumj,,...jt (£(!, ---etj
dC,'--dCk'

ln'^j.....>.,(i,....u(^)

i=o

where Vi are nonnegative integers v\ + ... + Vk = v.

Lemma 1 Let e,( be iid across i and t and E

Conditions 2 and 3 hold.

-U) < oo. Assume Conditions 4 (H) - (i"^) hold. Then

Proof. Available upon request from the authors.

Lemma 2 Let yu he generated by (1). Also, let

uT =1 t=l

Then under Conditions 1, 2 and 3

T

"-' -=i (=1

(12)

11



Proof. Because Yli=i {^ ® Vi-) i^n ~ ^i) — *^' ^"^

it suffices to prove that

n T

(= 1

v"J i=i t=i
vnJ ,^j (^j

From (9), (10), and (11), we obtain yu = y^ + 9^ (y^o - <o) - (^ - ^o)~^ ^o«i- We may therefore write

=EE(^®2/.t-l)(e^t-?.)-^EE(/®y;t-l)(f^t-^o

= EE(^®^W(^^'-^o (13)

2= 1 «= 1

nT^
1 t=i

n r
- (7 - 00)-^ -J=^ Vy:(/®^^a^) (e,t -e.) (14)

^ 2= 1 f=l

-4fEE(^®^o<o)(^^t-^0- (15)

^ 1=1 t=l

We analyze (13) first. By assumption, its expectation is zero. Because of independence of £i( and yio, we

have

/ T \ ^ , T T

Var Q^ (/ ® ^^j/io) (e.t - ?z) = E (^ ® ^o^'o) " (^ ® ^'O^o )
-
tEE (^ ® ^o^.o) ^ (7 ® y^o^o') -

i= l t=l s=l

from which it follows that

vec Var '^J2f2{l^9ly.o){eu-eA

= T-^ (7 (g) 7 (g) 7 ® 7 - (7 O e^o) ® (7 ® fi'o))"^ ((/ ® 6*0) ® (/ ® ^0) - {{I ® 6»o) ® (7 O 610))^+')

X vec
(
n"^E (^ ® ^'0^ ^ (-^ ® ^'O^

)

1=1

-r-2 (7 ® (7 - ^0)"' (»o - <+')) ® (/ ® (/ - ^o)~' (^0 - ^r')) vec ( n-^^ (/ ® y.o) ^ (/ ® 2/-o)

= o(l).

1=1

It therefore follows that (13) is Op(l). In the same way it follows that (14) is Op(l). We turn to the

analysis of (15). Because of independence of £u and u*q, we can see that it has a mean equal to zero, and

vec v3siY;^{i®eiu:o)en J2 ((^ ® ^0 ) ® U®do)) vec (E [(7 ® <o)f.*,4, {J®0])
,(2=1

T

^ ((7 ® <>) ® (^ ® ^oO) (^ h'.4J ® E [<o<o] + ^0 («i.'2)) .

ii,(2= l

T

(l,'2=l

12



where the matrix /Co(ii,i2) contains elements of the form cum^^^.j^ {u*Q,u*Q,£it^,£uJ. The sum over

the first term then can be expressed as

T

Y^ ((/ ® ^o) ® U ® ^o)) vec [n ® £«o<o)] = (/ ® / ® / ® / - ((/ ® ^o) ® (/ ® ^o)))"'
t=i

X (((/ ® ^o) ® (/ ® ^o)) - ((/ ® ^o) ® (/ ® ^o))^+') vec [0 ® E [<o<o]] •

The second term is bounded by

T T

E ll(^®^oO®(^®^o')||l|vecX;oUi,<2)||<sup||vec/Co(ti,i2)|| ^ ||(/ ® ^^0 ® (^ ® ^olll < oo

Together these results imply that Var (-^ ^,"=1 TI=i (^ ® ^o<o) ^^') = o (!) Next consider

VarK^(/®^^<o)^.
v(=i

T-2 E ((^®^o)®(-^®^o^))^ec£;[(/®<o)£.<34.U®<o)]
(,, ..,(4=1

<
||(/ ® (/ - ^0

') (^0 - ^r')) ® (/ ® (/ - ^0
') (^0 - ^r'))

r

r-'vec[0^£;[u*oM*o]]+r"^ E vec^o(«3,'4)

(/ ® (/
-

9o') [eo - e^')) ® (/ (/ - ^0
') (^0 - ^r'))

X M|T-^vec[n®£;[<o<^]]||+T-2 ^ Hvec/Co (f3,«4)ll
)

=0{T-'),

which shows that Var (-?= Yl'i=-i 13^=1 (^ ® ^o"io) ^0 ~ ''(^)- ^^^ therefore follows that (15) is Op (1)

Lemma 3 Let ya he generated by (1). Under Conditions 1, 2 and 3,

-. n T

Proof. We have

n T

nT
E 1 " ^= EE(^®<')^'

i=] (=1

" ;);EE^K/®<*)^"nTT

nl

(=1 5=1

T I

77 1
T (-1

By the usual result on Cesaro averages, we have ^ Y.i=\ IZj=o(-^ ® ^0) = {I ® i - [1 ® Oo)) + o(l).

Therefore,

1 "

^EE(^®<')^' = ^>(I®I -{I® e„)r' vcc (S^) + o (1 )

.

(17)



We also have

T
= E

T oo
-l

T oo

tl,..,t4= lji,J2=

t],..,t4= lil,J2=0

T

<l,.-,t4= l<l,.-,t4= l

where /C («i,i2,t3,(4) is a matrix containing elements of the form cumj^^„,j, ("*iii^it2i"it3)^it4)- This

leads to

^^
(= 1 / (,,t3= l (2= 1«4= 1

T OO min(T,(3-j])

+^EE E {i®o{^){Q^n')[i^er^^-'^)

T

+
T3 A^

tl,..,ti=

T

,..,«4= 1

The first term on the right is O (T ^ ) because

T t-i T

^ ^ (/ ® el'-'^) = ^ (/ ® / - / ® ^o)"' {l®I-I<^9*o')= 0{T).

t, =1*4= 1 f,=l

second term is O {T~^) becauseThe

vec

iin{T,(3-ji+l)

Y^ (l® %'
)

(f^ ® 0') (/ ® ^^0=)

J2=0

OO OO

EE||(^®^oO®(^®^)
i, =0 72=

E _
J)=0 J2=0

(/ (g» /) ® (/ ® fi'j^)

II

||vec{J^ ® n')ll = O (1)

ji =0 72=0

Finally, the third term is O {T'"^) because ^ II(j,..,(4=i cumj,,..,j, [u*n^,£u^,ul^^,€u,) = O (T"^) by

the cumulant summability assumption.

Lemma 4 Assume et is a sequence of independent, identically distributed random vectors with E [et] =

for allt. Then cum^,
, ^^ (ej, , ...,£t^) = unless ii = t2 = = tk- In this case we define cum [ji, ,jk) =

14



Lemma 5 Let Conditions 1, 2 and 3 be satisfied. Then

where IC=Y:Z-.o^it^O) and)C{t,j2) = E[{l^uU^_,)eitAt, (/ ® <_0] --^ h<,4j®-E[tx>^^].

// in addition all the innovations en are independent for all i and t then

Proof. We need to check the generalized Lindeberg Feller condition for joint asymptotic normality

as in Theorem 2 of Phillips and Moon (1999). A sufficient condition for the theorem to hold is that for all

ieW^ such that fE = 1 it follows E {-^EUni®u;,_,)su) < oo uniformly in i and T. Letting

Zit = a (i w*(_i) Sit and noting that E [zi(] = we consider

1 ^ 1

-^ ^ £'[z,t,z,t2Z,(3Z,tJ = —J ^ [Cov(z,(,,z.(JCov(z,(3,z,(J + Cov(z,t,,Zi(3)Cov(z,t2,Zi«4)]
J'2

(,,. .(4= 1 t],. .(4= 1

T

"^
r2 E |Cov(z,t,,z,(JCov(zi,2,Zi(3) + cum(za,,Zit2,Zit3.Zi(4)l>

(l,...(4 = l

where

Gov (za, z,,) - (!E [(/ ® <(_!) e,iz\, [l ® u*,_^ i

= f vec [E K,_i4]) vec [E [<_j4])'£ + f£ [£.,4] ® E [u*,_,n^:_,] i

m —

1

il, • J4=0

= + f (n E K_i<,i])M {< = 5}

Tn—

1

+ ^^ ^j3m+ji + l^J4m+j2+l '^^nnj),...j4 (Uij_i,£ii, W;3_2,Cisj .

ji,...,J4=0

Using these results we deduce that

1 ^

^ E •E'lz^tiZif^ZitjZifJ

r m-l

+ 6(f (0®£[<<_lW';_l])£) h^ E E ^j3m+j, + l^j4m+J2 + lCUmj, ;4 K(-l.^.('"*s-l'^.s)

'.5=1 J1,...,J4=0

T m-l

+ 3 - ^ ^ £j3m+ji + l^j4Tn+j2+lCUmj,,...,j„ «(_],£,(, <,_i,C,-s)

\ (,S=1 ji,...j4=

1
^ m^ / 1 \

+^ n Yi in^^O'''""^'
J4(z.',.z.'2-z.'3.z-'..)

'i. '.. = l7l J.i = l \^=1

15



where the terms involving higher order cumulants are ^ Xlt,s=i ^^™Ji.•:74(''^r«-i'^i<'''*rs-i'^«) "" ^W
and E?i,...t4=i

cum^,, ..,jJz„,Zit,Zit3ZitJ = 0{T) independent oiiJi,...,J4- This shows that

T

(l,...t4= l

uniformly in i and T. Finally consider

21

(;^|:('«<.-.)^..'

= ^ ^ £((;»»•,_, )e,.4 ('»"."-)!
t,s=]

T

t,5=l

n^T + ic+oii).

(,s=l t,s=l

where /C = X;^=-oo''^(«i,0). Note that vec [E [<t_ie',,]) vec {E [<_i4]) = for all t and s and that

T Em=i ^ If ^'^'tsl ® -E^ [":<-i":s-i] = T Er=i £^ l^.t^y ® ^ Nt-i<t'-i] = « ® T by strict stationarity.

The last line of the display follows by Cesaro summability and stationarity. The second part of the

theorem follows from Lemma (4) which implies that /C(ii,f2) = for all ii and i2-

n T

=EE (^ ® (2/^'-i - y-)) (^'* - ^') -" -^ (-^/^(^ ® -^ - (^ ® ^°))~' ^^^ (^) ' " ® ^ + ^)

Lemma 6 Let y,t be generated by (1). Under Conditions 1, 2 and 3,

n T

Proof. The result then follows from Lemmas 2, 3, and 5.

Lemma 7 Let yu he generated by (1). Under Conditions 1, 2 and 3

n T

nT;^EE (j^-'-i - ^-) (y^'-i - y^-)' = ^ [(y'*-i - ^y^^-i) (y'*-i - ^y:*-i)'] + op (i) = t + o^ (i) .

i=] (=1

Proof. Available upon request from the authors.

B Proof of Theorem 2

We have

nr vec
(^ -0',^^ ^ ® f;^EE (^"-^ - ^-) (y-'-i - y^-)']

1=1 ( = 1

^\\ -1

16



Because vec (T) = (7 - (^o ® do)) ^ vec (fi), and 6 = 9o + Oj, (1), we have

W^ (/ ® / - (/ ® ?))
"'

vec (fi) = v^ (7 ® 7 - (/ ® flo))"' vec (Q) + Op (1) . (18)

Combining with Lemma 6, we obtain

1
n T

I

—
J

;^EE (^ ® {yit-l-y^-)) {su -^i) + J^ (/® / - (7®?))" vec (n)

-iA^(0,(fi®T + /C)).

The conclusion follows by using Lemma 7.

C Proof of Theorem 3

C.l Framework

For the discussion and derivation of the asymptotic variance bound, we adopt the same framework as in

van der Vaart and Wellner (1996, p. 412). For this purpose, we discuss some of their notation. Let 77

be a linear subspace 77 of a Hilbert space with inner product (•, ) and norm ||||, and let Pn^h denote a

probability measure on a measurable space {A!n,An)- Consider estimating a parameter «„ (h) based on

an observation with law Pn,h- Now, let {A/j : h € 77} be the "iso-Gaussian process" with zero mean and

covariance function E[Ah^Ah^] = (/ii,/i2)- We say that the sequence {Xn,An,Pn,h) is asymptotically

normal if

]og^ = A„,.-i||/zf

for stochastic processes {A„,ft : /i e 77} such that /\n,h converges weakly to A/, marginally under P„_o-

Now, consider the sequence of parameters «;„ {h) belonging to a Banach space B, which is regular in the

sense that r„ («„ (h) - k„ (0)) —> k{k) for every /i 6 77 for a continuous, linear map k : H -^ B and

certain linear maps rn : B -^ B. A sequence of estimators t„ is defined to be regular if r„ (t„ - «;„ (h))

converges weakly to the same measure L, say, regardless of h. The bound of the asymptotic variance of

a regular estimator can be found from the following theorem due to van der Vaart and Wellner (1996,

Theorem 3.11.2):

Theorem 6 Let the sequence (A'„,^„,P„,h : h £ H) be asymptotically normal and the sequence ofparam-

eters Kn {h) and estimators t„ be regular. Then the limit distribution L of the sequence r„ (t„ - k„ (ft))

equals the distribution of a sum G + W of independent, tight, Borel measurable random elements in B

such that b*G ~ A^ (0, ||k*6*||), for every b* e B' . Here, k : B* ^ H is the adjoint of k.

It can be seen that G provides us with the minimal asymptotic distribution for any regular estimator. If

G happens to be normal with mean zero, then we can say that its asymptotic variance is the asymptotic

variance bound.

17



We show that our setup is covered by the preceding theorem. Ignoring irrelevant constants, the joint

likeHhood of the model (1) is given by

£ = ^logdet(*)-iX^^ trace (4'Z,,K,e)), (19)

i=l t=l

where Zu {a^,9) = [yu - a^ - d'yn-i) [yu -on- 9'yit-i)', and ^ = Q~^. We will localize the parame-

ter. Let a denote the sequence (Qi,a2, . .
.
). We will attach subscript to denote the 'truth'. We will

localize the parameter around the 'truth', so that 6 = 9 {n) = 9o + -^^^^ 'J' = ^ (n) = 'I'o +
:y=f*:

and

a = a (n) s ao + -^o- Let h = (a, 6, $
j

, and let H denote a set of all possible values of f Q,^, $ j

.

Let Pn^h denote the joint probability under parameters characterized by h. Theorems 7, 8, and 9 in the

next subsection establishes that, under Pn,o, we have

dPn,h , 1

dPnfi
log3^=^n,;.-^i|A„,,f+Op(l),

n T ^ n T

where

A„,h = A„ (a,9,^^

converges weakly (under Pn,o) to A/j ~ A^ (0, \\h\\ |. Here, \\h\\ = {h,h), and

(^(5i,?i,$i) , (52,^2,^2)) = ivec(^2)'vec(fi)vec(n)'vec($i) +vec(52)'(*®T^)vecp)

+ £- ^E"H*«-+ (vec(^£m^i|:a,5',jj (* ® (/ - ^')">ec (^'2)

+ (^^^(nl^ooiE"^"2i))
(*®(/-0-')vecp)

+ (vec(?2))' (*®(/-6')"^ („''H^~E"''*0
(^-^')~ l^ecf^i). (20)

In other words, the sequence (P„,/, : h E H) is asymptotically normal.

In order to adapt Theorem 6 to our problem, we consider estimation of the "parameter" «„ {h) =

«;„ ( a, 0, ij*
j
= 9o+^^^ = 9, which is regular because r„ (k„ (/i) - «„ (0)) = rn-l=9 = 9 for r^ = v'nT':

We may write yfnT {Kn (h) - k„ (0)) ^ k{h) for /t (/i) s k (a,^, * j
= 9. We restrict our attention to

regular estimators t„ of 9 such that the asymptotic distribution of y/WT [t^ — Kn (h)) = VriT {Tn — 9)

under Pn,h does not depend on h. Applying Theorem 6, we obtain Theorem 3.



C.2 Technical Lemmas

In this subsection, we omit the subscripts in 9o,^o, and ao in order to simplify notation. We have

n T

log-T^ = — logdetU' + -^=^) - log det* + -VV trace (*Zit(a„0))

- ^ y"V trace
( ( * + -7=* ) Zn ( a^ + -^Q„e + -^e)]

Because Za {ai,9) = eu^'it and en ~ A/^(0, fi) under P„_o, we can write

= .^1 + 02 + (^3 + <^4 + 05. (21)

rp /
1 \ T^ 1

Tl I

t)-, = — logdet ( * + ^=^1 - ^logdet* ==V Vc',*ft(.

-. n T
I ^

1 (=1

* i— 1 (=1

1 " ^ /

where

i=l (=1

n T
_ I

2nTylnT .^j ^^^

n T
_ I

"4

rl t=l

Lemma 8 Under P^fi, we have

n T

-^ f^^trace {^ {sue'u -^))-\ (trace (*-^*))' + o(l)

.

' 2^nT ^^, ,^,

Proof. Follows from

nT
logdet (* +

-^1'
I -^logdet* = ^!^trace(*-^*) -- (trace (* '*)) +o{l),

2v"2" ,^j ,^j
. , - ^v..- ,= 1 t=i

19



Lemma 9 Under P„ o, ^4 —» A/" (O, ip^), where

1 " 2 " -'
ip'^ = lira -y a'*a, + lim -V a'*6' (/ - 6»)"^ a^

n—>oo n •'^—

'

Ti—>oo n ^—

'

(^*?' t) + trace leW {I - 9)"'^
i Jiirn^ -^ a^a[

j
(/ - 6')''^

j

+ trace
|

Proof. Write

Apply the same reasoning as in the proof of Lemma 2 to the second term on the right hand side, we

obtain

^
n T ^ _ ,

i=l t=l

Let 7i = a^ + 9{I -6) ^ a^ and Yrt = 7=^ E"=i {li + ^<t-i) *^it- We then may write ^4 =

E(_j Vrt + Op (1). For each T, Yrt is a martingale difference sequence. Let aJ'^ denote the conditional

variance of Yti given {{uio, £iQ, . . . , eu-i) ,i = 1, . . . , n}. We then have

'Tt —^ (7, + ^«*,_j) * (7i + Kt-i) ,
and

71 T

E4. = ^ E^:*^. + ;! EE^:*^<-i + ;^EE Kvo'^'*^<-i-
t=l i=l i=l t=l 1= 1 t=l

It follows by standard arguments that Ylt=i '^Tt
~^ ^^ ^^ probability. By strict stationarity, we have

E [Y^t 1 {\YTt\ > £)] = ^ [Y-^s 1 (l>Vs| > €)] Vs, <. Therefore, if

T

T • .B [y^, 1 (lYTtl > e)] = ^i? [k2, • 1 (lyrtl > 0] - Ve > 0, (22)

t=i

then we can use Billingsley (1995, Theorem 35.12) and conclude that

n T

^EE ("^ + ^<'-i)' *^^* ""^ ('^' ^')

i=\ t=\

Note that

r.£[y2^.i(|yr<|>6)]

Because

1=1 \ * 1=1

> %/Te

^ ^=l !=1 L

0(1),

we obtain (22) by Dominated Convergence.
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Lemma 10 Under Pn,o, we have (f>2
= Op{l) .

Proof. By Lemma 9, we have (j)^ = Op (1), from which we can easily infer that 02 = Op (1).

Lemma 11 Under P„_o, we have 4>^ = -^ip'^ + Op (1).

Proof. After applying a reasoning basically the same as in the proof of Lemma 2, we can obtain

^5 = -^E^';^5,--if^^5:^?((/-^r^a.+<,_,)
1=1 i=l «=1

n T

-^^T.J2{^^-^y''^i + <t-i) '^e {{I -9r'ai+u*^_,)+ Op il). (23)

It therefore suffices to show

n T ^ n T

^Y.tl °i*^<t-i =op(i), ^iiYl ((^

-

^y' °0' ^'*^<t-i = °p (1)

'

i=l t=l i=l (=1

;^EE «<-i)'^'*^<t-i = trace (?'M'^ t) + o^ (1)

.

i=\ t=l

All of them follow quite easily from characterization of means and variances, and details are omitted.

Lemma 12 Under Pnfl, we have <p^ = Op (1).

Proof. Follows easily with Lemma 11.

Theorem 7 Under Pn,o, we have

dPn,o 2VnT^^ V ^ VnT-^j^^jV ^

- i trace ((*-^$)Vi^X:"^*"'-^E"^*^(^-^r'"^

- i trace f^'*^ t) - i trace j^'*^ (/- ^)"' (^E°'"0 i^
- ^Tj +Op{l)- (24)

Proof. Follows from Lemmas 8, 9, 10, 11, and 12.

Theorem 8

-77^EEt^^^<*(^''<t-")) + ^EE(^'+^(^-^)"'"'+^<*-0'*'^'

-^ AA fo, i (trace (^*))^ + V'^ ) ,

Proof. It can be established by the same reasoning as in the proof of Lemma 9, and details are

omitted.

Theorem 9 A^ (01,^1,$] j and A„ (02,^2, *2) are jointly asymptotically normal with asymptotic co-

vanance as in (20).

Proof. Joint normality can be established by the same reasoning as in the proof of Lemma 9, and

details are omitted. As for the covariance, it can be inferred from the asymptotic variance in Theorem 8

using the formula Gov {X., Y) =
\ (Var (A' + K) - Var (A) - Var [Y)). m
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C.3 Proof of Theorem 3

We may write

n T n T n T

= vec p') Ai„ + A2„ (5, ^) .

Theorem 10 below implies that the 'minimal' asymptotic distribution is TV I J £ Ai A'j
j J

, where

Ai is the residual in the projection of Ai on the linear space spanned by •! A2 (q,^j > Here, Aj and

A2 (a, ^j denote the 'limits' of Ai„ and A2n (a,*]. Lemma 13 below establishes that /Aj, A'A =

^ (g) T. Therefore, the minimum variance of estimation of vec (^0) is given by the inverse of * ® T, or

n®T-^

Theorem 10 Assume that (P„,h : h G H) is asymptotically shift normal. Also, suppose that (i) h =

{6, E), ho = (0, 0); (ii) k„ (/i) = {„ = ^o + J-6 for some (,0 G K; and (iii) A;, = Aj • 5 + A2 (H). FuHher

suppose that, with respect to the norm ||-||, (iv) the m.apping k : (5,H) —> 5 25 continuous; and (v) H is

complete. Then, for every regular sequence of estim,ators {t„}, we have

rn{Tn - Hn{h)) -^ N Ue[i\i^Y'^ ®W

for some W, where ® denotes convolution, and Ai is the residual in the projection of A^ on

{A2(H):(5,H)eH}."

Lemma 13 /Aj, A'A = ^ ® T.

Proof. We first establish that

Ai Ai

A2(l?i(/-0o)"'a,o)

A2 (^D^2 {I - Oo)-'
a,QJ

where, e'j denotes the jth row of 7^2, and £>j is an m x m matrix such that vec {D'j) = Cj. We minimize

the norm of e^Ai - A2 (5, * j for each j. Prom (20), we obtain

||e;Ai-A2(5,$)|p = e;U®(7-0o)"' („1H^^E"^°U (^-^o)'')^^

n n

-2 lim -y"5'*A(/-6io)"^Qz+ lim -^a.^a.

~\\2
+ Cj {* ® T) ej + ^ ftrace (^*))

"This theorem originally appeared in Hahn (1998), but is reproduced here for convenience.
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Therefore, the minimum of e^ Aj - A2 (a, *^ is attained with ^ = 0, and a- = Dj {I - 9o)
^ q^.

Observe that the (j, fc)-element of /Aj, A'j\ is equal to

(e^Ai - A2 (d, (/ - ^o)~' Q„0) ,e'fcAi - A2 (d^ (/ - ^0)"' az,o)) .

After some tedious algebra, we can show that it is equal to e^ ('I' ® T) et. In other words, /Ai, A'A =

D Proofs of Theorems 4 and 5

Ignore the i subscript whenever obvious. Let Ht = It - y^t^'ti V = {Vit ^Vt)' , V- = (j/o, • •
, yr-i)',

and £ = (ci,... .St)' We can write Yh=\ (^« ~^) (j/*-i -V-) = ^'^tV-, and J^Li {vt-i -V-) =

y'_HTy-- Here, ^j' denotes T-dimensional column vector consisting of ones. Note that

y- =

/1\
1

1 yo +

/ \

1

2 Q +

•

10 0-
1 1

1111

^ = i^itJ/0 + ?2ra + Are-

vi y \T-i )

Let £>T = HtAx- We have Ht(,it = 0, and hence, it follows that

Hry- = U2T 2~^^
)
" "*" ^^^'

y'.Hry- = U^t - ^^t) f^T " '^^^A o? + 2a£' (^Czr - ^^^-j + e'l^^Dx^

In the special case where a = 0, we have

e'Ery- = e'Drs, y'^Hry- = e'D'tDts.

Lemma 14

trace(IP^Z?,) = '-T^ - 1, trace [[D'rDrf] = ^T^ + ^T^ - ^,

trace(£>^I?2^) = -^T2 + ^,

trace (£>r + -Dt) = -'7^ + 1, trace ({Dt + J^r)^) = g^^ "^ '^ ~
6'

trace ((D. + D^)^) = -^T^ - T + [ trace ((D. + D^)^) = ^T" + ^^^^ + T - |
Lemma 15 /I5 n,T — 00
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Proof. Examining the cumulant generating function, we can see that the first two cumulants of

e'D'-j^Dre are equal to ct^ trace (D^Dj-), and 2ct'* trace (D^Dx)^ . Using Lemma 14, we obtain the

desired conclusion.

Lemma 16 As n,T ^> oo,

^eK-^(—))-^(o.?;)

Proof. We will consider the fourth moment of e'Dts and examine the Lyapounov condition. Exam-

ining the cumulant generating function, we can show that the first, second and fourth cumulants of e'DtE

are equal to ^ trace [Dj- + Z)^], ^ trace {Dt + D'j.) , and 3cr^ trace {Dt + D'j-) . Using Lemma 14

along with the well-known relation between cumulants and central moments, we obtain

E \{e'DTe - E \e'DTe]f\ = ^ (T^ -h 22T'^ + 20T - 47 -h 4T^) .

Now, let EILi^ni = Etii^'Dre-Ele'DTs]), and 4 = Er=i Var (e'Dre) = n^ (iT^ + T- |).

Because

E>ra =
n(^(ir2 + T-|))

Lyapounov's condition is satisfied, and hence,

— (T* + 22T^ + 20T - 47 + 4T^) = O (
-

|
-^ 0,

16 ^ \nj

-f2^nr=
I

^ —T {e'Dre - E [e'Dre])

Lemma 17 As n,T —^ oo,

Proof. We first note that the fourth central moment of z'Dte -I- j^c'D^Dj-e can be bounded

by eight times the sum of the fourth central moments of e'DtE and ~r^E'D'j.DrE, from which we can

conclude that the fourth central moment o{z'Dre-\-^^^s'D'rj,DrE is of order T^. Examining the cumulant

generating function, we can see that the first two cumulants of e' \Dt + x+T^t^t) f = e'Cyt are given

by ^ trace {Gt -I- G^), and \ trace (Gr + G'y) . Using Lemma 14, we can show that

1 17T3 - 37T2 + 37T - 17
trace {Gt + G'j-) = 0, trace {Gt + G't)

Therefore, we have

3
Dt + T+ 1

D'j^Dt £ 0, Var le' {Dt + T+ 1

30

D'tDt

T+ 1

^4 172-3 _37j^2^ 375- _ 17

60 r+ 1
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Because the fourth central moment is of order T"*, and the variance is of order T^, the Lyapounov

condition is satisfied. Therefore, we have

, Y ^' (dt + t^A-tD'tDt^ e-- at (0,1),

V 60 T+1 '

from which the conclusion follows.

Lemma 18 Suppose that lim ^ X^iLi ^f > 0- ^^ ihen have

Proof. It can be shown that

Therefore,

Prom Lemma 16, we obtain

J2 Udts - y (-T + 1)) = O, (n^'T) = Op (nV2T3/2) .

The conclusion follows from (26) and (27).

Lemma 19 Suppose that lim - X!"_j a| > 0. VKe i/ien have

i=l

Proof.

(26)

(27)

(28)

Using (25), we obtain

FVom (26) and (27), we can see that the first term on the right hand side of (28) dominates the second

and third terms. The conclusion follows.

D.l Proof of Theorem 4

Note that

. , E.e'Hry- E.^'Dre E, (^^^re - ^ (-r+ 1)) + ^n(-T+ 1)
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Therefore, we obtain

^nT \S — Q^-\ ——

-

T+i; ^^Y..^'^'T^Te

By Lemma 17 and 15, we obtain ^T (? - 6*0 + ^q^) ^M (O, ^).

D.2 Proof of Theorem 5

Note that

3 , H^e'^TV-
E.(e-H.,_-^(-T+l))4-^n(-T+l)

Therefore,

Prom Lemmas 18 and 19, we obtain

Furthermore, we have lim ^1/2^3/2 ^" (^^ + 1) = -^ lim y^. We therefore obtain

\ / \ hm - > ._, ai hm r > ... "-limiEr=3"riim-Er=ia?
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Table 1: Performance of Bias Corrected Maximum Likelihood Estimator

Bias RMSE

T TV ^0 ^GMM 9 0GMM ?

5 100 -0.011 -0.039 0.074 0.065

5 100 0.3 -0.027 -0.069 0.099 0.089

5 100 0.6 -0.074 -0.115 0.160 0.129

5 100 0.9 -0.452 -0.178 0.552 0.187

5 200 -0.006 -0.041 0.053 0.055

5 200 0.3 -0.014 -0.071 0.070 0.081

5 200 0.6 -0.038 -0.116 0.111 0.124

5 200 0.9 -0.337 -0.178 0.443 0.183

10 100 -0.011 -0.010 0.044 0.036

10 100 0.3 -0.021 -0.019 0.053 0.040

10 100 0.6 -0.045 -0.038 0.075 0.051

10 100 0.9 -0.218 -0.079 0.248 0.085

10 200 -0.006 -0.011 0.031 0.027

10 200 0.3 -0.011 -0.019 0.038 0.032

10 200 0.6 -0.025 -0.037 0.051 0.045

10 200 0.9 -0.152 -0.079 0.181 0.082

20 100 -0.011 -0.003 0.029 0.024

20 100 0.3 -0.017 -0.005 0.033 0.024

20 100 0.6 -0.029 -0.011 0.042 0.024

20 100 0.9 -0.100 -0.032 0.109 0.037

20 200 -0.006 -0.003 0.020 0.017

20 200 0.3 -0.009 -0.005 0.022 0.017

20 200 0.6 -0.016 -0.010 0.027 0.018

20 200 0.9 -0.065 -0.031 0.074 0.034

Simulations are based on 5000 replications. The fixed effects q; and the innovations eu are assumed to

have independent standard normal distributions. Initial observation 2/,o are assumed to be generated by

the stationary distribution TV ( j-^g- , j;^ )

.
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