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Abstract

Econometric applications of kernel estimators are proliferating, suggesting the need for

convenient variance estimates and conditions for asymptotic normality. This paper develops

a general "delta method" variance estimator for functionals of kernel estimators. Also,

regularity conditions for asymptotic normality are given, along with a guide to verifying

them for particular estimators. The general results are applied to partial means, which are

averages of kernel estimators over some of their arguments with other arguments held fixed.

Partial means have econometric applications, such as consumer surplus estimation, and are

useful for estimation of additive nonparametric models.

Keywords: Kernel estimation, partial means, standard errors, delta method, functional

estimation.



1. Introduction

There are a growing number of applications where estimators use the kernel method in

their construction, i.e. where functionals of kernel estimators are involved. Examples

include average derivative estimation (Hardle and Stoker, 1989, and Powell, Stock, and

Stoker, 1989), nonparametric policy analysis (Stock, 1989), consumer surplus estimation

(Hausman and Newey, 1992), and others that are the topic of current research. An

important example in this paper is a partial mean, which is an average of a kernel

regression estimator over some components, holding others fixed. The growth of kernel

applications suggests the need for a general variance estimator, that applies to many

cases, including partial means. This paper presents one such estimator. Also, the paper

gives general results on asymptotic normality of functionals of kernel estimators.

Partial means control for covariates by averaging over them. They are related to

additive nonparametric models and have important uses in economics, as further discussed

below. It is shown here that their convergence rate is determined by the number of

components that are averaged out, being faster the more components that are averaged

over.

The variance estimator is based on differentiating the functional with respect to the

contribution of each observation to the kernel. A more common method is to calculate the

asymptotic variance formula and then "plug-in" consistent estimators. This method can be

quite difficult when the asymptotic formula is complicated, as often seems to be the

case. In contrast, the approach described here only requires knowing the form of the

functional and kernel. Also, it gives consistent standard errors even for fixed

bandwidths (when the estimator is centered at its limit), unlike the more common

approach. In this way it is like the Huber (1967) asymptotic variance for m-estimators.

Also, it is a generalization of the "delta method" for functions of sample means.

An alternative approach to variance estimation, or confidence intervals, is the

bootstrap. The bootstrap may give consistent confidence intervals (e.g. by the
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percentile method) for the same types of functionals considered here, although this does

not appear to be known. In any case, variance estimates are useful for bootstrap

improvements to the asymptotic distribution, as considered in Hall (1992).

The variance formula given here has antecedents in the literature. For a kernel

density at a point it is equal to the sample variance of the kernel observations, as

recently considered by Hall (1992). For a kernel regression at a point, a related

estimator was proposed by Bierens (1987). Also, the standard errors for average

derivatives in Hardle and Stoker (1989) and Powell, Stock, and Stoker (1989) are equal to

this estimator when the kernel is symmetric. New cases included here are partial means

and estimators that depend (possibly) nonlinearly on all of the density or regression

function, and not just on its value at sample points.

Section 2 sets up m-estimators that depend on kernel densities or regressions, and

gives examples. Section 3 gives the standard errors, i.e. the asymptotic variance

estimator. Section 4 describes partial means and their estimators, and associated

asymptotic theory. Section 5 gives some general lemmas that are useful for the

asymptotic theory of partial means, and more generally for other nonlinear functionals of

kernel estimators. The proofs are collected in Appendix A, and Appendix B contains some

technical lemmas.

2. The Estimators

The estimators considered in this paper are two step estimators where the first step

is a vector of kernel estimators. To describe the first step, let y be a r x 1

vector of variables, x a k x 1 vector of continuously distributed variables, and

denote the product of the density fn(x) of x with E[y|x] as
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(2.1) h
Q
(x) = E[y|x]f (x).

Let X(u) denote a kernel function satisfying TX(u)du = 1 and other conditions given

in Section 4, where u is k x 1. Let z., (i = 1 n), denote data observations,

that include observations y. and x. on y and x. Then for a bandwidth o- > and
l l

-k
K (u) = a- K(u/o-), a kernel estimator of h_. is

o" u

(2.2) h(x) = n ^"y.K (x-x.).

This estimator is the first step considered here.

A second step allowed for in this paper is an m-estimator that depends on the

estimated function h. To describe such an estimator, let |3 denote a vector of

parameters, with true value ($ , and m(z,/3,h) a vector of functions that depend on the

observation, parameter, and the function h. Here m(z,j3,h) is allowed to depend on the

entire function h, and not just its value at observed points; see below for examples.

Suppose that E[m(z,£ ,h )] = 0. A second step estimator |3 that solves a corresponding

sample equation is

(2.3) n"
1

£.
n

i
m(z.,/3,h) = 0.

*n=l i

This is a two-step m-estimator where the first step is the kernel estimator described

above.

This estimator includes as special cases functions of kernel estimators evaluated

at points, e.g. a kernel density estimator at a point. Some other interesting examples

are as follows:

Partial Means: An example that is (apparently) new is an average of a nonparametric

regression over some variables holding others fixed. Let q denote a random variable

and gn (x) = E[q|x]. Partition x = (x ,x ) and let x„ be a variable that is included
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in z and has the same dimension as x„, and x be some fixed value for x . Let
& L J.

x(x ) be some weight function, possibly associated with fixed "trimming" that keeps a

denominator bounded away from zero. A partial mean is

(2.3a) /3
Q

= E[T(x
2)g

(x
r
x
2

)].

This object is an average over some conditioning variables holding others fixed. It can

be estimated by substituting a kernel estimator for g and a sample average for the

expectation. Let y = (l,q), g(x) = h (x)/h (x) = h (x)/f(x), for the kernel density

estimator f(x) = h,(x), and x. = (x,,x„.). Then the estimator is
1 1 1 2i

(2.4) |3 = n ^TlXylilx.).

This estimator is a special case of equation (2.3) with m(z,0,h) =

t(x )h (x ,x„)/h (x ,x„) - /3. It shows how explicit estimators can be included as

special cases of equation (2.3). Further discussion is given in Section 4.

Differential Equation Solution: An estimator with economic applications is one that

solves a differential equation depending on a nonparametric regression. To describe this

estimator, let y = (l,q) and suppose x is two-dimensional (i.e. k = 2), with x =

(x ,x )'. Let x be some fixed value for x and consider two possible values for

x , denoted by p and p , with p < p . The estimator is given by

(2.5) = S(p°), dS(p)/dp = -g(x -S(p),p), Sip
1

) = 0,

for g(x) = h„(x)/f(x). It is a special case where the m(z,£,h) of equation (2.3) is

the solution of the differential equation minus £. This example shows one way that

m(z,/3,h) can be allowed to depend on the entire function h. The economic

interpretation of £ is a nonparametric estimate of the cost of a change of price p,

of a commodity q, from p to p , for an individual with income x and demand
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function gn
(x) = E[q|x]. This example is analyzed in Hausman and Newey (1992), using

results developed here.

Inverse Density Weighted Least Squares: An estimator that is useful for estimating

the semiparametric generalized regression model E[y|x] = t(x'5), where t(«) is an

unknown transformation, is a weighted least squares estimator, that can be described as

follows. Let t(x) be a density of an elliptically symmetric distribution (i.e. t(x)

is a density that depends only on (x-fi)'E(x-fi) for some /j and Z), that has bounded

support. The estimator solves

(2.6) minimizes Y.
n
,f(.x.)~

l
T(x.)lq.-x'.p]

2
.

^i=l l ill

This estimator has the form given in equation (2.3), with m(z,/3,h) = h(x) T(x)x[q-x'£].

The weighting by the inverse density leads to |3 converging to the least squares

projection of E[q|x] on x under the density t(x), which is consistent for scaled

coefficients of a generalized regression model, as discussed in Ruud (1986) and Li and

Duan (1991). This estimator is analyzed in Newey and Ruud (1991), using results

developed here.

The results of this paper apply to each of these examples, as discussed below. They will

also apply to other estimators, including those that minimize a quadratic form in a

sample average depending on £ and h, or minimize a sample average, such as

quasi-maximum likelihood estimators that depend on kernel estimators.

3. The Asymptotic Variance Estimator

To form approximate confidence intervals and test statistics it is important to have

consistent standard errors. To motivate the form of the asymptotic variance estimator,
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it is helpful to briefly sketch the asymptotic distribution theory. Expanding the

left-hand side of equation (2.3) around and solving for - gives

(3.1) -
Q

= -[n"
1
j;."

i
am(z.J,n)/a0]"

1m
nOo

) > m
n
(|S) = I.^mfz.^.hJ/n,

where is a mean value. By the uniform law of large numbers discussed in Section 4,

n Y,_
1

9m(z.,£,h)/3/3 will converge in probability to

M = E[am(z,3 ,h )/80].

so that the asymptotic distribution of will be determined by m (0n ). In Section 4

conditions will be given for existence of a a such that

(3.1a) vno-°m (0_) -±> N(0,V).
n

The magnitude of a will be determined by the form of E[m(z,0 ,h)] as a function of

h, with a being smaller the more dimensions being integrated over in E[m(z,0 ,h)].

By the Slutzky theorem the asymptotic distribution for will be

(3.1b) vn<r
a
(0 -

) -U N(0,M
_1
VM-1, ).

A consistent asymptotic variance estimator can be constructed by substituting

estimates for true values in the formula M VM ' . It is easy to construct an estimator

of M, as

(3.1c) M = n"
1

X;."
i
am(z.,0,n)/a0.

Finding a consistent estimator of V is more difficult, because of the need to account

for the presence of h in m (0n )- One common approach to this problem is to calculate

the asymptotic variance, and then form an estimator by substituting estimates for unknown

functions, such as sample averages for expectations. This approach can be difficult when
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the asymptotic variance is very complicated. Also, it may be sensitive to the bandwidth

parameter, because the variance formula is only valid in the limit as tr —> 0.

The asymptotic variance estimator here is constructed by estimating the influence of

each observation in h on T. ,m(z.,S,h)/n. Let C denote a scalar number and let
^i=l 1

(3.2) 5. = fl[n"
1

t
j
;i

in(z
J
,|,fi + O^' ~ x.))]/aci

th
The interpretation of 5. is that it estimates the first-order effect of the i

observation in h on £. m(z.,/3 ,h)/n. In this sense it is an "influence function"

estimator. The variance can be estimated by including this term with m(z.,P,h) in a

sample variance, as in

(3.3) V = £."#.#'. /n, #. = m(z.,j§,h) + 8. - £.
n
.5yn.n=li l l l l J=l J

An asymptotic variance estimator for /3 can then be constructed by combining V with a

Jacobian estimator in the usual way, as in

(3.4) Var(p) = M
_1
VM

_1
'

, M = n
-1
£." Bmlz.,(i&)/ap.

In Section 5 conditions will be given that are sufficient for cr var(£) —^-> M VM '

.

Consequently, inference procedures based on /3 - £ being normally distributed with mean

and variance Var(/3)/n will be asymptotically valid. For example, $ . ±

- ~ 1/2
1.96[Var(|3)../n] will be an asymptotic 95 percent confidence interval. It is

interesting to note that the form of Var(p) does not depend on the convergence rate for

|3 (i.e. on a), but that its large sample behavior will.

This asymptotic variance estimator accounts for the presence of h by including the

terms 5. in 0.. These terms are straightforward to compute, requiring only knowledge

of the form of m(z,/3,h) and the kernel. In particular, 5. can be calculated by

analytic differentiation with respect to the scalar C,. Alternatively, if the analytic

formula is very hard to construct, 5. can be calculated as the numerical derivative of
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y.
n
,m(z.J,h + <y.K (• - x.))/n with respect to <.

*-j=l j 1 cr 1

Here V = Y. ,0.fi'./n is a "delta-method" variance for kernel estimators. It isLi=lri 1

exactly analogous to delta method variances for parametric estimators. For example, if

h was a sample mean rather than a kernel estimator, say h =
Y>.

y./n, then the analog

of 5. is a{y.
n
,m(z.,£,h + C,y.)/n}/dC, = in, y., where in, = n~

1
y'.
n

i
Sa(z.,P,h)/5h. Thus,

i j=l J i hi h ^j=l j

the analogous influence function estimator would be !fi. = m(z.,£,h) + m.y. - (£. m,y./n)

= a(z.,0,h) + m, (y.-y), the usual delta-method formula for the presence of a sample

average in an m-estimator. Another feature of Var(/3) is that it does not rely on the

bandwidth shrinking to zero for its validity. If the bandwidth were held fixed it would

be a consistent estimator of the asymptotic variance of Vn(fi - (3 ), where |3 is the

limit of |3 when the bandwidth is held fixed at <r.

The terms m(z.,£,h) and £. S./n are asymptotically negligible in \j>. when the

convergence rate of £ is slower than 1/Vn. They are retained because they are easy to

compute and could conceivably improve the asymptotic approximation. Also, for analogous

reasons the formula for 5 . does not distinguish between elements of h that affect the

asymptotic distribution and those that do not (e.g. between pointwise density levels and

derivatives, where the slower convergence rate of the derivative will dominate).

Some examples may serve to illustrate the form of this estimator. The simplest

example is a density estimator |3 = f(x) at some x, where the asymptotic variance

estimator is Var(p) = Y. ,K (x-x.) /n - [Y . ,K (x-x.)/n] , the sample variance of
^i=l <r i ^j=l cr j

K (x-x.). This estimator was recently considered by Hall (1992). Other examples are:

Partial Means: Here 5. can be obtained by explicit differentiation of

n"
1

X
n

i
T(x_.)[h (x.) + <q-K (x -x.)]/[f(x.) + <K (x.-x.)], as

^j=l 2j 2 j ^M i o- j i j <r j l

5. = n tV^.lftx.) X
[q. - f(x.) ^(xJK (x.-x.).

l ^j=l 2j j
M

i j 2 j cr j i

The asymptotic variance estimator can then be formed as
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(3.5) Var(£) = E^i^/n, Ifi. = x(x_.)h_(x.)/f(x.) - + 5. - J.^Syn.^1=1 l l 2i 2 l l l J=l J

Differential Equation Solution: It is possible to derive an analytical expression for

5., but this expression is quite complicated and difficult to evaluate. An alternative

approach that is used by Hausman and Newey (1992), is to numerically differentiate the

numerical solution to dS(p)/dp = -[h (p,x -S(p)) + <q.K ((p,x -S(p))-x.)]/[f(p,x -S(p))

+ £K ((p,x -S(p))-x.)] with respect to £ to form 5.. This approach is quite feasible

using existing fast and accurate numerical algorithms for ordinary differential equations.

Inverse Density Weighted Least Squares: Let u. = y.-x'.p. The variance estimator is

(3.5a) Var(0) = fiT^ifV.
11
-^'. jfif"

1
, M = n"V.

n
i
f(x.)"

1
T(x.)x.x'.

*-i=l l i ^i=l l ill

#. = t(x.)x.u. + 5. - 5\
n
,8., 8- = -n"

1
y
n

i
T(x.)f(x.)"

2
x.u.K (x.-x.).

i ill i ^J=l J i ^J=l J J J J c J i

For partial means, asymptotic normality and consistency of the variance estimator are

shown in Section 4, using the Lemmas of Section 5. Corresponding theoretical results for

the other examples are given elsewhere.

4. Partial Means

Partial means have a number of applications in economics. For example, they can be

used to approximate the solution to the differential equation described in Section 2.

Dropping the S(p) term from inside g (x -S(p),p) leads to an approximation as

P„ = g (x ,p)dp = E[(p -p )g (x ,x )], where x is distributed uniformly on

[p ,p ]. It is known that this approximation is quite good in many economic examples,

where S(p) is a small proportion of x (see Willig, 1978). This is a partial mean as

described in Section 2. It can be estimated by
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(4.1) = (p
1

-p°)I
i

"

1
g(x

1
,p.)/n,

where p. is drawn from a uniform distribution on [p ,p ]. This is a simulation

estimator similar in spirit to that of Lerman and Manski (1981).

Partial means are also of interest from a purely statistical point of view, as

dimension attenuation devices. Like E[q|x ], the partial mean is a function of a

smaller dimensional argument. Consequently, partial mean estimators will converge faster

than estimators of gn (x). However, unlike E[q|x ], a partial mean controls for the

covariates x„, in an average way.

The way in which partial means control for covariates is illustrated by their

relationship to additive nonparametric models. Suppose that the conditional expectation

takes an additive form, E[q|x] = g (x ) + g (x ), and that E[x(x„)] = 1. Then

(4 2) E[T(x
2
.)g (Xl,x2

.)] = g10
( Xl ) + E[T(x

2
.)g

20
(x
2
.)].

Thus, as a function of x , the partial mean estimates the corresponding component of an

additive model, up to a constant.

In comparison with other additive model estimators, partial means are easier to

compute but may be less asymptotically efficient. Unlike alternating conditional

expectation estimator for additive models (ACE, Breiman and Friedman, 1985), the partial

mean is an explicit functional, so the kernel estimator will not require iteration.

However, because the partial mean does not impose additivity it may be a less efficient

estimator. Also, the partial mean depends on the full conditional expectation, so the

curse of dimensionality may result in slower convergence to the limiting distribution.

The partial mean and ACE are different statistical objects when no restrictions are

placed on E[q|x]. The partial mean is given in equation (2.3a). The ACE object is the

mean-square projection of E[q|x] on the set of functions of the form gJx ) + g„(x ).

These estimators summarize different features of E[q|x]. If one is interested in
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of 5. is 8<£." m(z.,0,fi + ZyJ/xiY/dC, = nyr., where m
h
= n *£ " 3a(z.,0,h)/ah. Thus,

the analogous influence function estimator would be iji. = m(z.,/3,h) + m,y. - (.Y . ,m,y./n)6
1 1 tr 1 ^j=l h j

= a(z.,/3,h) + m, (y.-y), the usual delta-method formula for the presence of a sample

average in an m-estimator. Another feature of Var(/3) is that it does not rely on the

bandwidth shrinking to zero for its validity. If the bandwidth were held fixed it would

be a consistent estimator of the asymptotic variance of Vn{@ - |3 ), where £ is the
cr cr

limit of p when the bandwidth is held fixed at o\

The terms m(z.,p,h) and Y,. 8./n are asymptotically negligible in $. when the

convergence rate of j§ is slower than 1/Vn. They are retained because they are easy to

compute and could conceivably improve the asymptotic approximation. Also, for analogous

reasons the formula for 5. does not distinguish between elements of h that affect the

asymptotic distribution and those that do not (e.g. between pointwise density levels and

derivatives, where the slower convergence rate of the derivative will dominate).

Some examples may serve to illustrate the form of this estimator. The simplest

example is a density estimator £ = f(x) at some x, where the asymptotic variance

estimator is Var(p) = Y. ,K (x-x.) /n - [Y . ,K (x-x.)/n] , the sample variance of
^i=l <r l ^j=l cr j

K (x-x.). This estimator was recently considered by Hall [3]. Other examples are:

Partial Means: Here 5. can be obtained by explicit differentiation of

n'tStL.UhJx.) + Cq.K (x.-x.)]/[f(x.) + <K (x.-x.)], as
^j=l 2j 2 j ^M i cr j l j cr j i

5. = n"
1

I.
n

1
T(3L.)f(x.r

1
[q. - f(x.)

_1
h (x.)]K (x.-x.).

l ^j=l 2j j
M

i j 2 j cr j l

The asymptotic variance estimator can then be formed as

Var(£) = £.
n
.0
2
/n, $. = T(x_.)h„(x.)/f(x.) - p + 8. - I.

n
,5./n.

^1=1 l l 2i 2 l l l ^j=l j
(10)

Differential Equation Solution: It is possible to derive an analytical expression for

5., but this expression is quite complicated and difficult to evaluate. An alternative
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normal. Let the u argument of X(u) be partitioned conformably with x and fn(x9 )

denote the true density of x„. The asymptotic variance of the partial mean estimator

will be

(4.3) V = [X{XX(u
1
,u
2
)du

2
>

2
du

1
].J

>

f (x
1
,t)"

1
T(t)

2
f (t)

2
Var(q|x=(x

1
,t))dt.

4 4
Theorem. 4.1: Suppose that i) E[\q\ ] < m, E[\q\ \x]fJx) and fQ(x) are bounded;

ii) Assumptions H and K are satisfied for d s s; Hi) x(x ) is bounded and zero except

on a compact set where fJx,x) is bounded away from zero; iv) x(x ) and f (x )

~ 2
are continuous a.e., frfx2) is bounded, E[q\x] and E[q \x] are continuous, and

4 Pk-k 9
for some c > 0, fsup ^{1+Eiq \x=(xfr\,x

2)]}f(xfx\,x2
)dx

2
< «; v) n<r i/ln(n) ->

co and no- i

+*S —> 0. Then for $ in equation (2,4), Vntr
k

i
/Z

(fi - PQ
) -^ N(0,V).

If, in addition, ncr l —> oo, then cr lV —^ V.

The conditions here embody "undersmoothing," meaning that the bias goes to zero faster

than the variance. Undersmoothing is reflected in the conclusion, where the limiting

distribution is centered at zero, rather than at a bias term.

An improved convergence rate for partial means over pointwise estimators is embodied

k /2
in the normalizing factor v'ntT i for the asymptotic distribution. The rate implied by

k -1/2
the asymptotic distribution result is (no- l) while the corresponding rate from the

k -1/2
usual asymptotic normality result for pointwise estimators is (n<r ) , which

converges to zero slower by cr going to zero. Furthermore, the rate for partial means

is exactly the nonparametric pointwise rate when the dimension is k . Thus, the more

components are averaged out, the smaller will be k , and hence the faster will be the

convergence rate.

One important feature of this result is hypothesis iii), that amounts to a "fixed

trimming" condition, where the density of x is bounded away from zero where t is

nonzero. This condition is theoretically convenient because it avoids the "denominator

problem." It is used here because it is not restrictive in many cases (e.g. pointwise
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estimation) and because the resulting theory roughly corresponds to trimming based on a

large auxiliary sample, which is often available. It might be possible to modify the

results to allow trimming to depend on the sample size, e.g. as in Robinson (1988), but

this modification would be very complicated.

Estimators will be v'n-consistent when they are full means, i.e. are averages over

all components. There are many interesting examples of such estimators, such as the

policy analysis estimator of Stock (1989). The general conditions given here are

slightly different for that case, so it is helpful to describe the estimator and result

in a slightly different way. Suppose j3 = E[a (z)g (x)], where g (x) = E[q|x], an (z)

is some function of the data, and x is a continuously distributed variable that may be

different than x. A kernel estimator of (3 , along with the associated asymptotic

variance estimator from equation (2.6), for g(x) = h (x)/h (x) as above, is

(4.4) p = E
i

"

1
a (z

i
)i(x.)/n, Var(p) = I^/n, 0. = a (z.)g(x.) - + 6. - 1^,/n,

5. = E.V^zJftx.rHq.-gtxJlK (x.-x.)/n.
l ^j=l Oj j

M
i
&

j cr j l

The asymptotic variance of this estimator will be

(4.5) V = El**]. ^ = a (z.)g (x.) -
Q

+ E[a <z) |x]| ~
=x
yx.fT^x.Hq.-g^x.)].

i

4 4Theorem 4.2: Suppose that i) E[\q\ ] < m, E[\q\ \x]f (x) and fQ(x) are bounded,

2
and E[\mJz)\ ] < oo; ii) Assumptions K and H are satisfied for d £ s; Hi) a.Jz)

is zero if x is not in a compact set, and fQ(x) is bounded away from zero on that

compact set; iv) E[aJz)\x], and fQ(x) are continuous a.e. and bounded for x

2k 2 2s
inside the compact set of Hi); v) no- /ln(n) —> oo and n<r —» 0. Then

Vn(p-P )-Y,
i

"
1
ili

i
/Vn -^ and VnCp - $Q

) -i> N(0, V). If, in addition, n<r
3k

-> oo, then

Y
n
M-\l>.\\

2
/n -U and v -L+ v.

This result gives asymptotic normality for a trimmed version of Stock's (1989) estimator,
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as well as being a general result on the asymptotic normality of sample moments that are

random linear functions of kernel regressions.

5. Useful Lemmas

Several intermediate results of a familiar type are useful in developing asymptotic

theory for the m-estimator j3 described in Section 2. Uniform convergence results are

useful for showing consistency of |3 and of the Jacobian term in the expansion of (3.1).

Asymptotic normality of £ will follow from v'ncr m (£_) —> N(0,V). Also, <r v -£-» V

is very important for consistent estimation of the asymptotic variance. In addition,

when a = 0, corresponding to v'n-consistency of p, it can be shown that there is i//.

such that v'nm (8„) = Y. ,\b./Vn + o (1) and Y. , 110. -i//. II /n —^-> 0. Primitive conditions
n h=n p ^i=l l l

for each of these results are given in this Section. Examples of how these results can

be used to derive results for particular functionals are given in the proofs of Theorems

4.1 and 4.2, and in the proofs of results in Hausman and Newey (1992), Matzkin and Newey

(1992), and Newey and Ruud (1991).

A number of additional regularity conditions are used in the analysis to follow.

The first regularity conditions imposes some moment assumptions. For a matrix B let

1/2
IIBII = [tr(B'B)] , where tr(») denotes the trace of a square matrix.

Assumption Y: For p £ 4, E[llyll
P

] < oo, E[llyll
P
|x]f (x) is bounded, E[llm(z,/3 ,h )ll

2
] <

This condition, like Assumptions K and H, is a standard type of condition. The fourth

moment condition for y is useful for obtaining optimal convergence rates for h.

For the asymptotic theory, it useful to impose smoothness conditions on m(z,£,h)

as a function of h, in terms of a metric on the set of possible functions. Here, the

metric is the supremum norm on the function and its derivatives, a Sobolev norm. The

14



supremum norm is quite strong, but uniform convergence rates for a kernel estimator and

its derivatives are either well known or straightforward to derive (see Appendix B), and

are not very much slower than L convergence rates (there is only an additional "log

term" in the uniform rates). Consequently, conditions for remainder terms to go to zero

fast enough to achieve asymptotic normality will not be much stronger with the supremum

norm than they will be with L norms. Furthermore, it is quite easy to show smoothness

in supremum norm for many functionals.

To define the norm, for a matrix of functions B(x) let 3 B(x)/5x^ denote any

vector consisting of all distinct j order partial derivatives of all elements of

B(x). Also, let X denote a set that is contained in the support of x, and for any

nonnegative integer j let

IIBII.smax, .sup rv.\\d
l
B{x)/dx'\\,

where IIBII . is taken equal to infinity if the derivatives do not exist for some x e X.

This is a Sobolev supremum norm of order j.

One useful type of result is uniform convergence in probability, as in the

conclusion of the following result. Let m (£) = E[m(z,/3,hn )].

Lemma 5.1: Suppose that i) m(z,fi,h
n
) is continuous at each /3 e S with probability

one, where £ is compact, and E[sup
CR
\\m(z,p,h

f)
)\\] < oo; ii) Assumptions K, H, and Y

are satisfied with d £ A+l, ln(n)/(ncr ) —> and o- —» 0, and there is biz) and

c > such that E[b(z)] < oo, and for all /3 e £ and llh-h II < c,

\\m(z,P,h)-m(z,p,h )\\ * b(z)(\\h-h \\ f . Then E[m(z,&,h )] is continuous on £ and

(5.1) sup \\n~
l
£.

i

"
1
m(z,p,h) - E[m(z,p,h

Q
)]\\ -^ 0.

The uniform convergence conclusion of equation (5.1) is a well known condition for

consistency of the solution to equation (2.3). Also, equation (5.1) is useful in showing

—1 n a
consistency of an estimator that maximizes an objective function n £. m(z.,|3,h),

- 15 -



where m is a scalar, and is useful for showing consistency of the Jacobian term

~*1 yi *

n £._ 3m(z.,/3,h)/5(3, by letting the m in the statement of the Lemma be each column of

of the derivative.

Asymptotic normality of v'nV m (0 ) is essential for asymptotic normality of |3.

This result has two components, which are a linearization around the true h and

asymptotic normality of the linearization. It is useful to state these two components

separately.

Asymptotic normality of the linearization will follow from asymptotic normality of

v'nV m (/3 ) when m(z,j3 ,h) is a linear functional that does not depend on z, say

m(h) = m(z,Pn ,h). The rate of convergence (i.e. the magnitude of a) will depend on the

nature of m(h). Here the results are grouped into two main ones, the first involving

v^n-consistency. For the moment, assume that m(h) is a scalar

Lemma 5.2: If m(h) = Sv(x)' h(x)dx where v(x) is zero outside a compact set,

2 2
continuous almost everywhere, there is c > such that E[sup II v(x+u) II £711 y II |x]] <

oo, and vnc-
S —> 0, then for 5. = v(x.)'y., Vn[m(h) - m(h )] = £."/S.-Ef5.J>/vn +

o (1).
P

Cases where convergence is slower than 1/Vn are somewhat more complicated. The

following assumption is useful for these cases. For the moment let £ be a nonnegative

integer and let 9
Jh(x)/dxJ be ordered so that 3 [y.K (x-x.)]/3x = y®[3T< (x-x.)/5x ].J

i cr i
J

<r l

- 16 -



Assumption 5.1: Suppose that k = k + k , there is a matrix of functions w(t) with

k k
domain R z, £ k„ < k, a vector of functions x (t) in R 1, such that i) m(h)

= ,TGj(t)[dTi(x(t))/ax ]dt for x(t) = (x (t)'.t')'; ii) w(t) is bounded and continuous

almost everywhere and zero outside a compact set 3", and x (t) is continuously

differentiable with bounded partial derivatives on a convex, compact set f containing

J in its interior; iii) Z(x) = E[yy' |x] is continuous a.e., and for e > and v(x)

= E[llyll
4
|x], %sup

||7}||i£;
[<l + v(x

1
(t)+T},t)}f

()
(x

1
(t)+T),t)]dt < a,.

The key condition here is the integral representation of m(h). The dimension of the

argument being integrated and the order of the derivative lead to the convergence rate

- k /2 + £
for m(h), that is Vncr l . Thus, every additional dimension of integration

increases the convergence rate by v
7? while every additional derivative decreases the

rate by a factor of l/o\ This hypothesis also leads to a specific form for the

£ £
asymptotic variance of m(h), which for X(u ,t) = Sd K(u+[5x (t)/5t]v,v)/Su dv is

(5.2) V = Jcj(t)[E(x(t))®<fJ<(u
1
,t)^(u

1
,t)

, du
1
}a)(t)

,
f (x(t))dt.

Lemma 5.3: If Assumptions K, H, Y, and 5.1 is satisfied with d a £+s and for a = k /2

+ I, VR<r
k/2 —=> oo, and Vno-

a+S
-h> then Vn(r

a
[m(h)-m(h )] -^ N(0,V).

Asymptotic normality in the more general case where m(z,£ ,h) depends on z and

is nonlinear in h can be reduced to the previous cases by a linearization. The

following assumption is useful for the linearization. Let m(z,h) = m(z,/3n ,h), and

again assume that this is a scalar.

- 17 -



Lemma 5.4: Suppose that Assumptions K, H, and Y are satisfied, X is compact, there is a

vector of functionals D(z,h), and nonnegative constants a, A. s A, (t = 1, 2), c >

such that d £ max{b+l,L,+s,b„+s} and i) D(z,h) is linear in h on {h : llhll. <12 A

co>; ii) for all h with \\h-h
Q

\\ < c, \\m(z,h)-m(z,h )-D(z,h-h )\\ =£

biz) IIh-hn II . llh-h.IL ; iii) \\D(z,h)\\ * b(z) llhll. and E[b(zf] < «; uO /or tj
J =

C A A A n12 1

[ln(n)/(n<r
k+2J

)]
1/2

+ cr
S

, / -> 0, Vn<r
U
E[b(z)JtA • i,

A
2 -> and vncr

k+Afa -> co. Then
n n n

/or m(h) = fD(z,h)dF(z),

Vn(r
CC

Y
n
Jm(z.,h)-m(z.,hn)]/n = VRa^[m(h)-m(hJ] + o (1).

*n=2 i i Op
The conditions of this result imply Frechet differentiability at h_ of m(z,h) as a

function of h, in the Sobolev norm llhll ,. ... The remainder bounds are formulated
max{A ,A >

r 2

with different norms, rather than A = A = A , to allow weaker conditions for

asymptotic normality in some cases.

Asymptotic normality of cr 2> m(z.,h)/Vn can be shown by combining Lemma 5.4 with

either Lemma 5.2 or 5.3. In the v'n-consistent case of Lemma 5.2, it will follow from

Lemmas 5.2 and 5.3 that V.
n
,m(z.,h)/Vn = Y.

n
Am{z.,hn ) + S.-E[d.]}/Vn + o (1), so that

^1=1 l ^i=l l l l p

asymptotic normality, with asymptotic variance Var(m(z.,h )+5.) follows by the central

limit theorem. In the slower than v'n-consistent case, where m(h) = JD(z,h)dF(z)

satisfies the conditions of Lemma 5.3 and a > 0, it will be the case that

o-°T.
n
,m(z.,h,J/'/n -^ 0, so that o- T.

n
i
m(z.,n)/vn' —> N(0,V).

^1=1 l ^1=1 l

- 18 -



Assumption 5.2: i) llm(z,p,h)-m(z,/3 ,h )ll £ b(z)[ll/H3 ll

e
+ (llh-hgll^] and E[b(z)

2
] <

oo; ii) For e > and Hp-Pgll < e and llh-h II < e, there is D(z,h;/3,h) that is

linear on llhll < oo satisfying |m(z,£,h)-m(z,/3,h)-D(z,h-h;£,h)
I
= o(llh-h!l ) as

llh-hll
A
—> for fixed /3 and h; iii) IID(z,h;/3,h)-D(z,h;/3 ,h )ll £ b(z) llhll (II/3-/3 II +

llh-h.ll. ) and IID(z,h;/3_
1
,h,JII s b(z)llhll. and E[b(z)

4
] < co; iv) = pn + (Sa ),U A_ U U A Op pn

. n a-k-A _. . ... 3k+2A +2A -2a .. , ,
2k+2A -2a

Sa —> 0, o- i«5_ —» 0, a+s > k+A , no- 12 /ln(n) —> co, ncr 3 —> co.

Pn Pn 1

Lemma 5.5: Suppose that Assumption 5.2 is satisfied. If m(h) = SD(z,h;f$n,hn)dF(z)

satisfies the conditions of Lemma 5.2 then, for 5. = v(x.)y., T. _IIS.-5.il /n —^-» and

V -^ V = Var(S.). If m(h) = fD(z,h;& ,h )dF(z) satisfies the conditions of Lemma 5.4,

<r
2oi

V -^ V, for V in equation (5.2).
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Appendix A: Proofs of Theorems

Throughout the appendix C will denote a generic constant that may be different in

different uses and £. = £•_, Also, CS, M, and T will refer to the Cauchy-Schwartz,

Markov, and triangle inequalities, respectively, and DCT to the dominated convergence

theorem. Before proving the results in the body of the paper it is useful to state and

prove some intermediate results.

Proof of Theorem 4.1: The proof proceeds by checking the conditions of Lemmas 5.3 - 5.5.

Let x = (x ,x ), t(x) = x(x ), X be the compact set of hypothesis iii), and llhll =

II nil = sup
x

llh(x)ll. Let m(z,h) = x(x)h (x)/h (x), D(z,h;h) = x(x)h (x)
_1

[h (x) -

{h_(x)/h (x)}h (x)], and D(z,h) = D(z,h;hn ). Choose e small enough that h (x) is

bounded below by e for all x e X. Then for llh.-h._ll < c, |m(z,/3,h) - m(z,j3,h) -

D(z,h-h;h)| = | [h.(x)
_1
h (x) - l]D(z,h-h;h) |

s Cllh-hll
2

and |D(z,h;h)| * Cllhll.

Let a = k,/2. Then for i) = [ln(n)/(ner )] + <r , v'na- ti = ln(n)<r /Vn +
1 n n

_
r , ,

„l/2 a+s-k/2 ^- 2s+a _ , . , ,. a-k.^-. _ /-. 2s+a _ . , .

2[ln(n)J a- + vncr —> by lnlnjcr /vn —> 0, w —> 0, implying cr

goes to zero faster than some power of n, and by a+s > k/2. Also, ln(n)cr /Vn —>

k—

a

implies that v'na- —> oo, so that the rate hypotheses of Lemma 5.4 are satisfied.

Thus, the conclusion of Lemma 5.4 holds, with m(h) = JD(z,h;h )dF(z) =

J*T(x(t))f (x(t))
-1

[h (x(t)) - g (x(t))h (x(t))]f (t)dt, for t = x
2

and x(t) = (x-.t).

Let u(t) = x(x(t))f (x(t)) f (t)[-g (x(t)),l]. This function is bounded and continuous

a.e. and zero outside a compact set by continuity of f , f_, and g , and by the

assumption about x. The other conditions of Assumption 5.1 are also satisfied by

hypothesis. Furthermore, v'na- —> and v'no- l = v'no- —> oo by hypothesis and a

k-a = k + k/2. Thus, the conclusion of Lemma 5.3 holds, for V in equation (4.3).

Then by the triangle inequality, and £ = E[m(z,h )]

vn(r
a
(£-p ) = '/n(r I.{m(z.,n)-E[m(z,h )]>/n

- 20



= i/n<r
a
^<m(z.,h )-E[m(z,h )]>/n + vn<r°*[m(h)-m(h )] + o (1) -±> N(0,V),

because v^o- 2^.{m(z.,h )-E[m(z,h )]}/n —^-» by a- —» 0.

To finish the proof, note that it follows from the above arguments and by hypothesis

that for m(z,h,/3) = m(z,h) and D(z,h;|3,h) = D(z,h;h), as specified above, conditions

i) - iii) of Assumption 5.2 are satisfied, with A = A = A = A_ = 0. Furthermore,

condition iv) is satisfied by 5„ = 0, no- /ln(n) —» «, and the fact that this last
£n

condition implies s > 3k/2 - 2a = 3k /2 + k /2 > k + k /2 = k-a. The second conclusion

then follows by the conclusion of Lemma 5.5. QED.

Proof of Theorem 4.2: Let m(z,h) = a (z)h (xT h (x) and D(z,h;h) =

a (z)h (x) [h (x) - <h (x)/h (x)>h (x)]. The proof that the conditions of Lemma 5.4 are

satisfied proceeds exactly as in the proof of Theorem 4.1, except that a = and the

function b(z) of Lemma 5.4 is taken to be Ha (z)ll. Also, here m(h) = JTJ(z,h;h )dF(z)

= E[a (z)f (x)
_1

{h
2
(x) - g^xlh^x)}] = E[E[a (z)|x]f (x)

_1
<h
2
(x) - g^xlh^x)}] =

JV(x)h(x)dx for i>(x) = E[a
Q
(z) |x]

I

~
=x

f (x)
_1

f (x)(-g (x),l). By hypothesis, the

conditions of Lemma 5.3 are satisfied for this v(x), so that by the conclusion of Lemma

5.3, for 5. = Wx.)y. = i//.-a (z.)g (x.)+|3 , one obtains v
/

n[m(h)-m(h
n )] =

r.{5.-E[5.]}/v^i + o (1). The first conclusion then follows. Also, the second conclusion
^i l l p

follows from Lemma 5.5 similarly to the proof of Theorem 4.1. QED.

Proof of Lemma 5.1: It follows by standard results (e.g. Tauchen, 1985) that

sup jJIn £.m(z.,p,h ) - E[m(z,£,h )]ll —^> and E[m(z,£,h )] is continuous in p.

Also, by Theorem B.2, Hh-hJL = O (ln(n)
1/2

(n«r
k+2A )"1/2 + <r) = o (1). Therefore,

A p p

sup ' lln~ £.[m(z.,/3,h) - m(z.,3,h )]ll ^ n~ X!.b(z.)(llh-h II )

e -^ so the conclusion

follows by T. QED.

Proof of Lemma 5.2: By the Fubini theorem, E[m(h)] = m(E[h]). Also, by standard

results, sup „JIE[h](x) - h (x)ll = 0((r ) for any compact set 6\ Then by v(x) zero
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outside a compact set E, v^n[E[m(h)] - m(h )] s VnCsup „IIE[h](x) - h
Q
(x)ll = 0(v

/

nV
s

)
-

0. Let 5. = [JV(x)K (x-x.)dx]y. = [JV(x.+cru)X(u)du]y., where the last equality follows

by a change of variables u = (x-xj/c, so that m(h) = £.,S./n. By X(u) having

bounded support, v(x.+cru)X(u) ^ b(x.)|X(u)| for all small enough cr and

J*b(x.)|X(u)|du < oo. Then by DCT, sT —> 5. with probability one as cr —> 0. Also,

|5j| s Cb(x)llyll, so by DCT E[ | eT

1

2
] -> for cT = sT-S.. Then by M, E.teT-EleTlWn

-£» 0, so vn[m(h)-m(h )] = vfi{m(h)-E[m(h)]> + o(l) = X.<5.-E[5.]>/^n + 2\<e
,

f-E[eT]>/vn

+ o(l) = YA8.-E[8.]}/Vn + o (1). QED.
*-i l l p

Proof of Lemma 5.3: Note that E[m(h)] = m(E[h]), so by w(t) bounded and zero outside

3", and by x(t) bounded on 3", it follows that v^T(r
a
{E[m(h)] - m(h )> £ VhV

a
llE[h]-h II.

= 0(vno-
a+S

) —> 0. Therefore, it suffices to show that v
/
ncr

a
<m(h)-E[m(h)]> -^-> N(0,V).

Let X£
(u) denote d

l
K(u)/8u and p (x) = cr~

k~£
Jw(t)[I®:K

£
((x(t)-x)/<r)]dt

-k -I I= cr l Jw(x +o-v)[I®X ((x (x +crv)-x )/cr,v)]dv, where I is an identity matrix with the

same dimension as y and the last equality follows by a the change of variables v =

(t-x_)/o\ Then m(h) = Y.p (x.)y./n. Thus, to show vno-
a
{m(h)-E[m(h)]> -U N(O.V) it

z 1 0* 1 1

suffices, by the Liapunov central limit theorem, to show that cr Var(p (x.)y.) —> V and

<r
4a

E[llp (x.)y.ll
4
]/n —» 0. By i.i.d. data and Vn -h> oo, cr

a
|IE[p (x.)y.]-m(h )ll =

cr IIE[m(h)] - m(h_)ll —> 0, and hence cr IIE[p (x.)y.]ll —> 0. Therefore, to show
cr l l

cr Var(p (x.)y.) —> V it suffices to show that cr t[p (x.)y.y'.p (x.)'] —> V. By X(u)
cr l l cr l l l cr l

having bounded support, X(u ,v) is zero for all v outside a bounded set V. Let 3"

be a compact, convex set containing J in its interior. Then, for small enough cr, if

x„ £ J then x„+crv g 3" for all v e V, so p (x) is zero for x„ £ J. For x„ e 3"

2 2 cr 2 2

and x +o-v e 3", continuous differentiability of x (t) and a mean value expansion give

[x (x +crv)-x (x )]/cr = [9x (x +crv)/3t]v, which is bounded over for v e V and converges

k +1
to J(x„)v as cr —> 0. Therefore, cr l p (x,(x„)-cru,x„) =

Z cr 1 Z Z

Jcj(x +crv)[I®X ([x (x„+crv)-x (x )]/cr + u,v)]dv is zero for all u outside a compact set,

is bounded, and converges to Tcj(x )[I®X (J(x )v + u,v)]dv by the dominated convergence
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theorem, for J(t) = 3x (t)/3t. Then by the change of variables u = [x (x„)-x ]/<r and

t = x
2

,

(A.6) <r
k
i

+2
*E[p (x.)y.y'.p (x.)']

C 1110" 1

?k +92
= o-i Jp (x,(tHni,t)E(x

1
(t)-<ru,t)p (x.(t)-o-u,t)'f,,(x

1
(t)-o-u,t)dtdu —> V.

o" 1 1 <r 1 U 1

Also, o-
4a

E[llp (x.)y.ll
4
]/n * o"

4a
E[llp (x.)ll

4
lly.ll

4
]/n ^ o-

4a
E[llp (x.)ll

4
<l+v(x.)>] =

0" 1 1 0" 1 1 (T 1 1

Ik +4^ 4 kO l JV«P (x,(t)-«ru,t)ll {l+v(x,(t)-oni,t)>f-(x
1
(t)-(ru,t)dtdu/n =£ C/(no- l) -* 0. The

j o* l l u l

conclusion then follows by the Liapunov central limit theorem. QED.

Proof of Lemma 5.4: By d £ A + 1 and Lemma B.3, Hh-lrJI -^-» 0. Then by hypothesis

iv) llcAi
1/2

Y.{m(z.,h)-m(z.,hJ-D(z.,fi-hJ>ll s <r
a
Vn[YMz.)/n]\lh-hn \\ . Ilfi-h.ll. =^11 1O1O ^11 OAOA

l 2

(v'Sr
a
E[b(z)hA«Tj

A
2) = ° ID- By linearity of D(z,h), r.D(z.,h)/n = T. .D. ./n

2
for

p n 'n p
J n l ^ij ij

n ~ n
D. . = D(z.,y.K («-x.)) and E-=EM!\- Let D. = E[D..|z.] and D. =E[D..|z.]

ij i j c J ^ij ^l=l^J=l «1 Jl 1 1' IJ 1

for j * i. Note that E[D
2

.] £ E[b(z)
2

llyll
2
]cr"

2k"2A
i and E[D

2
.] s

ii ij

2 2 ^2k-2A
E[b(z) ]E[llyil ]cr ~ l. Then by a V-statistic projection on the basic observations

(e.g. Serfling, Lemma 5.2.2b), vW | n
-2

^. .<D. -D. -D .+E[D. ]}| =
**ij ij i* «i i»

(vncr
a
<(E[D

2
.])

1/2
+(E[D

2
.])

1/2
>/n) = (<r

a~k
~\/Vn) -iL> 0. By Lemma B.4, D. =

p n ij p
J

i«

D(z.,h). By <r —> 0, Hh-hJL -H> 0. Then E[D(z.,h-hJ
2

] £ E[b(z)
2

]( llh-h^ll . )

2 —» 0.
l A l A

l l

Thus, by Chebyshev's inequality, cr'TAD. -E[D. ]-D(z.,h )+E[D(z.,h,,)]>/v
/

n -?-> 0. Then
^i l

•
i • lO lO

the conclusion follows by T. QED.

Proof of Lemma 5.5: It follows by a standard argument, similar to the proof of Lemma

5.1, that E.
n
Jlm(z.,0,n)-m(z.,0_,h_)ll

2
/n -5-» 0. Let D. . = D(z.,y .K (—x.);£,h) and

^i=l l i ij l j a- j

D.. = D(z.,y.K (•-x.);0n,hn ), 5. = J.
n
,D../n, and 5. = E[D..|z.] =

ij i J o- J 0' l ^j=l ji l ji' l

JT>(z,,y.K (•-x.);|3_,h.JdF(z). By Lemma B.5, 5. = T. ,D../n. Also, by Assumption 5.2,
J o" J

J
i ^j=l ji

IID..-D..II * b(z.)lly.K («-x.)IL (110-0- II + llfi-h.ll. ) * b(z.)lly .llo-~
k-A

iO (5 +tj
A
2). Then by

ij ij l l <r l A A l j p 0n n

CS,
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^.^HS.-a.ll
2
/!! * Co-^.IID.j-D.yi

2
/!!

2
* Qr

2a
[5:.b(Z .)

2
/n](j:.lly.ll

2
/n)

(r"
2k_2A

i(ll£-0_ll + llh-h_ll. )

2
= OJ[a-

CC~k~\(5
Q +7)

A
2)]

2
) = o (1).O O A p pn n p

By the data i.i.d.,

E[<r
2a

5\H5.-S.II
2
/n] £ cr

2ce
E[llg -« n

2
] * Gr

2a
(E[lln ^ (Du

-« )B
2

] + n
1
E[IIDn ll

2
]

+ n ^[IISjII
2

] £ Qr
2a

n
1
(E[IID II

2
] + E[IID II

2
])

„ _ 2a -1 -2k-2A
s Qr n cr 3 —> 0,

so by M, er 2l.H6.-5.il /n -£-» 0. Under the conditions of lemma 5.2, it was shown in theJ *i 1 1

proof of Lemma 5.2 that E[II5.-5.II
2

]
—> 0, so that y.HS.-S.II

2
/n -^> follows by T.

1 1 ^1 1 1
J

Then V ——» V follows by T and the law of large numbers. Under the conditions of Lemma

5.3 note that 5. = p (x.)y. for p (x) defined in the proof of Lemma 5.3. As shown in
1 c 1

J
i

r
xr

e

that proof, cr
a
E[5.] —> 0, cr

2a
E[5.6'. ] —> V, and n

-1
o-
4a

E[H6.ll
4

] —> 0. Therefore, by M,
1 11 1

(r n V.(5.-y .5 ./n)(5.-y .5 ./n)' —5-> V, so the conclusion follows by T. QED.u
\ 1 ^j j 1 ^j j
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Appendix B: Technical Details

This appendix derives rates for uniform convergence in probability in Sobolev norms for

derivatives of kernel estimators. Recall from the text that for a closed set X, llhll . =

sup^.sup „IIS ri(x)/Sx II.

Lemma B.l: Suppose that E[\\y\\
P
] < <x> for p > 2, Et\\y\\

P \x]f
Q
(x) is bounded, 1 is

compact, Assumption K is satisfied for A £ j, and <r = <r(n) such that <r(n) is bounded

and n <r(n) /ln(n) —> oo. Then

(B.l) \\h-E[h]\\ . = (ln(n)
1/2

(no-
k+2Jf1/2

).

J P

Proof: It suffices to prove the result for y a scalar. For each £ ^ j, by X(u)

having bounded support the order of differentiation and integration can be interchanged to

obtain E[S h(x)/dx ] = dTE[h](x)/axf Next, let H(x) denote and £
th

order partial

derivative of h(x), and k(x) the corresponding derivative of K(x), so that H(x) =

n"
1
cr"

k"£
X."

1
y.fc((x-x.)/o-) > and a

£
E[h](x)/dx

£
= E[H(x)], where the n argument of <r(n)

is suppressed for notational convenience. Also, for a constant P, let y. = y., I y. I
—

Pn
1/p

; y. = Pn
1/p

, y. > Pn
1/p

; y. = -Pn
1/p

, y. < Pn
1/p

. Let H(x) =
in 'l

Jm J
l

n o- L-=1 y-
fc((x-x.)/o-). Note that by Bonferonni's inequality,

(B.2) Prob(H(x) * H(x) for some x) £ Prob(y. * y. for some i s n)
in l

£ nProb(y. * y.) £ nProb(|y.| > Pn
1/p

) £ E[ |y. |

P ]/P
1/p

.

Let 8 = [ln(n)/(ncr
k+2£

)]
1/2

. For c(x) = E[ |y. |

P |x.=x] and P fixed, by c(x)f
Q
(x)

bounded and p > 2,
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(B.3) 5
1
|E[fi(x)] - E[H(x)]| s 5

_1
<r

k
*E[1( ly. l>Pn

1/p
) |y. | |«(x-x.)/<r) I ]

* C5"
1

<r"
k"£

n
(1/p)_1

E[
| y. |

P
| x.] | fc((x-x.)/<r) | ]

__-l -I (1/pH..., ,, , ,- ;
.. ., k/2 (l/p)-l/2.,

, ,1/2, ,,,= C5 cr n * S I
«(v) | c(x-<rv)f (x-crv)dv = 0(cr n K

/ln(n) ) = o(l).

Next, by k(x) Lipschitz, sup - 3|fi(x)-fi(x)
I
* Cn

(1/p) ""3
<r~

k~£_1
. Also, by X

3k -3
compact, it can be covered by less than Cn open balls of radius n . Let x. denote

je

-3k
the centers of these open balls, (j = 1 J(e)), J(e) ^ Cn . Then for x. (x)

equal to the center of an open ball containing x, by |E[H(x)]-E[H(x)] |
^ E[ |H(x)-H(x)

| ]

it follows that

(B.4) supv |H(x)-E[H(x)]| s sup(y.|H(x)-E[H(x)MH(x. (x))-E[H(x. (x))]}|

+ suP(r |<H(x. (x))-E[H(x. (x))]>| * Cn
(1/p)"3

(r"
k"£_1

+ sup.|H(x. )-E[H(x. )]|.
•* Je je J jc je

2 3k k+2
Note that ln(n) < Cn and, by cr(n) bounded, cr < Ccr . Then for the constant C in

k
eq. (B.4), it follows by p a 2 and no- —> oo that for all M, n big enough, MS -

_ (l/p)-3 -k-£-l ..... r.,, x ,2, , , 5-(2/p) k+2,1/2, . .._,, ,-,,.,2. , , k,3/2, . ... ._
Cn r

o- = MS(1 - C/[M ln(n)n r
tr J ) > M5(l - C/[M ln(n)ncr J ) > MS/2.

Also, note that n cr 5 = [n cr /ln(n)] —> 0. As usual for kernel estimators,

-7V-73 7 7 -7Y-7H 7 7 -Y-7I 7 7
a-
^ YXy. k{(x-x.)/<rf] * «r Ely k{(x-x.)/<rf] s <r ^JVt(u)*E[yf|x.=x-<ru]f_(x-<ru)du £

in l
J

i i
J

i i

-k-2£ 2 -k-£
Co- by E[y |x]f (x) bounded. Then by eq. (B.4), y. cr &((x-x.)/cr) bounded by

Cn tr , and Bernstein's inequality, for M and n large enough,

(B.5) Prob(supT |H(x)-E[H(x)]| > MS) * Prob(sup.|H(x. )-E[H(x. )]| > MS/2)

* ^ (

^Prob(|H(x. )-E[H(x. )]| > MS/2) ]

^ 2y
J(

^
)

exp(-n
2
S
2
/[2nVar(cr"

k_£
y. k({x. -x.)/<r) + Cn

1+(1/p)
cr"

k"£
S])

^J=l 'in jc l

. _ 3k , _2.„
r
-k-2£ 1/p -k-£_ n ^ _ k , _ k+2£_2.

fl A 1/p «-„£ Cn exp(-n5 /C[cr + n cr 5]) £ Cn exp(-Cncr 5 /(l + n cr 5))
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31c 2 2
£ Cn exp(-CM •ln(n)) * Cexp(-[CM -3k]ln(n)).

Since these inequalities hold for any M, n large enough, it follows that

sup„|H(x)-E[H(x)]| = (5). Then by eq. (B.3) and the triangle inequality,

sup
x
|H(x)-E[ft(x)]| = (5). Consider any e > 0. Choose P so that E[ |y.

|

p
]/P

1/p
< e/2,

so that by eq. (B.2), Prob(5~ sup„|H(x)-H(x)
I

> M/2) < e/2 for all n. For this fixed P,

by sup„|H(x)-E[H(x)]| = (5) there exists M such that ProWS^sup^ |H(x)-E[H(x)] I
>

M/2) < e/2 for all n. Then by the triangle inequality, Prob(5~ sup^lHCxJ-ElHtx)]! > M) <

ProbCS^sup^lHtxJ-HCxH > M/2) + Prob(5
-1
su

P;r
|H(x)-E[H(x)] | > M/2) < e. Therefore, by eq.

(B.2) and the triangle inequality, supT |H(x)-H(x) |
= (5). The conclusion then follows by

J. p

applying this conclusion to each derivative of up to order j and by cr bounded. QED.

Lemma B.2: If Assumptions K, H, and Y are satisfied for d £ j+s then \\E[h]-h II .
=

0(c-
m

).

Proof: Note that E[h](x) = E[y.K (x-x.)] = J"h(t)[X((x-t)/<r)/cr
k
]dt = TX(u)h(x+u(r)du, so

10" 1

that by X(u) having finite support, 9JE[h](x)/dxJ = .f;K(u)d
Jh(x+u<r)/axJdu. Also, by

J~K(u)du = 1 it follows that h (x) = TK(u)h (x)du. Then by a Taylor expansion in cr

around a- = 0, for constant matrices C„, U = 1 j),

(B.6) IIS
Jh/5xJ - a

J
'h (x)/axJ

ll = ll^jc/c^WuK® f1
u>®{aJ+£h(x)/axJ+£)du

+ C o-
m
XX(u){®

m
]
u>®{a

J+m
h(x+S:u)/ax

J+m
}dullm r = l

* Ccr
m
[T|K(u)|llull

m
du]llsup lia

J+m
h(x)/ax

J+m
ll * Ccr

m
. QED.

Lemma B.3: If the hypotheses of Lemmas B.l and B.2 are satisfied and Assumption H is

satisfied with d s j+s then

(B.7) Hh-hJI . = (ln(n)
1/2

(n<r
k+2J)~1/2 + <r

S
).

J P
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Proof: Follows by Lemmas B.l and B.2 and the triangle inequality. QED.

Lemma B.4: If Assumption. K is satisfied, m(h) is linear, \m(h)\ £ Cllhll , then

E[m(h)] = m(E[h]).

Proof: By X(u) having finite support and X compact there is a compact set & such

that UK (•-xJIL = 0, and hence m(g(x)K («-x)) = 0, for all x i 6\ Hence, by

linearity of m(h), E[m(h)] = .T„m(g(x)K (•-x))f_.(x)dx and m(E[h]) =
(*> (F \J

m(J\ g(x)K (•-x)f ri
(x)dx). Let F (x) be a sequence of measures with finite support, that

to 0* U J

converge in distribution to the distribution of x on £ (e.g. the empirical measure

from a sequence of i.i.d. draws) as J —> oo. Then, since m(g(x)K («-x)) is continuous

and bounded on W, it follows that JV^mtgCxJK (•-x))F.(dx) —> E[m(h)]. Also, since each
to o* J

derivative of g(x)K (x-x)f (x) with respect to x of up to order A is bounded and

continuous on £, it follows that ll.f„g(x)K (•-x)F
I
(dx)-E[h]ll . —> 0, and hence

to (T J A

mtJUgMK (-x)F.(dx)) —> m(E[h]). Furthermore, by F. having finite support,
to CT J J

m(J'v=,g(x)K (•-x)F.(dx)) = Tm(g(x)K (»-x))F
¥
(dx). Then T gives the conclusion.

to 0" J CT J

QED.

Lemma B.5: If Assumption K is satisfied and for given h with Hhll. < oo there is

linear D(h) with \m(h)-m(h)-D(h-h)\ = o( IIh-h II ) as IIh-h II —> 0, then

dm(h + C,yK (>-x))/dC,\ r . = D(yK (—x)).

Proof: Let h„ = h + <yK (--x), so that llh -fill, s C"yK ('-x)ll * CC,. Then

|m(h»)-m(fi)-CD(yK (»-x))|/£ = |m(h J-m(fi)-D(h„-h) |/< = o(llh -fill ./|Cl ) = o(l). QED.
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