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Abstract

The effect of government programs on the distribution of participants' earnings is

important for program evaluation and welfare comparisons. This paper reports es-

timates of the effects of JTPA training programs on the distribution of earnings.

The estimation uses a new instrumental variable (IV) method that measures pro-

gram impacts on the quantiles of outcome variables. This quantile treatment effects

(QTE) estimator accommodates exogenous covariates and reduces to quantile regres-

sion when selection for treatment is exogenously determined. The QTE estimator can

be computed as the solution to a convex linear programming problem, although this

requires first-step estimation of a nuisance function. We develop distribution theory

for the case where the first step is estimated nonparametrically. For women, the

empirical results show that the JTPA program had the largest proportional impact

at low quantiles. Perhaps surprisingly, however, JTPA training raised the quantiles

of earnings for men only in the upper half of the trainee earnings distribution.

*We thank Moshe Buchinsky, Gary Chamberlain, Jinyong Hahn, Jerry Hausman, Whitney Newey,

Shlomo Yitzhaki, and seminar participants at Berkeley, MIT-Harvard, Penn, and the Econometric Society

Summer 1998 meetings for helpful comments and discussions. Thanks also go to Erik Beecroft at Abt

Associates for providing us with the National JTPA Study data and for helpful discussions. Abadie

acknowledges financial support from the Bank of Spain. Imbens acknowledges financial support from the

Sloan Foundation.





1. Introduction

Effects of economic variables on distributions of outcomes are of fundamental interest in

many areas of empirical economic research. A leading example is the question of how

government programs affect the distribution of participants' earnings, since the welfare

analysis of public policies involves distributions of outcomes. Policy-makers often hope that

subsidized training programs will reduce earnings inequality by raising the lower quantiles

of the earnings distribution and thereby reducing poverty (Lalonde (1995), US Department

of Labor (1995)). Another example from labor economics is the effect of union status on the

distribution of earnings. One of the earliest studies of the distributional consequences of

unionism is Freeman (1980), while more recent analyses include Card (1996), and DiNardo,

Fortin, and Lemieux (1996), who have asked whether changes in union status can account

for a significant fraction of increasing wage inequality in the 1980s.

Although the importance of distribution effects is widely acknowledged, most evaluation

research focuses on average outcomes, probably because the statistical techniques required

to estimate effects on means are easier to use. Many econometric models also implicitly

restrict treatment effects to operate in the form of a simple "location shift" , in which case

the mean effect captures the impact of treatment at all quantiles. Of course, the impact of

treatment on a distribution is easy to assess when treatment status is randomly assigned

and there is perfect compliance with treatment assignment. Randomization guarantees

that outcomes in the treatment group are directly comparable to outcomes in the control

group, so valid causal inferences can be obtained by simply comparing the treatment and

control distributions. The problem of how to draw inferences about distributional effects

in randomized studies with non-compliance or in observational studies with non-random

assignment is more difficult, however, and has received less attention.
1

In this paper, we show how to use a source of exogenous variation in treatment status

'Discussions of average treatment effects include Rubin (1977), Rosenbaum and Rubin (1983), and

Heckman and Robb (1985). Manski (1994), Heckman, Smith and Clements (1997), Imbens and Rubin

(1997), and Abadie (1999a) discuss effects on distributions. Manski (1994, 1997) develops estimators for

bounds on quantiles.



- an instrumental variable - to estimate the effect of treatment on the quantiles of the

distribution of outcomes in non-randomized studies, or in situations where the offer of

treatment is randomized but treatment itself is voluntary. This Quantile Treatment Effects

(QTE) estimator is used here to estimate the effect of training on trainees served by the

Job Training Partnership Act (JTPA) of 1982, a large publicly-funded training program

designed to help economically disadvantaged individuals. The data come from the National

JTPA Study, a social experiment begun in the late early 1980s at 16 locations across the US

to evaluate the effects of JTPA training. For this study, JTPA applicants were randomly

assigned to treatment and control groups. Individuals in the treatment group were offered

JTPA training, while those in the control group were excluded for a period of 18 months.

Only 60 percent of the treatment group actually received training, but we can use the

treatment assignment as an instrument for treatment.

The treatment effects estimated using the framework developed here are valid for a

subpopulation we call compilers. This terminology is used because in randomized trials

with partial compliance, like the JTPA, the relevant subpopulation consists of people who

always comply with the treatment protocol. In fact, in the case of the JTPA, where (almost)

no one in the control group received treatment, effects for compilers are also representative

of effects on the treated.
2 In other cases, compilers are those whose treatment status is

affected by an instrumental variable.

The identification results underlying the compilers approach to instrumental variables

(IV) models were first established by Imbens and Angrist (1994) and Angrist, Imbens, and

Rubin (1996). Imbens and Rubin (1997) extended these results to the identification of

the effect of treatment on distributions, and Abadie (1999a) showed how to test global

hypotheses about distribution impacts such as stochastic dominance. But neither of these

papers developed simple estimators or a scheme for estimating the effect of treatment on

quantiles. We focus here on conditional quantiles because quantiles provide useful summary

2 Angrist and Imbens (1991) discuss the relationship between instrumental variables and effects on the

treated. Orr, et al. (1996) and Heckman, Smith, and Taber (1994) report average effects on the treated

in the JTPA. Heckman, Clements and Smith (1997) estimate the distribution of JTPA treatment effects

using a non-IV framework.



statistics for distributions, and because quantile comparisons have been at the heart of

recent discussions of changing wage inequality (see, e.g., Chamberlain (1991), Katz and

Murphy (1992) and Buchinsky (1994)).

The paper is organized as follows. Section 2 outlines the conceptual framework and

discusses the identification problem. Section 3 presents the estimator, which allows for a

binary endogenous regressor (indicating exposure to treatment) and reduces to Koenker

and Bassett (1978) quantile regression when selection for treatment is exogenous. Like

quantile regression, the estimator developed here can be written as the solution to a convex

linear programming (LP) problem, although implementation of the QTE estimator requires

estimation of a nuisance function in a first step. Finally, Section 4 discusses the estimates of

effects of training on the quantiles of trainee earnings. The estimates for women show larger

proportional increases in earnings at lower quantiles of the trainee earnings distribution.

But the estimates for men suggest the impact of training was largest in the upper half of

the distribution and not at lower quantiles as policy-makers perhaps would have wished.

2. Conceptual Framework

The setup is as follows. The data consist of n observations on a continuously distributed

outcome variable, Y, a binary treatment indicator D, and a binary instrument, Z. In the

case of subsidized training, Y is earnings, D indicates program participation, and Z is an

indicator of the randomized offer of training. Z and D are not equal in the JTPA because

not everyone who was offered training received it and because a few people who were not

offered training received services anyway. In a study of the effect of unions, Y might be a

measure of wages, D would indicate union status, and Z would be an instrument for union

status, say a dummy indicating individuals who work in firms that were subject to union

organizing campaigns (Lalonde, Marschke and Troske (1996)). We also allow for an r x 1

vector of covariates, X.

As in Rubin (1974, 1977) and our earlier work on instrumental variables estimation

of causal effects, we define the causal effects of interest using potential outcomes and



potential treatment status. In particular, we define potential outcomes indexed against

D, Yd, and potential treatment status indexed against Z, Dz . Potential outcomes and

potential treatment status describe possibly counterfactual states of the world. Thus, D\

tells us what value D would take if Z were equal to 1, while Do tells us what value D would

take if Z were equal to 0. Similarly, Yd tells us what someone's outcome would be if they

had D = d. The objects of causal inference are features of the distribution of potential

outcomes, possibly restricted to particular subpopulations.

The observed treatment status is:

D = D + (A - Do) Z.

In other words, if Z = 1, then D\ is observed, while if Z = 0, then D is observed. Likewise,

the observed outcome variable is:

Y = Y -D + Y1 -(1-D). (1)

The reason why causal inference is difficult is that although we think of all possible coun-

terfactual outcomes as being defined for everyone, only one potential treatment status and

one potential outcome are ever observed for any one person. 3

2.1. Principal Assumptions

The principal assumptions of the potential outcomes framework for IV are stated below:

Assumption 2.1: For almost all values of X,

(i) Independence; (Yi,Y ,Di,D ) is jointly independent of Z given X.

(ii) Non-Trivial Assignment.- P(Z = 1\X) e (0, 1).

(hi) First-Stage: £[Di|X] ^ E[D \X).

(iv) MONOTONICITY: P(D 1 > D \X) = 1.

3The idea of potential outcomes appears in labor economics in discussions of the effects of union status.

See, for example, Lewis' (1986) survey of research on union relative wage effects.



Assumption 2.1(i) subsumes two related requirements. First, comparisons by instru-

ment status identify the causal effect of the instrument. This is equivalent to instrument-

error independence in traditional simultaneous equations models. Second, potential out-

comes are not directly affected by the instrument. This is an exclusion restriction. See

Angrist, Imbens and Rubin (1996) for additional discussion of these two requirements and

how they differ. Assumption 2.1(i) is plausible (though not guaranteed) in the case of the

JTPA because of the randomly assigned offer of treatment.

Assumption 2.1(h) requires that the conditional distribution of the instrument not be

degenerate. The relationship between instruments and treatment assignment is restricted

in two other ways as well. As in simultaneous equations models, we require that there be

some correlation between D and Z; this is stated in Assumption 2.1 (hi). Also, Imbens

and Angrist (1994) have shown that Assumption 2.1(iv) guarantees identification of a

meaningful average treatment effect in any model with heterogeneous potential outcomes

that satisfies assumptions 2.1(i)-2.1(iii). This monotonicity assumption means that the

instrument can only affect D in one direction. Monotonicity is plausible in most applications

and it is automatically satisfied by latent-index models for treatment assignment. 4
It is

also a reasonable assumption for the JTPA, where D = for (almost) everyone.

The inference problem in evaluation research involves comparisons of observed and coun-

terfactual outcomes, possibly after conditioning on observed covariates, X. For example,

many evaluation studies focus on estimating the difference between the average outcome

for the treated (which is observed) and what this average would have been in the absence

of treatment (which is counter-factual). Outside of a randomized trial, the difference in

4A latent-index model for participation is

D= 1{A + Z-A! - t? > 0}

where Ao and Ai are parameters and 77 is an error term that is independent of Z. Then Do = l{Ao > t]},

D\ — l{Ao + Ax > 77}, and either D\ > Do or Dq > D\ for everyone. If Ax < so that Dq > D\ for

everyone, then monotonicity holds for Z' = 1 — Z.



average outcomes by observed treatment status is typically a biased estimate of this effect:

E[Y
1
\X,D = 1] - E[YQ\X,D = 0] = {E[Y1 \X,D = 1] - E[YQ\X,D= 1]}

+ {E[Y \X, D = 1] - E\Y \X, D = 0}}.

The first term in brackets is the average effect of the treatment on the treated, which can

also be written as E\Y\ — Yq\X,D = 1] since expectation is a linear operator; the second

is the bias term. For example, comparisons of earnings by training status are biased if

trainees are selected for training on the basis of low earnings potential. This bias extends

to comparisons other than the mean. For example, the relationship above holds if we

replace conditional expectations with conditional quantiles.

2.2. Identification Using Instrumental Variables

An instrumental variable solves the problem of identifying causal effects for a group of

individuals whose treatment status is affected by the instrument. The following result

(Imbens and Angrist (1994)) captures this idea formally:

Lemma 2.1: Under Assumption 2.1 (and assuming that the relevant expectations are finite)

E[Y\X, Z = \\- E[Y\X, Z = 0]

E[D\X, Z = 1] - E[D\X, Z = 0]

= E[Y1 -Y \X,D 1 >D }.

E[YX -Y \X,Di > D
]

is called a Local Average Treatment Effect (LATE). We refer

to individuals for whom D\ > Dq as compliers because in a randomized trial with partial

compliance, this group would consist of individuals who comply with the treatment protocol

whatever their assignment. In other words, the set of compliers is the set of individuals

whose treatment status was changed in the experiment induced by Z . Note that individuals

in this set cannot be identified (i.e., we cannot name the people who are compliers) because

we never observe both D\ and Do for any one person. Also note that in the special case

where Do = for everyone,

E[Y1 -Y \X,Dl >DQ ]
= E[Yl -Y \X,D l

= l] = E[Y1 -Y \X,D 1
= l,Z=l]

= E[Yl -Y \X,D = l],



so LATE is the effect of treatment on the treated. The equivalence between effects for

compliers and effects on the treated in cases where Do is identically zero holds for any

distributional characteristic and not just means.

The compliers concept is at the heart of the LATE framework and provides a simple

explanation for how IV methods work. Suppose initially that we could know who the

compliers are. For these people, Z — D, since it is always true that D x > D . This

observation plus Assumption 2.1 leads to the following lemma:

Lemma 2.2: Given Assumption 2.1 and conditional on X, treatment status, D, is ignorable

(independent of the potential outcomes) for compliers: (Yi, Yo) -L D\X, D x > DQ .

Proof: Assumptions 2.1(i) says that (YUY ,

D

u D ) ± Z\X, so (Yi,Y ) ± Z\X,D 1
=

1, D = 0. When D x
— 1 and D = 0, D can be substituted for Z. D

A consequence of Lemma 2.2 is that in the subpopulation of compliers, comparisons

of means by treatment status estimate an average treatment effect even though treatment

assignment is not ignorable in the population:

E[Y\X,D = 1,D X > Do] - E[Y\X
:
D = 0,D X > D ]

= E[Y, - Y \X,D1 > D }. (2)

Of course, as it stands, Lemma 2.2 is of no practical use because the subpopulation of

compliers is not identified (i.e., we do not observe D\ and Dq for the same individual). To

make Lemma 2.2 operational, we define the following function of D, Z and X:

_ D-(l-Z) (l-D)-Z

i-ttoPO MX) '

{S}

where n (X) = P(Z — 1\X). Note that k equals one when D = Z, otherwise k is negative.

This function is useful because it "identifies compliers" in the following average sense:

Lemma 2.3: (Abadie, 1999b) Let h(Y,D,X) be any integrable real function of (Y,D,X).

Then, given Assumption 2.1,

E[h{Y,D,X)\D x > Do] = p7p^~^) ' E[k h(Y, D,X)}.



To see why this is true, note that, by monotonicity, the population can be partitioned

into three groups: compilers who have D\ > Dq, always-takers who have D\ = Dq = 1,

and never-takers who have D\ = Dq = 0. Thus,

E[h(y,D,X)\X,Di>D
] = p(D^D^\X~) {

E[h{Y
'
D

' X)lX]

E[h{Y,D,X)\X~Di = D = 1] • P(A = D = 1|X)

£[/i(F,D,X)|X,A = Z> = 0] • P(D 1
= D = 0\X)\.

Monotonicity means that all individuals with Z = 1 and D = must be never-takers.

Likewise, those with Z = and D = 1 must be always-takers. Since Z is ignorable given

X, we have the following expressions for always-takers and never-takers as a function of

observed moments:

E[h(Y,D
t
X)\X,Di = A) = l] = E[h{Y,D,X)\X,D = 1,Z = 0]

D-(l-Z)1
E

P{D = 1\X,Z = 0) 1 " TTo(X)
h(Y,D,X) X

E[h(Y,D,X)\X,D 1
= D = 0] = E[h(Y, D,X)\X, D = 0, Z == 1]

1

P(£ = 0|X,Z = 1)

P
1 ~ D)

- WAX)
TTo(X)

A'

Monotonicity and ignorability of Z given X can similarly be used to identify the proportions

of always-takers and never-takers using P(D\ = D = 1\X) = P(D = l\X,Z = 0) and

P{D\ = Dq = 0\X) = P(D = 0\X, Z — 1). Integrating over X completes the argument.

An implication of Lemma 2.3 is that any parameter defined as the solution to a moment

condition involving (Y,D,X) is identified for compliers. This point is explored in detail in

Abadie (1999b). 5 In the next section, we show how Lemma 2.3 can be used to develop an

5 For example, if we define fi and a as

(fi, a) = argmin(ma) E[(Y - m - aD) 2
\Di > D

],

then, fi — E\Yq\D\ > Dq], and a — E\YX - Yq\D\ > Do], so that a is LATE (although fi is not the

same intercept that is identified by conventional IV methods). By Lemma 2.3, (/u,a) also minimizes

E[k (Y - m - aD) 2
}.

8



estimator for the causal effect of treatment on the quantiles of an outcome variable.

3. Quantile Treatment Effects

3.1. The QTE Model

The QTE estimator is based on a model where the effect of treatment and covariates is

linear and additive at each quantile, so that a single treatment effect is estimated. The

analysis is straightforward when the treatment effect varies with X, but we use an additive

model because the resulting estimator simplifies to Koenker and Bassett (1978) quantile

regression when there is no instrumenting. The relationship between QTE and quantile

regression is therefore analogous to the relationship between conventional IV and ordinary

least squares (OLS).

The parameters of interest are defined as follows:

Assumption 3.1: For 6 £ (0, 1), there exist unique ag G R and (3e G W such that

Qe{Y\X, D, D1 > D ) = aeD + X%. (4)

where Qg(Y\X,D,Di > D ) denotes the 9-quantile ofY given X and D for compliers.

As a consequence of Lemma 2.2, the parameter of primary interest in this model, ag,

gives the difference in the ^-quantiles of Y\ and Yq for compliers. This tells us, for example,

whether JTPA training changed the median earnings of participants. Note, however, that

in contrast with average treatment effects, where average differences equal differences in

averages, ag is not the quantile of the difference (Yi— Yq). Although the latter may also be of

interest, we focus on the marginal distributions of potential outcomes because identification

of the distribution of Y\ — Yq requires much stronger assumptions and because economists

making social welfare comparisons typically use differences in distributions and not the

distribution of differences for this purpose (see, e.g., Atkinson (1970)).
6

6Heckman, Smith and Clements (1997) discuss models where features of the distribution of the difference

(Y\ — Yq) are identified. They note that this may be of interest for questions regarding the political

economy of social programs. If the ranking of individuals in the distribution of the outcome is preserved



The model above differs in a number of ways from the model in the seminal papers

by Amemiya (1982) and Powell (1983), who used least absolute deviations to estimate

a simultaneous equations system. Their approach begins with a traditional simultaneous

equations model, and is not motivated by an attempt to characterize effects on distributions.

Rather, the idea is to improve on 2SLS when the distributions of the error terms are long-

tailed. Most importantly, in contrast with the parameters in equation (4), the parameters

of interest in the Amemiya/Powell setup do not, in general, define a conditional quantile

function.
7

The parameters of the conditional quantile function in equation (4) can be expressed

as (see Bassett and Koenker (1982)):

{ae ,Pe) = ai*gmm(a,/3)eM'-+ 1 E [Pe(Y ~ aD ~ x'P)\D i > A)],

where pe (X) is the check function, defined as pe (A) = (9 — 1{A < 0}) • A for any real A.

Therefore, using Lemma 2.3, ae and fie are identified as

{ae ,Pe) = argmin(Q/3)eMr+1 E[k pe {Y - aD - X'0)]. (5)

This population objective function is globally convex in (ag,Pe ) since it is equal to the

check-function minimand for compilers times some positive constant {P{D\ > Do))- Fol-

lowing the analogy principle (Manski (1988)) a natural estimator of (ag,/3g ) is the sample

counterpart of (5). However, since k is negative when D is not equal to Z, the sample

objective function turns out to be non-convex. A number of algorithms exist for minimiza-

tion problems of this type (piecewise linear and non-convex objective functions), but they

do not ensure a global optimum (see, e.g., Charnes and Cooper (1957) or Fitzenberger

(1997a,b), for a discussion of a related censored quantile regression problem). Unlike the

under the treatment, then the estimator in this paper is informative about the distribution of treatment

impacts. King (1983) discusses horizontal equity concerns that require welfare analyses involving the joint

distribution of outcomes.
7
Identification in the Amemiya and Powell papers comes from conditional median restrictions on the

reduced form. However, a conditional median restriction on the reduced form does not imply that the

structural equation is a conditional median. In fact, for a binary endogenous regressor, conditional median

restrictions on the reduced form and structural equation are typically incompatible.

10



conventional quantile regression minimand, the sample analog of equation (5) does not have

a linear programming representation.

Now, let U = (Y,D,X); applying the Law of Iterated Expectations to equation (5), we

obtain

{<*e,Po) = argmin(Q)/3)er+ i E[k v pg (Y - aD - X'j3)], (6)

where

D-(1-MU)) (i-D)-MU)
kv = E[k\U\ = 1 —--^t —j

—

for u (U) = E[Z\U] = P(Z = 1\Y, D, X). Although simple to derive, this second represen-

tation is of signal importance because, as we show below, ku is a conditional probability

and is therefore non-negative.

Lemma 3.1: Under Assumption 2.1, ku (U) = P{D X > D \U).

Proof: First consider the product D (1 — Z). This differs from zero only if Z = and

Do = 1. By monotonicity, D = 1 implies Dx = 1. Hence:

E[D-(l-Z)\U] = P(D(1 - Z) = 1\U)

= P{D1 = DQ = l\U)-P{Z = Q\D1 ^D = l,U)

= P(A = D = l\U) P(Z = 0|A = D = l,Ylt X)

= P(D1 = D = 1\U)-P{Z = 0\X).

Similarly, E[{1 - D) Z\U] = P(D1
= D = 0\U) P{Z = l\X). Therefore,

D(l-Z) (l-D)Z
nv {U) = E U

P(Z = 0\X) P(Z = l\X)

1 - P(A = D = l\U) - P{D X
= D = 0\U) == P{D X > D \U).

a

A consequence of this lemma is that it is possible to develop a QTE estimator with an

LP representation based on a sample analog of equation (6)). This can be thought of as

11



a scheme to "convexify" the sample analog of (5). The resulting convex QTE estimator

minimizes a positively-weighted check-function minimand, with a global minimum that can

be obtained as the solution to a linear programming problem in a finite number of simplex

iterations. This is similar in spirit to Buchinsky and Hahirs (1998) LP-type estimator for

censored quantile regression.

An interesting question is whether there is any efficiency cost to using an estimator

based on ku instead of the sample analog of (5). In fact, it can be shown that both strate-

gies produce estimators that are asymptotically equivalent. 8 In light of this result, the

rest of the paper focuses on estimation by minimizing the sample analog of (6). This re-

quires first-step estimation of iro(X) and vQ (U) to construct an estimate of k.u (U), denoted

ku . The distribution theory is developed assuming that X is discrete, so a saturated lin-

ear model consistently estimates 7r (X). We use series approximation to estimate vQ (U)

non-parametrically in (X, D) cells.
9

If the number of terms in the series approximation

increases at an appropriate rate with the sample size, this procedure ensures that the esti-

mated conditional expectations converge to the true conditional expectations. In practice,

however, it may make sense to use something less than a saturated model for X when the

dimensionality of X is high. We discuss practical aspects of the estimation strategy further

when the results are presented in Section 4.

3.2. Estimation

Assume that we have a random sample {Y;, Dz , Xi, Zi}™=1 . Let W = (D,X')' and 6g —

(ao,f3e )' for ag and j3e in equation (4). If ku were known, the estimation problem would

reduce to a weighted quantile regression problem of the type discussed by Newey and Powell

(1990). Since ku is unknown, we estimate this function nonparametrically in a first step

8 See Newey (1994); the estimators are asymptotically equivalent since they nonparametrically estimate

the same functional.
9 Buchinsky and Hahn (1998) similarly decompose the covariates in a censored quantile regression prob-

lem into a set of discrete variables and a set of continuous variables. They use non-parametric methods to

estimate the conditional probability of censoring in cells defined by the discrete variables.

12



and use the fitted values k„([/i) in a second step to construct the estimator:

1
n

% = argmin,GRr+1 - ]T 1{k„(^) > 0} • «„(^) • pe (y,
- W/5), (7)

77,

First step estimation of kv is carried out using non-parametric series regression. For an

increasing sequence of positive integers {A(fc)}^=1 and a positive integer K, let p
K (Y) =

(Yx
(
lj

, ...,Y
X (K)). Assume that X only takes on a finite number of values (so that W G

{wi,...,wj}). Then, any random sample {Vi}"=1 = {(Z{, Ul )}f=1 from V = (Z,U) can

be indexed as {{Vi
j } i

3

=1 }j=1 , where {Vi
j } i

J

=1 are subsequences for distinct fixed values of

(X, D). In the same fashion, the sample can be indexed as {{Vi^L^iLi, where {l^,}£'=i
are

subsequences for distinct fixed values of X. Now, a nonparametric power series estimator

v(U) of vq(U) is given by the Least Squares projection of {Z, }™J

=1 on {p
K
(Yi.)}™

3

=1 (this

amounts to non-parametric series regression of Z on Y in each W-cell). Let u
t be the fitted

values of such estimator for the observations in our sample. Consider the simple estimator

n(X) of ir (X) obtained by averaging Z within cells of X. Our first step estimator of ku is

given by:

~(TT\-1 ^-(1-%) (l-A)-Pi
K^)~ 1

l-rr{Xl )
tt(^)

•

3.3. Distribution Theory

This subsection summarizes asymptotic results for the QTE estimator. Proofs are given in

the appendix.

Theorem 3.1: Under assumptions 2.1 and 3.1 and if (i) the data are i.i.d.; (ii) conditional

on W, Y is continuously distributed with support equal to a compact interval and density

bounded away from zero; (Hi) 7r (X) is bounded away from zero and one, and X takes on a

finite number of values; (iv) conditional on W , eg is continuously distributed with bounded

density; the distribution function of eg conditional on W and D\ > Do is continuously

differentiate at zero with density fee \w,Di>D {ty that is bounded and bounded away from zero

uniformly in W; (v) kv is bounded away from zero uniformly in U ; (vi) for s equal to the
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number of continuous derivatives in Y ofu , n K 2s —> and K5/n —> 0. Then, n l l2
(6e —

6e ) ^ AA(0,O), where Q = J-'ZJ" 1

, J = E[feg
\
w>Dl>Do (0) WW'\D, > D ] P(D 1 > D

)

andZ = E[W] with^ = K-m(U)+H(X)-{Z-7r (X)}, m{U) = {e-l{Y-W69 < 0})-W,

H(X) = E m(U)
D-(l-Z) (1-D)-Z
(I -MX)) 2 (MX)) 2

X

The asymptotic variance formula provided by this theorem is robust to mis-specification

of the functional form (in Assumption 3.1). In such a case, quantile regression estimates

the best linear predictor under asymmetric loss.
10

To produce an estimator of the asymptotic variance matrix, let

... 1 (Y-W'8\ . ... 1 ( Yj - Wj6"

MS) = -
h
v {—h—) and <pUQ = ~

h
v {-^~

where </?(•) is a kernel function. Consider the following estimator of J:

J=-YJ
Kv{Ui)-^(8e)-WiWi

n
1=1

For i in the /-cell of X , let

ni

Hi = ~|> ~ Hn - W& < 0}) • Wk (
{1 ~ Dk)

'
Zil Di

'
"
(1 " Z*' }WW ;i - n(xt )y

k(K) = i -
Dt • (1 - Zi) (1 - Dt ) Zr

l-7f(Xi) 7?(Xi)
'

& = K{Vi) (6 - 1{Y - w(6e < 0}) • Wi + Ht {Zx
- Srpfc)}.

An estimator of E can then be constructed as

n t—'
i=\

The following theorem establishes the consistency of an asymptotic covariance matrix es-

timator.

10Most of the literature on quantile regression treats the linear model as a literal specification for condi-

tional quantiles. Alternately, the linear model can be viewed as an approximation. This interpretation is

discussed by Buchinsky (1991), Chamberlain (1991), Fitzenberger (1997), and Portnoy (1991).
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Theorem 3.2: Under the assumptions of Theorem 3.1 and (t) h —
> 0, nhA —> oo; (ii)

for some neighborhood of 0, f€g \w,Di>D (-) has bounded and continuous first derivative;

(Hi) ip(z) > 0, J (p(z) dz = 1, J \z tp(z)\dz < oo; (iv) there exists C > such that

\(p{z) - (p(zo)\ <C- \z-zQ \. Thenn = J~ 1 EJ- 1 A Q.

4. Effects of Subsidized Training

4.1. Background

The JTPA began funding training in October 1983, and continued to fund federally-

sponsored training programs into the late 1990s. The program included a number of parts

or "titles", the largest of which is Title II, which supports training for those judged to be

economically disadvantaged. At the time of the National JTPA Study in the early 1990s,

JTPA Title II programs were serving about 1 million participants a year, at an annual cost

of roughly 1.6 billion dollars. JTPA services were delivered at 649 sites, also called Service

Delivery Areas (SDAs), located throughout the country.

Title II of the JTPA is unusual in that it explicitly incorporated a mandate for random-

ized evaluation. 11 The National JTPA study is the largest randomized training evaluation

ever undertaken in the US. The JTPA evaluation study collected data on about 20,000

participants at 16 SDAs. These sites were not a random sample of all SDAs; rather, they

were chosen for diversity, willingness and ability to implement the experimental design,

and the size and composition of the experimental sample they could provide. Although

the non-random selection of sites raises issues of external validity (as in many clinical tri-

als), within sites, applicants were randomly selected for JTPA treatment. The evaluation

sample includes applicants who applied between November 1987 and September 1989.

The original study of the labor-market impact of Title II services was based on 15,981

persons for whom continuous data on earnings (from either State unemployment insurance

(UI) records or two follow-up surveys) were available for at least 30 months after random

11 Other parts of the JTPA, such as Title III programs for workers who lost their jobs as a consequence of

international competition, did not include a randomized evaluation. Background for this section is drawn

from Orr, et al. (1996), Bloom, et al. (1997), and the US Department of Labor (1999) website.
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assignment. Although data are available on a range of labor market outcomes for this

sample, we focus on the sum of earnings in this 30-month period since this is probably the

best measure of the program's lasting economic impact on participants. Individuals who

were not offered treatment were generally excluded from receiving JTPA services for period

of 18 months following their application (though they could participate in other programs

at any time).

The JTPA was a complicated program that offered a wide range of services. JTPA

service providers included community colleges, State employment services, community or-

ganizations, and private-sector training agencies. The types of services offered can be

grouped into three general service strategies. These strategies are (i) classroom training in

occupational skills, basic education, or both; (ii) on-the-job training and/or job search as-

sistance (OJT/JSA); (iii) other services that may have included probationary employment

and/or a combination of the first two. For the National JTPA Study, service strategies

were recommended as part of the JTPA intake process, before random assignment. Al-

though individuals were assigned to treatment with different probabilities depending on

their SDA, the data in the analysis sample were artificially balanced to maintain a 2/1

treatment-control ratio at each location.

The JTPA offered services to a number of different groups. Title II applicants were

generally deemed eligible for training if they faced one of a number of "barriers to em-

ployment". These included long-term use of welfare, being a high school dropout, 15 or

more recent weeks of unemployment, limited English proficiency, physical or mental dis-

ability, reading proficiency below 7th grade level, or an arrest record. The most common

barriers were unemployment spells and high-school dropout status. Applicants were cate-

gorized as being in one of five groups: adult men, adult women, female youth, male youth

non-arrestees, and male youth arrestees. In this study we focus on adult men and women

because the samples are largest for these two groups. There are 6,102 adult women with

30-month earnings data and 5,102 adult men with 30-month earnings data.
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4.2. Average Effects

Using our earlier notation, Y is 30-month earnings, D indicates those who were recorded as

having been enrolled for JTPA services, and Z indicates the offer of services. Although the

offer of treatment was randomly assigned, only about 60 percent of those offered training

actually received JTPA services. This is a consequence of the JTPA evaluation design,

which randomized the offer of services early in the application process, but did not compel

those offered services to participate in training.

While all applicants indicated at least some interest in receiving JTPA services, those

offered treatment were not necessarily notified immediately, and some time may have passed

before training could begin. In the meantime, applicants selected for treatment may have

found jobs, received services somewhere else, or simply lost interest. Providers may also

have had an incentive to delay the enrollment of applicants that they thought were un-

likely to benefit from treatment, while some SDAs were unable to find service providers for

some applicants. Also, on the other side of the randomization offer, a small proportion of

those selected for the control group (1.6 percent) received JTPA services despite the exper-

imenters' attempt to prevent this.
12 Treatment status is therefore likely to be correlated

with potential outcomes and cannot be treated as exogenous.

Although treatment status itself was not randomly assigned, the assumptions of our

framework appear to apply in this case: the randomized offer of treatment is likely to have

been independent of potential outcomes, the offer of treatment is unlikely to have affected

outcomes through any mechanism other than treatment itself, and denial of services by

randomization is not likely to have made treatment more likely. Moreover, because of the

very low probability of receiving JTPA services in the control (Z — 0) group, effects for

compilers in this case can also be interpreted as effects on those who were treated.

Since training offers were randomized in the National JTPA Study, covariates (X) are

not required to identify training effects. Even in experiments like this, however, it is

12Adult men and women who were offered treatment ultimately received about 150 more hours of training

services than were received by the members of the control group.
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customary to control for covariates to correct for chance associations between D and X (as

in Orr, et al, 1996). Moreover, in our setup, covariates can be used to describe earnings

quantiles for compilers in population subgroups, since we estimate Qg(Y\X, D, D\ > D ).

We therefore include as covariates dummies for black and Hispanic applicants, a dummy

for high-school graduates (including GED holders), dummies for married applicants, 5 age-

group dummies, and dummies for AFDC receipt (for women) and whether the applicant

worked at least 12 weeks in the 12 months preceding random assignment. Also included are

dummies for the original recommended service strategy (classroom, OJT/JSA, other) and

a dummy for whether earnings data are from the second follow-up survey 13
In addition,

the analysis is carried out separately for men and women since previously reported results

differed by sex.

Descriptive statistics are reported in Table I. There are more minority applicants than

in the general population and, not surprisingly given the program rules, a relatively low

proportion of high school graduates. The applicants also have low previous employment

rates. Most of the men were recommended for OJT/JSA services, while the women were

slightly more likely to be recommended for classroom training than OJT/JSA or other

services. Average 30-month earnings in the sample are about $19,000 for men and $13,000

for women.

As a benchmark for the purposes of comparison with earlier analyses of the JTPA,

Table II reports OLS and conventional instrumental variables (2SLS) estimates of the

impact of training. 14 The first column reports unadjusted trainee/non-trainee differences,

while the OLS estimates in column (2) are from a regression of the dependent variable on

the covariates and a training dummy (D). Without the use of covariates, the training/non-

training difference is $3,970 for men and $2,133 for women. Trainee/nontrainee differences

are precisely measured for both men and women. OLS estimates of training effects in

13 The covariate information comes from a background survey conducted as part of the JTPA intake

process. The covariate list used here is similar to that described in Appendix B of Orr et al. (1996), except

that we collapsed some categories and omitted SDA dummies because they had low explanatory power.
14 As with the quantile regression and QTE estimates discussed later, the standard errors in Table II

are robust in the sense that they provide consistent estimates of the asymptotic variance of the estimators

under general misspecification.
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models with covariates are similar to the differences without controls.

The reduced-form effects of the offer of treatment are reported in columns (3) and (4).

Not surprisingly, since Z was randomly assigned without conditioning on covariates, the

estimates with and without covariates differ little. Note that the reduced form estimates

are not directly comparable with the OLS estimates since many of those offered training

did not actually receive training.

The instrumental variable estimates in columns (5) and (6) of Table II use the random-

ized offer of treatment (Z) as an instrument for D in the same regression as was used to

construct the estimates in columns (1) and (2). This corrects for non-participation among

those offered training. When covariates are included, the 2SLS estimate for men is $1,593

with a standard error of $895, less than half the size of the corresponding OLS estimate.

For women, however, the 2SLS estimate is $1,780 with a standard error of $532, not dra-

matically different from the corresponding OLS estimate. This amounts to a 9 percent

earnings increase for men and a 15 percent earnings increase for women. These results are

similar to those reported in previous studies.
15

4.3. Estimates of Quantile Treatment Effects

Table III reports OLS and conventional quantile regression estimates of the effect of train-

ing. The covariates are the same as those used to construct the estimates in Table II. The

OLS estimate of the training coefficient is $3,754 for men and $2,215 for women. The quan-

tile regression estimates show that the gap in quantiles by trainee status is much larger (in

proportionate terms) below the median than above it. For men, the .85 quantile of trainee

earnings is about 13 percent higher than the corresponding quantile for non-trainees, while

the .15 quantile is 136 percent higher. For women the difference in impact across quantiles

is less dramatic, but still marked. Like the OLS estimates shown in the table, the quantile

regression coefficients do not necessarily have a causal interpretation. Rather they provide

15The 2SLS estimates in Table II are very close to those in Table 4.6 of the National JTPA study by Orr

et al. (1996). The estimates are not identical because the covariates are not identical. Percentage effects

were computed as the coefficient on training, divided by fitted values with the training dummy set to zero

and other covariates set to means for the treated.
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a descriptive comparison of earnings distributions for trainees and non-trainees.

Implementation of the QTE estimator requires first step estimation of k u . The the-

oretical results in the previous section are based on non-parametric series estimation of

the conditional expectations in k„, but this leaves open a range of possibilities. Since the

elements of X are discrete, non-parametric estimation of E[Z\X] is in principle straightfor-

ward. In practice, however, a fully saturated model leads to problems with small or missing

covariate cells. We therefore estimated Z£[.Z|X] using the restriction that because of ran-

dom assignment, Z and X should be uncorrelated in large samples. The resulting estimate

is simply the empirical E[Z\. The expectation vq(U) = E[Z\Y,D,X] was estimated using

separate models for D = 0, 1. Most X's were dropped because they had little explanatory

value. A series approximation was used to estimate terms in Y. Selection of the order for

the series approximation was guided by cross-validation. The order is the same for both

values of D. 16

QTE estimates of the effect of training on median earnings, reported in Table IV, are

similar in magnitude though less precisely estimated than the 2SLS estimates in Table II.

As noted earlier, for women the 2SLS estimates are not much smaller than OLS estimates,

but for men the 2SLS estimates are considerably smaller than OLS.

A particularly interesting finding for men is that the QTE estimates of effects on quan-

tiles exhibit a pattern very different from the quantile regression estimates. In particular,

the QTE estimates show no evidence of a change in the .15 or .25 quantile. The estimates

at low quantiles are substantially smaller than the corresponding quantile regression esti-

mates, and they are small in absolute terms. For example, the QTE estimate (standard

error) of the effect on the .15 quantile for men is $121 (475), while the corresponding quan-

tile regression estimate is $1,187 (205). Similarly, the QTE estimate (standard error) of the

effect on the .25 quantile for men is $702 (670), while the corresponding quantile regression

lcHausman and Newey (1995) use a similar approach to dimension-reduction for non-parametric esti-

mation of consumer demand equations. Given estimates of k„, we computed QTE coefficient estimates by

weighted quantile regression using the Barrodale-Roberts (1973) linear programming algorithm for quan-

tile regression (see, e.g., Koenker and D'Orey (1987)). A biweight kernel was used for the estimation of

standard errors.
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estimate is $2,510 (356). This suggests that quantile regression estimates of training effects

at low quantiles are especially distorted by positive selection on earnings potential. It seems

that training did not really change the lower deciles of the trainee earnings distribution for

men. In contrast with the results at low quantiles, however, the QTE estimates of effects on

male earnings above the median are large and statistically significant (though still smaller

than the corresponding quantile regression estimates).

The QTE estimates for women show significant effects of training at every quantile,

with the largest proportional effects at low quantiles. For example, training is estimated

to raise the .15 quantile of earnings for women by $324 (175), an increase of 35 percent.

The estimates also suggest training raises the .85 quantile by $1,900 (997), but this is an

increase of only 7 percent. Most of the QTE estimates for women are reasonably close to

the corresponding quantile regression estimates. Thus, whether or not training is treated

as endogenous, the estimates support the notion that for women training had a bigger

proportional impact on the lower tail of the earnings distribution than the upper tail. Of

course, women's earnings are especially low in this sample, so large proportional effects do

not translate into large dollar amounts. 17

Orr, et al. (1996) reported effects by subgroups but found no clear patterns. They

concluded that (p. 160) "the benefits of JTPA are broadly distributed across a wide variety

of different types of men and women." Heckman, Smith, and Clements (1997) similarly

concluded that heterogeneity of impacts is important but that most women benefited from

the JTPA. Our results do not contradict these general conclusions, but they nevertheless

show more heterogeneity in program effects than is revealed by a simple analysis within

subgroups. In particular, our results strongly suggest that training for adult women had a

much larger proportional effect on the lower tail of the earnings distribution than on the

upper tail (though the absolute effect on the lower tail is small).

17
Interestingly, QTE estimates of the proportional effects of training on men are smaller than conven-

tional quantile regression estimates not only because the training impact is lower, but also because the

constant is bigger. This reflects the fact that the constant and covariate-effects estimated by QTE are for

Qe{Yo\X, D\ > Do). This is bigger than the quantile regression intercept because of positive selection for

male compilers.
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Perhaps most striking among our findings is the result that training for adult men does

not seem to have raised the lower quantiles of their earnings. This may be because of

an effort by program operators to target services at relatively easy-to-employ men with

higher earnings potential. The results in distributional changes that would be undesirable

in any assessment using a social welfare function that weights the lower tail of the earnings

distribution more heavily. Since the ostensible purpose of the JTPA was to aid economically

disadvantaged workers, it seems likely that the lower quantiles are of particular concern to

policy makers. One response to this finding might be that few JTPA applicants were very

well off, so that distributional effects within applicants are of less concern than the fact that

the program helped many applicants overall. However, the upper quantiles of earnings were

reasonably high for adult males who participated in the National JTPA Study. Increasing

this upper tail is therefore unlikely to have been a high priority.

5. Summary and Conclusions

This paper reports estimates of the effect of subsidized training on the quantiles of earn-

ings for participants. We use a new estimator for the effect of a non-ignorable treatment

on quantiles. The QTE estimator can be used to determine how an intervention affects

the distribution of any variable for individuals whose treatment status is changed by a

binary instrument. The estimator accommodates exogenous covariates and collapses to

conventional quantile regression when the treatment is exogenous. It minimizes a convex

piecewise-linear objective function similar to that for conventional quantile regression, and

can be computed as the solution to a linear programming problem after first-step estima-

tion of a nuisance function. The paper develops distribution theory for the case where

this first step is estimated nonparametrically. QTE estimates of the effect of training on

the quantiles of the earnings distribution suggest interesting and important differences in

program effects at different quantiles, and differences in distributional impact for men and

women. These differences are large enough to potentially change the welfare analysis of

the JTPA program.
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Appendix

Proof of Theorem 3.1:

This proof largely follows that of Theorem 1 in Buchinski and Hahn (1998). Consider,

Gn(T,K) ='^2
i
gi (j,K)

where

gi (r, k) = K{Ui) {9 \{eei - n- 1 ' 2 W[t)+ - e+] + (1 - 6) [{eei - n~ 1 ' 2 W(r)- - e«]},

and egi — Y{ — W-5g. The function Gn (r, 1{kv > 0} • kv ) is convex in r and it is minimized at rn =
\/n(Se - 5e)- Now, define r„(r,K) = E[Gn (T, k)}. Note that,

MLLUA = _n-V2 W. Kv{Ui) . {6 _ 1{£0i
_ n-l/2 W, < Q})

almost surely. By (iv) and Weierstrass domination,

r=0= -n- 1 /2 E[Wkv (U) (9 - l{ee < 0})] = 0,

dE[g(T,K
l/ ) ]

,
_„-l/2

dr

d2 E{g(r, «„)]
. 7^ [t=o= n- 1

E[ftolW:Dl>Do (0) WW'\D X > DQ ] P(D1 > £>„).
OTOT

Then,

rn (r, kv ) = -r'Jr + o(l),

where J = E[f£^ WiDl>Do (0) • WW|£>i > £>
] P{Pi > A))- Note that by (ii) and since both kv and

feo\w,Di_>Do(fy are bounded away from zero, J is non-singular. Define,

Cn(Ui) = n-x'2 {e - l{eei < 0}) • Wit

n

Un(K)=Y,K(Ui)-UUi),
i=l

and

?„([/;, «, r) = k(^) • {9 [(eei ~ n~ 1 '2 W{t)+ - e+] + (1 - 6) {(egi - n~ 1 '2 W[t)~ - e£] + r'U^)}.

Note that E\un (Kv )\
= 0, then

Gn (j,n) = r„(T,K1/ )-l-(G7l(r,K)-rn (r,K^))

= r„(T, k„) - T'u)n (K) + (G„(r, k) + r'w„(K)
- {rn (r, k„) + /£[«„(«„)]})

n

= rn (r, K„) - r'wn («0 + ^{PnC^i. K
'
T

)
~ -E'[/9n( t/

-
K^> T )]l

i=l

Lemma A.l :

w„(l{Ky > 0} £„) =n_1/2 ^Vi + oP (l) with £ty = and £|M|
2 < oo.

i=i
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Lemma A. 2 : Eti(ft,( t[..l^>0}-ic„,T)-%(C/,K„
1
T)]} = op (l).

Applying Lemma A. 2:

2
Gn (T, l{Ku > 0} • Ku) = o *Vt " r'wn(l{^ > 0} K„) + Op (l)

for a given r. Let rjn = J 1
cjn (l{K l/

> 0} • k„). Note that:

2 (
T ~ 7?n)'J ( T ~ 7ln) = g

T
' jT _ T

'W"(1{^ > 0} K„) + - 7^ J??n .

Define A„(r) = Gn (i~, l{«t/ > 0} K„) + r'o;n(l{K„ > 0} • K„), then X n (r) = ^ r'Jr + op (l). Since An (r) is

convex in r, applying Pollard's convexity lemma (Pollard (1991)):

sup K(t)-\t'Jt -0,

where T is any compact subset of E r+1
. Then,

G„(t, 1{k„ > 0} k„) = - (t - ryn)'J(r - ?
?J - - rfn Jiln + rn (r)

with supTgT |rn (r)| = Op(l)- So, by Lemma 3 in Buchinsky and Hahn (1998), we have that rn = ?7n + op (l).

Therefore, by Lemma A.l

n 1 / 2
(6 -6e)^N(O,J- lZJ- 1

),

where £ = E[ipip'].

PROOF OF Lemma A.l : To prove this lemma we use the assumption that kv is bounded away from

zero. This assumption is probably stronger than necessary but it allows us to ignore the trimming using

\{kv > 0}, making the asymptotics easier. Assumption (vi) implies that, K ((K/rij) 1 / 2 + K~ s
)
—>

almost surely for all j 6 {1, ..., J}. Therefore supt/eW \v — vq\ = op (l) (see, e.g., Newey (1997), Theorem

4). Since txq is bounded away from zero and one (by (iii)), then sup;yeW \ku — ku \

= op (l). Since /c„ is

bounded away from zero, with probability approaching one the trimming is not binding and we can ignore

it for the asymptotics.

ujn {Ku )
= -= y.m(Ui) 1 - 7—- + Rn

V n ~( V 1 - 7r0(A i )
7T (A i ) /

Let 7Tq be the population mean of Z for the /-cell of X and ? its sample counterpart.

^n = -F=V m(/7i) • i r -(TTi-TToi)V™^ V TTOi-TTt (l-7Ti)-(l-7r0i)/

(l-A,)-^, A, •(!-£*,)

tt'-tt' (i_^).(i_4)
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o, note that

111 fe V

l-D^-Vi, Dir {\-VM ) \

n' -9l

(1-Tf')- (1 -*{,),/

= 1 V^ ,m f& ~ Dii) @ii
~ vOii)

,
A, (%, -^Oi,) ^

< sup \V — Vq\
n'fe V *W (l-5?')-(l -^)J

Op(l).

Then, applying Lemma 4.3 in Newey and McFadden (1994),

I
-l

lX
l

n -TV

(i-A,)-^_ A.-(i-hh.) \
(1)

(1-^.(1-4) J

£ m([/)
(!-£>) i/ D-(l-i/

)

Therefore,

(7T (X))2 (l-Tro(X))'
A" m(C/)

(l-D)-Z D-(l-Z)
(7r (x)y (i-MX)Y

X

i(Kv )
lf.n / A-(l-gj) (l-A)-gj

" V^ V 1-T0(^i) TToCX)

+ ^Vi/(Xi)-{^-7r (XI)}+Op (l).

To prove,

J_V- an A A-(i-Pi) (l-A)-gj

notice that

V t=l

A • (l - vj) (l - A) Pt

l-Tro(Xi) " no(Xi)

J -.
ni

A • (1 - Zi) (1 - A) Zi
"7= >™ ^i 1

- 7T7T ~ lv , + Op(l)

Vn JT( V l-TTo(Ai) 7r (Ajj /

l - A,) Pjj

tt (A%)
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So, we just have to show that for each j € {1, ..., J}

( Di. -(1-Vi.) (l-A)-zv

i,=i

:^m(^). 1-
,

+0,(1
l-Tro(^) ttoP^.;

,(!)

This will be done by checking assumptions 6.1 to 6.6 in Newey (1994). Assumptions 6.1 and 6.2 follow

directly from the conditions of the theorem (see Newey~(1994), page 1373). Assumption 6.3 holds with

d — and ad = s. Assumption 6.4 holds for b(z) — and derivative equal to

m(U)

Assumptions 6.5 and 6.6 follow from: (i) rij K~ 2s —> 0; (ii) K5
/rij —> (almost surely). In particular, to

check Assumption 6.5 note that (vi) implies that s > 5/2, therefore K K~ s —> (note that Assumption

6.5 is also valid with d — 0). To check assumption 6.6 note that since

m(U)

then, there exists a sequence £K such that

D 1-D
i -MX) MX)

< 00,

E m(U)
D l

~£)-tKPK (U)
l-no(X) MX),

as K - oo (see Newey (1994), page 1380 last paragraph.) Now, applying the results in Newey (1994),

Di (1 - Vi) (1 - Di) Vi

) MXi)

1 V" (TT\ (-L
A-(l-^Oi) (1 ~ Di) VQ

Tn
x̂

mm \ l -
I -MX,) ~

l-A
) MXi)

MXi)

Z% - VQi) + op (l)

V 2=1 N

Di (1 - ZO (1 - A) ^
7To(A'i TTo(A'i)

+ Op(l)

and the result of the lemma holds.

Proof of Lemma A. 2 : Note that pn(Ui,l{Kv > 0}-Kv,T)-pn (Ui,K1/ ,T) = (1{k„ > 0}-K„-nv )-Sn (Ui,T),

where

Sn (Ui,r) = 9-[{e ei -n-"2 W'
l T)+-el}

+ (1-6). [(ew - n" 1 /2 W!t)~ - e,"] + r'UU),

so \Sn(Ui,r)\ < n- xl2 \{\e8i \
< n- l ' 2 \W[T \} \W[t\. Also,

E[n \Sn (Ui,r\} < n 1 ' 2 E[l{\ee \
< jT^W'tW \W'r\]

~Fu \
w(n-W \W'r\) - Feolw (-7i-V2 \W'r

= E
-1/2

\W't\ 2-E[feolw (0)-\W'T\
2}<™
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Then,

^pn (Ui,l{Kv > 0} -KV ,T) -pn (Ui,Kv ,T)
2= 1 i=l

1 -
< sup \kv -k„\ - ^n- \Sn (Ui,T)\ = op (l).

ueu i=l

Also, by cancellation of cross-product terms,

^2pn (Ui,Ku,r) -E\pn {U,Kv ,T)\

v»=l

= J2Ei(Pn(.U,^,r)f
1=1

< £[l{|efli |
< n-^l^/rl) • \W[t\

2
]

- 0,

and the result of the lemma holds.

Proof of Theorem 3.2:

Consistency of £ is easy to prove and we will focus on J. By (ii) and (hi), for < e* < eg:

/* 1 fv- W'6f>\
E[<Ph {6 )\W,D1 >D ] = i<P { h J

/y|w,J31>A,(v) dV

= ifi(z)feo\W,D 1 >D (h-z)dz

= fee \W,D1>Do (0) + h Z-<p(z)'

= fe e \W, Dl >Do {0) + O(h).

dz
dz

(A.1)

Therefore,

limiE[<ph (6e )\ W,D 1 > D ]
= U ]W

,Di >do (0)-
a—>U

By equation (A.l) and condition (iv) in Theorem 3.1, E[<ph (6o)\W,Di > Do] is eventually bounded (in

absolute value) by a constant. Since W is also bounded, we have that

lim E [kv <ph (6e) WW'} = hm E [E [<ph {6g )\W, D x > D ]
WW'\D X > D ] P(D l > D )

h—*0 h—>Q

= E [feelw,Dl>Do (0) WW'\D X > Do] P(D 1 > D ).

Also, since kv , </?(•) and W are bounded,

var(Ku -^h(6e)-WW') = 0(l/h2
).

Since n h? —> oo, then

^ 5>„(tfi) <p hii (6e ) WiW[ 1 E [U\w,Dl>Do (0) WW'ID, > D ]
P(D1 > D ). (A.2)

Notice that, since k„ is bounded away from zero (uniformly in U),

i X>„(0i) • <phi3e) WiWl - Kv {Ui) <phA (8e) W{W[

1
n

n ~ 1 " ~
< C sup \kv - kv \

- V" \\kv fh i(Se) WiW- = C • sup |re„ - k„\ - V"^ • fh,i( Se

i=l

ueu ueu i=l
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Under the assumptions of Theorem 3.1, sup,yeW \ku — kv \

—
> 0. In addition,

1 - ~ 1
n

I
-

i=l 2=1

* C-^-
h
±-

h
¥e-8e \\.\m\

i=l

< C • n 1 / 2
||?e -8 e \\- (n

1/^2 )- 1 = op (l).

As shown above,

' i=i

Therefore,

£ f>„(0i) ¥>m&) • WiW! = lY,Kv (Ui) <ph>l (6e ) WiWi + o„(l).

2= 1

By (i) and (iv), for some constant C

I Y,Kv {Ui) ipKi(6e) WiWi - Kv {Ui) <p hii (6 e ) WtW[

2=1

2=1

(A.3)

< C • n 1 /2
\\6e -Se\\- {n

l ' 2h2 )- 1 = op {\).

(A.4)

Combining equations (A. 2), (A.3) and (A.4), we get J A J.
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Table I

Means and Standard Deviations

Entire

Sample

Assign]nent

Treatment Control Difference

(t-stat.)

A. Men

Number of observations 5,102 3,399 1,703

Baseline Characteristics

Age 32.91

[9.46]

32.85

[9.46]

33.04

[9.45]

-.19

(-67)

High school or GED .69

[.45]

.69

[.45]

.69

[.45]

-.00

(-.12)

Married .35

[.47]

.36

[.47]

.34

[.46]

.02

(1.64)

Black .25

[.44]

.25

[.44]

.25

[.44]

.00

(.04)

Hispanic .10

[.30]

.10

[.30]

.09

[.29]

.01

(.70)

Worked less than 13

weeks in past year

.40

[.47]

.40

[.47]

.40

[.47]

.00

(.56)

Experimental Characteristics

Second follow-up .29

[.46]

.30

[.46]

.28

[.45]

.02

(1.14)

Training .42

[.49]

.62

[.48]

.01

[.11]

.61

(70.34)

Service strategy:

Classroom training .20

[.40]

.21

[.41]

.19

[.39]

.02

(1.73)

OJT/JSA .50

[.50]

.50

[.50]

.50

[.50]

.00

(.07)

Other .29

[.46]

.29

[.45]

.31

[.46]

-.02

(-1.57)

Outcome variable:

30 month earnings 19,147

[19,540]

19,520

[19,912]

18,404

[18,760]

1,116

(1.96)
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continued from previous page

Entire

Assigmnent

Treatment Control Difference

Sample (t-stat.)

B. Women

Number of observations 6,102 4,088 2,014

Baseline Characteristics

Age 33.33

[9.78]

33.33

[9.77]

33.35

[9.81]

-.02

(-.09)

High school or GED .72

[.43]

.73

[.43]

.70

[.44]

.03

(2.01)

Married .22

[.40]

.22

[.40]

.21

[.39]

.01

(1.55)

Black .26

[.44]

.27

[.44]

.26

[.44]

.01

(.95)

Hispanic .12

[.32]

.12

[.32]

.12

[.33]

-.00

(-.89)

Worked less than 13

weeks in past year

.52

[.47]

.52

[.47]

.52

[.47]

-.00

(-.08)

AFDC .31

[.46]

.30

[.46]

.31

[.46]

-.01

(-1.03)

Experimental Characteristics

Second follow-up .26

[.44]

.26

[.44]

.25

[.43]

.01

(.45)

Training .45

[.50]

.66

[.47]

.02

[.13]

.64

(80.24)

Service strategy:

Classroom training .38

[.49]

.38

[.49]

.39

[.49]

-.01

(-37)

OJT/JSA .37

[.48]

.37

[.48]

.38

[.49]

-.01

(-.85)

Other .24

[.43]

.25

[.43]

.23

[.42]

.02

(1.40)

Outcome variable:

30 month earnings 13,029

[13,415]

13,439

[13,614]

12,197

[12,964]

1,242

(3.46)

Note: The first three columns of the table report means and standard deviations (in brackets)

for the National JTPA Study 30-month earnings sample. The last column shows the difference in

means by assignment status and reports the t-statistic (in parenthesis) for the null hypothesis of

equality in means.
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Table III

Quantile Regression and OLS Estimates

Dependent variable: 30-month earnings

OLS Quantile

0.15 0.25 0.50 0.75 0.85

A. Men

Training 3,754

(536)

1,187

(205)

2,510

(356)

4,420

(651)

4,678

(937)

4,806

(1,055)

% Impact of Training 21.20 135.56 75.20 34.50 17.24 13.43

High school or GED 4,015

(571)

339

(186)

1,280

(305)

3,665

(618)

6,045

(1,029)

6,224

(1,170)

Black -2,354

(626)

-134

(194)

-500

(324)

-2,084

(684)

-3,576

(1087)

-3,609

(1,331)

Hispanic 251

(883)

91

(315)

278

(512)

925

(1,066)

-877

(1,769)

-85

(2,047)

Married 6,546

(629)

587

(222)

1,964

(427)

7,113

(839)

10,073

(1,046)

11,062

(1,093)

Worked less than 13

weeks in past year

-6,582

(566)

-1,090

(190)

-3,097

(339)

-7,610

(665)

-9,834

(1,000)

-9,951

(1,099)

Constant 9,811

(1,541)

-216

(468)

365

(765)

6,110

(1,403)

14,874

(2,134)

21,527

(3,896)

B. Women

Training 2,215

(334)

367

(105)

1,013

(170)

2,707

(425)

2,729

(578)

2,058

(657)

% Impact of Training 18.46 60.76 44.42 32.25 14.47 8.09

High school or GED 3,442

(341)

166

(99)

681

(156)

2,514

(396)

5,778

(606)

6,373

(762)

Black -544

(397)

22

(115)

-60

(188)

-129

(451)

-866

(679)

-1,446

(869)

Hispanic -1,151

(488)

-31

(130)

-222

(194)

-995

(546)

-1,620

(911)

-1,503

(992)

Married -667

(436)

-213

(127)

-392

(209)

-758

(522)

-1,048

(785)

-902

(970)

Worked less than 13

weeks in past year

-5,313

(370)

-1,050

(137)

-3,240

(289)

-6,872

(522)

-7,670

(672)

-6,470

(787)

AFDC -3,009

(378)

-398

(107)

-1,047

(174)

-3,389

(468)

-4,334

(737)

-3,875

(834)

. Constant 10,361

(815)

649

(255)

2,633

(490)

8,417

(966)

16,498

(1,554)

20,689

(1,232)

Note: The table reports OLS and quantile regression estimates of the effect of training on earnings.

The specification used also includes indicators for service strategy recommended, age group and second
follow-up survey. Robust standard errors in parenthesis.
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Table IV
Quantile Treatment Effects and 2SLS Estimates

Dependent variable: 30-month earnings

2SLS Quantile

0.15 0.25 0.50 0.75 0.85

A. Men

Training

% Impact of Training

High school or GED

Black

Hispanic

Married

Worked less than 13

weeks in past year

Constant

1,593
—vzt 702 1,544 3,131 3,378

(895) (475) (670) (1,073) (1,376) (1,811)

8.55 5.19 11.99 9.64 10.69 9.02

4,075 714 1,752 4,024 5,392 5,954

(573) (429) (644) (940) (1,441) (1,783)

-2,349 -171 -377 -2,656 -4,182 -3,523

(625) (439) (626) (1,136) (1,587) (1,867)

335 328 1,476 1,499 379 1,023

(888) (757) (1,128) (1,390) (2,294) (2,427)

6,647 1,564 3,190 7,683 9,509 10,185

(627) (596) (865) (1,202) (1,430) (1,525)

-6,575 -1,932 -4,195 -7,009 -9,289 -9,078

(567) (442) (664) (1,040) (1,420) (1,596)

10,641 -134 1,049 7,689 14,901 22,412

(1,569) (1,116) (1,655) (2,361) (3,292) (7,655)

B. Women

Training

% Impact of Training

High school or GED

Black

Hispanic

Married

Worked less than 13

weeks in past year

AFDC

Constant

1,780

(532)

324

(175)

680

(282)

1,742

(645)

1,984

(945)

1,900

(997)

14.60 35.47 23.14 18.37 10.06 7.39

3,470

(342)

262

(178)

768

(274)

2,955

(643)

5,518

(930)

5,905

(1026)

-554

(397) (204)

-123

(318)

-401

(724)

-1,423

(949)

-2,119

(1,196)

-1,145

(488)

-73

(217)

-138

(315)

-1,256

(854)

-1,762

(1,188)

-1,707

(1,172)

-652

(437)

-233

(221)

-532

(352)

-796

(846)

38

(1,069)

-109

(1,147)

-5,329

(370)

-1,320

(254)

-3,516

(430)

-6,524

(781)

-6,608

(931)

-5,698

(969)

-2,997

(378)

-406

(189)

-1,240

(301)

-3,298

(743)

-3,790

(1,014)

-2,888

(1,083)

10,538

(828)

984

(547)

3,541

(837)

9,928

(1,696)

15,345

(2,387)

20,520

(1,687)

Note: The table reports 2SLS and QTE estimates of the effect of training on earnings. Assignment
status is used as an instrument for training. The specification used also includes indicators for service

strategy recommended, age group and second follow-up survey. Robust standard errors in parenthesis.
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