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ON EFFICIENCY OF THE ENGLISH AUCTION 1

By Oleksii Birulin and Sergei Izmalkov

November 2, 2003

We study efficiency properties of the irrevocable exit English auction in

a setting with interdependent values. Maskin (1992) shows that the pairwise

single-crossing condition is both necessary and sufficient for efficiency of the

English auction with two bidders. This paper extends both Maskin's result

and the single-crossing condition to the case of TV bidders. We introduce the

generalized single crossing—a fairly intuitive extension of the pairwise single-

crossing—and show that it is both a necessary and sufficient condition for the

existence of an efficient equilibrium in the iV-bidder English auction.

Keywords: English auction, efficient auction, ex post equilibrium, single-

crossing, interdependent values.

1 Introduction

How to sell a good efficiently—to the buyer who values it the most—is one of the main

questions of the theory of auctions. The task becomes harder as the informational

environment gets more complex. When the valuations of the buyers are asymmetric

and depend on the private information of the others the set of efficient mechanisms

is quite limited. Among these is the open ascending price, or English, auction. It

is typically modeled as the irrevocable exit clock auction, and this model is known
to possess an efficient equilibrium when value functions satisfy certain conditions.

What is the minimal (necessary and sufficient) condition for efficiency of the English

auction is a long-standing problem. This paper provides a solution.

In a classic paper, Milgrom and Weber (1982) introduce the irrevocable exit model

of the English auction. They show that in the setting with symmetric interdependent

values the English auction has an efficient equilibrium, and, if signals are affiliated,

it generates higher revenues to the seller than other common auction forms. Maskin

(1992) indicates that the pairwise single-crossing condition is necessary for efficiency

of the asymmetric English auction, and shows that it is also a sufficient condition when
the number of bidders is two. Perry and Reny (2001) provide an example with three

*We are grateful to Glenn Ellison, Muhamet Yildiz and especially Vijay Krishna for many helpful

comments.



bidders, where the pairwise single-crossing is satisfied and no efficient equilibrium

exists. Krishna (2003) presents a pair of sufficient conditions for efficiency of the

TV-bidder English auction—an average-crossing and a cyclical-crossing conditions. 1

We introduce the generalized single- crossing condition which is a natural extension

of the pairwise single-crossing to the case of N bidders. The pairwise single-crossing

imposes the following: if starting from a signal profile where the values of two bidders

are equal and maximal we slightly increase the signal of one of the bidders, her value

becomes the highest. This implies that the private information held by a bidder

affects her valuation more than the valuations of her competitors. Our condition

requires the following: if starting from a signal profile where the values of a group

of bidders are equal and maximal we slightly increase the signals of a subset of the

group, no bidder outside of the subset can attain the value higher than the maximal

value attained among the bidders from the subset. The generalized single-crossing

both implies the pairwise single-crossing and reduces to it in the case of two bidders.

Two main results of this paper are the necessity: if the generalized single-crossing

condition is violated at some interior signal profile, then no efficient equilibrium in

the iV-bidder English auction exists; and the sufficiency: if value functions satisfy

the generalized single-crossing condition both in the interior and on the boundary of

the signals' domain, then there exists an efficient ex post equilibrium in the iV-bidder

English auction. If the generalized single-crossing is violated only on the boundary

an efficient equilibrium may or may not exist, see Section 3.2. Given that the gap

between the necessity and sufficiency statements is the set of measure zero we simply

refer to the generalized single-crossing as to the necessary and sufficient condition. 2

The English auction is not the only efficient mechanism in the interdependent

values setting, and the generalized single-crossing is not the weakest condition for

efficiency. What makes the English auction so special, aside from its widespread use,

is the strategic simplicity, transparent set of rules, and ease of conducting. In the

English auction, even if the values are interdependent, the strategy in the efficient

equilibrium is nothing but "...drop out when the price reaches what you believe

your value is." The "contingent bid" mechanism of Dasgupta and Maskin (2000)

requires each buyer to submit a price she is willing to pay given the realized values

of the others—a (N — Invariable function. This auction is efficient if the pairwise

single-crossing holds. Utilizing the fact that two-bidder sealed bid and ascending

price auctions are efficient Perry and Reny (2002) and Perry and Reny (2001) design

two elegant mechanisms that incorporate a concept of "directed bids"—every buyer

bids against every other buyer, thus managing N — 1 bids simultaneously. These

^he average-crossing condition requires that, if starting from a signal profile where the values

of several bidders are equal and maximal, the signal of one of them is increased, the corresponding

increments to the values of the others are lower than the average increment. The cyclical-crossing

requires that the increments to the values are ranked in the prespecified cyclical order—the effect

on the own value is the largest and decreases for each subsequent bidder in the cycle.
2
In fact, even in the two-bidder case, the pairwise single-crossing is necessary up to the boundary,

see Example 1 in Section 2. In this sense, our results are the exact extenstion of Maskin's.



auctions require the strong form of the pairwise single-crossing for efficiency.
3 The

above mechanisms are remarkable constructions, designed to allocate multiple units

efficiently. In their single unit version, however, they are significantly more complex

than the English auction. 4

Izmalkov (2003) proposes an alternative model of the English auction. In this

model the bidders are allowed to reenter—become active again after they dropped out.

Izmalkov shows that the English auction with reentry is efficient under the conditions

that are weaker than the generalized single-crossing. 5 At the same time the possibility

of reentry substantially enriches the strategy space and provides opportunities to

exchange messages, which, potentially, may allow bidders to coordinate on a collusive

outcome. In contrast, the irrevocable-exit English auction is robust to collusion within

the auction. The fact that the exits are irrevocable implies that the bidders cannot

coordinate their actions: the only way a bidder can send a message is by exiting,

which makes winning impossible.

The rest of our paper is organized as follows. Section 2 contains the description

of the environment and the discussion of the pairwise single-crossing. Section 3 in-

troduces the generalized single-crossing condition and states our main necessity and

sufficiency results. Sections 4 and 5 contain the proofs of the results.

2 Preliminaries

There is a single indivisible object to be auctioned among a set J\f = {1,2,..., N} of

bidders. Prior to the auction each bidder j receives a real valued signal Sj G [0, 1].

Signal Sj is bidder j's private information. Signals are distributed according to a

joint density function /(s), where profile s = (si,S2, ...,£jv) represents signals of all

the bidders. It is assumed that / has full support and is strictly positive on the

interior of it.

If the realized signals are s, the value of the object to bidder j is Vj(s)—it depends

potentially on the information obtained by the other bidders. The sale of an oil track

is a typical example of such an environment—a firm's estimate of the worth of the

track may depend on the results of the "off-site" drilling conducted by a rival firm

that owns an adjacent track, see Porter (1995).

Value functions V = (Vy, V2 ,
..., Vjv) are assumed to have the following properties.

For any j, and any i ^ j: Vj(0) = 0; Vj(l) < oo; Vj is twice-differentiable in s;

3The pairwise single-crossing has to be satisfied for any pair of bidders with equal values, not

only when their values are maximal. Thus, the strong pairwise single-crossing and the generalized

single-crossing are not comparable.
4 The generalized Vickrey auction is simple and efficient if the pairwise single-crossing holds, but,

being a direct revelation mechanism, it requires the auctioneer to know everything that the bidders

know about each other, which is "utterly unworkable in practice" (see Maskin (2003) for further

discussion).
5The generalized single-crossing would imply that no reentry happens in the efficient equilibrium.



ts-4 > 0; and gjf > 0. Value functions VJ for all j and distribution /(s) are assumed

to be commonly known among the bidders.

We denote s_4 = (sj)jE^—the signal profile of the bidders from a subset A C N,
and S-a—the signal profile of the bidders from J\f \ A.

6

Definition 1 For a given profile of signals s the winners circle J(s) is the set of

bidders with the highest values imputed at s. Formally,

(1) iGl(s)^K(s) = maxVj(s).
jeA/"

Thus, the object is allocated efficiently at s, if the person it goes to—the winner

—

belongs to the winners circle T(s).

We require value functions to be regular—at every s for any subset of bidders

J C X(s) it is assumed that det DVj ^ 0, where DVj = I
d
'^
s

'

) is the matrix

of partial derivatives (Jacobian).

2.1 Pairwise Single-Crossing

Definition 2 The pairwise single-crossing (SC) condition is satisfied if at any s with

#X(s) > 2, for any pair of bidders i,j <E 2T(s),

dVijSj^-j)
<

dVjjSj^-j)

dsj dsj

In words, take a group of bidders who have equal and maximal values. If the

signal of one of the bidders from the group is increased, the corresponding impact on

the value of that bidder is the highest among the group.

We say that SC is violated at s if there exist bidders i,j £ T(s) such that

dVjjSjtS-.j)
>

^-(sj.s-j)

dsj dsj

We say that SC is strictly satisfied if (2) holds with strict inequalities.

2.2 The English Auction

Following Milgrom and Weber (1982) we consider a model that became a standard

model for the analysis of English auctions. Specifically, the price of the object rises

continuously, and bidders indicate whether they are willing to buy the object at that

price or not. A bidder who is willing to buy at the current price is said to be an

active bidder. At a price of all the bidders are active, and, as the price rises,

6We denote vectors and sets by bold and calligraphic letters correspondingly; a » b (a ^ b)

denotes that a; > 6; (a^ > 6,) in every component.



bidders can choose to drop out of the auction. The decision to drop out is both

public and irrevocable. Thus, if bidder j drops out at a price pj, both her identity

and the exiting price pj are observed by all the bidders. Furthermore, once bidder

j drops out she cannot "reenter" the auction at a higher price. The auction ends

at the moment when at most one bidder remains active. The clock stops, the only

remaining bidder is the winner. If no bidders remain active the winner is chosen at

random among those who exited last. The winner is obliged to pay the price shown

on the clock. 7

At price p aU the bidders commonly know who was active at every preceding

price. This public history H(p) can be effectively summarized as a sequence of prices

at which bidders, inactive at p, have exited, H(p) = p~M, where M. is the set of

active bidders just before p. If no bidder exits at p G \p',p"), then H(p') = H(p").

Denote with H(p) the public history H(p) together with all exits that happen at p.

Therefore, if H(p) ^ H(p), then there exists a bidder who exited at p. All the bidders

are assumed to be active just before the clock starts at p = 0, so H(0) = 0.

In the English auction a strategy of bidder j determines the price at which she

would drop out given her signal and public history—given that no other bidder drops

out earlier. Formally, following Krishna (2003), a bidding strategy for bidder j G M.
is a coUection of functions^ : [0, 1] x R+~M —> R+ , where M. is the set of active

bidders just before p, M = #M. > 1. Function (3^ determines the price ^(sy, H(p))

at which bidder j wiU drop out when the set of active bidders is M., j's own signal is

Sj, and the bidders in A/"\ A4 have dropped out at prices H(p) = P-m = {pj} -

e^\M
The rules of the English auction require that ^(sf, P-m) > max{pj : j Ej\f\M}.
If active bidders are able to extract true signals s_x of inactive bidders from their

exit prices P-m, the strategies can be equivalently written as /3^(sj;s^m)-

The equilibrium concept we use throughout this paper is a Bayesian-Nash equi-

librium. The equilibrium we present in Section 4 is also ex-post and efficient.

Definition 3 An ex-post equilibrium is a Bayesian-Nash equilibrium (3 with the

property that (3 remains a Nash equilibrium even if the signals (s\,S2, ---,Sjv) are

commonly known.

This notion is equivalent to the notion of the robust equilibrium (see Dasgupta

and Maskin (2000)), which requires that the strategies remain optimal under any

initial distribution of signals.

Definition 4 An equilibrium, in the English auction is efficient if the object is allo-

cated to the bidder with the highest value in every realization of signals (si, So, ---, sjv)-

7We should complete the description of the game by specifying the outcome in the case where

two or more bidders decide to remain active forever (do not drop out first), and an auction continues

indefinitely. In this case we assign to every such bidder a payoff of -co. Alternatively, it suffices to

set that the object is not allocated in this case.



Maskin (1992) establishes that:

Claim 1 (Maskin, sufficiency) The pairwise single-crossing is sufficient for the

existence of an efficient ex-post equilibrium in the English auction with two bidders.

Claim 2 (Maskin, necessity) Suppose the pairwise single- crossing is violated at

some interior signal profile. Then the English auction with N > 2 bidders does not

possess an efficient equilibrium.
8

The following example illustrates that efficient equilibria may exist even when SC
is violated on the boundary of the signals' domain.

Example 1 Consider the English auction with two bidders with value functions of

the form

V2 = si + s2 .

There exists an efficient ex post equilibrium.

At the point s\ = s2 = 0, V\ = V2 , the pairwise single-crossing is violated, while

at any other s it is vacuously satisfied. Strategies ^(si) = s\, /32 (s2) = 00 (bidder 2

never drops out first) form an ex post equilibrium, which is efficient.

3 Generalized Single Crossing

For an arbitrary vector u consider u • V\4(s)—the derivative of Vk in the direction

u, whereW
fe
(s) = (§£, g, . .

. ,

gi) is the gradient of Vk (s).

Definition 5a (Directional formulation) The generalized single-crossing (GSC) con-

dition is satisfied if at any s with #X(s) > 2. for any subset of bidders A C Z(s),

(3) u • VVfc(s) < max{u • VVJ-(s)},
jeA

for any bidder k G X(s) \ A and any direction u, such that ux > for all i G A and

Uj = for all j £ A.

In words, select any group A of bidders from X(s)—bidders who have equal and

maximal values. Increase the signals of bidders from A only. Consider the correspond-

ing increments to the values of bidders from X(s). GSC in the directional formulation

requires that the increments to the values of bidders from J(s) \ A are at most as

high as the highest increment among the bidders from A. Or, stated differently, at

least one bidder from A should be in the resulting winners' circle.

Note that in the case of A =
{j

}

, GSC reduces to the pairwise single-crossing.

'This claim is indicated in Maskin (1992). The proof is straightforward.



Definition 5b (Equal increments formulation) The generalized single-crossing (GSC)

condition is satisfied if at any s with #X(s) > 2, for any subset of bidders A C T(s),

(4) u-
4

• Vl4(s) < 1

for any bidder k G X(s) \ A, where vector uA = (u^, 0_^) is defined by

u^-V^(s) = l,

for all j G A.

Existence and uniqueness of vector uA follows from the fact that u^ solves vector

system DVa(s) • uA = 1^ (marginal increments to the values are equal), thus u^ =

(DVa(s))~ 1
• 1.4. By regularity assumption, detDV^s) 7^ 0. We further refer to uA

as to the equal increments vector corresponding to subset A.

In words, select any group of bidders A from X(s). There exists the unique

direction of the change of the signals of bidders from A such that along this direction

the values of all the bidders from A increase uniformly. GSC in the equal increments

formulation requires that along this direction the value to any bidder from J(s) \ A
does not increase more rapidly.

Lemma 1 The formulations of GSC given in Definitions 5a and 5b are equivalent.

Proof. The proof is rather technical and is presented in Appendix A.l.

Thus the equal increments formulation of GSC is only seemingly less demanding

than the directional formulation. In fact, both of them put the same restriction on the

value functions. In the proofs that follow we use these formulations interchangeably,

whichever is more convenient for the specific argument.

Now we state our main results.

3.1 Results

Proposition 1 (Sufficiency) Suppose value functions satisfy GSC. Then there ex-

ists an efficient ex post equilibrium in the N-bidder English auction.

Definition 6 GSC condition (in the directional formulation) is violated at the signal

profile s for the proper subset A C X(s) and bidder k € Z(s) \.A if there exists a vector

u, with Ui > for all i G A, Uj = for all j £ A, such that

(5) u •Wfc
(s) > maxlu • VV,(s)}.

ieA

Similarly a violation of GSC condition in the equal increments formulation can

be defined. Hereafter whenever we say that GSC is violated it means that there exist

some s, A C 2"(s), and k G X(s) \ A, such that (5) holds.

Proposition 2 (Necessity) Suppose GSC condition is violated at some interior sig-

nal profile. Then no efficient equilibrium in the N -bidder English auction exists.

The proofs of Propositions 1 and 2 are presented in Sections 4 and 5 correspond-

ingly.



3.2 Examples

Here we present three examples to illustrate the link between the generalized single-

crossing condition and efficiency. We start with the known example where the English

auction fails to allocate efficiently and show that GSC is indeed violated there. In

the other two examples we show that an efficient equilibrium may or may not exist

if GSC is violated on the boundary of the signals' domain and satisfied everywhere

else.

Example 2 (Perry and Reny (2001)) Consider the English auction with three

bidders with value functions of the form

Vi = si + s2s3 ,

Vz = s3 .

There exists no efficient equilibrium.

Perry and Reny (2001) contains the proof of the fact that the three-bidder English

auction possesses no efficient equilibrium in this example. It is easy to see that

GSC is violated here. Notice that at the signal profile s = (.3, .6, .75) all the values

are tied. Now choose a subset A = {2,3} and the direction u = (0,1,1). Then,

u •W2 (s) = u •W3 (s) = 1, while u • VVi(s) = &j& + ^2 = L35 > L
The next example generalizes the message of Example 1 and illustrates that the

English auction may possess an efficient equilibrium even when value functions violate

GSC on the boundary of the signals' domain. In Example 3, however, any bidder

may have the highest value, hence the fact that an efficient equilibrium exists is not

as trivial as it was in Example 1.

Example 3 Consider the English auction with three bidders with value functions of

the form

V\ = 51 + 1(52 + 53),

V2 = 52 ,

V3 = 53 .

There exists an efficient ex post equilibrium.

It is clear that GSC is violated at s = (0, 0, 0) for A = {2, 3}, bidder 1 and vector

(0, 1, 1). There is no other s at which values of all three bidders are equal. SC (or

GSC for #A = 1) is clearly satisfied everywhere.

The following strategies form an efficient ex post equilibrium. When all the bidders

are active, bidders 2 and 3 drop out when the price reaches their private values and

8



bidder 1 never drops out first. After one of bidders 2 and 3, say bidder 2, drops out,

bidder 3 stays active until the price reaches her private value. Bidder 1 drops out

when the price p reaches S\ + |(p + s2 ), where s 2 is the revealed signal of bidder 2,

who had dropped first.

Note that if bidders 2 and 3 follow these strategies and drop out simultaneously,

the value of the object to bidder 1 is always higher than the price that she has to

pay. Thus the "waiting strategy" is "safe" for bidder 1. Bidders 2 and 3 use their

dominant strategies.

The next example illustrates that GSC being satisfied only in the interior of the

signals' domain is not sufficient for the existence of an efficient equilibrium.

Example 4 Consider the English auction with three bidders with the value functions

of the form

Vi = si + § (s2 + s3 )

,

V2 = es2 + (1 - e) s3 ,

V3 = (l-e)s2 + es3 .

When e > is small enough, there is no efficient equilibrium.

Observe that whenever V2 = V3 at an interior signal profile, V\ > V% = V3.

Therefore, both SC and GSC are satisfied at every interior signal profile. At s = 0,

GSC is violated for the subset A = {2, 3} and bidder l.
9

Suppose an efficient equilibrium exists. Bidder 2 with s'2
= 0.9 never has the

highest value. She never wins and her expected payoff is 0. Bidder 2 with s2 = 0.1 has

the highest value when 53 is high enough, therefore she wins with positive probability,

and so

ES1
,
S3 (V2 (s) -p(s)

I

V2 (s) > max{y1 (s),y3 (s)}) > 0.

Then ESl ,
S3 {V2 {s'2 , s_ 2 )

- p(s)
|
V2 {s) > max{Vi(s), V3 (s)}) > 0, and so bidder 2 with

s2
= 0.9 can profitably deviate by imitating bidder 2 with s2 = 0.1. Thus, there is

no efficient equilibrium in the English auction.

The common feature of Examples 3 and 4 is that bidder 1 with s\ = has the

highest value whenever V2 = V3 ^ 0. The difference in predictions of the examples is

explained by the properties of the values that are not maximal (those of bidders' 2

and 3). GSC does not restrict such values since it pertains only to the bidders with

equal and maximal values. If GSC is imposed on the values that are not maximal, as

in Example 3, an efficient equilibrium exists, and if it is violated, as in Example 4,

an efficient equilibrium may not exist.

9 The fact that SC is violated is not crucial here. We can construct an example with 4 or more

bidders where SC is satisfied. It is important for the example that GSC is violated for different

subsets of bidders and would have been violated in the interior if one of the bidders were removed

from the auction.



By the same argument as in Section 4 it can be shown that GSC is a sufficient

condition if it is imposed at s on the bidders whose values are equal and maximal

among the bidders with s
t ^ 0. What is the necessary and sufficient condition

for efficiency on the boundary of the signals' domain is still an open question, but

we think that addressing it is a mere technicality with a very limited value added.

Above examples suggest that GSC provides a good approximate answer, and the issue

disappears completely if, in addition, valuations satisfy a simple condition.

Remark 1 Suppose that a bidder with the most pessimistic signal cannot have the

highest value whenever some other bidder has a positive signal. Formally, suppose

that Vi(s) < m&Xj Vj(s) for every s^O with s, = 0. Then GSC is both a necessary

and sufficient condition for efficiency of the N-bidder English auction: an efficient

equilibrium exists if and only if GSC is satisfied.
10

4 Sufficiency

In this section we show that GSC is sufficient for the existence of an efficient equi-

librium in the iV-bidder English auction. The proof is by construction.
11

In this equilibrium, for a given public history H(p) = p_x, active bidders from

M calculate er(p, H(p))—profile of inverse bidding functions that are used to define

the strategies. For bidder j, to decide whether to be active at p or not is sufficient to

compare her true signal Sj with o-j(p).
n

If o~j{p) < Sj bidder j is suggested to remain

active; at the lowest price level pj such that Oj{pj) > Sj bidder j is suggested to exit.

Once bidder j exits at pj, her true signal Sj = o~j(pj) is revealed, o~j(p) — o~j(Pj) for

any higher price, p > pj.

Now we define the (equilibrium) strategies.

Suppose there exists a profile of functions cr(p,H(p)), which we call inferences,

such that:
13

1. for an inactive bidder i € M \ A4, o~i(p) — a
r (pi, H(p,)), that is cr

t (p) is fixed

after bidder i exits at p^,

2. for any active bidder j € M., o~j{p) E [0, 1] solves Vj(o~j(p), a-j(p)) = p, if such a

solution exists with o-j(p) < 1, otherwise <Jj(p) = 1 with Vj(o~j(p),ar-j(p)) < p.

10 Indeed, if GSC is violated at s = 0, then for a sufficiently small e > 0, one can find s£ 3>

such that Vj(s£
) = e for each bidder j (by the above assumption and regularity), and that GSC is

violated at (interior) s
£

.

^Milgrom and Weber (1982) propose the ideology of constructing efficient equilibria for the Eng-

lish auction with symmetric bidders; Maskin (1992) extends it to the case of two asymmetric bidders,

and Krishna (2003) generalizes it to the case of N asymmetric bidders.
12To shorten the notation we are omitting H[p) from the set of arguments, whenever the public

history can be implied from the context.
13Note that H(p) is a collection of exit prices, H(p) = p~m, where M is the set of active bidders.

Therefore, cr(p,H(p)) will be defined for all p > max^^Pi-

10



Thus, for all active bidders, ctm{p) are determined simultaneously, as a solution

to

(R\ Vm(<tm{p),V-m(p)) ^pIm, crM (p)^lM ,

[ ' ^(Vj
(<T{p))-p)(aj (p)-l) = 0.

For bidder j G M strategy fif : (sj,H(p)) —> R+ is

(7) pf {Sj
; p-M )

= arg min {cj (p) > s.,} .

p

Strategy /? • can be interpreted as follows. If bidder j is active at p, given the public

history H(p) = P-m of exits of inactive bidders A/* \ M.\ bidder j is supposed to

exit the auction at pj = /^(s^p-x), provided no other bidder exits before. If the

current price p satisfies p < /3 (sj; P-»), bidder j is suggested to maintain an active

status; if p > ^(sj; p~m) bidder j is suggested to exit at p.

Once bidder j exits at pj, other bidders update the public history and, ex-

pecting bidder j to follow (7), infer s* = Uj(pj). If (Tj(-) is non-decreasing the

inferred s* is unique and coincides with true signal Sj. The strategies can then

be reformulated as functions of the own and inferred signals of inactive bidders,

^(si ;s_M)=/3f(sJ ;p_A< ).

To proceed with the sufficiency result we need the following:

Lemma 2 Suppose GSC is satisfied. Then there exist inferences cr(p,H(p)), such

that eacho~j(-, H(p)) is continuous and non-decreasing for any H(p), andaj(p, H(p)) =
o-j(p,H(p)) for all p such that H(p) ^ H(p). For any active at H(p) bidder j,

jel(cr(p)) ifajfaHip^Kl.

Proof. Proof is presented in Appendix A. 2.

The following Lemma then proves Proposition 1.

Lemma 3 Suppose value functions satisfy GSC. Then (3 defined by (7) constitute an

efficient ex-post equilibrium in the N-bidder English auction.

Proof. We first show that (3 are well-defined. For any bidder j, arbitrarily fix

exit prices of other bidders, p_j, possibly with pi = oo for some bidders. Then
one can obtain o-j(p) defined for any p > as o~j(p) = aj(p,H(p)), where H(p) =
UPi<p {pi}. Lemma 2 shows that o~j{p) is continuous and non-decreasing for any given

P-j. Therefore, pj = argminp {o~j{p) > Sj} is unique, so Pj(sj] •) is well defined.

Next, we show that when all the bidders follow strategies (7), the object is allo-

cated to the bidder with the highest value. Suppose it is bidder j who wins the object

at price p* . Then, cr^p*) = a l {pl )
= s, for any i ^ j, o~j(p*) < Sj, and according to

Lemma 2

(8) VjMp*), s-j) = max.Vi (<rj (p*), s_j) = p*

.
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The pairwise single-crossing, (Jj(p*) < Sj, and equation (8) imply that

(9) Vj-(s)>maxVS(s)>p*,
>=j

so bidder j is (one of) the bidder(s) with the highest value. Note that price p* that

bidder j has to pay for the object does not depend on the signal of bidder j.

Finally, we show that (3 form an ex-post equilibrium. Suppose every bidder

other than bidder j follows the proposed strategy and bidder j deviates. The pay-

off of bidder j can change only if the deviation affects whether bidder j obtains

the object. If bidder j wins the object as a result of the deviation, she has to pay

p* = max.ij£jVi((jj(p*),S-j). If bidder j were not the winner in the equilibrium,

&j{Pj) > sj since o~j{p) is non-decreasing, so Vj(s) < p* and the deviation is not

profitable. If as a result of the deviation bidder j is not the winner while she is in

the equilibrium, she is possibly forfeiting positive profits according to (9). Thus, no

profitable deviation exists.

The above is valid even if signals s are commonly known, hence the presented

equilibrium is ex-post.

5 Necessity

In this section we establish that GSC is necessary for the existence of an efficient

equilibrium in the iV-bidder English auction.

Proposition 2 (Necessity) Suppose GSC is violated at an interior signal profile.

Then no efficient equilibrium in the N-bidder English auction exists.

The proof is quite involved. There is a number of technical complications to be

resolved. Before we proceed we would like to illustrate the main ideas behind the

proof with a partial analysis of the three-bidder English auction.

5.1 An Illustration

Claim 3 Suppose there are three bidders in the auction, N = {1,2,3}. Suppose that

GSC is violated for A = {2,3} and bidder 1 at the interior signal profile s', such that

Vi(s') = V^s') = V3 (s'). Suppose also that SC is strictly satisfied.

Then, no efficient equilibrium exists with f32 {
s2\ 0) and P3 {s3 ; 0) continuous at s'2

and s'3 correspondingly.

Proof. Suppose an efficient equilibrium exists.

Step 1. Consider a stage in the auction when all three bidders are active, H(p) =
0. GSC is violated for A = {2, 3} and bidder 1 at s'; that is, there exists direction

u = (0,1x2,^3) with u% > 0, u3 > 0, such that for every small enough e > 0, if the
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signals of the bidders 2 and 3 are increased along this direction, bidder 1 has the

highest value,

(10) Vi(s' + £u) > max{K2 (s' + eu),V3 (st + eu)}.

Thus, efficiency prescribes that she must not be the first to drop out,

(11) ^(4) > min{/32 {s'2 +eu2),P3 (s'3 + eu3)}.

Step 2. We show that /32 (s2 )
=

Psis'a)- Suppose not, without loss of gener-

ality consider /32 (s2 ) < /^3 (
s3 )- By continuity of /32 (s2 ) and of /33 (s3 ) at s2 and

s3 correspondingly, for sufficiently small e, we have (32 (s'2 + £u2) < fi3 {s'3 ) and

(32 (s'2 + eu2 ) < P3 (s'3 + eu3 ). Together with (11), we get /3 1
(s'

1 ) > ,^2 (s2 ) for s2 > s2

close to s2 , and so 2 (s2 ) < min{
y
(3

1 (si), /53 (53)}. This contradicts efficiency since the

value of bidder 2 is strictly the highest at (s[,s2 ,s'3 ), so she must not be the first to

drop out. Therefore, /32 {s'2 )
= /33 (s3 ) = b-

Taking limits in (11) we obtain /3 1
(s'

1 ) > b.

Step 3. Since bidder 2 has strictly the highest value at (s[, s 2 ,s'3 ) for s2 > s2 close

to s'2 , we have j32 {s2 ) > min{
/
5

1
(s'

1 ), /

5
3
(s3)}. Similarly for bidder 3. Therefore,

(12) f3 2 (s 2)>b, /?3 (s 3)>6,

for s 2 > s2 and s3 > s3 close to s2 and s3 correspondingly.

Step 4. Finally, by (10) and by continuity of value functions, for a given e > 0,

there exists E\ > 0, such that bidder 1 has the highest value at (s[ — e 1; s2 + eu2 , s3 +
eu3 ). By efficiency, it must be that

/3i(5 i
- £i) > min{/32 (s2 + en2 ),/33 (s'3 + eu3 )}.

Together with (12) this implies

(13) Pi(s'i-zi)>b = (32 (s'2 ) = f33 (s 3 ).

Thus, at (s[ — E\,s'2 , s3 ) bidders 2 and 3 drop out simultaneously, and bidder 1 wins.

However, since SC is strictly satisfied, bidder 1 has the lowest value.

In what follows as an intermediate step we basically show that if an efficient

equilibrium exists then (32 (s2 ; 0) and /33 (s3 ; 0) are almost everywhere continuous in

the neighborhoods of s2 and s3 correspondingly.

5.2 Proof of Proposition 2

We proceed from the contrary—we assume that an efficient equilibrium exists, while

GSC is violated at some interior signal profile. Fix an efficient equilibrium /3,

/3j(s,; H(p)) is the equilibrium strategy of bidder i with signal Sj. No restrictions
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on the strategies are imposed, they need not be monotonic and can be discontinuous

everywhere.

Our proof incorporates the following three main principles.

Principle 1. Suppose that at s exactly one bidder, say bidder j, has the highest

value among all the bidders, #T(s) = 1. Then, in the equilibrium bidder j must

win the object, so at any intermediate history H{p) with M. being the set of active

bidders,

(14) 3
J
(s

J
;H(p))> mm 3^; H(p));

that is, the bidder who has the highest value must not be the one to drop out first. And,

in particular, bidder j cannot be among the bidders who drop out simultaneously at

the end, since then she will not obtain the object with certainty.

When two or more bidders have the highest value at some s, we do not impose

any restrictions on who should be the winner among them. In particular, we do not

require that each of them has to win the object with positive probability. Therefore,

(14) must hold only for the eventual winner, not for any j £ 2T(s).

Principle 2. If GSC is violated at some interior signal profile, we can find a

possibly different interior signal profile s, where GSC is violated for bidder k and

a minimal subset A, that is the subset that contains the fewest possible number of

bidders needed to violate GSC. Indeed, for all interior profiles s and all pairs k and

A that exhibit a violation, the number of bidders in A is an integer between 1 and

TV— 1 , and so min and arg min operators are well-defined. Then we can find s, minimal

subset A, and bidder k = 1 (after relabeling), such that these are the only bidders

in the winners circle, A+l = AU {1} = X(s). To separate bidders B = X(s) \ A+1

when B ^ 0, we can lower the values of all the bidders from B in some manner, while

keeping the values of all the bidders from A+1 fixed and the signals of all the others

fixed. If the change is sufficiently small, then by regularity and continuity of value

functions and by continuity of their first derivatives the resulting signal profile s will

be interior, I(s) = A+1
, and GSC is violated for bidder 1 and minimal A.

Our focus will always be on bidders A+1
, the signals (and so the strategies) of the

rest of the bidders are fixed throughout the proof.

Principle 3. This principle, or to be more exact, convention of how we use notation

to make strong statements about bidding functions shortens and simplifies the proof

by a lot. It is important then to describe it in detail.

Suppose that at s, GSC is violated for bidder 1 and subset A, A is minimal,

I(s) = A+1
, and s_x(s)

are fixed. By continuity, there exists an open neighborhood

of Sj( s ), £/|(s\,
such that for any s' = (sj,sx,s_x(s)), X(s') C 2~(s). In other words, if

we slightly disturb the signals of the bidders from X(s) only, all the bidders with the

highest value as a result must belong to A+l
.

For any such s', let p(s') to be the first price at which a bidder from A+1 drops

out. Shghtly abusing the notation, H(s') = H(p(s')) is the history of play just prior

to p(s')—the sequence of exits of the bidders not from A+l up to a moment of the

14



first drop-out of a bidder from A+1
. It is not necessary that all the bidders not from

A+l
exit first, and we allow for a possibility that H(s') = 0.

If it were the case that for any such s' history H(s') is the same (this would have

been the case if all the bidders not from A+l exited before any of the bidders from

A+1
for all s', e.g.), then we would fix this history, H, and consider only parts of the

strategies, (3j{sj\ H) for all j E A+1
, to derive results and reach a contradiction at the

end. Unfortunately, for different s', H(s') may be different. For example, suppose the

first bidder from ^4
+1 to drop out (at p(s')) is bidder j. Then if we change slightly

Sj, bidder j may no longer be the first from A+1 to drop out, H(s') may stay the

same or lengthen depending on whether some other bidder from A+l or a bidder from

N \ A+l
exits first instead. Even if bidder j is still the first from A+l

to drop out,

the number of bidders who exit before j can decrease or increase.

To avoid dealing with potentially different histories, and, therefore, different parts

of strategies, we propose the following. For any bidder j E A+1
for any signal Sj we

calculate J3j(sj)—the price level at which bidder j with Sj would exit according to

her equilibrium strategy if all other bidders from A+1 remained active forever (or do

not exit before her) and all the bidders J\f\ A+1 followed their equilibrium strategies

(their signals are fixed). It is possible that $j(sj) = oo for some bidder j with signal

Sj . In the proof we will be deriving results concerning these bidding functions.

The fact that the bidder, say j, with strictly the highest value at s' never drops

out first implies that

faty > min &(aj).
J i€A+1

Indeed, in equilibrium, there must exist a bidder i E A+1
, who, at s', drops out the

first among A+l
. But, then the price at which she does so is equal to $i(si). Bidder

j (with the highest value) must at least stay longer.

In what follows, to avoid excessive notation, we are writing simply (3j(sj) in place

of $j(sj). We are also omitting the signals of the bidders from M \ A+1 since these

are fixed, so s denotes the profile of signals held by the bidders from A+l
only. We

write Stv when referring to the full profile of signals.

Proof of Proposition 2. Suppose that the minimal subset A contains n

bidders, and GSC is violated at some interior signal profile s^ for A and bidder 1,

with A+1 = X(sjv"). The fact that n > 2 follows from Claim 2.

Step 1. Consider trajectory s(£) that for each t solves

Vj(s{t)) = V(s) + t, for all j e A+l
.

Such a trajectory exists and is unique, since it can be found as a solution to the

differential equation

ds
(15) | = (W(s))" 1

• 1.
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By continuity of value functions and their first derivatives, A+l = X(s
Jv(i)), and GSC

is violated at s^(t) for A and bidder 1 for all t in some open neighborhood Uf of

t = 0.

Step 2. Consider s' = s(r) for an arbitrary t G U®. Lemma 4 in Appendix A.

3

shows that for any j G A, there exist 6j(Sj-) = limSj j s
' mf/3j(sj), and these limits are

equal for the bidders from A: for any j G A, bj(s'j) = b(s') = b(t) < oo. In addition,

for any j & A and Sj > s'
3

sufficiently close to s'j, Pj(sj) > b(t); and for bidder 1,

ftW) >b(t).

Step 3. Corollary 2 in Appendix A.l shows that either: (i) for any j G A,

Sj(t') > Sj(t) while Si(t') < Si(t) for £' > i; or (ii) for any j G .4, Sj(t') < Sj(t)

while Si(t') > S\(t) for £' > t. This, together with the results of Step 2, implies that

b(t) is (weakly) monotonic in t. In Case (i) it is non-decreasing, in Case (ii) it is

non-increasing.

Step 4. Corollary 3 in Appendix A. 3 shows that if for some bidder j G A,

j3Asj(t)) 7^ b(t), then t has to be a discontinuity point for b(t). Since 6(f) is monotonic

it has no more than a countable number of discontinuity points. Hence for almost all

t G C/
t
°, f3j(sj(t)) = b(t) for every j G A. That is, when the signals of bidders from A

belong to trajectory s(t), bidders from A almost always exit simultaneously.

Step 5. Consider two continuity points for b(t), t and t', such that b(t') > b(t).

In Case (i), t' > t; in Case (ii), t' < t. Then, s x (f) < si(t), and B^s^t')) > b{t') >
b(t) = Pjisjit)) for all j G A.

Step 6. By construction, at t, X(si(t),s^(t)) = A+1
. Since there exists a unique

solution to (15), and SC is satisfied for bidder 1, we have that at S\ — S\(t),

am.,,.^)) >nMx
ay

J (.,,.^))
-

OS\ j€A OSi

Therefore, we can find if sufficiently close to t such that: if is a continuity point for

b(t), Si(t') < Si(t), and, as follows from (16), all the bidders with the highest value

belong to A. Then by results of Step 5, at the realization {si(t'),s_A(t)), bidders from

A drop out simultaneously at b(t), and bidder 1 for sure stays longer. Thus, efficiency

is not achieved—a contradiction.
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A Appendix

A.l Equivalence Lemma
Lemma 1 The formulations of GSC given in Definitions 5a and 5b are equivalent.
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Proof. Fix s. Introduce fik (u) = u • V14(s)—the derivative of 14 along the

direction u.

5a => 56. It is enough to show that every component of the equal increments

vector u4 is non-negative for all subsets A C X(s).

Step 1. Suppose inequalities in the directional formulation (3) are strict for all A.

Then we can show that u4 3> (every component is strictly positive).

This is done by induction on the number of bidders in A. For #A = 1, u^ =

as
> 0. Suppose for all B C X(s) with #23 < n — 1, uf 3> 0. We want to show

the same for an arbitrary subset A C X(s) with ^A — n.

Suppose, on the contrary, there exists A C X(s) with #A = n such that u^ j£> 0.

We can partition A = B U C U P, where 23, C, and P are subsets of bidders for

which the corresponding components of u4 are negative, equal to zero, and positive

correspondingly. By presumption, 23 U C 7^ 0. Obviously, P is also not empty. Note

that ug > as #P < n.

If B = 0, then C^0 and fJ>j(u
v

) = 1 = maxiex>{Aii( lO} f°r anY 3 € C, which

contradicts the supposition that the inequalities in (3) are strict. Thus, B is not

empty. Introduce vector u = ir
4 — u', where u'_B = and u'B = Ug, note that

— u'
B ^> 0. By construction, up>0 and u_x> = 0. Consider bidder i G 23 with the

maximal //j(— u') and bidder j G P with the maximal /x-(u). GSC in the directional

formulation for the set B dictates that //,(— u') > yu-(— u'). GSC in the directional

formulation for the set P dictates that /i
t
(u) < /i,(u). Since u-

4 = u— (— u'), we have

^(ir4 ) < j_ij(u.
A

). We have a contradiction since /^(u-4 ) = ^(ir4 ) = 1 by definition

of ir
4

. Therefore, u4 » 0.

Step 2. Suppose that weak inequalities in (3) are possible. Then we can slightly

perturb the Jacobian of value functions at s, DVj(s), in the following way: add e >
to every diagonal element,

DVi(s) = DVx(s) + eI#I .

All inequalities in (3) become strict after the perturbation—for any A C X(s) and u

from Definition 5a we have jLt'-(u) = e-gf; + /i-(u) > /ij(u) for any bidder j G A, while

/U-(u) = /Uj(u) for all i g" A.

If prior to the perturbation, there existed a subset A C X(s) such that for some

i G A, uf < 0, then, by continuity, for sufficiently small e, uf would still be negative

after the perturbation which would contradict the result in Step 1 . Therefore, u4 3>

for all subsets A C X(s).

56 ==> 5a. Again we use the induction on the number of bidders in A C X(s). For

#.4 = 1 the result is obvious. Fix the subset A C X(s) with #A = n and suppose

that G5C is satisfied at s in the directional formulation for all subsets B C X(s) with

#23 < n, and that GSC in the directional formulation is violated at s for A, that is,

there exists a vector u with 114 ;» and u_^ = 0, such that for some k G X(s) \ A,

/x
fc
(u) > maxj€i ^(u). Clearly, u ^ ir

4
.
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Consider B C A—the subset of bidders who have the highest increments to their

values in the direction u, i G B <^> /i,(u) = maXjg.^ /j,j (u) . Since u ^ uA , B ^ A.

Consider vector Wj(f) = u — tuB . Note that ug > and, since #B < #A, by the

induction hypothesis and the argument above, uf ^ 0.

At/ = 0, for any j G *4\£andz G B, we have ^(w^O)) < ^(w^O)) < //^.(w^O)).

Once we start increasing t, that is, decreasing in a special direction the signals of

all the bidders from B only, all ^i
i
(w1 (f)), for i G B, decrease uniformly at rate i,

while for any bidder / G X(s) \ B (including k) their jj.
l
(w

l (t)) decrease at most

at the same rate, because GSC is satisfied for B. Introduce t\—the minimal value

of t > such that: either ^•(w 1 (f)) = /ij(wi(£)) for some j G A \ B and every

i G <B, or it'ii(t) = for some i G B. In the latter case, stop. If the former case

applies, consider C—a subset that includes B and all the bidders j G A \ B such that

/j.j(wi(ti)) =
/
u,(w 1 (^i)). Define w2 (i) = w^ij — tuc . Find the smallest to > such

that: either /ij(w2 (£2)) = ^i(w2(^2)) for some bidder j G A \ C and every i G C, or

^2i(^2) = for some z G C, in which case stop. Again, if the former case applies

consider V D C. Repeat this procedure until for some bidder i G A, wmi (tm ) = 0.

This will take at most #A repetitions and may result in all bidders i G A having

Wmi{tm ) = 0.

Note that by the induction hypothesis for bidder k G X(s) \ A, /i
A
.(w 1 (r)) always

decreased at a rate no higher than the corresponding rate for bidders from B, C,

.... Thus, at any stage / < m of the procedure, /x
fe
(w/(f)) > maxje^/i-(wj(i)). In

particular,

(17) Mjt(wm (im )) > max/i
j
(wm (tm )).

If for all j G .4, wmj(tm )
= 0, then, by construction, wm (£m )

= 0. which makes

(17) impossible, otherwise define A' to be the set of bidders j £ A with u;mj(£m) > 0.

Since #A' < n, GSC in the directional formulation is violated for the set A', vector

wm (tm ) and bidder k G X(s) \ ^4, which contradicts the induction presumption.

The following is an obvious corollary to Lemma 1.

Corollary 1 GSC in the directional formulation is violated at s if and only if GSC
in the equal increments formulation is violated at s.

It should be noted that for a violation to occur it is not necessary that the same

subsets of bidders axe involved under both definitions.

The following Corollary is used in the proof of Proposition 2.

Corollary 2 At a given s, consider an arbitrary A C X(s) with #A = n > 2.

Suppose GSC is satisfied at s for any subset B C X(s) with #B < n. GSC is violated

at s for A and bidder k G X(s) \A if and only if (i): uck < and u^ > for all j & A
or (li): uck > and uCj < for all j G A, where C = A U {A;} and uc is an equal

increment vector for the subset C

.
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Proof. By the above conditions one needs at least n + 1 bidders to violate GSC.

Therefore, as follows from the proof of Lemma 1, irjj 3> 0.

(=>). Suppose first that uk < 0, while u^ 3> 0. Consider vector u' such that

u'k
= 0, u'_

fc
= xf_ k . Since GSC is satisfied for B = {k}, nk (n') > maxje^^(u').

Therefore, GSC is violated for k, A, and u'. Now suppose uk > 0, while u^ <C 0.

Consider vector u' such that u'k
= 0, u'_

fc
= — x£_k . Then GSC is violated for k, A,

and u'.

(-£=). If uk
= 0, then uc = uA . In this case GSC is satisfied with equality for

bidder k and A. If uk > or uk < 0, we can suppose that all the inequalities in

(4) are strict since by disturbing the Jacobian, as we did in Step 2 of the proof of

Lemma 1, we eliminate all equalities. If e is small enough, whether GSC is violated

for bidder k or not and the sign of uk remain unchanged. As a result, for any i G A,

Step 1. We show that u£ can have either lorn positive components. Partition

C = B U V (inequalities are strict), i G B (i G V) if uf < (uf > 0). Given that

P/0, suppose that #P ^ {1, n}. Consider vector Wi(£) = uc — tu- . We have

ug > 0, /Xj(u
p

) > n,{u
v

) for all j£D and i G since #£> < #C - 2 < n. Then

^•(wi(i)) < jU,-(wi(i)) for all t > 0. There exists the minimal £i > such that for

some j G V, Wij(i) = 0. Consider the subset £ of bidders / G V with ioh(£) > 0,

and vector w2 (£) = Wi(ti) — £uf . Increase £ until for some bidder j G £, ^(£2) = 0.

Again, ^-(w2 (£2 )) < Ati(w2(*2)) for all j & £ and 2 G £>. Repeating this procedure

we eventually obtain vector wm (£m ) such that for all j G £>, Wmi{tm) = 0. Introduce

vector w'm (tm ) = —wm (£m ). Note that for all i £ B, w'mi (tm ) = —«f > 0. Fix bidder

jeP with iomj (0) > 0. Clearly /i
J
(w^

ri (£m )) > ^(w^(£m )) for all i G <8. Therefore

GSC is violated for bidder j, subset B, and vector w^(£m ), which is a contradiction

since #B < n.

Step 2. Suppose ti£ > 0. We show that u^ <C 0. Suppose the otherwise and

consider vector u' such that u'k
= and u'_ k

= u£
fc

. Clearly, u' 7^ uA . Since

/x
fc
(uc ) = /Lii(u

c
) = 1 for all i G *4 and G5C is satisfied for B = {k}, we have

^kiu') — iâ nieAfJ-i(u')- Since GSC is violated for A and bidder fc, there exists

vector u, with U4 ^> and u__4 = 0, such that £ifc(u) > max,;6.4/i 2
(u). Consider

vector w(£) = u — £u'. It follows that /i
fc
(w(£)) > maxj€^/xi

(w(£)) for £ > 0. Note

that w_c(£) = for any £ and w^(0) 2> 0. Since at least one of the components

of u^ = u^ is positive, there exist the smallest £' > such that for some i G A,

Wi{t') = 0. Then, GSC is violated for bidder k, subset B = A\ {i} and vector w(£'),

which is a contradiction since #i3 < n.

Suppose uk < 0. Then, similarly to the above, u^ 3> 0.

Step 3. It remains to be shown that, once equalities in (4) are allowed, if GSC is

violated for A and bidder k, then for any i G C, «f ^ 0. Suppose uf = for bidders

i G B C A. Obviously A \ B 7^ 0. By the arguments similar to the above, GSC is

violated for the subset A \ B and bidder k, which contradicts the supposition of the

Lemma since #{«4 \ B] < n. u

19



A. 2 Sufficiency

Lemma 3 Suppose GSC is satisfied. Then there exist inferences cr(p, H(p)), such

that each <7j(-, H{p)) is continuous and non-decreasing for any H(p), ando~j(p, H(p)) =
(?j(p,H(p)) for all p such, that H(p) ^ H(p). For any active at H(p) bidder j, if

<Tj{p,H{p)) < 1 thenjel(a(p,H(p))).

Proof. First, we construct inferences a(p,H(p)), such that each (Tj(-,H(p)) is

continuous at p for any H(p), and any bidder j active at p with if Oj(p, H(p)) < 1

has the highest value at <x(p). Define A(<r(p, H(p))) to be the set of active bidders

at price p with <Tj(p, H(p)) < 1.

Suppose at some p° with H(p°) = H{p°) there exists a profile <r°(p°) that satisfies

(6), and A = A{a (p )) C I{a°(p )). Fix (T-A (p) = cr -A (P ) for P > P°- Consider

a profile of functions cr{p) = {<?a(p),o'-a{p)) such that crA {p) satisfies (6) for every

P € \p°,p*} for some p* > p°. Finding a solution crA (p) to the system

(18) VA(<TA(p),Or°_A (p ))=plA

is equivalent to solving the system of differential equations

(19) ^ = {DVa)
' 11

-a -

By the Caushy-Peano theorem, there exists a unique continuous solution (Ta(p) to

the system (19) with initial condition <r^(p ) = crA (p°), and this solution extends to

all p < pA , where pA is the lowest price at which o~j(pA ) = 1 for some bidder j € A.

Suppose GSC is satisfied. As long as A C X(cr(p)), ^p- = u^ ^ (this follows

from the proof of Lemma 1), and J^-^p
4 < 1 for any i £ I(cr(p)) \ A by (4).

Since A C 2{cr(p )), it follows that A C I(ar{p)) and ^ ^ for all p E \p°,pA }.

We have constructed cr(p,H(p)) for p e [p°>fCd- To extend a(p,H(p)) beyond pA ,

we have to solve a new system (18) for A' = A(cr(pA , H(pA ))) C A with initial

condition <rA'(p*A ) = <rA (pA ). This is repeated until no bidder remains with aj(p) < 1,

thereafter cr(p) is fixed.

To provide cr{p, H{p)) for all prices and histories we need to specify for each H(p)

initial cr°(p°), where p° = maxp eu(p)Pj- At p = set cr°(0, 0) = 0, then cr(p) are

calculated as above with A = J\f, for p € [0,p^-].

At p° such that H(p°) ^ H(p°), define a°{p°,H(p )) = a{p°,H(p )). Obvi-

ously, if A{a{p,H{p ))) C X(o-°(p )), then A(a° (p°
, H {p ))) C A{a{p, H(p ))) and

A(cr (p )) C l(cr (p )). Then, we can define a{p, H{p°)). Note that proceeding this

way allows us to maintain continuity of <r, or more formally, to link cr(-, H(p )) and

cr(-, H(p )) at the price p° where bidders exit the auction.
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A. 3 Necessity

Throughout this section we follow our notational convention and assume that GSC
is violated for A and bidder 1, l(s) = A+1

, A is minimal, #A = n > 2, the set of

signals considered is limited to Uj,^ . All additional definitions and supporting results

are located in Appendix A.3.1.

Lemma 4 Consider s' — s(t) for an arbitrary t G 11®, s(t) is the trajectory de-

fined in Step 1 of the proof of Proposition 2. For any j G A, there exist bj(s'j) =
lim

5j jy inf /3-(sj), and these limits are equal, for any j G A, bj(s'j) = b < oo. In ad-

dition, ^ 1 (5
/

1 ) > b and for any j G A and Sj > s'j sufficiently close to s'p (3j{sj) > b.

Proof. Consider trajectory s
a
(t) = s

u a
{t) with s

u
^(O) = s' as in Definition

7 in Appendix A.3.1. Along this trajectory the values of the bidders from A are

increasing uniformly while s[ is fixed. Since GSC is violated for A and 1, for any

sufficiently small r > 0, Vi(s
a
(t)) > max^^V^s-4

^)), and therefore,

(20) /?1 (
S
'

1)>min^.(S/(r)).

By continuity, for any S\ sufficiently close to s[, Sj < s[,

(21) /31 (s1)>minPj (sf(r)).

Since u^ 3> 0, sf(r) is strictly increasing for any r.

Define B as j G B if and only if j G A and bj(s'j) = min*^ ^(s,), define bg =
minie^6j(Si) and 6_s = mmie^\B b^s'^) . Since we are not imposing any a priori

restrictions on the bidding functions, we allow for b& = oo and b-s = oo.
14

Clearly,

when #Z3 < n, by definition, bs < oo.

We show by induction on j^B that unless #£> = n efficiency is violated.

Step 1. Suppose first that #B = 1, B = {j}. In words, we show that if we

increase Sj, and on a much smaller scale decrease s[ and increase the signals of the

other bidders from A, then bidder j has the highest value, she must not be the first to

exit, and so there must exist some other bidder with a lower bid. It is not bidder 1, so

it must be some other bidder from A. Then for a sequence of bids /3 -(sjm )
—

>

s -m j.s '. ty,

there must exist bidder i and a sequence Su J.
s[, such that fi^Su) < Pj{sjm (i)), and

so bi(s'j) < bj, contradicting #B = 1.

Formally, for any e > 0, we can find ST > 0, such that for any r G (0, 5T ),

Pi{ sf(T )) > b-j - £ for any z G ^ \ {j} and (20) holds. Consider s*(r) = s' + rvj
,

where vector vJ = vJ (A) is defined in Lemma 5. Then we can find 5\ G (0, 1), such

that for all A with Aj G (5\, 1), for all r G (0,$j), where 5j = sf (5T )
— s'j, for any

i G A\ {j} such that vf > 0, we have Pi(s*(r)) > b_j — e as well. The existence of 5\

follows from the fact that u^ 3> 0.

4 In what follows a statement a > b together with b = oo implies a = oo.
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Fix e = (6_j — bj) /2, and consider an element .sjm of the sequence Sjm j s' with

Pj{sjm) ~* bj(Sj), such that /3j(sjm ) < bj + e, and rm , the solution to s*(rm ) = s}m ,

belongs to (0,5j). Find rm , such that 5^(rm ) = s*(rm ). Then, by (20) and by the

above,

(22) &&) > ^-(s;(rm)) = mLn/tysf(r^)),

and, similarly to (21), there exist <Si > such that for any s\ G (s[ — 8i,s[),

(23) ^(sx) > Pj(sj(rm)).

By continuity and Lemma 5, we can find sufficiently large m, and so sufficiently

small rm > 0, such that J(s*(rm )) C {j} U {1}. Since ^4 is minimal, {1} ^ J(s*(r)).

By continuity and Lemma 6, whenever rm > is sufficiently small, there exists 5[ >
such that for any s x G (s[ — 5[,s'

1 ),

(24) {j}=I(Sl ,s*A (rm)).

Pick rm G (0, 5j) and Si such that both (23) and (24) hold. Then, even if we slightly

increase the signals of all the bidders i G A with s*(rm ) = s'
t , by continuity, {j} =

X(s), where s is the disturbed profile. Since, /?j(sj) > 6_
;
— e for any s, G (s^, s^(5T )),

Pj(sjm) = Pji sj) = mmie-4+1 /3j(sj). We reached a contradiction; bidder j has the

highest value but drops out the first.

Step 2. Here we show that no matter what B is, for any j G ^4., for Sj sufficiently

close to s'j, Pj(Sj) > 6g. Suppose otherwise. For any j £ A pick trajectory sJ (r) =

s' + rvj (\j
), where vj (X>) satisfies conditions of Lemma 5 and A{ G (1 — 6^, 1) for

all j G A, for 5\ G (0, 1) and arbitrarily close to 1.

For any given j G A, there exists 5rj, such that for any r G (0,5rj ), {j} U {1} D
X(s:'(r)) and {j} = X(s 1 ,s^t

(r)) for any Si sufficiently close to s[ (this may depend

on a particular r), s\ < s[. Pick 8T > with 5T < mmj6Tj and such that for any

i,j G A, for any r G (0,5r ), s^r) is such that whenever ^(r) > 0, (20) holds for r

that solves ^(r) = sj
4
(r).

By our presumption, there exists bidder j G A, such that /3j(sj) < b% for Sj close

to s'j, Sj > s'j. We can always find bidder j with Sj such that Tj, the solution to

5j = s
3
j(r), satisfies Tj G (0, 5r ). Define e = bB — Pj(sj). Then, {j} U {1} D T(sJ (r))

and by the procedure similar to the one in Step 1, by slightly reducing the signal

of bidder 1 and slightly increasing signals of all i G A with ^{r) = s'
z

, we obtain

profile s at which bidder j has strictly the highest value. There must be some other

bidder i G A+l with /3j(s;) < /3j(sj). If it is always bidder 1, no matter how slight is

the decrease in her signal, then limSl jv sup/3j(si) < b& — e, which contradicts (21).

Otherwise, there exists bidder i G A with 5, > s[, such that /3,(s ; ) < b& — e, and r,,

the solution to s z
= s\(r), satisfies r* < Crr By choosing 5\ as close to 1 as necessary,

we can make C as close to zero as necessary. It suffices to have C < 1.
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Repeating this procedure we either find a contradiction involving bidder 1, or find

a bidder i G A, and a converging sequence of rim j 0, such that sim = s\(rim ) { s'
{

and P^Sim) < bs — e for any m > 2. But then, b^s'^ <b& — e.

Step 3. Suppose now that #i3 = k > 2. In words, we show that we can find a

trajectory s(p) along which bidders from B have the highest value and are dropping

simultaneously for almost all p. Then, as above, after slightly increasing signals of

bidders from A \ B, there will exist some other bidder who drops earlier, and so there

will be a bidder i € A \ B, for whom 6;(s^) < b^.

Formally, consider trajectory s
B
(p) = s

v v
(p), p > 0, defined in Definition 7 for

vB and subset V from Lemma 5. Note that it is possible that for some j G B, v
B = 0,

and so s
B
(p) is not necessarily increasing. Along this trajectory, for sufficiently small

p > 0, by construction and since GSC is satisfied for bidder 1 and V, l(sB (p)) C
B U {1}. By continuity and by Lemma 6, for sufficiently small p > 0, if we slightly

decrease the signal of bidder 1, all the bidders with the highest value as a result

belong to B.

Consider bj(p) = bj(s
B
(p)), clearly, l\mp^ bj(p) = bj(s'j) for all j G B. Then, for

sufficiently small p, maxjgg bj(p) < 6_g.

Proceeding from the contrary, by the arguments similar to the one made in Step

1 applied to s = s
B
(p) for a sufficiently small p > 0, and by induction (any subset of

B has less than k elements), we have that bj(p) = frg(p) for all j G B.

In general, as long as we stay sufficiently close to s', we can, by slightly moving in

appropriate directions away from s', possibly in several steps, separate bidders from

A in any given order. This implies that whenever two or more bidders from A have

equal and maximal values, the limits of their bids from the right have to be equal.

Similarly, by the argument as in Step 2, /3j(sj) > br$(p) for any j G A and Sj

sufficiently close to s
B
(p), Sj > s

B
(p). Therefore, since s

B
(p) is strictly increasing for

some j G B, bs{p) is weakly increasing.

Suppose that for any 5P > we can find p G (0, 5P ) and a bidder j G B, such

that (3
j
(s
B
(p)) > bs(p). Then, fixing signal s

B
(p) and bid (3j(s

B
(p)) for bidder j, by

induction and arguments similar to the above applied to B' = B\{j} and A1 = *4\{j},

we obtain a contradiction. If it is to the presumption that an efficient equilibrium

exists or to j^B = k < n, then we are done immediately. Otherwise, we have shown

that for any sufficiently small p > and any j G B, f3j(s
B
(p)) < bs{p)- Combined

with monotonicity of bs(p) and the fact that for all j, (3j(sj) > b^{p) for Sj > s
B
(p)

(locally), we have that whenever (3j(s
B
(p)) < bs(p) for some j G B, p is a discontinuity

point for bs{p)- Since a monotonic function can have only a countable number of

discontinuity points, we have that for almost all p, for all j, f3j(s
B
(p)) = bg(p).

Now, we add bidder 1 into the picture. First, consider the case, when for some

j G B, there exists Sp > 0, such that s
B
(p) = s'- for p G (0,SP ). Then, bs{p) = &s,

and so for any i G B, with sf (p) strictly increasing, (3 i (sf(p)) = 6g for all p G (0, 8P ).

Consider s^(r), for a sufficiently small r > we can separate bids of the bidders from

A\B away from 6g and for each j G B, (3j{sf{r)) > 6g, while at least for some i G B,
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fcisfir)) = bB . Therefore, from (20), ^{s[) > bB = mmjeA Pj(sf{r)). Let B' be a

subset of bidders i G B, for whom the bids /3j(s;) = bB in the right neighborhood of

s'
{

. Consider a trajectory s*(r) = s' + rvB '

. Along this trajectory, the set of bidders

with the highest value is a subset of B' U {1}. By continuity and Lemma 6, for a

sufficiently small r > 0, (21) holds as well and, after slightly reducing the signal of

bidder 1, all the bidders with the highest value as a result belong to B'. After slightly

increasing the signal of each j G A with s*(r) = s'j, we obtain signal profile s, at

which all the bidders from B' drop out simultaneously at bB = min^^+i (3j{sj)—

a

contradiction.

In the remaining case, s
B
(p) are strictly increasing for all j G B, therefore fij(-)

for all j G B are monotonic in the right neighborhood of s'-. For any small r > 0,

since u^ 3> and s
B
(p) are strictly increasing, we can define Pj for each j G B, such

that sj(pj) = s^-(t), let p' = minjGB pj. For any e > there exist 8T > 0, such that

for any r G {0,5T ), we have: (i) for any i G A \ B, ^(sf (r)) > 6_B (s') - e/2; (ii)

for all j G £>, Pj is such that \bB {p) — 6b| < e/2 and the above results hold; that

is, in particular, that the bidders from B have the highest value at s
B
(p), b$(p) is

monotonic, and for all j. 3j(sB (p)) < bs{p); (iii) starting from s
B
(p') after reducing

s\ slightly all the bidders with the highest value as a result belong to B.

Pick any r G (0,5r ) such that for all j G B, bs(p) is continuous at p'. Then,

consider i G B with pi
= p'. From (21) we obtain for any S\ sufficiently close to s[,

•si < si,

/3x (Sl ) > min^sf(r)) = min^^r)) = min/^sj („,.)) = ft (a? (p')) -MA
Then, starting from s

B
(p'), reducing slightly s[ and increasing slightly Sj for each

j G -4 with s
B
(p') = Sj we obtain signal profile s, at which X(s) C B, but all the

bidders from B exit first simultaneously at bs{p')—a contradiction.

Step 4. We have shown that #B = n, and so B = A. Let b = 6.4. Since for all

j G A, (3j{sj) > 6(s') for all Sj close to 5^, Sj > s'j, from (20) we have /5 1
(sj) > 6.

It remains to be shown that b < 00. If b = 00, then for each bidder j G >l
+1 there

exists a range of signals with Pj(-Sj) = 00. As a result, the equilibrium payoff to each

of the bidders is equal to — 00, which cannot happen in an equilibrium since each

bidder can exit instead at p = and assure herself the payoff of 0.

Corollary 3 If for some bidder j G A, {3j(sj(t)) ^ b(t), then t is a discontinuity

point for b(t).

Proof. If for some j G A, (3j(sj(t)) > bit), then by the argument similar to the

one made in Step 3 of the proof of Lemma 4, considering A' = A \ {j}, we can find a

profile s, at which all the bidders from A' exit simultaneously prior to bidder 1 and

j, while the bidder or bidders with the highest value belong to A'.

Monotonicity of b(t) is established in Step 3 of the proof of Proposition 2. From

Lemma 4 it follows that for all j G A, whenever Sj(t') > Sj(t), Pj(sj(t')) > b(t),
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for t and t! from the considered neighborhood U°. Therefore, if for some j G A,

Pj(sj(t)) < b(t), then b(t") < f3j(sj(t)) whenever Sj(t") < Sj(t), so t is a discontinuity

point for b(t).

A.3.1 Supporting results for value functions

Definition 7 For a given s', B C I(s'), and vector x with x_g =
; define yg =

x VVg(s')

—

the derivative o/Vg along x. Define trajectory s
xB

(r) with s
xB

(0) = s'

and s
x g(r) = s'_B as a solution to the system

VB (s^(r)) = (V + r)yB ,

whereV = maXjej^Vj(s'). Clearly,
s

^r t=0

Lemma 5 For any proper subset B C A there exists subset V = V(B), B CD C. A,

such that for any k G A\V, uv V14(s) < 1. Moreover for any e > 0, there exist

vector vB ^ such that \\v
B - uB

\\
< e, vf = for any k G A \ V, vB Vy,(s) < 1

for any i G A \ B and vB • VVj(s) = 1 /or all j G 5.

Proof. The proof is by induction on the number of bidders in B.

Define C as the set of bidders k G A \ B such that us • VV4(s) = 1. Since GSC
is satisfied for B, uB ^ uA and C ^ A \ B. If C = 0, then set X> = B, and vB = uB .

Whenever j^B = #A — 1 = n — 1 we have the result. Suppose that for all B', with

#B' > #B the result holds.

If C ^ define B' = A \ C, then uB • W
fc
(s) < 1 for any k G B' \ B. Pick

V = £>(£') Consider vs = AlU
B + (1 - Ax ) vB ' with Aa G (0, 1). When A 2

-» 1,

vB -+ uB . By induction, for all j G A \ B', vs '
• VVJ(s) < 1. Therefore, for all

j6i\S,ve
- VF2 (s) < 1 as long as Ai G (0, 1).

Remark 2 As follows from the proof of Lemma 5 we can find a finite sequence B C
B' C B" C ... C „4, swc/i i/iai vB can be represented as vB = AiUB + A2UB +
A3US + . . ., where £\ A, = 1, /or any i, A, G (0, 1). Lemma states that vs = vB (X)

with required properties can be found with Ai being arbitrarily close to 1.

Lemma 6 For any B C A, it is either vB • VVi(s) < 1, or fp-(s') > minJgg ^-(s').

Proof. If the inequality in (4) is strict for B and bidder 1, uB VVi(s) <
max^u6

^^j(s )i and so vB • VVi(s) < 1. Otherwise, since #Z3 < n, the only

remaining case is uB • VVi(s') = 1 or DVc \i
B = lc , where C = B U {1}. Since

det DVC ^ we have DVce l

c ^ lc , therefore, by SC, gj-(s') > minjeS §£(s').
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