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FINITE SAMPLE INFERENCE FOR QUANTILE REGRESSION MODELS

VICTOR CHERNOZHUKOV CHRISTIAN HANSEN MICHAEL JANSSON

Abstract. Under minimal assumptions finite sample confidence bands for quantile regres-

sion models can be constructed. These confidence bands are based on the "conditional pivotal

property" of estimating equations that quantile regression methods aim to solve and will pro-

vide valid finite sample inference for both linear and nonlinear quantile models regardless of

whether the covariates are endogenous or exogenous. The confidence regions can be com-

puted using MCMC, and confidence bounds for single parameters of interest can be computed

through a simple combination of optimization and search algorithms. We illustrate the finite

sample procedure through a brief simulation study and two empirical examples: estimating

a heterogeneous demand elasticity and estimating heterogeneous returns to schooling. In

all cases, we find pronounced differences between confidence regions formed using the usual

asymptotics and confidence regions formed using the finite sample procedure in cases where

the usual asymptotics are suspect, such as inference about tail quantiles or inference when

identification is partial or weak. The evidence strongly suggests that the finite sample methods

may usefully complement existing inference methods for quantile regression when the standard

assumptions fail or are suspect.

Key Words: Quantile Regression, Extremal Quantile Regression, Instrumental Quantile

Regression

1. Introduction

Quantile regression (QR) is a useful tool for examining the effects of covariates on an outcome

variable of interest; see e.g. Koenker (2005). Perhaps the most appealing feature of QR is that

it allows estimation of the effect of covariates on many points of the outcome distribution

Date: The finite sample results of this paper were included in the April 17, 2003

version of the paper "An IV Model of Quantile Treatment Effects" available at

http://gsbwww.uchicago.edu/fac/christian.hansen/research/IQR-short.pdf. As a separate project, the

current paper was prepared for the Winter Meetings of the Econometric Society in San-Diego, 2004. We thank

Roger Koenker for constructive discussion of the paper at the Meetings that led to the development of the

optimality results for the inferential statistics used in the paper. Revised: December, 2005. We also thank An-

drew Chesher, Lars Hansen, Jim Heckman, Marcello Moreira, Rosa Matzkin, Jim Powell, Whitney Newey, and

seminar participants at Northwestern University for helpful comments and discussion. The most recent versions

of the paper can be downloaded at http://gsbwww.uchicago.edu/fac/christian.hansen/research/FSQR.pdf.
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including tlie tails as well as the center of the distribution. While the central effects are useful

summary statistics of the impact of a covariate, they do not capture the full distributional

impact of a variable unless the variable affects all quantiles of the outcome distribution in the

same way. Due to its ability to capture heterogeneous effects and its interesting theoretical

properties, QR has been used in many empirical studies and has been studied extensively in

theoretical econometrics; see especially Koenker and Bassett (1978), Portnoy (1991), Buchinsky

(1994), and Chamberlain (1994), among others.

In this paper, we contribute to the existing literature by considering finite sample inference

for quantile regression models. We show that vahd finite sample confidence regions can be

constructed for parameters of a model defined by quantile restrictions under minimal assump-

tions. These assumptions do not require the imposition of distributional assumptions and will

be valid for both linear and nonlinear conditional quantile models and for models which include

endogenous as well as exogenous variables. The basic idea of the approach is to make use of

the fact that the estimating equations that correspond to conditional quantile restrictions are

conditionally pivotal; that is, conditional on the exogenous regressors and instruments, the es-

timating equations are pivotal in finite samples. Thus, valid finite sample tests and confidence

regions can be constructed based on these estimating equations.

The approach we pursue is related to early work on finite sample inference for the sample

(unconditional) quantiles. The existence of finite sample pivots is immediate for unconditional

quantiles as illustrated, for example, in Walsh (1960) and MacKinnon (1964). However, the

existence of such pivots in the regression case is less obvious. We extend the results from the

unconditional case to the estimation of conditional quantiles by noting that conditional on

the exogenous variables and instruments the estimating equations solved by QR methods are

pivotal in finite samples. This property suggests that tests based on these quantities can be

used to obtain valid finite sample inference statements. The resulting approach is similar in

spirit to the rank-score methods, e.g. Gutenbrunner, Jureckova, Koenker, and Portnoy (1993),

but does not require asymptotics or homoscedasticity for its vahdity.

The finite sample approach that we develop has a number of appealing features. The ap-

proach will provide valid inference statements under minimal assumptions, essentially requiring

some weak independence assumptions on sampling mechanisms and continuity of conditional

quantile functions in the probability index. In endogenous settings, the finite sample approach

will remain valid in cases of weak identification or partial identification (e.g. as in Tamer

(2003)). In this sense, the finite sample approach usefully complements asymptotic approxi-

mations and can be used in situations where the validity of the assumptions necessary to justify

these approximations is questionable.



The chief difficulty with the finite sample approach is computational. In general, imple-

menting the approach will require inversion of an objective function-like quantity which may

be quite difficult if the number of parameters is large. To help alleviate this computational

problem, we explore the use of Markov Chain Monte Carlo (MCMC) methods for constructing

joint confidence regions. The use of MCMC allows us to draw an adaptive set of grid points

which offers potential computational gains relative to more naive grid baised methods. We also

consider a simple combination of search and optimization routines for constructing marginal

confidence bounds. When interest focuses on a single parameter, this approach may be com-

putationally convenient and may be more robust in nonregular situations than an approach

aimed at constructing the joint confidence region.

Another potential disadvantage of the proposed finite sample approach is that one might

expect that minimal assumptions would lead to wide confidence intervals. We show that this

concern is unwarranted for joint inference: The finite sample tests have correct size and good

asymptotic power properties. However, conservativity may be induced by going from joint to

marginal inference by projection methods. In this case, the finite sample confidence bounds

may not be sharp.

To explore these issues, we examine the properties of the finite sample approach in simulation

and empirical examples. In the simulations, we find that joint tests based on the finite sample

procedure have correct size while conventional asymptotic tests tend to be size distorted and

are severely size distorted in some cases. We also find that finite sample tests about individual

regression parameters have size less than the nominal value, though they have reasonable power

in many situations. On the other hand, the asymptotic tests tend to have size that is greater

than the nominal level.

We also consider the use of finite sample inference in two empirical examples. In the first,

we consider estimation of a demand curve in a small sample; and in the second, we estimate

the returns to schooHng in a large sample. In the demand example, we find modest differences

between the finite sample and asymptotic intervals when we estimate conditional quantiles not

instrumenting for price and large differences when we instrument for price. In the schooling

example, the finite sample and asymptotic intervals are almost identical in models in which we

treat schooling eis exogenous, and there are large differences when we instrument for schooling.

These results suggest that the identification of the structural parameters in the instrumental

variables models in both cases is weak.

The remainder of this paper is organized as follows. In the next section, we formally intro-

duce the modelling framework we are considering and the basic finite sample inference results.

Section 3 presents results from the simulation and empirical examples, and Section 4 concludes.



Asymptotic properties of the finite sample procedure that include asymptotic optimahty results

are contained in an appendix.

2. Finite Sample Inference

2.1. The Model. In this paper, we consider finite sample inference in the quantile regression

model characterized below.

Assumption 1. Let there be a probability space (fi, JF, P) and a random vector {Y, D' , Z', U)

defined on this space, with Y gR, D e R^™(^), Z e K'^™^^), and J7 e (0, 1) P-a.s, such that

Al Y — q{D, U) for a function q{d,u) that is measurable.

A2 q{d, u) is strictly increasing in u for each d in the support of D.

A3 U ~ Umform(0, 1) and is independent from Z.

A4 D is statistically dependent on Z.

When D = Z, the model in Al-4 corresponds to the conventional quantile regression model

with exogenous covariates, cf. Koenker (2005) where Y is the dependent variable, D is the

regressor, and q[d,T) is the r-quantile of Y conditional on D = d for any t € (0,1). In this

case, Al, A3, and A4 are not restrictive and provide a representation of Y , while A2 restricts

Y to have a continuous distribution function. The exogenous model was introduced in Doksum

(1974) and Koenker and Bassett (1978). It usefully generalizes the classical linear model Y =

C''7o+7i(f/) by allowing for quantile specific effects of covariates D. Estimation and asymptotic

inference for the linear version of this model, Y = D'6{U), was developed in Koenker and

Bassett (1978), and estimation and inference results have been extended in a number of useful

directions by subsequent. Matzkin (2003) provides many economic examples that fall in this

framework and considers general nonparametric methods for asymptotic inference.

When D ^ Z but Z is a set of instruments that are independent of the structural disturbance

f7, the model Al-4 provides a generalization of the conventional quantile model that allows

for endogeneity. See Chernozhukov and Hansen (2001, 2005a, 2005b) for discussion of the

model as well as for semi-parametric estimation and inference theory under strong and weak

identification. See Chernozhukov, Imbens, and Newey (2006) for a nonparametric analysis of

this model and Chesher (2003) for a related nonseparable model. The model Al-4 can be

thought of as a general nonseparable structural model that allows for endogenous variables as

well as a treatment effects model with heterogeneous treatment effects. In this case, D and U
may be jointly determined rendering the conventional quantile regression invahd for making

inference on the structural quantile function q{d,T). This model generahzes the conventional

instrumental variables model with additive disturbances, Y = D'ao + a\{U) where U\Z ~

L''(0, 1), to cases where the impact of D varies across quantiles of the outcome distribution.



Note that in this case, A4 is necessary for identification. However, the finite sample inference

results presented below will remain vahd even when A4 is not satisfied.

Under Assumption 1, we state the following result which will provide the basis for the finite

sample inference results that follow.

Proposition 1 (Main Statistical Implication). Suppose A 1-3 hold, then

1. P\Y <q{D,T)\Z]=T, (2.1)

2. [Y < q{D,T)} IS Bernouni(r) conditional on Z . (2.2)

Proof: {Y < q{D,T)} is equivalent to {U < r} which is independent of Z . The results

then follow from U ^U{0,1). D

Equation (2.1) provides a set of moment conditions that can be used to identify and estimate

the quantile function q{d,T). When D = Z, these are the standard moment conditions used in

quantile regression which have been analyzed extensively starting with Koenker and Bassett

(1978) and when D ^ Z, the identification and estimation of q{d,T) from (2.1) is considered

in Chernozhukov and Hansen (2005b).

(2.2) is the key result fi-om which we obtain the finite sample inference results. The result

states that the event {Y < q{D,T)} conditional on Z is distributed exactly as a Bernoulli(T)

random variable regardless of the sample size. This random variable depends only on r which

is known and so is pivotal in finite samples. These results allow the construction of exact finite

sample confidence regions and tests conditional on the observed data, Z.

2.2. Model and Sampling Assumptions. In the preceding section, we outlined a general

heterogeneous effect model and discussed how the model relates to quantile regression. We also

showed that the model implies that [Y < q{D,r)} conditional on Z is distributed exactly as

a Bernoulli(r) random variable in finite samples. In order to operationalize the finite sample

inference, we also impose the following conditions.

Assumption 2. Let r € (0, 1) denote the quantile of interest. Suppose that there is a sample

{Yi,Di, Zi,i = 1, ...,n) on probability space (f2,.F, P) (possibly dependent on the sample size),

such that A1-A4 holds for each i = l,...,n, and the following additional conditions hold:

A5 (Finite-Parameter Model): q{D,T) = q{D,9o,T), for some Bq £ Qn C M'^", where

the function q{D, 0, t) is known, but 6q is not.

A6 (Conditionally Independent Sampling): {Ui,...,Un) are i.i.d. Uniform(0, 1), con-

ditional on (Zi,...,Z„).
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We will use the letter V to denote all probability laws P on the measure space (fi, J^) that

satisfy conditions Al-6.

Conditions A5-6 restrict the model Al-4 sufficiently to allow finite sample inference. A5

requires that the r-quantile function q{d, r) is known up to a finite-dimensional parameter ^o

(where 9q may vary with r). Since we are interested in finite sample inference, it is obvious

that such a condition is needed. However, A5 does allow for the model to depend on the

sample size n in the Pitman sense, and allows the dimension of the model, iC„, to increase

with n in the sense of Huber (1973) and Portnoy (1985) where Kn —
> oo as ?i —> oo. In this

sense, we can allow flexible (approximating) functional forms for q{D,9o,T) such as linear

combinations of B-splines, trigonometric, power, and spHne series. Condition A6 is satisfied if

{Yi,Xi,Zi,i = l,...,n) are i.i.d., but more generally allows rather rich dynamics, e.g. of the

kinds considered in Koenker and Xiao (2004a) and Koenker and Xiao (2004b).

2.3. The Finite Sample Inference Procedure. Using the conditions discussed in the pre-

vious sections, we are able to provide the key results on finite sample inference. We start

by noting that equation (2.1) in Proposition 1 justifies the following generalized method-of-

moments (GMM) function for estimating ^o^

Ln{0)

n /

)_M0) Wr.

i=l

1

J^m^ie)
i=\

(2.3)

where mi{9) = [r — l{Yi < q{Di,9,T))]g{Zi). In this expression, g{Zi) is a known vector of

functions of Z that satisfies dim{g{Z)) > dim(0o)i aiid Wn is a positive definite weight matrix,

which is fixed conditional on Zj, ..., Z„. A convenient and natural choice of Wn is given by

Wn
1

T(l
-J29{Z^)g{Z,y
^^ ^ J

n -1

i=l

which equals the inverse of the variance of n~^/^ Y^^=i '^i(^o) conditional on Zi, ..., Z„. Since

this conditional variance does not depend on do, the GMM function with W„ defined above

also corresponds to the continuous-updating estimator of Hansen, Heaton, and Yaron (1996).

We focus on the GMM function Ln{9) for defining the key results for finite sample inference.

The GMM function provides an intuitive statistic for performing inference given its close

relation to standard estimation and asymptotic inference procedures. In addition, we show in

the appendix that testing based on L„(0) may have useful asymptotic optimality properties.

We now state the key finite sample results.



Proposition 2. Under A1-A6, statistic Ln{9o) is conditionally pivotal: Ln(^o) = ^n, condi-

tional on (Zi, ..., Zn), where

^- = li^D^ - ^^) 9iZ^)] Wr, U= J2{T - B,) g{zA
,

and {Bi, ..., Bn) are iid Bernoulli rv's with EBi = r, which are independent 0/ (Zi, ..., Z„).

Proof: Implication 2 of Proposition 1 and A6 imply the result. D

Proposition 2 formally states the finite sample distribution of the GMM function Ln{0)

&t 6 = Oq. Conditional on {Zi,...,Zn), the distribution does not depend on any unknown

parameters, and appropriate critical values from the distribution may be obtained allowing

finite sample inference on ^o-

Given the finite sample distribution of Ln{9o), a 1 — a-level test of the null hypothesis that

6 =^ 9o is given by the rule that rejects the null if Ln{9) > Cn{a) where Cn{oi) is the Q-quantile

of Cn- By inverting this test-statistic, one obtains confidence regions for ^o-

Let CR{a) be the c„(Q:)-level set of the function Ln{0): CR(a) = {9 : Ln{9) < Cn{a)}. It

follows immediately from the previous results that CR{a) is a valid a-level confidence region

for 9o. This result is stated formally in Proposition 3.

Proposition 3. Fix an a G (0,1). CR{a) is a valid a-level confidence region for inference

about 9o in finite samples: Prp(0o € CR{a)) > a. CR{a) is also a valid critical region for

obtaining a I — a-level test of 9 — 9^: Prp(^o ^ CR{a)) <\ — a. Moreover, these results hold

uniformly in P gV, mfp^-pPxp{9o G CR{a)) > a and suppg-pPrp(0o ^ CR{a)) < 1 — a.

Proof: ^0 £ CR{a) is equivalent to {L„(6'o) < Cnia)} and Prp{Ln((?o) < Cn{a)} > a, by the

definition of Cn{a) := inf{/ : P{Cn <l]>a] and Ln{9o) =d Cn-

Proposition 3 demonstrates how one may obtain valid finite sample confidence regions and

tests for the parameter vector 9 characterizing the quantile function q{D,9o,T). Thus, this

result generalizes the approach of Walsh (1960) from the sample quantiles to the regression

case. It is also apparent that the pivotal nature of the finite sample approach is similar to

the asymptotically pivotal nature of the rank-score method, cf. Gutenbrunner, Jureckova,

Koenker, and Portnoy (1993) and Koenker (1997), and the bootstrap method of Parzen, Wei,

and Ying (1994).^ In sharp contrast to these methods, the finite sample approach does not

The finite sample method should not be confused with the Gibbs bootstrap proposed in He and Hu (2002)

who propose a computationally attractive variation on Parzen, Wei, and Ying (1994). The method is also very

different from specifying the finite sample density of quantile regression as in Koenker and Bassett (1978). The
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rely on asymptotics and is valid in finite samples. Moreover, the rank-score method relies on

a homoscedasticity assumption, while the finite sample approach does not.

The statement of Proposition 3 is for joint inference about the entire parameter vector. One

can define a confidence region for a real-valued functional ip{9o,T) as

CR{a,-4)) = {ip{0,T) : e e CR{a)].

Since the event {^o G CR{a)] imphes the event {V'(6'o,t) £ CR{a,4')], it follows that

infpg-pPrp(V'(^Oi''") £ CR{a,il>)) > a by Proposition 3. For example, if one is interested

in inference about a single component of 9, say ^[ij, a confidence region for 0|i[ may be con-

structed as the set {^[i] : 6 £ CR{a)}. That is, the confidence region for ^jj] is obtained by first

taking all vectors of 9 in CR{a) and then extracting the element from each vector correspond-

ing to ^[1]. Confidence bounds for ^|i] may be obtained by taking the infimum and supremum

over this set of values for 9^iy

2.4. Primary Properties of the Finite Sample Inference. The finite sample tests and

confidence regions obtained in the preceding section have a number of interesting and appealing

features. Perhaps the most important feature of the proposed approach is that it allows for

finite sample inference under weak conditions. Working with a model defined by quantile

restrictions makes it possible to construct exact joint inference in a general non-linear, non-

separable model with heterogeneous effects that allows for endogeneity. This is in contrast

with many other inference approaches for instrumental variables models that are developed for

additive models only.

The approach is valid without imposing distributional assumptions and allows for general

forms of heteroskedasticity and rich forms of dynamics. The result is obtained without relying

on Eisymptotic arguments and essentially requires only that Y has a continuous conditional

distribution function given Z. In contrast with conventional asymptotic approaches to inference

in quantile models, the validity of the finite sample approach does not depend upon having a

well-behaved density for Y: It does not rely on the density of Y given D = d and Z = z being

continuous or differentiable in y or having connected support around q{d,T), as required e.g.

in Chernozhukov and Hansen (2001).

In addition to these features, the finite sample inference procedure will remain valid in

situations where the parameters of the model are only partially identified. The confidence

regions obtained from the finite sample procedure will provide vahd inference about q{D, r) =

q{D,9o,T) even when 9^ is not uniquely identified by P\Y < q{D,9o,T)\Z] = r. This builds

on the point made in Hu (2002). In addition, since the inference is vahd for any n, it follows

finite sample density of QR is not pivotal and can not be used for finite sample inference unless the nuisance

parameters (the conditional density of the residuals given the regressors) are specified.



trivially that it remains valid under the asymptotic formalization of "weak instruments", as

defined e.g. in Stock and Wright (2000).

As noted previously, inference statements obtained from the finite sample procedure will also

remain valid in models where the dimension of the parameter space K-^ is allowed to increase

with future increases of n since the statements are valid for any given n. Thus, the results

of the previous section remain valid in the asymptotics of Huber (1973) and Portnoy (1985)

where Kn/n -^ 0,Kn —* oo,n —^ oo. These rate conditions are considerably weaker than those

required for conventional inference using Wald statistics as described in Portnoy (1985) and

Newey (1997) which require K'^/n —^ 0,Kn —> oo,n —> oo.

Inference statements obtained from the finite sample procedure will be valid for infer-

ence about extremal quantiles where the usual asymptotic approximation may perform quite

poorly.^ One alternative to using the conventional asymptotic approximation for extremal

quantiles is to pursue an approach exphcity aimed at performing inference for extremal quan-

tiles, e.g as in Chernozhukov (2000). The extreme value approach improves upon the usual

asymptotic approximation but requires a regular variation assumption on the tails of the con-

ditional distribution ofY\D, that the tail index does not vary with D, and also rehes heavily on

linearity and exogeneity. None of these assumptions are required in the finite sample approach,

so the inference statements apply more generally than those obtained from the extreme value

approach.

It is also worth noting that while the approach presented above is exphcitly finite sample, it

will remain valid asymptotically. Under conventional assumptions and asymptotics, e.g. Pakes

and Pollard (1989) and Abadie (1995), the inference approaches conventional GMM based joint

inference.

Finally, it is important to note that inference is simultaneous on all components of 9 and

that for joint inference the approach is not conservative. Inference about subcomponents of 6

may be made by projections, as illustrated in the previous section, and may be conservative.

We explore the degree of conservativity induced by marginahzation in a simulation example in

Section 3.

2.5. Computation. The main difficulty with the approach introduced in the previous sections

is computing the confidence regions. The distribution of Ln(9o) is not standard, but its critical

values can be easily constructed by simulation. The more serious problem is that inverting the

function Ln{9) to find joint confidence regions may pose a significant computational challenge.

Whether a given quantile is extremal depends on the sample size and underlying data generating process.

However, Chernozhukov (2000) finds that the usual asymptotic approximation behaves quite poorly in some

examples for < r < .2 and 1 > t > .8.
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One possible approach is to simply use a naive grid-search, but as the dimension of increases,

this approach becomes intractable. To help alleviate this problem, we explore the use of

MCMC methods. MCMC seems attractive in this setting because it generates an adaptive set

of grid points and so should explore the relevant region of the parameter space more quickly

than performing a conventional grid search. We also consider a marginalization approach that

combines a one-dimensional grid search with optimization for estimating a confidence bound

for a single parameter which may be computationally convenient and may be more robust than

MCMC in some irregular cases.

2.5.1. Computation, of the Critical Value. The computation of the critical value c„(a) may

proceed in a straightforward fashion by simulating the distribution £„• We briefly outline a

simulation routine below.

Algorithm 1 (Computation oi Cn{a).)- Given {Zi,i = l,...,n), for j = 1,...,J; 1. Draw

{Ui,j,i < n) as iid Uniform, and let {Bij = l{Uij < T),i < n). 2. Compute Cnj =

hi^Ztii^ -B^J)9{Z^)YWn {^E7=i(^ ' B,,j) ' 9{Z^)) . 3. Obtain Cn {a) as the a-quantile

of the sam.ple {Cnj,j = 1, ••, J), for a large number J.

2.5.2. Computation of Confidence Regions. Finding the confidence region requires computing

the c„(Q)-level set of the function Ln{0) which involves inverting a non-smooth, non-convex

function. For even moderate sized problems, the use of a conventional grid search is impractical

due to the computational curse of dimensionality.

To help resolve this problem, we consider the use of a generic random walk Metropolis-

Hastings MCMC algorithm.'^ The idea is that the MCMC algorithm will generate a set of

adaptive grid-points that are placed in relevant regions of the parameter space only. By

focusing more on relevant regions of the parameter space, the use of MCMC may alleviate the

computational problems associated with a conventional grid search.

To implement the MCMC algorithm, we treat f{9) oc exp(— L„(0)) as a quasi-posterior

density and feed it into a random walk MCMC algorithm. (The idea is similar to that in

Chernozhukov and Hong (2003), except that we use it here to get level sets of the objective

function rather than pseudo-posterior means and quantiles.) The basic random walk MCMC
is implemented as follows:

Algorithm 2 (Algorithm 2. Random Walk MCMC). For a symmetric proposal density /i(-)

and given 6^'-\ 1. Generate O^^iop ~ h{9 - 6l(')). 2. Take ^(*+^) = 9%p with probability

min{l,/(<>„p)//(0('))} and B^') otherwise. 3. Store {e^'\ e'f^lp, L„(0(*)), L„(4tlp)). 4-

Repeat Steps 1-3 J times replacing 6''*) with ^(*+i)
as starting point for each repetition.

Other MCMC algorithms or stochastic search methods could also be employed.
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At each step, the MCMC algorithm considers two potential values for 9 and obtains the

corresponding values of the objective function. Step 3 above differs from a conventional random

walk MCMC in that we are interested in every value considered not just those accepted by the

procedure.

The implementation of the MCMC algorithm requires the user to specify a starting value

for the chain and a transition density g{-). The choice of both quantities can have important

practical implications, and implementation in any given example will typically involve some

fine tuning in both the choice of g(-) and the starting value. Robert and Casella (1998) provide

an excellent overview of these and related issues.

As illustrated above, the MCMC algorithm generates a set of grid points {9^^\..., 6'''^'} and,

as a by-product, a set of values for the objective function {L„(6''^'), ...,Ln(^('^))}. Using this

set of evaluations of the objective function, we can construct an estimate of the critical region

by taking the set of draws for 6 where the value of L^iO) < c„(a): CR{a) = [d'^'^ : Ln{9^'^) <

c{a)}.

Figure 1 illustrates the construction of these confidence regions. Both figures illustrate 95%

confidence regions for r = .5 in a simple demand example that we discuss in Section 3. The

regions illustrated here are for a model in which price is treated as exogenous. Values of the

intercept are on the x-axis and values of the coefficient on price are on the y-axis.

Figure 1 Panel A illustrates a set ofMCMC draws in this example. Each symbol + represents

an MCMC draw of the parameter vector that satisfies Ln{9) < c„(.95), and each symbol •

represents a draw that does not satisfy this condition. Thus, (a numerical approximation to)

the confidence region is given by the area covered with symbol + in the figure. In this case,

the MCMC algorithm appears to be doing what we would want. The majority of the draws

come from within the confidence region, but the algorithm does appear to do a good job of

exploring areas outside of the confidence region as well.

Panel B of Figure 1 presents a comparison of the confidence region obtained through MCMC
and the confidence region obtained through a grid search. The boundary of the grid search

region is represented by the black line, and the MCMC region is again given by the light gray

area in the figure. Here, we see that the two regions are almost identical. Both regions include

some points that are not in the other, but the agreement is quite impressive.

2.5.3. Computation of Confidence Bounds for Individual Regression Parameters. The MCMC
approach outlined above may be used to estimate joint confidence regions which can be used

In our applications, we use estimates of 9 and the corresponding asymptotic distribution obtained from the

quantile regression of Koenker and Bassett (1978) in exogenous cases and from the inverse quantile regression

of Chernozhukov and Hansen (2001) in endogenous cases as starting values and transition densities.
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for joint inference about the entire parameter vector or for inference about subsets of regression

parameters. If one is interested solely in inference about an individual regression parameter,

there may be a computationally more convenient approach. In particular, for constructing

a confidence bound for a single parameter, knowledge of the entire joint confidence region is

unnecessary which suggests that we may collapse the rf-dimensional search to a one-dimensional

search.

For concreteness, suppose we are interested in constructing a confidence bound for a partic-

ular element of 9, denoted 6'[i], and let 0[_i] denote the remaining elements of the parameter

vector. We note that a value of 0[i], say ^m,, will lie inside the confidence bound as long as there

exists a value of 6 with 9^^ = 9T^, that satisfies Ln{9) < Cn{a). Since only one such value of 9

is required to place 0j*j, in the confidence bound, we may restrict consideration to 9", the point

that minimizes Ln{9) conditional on ^mi = ^j*j, . If L„(0*) > Cn{ct), we may conclude that there

will be no other point that satisfies Ln{9) < Cn{a) and exclude 9T^,, from the confidence bound.

On the other hand, if Ln{9*) < Cn{a), we have found a point that satisfies Ln{9) < Cn{a) and

can include 6*^, in the confidence bound.

This suggests that a confidence bound for ^ni can be constructed using the following simple

algorithm that combines a one-dimensional grid search with optimization.

Algorithm 3 (Marginal Approach.). 1. Define a suitable set of values for ^mi, {^m, j =

I,..., J}. 2. For j = 1,...,J, find ^/ j,
= arg inf L„{{9l,, 9', .^A'). 3. Calculate the confidence

region for 9[i] as {6'j'jj : L„((0j'j], 6'j'_jj)' < c„(q)}}.

In addition to being computationally convenient for finding confidence bounds for individual

parameters in high-dimensional settings, we also anticipate that this approach will perform well

in some irregular cases. Since the marginal approach focuses on only one parameter, it will

typically be easy to generate a tractable and reasonable search region. The approach will have

some robustness to multimodal objective functions and potentially disconnected confidence

sets because it considers all values in the grid search region and will not be susceptible to

getting stuck at a local mode.

3. Simulation and Empirical Examples

In the preceding section, we presented an inference procedure for quantile regression that

provides exact finite sample inference for joint hypotheses and discussed how confidence bounds

for subsets of quantile regression parameters may be obtained. In the following, we further

explore the properties of the proposed finite sample approach through brief simulation examples
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and through two simple case studies.^ In the simulations, we find that tests about the entire

parameter vector based on the finite sample method have the correct size while tests which

make use of the asymptotic approximation may be substantially size distorted. When we

consider marginal inference, we find that using the asymptotic approximation leads to tests

that reject too often while, as would be expected, the finite sample method yields conservative

tests.

We also consider the use of the finite sample inference procedure in two case studies. In

the first, we consider estimation of a demand model in a smaU sample; and in the second,

we consider estimation of the impact of schooling on wages in a rather large sample. In both

cases, we find that the finite sample and asymptotic intervals are similar when the variables

of interest, price and years of schoohng, are treated as exogenous. However, when we use

instruments, the finite sample and asymptotic intervals differ significantly. In each of these

examples, we also consider specifications that include only a constant and the covariate of

interest. In these two dimensional situations, computation is relatively simple, so we consider

estimating the finite sample intervals using a simple grid search, MCMC, and the marginal

inference approach suggested in the previous section. We find that ah methods result in similar

confidence bounds for the parameter of interest in the demand example, but there are some

discrepancies in the schoohng example.

3.1. Simulation Examples. To illustrate the use of the asymptotic and finite sample ap-

proaches to inference, we conducted a series of simulation studies, the results of which are

summarized in Table 1. In each panel of Table 1, the first row corresponds to testing the

marginal hypothesis that ^(t)[i] = ^o(''')[i] where ^(t)[j] is the first element of vector 9{t),

and the second row corresponds to testing the joint hypothesis that 6{t) = 9q{t). For each

model, we report inference results for the median, 75'^ percentile, and 90**^ percentile, i.e.

r G {.5, .75, .9}. The first three columns correspond to results obtained using the usual asymp-

totic approximation^ and the last three columns correspond to results obtained via the finite

sample approach. All results are for 5% level tests.

Panel A of Table 1 corresponds to a hnear location-scale model with no endogeneity. The

simulation model is given hy Y = D + {\ + D)e where D ~ BETA(1,1) and t ~ iV(0, 1).

The sample size is 100. The conditional quantiles in this model are given by q{D,6o,T) =

In all examples, we set use the identity function for g(-).

In the exogenous model, we base the asymptotic approximation on the conventional quantile regression of

Koenker and Bassett (1978), using the Hall-Sheather bandwidth choice suggested by Koenker (200.5), and we

use the inverse quantile regression of Chernozhukov and Hansen (2001) in the endogenous settings, using the

bandwidth choice suggested by Koenker (2005).
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9o{t)[2] + So{t)ii]D where 6'o(t)[2] = ^~^{t) and 0o(t)[i] == 1 + $ ^{t) for $ ^(t) the inverse

of the normal CDF evaluated at t.

Looking first at results for joint inference, we see that the finite sample procedure produces

tests with the correct size at each of the three quantiles considered. On the other hand, the

asymptotic approximation results in tests which overreject in each of the three cases, with

the size distortion increasing as one moves toward the tail quantiles of the distribution. This

behavior is unsurprising given that the usual asymptotically normal inference is inappropriate

for inference about the tail quantiles of the distribution (see e.g. Chernozhukov (2000)) while

the finite sample approach remains valid.

When we look at marginal inference about ^(t)m], we again see that tests based on the

asymptotic distribution are size distorted with the distortion increasing as one moves toward

the tail, though the distortions are smaller than for joint inference. Here, the finite sample

inference continues to provide valid inference in that the size of the test is smaller than the

nominal level. However, the finite sample approach appears to be quite conservative, rejecting

far less ft-equently than the 5% level would suggest.

To further explore the conservativity of the finite sample approach, we plot power curves

for tests based on the finite sample and usual asymptotic approximation in Figure 2. In this

figure, values for Oj\{t)ii-i — Oo{t)ui^ where 9a{''')\i] is the hypothesized value for 0{t)ii-i are

on the horizontal axis, and the vertical axis measures rejection frequencies of the hypothesis

that 6(t)[i] = 6^(r)h]. Thus, size is given where the horizontal axis equals zero, and remaining

points give power against various alternatives. The solid line in the figure gives the power curve

for the test using the finite sample approach, and the dashed hne gives the power curve for the

test using the asymptotic approximation. Prom this figure, we can see that while conservative,

tests based on the finite sample procedure do have some power against alternatives. The

finite sample power curve always lies below the corresponding power curve generated from the

asymptotic approximation, though this must be interpreted with caution due to the distortion

in the asymptotic tests.

In Panels B-D of Table 1, we consider the performance of the asymptotic approximation and

the finite sample inference approach in a model with endogeneity. The data for this simulation

are generated from a location model with one endogenous regressor and three instrumental

variables. In particular, we have Y = —1 + D + e and D = YiZi + IIZ2 + HZs + V where

Zj ~ /V(0,1) for j = 1,2,3, e ~ A^(0,1), V ~ A^(0, 1), and the correlation between e and v

is .8. As above, this leads to a finear structural quantile function of the form q{D,6f^,T) =

^o(''")[2] +^o(''")[i)D where 0o(t)[2] = -1 +<I>~^(t) and 6'o(t)|i] = 1 for $~^(t) the inverse of the

normal CDF evaluated at t. As above, the sample size is 100.
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We explore the behavior of the inference procedures for differing degrees of correlation be-

tween the instruments and endogenous variable by changing 11 across Panels B-D. In Panel

B, we set IT = 0.05 which produces a first stage F-statistic of 0.205. In this case, the rela-

tionship between the instruments and endogenous variable is very weak and we would expect

the asymptotic approximation to perform poorly. In Panel C, 11 = 0.5 and the first stage

F-statistic is 25.353. In Panel D, 11 = 1 and the first stage F-statistic is 96.735. Both of these

specifications correspond to fairly strong relationships between the endogenous variable and

the instruments, and we would expect the asymptotic approximation to perform reeisonably

well in both cases. The finite sample procedure, on the other hand, should provide accurate

inference in all three cases.

As expected, the tests based on the asymptotic approximation perform quite poorly in the

weakly identified case presented in Panel B. Rejection frequencies for the asymptotic tests

range from a minimum of .235 to a maximum of .474 for a 5% level test. In terms of size,

the finite sample procedure performs quite well. As indicated by the theory, the finite sample

approach has approximately the correct size for performing tests about the entire parameter

vector. When considering the slope coefficient only, the finite sample procedure is conservative

with rejection rates of .024 for r = .5, .0212 for t = .75, and .02 for r = .9 quantile.

The results for the models where identification is stronger given in Panels C and D are

similar though not nearly so dramatic. The hypothesis tests based on the asymptotic procedure

overreject in almost every case, with the lone exception being testing the joint hypothesis at

the median when IT = 1. The size distortions increase as one moves from t = .5 to t = .9,

and they decrease when 11 increases fi'om .5 to 1. The distortions at the 90'*^ percentile remain

quite large with rejection frequencies ranging between .1168 and .1540. For r = .5 and r = .75,

the distortions are more modest with rejection rates ranging between .068 and .086.

The finite sample results are much more stable than the asymptotic results. The joint tests,

with rejection frequencies ranging between 4.6% and 5.5%, do not appear to be size distorted.

Marginal inference remains quite conservative with sizes ranging from .0198 to .0300. The

results clearly suggest that the finite sample inference procedure is preferable for testing joint

hypotheses, and given the size distortions found in the asymptotic approach the results also

seem to favor the finite sample procedure for marginal inference.

As above, we also plot power curves for the asymptotic and finite sample testing procedures

in Figures 3-5. Figure 3 contains power curves for 11 = .05. In this case, the finite sample

procedure appears to have essentially no power against any alternative. The lack of power

is unsurprising given that identification in this case is extremely weak. In Figures 4 and 5,

where the correlation between the instruments and endogenous regressors is stronger, the finite

sample procedure seems to have quite reasonable power. The power curves for the finite sample
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procedure are similar to the power curves of the asymptotic tests across a large portion of the

parameter space. The finite sample procedure does have lower power against some alternatives

that are near to the true parameter value than the asymptotic tests, though again this must

be interpreted with some caution due to the distortions in the asymptotic tests.

Overall, the simulation results are quite favorable for the finite sample procedure. The

results for joint inference confirm the theoretical properties of the procedure and suggest that

numeric approximation error is not a large problem as the tests all have approximately correct

size. For tests of joint hypotheses, the finite sample procedure clearly dominates the asymptotic

procedure which may be substantially size distorted. For marginal inference, the results are

somewhat less clear cut though still favorable for the finite sample procedure. In this case,

the finite sample procedure may result in tests that are quite conservative, though the tests

do appear to have nontrivial power against many hypotheses. On the other hand, tests based

on the asymptotic approximation have size greater than the nominal level in the simulation

models considered.

3.2. Case Studies. 1. Demand for Fish. In this section, we present estimates of demand

elasticities which may potentially vary with the level of demand. The data contain observations

on price and quantity of fresh whiting sold in the Fulton fish market in New York over the five

month period fi-om December 2, 1991 to May 8, 1992. These data were used previously in

Graddy (1995) to test for imperfect competition in the market. The price and quantity data

are aggregated by day, with the price measured £is the average daily price and the quantity as

the total amount of fish sold that day. The total sample consists of 111 observations for the

days in which the market was open over the sample period.

For the purposes of this illustration, we focus on a simple Cobb-Douglas random demand

model with non-additive disturbance: \n(Qp) = ao{U) + ai{U) \n{p) + X'P{U), where Qp is the

quantity that would be demanded if the price were p, U is an unobservable affecting the level

of demand normalized to follow a C/(0, 1) distribution, ai{U) is the random demand elasticity

when the level of demand is U, and X is a vector of indicator variables for day of the week that

enter the model with random coefficient P{U). We consider two different specifications. In the

first, we set /3{U) = 0, and in the second, we estimate P{U). A supply function Sp = f{p, Z,U)

describes how much producers would supply if the price were p, subject to other factors Z and

unobserved disturbance U. The factors Z affecting supply are assumed to be independent of

demand disturbance U.

As instruments, we consider two different variables capturing weather conditions at sea:

Stormy is a dummy variable which indicates wave height greater than 4.5 feet and wind speed

greater than 18 knots, and Mixed is a dummy variable indicating wave height greater than 3.8

feet and wind speed greater than 13 knots. These variables are plausible instruments since
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weather conditions at sea should influence the amount of fish that reaches the market but

should not influence demand for the product/ Simple OLS regressions of the log of price on

these instruments suggest they are correlated to price, yielding B? and F-statistics of 0.227

and 15.83 when both Stormy and Mixed are used as instruments.

Asymptotic intervals are based on the inverse quantile regression estimator of Chernozhukov

and Hansen (2001) when we treat price as endogenous. For models in which we set D = Z,

i.e. in which we treat the covariates as exogenous, we base the asymptotic intervals on the

conventional quantile regression estimator of Koenker and Bassett (1978).^

Estimation results are presented in Table 2. Panel A of Table 2 gives estimation results treat-

ing price as exogenous, and Panel B contains confidence intervals for the random elasticities

when we instrument for price using both of the weather condition instruments described above.

Panels C and D include a set of dummy variables for day of the week as additional covariates

and are otherwise identical to Panels A and B respectively. In every case, we provide estimates

of the 95%-level confidence interval obtained from the usual asymptotic approximation and

the finite sample procedure. For the finite sample procedure, we report intervals obtained via

MCMC, a grid search,^ and the marginal procedure^" in Panels A and B. In Panels C and

D, we report only intervals constructed using the asymptotic approximation and the marginal

procedure. For each model, we report estimates for t = .25, t = .50, and r = .75.

Looking first at Panels A and C which report results for models that treat price as exogenous,

we see modest differences between the asymptotic and finite sample intervals. At the median

when no covariates (other than price and intercept) are included, the asymptotic 95% level

interval is (-0.785,-0.037), and the widest of the finite sample intervals is (-1.040,0.040). The

differences become more pronounced at the 25''^ and 75"^ percentiles where we would expect

the asymptotic approximation to be less accurate than at the center of the distribution. When

day of the week effects are included, the asymptotic intervals tend to become narrower while

the finite sample intervals widen slightly leading to larger differences in this case. However, the

More detailed arguments may be found in Graddy (199.5).

We use the Hall-Sheather bandwidth choice suggested by Koenker (200.5) to implement the asymptotic

standard errors.

When price is treated as exogenous, we use an equally spaced grid over [5,10] with spacing .02 for qq and an

equally spaced grid over [-4,2] with spacing .015 for ai for all quantiles. When price is treated as endogenous,

we use different grid search regions for each quantile. For t = .25, we used an equally spaced grid over [0,10]

with spacing .025 for ao and an equally spaced grid over [-40,40] with spacing .25 for ai. For r = .50, we used

an equally spaced grid over [6,12] with spacing .0125 for qo and an equally spaced grid over [-5,5] with spacing

.025 for ai. For r = .75, we used an equally spaced grid over [0,30] with spacing .05 for qo and an equally

spaced grid over [-10,30] with spacing .05 for qi.

^'^For the marginal procedure, we considered an equally spaced grid over [-5,1] at .01 unit intervals for all

models.
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basic results remain unchanged. Also, it is worth noting that all three computational methods

for obtaining the finite sample confidence bounds give similar answers in the model with only

an intercept and price with the marginal approach performing slightly better than the other

two procedures. This finding provides some evidence that MCMC and the marginal approach

may do as weU computationally as a grid search which may not be feasible in high dimensional

problems.

Turning now to results for estimation of the demand model using instrumental variables

in Panels B and D, we see quite large differences between the asymptotic intervals and the

intervals constructed using the finite sample approach. As above the differences are particularly

pronounced at the 25'''' and 75*'' percentiles where the finite sample intervals are extremely

wide. Even at the median in the model with only price and an intercept, the finite sample

intervals are approximately twice as wide as the corresponding cisymptotic intervals. When

additional controls are included, the finite sample bounds for all three quantiles include the

entire grid search region. The large differences between the finite sample and asymptotic

intervals definitely call into question the validity of the asymptotic approximation in this case,

which is not surprising given the relatively small sample size and the fact that we are estimating

a nonlinear instrumental variables model.

Finally, it is worth noting again the three approaches to constructing the finite sample

interval in general give similar results in this case. The differences between the grid search and

marginal approaches could easily be resolved by increasing the search region for the marginal

approach which was restricted to values we felt were a priori plausible. The difference between

the grid search and MCMC intervals at the 25''' percentile is more troubhng, though it could

likely be resolved through additional simulations or starting points.

As a final illustration, plots of 95% confidence regions in the model that includes only price

and an intercept are provided in Figures 6 and 7. Figure 6 contains confidence regions for the

coefficients treating price as exogenous, and Figure 7 contains confidence regions in the model

where price is instrumented for using weather conditions. In the exogenous case, all of the

regions are more or less eUiptical and seem to be well-behaved. In this case, it is not surprising

that all of the procedures for generating finite sample intervals produce similar results. The

regions in Figure 7, on the other hand, are not nearly so well-behaved. In general, they are

irregular and in many cases appear to be disconnected, The apparent failure of MCMC at the

.25 quantile in the results in Table 2 is almost certainly due to the fact that the confidence

region appears to be disconnected. The MCMC algorithm explores one of the regions but

fails to jump to the other region. In cases like this, it is unlikely that a simple random walk

Metropolis-Hastings algorithm will be sufficient to explore the space. While more complicated
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MCMC or alternative stochastic search schemes could be explored, it seems that the marginal

procedure is a convenient method to pursue if one is interested solely in marginal inference.

2. Returns to Schooling. As our final example, we consider estimation of a simple returns to

schoohng model that allows for heterogeneity in the effect of schoohng on wages. We use data

and the basic identification strategy employed in the schoohng study of Angrist and Krueger

(1991). The data are drawn from the 1980 U.S. Census and include observations on men born

between 1930 and 1939. The data contain information on wages, years of completed schooling,

state and year of birth, and quarter of birth. The total sample consists of 329,509 observations.

As in the previous section, we focus on a simple hnear quantile model of the form Y =

ao{U) + ai{U)S + X'P[U) where Y is the log of the weekly wage, S is years of completed

schoohng, AT is a vector 51 state of birth and 9 year of birth dummies that enter with random

coefficients (i{U), and U is an unobservable normahzed to follow a uniform distribution over

(0,1). We might think of U as indexing unobserved ability, in which case ai(r) may be thought

of as the return to schoohng for an individual with unobserved abihty r. Since we believe that

years of schooling may be jointly determined with unobserved ability, we use quarter of birth as

an instrument for schoohng, following Angrist and Krueger (1991). We consider two different

specifications. In the first, we set /3(I7) = 0, and in the second, we estimate P{U).

As in the previous example, we construct asymptotic intervals using the inverse quantile

regression estimator when we treat schooling as endogenous. For models in which we treat

schooling as exogenous, we construct the asymptotic intervals using the conventional quantile

regression estimator.

We present estimation results in Table 3. Panel A of Table 3 gives estimation results treating

schoohng as exogenous, and Panel B contains confidence intervals for the schoohng effect when

we instrument for schoohng using quarter of birth. Panels C and D include a set of 51 state

of birth and 9 year of birth dummy variables but are otherwise identical to Panels A and

B respectively. In every case, we provide estimates of the 95% confidence interval obtained

from the usual asymptotic approximation and the finite sample procedure. For the finite

sample procedure, we report intervals obtained via MCMC and a modified MCMC procedure

(MCMC-2) that better accounts for the specifics of the problem, a grid search, ^^ and the

marginal procedure^^ in Panels A and B. The modified MCMC procedure we employ is a

When price is treated as exogenous, we use unequally spaced grids over [4.4,5.6] for ao and unequally

spaced grids over [0.062,0.077] for Qi where the spacing depends on the quantile under consideration. When

price is treated as endogenous, we use an equally spaced grid over [3,6] with spacing .01 for qo and an equally

spaced grid over [0,0.2.5] with spacing .001 for a\ for all quantiles.

^^For the marginal procedure, we considered an equally spaced grid over [0.055,0.077] at .0004 unit intervals

in the exogenous case for all models, and we used an equally spaced grid over [-1,1] at .01 unit intervals in the

endogenous case.
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simple stochastic search algorithm that simultaneously runs five MCMC chains each started

at a local mode of the objective function. The idea behind the procedure is that the simple

MCMC tends to get "stuck" because of the sharpness of the contours in this problem. By using

multiple chains started at different values, we may potentially explore more of the function

even if the chains get stuck near a local mode. If the starting points sufficiently cover the

function, the approach should accurately recover the confidence region more quickly than

the unadjusted MCMC procedure. In Panels C and D, we report only intervals constructed

using the asymptotic approximation and the marginal procedure. For each model, we report

estimates for r = .25, r = .50, and r = .75.

Looking first at estimates of the conditional quantiles of log wages given schooling presented

in Panels A and C, we see that there is very little difference between the finite sample and

asymptotic inference results. In Panel A where the model includes only a constant and the

schooling variable, the finite sample and asymptotic intervals are almost identical. There are

larger differences between the finite sample and asymptotic intervals in Panel C which includes

51 state of birth effects and 9 year of birth effects in addition to the schooling variable; though

even in this case the differences are quite small. The close correspondence between the results

in not surprising since in the exogenous case the parameters are well-identified and the sample

is large enough that one would expect the asymptotic approximation to perform quite well for

all but the most extreme quantiles.

While there is close agreement between the finite sample and asymptotic results in the

model which treats schooling as exogenous, there are still substantial differences between the

asymptotic and finite sample results in the case where we instrument for schoohng using

quarter of birth. The finite sample intervals, with the exception of the interval at the median,

are substantially wider than the asymptotic intervals in the model with only schoohng and an

intercept, though in all cases they exclude zero. When we consider the finite sample intervals

in the model that includes the state of birth and year of birth covariates, the differences are

huge. For aU three quantiles, the finite sample interval includes at least one endpoint of the

search region, and in no case are the bounds informative. While the finite sample bounds

may be quite conservative in models with covariates, the differences in this case are extreme.

Also, we have evidence from the model which treats education as exogenous that in a well-

identified setting the inflation of the bounds need not be large. Taken together, this suggests

that identification in this model is quite weak.

While the finite sample intervals constructed through the different methods are similar at

the median in the instrumented model, there are large differences between the finite sample

intervals for the .25 and .75 quantiles with the simple MCMC performing the worst and the

marginal approach performing the best. The difficulty in this case is that the objective function
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has extremely sharp contours. This sharpness of contours is illustrated in Figure 8 which plots

the 95% level confidence region obtained from the MCMC-2 procedure for the .75 quantile in

the schooling example without covariates.

The shape of the confidence region poses difficulties for both the traditional grid search and

the basic MCMC procedure. The problem with the grid search is that the interval is so narrow

that even with a very fine grid one is unlikely to find more than a few points in the region unless

the grid is chosen carefully to include many points along the "fine" describing the confidence

region, and with a course grid, one may miss the confidence region entirely. The narrowness

of the confidence set also causes problems with MCMC by making transitions quite difficult.

Essentially with a default random walk Metropohs-Hastings procedure one must specify either

a very small variance for the transition density or must specify the correlation exactly so that

the proposals lie along the "line" describing the contours. Designing a transition density with

the appropriate covariance is complicated as even slight perturbations may result in proposals

that lie off of the line making transitions unhkely unless the variance is small. Taken together

this suggests that MCMC is likely to travel very slowly through the parameter space resulting

in poor convergence properties and difficulty in generating the finite sample confidence regions.

The MCMC-2 procedure alleviates the problems with the random walk MCMC somewhat

by running multiple chains with different starting values. Using multiple chains provides local

exploration of the objective function around the starting values. In cases where the objective

function is largely concentrated around a few local modes, this provides improvement in gen-

erating the finite sample confidence regions. This approach is still insufficient in this example

at the .25 quantile where we see that the MCMC-2 interval is still significantly shorter than

the interval generated through the marginal approach suggesting that the MCMC-2 procedure

did not travel sufficiently through the parameter space.

In this example, the marginal approach seems to clearly dominate the other approaches

to computing the finite sample confidence regions that we have considered. It finds more

points that he within the confidence bound for the parameter of interest than any of the other

approaches. It is also simple to implement, and the search region can be chosen to produce a

desired level of accuracy.

4. Conclusion

In this paper, we have presented an approach to inference in models defined by quantile

restrictions that is valid under minimal eissumptions. The approach does not rely on any

asymptotic arguments, does not require the imposition of distributional assumptions, and will

be vahd for both linear and nonlinear conditional quantile models and for models which include

endogenous as well as exogenous variables. The approach relies on the fact that objective
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functions that quantile regression aims to solve are conditionally pivotal in finite samples.

This conditional pivotal property allows the construction of exact finite sample joint confidence

regions and on finite sample confidence bounds for quantile regression coefficients.

The chief drawbacks of the approach are that it may be computationally difficult and that

it may be quite conservative for performing inference about subsets of regression parameters.

We suggest that MCMC or other stochastic search algorithms may be used to construct joint

confidence regions. In addition, we suggest a simple algorithm that combines optimization

with a one-dimensional search that can be used to construct confidence bounds for individual

regression parameters. In simulations, we find that the finite sample inference procedure is

not conservative for testing hypotheses about the entire vector of regression parameters but

that it is conservative for tests about individual regression parameters. However, the finite

sample tests do have moderate power in many situations, and tests based on the asymptotic

approximation tend to overreject. Overall, the findings of the simulation study are quite

favorable to the finite sample approach.

We also consider the use of the finite sample inference in two simple empirical examples:

estimation of a demand curve in a small sample and estimation of the returns to schooling in a

large sample. In the demand example, we find modest differences between the finite sample and

asymptotic intervals when we estimate conditional quantiles not instrumenting for price and

large differences when we instrument for price. In the schooling example, the finite sample and

asymptotic intervals are almost identical in models in which we treat schooling as exogenous,

and again there are large differences in the approaches when we instrument for schooling.

These results suggest that in both cases, the identification of the structural parameters in the

instrumental variables models is weak.

Appendix A. Appendix: Optimality Arguments for L^.

In the preceding sections, we introduced a finite sample inference procedure for quantile regression

models and demonstrated that this procedure provides valid inference statements in finite samples. In

this section, we show that the approach also has desirable large sample properties:

(1) Under strong identification, the class of statistics of the form (2.3) contains a (locally) asymp-

totically uniformly most powerful (UMP) invariant test. Inversion of this test therefore gives

(locally) uniformly most accurate invariant regions. (The definitions of power and invariance

follow those in Choi, Hall, and Schick (1996)).

(2) Under weak identification, the class of statistics of the form (2.3) maximizes an average power

function within a broad class of normal weight functions.

Here, we suppose (Yi, Dj, Zj,i = l,...,n) is an i.i.d. sample from the model defined by Al-6 and

assume that the dimension K of do is fixed. Although this assumption can be relaxed, the primary
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purpose of this section is to motivate the statistics used for finite-sample inference from an optimality

point of view.

Recall that under Al-6, PlY - q [D, 9q,t) < 0|Z] = t. Consider the problem of testing

Ho:eo = e, vs. Ha:0o¥=O.,

where 0, £ M^ is some constant.

Letei = l[Yi< g (A, 6I,,t)]
. As defined, e|Z ~ Bernoulli[r (Z,6lo)] , where t (Z, 6^0) = P [F < q {D,eo,T)\Z] .

Suppose testing is to be based on (e;, Zj,i = 1, . .
.

, n) . Because ei|Zi, . .
.

, Z„ ~ i.i.d. Bernoulli(T) under

the null, any statistic based on (ej, Zj,i = 1, . . . ,n) is conditionally pivotal under Hq.

Let G be the class of functions g for which E [g (Z) g (Z) ] exists and is positive definite; that is, let

G = U^j Gj , where Gj is the class of K-'-valued functions g for which E [g {Z) g (Z)'] exists and is positive

definite. As mentioned in the text, a "natural" class of test statistics is given by {L„ (6,,g) g £ G} ,

where

Ln[e*,g) = ^g{Zi){ei-T] T{l-T)J2g{Z,)g(Z,)' Y,9{Zi){ei-T) (A.l)

Being based on (Ci, Zi,i = 1, ... ,n) , any such L„ [9,,g) is conditionally pivotal under the null. In

addition, under the null,

L„{9,,g) ^d 2>^dim(s)

for any g € G- Moreover, the class {L„ (Ot,g) g £ G} enjoys desirable large sample power properties

under the following strong identification assumption in which 0» denotes some open neighborhood of

Assumption 3. (a) The distribution of Z does not depend on 9o- (b) For every 6 G G, (and for

almost every Z),

fiZ,9) = -^^r{Z,9) (A.2)

exists and is continuous (in 5). (c) f, (Z) = f (Z, 0,) 6 5.(d) £ supggQ_ ||f (Z, 6*)!] < co.

If Assumption 3 holds and g £ G, then under contiguous alternatives induced by the sequence

9o,n = 9, + b/y/n,

1 2
Ln {6*,g) ^d -j^X~d\m[g)

1

t(1-t
5s{h,g) (A.3)

where

5s {b, g) = b'E [f, (Z) g (Z)'] E [g (Z) g (Z)']
"' £ [5 (Z) f, (Z)'] b.

By a standard argument, 63 {b,g) < 63 {b,ft) for any 5 e 5. As a consequence, L^ (9,,t,) maximizes

local asymptotic asymptotic power within the class {L„ {9t,g) : g € G} An even stronger optimality

result is the following.
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Proposition 4. Among tests based on (ej, Zi,i = 1, . . . ,n) , the test which rejects for large values of

Ln (0,,f,) is a locally asymptotically UMP (rotation) invariant test of Ho- Therefore, {Ln {0,,g) ' g £ Q)

is an (asymptotically) essentially complete class of tests of Ho under Assumption 3.

Proof: The conditional (on Z_ = (Zi, . .

.
, Z„)) log likelihood function is given by

n

in {e\z) = J2 {log [^ (2-^)1 e. + log [1 - ^ iz,,e)] (1 - e.)}

!= 1

Assumption 3 implies that the following LAN expansion is valid under the null: For any b G R'^

,

£„ ( e. +— )
- £„ (00 = b'S: - -bXb + Opil),

where £n is the (unconditional) log likelihood fmiction,

\/n '-^ T (1 — T

and

n ^-^ T (1 — T) T[l — T) ' '(l-r)

Theorem 3 of Choi, Hall, and Schick (1996) now shows that L„ (&.,f,) = ^S^'I^~^S^ is the asymptot-

ically UMP invariant test of Ho-

In view of Proposition 4, a key role is played by f, . This gradient will typically be unknown but will

be estimable under various assumptions ranging from parametric assumptions to nonparametric ones.

As an illustration, consider the hnear quantile model

Y = D'Oo + e,
'

(A.4)

where P [e < 0\Z] = t. If the conditional distribution of e given (A', Z) admits a density (with respect

to Lebesgue measure) fe\x,z ('l^j ^) £ind certain additional mild conditions hold, then Assumption 3 is

satisfied with f, [Z) = —E [Df^^x.z (OIA", Z) ]Z] , an object which can be estimated nonparametrically.

If, moreover, it is assumed that

D = n'Z + v, (A.5)

where {e,v') \Z ~ A/'(0,S) for some positive definite matrix E, then f, (Z) is proportional to II'Z and

parametric estimation of ft becomes feasible. (Assuming that the gradient belongs to a particular

subclass of Q will not affect the optimality result, as Proposition 4 (tacitly) assume that f» is known.)

Estimation of the gradient will not affect the asymptotic validity of the test even if the full sample

is used, nor will it affect the validity of finite-sample inference provided sample splitting is used (i.e.,

estimation of f, and finite-sample inference are performed using different subsamples of the full sample).

Under weak identification. Proposition 4 will not hold as stated, but a closely related optimality result

is available. The key diff'erence between the strongly and weakly identified cases is that the defining

property of a weakly identified model is that the counterpart of the gradient t» is not consistently

estimable. As such, asymptotic optimality results are too optimistic. Nevertheless, it is still possible to
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show the statistic used in the main text has an attractive optimahty property under the following weak

identification assumption in which t(Z,9o) is modeled as a "locally linear" sequence of parameters.^''

Assumption 4. (a) The distribution of Z does not depend on Oq, (b) T(Z,9t)

Rn{Z, 0,,C)\ for some C G Kdim(Z)xK a,nd some function Rn, where A^ =
6'o
-

(

-1/2

exists and is positive definite, (d) limn^oo E \Rn [Z, 6,C) =0 for every 9 and every C.

[Z'CAe +

{c)T.zz = E{ZZ')

If Assumption 4 holds and g € Q, then

Ln (S*,g) —>rf XXdim(g)
Til

-Sw('^e,C,g) (A.6)

where

Sw (A,, C, g) = A'gE [C'Zg (Z)'] E [g (Z) g (Z)']
"' E [g (Z) Z'C] Ae-

As in the strongly identified case, the limiting distribution of Ln {9*,g) is \ times a noncentral X%^i„\

in the weakly identified case. Within the class of tests based on a member of {Ln (9,,g) g € G} ,

the asymptotically most powerful test is the one based on L„ {9,,gc) , where gc (Z) = C'Z. This test

furthermore enjoys an optimality property analogous to the one established in Proposition 4. The proof

of the result for L„ (9f,gc) is identical to that of Proposition 4, with 5, 5*, and T* of the latter proof

replaced by Ag,

Sn [C) = C T IZ ~T\ ^ ^' ("^^ " ^^
Jn ^ T il - t)

and

Xn [C) = C
n ^ t(1 - T)

-z,z: c,

respectively. (In particular, the proof utilizes the fact that if C is known, then the statistic 5^ (C) is

asymptotically sufficient under Assumption 4.)

However, the consistent estimation of C is infeasible in the present (weakly identified) case, hrdeed,

because C cannot be treated "as if" it was known, it seems more reasonable to search for a test which

is implementable without knowledge of C and enjoys an optimality property that does not rely on this

knowledge. To that end, let

l:

1= 1

-r) t(1 ^E^'Zi ^ z, [a - t) (A.7)

that is, let L* be the particular member of {L„ (9t,g) : g € Q} for which g is the identity mapping.

It follows from Muirhead (1982, Exercise 3.15 (d)) that for any k> and any dim (D) x dim(D)

matrix E.„ui L^ is a strictly increasing transformation of

K.

exp
1 + K

Ln(9,,gc)]dJ{C;Y:,y), (A.8)

Assumption 4 is motivated by the Gaussian model (A.4)-(A.5). In that model, parts (b) and (d) hold (with

C proportional to \/nTl) if part (c) does and n varies with n in such a way that y^Yl is a constant dim (Z) x K
matrix (as in Staiger and Stock (1997)).
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where J () is the cdf of the normal distribution with mean and variance E^,,; ® (n~^ Y^=\ ^i^'i)

In (A. 8), the functional form of J {) is "natural" insofar as it is corresponds to the weak instru-

ments prior employed by Chamberlain and Imbens (2004). Moreover, following Andrews and Ploberger

(1994), the integrand in (A. 8) is obtained by averaging the LAN approximation to the likelihood ra-

tio with respect to the weight/prior measure Kcido) associated with the distributional assumption

Ag ~ A/" 0, reXn (C)~ In view of the foregoing, it follows that the statistic L* enjoys weighted av-

erage power optimality properties of the Andrews and Ploberger (1994) variety.^'* This statement is

formalized in the following result.

Proposition 5. Among tests based on (cj, Zi,i = 1, . . . ,n), under Assumption 4 the test based on L*

is asym,ptotically equivalent to the test that maximizes the asymptotic average power:

limsup / [ Pr (reject e*\eo,C)dKc {eD)dJ (C).
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A. MCMC Draws and Critical Region

for Demand Example (t = 0.50)

B. MCMC and Grid Search Critical Region

lor Demand Example (i = 0.50)
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Figure 1. MCMC and Grid Search Confidence Regions. This figure

illustrates the construction of a 95% level confidence regions by MCMC and a

grid search in the demand example from Section 3. Panel A shows the MCMC
draws. The gray -h's represent draws that fell within the confidence region, and

the black •'s represent draws outside of the confidence region. Panel B plots

the MCMC draws within the confidence region (gray 4-'s) and the grid search

confidence region (black line).
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Table 1. Monte Carlo Results

Asymptotic Inference Finite Sample Inference

Null Hypothesis r = 0.50 r = 0.75 t = 0.90 t = 0.50 r = 0.75 t = 0.90

A. Exogenous Model

^(r)|i| = eo(T)|i] 0.0716 0.0676 0.0920 0.0080 0.0064 0.0044

e(r) = ^o(t) 0.0744 0.0820 0.1392 0.0516 0.0448 0.0448

B. Endogenous Model. 11 = .05

0iTh] = ^o(r)|i] 0.2380 0.2392 0.2720 0.0240 0.0212 0.0200

e{T) = ^o(r) 0.2352 0.3604 0.4740 0.0488 0.0460 0.0484

C. Endogenous Model. 11 =: .5

^(t)(ij = ^o(r)[i] 0.0744 0.0808 0.1240 0.0300 0.0300 0.0204

e{r) = 0^{t) 0.0732 0.0860 0.1504 0.0552 0.0560 0.0464

D. Endogenous Model, n == 1

e(r)[ll = eo(r)[i] 0.0632 0.0784 0.1168 0.0232 0.0216 0.0192

6{t) = eo(T) 0.0508 0.0772 0.1440 0.0524 0.0476 0.0508

Note: Simulation results for asymptotic and finite sample inference for quantile regression. Each panel reports

results for a different simulation model. Each simulation model has quantiles of the form

q{D,8a,T) = 6o(t)|2) + &o(t)|i|D. The first row within each panel reports rejection frequencies for 5% level

tests of the hypothesis that 6(t)hj = 5o(t)|i], and the second row reports rejection frequencies for 5% level

tests of the joint hypothesis 6 = 8a. The number of simulations is 2500.
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Figure 2. Power Curves for Exogenous Simulation Model. This figure

plots power curves for the simulations contained in Panel A of Table 1. The

solid line is the power curve for a test based on the finite sample inference

procedure, and the dashed line is the power curve from a test based on the

Eisymptotic approximation.
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Figure 3. Power Curves for Endogenous Simulation Model, 11 = 0.05.

This figure plots power curves for the simulations contained in Panel B of Table

1 which correspond to a nearly unidentified case. The solid line is the power

curve for a test based on the finite sample inference procedure, and the dashed

line is the power curve from a test based on the asymptotic approximation.
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This figure plots power curves for the simulations contained in Panel C of Table

1. The solid line is the power curve for a test based on the finite sample inference

procedure, and the dashed line is the power curve from a test based on the

asymptotic approximation.
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This figure plots power curves for the simulations contained in Panel D of

Table 1. The solid line is the power curve for a test based on the finite sample

inference procedure, and the dashed line is the power curve from a test based

on the asymptotic approximation.
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Table 2. Demand for Fish

Estimation Method r = 0.25 r = 0.50 t = 0.75

A. Quantile Regression (No Instruments)

Quantile Regression (Asymptotic) (-0.874,0.073) (-0.785,-0.037) (-1.174,-0.242)

Finite Sample (MCMC) (-1.348,0.338) (-1.025,0.017) (-1.198,0.085)

Finite Sample (Grid) (-1.375,0.320) (-1.015,0.020) (-1.195,0.065)

Finite Sample (Marginal) (-1.390,0.350) (-1.040,0.040) (-1.210,0.090)

B. IV Quantile Regression (Stormy, Mixed as Instruments)

Inverse Quantile Regression (Asymptotic) (-2.486,-0.250) (-1.802,0.030) (-2.035,-0.502)

Finite Sample (MCMC) . (-4.403,1.337) (-3.-566,0. 166) (-5.198,25.173)

Finite Sample (Grid) (-4.250,40] (-3.600,0.200) (-5.150,24.850)

Finite Sample (Marginal) (-4.430,1] (-3.610,0.220) [-5,1]

C. Quantile Regression - Day EfFects (No Instruments)

Quantile Regression (Asymptotic) (-0.695,-0.016) (-0.718,-0.058) (-1.265,-0.329)

Finite Sample (Marginal) (-1.610,0.580) (-1.360,0.320) (-1.350,0.400)

D. IV Quantile Regression - Day EfFects (Stormj', Mixed as Instruments)

Inverse Quantile Regression (Asymptotic) (-2.403,-0.324) (-1.457,0.267) (-1.895,-0.463)

Finite Sample (Marginal) [-5,1] [-5,1] [-5,1]

Note; 95% level confidence interval estimates for Demand for Fish example. Panel A reports results from

model which treats price as exogenous, and Panel B reports results from model which treats price as

endogenous and uses weather conditions as instruments for price. Panels C and D are as A and B but include

a set of dummy variables for day of the week. The first row in each panel reports the interval estimated using

the asymptotic approximation, and the remaining rows report estimates of the finite sample interval

constructed through various methods.
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Figure 6. Finite Sample Confidence Regions for Fish Example Treat-

ing Price as Exogenous. This figure plots finite sample confidence regions

firom fish example without covariates treating price as exogenous. Values for the

intercept, 0{t)i2] are on the horizontal axis, and values for the slope parameter

6(r)[i] are on the vertical axis.
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Figure 7. Finite Sample Confidence Regions for Fish Example Treat-

ing Price as Endogenous. This figure plots finite sample confidence regions

from fish example without covariates treating price as endogenous. Values for

the intercept, 0{t)^2] ^^I'e on the horizontal axis, and values for the slope param-

eter ^(t)|i] are on the vertical axis.
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Table 3. Returns to Schooling

Estimation Method r = 0.25 t = 0.50 r = 0.75

A. Quantile Regression (No Instruments)

Quantile Regression (Asymptotic) (0.0715,0.0731) (0.0642,0.0652) (0.0637,0.0650)

Finite Sample (MCMC) (0.0710,0.0740) (0.0640,0.0660) (0.0637,0.0656)

Finite Sample (Grid) (0.0710,0.0740) (0.0641,0.0659) (0.0638,0.0655)

Finite Sample (Marginal) (0.0706,0.0742) (0.0638,0.0662) (0.0634,0.0658)

B. IV Quantile Regression (Quarter of Birth Instruments)

Inverse Quantile Regression (Asymptotic) (0.0784,0.2064) (0.0563,0.1708) (0.0410,0.1093)

Finite Sample (MCMC) (0.1151,0.1491) (0.0378,0.1203) (0.0595,0.0703)

Finite Sample (MCMC-2) (0.0580,0.2864) (0.0378,0.1203) (0.0012,0.0751)

Finite Sample (Grid) (0.059,0.197) (0.041,0.119) (0.021,0.073)

Finite Sample (Marginal) (0.05,0.39) (0.03,0.13) (0.00,0.08)

C. Quantile Regression - State and Year of Birth Effects

(No Instruments)

Quantile Regression (Asymptotic) (0.0666,0.0680) (0.0615,0.0628) (0.0614,0.0627)

Finite Sample (Marginal) (0.0638,0.0710) (0.0594,0.0650) (0.0590,0.0654)

D. IV Quantile Regression - State and Year of Birth Effects

(Quarter of Birth Instruments)

Inverse Quantile Regression (Asymptotic) (0.0890,0.2057) (0.0661,0.1459) (0.0625,0.1368)

Finite Sample (Marginal) (-0.24,1] [-1,1] [-1,0.35]

Note: 95% level confidence interval estimates for Returns to Schooling example. Panel A reports results from

model which treats schooling a.s exogenous, and Panel B reports results from model which treats schooling as

endogenous and uses quarter of birth dummies as instruments for schooling. Panels C and D are as A and B

but include a set of 51 state of birth dummy variables and a set of 9 year of birth dummy variables. The first

row in each panel reports the interval estimated using the asymptotic approximation, and the remaining rows

report estimates of the finite sample interval constructed through various methods.
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95% Confidence Region for 75 Percentile

for Scfiooling Example
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Figure 8. Confidence Region for 75''' Percentile in Schooling Exam-

ple. This figure plots the finite sample confidence regions from the schooling

example in the model without covariates treating schooling as endogenous. Val-

ues for the intercept, 6'(.75)[oj are on the vertical axis, and values for the slope

parameter 6'(.75)hi are on the horizontal axis.
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