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We develop a new specification test for tlie iV estimators adopting a particular second
order approximation of Bekker (1994). The new specification test compares the

difference of the forward (conventional) 2SLS estimator of the coefficient of the right

hand side endogenous variable with the reserve 2SLS estimator of the same unknown
parameter when the normalization is changed. Under the null hypothesis that

conventional first order asymptotics provides a reliable guide, the two estimates should

be very similar. Our test sees whether the resulting difference in the two estimates satisfies

the results of second order asymptotic theory. Essentially the same idea is applied to

develop another new specification test using second-order unbiased estimators of the

type first proposed by Nagar (1959). If the forward and reverse Nagar-type estimators

are not significantly different we recommend estimation by LIML, which we demonstrate
is the optimal linear combination of the Nagar-type estimators (to second order). We
also demonstrate the high degree of similarity for k-class estimators between the

approach of Bekker (1994) and the Edgeworth expansion approach of Rothenberg

(1983). Empirical example and Monte Carlo evidence are provided.
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1 . Introduction

A significant understanding has emerged over the past few years that instrumental

variable (FV) estimation ofthe simultaneous equation model can lead to problems of

inference in the situation of"weak instruments," which can arise when the instruments do

not have a high degree of explanatory power for the jointly endogenous variable(s) or

when the number of instruments becomes large. The situation of limited information

estimation of a single equation has been studied extensively in the presence of"weak

instruments." These problems of inference in the weak instrument situation can arise

when conventional (first order) asymptotic inference techniques are used. In particular,

conventional first order asymptotics can lead to a lack of indication of a problem even

though significant (large sample) bias is present because estimated standard errors are not

very accurate.

A number ofpapers have recommended possible diagnostics for the presence of

the problem, e.g. Shea (1997). The usual form of the recommended diagnostics is to

examine the R^ or the associated F statistic ofthe reduced form regression for the

included endogenous variable(s). A more refined recommendation is to consider the

partial R^ (or its associated F statistic) after the predetermined variables have been

partialled out ofthe equation being estimated. Another approach has been to consider the

rank statistic originally put forward by Anderson and Rubin (1949). While both

approaches yield valuable information, the R^ approach lacks a distribution theory and
'

the rank condition test, in some sense, does not answer the question at issue ofhow well

conventional asymptotic theory does in forming statistics for inference.

In this paper, we take a new approach and use higher order asymptotic

distribution theory to determine ifthe conventional first order IV asymptotics are reliable

in a particular situation. We recommend a new specification test for the IV estimators,

and we concentrate initially on the 2SLS estimator since it is by far the most commonly

used estimator. Our new specification test takes the general approach as the specification

test approach ofHausman (1978) and estimates the same parameter(s) in two different

ways. In particular, we compare the difference ofthe forward (conventional) 2SLS

estimator ofthe coefficient ofthe right hand side endogenous variable with the reverse

2SLS estimator ofthe same unknown parameter when the normalization is changed.



Under the null hypothesis that conventional first order asymptotics provides a reliable

guide, the two estimates should be very similar. Indeed, they have unitary correlation

according to first order asymptotic distribution theory. However, when second order

asymptotic distribution theory is used, the two estimators will differ due to second order

bias terms. Our test subtracts offthese bias terms and then sees whether the resulting

difference in the two estimates satisfies the results of second order asymptotic theory. If

it does and the second order bias term is small, we do not reject the use of first order

asymptotic theory. Furthermore, the second order asymptotic theory may provide a more

reliable basis for inference. An added attraction of our approach is that it permits the

econometrician to compare two estimates of a structural parameter, which will have a

straightforward economic interpretation in many situations. Thus, the econometrician

can use economic knowledge to determine ifthe two estimates are very different or are

close together in terms ofthe economic problem under study.

If the new specification test rejects we then consider estimation of the equation by

second-order unbiased estimators ofthe type first proposed by Nagar (1959). We again

consider forward and reverse estimation by the Nagar-type estimators to determine ifthe

estimates are significantly different according to the new specification test. If they are

not significantly different we recommend estimation by LIML, which we demonstrate is

the optimal linear combination of the Nagar-type estimators (to second order). If the

second specification test rejects or the two Nagar-type estimators differ substantially

based on economic considerations, we conclude that neither set of estimates, 2SLS or

LIML, may provide reliable results for inference in the particular situation.

Our approach also provides some possible lessons about previous

recommendations found in the literature. To second order, not only the R^ ofthe

reduced form affects the asymptotic bias ofthe 2SLS estimator, but also two other terms

are important. These terms are the covariance between stochastic disturbances in the

structural equation and in the reduced form equation(s), and in the number of

instruments. These three factors interact in a nonlinear manner so it is unlikely that any

single first order asymptotic theory based test statistic will suffice to indicate when 2SLS

does not perform well. We point out similarities between this result and the well-knov^

errors in variables model in econometrics to demonstrate how this outcome might be



expected. We also develop conditions under which the true parameter will be lie in the

interval ofthe forward and reverse estimates.

Lastly, we investigate the performance ofNagar-type second order bias corrected

IV estimators. While these estimators and LIML can lead to improved performance, they

may also not perform well in the weak instrument situation. Thus, we demonstrate that

LIML need not be significantly better than 2SLS over a range of possible situations. In

particular, inferences based on LIML may not do well in the "weak instruments"

situation. While Rothenberg (1983) uses results ofPfanzagl and Wefelmeyer (1978,

1979) to demonstrate that, under certain conditions, LIML is second order efficient, our

specification test should help determine when reliable inference can be based on the use

ofLIML. We also demonstrate the high degree of similarity for k -class estimators

between the approach ofBekker (1994) and the Edgeworth expansion approach of

Rothenberg (1983).

We analyze an empirical problem of a simultaneous equation specification of a

demand equation. This type of model formed the original model consider by Haavelmo,

who first demonstrated that least squares would lead to biased results. We consider the

demand for railroad movements between different origin and destination pairs for a

particular bulk commodity. The original specification has quantity as the left hand side

variable and price along with other variables on the right hand side. As instruments we

have short run marginal cost variables. We find that the 2SLS estimate of the demand

elasticity is about 2 times larger than the least squares estimate. We then reverse the

regression using price as the left hand side variable and quantity as the right hand side

endogenous variable. The estimated elasticity increases, but the new specification test

finds that the two estimates are close together enough so as not to reject the first order

asymptotic results. We then include many more instruments by interacting the cost

instruments with the indicator variables for each origin-destination pair. The estimated

price elasticity decreases significantly in magnitude, back toward the least squares

estimate. When we run the reverse 2SLS estimation, we find that the estimate is about 6

times higher than then forward estimate. Here our specification test easily rejects the use

of the first order asymptotics. Also, LIML does not do well in this latter situation.



The previous literature on the presence ofweak instruments begins with Nelson

and Startz (1990 a and b) and Bound, Jaeger, and Baker (1995) who demonstrate the poor

performance ofIV estimators in the weak instruments situation. Analysis of conditions

when the weak instruments problem may exist are given by Hall, Rudebusch, and Wilcox

(1996), Shea (1997), and Staiger and Stock (1997). Improved inferential techniques are

recommended by Startz, Nelson, and Zivot (1998), Wang and Zivot (1999), and Zivot,

Startz, and Nelson (1999). All ofthese approaches are essentially first order asymptotic

approximation approaches in terms of recognizing the weak instruments problem and

offering alternative approaches to inference. The second order asymptotic approach to

inference and to estimation that we use was initiated by Nagar (1959) and has been used

by a number of researchers. We follow the particular second order approximation of

Bekker(1994).

While many different conclusions can be drawn in the weak instruments situation,

we tend to recommend that the IV estimates, or even the "improved" IV estimates not be

used when the specification test rejects (unless the two estimates are close together). The

reason for this conclusion is that the IV estimators typically have significant bias in these

situations when the specification test rejects which recommends against their use. First

order asymptotics assumes that no bias exists, but the second order approach can find

significant bias depending on the underlying primitive conditions. When this bias is

present as demonstrated by the specification test, we believe that use ofthe IV estimates

may lead to misguided conclusions.

2. Model

We begin with the simplest model specification with one right hand side (RHS)

jointly endogenous variable so that the left hand side variable (LHS) depends only on the

single jointly endogenous RHS variable. In the class of models with only one RHS

jointly endogenous variable, which is by far the most common specification used in

econometrics, this model specification accounts for other RHS predetermined (or

exogenous) variables, which have been "partialled out" of the specification. Thus, we do

not lose any generality by not including predetermined variables in the initial



specification. We demonstrate below how RHS predetermined variables may be included

in the formulae and computations.

We will assume that

(2.1)

(2.2)

Jl =Py2^S\ =fiz7t^ +V,

where d^m{7i^) = K . Thus, the matrix z is the matrix of all predetermined variables, and

equation (2.2) is the reduced form equation for y^ with coefficient vector n:^ . We also

assume homoscedastic normality:

(2.3) ~A^(0,Q)~A^
r r

V L'«I2 ^22

We use the following notation:

y =
(yA

\yn. K^nJ

, o-^'^Varfei), o-^^ =Cov(^„,V2,), o"^^ =Cov(ff,,,v,,).

The simultaneous equation problem, which causes least squares to be biased, arises when

<T^ ^ . This situation is what specification tests ofthe type proposed by Hausman

(1978) and others test.

3. Motivation

3 . 1 Errors in Variables

We first consider an analogy between the simultaneous equation model

specification and the errors in variable (EIV) model specification. If jj i" equation (2. 1)

were replaced with a mismeasured exogenous variable, under classical assumptions of

uncorrelated measurement error, the least squares estimate of J3 would be biased (in

magnitude) towards zero. Hausman, Newey and Powell (1995) call this result the "iron

law" of econometrics - the magnitude of the coefficient estimates are less than expected.



While this result does not always occur when least squares is used on equation (2.1),

since the direction of bias depends on the sign of 0,2 , a common finding is that when

2SLS is used the coefficient estimate increases in magnitude. However, in finite samples

under certain situations even when 2SLS is used on equation (2.1), bias remains because

an estimate of n^ fi"om equation (2.2) is used, since the true parameters are unknown.

We now demonstrate how this result occurs.

Suppose that zn^ is measured without error. Then, OLS of y^ on zn^ would be

unbiased. Instead, z;T2must be estimated, i.e., we have to rely on 2SLS. Let n.^ denote

the first stage OLS estimator. We have

., ,. , n X1,(^..->^.'-(^2-^2))-^;^2
(31) b^sLs-fi^

E,:,fer

Observe that

^lz,1,k -a; -(^2 -^2))-^'a]= 1,1,4.. -^.'(^'^r ^'^2]-/? -4(^2 -^2)'(^'*2 -^2)

= ^u z,!, ^'(^'^y ^i -M2 •^

Also note that ^J ^ i^'fitY = ^j ' 2^,"_ yi^ > where Rj is the R^ in the first stage

regression to obtain ^^ Therefore, we expect bias approximately equal to

(3.2)
R
f x=y2i

We make some observations. Other things being equal,

• Bias is a monotonically increasing function ofcr^ .

• Bias is a monotonically increasing function of K

.

• Bias is a monotonically decreasing function of Rj

.



Note that conventional asymptotics, which lets « -^ oo keeping DGP fixed, ignores the

influence of <T^ ,K, Rj.

In terms ofthe analogy with the EIV model specification, note that the bias in the

EIV model depends on the ratio ofthe variance of the observation error divided by the

variance ofthe RHS variable, a result which occurs in equation (3.1) except that the

covariance term a^ replaces the variance ofthe observation error. The bias in the EIV

model specification also depends inversely on the R^ ofthe EIV model specification, as

we demonstrate below, a result we also find in equation (3.1). Thus, the finite sample

bias in the simultaneous equation problem has similarities with the bias in the EIV model

specification, with the major difference that equation (3.1) has a term in K , the number

of instruments. No similar variable arises in the EIV model bias formula because no

instruments are used when OLS estimation is undertaken.

3.2 Forward and Reverse Regressions

A well-known result in the EIV model specification is that the forward regression and the

reverse regression, when the coefficient estimate is inverted, bound the true coefficient

/? , where by reverse regression we mean interchanging the RHS variable with the LHS

variable in the regression specification. Perhaps a less well-known resuU is that the

product ofthe forward and reverse estimates equal the R^ of the regression model (which

is the same for the forward or reverse regression). Thus, a high R^ implies that the

bounds for the true coefficient ^ are very tight, and vice versa.' We now explore a

similar result in the context ofthe simultaneous equation model. Let

(3.3) b^^^ , and c^^= '

^

denote the forward and reverse OLS estimates ofthe model (2.1). Note that

' Thus, the use of the "permanent income" consumption model specification cannot explain the finding of

different estimates of the marginal and average propensity to consume, when estimates are done on

aggregate time series data because the R^ of the regression specification is extremely high.



(3.4) '^OLS ' ^OLS ~ ^y.x) »

where E^^^ is the R^ in the OLS regression of (2. 1), a result that is the same as that of

the EIV model specification although here the two estimates need not bound the true

parameter /?

.

Now, let

(3.5) h2SLS
Z,yl.

2 '
and '2SLS

Zyi

denote forward and reverse 2SLS estimates, where j)2, and j),,. are the results of

orthogonal projections onto the subspace spanned by z . They are based on moment

restrictions

(3.6) £k-Cy„-/?-jJ] = 0, and z.-

1

y2i--^yu

It can easily be shown that, under conventional (first order) asymptotics.

(3.7) V^. ^2SLS

'2SLS J

=oM

which implies that the forward and reverse estimates are perfectly correlated, i.e. the two

estimates are exactly the same in a given sample up to first order asymptotics. Thus,

using equation (3.2) amounts to the implicit assumption that

(3.8) ^...P:)*^'

asymptotically to first order. Empirically, the authors have observed that the forward and

reverse 2SLS estimates can differ by large amounts numerically even with quite large

samples, which by equation (3.2) implies that in these situations conventional first order

asymptotics may not provide a particularly good guide to the actual sample situation in

question. We use this observation and implication of equation (3.2) to provide an



approach that attempts to determine when conventional first order asymptotics can be

relied on, or when alternative approaches need to be employed.

4. Bekker's (1994) Asymptotics: Is It Sensible?

Since conventional first order asymptotics do not necessarily provide a reliable

guide, we need to use a different approach to the asymptotics. We explore the approach

ofBekker (1994) and see whether his approach to asymptotic expansion captures the

main features of the bias in the estimators that concern us. We assume as in Bekker

(1994) that

K 1

(4.1) >a and —Tr'^z'zn^^®-
n n

Below, we examine whether his asymptotics captures our motivation.

4. 1 Errors-in-Variables Motivation

It can be shown that^

(4.2) plim&2si^ = fi-\-a—^— ^
+ a(022

It can also be shown that

1 " 1 "

(4.3) plim -Y,yli = + fi>22 and plim-^yl = + acD^^

.

Using the fact that a^ = co^^ - fico^ , we may rewrite equation (4.2) as

(4.4) p\imb,,^=fi + -

"

pUmn-Xy^^ plim/?;
'

^ See Bekker (1994).
^ See Bekker (1994).

10



which coincides with equation (3.1), and again points out the close similarity with the

EIV model specification result with the addition of the parameter a .

By a similar argument, we can show that

^12-^^11

(4.5) g25i^=4-^" /?2r>/ + ''/'W'

and therefore.

(4.6) -^ = p^a^-^^^^o^{l).

Analogous to equation (4.4), we may also write

1 .
a -y-'"

Here, i?^ is from the first stage regression of equation (2.1). Thus, we see from

equations (4.4) and (4.7) that if the (asymptotic) i?^ 's of the reduced form equations were

one, conventional first order asymptotics yields the correct results. However, in actual

situations when this result does not hold the asymptotic approximation to the bias

depends on the covariance term which creates the simultaneous equation problem in the

first place, the size ofthe B} in the reduced form equation and the parameter a which

approximates the dimension ofthe subspace spanned by the predetermined variables

relative to the sample size. Thus, under this approach sample size alone does not indicate

how well conventional first order asymptotics do, but instead the dimension ofthe

subspace spanned by z must also be considered.

4.2 IC- Motivation

By using Lemma 5 in Appendix, we can show that

11



which avoids the implicit and false R^ assumption of equation (3.3). Thus, the use of the

Bekker asymptotic approach does yield an implication consistent with the empirical

result we attempt to capture and that affects the bias in the 2SLS estimates.

5. Biases of Forward and Reverse 2SLS

Because •/?^,.yj = b^sis '^isls ^Y definition, equation (4.8) implies that

(5.1) < pWmb^sLs • Plimcj^^ < 1

,

which in turn implies that

(5.2) < plim ^^^ plim ^^^ < 1

.

;9 l/;9

Inequality (5.2) suggests that the forward and reverse 2SLS estimates may bound the true

parameter J3 as in the EIV case.

In order to understand the inequality from a different perspective, rewrite

equations (4.4) and (4.8) as

(3 3)

P"""""" "^ ^ 1 o-.. V^rnR} plim;.-' ^.^ yl

p\imb2sr^-j3 P CT^^ plimR^ p\imn-'Y,l,yu

1 plimR) plim«-'^"^^j;;^,

where the second equality is based on

Assume that a^ja^^ > 1 . We would then have

12



(5.4) /3e{p\\mb^sLs,p\iml/c2SLs) or >9 e (plim l/c^.,^ .plim^'^si^).

We can see that the ratio

determines the relative magnitude of the bias of the two estimators. We can see that the

bias of c^sis is small relative to that of b^s^s if -^/ « ^r

6. A Specification Test based on Forward and Reverse 2SLS

We now turn to the main contribution of the paper. We attempt to provide an

answer to the question: When can you trust the conventional first order asymptotics given

the well documented problems ofthe first order asymptotic approximation in certain

cases? As our derivations demonstrate above, the 2SLS bias depends on 3 factors: the

covariance ofthe stochastic terms in equations (2.1) and (2.2), the R^ ofthe reduced

form equations, and the parameter a which depends on both K and n . Thus, no simple

single statistic, e.g. the R^ ofthe reduced form equation (or the associated F statistic),

seems likely to be sufficient to answer the question ofhow well the conventional

asymptotic approximation is doing in a particular situation.

Instead we turn to one ofthe basic ideas ofthe specification test approach of

Hausman (1978) and estimate the same parameter, yff , in two different ways. Ifthe

difference between the estimates is small, one will not reject the underlying assumption

ofthe model specification. Ifthe difference is large, one will come to the opposite

conclusion. Here a possible approach is to use the forward and reverse 2SLS estimates

and see how far apart they are. Thus, the specification test will be used in model

specifications with overidentification, but this situation holds in most instances. An

"economic sense" of the difference of the two estimates can be gained because in many

cases the econometrician will know how big a change in the true coefficient >9 is

iinportant, since the parameter will have a marginal interpretation.

13



To do a statistical test, we need to determine the variance of the difference of the

two estimates. Here first order asymptotics will not suffice, since because the forward

and reverse coefficient estimates have unit correlation, the variance of the difference of

the two estimates will be zero when a first order asymptotic approximation is used. Thus,

we turn to second order asymptotic approximations, which were pioneered by Nagar

(1959) and have been used since by Kadane (1973), Sargan (1976), Rothenberg (1983),

and numerous other authors.

Note that the probability limit ofthe difference between the two possible

estimators of p is equal to

(6.1) B = -a
9<^.'-^°Mn)

(0 + aojjz\p^ + ci.oi.^2 )

Bekker (1994) shows that 2SLS is asymptotically normal. Therefore,

'^^v^isLs ~y^2SLs ~^) 's also asymptotically normal. Because we do not know B in

general, we would like to deal with an asymptotic result ofthe form

(6.2) V« 1
.^

"2SLS ^
V ^2SLS J

-> A^(0,F)

for our specification test
4

B will be a consistent estimator ofthe difference ofthe biases. Let P^ and M^

denote the projection matrices onto the column space spanned by z and its orthogonal

complement. It can be shown that

(6.3) Q-k-aa}^^-^\mi—y\P^y^, and ;99 + ao,^ = plim —j^2^^;^r
n n

Further, it can be shown by using Lemma 5 in Appendix that

(6.4) plim « = 0(T^ + adet(Q),

14



where

\n i-an j\-an yn \-an J\-an

+
1 ., a 1 ,

\

-y'2P.y2-T^-y2M,y2
\n l-an

a 1 ,

J X-d n
y'2^.y2

+ a
1 1 ..

\r

^l-d n
y'M.y.

1 1 ..

\

l-d n
y'2^.y2 a\ --y\M,y,

l-d n

and d is any consistent estimator for a . We may therefore use

(6.6) B = -d

-y2Pzy2--y'2P2y\
n n

By the delta method based on Lemma 5 in Appendix, it can be shown that

Theorem 1. 4n ^2SLS -B
\ (

'2SLS J

la kN'
'l-a (0 + a6)22)'(/?9 + a«,J'

Thus, we compare the difference ofthe forward 2SLS estimator and the reverse 2SLS

estimator after subtracting off the bias term which arises to the second order of

approximation. Note that the order of the variance in Theorem 1 is 0\rf^) rather than

0(n~' j because ofthe second order approximation. Thus, the specification test takes the

form of an asymptotic / statistic:

(6.7) m =
w°'

where d is the LHS ofTheorem 1, and w is a consistent estimate of the variance in

Theorem 1 . We discuss later how to estimate this variance term.

''^A similar result was given in Hausman (1978) for the bias of the least squares coefficient when tlie RHS

15



7. A Specification Test based on Nagar-Type Estimators

We also explore an alternative approach, which is closely related to comparing

the forward and reverse 2SLS estimators. Nagar (1959) calculated the second-order bias

of the 2SLS (and other k class) estimators. He demonstrated how to bias-adjust these

estimators to second order. Thus, we can estimate Nagar-type bias corrected IV

estimators and then again compare forward and reverse bias-corrected estimators. The

estimates should be very similar if the asymptotic approximations are sufficient for the

particular simultaneous equation model specification. Thus, we follow a similar strategy

as in the last section, but here we use bias-corrected forward and reverse regression

estimators.

We use the B2SLS estimator ofDonald and Newey (1998) to estimate the

forward and reverse regressions. Note that this estimator is a /: class estimator and is a

member of the Nagar class of estimators. The forward IV estimator of /3 is:

(7.1) where ;i = -

K-l
n
K-l
n

We can also estimate p by the reverse IV specification:

(7.2)
c y\P.y^-^y'^.y^

By the delta method based on Lemma 5 in Appendix, we can show that

Theorem 2.

V"\^%-(p.d -^N

\ L

-I
_ 1-

\-a Q' 1-a J3Q'
2 ^2^2 , ^2

£V,

2/:^2\-a p^Q

variable was correlated with the stochastic term in the equation.

16



Proof: See Appendix B.

As in Theorem 1, the terms ofthe variance matrix are of order 0\n'^) due to the second

order nature of the asymptotic approximation. We will use Theorem 3 below to compare

the forward and reverse bias adjusted estimators of fi to form a test ofthe model

specification.

We may want to consider linear combinations of b and — for improved
c

inference. It can easily be shown that the asymptotic variance, to second order, for the

optimal linear combination is given by

(7.3) ra.,(«_) =^.-^M2,
l-a

which coincides with the asymptotic variance ofLIML as derived by Bekker (1994).

Therefore, we may interpret LIML as an optimal linear combination of bias corrected

forward 2SLS and reverse 2SLS. LIML is also known to be median unbiased for normal

distributions of the stochastic disturbance of equation (2.1), as shown by Anderson

(1977), and, more generally, for symmetric distributions ofthe stochastic disturbance of

equation (2. 1), by Rothenberg (1983). Thus, the optimality results ofPfanzagl and

Wefelmeyer (1978, 1979) are applicable to claim that the resulting LIML estimator is

admissible, while other k class estimators are inadmissible unless A in the estimator

definition above has a coefficient of unity.

We now calculate our second specification test by comparing the forward and

reverse B2SLS estimators. Note that no bias correction need be made as in Theorem 1

and in the first specification test since our estimators here have no bias to second order.

The variance ofthe difference ofthe estimators thus has a very simple form. As a

consequence ofTheorem 2, we obtain

Theorem 3: Mb--\-^N
f _ ( n\t\

2a (a]f
0,

17



Proof: Follows from

hO-f "l frr^ r, <T^C7.' +0"?. "l

-2

V
\-a 0'

+
\-a p^Q2r\2

J
\-a /50'

\-a p'Q'

a 1

\-a P'Q'

2a iplf

l-a/?'0''

Note that the denominator ofthe variance is again of order 0\n~^) because of the second

order approximation we use. Our second specification test has the form of an asymptotic

/ statistic:

(7.4) m,=/
0̂.5

^2

where the numerator is the difference ofthe two estimators multiplied by n^^^ and the

denominator is the square root ofthe variance term in Theorem 3. We subsequently

discuss how to consistently estimate the variance term.

8. Similarity of Bekker's (1994) Asymptotics to the Edgeworth

Expansion for /:-Class Estimators

In this section, we demonstrate that the relevance ofBekker's (1994) asymptotic

approximation is not necessarily confined to the case where a - Kfn is large. Given that

Bekker's alternative limiting distribution is driven by the assumption that the number of

instruments grows to infinity as a function ofthe sample size, his approximation may

seem of limited applicability when the number of instruments is 'small.' We demonstrate

that Bekker's approximation is in fact quite similar to the second order Edgeworth

expansion with symmetrically distributed errors. Unlike the Edgeworth expansion based

18



approximation, Bekker's approximation produces limiting normal distributions, which

causes the resulting tests to be quite convenient. Normal approximations turn out to be

quite reasonable approximations as supported by our Monte Carlo simulation discussed

in Section 13.

Rothenberg (1983) computes higher order moments of A:-class estimators. For

symmetrically distributed errors, it can be shown by Rothenberg (1983, Theorem 2) that

Jn{p2sis - P) has an (approximate) mean

(8.1)
^ ^"^
%4^

'

which predicts that the mean of h^^^ is approximately equal to

(8.2) P +^^-

Observe that equation (8.2) is similar to the probability limit (4.2) of2SLS under

Bekker's asymptotics except that equation (4.2) uses Q + aco^.^ as the denominator ofthe

bias. As for LIML, using an Edgeworth expansion we find that 4n{bjjj^ - 0) has an

(approximate) mean

ctI
(8-3) --^ = o{y),

0V«

and (approximate) variance

(8.4)
^^£<^;<;<^„(i),£i^„detp

^
„ 02 '^^ 02

which is similar to the Bekker-based result we derived for LIML in equation (7. 1), except

the approximating factor a/(l - a) in equation (7. 1) has changed to a in equation (8.4).
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As for the (forward) A:-class estimator b considered by Donald and Newey (1998), using

an Edgeworth expansion it can be shown that 4n{b -
fi) has (approximate) mean 0, and

(approximate) variance

(8.5) £l+£^>il<,„(,).i,.->-.*<
0/7 0' ''0 0'

Notice that equation (8.5) again agrees with a Bekker-based asymptotic variance of the

Donald-Newey estimator in Theorem 2 except that, again, Rothenberg's Edgeworth

correction terms are of order a , whereas Bekker's correction terms are of order

a/(l-a). These results suggest that Bekker's asymptotic approximation can be

interpreted as a convenient method ofEdgeworth expansion with wider applicability than

might be thought considering Bekker-type asymptotics in isolation.

Bekker-type asymptotics or Edgeworth expansions do not always provide

reasonable approximation to finite sample distribution of IV estimators. First of all, it

should be noted that variance predicted by the Edgeworth expansion is not always

guaranteed to be positive. It can be shown that the (approximate) variance of

4n{p2SLs ~ P) calculated by Rothenberg (1983, Theorem 2) is equal to

^ ' w 02 ^^0 02

Observe that equation (8.6) is smaller than equations (8.4) or (8.5), which suggests that

the variance of2SLS is smaller than that of a Nagar-type estimator or LIML.' We could

not tell whether Bekker's asymptotics predicts the same pattern of variances. There is

good reason to believe that equation (8.6) may be overly optimistic about the variance of

2SLS in certain situations: It is not difficult to come up with a parameter combination

such that equation (8.6) is negative, especially when the first stage i?^ , and hence , is

extremely small which can correspond to the "weak instrument" situation. Because

' The bias of2SLS is larger, which leads to the optlmality results ofRotlienberg (1983).
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Bekker's asymptotic variance of -Jnib^^j^ - /?) is based on the delta method, it is

guaranteed to be nonnegative. Therefore, Bekker's asymptotics may be interpreted as a

way to fix such undesirable predictions ofEdgeworth expansions in extreme situations.^

However, a further caution should be recognized when using either Bekker's asymptotics

or Edgeworth expansions for LIML or Nagar-type estimators. Neither LIML nor Nagar-

type estimators possess finite sample second moments.^ Thus, the performance ofthe

asymptotic approximations may vary depending on sample size and whether a "weak

instruments" situation is present. We explore this possibility in Section 13 where we

perform Monte Carlo experiments.

9. Estimation of Asymptotic Variance Terms

9.1 2SLS

For the first specification test, we need to estimate the asymptotic variance

(9.1) .,^^ fc£®^

For this purpose we note that a] may be consistently estimated by

(9.2) a/ =
n- 1 ,=1

for some consistent estimator fl for >9 . We also note that LEML is consistent for ;5 . As

for , we note that

(9.3) ^ -y[P,y, --^-y[M^y, = + o^(l)
n \-a n

* The fact that Edgeworth expansion predicts a smaller variance for 2SLS suggests tliat if tlie bias of 2SLS
is negligible 2SLS may dominate both Nagar-type estimators and LIML under reasonable loss functions. In

Section 13, we investigate such a potential outcome by Monte Carlo simulation
' See Mariano and Sawa (1972). As for the forward Nagar estimator, it does not even possess first moments

as established by Sawa (1972).

21



by Lemma 5. As for « , we follow Bekker and use

(9.4) «-^-
w-1

Finally, we note that

(9. 5) + aa>22 = p'im—
>'2-''r^2 .

^^^ fi^ + ^^12 - Pl''" ~>'2-^7^i

To summarize, our consistent estimator for asymptotic variance is given by

^2

J
fciO^. -/?LZML>'2,)7f >'2^.>'2

-^^7Y^^^'^2

9.2 Bias Corrected 2SLS

For the second specification test based on the bias corrected 2SLS estimators, we

need to estimate the asymptotic variance

,„ ^, 2a cj]
(9.7) w, = r^.

' l-a>9'0'

By the same calculation as in the previous section, a consistent estimator is given by

In either ofthe variance estimates ofequations (9.6) and (9.8), a different consistent

estimator other than LIML can be used, with no change in the distribution ofthe

estimated test statistic.
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10. Included Exogenous and Predetermined Variables

We have so far assumed that a single jointly endogenous RHS variable exhausts the list

of explanatory variables. The results we have derived are fully general with respect to the

inclusion of predetermined variables in equation (2.1). In this section, we demonstrate

that our procedure would need to be modified if equations (2. 1) and (2.2) are understood

to be equations where included exogenous variables are partialled out.

Suppose that the full model is

(10 1)
''

' " '

where Z,, is a k^ dimensional vector of included predetermined variables in equation

(10.1) and Zj, isa K dimensional vector containing all other predetermined variables.

Let M^ denote the projection operator partialling Z,, out of equation (10. 1), and let

equations (2. 1) and (2.2) be understood to be the resultant expression: Let Yj denote a

column vector consisting of Yj^ . Define Z,, Z^, E, and V^ similarly. With

(10.2) y,=M,Y„ y,=M,Y„ z=M,Z„ £ = M,E, v,=M,V„

we obtain equations (2.1) and (2.2) premultiplying equation (10.1) by M^ .

We ask if there is any simple way to compute J2^^>'2' y-J'^z}'! » ^^c avoiding the

projection of Z^ on Z^ . Simple projection algebra based arguments show that they could

be characterized quite easily. The following then provides a convenient computational

procedure:

ff

• Regress 7, and Y^ on Z, . Obtain residuals, and label them W^ and W^

.

• Regress 7, and Y^ on Z, and Z^ . Obtain residuals, and label them W^ and W^

.

• Let j), =W, -W, and y^^W^ -W^.
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. Compute y'^p^y^ = y'jh ,
y'jP.y^ = i"^, , y\Pzy^ = y'xy > y'M.yi = Kyi .

y'M.yi = yly > yM^yi = yiJi ^ ^nd plug into equations (6. 1), (9. 1), and (9.2).

• As for al , we can estimate it by the average squared LIML residuals on the full

regression: We can replace
2^J^,(y,

- PumyiJ '" equations (9.1) and (9.2) by

/ .,-1 V 1,
~ HUML^2i ~ ^mYuML )

• As for K in equations (6.6), (9.6), and (9.8), we may conservatively use

K = dim(Z,.)+ dim(Z2,), although K = dim(zj= dim(Z2,) may also be a reasonable

choice.

Note also that one may want to adjust the sample size in the above equations to

n* =n-k^ to take account ofthe loss of degrees of freedom from partialling out the Z,,.

variables.

1 1 . Additional RHS Jointly Endogenous Variables

To this point in the paper, we have only considered the situation of one RHS

jointly endogenous variable, which is by far the most common situation encountered in

empirical application ofIV estimators {e.g. 2SLS). We now extend the model

specifications to allow for additional RHS jointly endogenous variables. We derive the

second specification test for 2 RHS jointly endogenous, which demonstrates how to

generalize our results to r, > 2 RHS jointly endogenous variables. We leave the

derivation ofthe first specification test in this situation to further research.

We extend our original simultaneous model specification of equations (2.1) and

(2.2) to the situation of2 RHS jointly endogenous variables:

(11.1) y^=P2y2+P^y^+e^

(11.2)
^^

' '

J3=z;r3+V3
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where we use the same matrix and vector notation as before. We consider estimation of

P^ and yffj in equation (11.1) by use ofthe Donald and Newey (1998) B2SLS estimator.

We will refer to the estimator as (6, ,c, ) . Changing the normalization we could also

estimate (l/y^j - P^lPi) or (l/yffj - P^jP^. Thus, we would have three potential

estimators for O^z' A)- '^he question would naturally arise ofhow to combine these

potential estimators to achieve the most powerful specification test of a given size.

However, as we demonstrate in Technical Appendices C and D, it turns out that

we cannot stack the estimates to derive a more powerful test since the asymptotic

variance matrix ofthe three tests is singular. Thus, all tests based on a single difference

will have the same operating characteristics, and a more powerful test cannot be derived

using additional differences (contrasts). Thus, we will use the estimator A, -l/^j > where

1/Z»2 is the estimator derived from application ofB2SLS (or another Nagar-type

estimator) to the equation:

(11.3)

''~-h^ A j

y^+s^.

In Appendix D we derive a consistent estimate ofthe asymptotic variance ofthe scaled

difference ofthe two estimators d^ = n^'^ip^ -yb^) to be

(11.4) 2
^-1 (z,ii ^u - P2.um.y2i - pyumy^iy

)

n-K

P2.UML

J. , \y'2P.yz -j^y'i^zyi
,

A-l i^ n-K
y2P.y2 77y2^.y2 -^—n-K-

•^'^'•^'"w^-^'^'^'

As before, other Nagar-type estimators may replace LIML estimators in the above

formula. The specification test will take the form:

(11.5)
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where w^ is the estimated variance in the above equation.

Inclusion of exogenous and predetermined variables in the specification as in

equation (10. 1) in Section 10 raises no new complications. The partialling-out

methodology we used in Section 9 is directly applicable to the current situation with 2 (or

more) RHS jointly endogenous variables. The new jointly endogenous variable, Y^ , is

partialled out by regressing Y^ on Zj . All other formulae follow as before, and the above

variance formula can be used on the partialled out variables to form the second form of

our specification test.

12. An Empirical Example

We analyze an empirical example of a simultaneous equation specification of a

demand function. This type of specification is the original type of problem studied by

Haavelmo, who demonstrated that least squares lead to bias results. The left hand side

variable ofthe first specification represents movements of a homogenous bulk chemical

commodity measured in log of ton miles. Data were collected on approximately 50

origin-destination (OD) pairs over a 33 month period. Each data point is an individual

fi-eight movement. As right hand side variables, we include the log ofthe price of the

movement which is a jointly endogenous variable, a measure of economic activity, and

OD indicator variables which change each year to allow for fixed effects for OD pairs.

We also used a trucking price index variable, which was assumed to be predetermined.

Altogether, we have 132 right hand side variables, one ofwhich is jointly endogenous.

As instruments for the jointly endogenous variable we use the log of a short run marginal

cost variable for the appropriate movements ofthe bulk commodity, which is available

for each shipment.* The other instrumental variable that we use is the monthly price

index for diesel fuel.

In Table A in the first column we give the estimated price elasticity (and an

estimate ofthe first order asymptotic standard error) along with the estimated standard

* While these data are accounting data that unUkely to be tnie measures of marginal cost, potential errors in

variables in instniments do not create a problem in instnrniental variable estimation under the usual

assumptions. See Hausman (1977).
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error and the R^ . Note that the price elasticity estimate is -1.36 (.147) and is estimated

quite precisely. The R^ is also quite high at .962. In column 2 we use the conventional

2SLS estimator. The estimated price elasticity increases in magnitude to -2.03 (.465)

which is the expected outcome given the expected direction of the simultaneous equation

bias of least squares. Again, we find a relatively small estimated standard error. When

we consider possible diagnostics, we find that the R^ ofthe reduced form is 0.941 with

an F statistic of 154.5. The R^ ofthe reduced form model after all of the predetermined

RHS variables ofthe structural equation have been partialled out is .093 with an

associated F statistic of 74.6. While the partialled out model has a lower R^ and F

statistic, as expected, they do not indicate a problem according to rules ofthumb

previously put forward in the literature.

We now interchange the jointly endogenous variable and put price on the LHS

and quantity on the RHS. The results are given in Column 3 of Table A. We use the

same instruments and find our estimate of — to be -0.433 (.094) so the reverse estimate
c

ofthe price elasticity is -2.3 1 (.500) so that the difference between the forward and

reverse estimates of the price elasticity is 0.275. The question is whether these estimates,

which should be exactly the same under first order asymptotics, are different enough to

reject the conventional first order asymptotic approach.

Using the second order approximation of equation (6.6), we estimate the

difference in the bias ofthe two estimators to be -.0012, which is quite small. We then

use equation (9.1) to calculate the variance and estimate our specification test statistic to

be:

d 10.03

w"-'
~

5.43
(12.1) ;;, =__ =__ = 1.85,

Thus, up to a second order asymptotic approximation we do not reject the first order

asymptotic approach or the associated estimators.

We now use the Nagar-type estimator ofDonald and Newey in columns four and

five. Here we find the same estimates in the forward and reverse direction because the

degree of overidentification is 1. Using Theorem 2 to form the specification test, we find
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it to be 1.82, which is very similar to our previous estimate. Lastly, we find the LIML

estimate to be -2.05 (.469), which does lie between the forward and reverse estimates, as

expected, but note that it is quite close to the forward 2SLS estimate.

We now increase the number of instruments by 13 1 by interacting the cost

instrumental variable with the corresponding OD indicator variables. This new variable

allows for unobserved cost differences across the different OD pairs. The resuhs are

given in Table B. The first column has the forward 2SLS estimate of-1 .24 (.194) which

has decreased significantly in magnitude back towards the least squares estimate from

Table B of-1.36. A situation ofweak instruments may well be present. The R^ ofthe

reduced form is 0.972. The R^ of the reduced form for the partialled out model is .219

with an associated F statistic of 2.79, which gives little indication of a weak instruments

problem.

In the second column of Table B we present the reverse 2SLS estimate of -8.01

(.789), which is approximately 6.5 times higher than the forward 2SLS estimate. The

difference between the two estimates of-6.77 would likely be considered significant, on

economic terms, by most researchers. Here the R^ of the reduced form of the partialled

out model is .038 with an associated F statistic of .280, which could indicate that a

"weak instruments" problem exists according to rules ofthumb put forward in the past

literature. The difference in second order bias terms is estimated to be -.041, much

smaller than the actual difference in the forward and reverse estimates. The test statistic.

is estimated to be

d 247.3

w'-'
~

17.4
(12.2) ;;, =__ =__ = 14.21.

Thus, the specification term rejects the conventional first order asymptotic approach, and

we would recommend that the estimates not be used.

In columns 3 and 4 of Table B we present the Nagar-type bias corrected forward

and reverse IV estimates recommended by Donald and Newey. The forward estimator is

now -1.21 (.194), while the reverse estimator is -4.64 (.293). While some improvement

has been made, the two estimates still differ by a large amount. The specification test is

estimated to be 5.78, which again rejects. Lastly, the LIML estimate is -1 . 1 8 (.2 1 1),
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which, again, is quite close to the forward regression. Thus, we do not recommend the

use ofLIML in the weak instrument situation when the forward and reverse Nagar-type

estimators differ significantly because it often has a significant asymptotic bias, as

indicated in this example and in other empirical examples we have investigated.

We conclude that in a real world example that the IV estimators can perform

poorly in the weak instrument situation. Using the forward and reverse estimate seems to

give a convenient metric to analyze the performance ofthe estimators. The specification

tests we have proposed also work as we would expect. We now turn to some Monte-

Carlo results to explore further the performance of the tests.

13. Monte Carlo Experiments

We generated data from the model specification

J^2i =-2>2+^2, i = \,...,n

such that

^.-HoJkI

n=
0),

12

©,12 1

-J2 _ ^2^k^'k2Ri^
K(/>'

Here, Rj denotes the theoretical R^ in the first stage regression. We use following

parameter combinations:

« = 100, 250, 1000, 10000

o-„^=-.9, -.5, .5, .9

-R^=.001, .01, .1, .3

K = 5, 10, 30

We examined performance of our tests by 5000 Monte Carlo replications. Tables

1-4 report results using a range of instruments from 5-30, sample sizes of 100-10,000,
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and a range of covariances (correlations) where we vary the Rj of the reduced form

regression.' Columns (a) and (b) report the actual size of the test based on forward and

reverse 2SLS with 10% and 5% nominal sizes. The actual sizes ofthe test are generally

quite close to the nominal sizes, with only a small falling off above the nominal size

when the number of instruments becomes large and the R^ becomes quite low (.001).

Columns (c) and (d) report actual biases of forward and reverse 2SLS estimators, and

column (e) reports the expected value of B . The estimates of the difference of second

order bias terms are typically quite accurate, although when the expected difference of

biases becomes quite large, the estimates can vary by quite a lot. However, in these

situations, the test statistic should still work well because the presence of a large expected

bias (even if not measured totally accurately) will alert the econometrician to the dangers

ofusing 2SLS, or other IV estimators, in this situation. Importantly, the estimates of the

expected value of B appear to do a good job of indicating the presence of "weak

instruments," e.g. column (e) in Table 3 with "weak instruments" compared to column (e)

of Table 4 where the instruments are better because the R^ of the reduced form equation

is much higher. Thus, the second order asymptotic approach seems to provide a useful

tool to indicate when the "weak instrument" problem is present.

Columns (f) and (g) report the actual size ofthe traditional test of

overidentification (based on forward 2SLS) with nominal sizes equal to 10%, and 5%.'°

The conventional test of overidentification, based on the forward 2SLS estimates, does

not perform well in a large variety of situations, as has been noted numerous times in the

previous literature. As shown in Table 1 the conventional test of overidentification often

has actual size ofabove 0.3, when the nominal size is smaller than 0.1. Note that when

thei?^ of the reduced form becomes high, the test of overidentification has approximately

the correct size. This result is expected since the test of overidentification assumes

' In Tables 1 - 4, we set tlie values ofyffsuch tliat Var(e)=l.

'" We use «
• i? of the regression of the forward 2SLS residuals on instruments as the test statistic.

Because forward and reverse 2SLS should be perfectly correlated under conventional asymptotics, tests of

overidentification based on forward and reverse 2SLS should have the same operating characteristics if

conventional asymptotics provides reasonable approximations to sampling distributions of various IV
estimators.
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implicitly that this R^ is unity, in the sense that it assumes that the reduced form

coefficients are known with certainty. Also, for very large samples, e.g. 10,000, the size

of the test becomes approximately correct. When the number of instruments begins to

increase, the size performance of the test of overidentification falls off again. When the

number of instruments becomes quite large (30) in Tables 1 - 4, the actual size ofthe

conventional test of overidentification becomes abysmally large, sometimes exceeding

0.5 in the low Rj situation. Thus, we conclude that the second order asymptotic

approximations work considerably better than the conventional first order asymptotic

approximations when applied to the 2SLS estimator.

Columns (h) and (i) report results for cases where we consider the Nagar-type

bias corrected estimator. We find that the actual size of the new specification test based

on Donald and Newey's estimator with 10% and 5% nominal sizes again approximates

the nominal size quite well with no tendency to be too large a size for the test. Columns

(m) and (n) report the actual size of the traditional test of overidentification (based on

Donald and Newey's forward estimator) with nominal sizes equal tolO% and 5%.^'

While the use ofthe Nagar-type estimator improves the traditional test of

overidentification, the conventional test of overidentification sometimes has an actual

size ofabove 0.2, when the nominal size is smaller than 0.1. Note that when the Rj of

the reduced form becomes high, the test of overidentification has approximately the

correct size once again.

Also, note that in columns 0)-0) where we report the means biases ofthe Nagar-

type and LIML estimators, the mean bias of the Donald-Newey (Nagar-type) estimators

and LIML estimators occasionally are found to be very large. This finding results fi"om

the non-existence of finite sample moments ofNagar-type and LIML estimators that we

discussed in Section 8. These results should be a caution about using Nagar-type or

LIML estimates even with the second order asymptotic approximations without fijrther

investigation or specificafion tests in a given empirical problem.

" We use n-R of the regression of the residuals from Donald and Newey's forward estimator on

instnmients as the test statistic.
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Table 5 report Monte Carlo results in some "extreme cases" where the number of

instruments is large, AT = 30, and theRJ of the reduced form is low. The actual sizes of

the new specification test in columns (a)-(b) and (h)-(i) are again close to the nominal

sizes, although in a few cases the test based on the Nagar-type estimator does have too

large size. However, these results should be compared to the traditional test of

overidentification based on 2SLS in columns (f) and (g) where the actual sizes always

exceed 0.85, even though the nominal size is 0. 10! Similarly, the traditional tests of

overidentification based on the Nagar-type estimators in columns (m) and (n) do better,

but they still exceed the nominal size by factors of 2 to 5. These results, along with the

second order bias estimates ofcolumn (e), which are again successful in indicating the

presence of"weak instruments," demonstrate that tests based on the second order

asymptotic approximations do considerably better than tests based on the conventional

first order asymptotic approximations in these extreme situations.

As we discussed in Section 8, Edgeworth expansions predict smaller variances for

2SLS than for LIML. In Table 6, we compare 2SLS and LIML when the bias of2SLS is

negligible andi?^ is small. In all cases, 2SLS dominates LIML under mean square error

loss. This result is not surprising because LIML does not possess second moments.

However, the dispersion ofLIML around y9 measured in the interquartile range or

interdecile range is much larger than that of 2SLS.'^ We conclude that Bekker's

asymptotics may be a poor approximation when Rj is extremely small, which leads to

the suggestion of using the specification test to help determine the usefulness of second

order asymptotics in a given situation.

14. Conclusions

Using the forward and reverse 2SLS estimates to test for weak instruments to

form a specification test seems to be a helpful approach. We use a second order

asymptotic approximation to form a test statistic to see if the conventional first order

asymptotic approach is accurate enough to provide reliable inferences. The first order

'^ The fact that 2SLS does better than LIML suggests that 2SLS should be used for Hausman tests of

endogeneity of regressors.
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asymptotics implies that the two estimates should be the same, while the second order

asymptotic approach allows for different biases in the two estimators. The

econometrician can also consider the estimates and see whether the difference in the

estimates is large in economic terns relative to what would be expected. The test statistic

is straightforward to compute using existing econometric software to calculate the 2SLS

estimators, Nagar-type estimators, and LIML as well as the partialled out models.

While giving guidance to inference is often subjective based on the

econometrician's beliefs, we suggest the following approach. We suggest that the new

specification test of equation (6.7) based on forward and reverse 2SLS be done. If the

2SLS estimates are close and the estimate ofthe bias term B from equation (6.6) is

small, the conventional first order asymptotics may be used, and the 2SLS estimates

should be all right. If the test rejects or the estimated bias term is large, we then suggest

using Nagar-type estimates to perform the second specification test based on equation

(7.4). If the forward and reverse estimates are close and the specification test does not

reject, we suggest using LIML, which is the optimal combination of the two estimators.^^

Ifthe test rejects, we do not suggest using these estimates as either a failure of the

orthogonality conditions or an extreme situation of "weak instruments" is likely to be

present. If the Nagar-type forward and reverse estimates are not close but the

specification test does not reject, a decision cannot typically be made based on the new

specification test.

Our approach can be generalized when more than one jointly endogenous variable

is on the right hand side ofthe model specification. Two variables can be interchanged

as before to provide forward and reverse estimates. Second order asymptotic theory is

again used to form the associated distributions of the second order distributions for the

bias terms and for the specification tests. We derive the rather unexpected result that

only one set of differences provides the optimal specification test. So far, we have

limited the extension to 2 RHS jointly endogenous variables for the second specification

test based on the Nagar-type estimator. We expect to extend our results to 3 or more

RHS jointly endogenous variables and to the first specification test, which is based on the
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2SLS estimator.

" If the LIML estimate differs markedly from the forward and reverse Nagar-type estimates, the LIML
estimate should not be used because the problem of the absence of finite sample moments may well be

present.
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Table A: Estimates with 1452 Observations, 134 Predetermined Variables and 136

Instruments, a - .002

Least 2SLS 2SLS Nagar Nagar

Squares Forward Reverse Forward Rev.

1. Price elasticity -1.36

(.147)

-2.03

(.465)

-2.31

(.500)

-2.03

(.465)

-2.31

(.502)

2. Standard Error .301 .303 .133 .303 .133

3. R^ .962 — — —

Reduced Form Regressions

4. Standard Error .053 .308

5. r2 .941 .960

6. F statistic 154.5 234.1

Partialled Out Reduced Fom1 Regression

7. Standard Error .016 .037

8. R^ .093 .012

9. F statistic 74.6 8.54

'
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Table B: Estimates with 1452 Observations, 134 Predetermined Variables and

266 Instruments a -.092

Least 2SLS 2SLS Nagar Nagar

Squares Forward Rev. Forward Rev.

1. Price elasticity -1.36 -1.24 -8.01 -1.21 -4.64

(.147) (.194) (.789) (.194) (.293)

2. Standard Error .301 .301 .060 .317 .080

3. R^ .962

Reduced Form Regressions

4. Standard Error .038 .295

5. r2 .972 .967

6. F statistic 154.2 130.5

Partialled Out Reduced Form Regression

7. Standard Error .016 .038

8. R^ .219 .027

9. F statistic 2.79 .280

'
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Appendix

A Technical Lemmas

Let

U =
2/1 y2 , M = [P-z7r2,Z7T2]^Z7r2i0,l), V = U-M.

Note that the rows of V are i.i.d. normal with zero mean and variance Q. Also let

S = U'P,U S-^ = U'M,U-

Lemma 1 5 and S-^ are independent of each other.

Proof. Follows easily from normality of U.

We need to establish asymptotic distributions of S and S-^. We first show that

Lemma 2 Let ei = (1,0) and e^ = (0, 1) . Then,

J_ // [/'P,[/ei \_^l U'P^ei

v^ ^ U'P,Ue2
) \ U'PMe2

and

1 // U'M^Uei \ ( U'M.Uei

^\\ U'M,Ue2
) \ VMM€2

converge in distribution to normal distributions.

Proof. The proof will only be given for (([7'P,C/ei)' , {U'P^ei)')'. The proof for (([/'M^f/ei)' ,
(t/'M^C/ez)')'

is omitted. Observe that the conclusion would follow if {{JJ'PzUa) ,
(U'PzUA) ) is asymptotically normal

for arbitrary a, A. By the Cramer-Wald device, the conclusion follows if U'PzUa is. Bekker (1994) shows

that U'PzUa is asymptotically normal under appropriate conditions. Also note that Pj is symmetric

idempotent with rank equal to K. Therefore,

E [U'PzUa] = M'PzMa + K9.a

and

Var [U'PzUa] - a'Q.aM'PzM + a'M'PzMaQ + 9.aa'M'PzM

+ M'PzMaa'^ + Ka'TlaTt + KD.aa'?l.
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If i Var [U'PMa] converges, say to W, then Bekker (1994, Lemma 2) notes that -^ {U'P^Ua - E [U'P^Ua])

is asymptotically normal with mean zero and variance W. In our case, because

-M'P.M = -1^1 n'2z'P,Z7T2 (/?,!) = f-TT^z'
n

zn2]-
\

^
I
(/3,l)^e-A,

and

we have

K
> a,

n

- Var [U'PzUa] -> a'ila • 6 • A + 6 a'Aa -Q + G- Qua A
n

+ • Aaa'fi + a a'Cla -Q + a- flaa'n (1)

convergent, where

A = P
(/?,!)

The conclusion follows.

Lemma 3 Let A denote a symmetric 3x3 matrix such that

Ai,i ^AuJiiQ0^ + 2au)l-^

Ai,2 = 2wii0/3 + 2/3^9a;i2 + 2aa;iiWi2

Ai,3 = A(3Quj\2 + 2qwi2

A2,2 = uJuQ + 0^Qlj22 + 29tJi2y9 + aa;iia;22 + a'^12

A2,3 = 2w220/3 + 20^12 + 2au;22'i^i2

A3,3 = 4^22© + 2aa;|2

Then

1

/ ^11
\

5i2 -E 5l2

\ i, 522
) i, 522 J /

•AA(0,A).

Proof. We will denote the asymptotic variance and covariance as Vara and CoVa.Note that

'11
U'P.Uer = 5ei =

I _ | , U'P^Ue2 - Se2
S\2

S12

S22
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Therefore, (5ii, 5i2, 522) consists of elements of

U'P,Ue2

and the asymptotic normahty follows easily from Lemma 2. Therefore, it remains to characterize the

asymptotic variance. Using (1), we obtain

Vara

and

Vara

Su

S12

S12

S22

= Vara [U'P.Uei]

= Vara [U'P,Ue2] =

Ai,i Ai,2

A2,2

A2,2 A2,3

A3,3

So far, we have characterized Vara (^11)1 VaXa (^12)1 Vara (5^22)1 Cova (5'ii,5i2), and Cova (S\2^S22)

Therefore, it remains to characterize CoVa (S11,822)- For this purpose, it is useful to note that

CoVa {u'P.Uei, {U'P,Ue2)') + CoVa (u'P,Ue2, {U'P.Uei)'^

CoVa (511,512) CoVa (5ii,522) \ / CoVa(5ii,5i2) Cov„ (5i2, ^iz)

CoV„ (5i2,5i2) CoVa (5i2,522) y ^ CoVa (5n , ^22) CoVa (5i2,522)

= y(ei+ei)-17(ei)-F(e2),

where V (a) is the asymptotic variance of l/'P^Ua as discussed in (1). Therefore,

Cova (5ii,522) + Cova (812,812) = \V (e, + 62) -V (e,) -V (62)]^^,,^

.

It can be shown that

^ (ei + 62) -l/(ei)- 1^(62) =

40tJi2^^ + 49/3a;ii + 4au;i2Wii

60Puji2 + QuJu + ©'^22/3^ + 3qwi2 + 0^22^11

from which we obtain

66^a;i2 + Own + Qu220^ + Sawjj + au;22'i'ii

40a;i2 + 40/3^22 + 4Q:a;i2u;22

CoVa (5ii,522) = [F(ei + 62) - y (ei) -V{e2)],^ ^.
- Gova (^12, Su)

- 4^0^12 + 2awi2.

The conclusion follows.
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Lemma 4 Let A""- denote a symmetric 3x3 matrix such that

AJ-2 = 2(1 - a)wiia;i2

A^2 = (1 ~ ci) UJ11UJ22 + (1 - a) a;i2

A^3 = 2 (1 - q) W22'^12

A^,3 = 2(l-a)a;^̂22

T/ien,

/
'-'11

f
^" )^

<?--
012 -E '-'12

v \ -^2^ / \ '^22 / J

1

Proof. Similar to the proof of Lemma 3, and omitted.

Leiruna 5 Assume that

K

N{0,A^)

i^„+«(„-/.).

and that -k^z'z-Kil'n. is fixed at Q. We then have

( ( n-'-S,,

\/n

n-i5i2

n ^^22

\ ""^-5^2
/

AT 0,

A

A-L

• /? + Q - u;i2

9 + a • a;22

(1 - a) • wii

(1 - a) • U12

W^t -^22
) \ (1 - a) • a;22

) )

Proof. Using Bekker (1994, Lemma 2), we obtain

E [[/'P;,[7a] = (;3, 1)' jr^Z'ZTTa (/9, 1) a + KQ.a,

Yj^'MJJa\ = {n-K)^a.

Combining this observation with Lemmas 1, 3, and 4, we obtain the desired conclusion.

B Proof of Theorem 2

We note that

^ = T^-("-'0
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Therefore, without loss of generahty, we may assume

n-^Si2 - T^^n-^S^
b= —:= and - = =-

n-1522 - T^n-152^2 "" ^ n-^S,2 - j^n'^S^^

and utilize the delta method. It can be easily seen that

%^f(b,^y -(/?,/?)']

is asymptotically normal with mean zero and variance

r = A

where

A =

A

A-L
A',

" e e e(-l+a) —a
1 _1_ n QL n:

"e " /30(-l+a) e{-l+a)

e(-l+a)

After some tedious algebra, it can be shown that the (1, 1), (1,2), and (2, 2)-elements are

/?^W22 - 20LO12 + Wii a UJ\\bJ22 + W?2 " 4/?W22Wi2 + 2/3^^12
111 = 7^

"^
" H

e l-a 02

Tl2 =

f22 =

0^bJ22 — 2/90^12 + ''^ii Oi —UJUOJ22P + 2a;iiwi2 + 2/9^W22'^i2 — Scjjj/J

e "^ l-a pQ^ '

/3^W22 — 2/3a;i2 + t^ii Q ti'iit<.'22/3'^ — 4u;iiWi2/? + 2a;ii + 1^120^
+

e l-a

We obtain the desired conclusion from the observation that

^202

Var (e) = 0^uj22 - W^i2 + wn,

Cov(£,i;i) = wii -/?a;i2.

Gov (e, V2) = W12 — /Sw22.

C Two Endogenous Regressors

We will write

yii - P2y2i + PsVsi + £ii

y2i = ZiTV2 + V2i

ySi = z[-K3 + V3i

It can be seen that {(32-, P2,) can be estimated by Donald and Newey's (1998) B2SLS applied to

yii = /322/2i + /932/3i + £ii-
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We will call such estimator (61, ci). Similarly, (/^i~|^) and f^,—|^jcan be estimated by B2SLS

applied to

and

2/2' = j^yi' + (-f )y3. + e2.,

ysi = -Q-yii + I
--Q-

] y2i + £31-

We will call such estimators (62, C2), and (63,03).

Note that we have three estimators for (/32, Ps)'-

C.l Technical Lemmcis

As before, let [/ = ilf + K, where il/ is a fixed, and n rows of V are i.i.d. normal with zero mean and

covariance matrix f2. We examine the first two moments of U'PU, where P is an arbitrary projection

matrix of rank r onto the subspace spanned by the columns of z. Let yj and rrij denote the j'th columns

of U and M. {j — 1,2,3) We would like to characterize the expectation and variance of

^ y'lPyi
^

yi-Pj/2

y'lPys

y'2Py2

J/2^2/3

V y'sPys J

Lemma 6 By Bekker (1994, Lemma 1), we have

E [y'iPyj] = m[Pmj + ruiij

Therefore,

^ y[Pyi
^

y'iPy2

y'iPy3

y'lPyi

y'2Pyz

\ y'zPyz )

Let A denote the variance matrix of S.

'iPmi + run

'iPm2 + riJi2

'iPms + rujis

7712Pm2 + rW22

7712Pma + '"'^23

y^
7773P7n3 + rw33

J
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Lemma 7 By Bekker (1994, Lemma 1), we have

Var (y'iPyj) = uium'^Pmj + ujjjm[Pmi + 2LJijm[Pmj + r {ujucojj + u)}^)

.

Therefore, we have

All = 4a;iimiPmi + 2ru)li

A22 = wiim2Pm2 + bj'z^'m'-^Pmi + 2uJi2'm\Pm2 + r (^11^22 + ^12)

A33 = wiim'^Pm^ + wasTTi'iPmi + 2u)i2m\Pmz + r (^11^33 + w^g)

A44 = 4a;22"i2-P"^2 + 2rco'|2

A55 = u;22"T'3-P?Ti3 + W33m2Pm2 + 2a;23"^'2-P^3 + r (W22W33 + a;23)

Aee = 'iuiz^m'^Pmz + 2rujl^

Lemma 8

Gov {y[Pyj,y[Pyk) = Uum'^Prnk + uJ^km^Pmi + uiijm[Pm.k + Uium^Pm^ + r {uJuOJjk + ^ij^ik)

Therefore, we have

A12 = a;ii7niPTn2 + 0Ji2m[Pmi + uJiim[Pm.2 + oJurri'iPmi + r

Ai3 = wiim'iPms + LJi3m[Pm.i + uJiiTn[Pm3 + uJi3Tn[PTni + r

A23 = uwm^PTn:^ + u;237niPTni + LJi2'm\PTn^ + uJiT,Tn\PTn2 + r

A24 = u;22"T'2-P^i + a;2im2Pm2 + U22m2Pmi + u)2\m!2Pm2 + r

A25 = (^22^1Pms + wi3Tn2Pm2 + W2im2Pm3 + W23?n2Pmi + r

A35 = W33m'iPm2 + uJi2m'^Pm2 + u>3iTn'^Pm2 + u}22'm'2,Pmi + r

A36 = wasmaPmi + wsimgPms + wssmaPmi + W3im3Pm3 + r

A45 = W22'Tl2Pm3 4- u;23"l'2-P"i2 + u;22m2Pm3 + W23"^2-f"^2 + ^

A56 = W33m3Pm2 + W32rngPrns + a;33m3Pm2 + a;32m3Pm3 + r

Proof. It follows from

(wiia;i2 +W11W12)

(wiiWi3 +W11W13)

(a'iia;23 + ^12^13)

(^22^21 +W22W21)

(a;22'^13 + '^2l'^23)

(W33W12 + W3iu;32)

(w33a;3i + W33u;3i)

(tc'22'*^23 + W22W23)

(W33W32 + W33a;32)

2 Gov {y'iPyj,y'iPyk) = Vax {y'^P [yj + y,-)) - Var (y^Py,) - Var (y'^Pyk)

= iJii {rrij + mk)' P (mj + rrik) + {oJjj + bJkk + 2wjfc) m'^Prrii

+ 2 (uij + Uik) m\P {mj + mk) + r (lju {uJjj + Ukk + 2ujjk) + {i^ij + i^ikfj

- (uum'jPmj + Ujjm^Pmi + 2u:ijm[Pmj + r {ojuojjj + Jfj))

- [uum'kPmk + uJkkmiPm.i + 2u}ikm[Pmk + r {umiJkk + ^ik))

= 2u)iim'jPmk + 2ujjkm'iPmi + 2u)ijm\Pmk + 2u}ikm'iPmj + 2r {uJucjjk + '^ij(^ik)
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Lemma 9 Suppose that j ^ i. We then have

Gov {y'.Pyu y'jPy,) = AiO,,m.[Pm, + 2rujfj

Therefore, we have

Ai4 = AuJi2m[Pm2 + 2rwf2

Ai6 — 4a;i37n'iPma + 2ra;i3

A46 = Au)2zm'2Pmz + 2ruj23

Proof. Observe that

Gov (y'iPyi.y'jPyj) - Gov {y[Pyi + y'iPyjMPyj + y'jPVi) " Gov {y[Pyuy[Pyj)

- Gov {y'jPyj, y'iPvj) - Var (xj\Pyj)

.

Also observe that

Gov {y\Pyi + y'iPyj,y'iPyj + y'jPyj)

= Gov {{yi + j/j)' Pyu {yi + yj)' Pyj)

= {(jJii + ijjj + 2iOij) m[Pmj + Uij (mj + nij)' P {mi + rrij)

+ (wii + u!ij) {rrii + TTij)' Prrij + (uJjj + Wij) {rm + rrij) Prrii

+ r {{ujii + uijj + 2wij) ujij + {uJii + uiij) {tjjj + ojij)) ,

where the last line follows from Lemma 8. Because

Gov {y'iPyu y'iPyj) = uJam^Pnij + Wijm'j^Pmi + Wiim\Pmj + u!ijm[Pmi + r {tJuujij + uJaUij)

,

Gov {y'jPyj, ylPyj) = Ujjm'jPmi + Uijm'jPrrij + ujjjm'^Pmj + Uijm'jPrrij + r {oJjjUiij + i^jj^ij)

,

and

Var {y'iPyj) = uum'jPmj + UjjTn[Pmi + 2tLJijm\Pmj + r {ujuojjj + ufj) ,

we obtain

Cov {y[PyuyrPyj)

— {ijjij + Ujj + Wij — uJij — u!ij — u)jj) m'iPmi

+ {wii + Ljjj + 2ijJij + 2ijJij + Wii + cjij + ijjj + Wij — LJii - Wii — UJjj - Ujj — 2uJij) m'^Pnij

+ {uJij + Wii + LJij - Uij — Uij — UJii) rn'jPrrij

+ r {{u>ii + uijj + 2u;ij) ujtj + {ua + Uij) {ujjj + uJij) — uJaUJij - uJaUij - uJjjUJij - UjjUJij — uiaUjj - ufj)

= Auiijm'iPmj + 2rw?-
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Lemma 10 Suppose that j ^ i, and k ^ i. We then have

Gov {y'iPiJi.y'jPyk) = 2uJikm.[Pm.j + 2uJijm[PTnk + 2roJijUik.

Therefore, we have

Ai5 = 2u>iz'm\Pm2 + 2u!i2'm\Pmz + 2rtJi2Wi3,

A26 = 2w32m3Fmi + 2w3im3Pm2 + 2rw3ia;32,

A34 = 2a;23'"2-P"^i + 2w2im2Pm3 + 2ra;2iW23.

Proof. By normality, we may write

where yiLej^yiLek, and

We therefore have

i^ij
,

Wife

yj = — yi + Cj, yk = — yt + e^,

E [gj] = TTij —rrii, E [efc] = mfe —mi.

Gov {y[Py,,y'^Pyk) =^^ Gov {y[Py,,y[Py,) +^ Gov {y',Py,,e'jPy,)
' ' urn ujii u>ii ^

J
/

+^ Gov (y,'Pyi, e'^Pyr) + Gov (j/,'Pt/i, e^Pet)
LJi;

Observe that the last term on RHS is zero by independence. Also observe that

Gov {y'iPyuy'iPyi) = Auji^m'^Pmi + 2rwfi,

Gov {y'iPyu y'iPek) = 2uJiim'iP imk ^'"i ) -

Cov {y[Pyi,y[Pej) = 2u>iimiP Iruj -rui
j ,

where the last two equalities can be deduced by an argument similar to Lemma 8. We therefore have

Gov [y'iPyi, y'jPyk) = 4 '^ ' m'iPmi + 2rbJijUJik
UJii

+ 2uJikTniP f
TUj '-^nii ] + 2a;i,m'P ( mk —mt ]

\ UJii J \ UJii J

= 2u}ikm'iPmj + 2u)ijm'iPmk + 2ru)ijiJik.

Let

022 023 = plim -
m'2

Pz [7712,7713] = plim —
7722

023 033 _

n m'3 n TTgZ

Pz[zTr2,ZTT3].
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Utilizing Bekker (1994, Lemma 2), and the previous results, we can conclude that

( ( y'lPzVl \ I (/3|G22 + 2/32/^3023 + -9|033) + auy^ ^ ^

y/n

and

y'lPzVi

y'lPzVz

y'2Pzy2

y'lPzVs

\ y'^Pzyz )

(

\fn

\

^ y'lM^vi
^ / ,

y'iM^y2

y{M^y3

y'lMzVi

y'lMzys

{ y'zM.y^
J \ ^

{P2Q22 + P3Q23) + auii2

{P2Q23 + P3Q33) + QW13

022 + QW22

©23 + aui23

033 + aUJ33

1 — a)a;ii ^ 1

1 — a) 0J12

1 - a)u>i3

1 - a) U22

I- a) LJ23

I -a) W33
J

are independent of each other, and asymptotically normal with zero mean and variances equal to A and

A-"-, where

All = 4u;ii (/3|022 + 2/32^3023 + PIO33) + 2aujl^

A12 = Wii (/32022 + ^3023) + Wi2 (/3|022 + 2/32/33023 + ^|033) + ^n (/32022 + P3Q23)

+ ^^12 (/5|022 + 2/92/33023 + PI^Ss) + « (^^11^12 + ^11^12)

Ai3 = Wll (<52023 + P3Q33) + Wl3 (/3|022 + 2P2P3Q23 + yS|033) + ^n (^2023 + /?3033)

+ t^lS (/32022 + 2/32,93023 + /33033) + Oc (wll^is + Wn^ia)

Ai4 = 4wi2 (/32022 + P3Q23) + 2aw?2

Ai5 = 2wi3 {P2Q22 + P3Q23) + 2a;i2 {P2Q23 + P3Q33) + 2awi2a'i3

A16 = 4wi3 (y92023 + P3Q33) + 2awj3

A22 = ^^11022 + W22 {P2Q22 + 2P2P3Q23 + PIQ33) + 2W12 {P2Q22 + P3Q23) + a {uuiJ22 + Ji^)

A23 = U;ii023 + W23 (y9|022 + 2/32,03023 + P3Q33) + ^U {P2Q23 + P3Q33) + ^13 (,02022 + /33023)

+ a (0^11^23 + W12W13)
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A24 = ^22 (/32©22 + P3Q23) + W12G22 + t<^22 (^92022 + /S3023) + W12622 + Oc {u!220Jl2 + ^22^12)

A25 = ^22 (/32023 + P2Q33) + ^^13022 + ^^12023 + ^^23 {P2Q22 + /33023) + a (a;22Wi3 + Wl2'^23)

A26 = 2u;23 (/32023 + /33033) + 2a;i3023 + 2Qtc;i3W23

A33 = '^11033 + W33 (/32022 + 2^2,53023 + /3|033) + 2^13 (/32023 + /33033) + a (^11^33 + wf^)

A34 = 2a;23 (/32022 + /33023) + 2^12023 + 2aWi2W23

A35 = W33 (,02022 + /33023) + t^l2033 + ^13023 + W23 (/32023 + /33033) + Q ('^33'^12 + W13W23)

A36 = t^33 (/92023 + /93033) + ^^13033 + ^^33 (/92023 + ^^3033) + Wi3033 + a (W33W13 + W33W13)

A44 = 4^22022 + 2aW22

A45 = a;22023 + 1^23022 + ^22023 + ^23022 + Oi (a;22<^23 + '^22^23)

A46 = 4^23023 + 2aw^3

A55 = a;22033 + ^33022 + 2^23023 + Oi (^22^33 + wfg)

A56 = W33023 + a;23033 + ''-'33023 + ^23033 + a {uJz3U!23 + 1^330)23)

Aee = 4^33033 + 2aw|3

A^i=2(l-a)a;fi

A5'2 = (1 - ") ('^11^12 + Wll'^12)

Ai3 = (1 - a) ('^11^1^13 + wiiwis)

A^4=2(l-a)a;?2

Aj's = 2 (1 - a) a;i2Wi3
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A^6 = 2(l-a)a;23

A^2 = (1 - a) (wilW22 + i^u)

^23 = (1 - Q) ('^11'^23 + '^12^13)

-'^24 = (1 ~ <^) ('^22'^12 + ^^22^^12)

-^^25 = (1 - Q^) ('^22'^13 + W12W23)

-^2(5 = 2 (1 - a) Wi3a;23

^^33 = (!-") (^ll'^33 + t^^s)

'^Si = 2 (1 - a) Wi2C^23

'^SS = (!-") ('^33'^12 + '^13^23)

He = (!-") (wss'^is + W33W13)

Af4 =2(1-Q)a;^2

Afs = (1 - a) (0^22^23 + 'i^22'^23)

Ai-6=2(l-a)a;|3

A^5 = (1 - a) (a;22a;33 + wfa)

^^56 = (!-») (W33W23 + ^330723)

A^6=2(l-Q)a;|3

50



D Application: Nagar-Type Estimator

Applying the delta method, we can find that

v/n Oi - — ,ci — ,61 —

,

V 02 02 03

is asymptotically normal with zero mean and variance equal to

2QVar(eii)^

Cl

a

times

/32^(e22e33-e23'^)'

Q7-<Q33
^

/32^(e22e33-e23'^)'

/32/33(e22e33-e23^)''

8?9033
/32/33(e22e33-e232)^

623Q33 823633
"/32^(e22833-e232)^ /Sife (822833 -823'^)'

/32^(e22e33-e23 = )''

8,3'

02^3(822833-823^)'

022Q 2.'H

/32/33(e22e33-e232)''

e'.3"

/33'(e22833-e232)'

822823

822833
/32/33(822833-823'^)'

822803
/32/33(822'e33-e232)^

822823
/33 = (e22833-e23'^)'

>2/33(822e33-823 = )' ^3^(822833 -823 = )' ,832(822833 -823^)'

With some tedious algebra, it can be shown that the above asymptotic variance matrix is singular:

Postmultiplying the asymptotic variance by

G23
,1,0,0

PiO22
,0,0,1

/32e23
0,1,0

,633' ' ' y
' V /^3©33' ' y

' \p3Q33'

we obtain zero. Therefore, we cannot stack the estimates to derive a more efficient test since all tests

based on a single difference will have the same operating characteristics. This implies that the test can

be applied only to one component of

bi - — ,ci
V 62 62

'
63

' 63

say bi — y. It is to be noted that the asymptotic variance of such a test is given by

2aVar(£ii)^ 1

1-a
/52^K-f^)

Observe that Var (eu) and P2 can be estimated consistently utilizing the consistency of LIML. Also note

that

plim
622 ©23

©23 ©33

plim
1 2/2 1 y2

y'3

M^[y2,y3] = ©22 ©23

©23 ©33
Pz[y2,y3]-z—^—

1 — an — 2

for any consistent estimator a of a. We may therefore estimate the asymptotic variance consistently by

K -1 {Ya=1 (yn - PlLIMLVii - P3LIMLy3i)
j

n-K
P2LIML [ J/2^^y2 „_K2/2-M^y2 y'^P^y,-^^y'^M.y,

J
{y'2^

51



lea

a

c
o in

o
CO

o
oo CD o

o
co

o
in CO

o
o
CMo o in

o
o
ino

in
ino

CM

o
en

o
in

o
CO

o
o
o COo

00
COo

en
COo 00o

o d d d d d d d d d d d d d d d d d d d d d d d

E^

in
CD
C3>O

CD
C3>o

CO
in

CM CM
00o

in
00o CD

o
00

CO
ino

CD
ino

CD o
CO eno

COo o
CM

CM
CO

CM
eno
o
eno CM

o
CO
T-

o
COo
o
ooo 5

o d d d d d d d d d d d d d d d d d d d d d d d
CD

o
CDo
CVJ

CMo
00
in

<a-
CJ)o

•"3-

o COo o "3-

in

CO
CO

CMO
en

•"3- CO

o CMO CMo
CO
COo

1^
COo

CD
COo
o
o

CO

o
CD
ino
o
o o

CM
ino

s o d d CD CD d d
1

d
1

d CD

CM

d
1

d
1

d d d
1

d
1

d d d
1

d
1

d d d CD

j^

00o
00
ino
o
CM
CM
5O
O o

CM
in

1^

CM

in in
CO

1

CD CO
CO

CM
CO
CM

CO
CMo O

CD

O
in
CMo CVlo

CM
ino ino

00
COo

CD
in

in
eno

•<3-

ino
o
ino

d d 9 d
1

d d •^' d
1

d d d d
1

d d 9 d
1

d d CD d
1

d d 9 d
1

I—

o
CDo CJ)

C33

CO

o
00o

CD

s
00
CD 00 eno CD

CO

o
00

oo
COo CO o o oo o

o
o

en

o CMo
CO

o
CO
CD CDo

en

CM
o
CM

"C3 d d d
1

d d
1

d d d
1

d
1

d d V d d d
1

d
1

d d CD d
1

d
1

d d
1

CD

^^
in

o
oo

o
o
ino 5o

en

o
in

o
CM

O
CO

o
in
C3>o o

00
ino eno ino

in
CDo

00
CDO ino

en
COo

en

o
CM
ino

in
COo
o
COo

CM
COo COo

"d"
COO

d d d d d d d d d d d d d d d d d d d d d d d d

£" o
CO

o
CM

O CDO CDo
o
o

CD
CDo CDO ^ CO

COo
CD

O
CO o

eno eno
00
eno

in
COo

00
CDo

CD

o
in

o
CO
CDo

in
CDo

CO
CDo

CD
CDo

CM
CDO

d d d d d d d d d d d d d d d d d d d d d d d d

3
CD
CD

CD
ino

00
ino s in

CM

(3>

ino
<3-

CDO
CD
CD
CM

CM
CO
CO

CD
COo

C3>

COO
CO
00
CO

COo CD
ino So

oo CM CM
CDo

CO
CDo

CO CO
CD
<3-

00
CDo
o
o CD

o d d d d d d d d d d d d d d d d d d d d d d d

««—

CO
CM

CD 'iJ- CO
CO
CM

CJ>

CO
00

i^
CM
o
CD
CO

00

in

00
eno o C33

COm
CD
CD o in CM

CD
en

CM

00
CM
o
in
CM

o
in

in
CO

in
CD
in

d d d d d d d d d d d d d d d d d d d d d d d d

s
00 00

CO

CD
C35

CO

CMo
in

00
in
CM

o
CO
CD

CO
CD

00

CM CM

in
COo

T—
c:)

CD

o
00
CM

in
CDo

00 1^
CDo

CM
CO

en
CD
CM

in

CM
CO

en
CO
CM

o
s CO

CD

"oo
CO
CM

d
1

d
1

d d d
1

CD d d d
1 1

•^ d CD CD d d d
1

d
1

d d CD CD d d

3
5o

CM

CO

COo
CO

CMo
00
in

1^ o
CO

CO
CD 00

CO

CM
CD
CD
5
CM

o
00
CO o

a-
eno

CO
eno

CD

o o CDo
CO
CM
CM

en
00
CO

in
00
CO

CM
CM

d
1

d d
1

d d
1

d d
1

d d
1

d
1

d d
1

d d
1

d d
1

d d
1

d CD d d
1

d

o

CO
CN
CM

CO
CM

in
CM

C3J
T—
CM

ino 00
CM
CM

CO
CM
CM

ino CD
in
CD
S
CO

in
CD
CO

in
in
CD

m
Oio

in
ino

CM
ino o

CM

CM

CM 00 eno
CM

o
CD

CD
in
CM

in
in
CM

o
CD

d
1

cp d d d
1

d
1

d d d d
1

d d d
1

d
1

d d CD d d d d
1

CD d d

s^

o
ino ino

CO
ino

in

o
00

o
en

o
CO

o
o
O

CM
00o o

in

o o o o
en
COo

in

o
CD
>*o 00o CDo ino

00

o
"oT
CDo

d d d d d d d d d d d d d d d d d d d d d d d d

S
CD
00o 00o

<35

o
00

o
00o
T- o

CO

O eno CO
o
T—

COo CM COo CM r- ino 00o
en

o
en

o o o o
eno ooo

COo
d d d d d d d d d d d d d d d d d d d d d d d d

^^ en in in C3) en in in a> en in in en C3) in in en en in in en en in in "cT

> d
1

C3 d d d
1
d

1
d d d

1

d
1
d d d

1
d

1
d d d

1
d

1

d d d
1

d
1
d d

O
O

^ in in in in o o o o o
CO
o
CO
o
CO
o
CO

in in in in o o o o o
CO
o
CO
o
CO
o
CO

c

oo oo oo oo oo oo oo oo oo oo oo oo o
in
CM

o
in
CM

om
CM

o
in
CM

o
in
CM

o
in
CM

o
in
CM

o
in
CM

o
in
CM

o
in
CM

o
in
CM

o
in
CM

£^

S 5

e
CO

CO

C
1

•o
II •H

«CQ

o
c

O
1 J

.2
<*-

o

r 73 c
j::

'1

1

•a

u
5

C
*crt

c JO

en o 2
c
o
•a

i> o s
c:
o

>

c
c
o

>
c
o

1 Si •o
^ 1

-o o
cd .n li J3

PI

1

2
5
c

•g

1
o
•au

:S a nS n i! :S N
(4-r Vm Um .QO O o

w M !"
()> fl> fl> t\t

n^ :^ «
M A c« to

x>
m

2
D s !^ =1 s 3

<
S t!

2 < < s < S
s
B
a
V
k.

^^
o
a.

>—

'

^ V

52



II

c
o

c

in
eno
^ O CJ)
in in ino o o

CM CD
CD LDO O ino

CM
CDo

CD
CDo

CM
ino ino

CM
CDo

CvJ

ino o
03

o
in

o
00

o
CM
ino

en
-^o

CO
ino

CM
ino ino

o om ino o
CD d d d d d d d d d d d d d d d d d d d d d d d

?
00o c\i -^ ino o o CD ino o o r^ r^ 00

o o CD 00
eno

•<3-

o
CMo

-51-

CDo
CD

o o 1^
eno o CMo o

CM h-O O)
>- o

o d d d d d d d d d d d d d d d d d d d d d d d

_
1^oo

CNJ CM t^O O Oo o o
00 -"S-o oo o oo oo

o
o oo oo oo oo oo oo oo

ooo oo
ooo oo oo

ooo
o >-
o oo o

'^"^ d d d d
1 .1

d d d
1

d
1
d d d

1

d
1

d d CD d
1
d d d d

1

d d d CD

_^

COoo
t^ t^ COo o oo o o

in 00o oo o
00oo oo oo

CM

o
CNJ

o
CDOO oo oo oo

T—oo
ooo oo

ooo oo
ooo

T—oo o oo o
CD d d d

1 1

d d d
1

d
1

d d CD d
1

d d d
1

CD d d d d
1

d d d d
1 1

CNoo
CM OM CVJO O Oo o o o oo o

ooo oo
>3-

OO
COoo

COOO oo
ooo oo

ooo OO oo
ooo oo

ooo
ooo
ooo
o oo oo o

^CP

1

CD d d do d d d d d
1

d
1

d d d CD d
1

d d d d d d d

.-^

00
CDo

CO CO ^
N- r>- t^o o o

00 CD
in CDo o

-51-

CDO ino
CM CM

ino ino o
in

o
00
CDo

CD

o
CD
CDO

CD
ino CDo

00
ino CDO

T—mo
in
ino

CO T-
in ino o

d d d d d d d d d d d d d d d d d d d d d d d d

£^

CMo in 00 oo o o
T— T— T—

in r-
00 CJ5o o

CO

o
CO
C3)o

CT>
00o
o
C7)o

<3-

C3)O CJ)o
CMo 00

CDo
CDo COO

00
00o
oo en

00o cno
oo
X—

CM
eno

CD -^
en 05o o

d d d d d d d d d d d d d d d d d d d d d d d d

3
5o

r- CO 1^
in in CDo o o

CO CO
CO CDo o

CM
CDo 00o CM o

00

O
in
T—
CM

COmo o
"EST

o
in

O ino
CO
ino
o
ino

CD
ino

CD
CDO ino

CO CM
in CDo o

CD d d d d d d d d d d d d d d d d d d d d d d d

£
CO CD t-- ino o •<-

00 oo
CO T-
T— T—

CO -a-
in

CDo
CO

in in 03O
CO

05

o
in
CJ)o

CVJo in
a>o

CMo COo 00
Olo

CT)o CM
CM cno

OT COO T-

d d d d d d d d d d d d d d d d d d d d d d d d

s o
N- 1^ in
CM CVJ <-
o o o

00 T-
CO h-o o o

00
COo

00o
CM CM

00o CMoo
COoo

COoo
CMoo oo

1^oo oo oo
^1-

o
in
CMo

en <3-

CM T-o o
d

1

CD d d d d
1 1

d d d
1

CD d d d
1

d
1

d d d
1

d
1

d d d
1

d
1

d d

2^

COoo
O T- CD
CM CVJ Oo o o

O CO
CM -^o o

CO

o CMo
CO

o CM CM
CO

o
ooo

COoo
COoo
ooo

COoo
inoo oo

CMoo
oooo

CO

o
CO CO
T- oo o

CD d CD d 9° d
1

d d
1

d d
1

d d d d
1

d d
1

d d
1

d d
1

d d d
1

o

CD
CMo

CD CD CD
<- T- CMo o o

CM in
CD COo o

in
COo

CO
CDo

CO
00

CMO o CO
CO

CMoo oo
T-oo

CMoo oo
COoo o

CDoo
CM
CMO

CM

o
CO CM
T- CMO O

d
1

d d d
1

d d
1 1

d d d
1

d
1
d d d

1

d
1

d d d
1

d
1

d d d
1

d
1

d d

S"

to

o
CD 05 <a-
<y> o> Oio o o CD r-o o

o
r-o

in
CDo

CD

O
CM
ino

en

o
CO
•<a-o

CD

O
CO
<35O
oo
T-

CM
Oio

in
CDo

in

o CDo
CO

o
in
ino ino

•<3- •<a-

in ino o
'

"" d odd d d d d d d d d d d d d d d d d d d d d

s
?5

T- t^ CD
CO CO CM

r«- CD
CJ> oO T-

COo CDo o CJ)o C35o
OO

o
in
CO CM CO

in
CM o in

T—

COo
T—

COo CD
CDo

Oi en
en o)o o

d d d d d d d d d d d d d d d d d d d d d d d d
C35 in in cj) <j> in in C3) O) in m O) CJ> in in en O) in in O) O) m m o)

CNJ

> d
1

CD d d 9 9 d d d
1

d
1

d d d
1

d
1

d d d
1

d d d 9 9 d d

o
o

in in in in o o o o o
CO
o
CO
o
CO
o
CO

in in in in o o o o o
CO
o
CO
o o
CO CO

c

ooo
o o oo o oo o o
T^ T— -

o oo oo o
ooo
ooo
ooo
ooo
ooo
ooo
ooo
o"

ooo
o"

ooo
o"

ooo
o"

ooo
o"

ooo
o"

ooo
d"

ooo
o"

ooo
o"
T-

ooo
o"

o oo oo o
o" o"
t— T—

? 5

^ _J ^°
SP

2 E/)

II

<N B
•H II

o O

c
1
o
c

o
a
o
1 -J

o
1
'o.

3 ^ •H
3 ©

l
00
, 1

o
c

to

zr/1 J <*H GO (m ^rf

rsl r/i o
2:
c
o
T3

fl) o n
C
o
•a

g

S2
OS
c

§

o

r
<u T3 rr^ m T3 o
? 3

X) oo
s m

CO 2 /. £ n
5
c 1

s
S

•g K
W

o

V
-C i ^ •a 6 R

JSo o o
« OI

ss
(T> <1> (i>

"M "A n
X)

(fl
x>

trt

i?
(Tt c m frt

S
m

3 3 V
V a> ifi

< ^ < < >; < E
s
B
t3
Qi

U
'«' ^i^

O

^i^ ^ ^
OD '—

'

!=^- V

S 2)£e3 e.
.B
H

53



o
if

XI
ca

H

'c

CM
cn

CD
CM

CO
CM 00

CM
CM

00
CD

CO
CM

cn 00 CM
CM

in
eo CO

CM
CO

eo
in

CO
'a- CM CO

cn
CO cn

CD
T- cn

d d d d d d d d d d d d d d d d d d d d d d d

E^

ui in in
00
>3-

C5)
CM in

en in
CM
r-

CD
CO
CM

in
CO CD CO

CM
CD

cn
CD

in
CM
CM cvi

in
00
in

CM
eo 5 CO cn

•^ in^
d d d d d d d d d d d d d d d d d d d d d d d d

in

1^

00
CM

CM

in
"a-

cn
CD

in
CO
<3-

en
en

CO
CD

1^
CD
CD

en
Oi CO

CO
eo

in
eo S CO

CO
CM

00
eo
"3-

CM
00
CM

CO
CM
CD
CD

C\J

T-
in
CO CO

^^ d
1

^' ^ ^ ^' d
1

d d en
1

d d CO d d d d d
1

d
1

CM d CM
1

d T^

in
00

CD
00
CM

c:)
CD
in

in
in
in

CM
CO
CO

^
^

00

eo

CD
CO
CO

CO
in

CD
00

cn
in

CD
CO
CD CD

CO

in

en cn
CD

cn

CO
5 CM

CM

in
'a-

00 CO
CM in
t- CO

S] d
1

d d
1

d d
1 J

d
1

d od
1

CO CM

1

d d
1

CM
1

d d
1

d d d d d CM d T-:
1

05

in m
CO

00 00
CD

00
CO

CO
CO CD

00

00

CM

CM

in
CO
cn

eo CO
CM
CO

eo
eo
CO

CD
cn
cn in

1^
00 CO CM

eo
eo
00

in
eo CD
cn
CO 003 "Sf d

1

^ ^ d
1

d
1

d ^
1 1

CO
CM
d d

1

d
1

d CO d
1

d d d d
1

^ CM d

^~^

00
00

CD
00

cn
00

CO
00 1

CM CM CD eo
cn

CM
CD

CD
CD

CM
CM

CO CO
00 CO CO

in
en

CM 'a-
00 CO

T-

d d d d d d d d d d d d d d d d d d d d d d d d

£"
CD CO

CM
t^ CM eo in

CM
CO
CM

<n
CM CO

T—
s in

00
in

CO
CD
cn

CD
•̂^

in CD in CD
\t-

d d d d d d d d d d d d d d d d d d d d d d d d

C3)

CO CO M CM
CM

in
CO

00
CO

CO
CM

eo
CM

CO
CM

CM
in

CM

eo
'a-

CM CM
5 cn

CD
CM CM

r-
co

eo 00
CO

CM

d d d d d d d d d d d d d d d d d d d d d d d d

*4—

CO

csi

00
C35 T—

CM

00

CM

CD
00

CO

CM

CM
CM

in
eo

in
eo

CD
CM

CO
Si

CD
cn

eo
CM
CO CO

oi
in
cn

CM

CO

CO
CO
CO

cn
00

CM
00 CM

CO

d d d d d d d d d d d d d d d d d d d d d d d d

s
00 CO

CM

00
in
CO

cn
in
n CO

in
CO

in
•<3-

CM

CM
in
CO

CM
00
CD

1^
'J-
CM

CM
CO
in

eo
eo

CO
eo
CM

CM

CO

cn

CO

CD
CD
CM

cn
CM eo eo

eo CM

1

co
1

^ d
1 1

d d d
1 1

^ d CD
1

7 d d d
1

co'
1

CO d d
1 1

1-' d

2]

CM
CD

CD
CM
CM

in
CO
in
CM

CD
CM
in

CM
cn
CM

CM in
CM
in

CO
CD

•<3-

CM cn
CD

CO
CO
CD

CM
en
S
CM

in

CM

CD
en
CO

CM CD

in

en
eo

eo r-
CM r^
T- in

d
1

in
1

d
1

d CD in
1
d d

1

^
1

d d d d
1

d d
1

CM cm'
1

d d
1

^' r^ d
1

"o"

lO

5-

C33
CO

en

00
in

in
in

CD

CO 00
00
•>3-

in
00

cn
CD
CO

00
in

00
CM
CO

CM
CO

CM

in

en
CO
CO

CD
cn
CO

CD
CO
00

CM
CD

t-
CD CO^ 00

1

d
1
d d d CD d d d

1

d
1

d d cp CD d d d
1

d
1

d d d
1

d
1

d d

s~

CM
in in

CD
CD

CM
CD

cn
CD

CD
CD

en
00

CM CD
00

CD
CD

CM eo
eo

CD
00

CD
CD

in
CD

in
cn en cn

00 CD
CO cn

""^ d d d d d d d d d d d d d d d d d d d d d d d d

s
CM
CO CD

00
CD

1^
CO

en
00

in
00

CM
en 00 CO

en CO 00
eo

1^
in

CD
CO

CM 00
00 cn

eo en CO
CM

in CO

d dd d d d d d d d d d d d d d d d d d d d d d
CJ) in in Ol cn in in 05 en in in o> en in in cn en in in O) en m in en

">

5^:

CD d
1
d d d

1
d

1
d d d

1

d d d d
1
d

1

d d d
1

d
1

d d CD d
1

d d

in in in in
CO CO CO CO

in in in in
CO CO CO CO

c
T—

in
CM

in
CM

in
CM

in
CM

in
CM
m
CM

in
CM

in
CM

in
CM
m
CM

in in
CM CM

S 5

fe- s?

2
ll

1

C
1

CM e
•H II

03

t OS

"a

c

*l

r/1

e

1

3
•a

1
(U

0 3
JO

2 (4-1 1

1

2 5
(N &n <1) n

CM

c 1
2

c

g
r

jU •0 !^ Si T5

to ? S
5 00

S ir>

« £ Si Z £
fi

1

i3

c

•g i2 s
•a
u

^ a £ (U £ j:: %'

u-i <4-l .fi

01
(1> fl) (I) n>

•M 14^ t«

cc c3 3 3 &I

f) S <u .fi

< ^< < > < g
s
c

a^ ,3,£ iS "3 ~§. H

54



o
II

c
o
u

CO

H

c
o o

CO
ino

COo o
CM

CD

o ino
00
CM

CO
in

in
COo

CJ)

COo
O)
in

00
in

q
CO
>a-o
o
ino
o
ino

CD
ino ino

o
ino

CM
CDo

CD
CDO

CO
ino

CM
ino

CO
COo

o d d d d d d d d d d d d d d d d d d d d d d d

'e

CD in
c:^o
oo in

in
CD o C3)O 5 COo

CM

o
CDo

1^

o
CM

CM

COo CO
CJ)o

T-o O)
O)o o ino CO

CJ)o
CM O) CM

0)o o
51-

o d d d d d d d d d d d d d d d d d d d d d d d

_ o CDoo CO

C3)o
CO

CO

CM

o
CO

CM

o CD
CD

in
CJ)

T-
CM
o
o oo oo o oo

CDoo oo
o
o

O)oo
inoo

CDoo
o
o

"^"^ d 9 9 9 d d o d
1

CM
1

d
1

CD d d d
1

d
1
d d d

1

d
1

d d d
1

d
1

j«:

<DO
o
in

00
O)

CM
CM
CM

CM
CO

in
oo
CDo

COoo
CO
00
^1-

•a-
in
CM

in
ino oo

CM

o
CM

O
00oo oo o

CJ)oo
CDOO

<ooo
o
o O oo

d d d
1

d
1

d d
1

d
1

d
1

d CO
1

d
1

CD d d d
1

d
1

d d d
1

d
1

d d CD d
1

CD
CJ)o

00
C3i

CM

in
CO
CD

CDo
CD
CD
CM

COo 00
'a-
CO

CJ)
00

<3)

in

in
CO

00
CDo

CO

CM
oo

CMoo
CMoo

COoo
ooo

CMoo oo
CMOO oo

CMoo
CMOO

tooo
w> d

1

d d cp d d
1

CO d d
1

d
1

d
1

d d d d
1

d
1

d d d d
1

d d d
1

d
1

,,^

o
o

CO
ino

CM
ino

CM
ino

CD
<a-o

CD

o
CJ)

o
CD
CJ>o

CO
ino

CJ)

o
oo o
o

CO
COo

'3-

o
CM
COo

CM
ino CDO

O)
ino

CD
ino

>a-

o
CM
ino

CM
ino

"oo

O
d d d d d d d d d d d d d d d d d d d d d d d d

^
-a-

CDo o
CJ)

o
Oi
CDO

CO

o CDo
CJ)
CDo

CM

o
CD

o
O)
CDo

CM
CM O)o

CD
O)o

ino CM
<3)o

CM
00o

in
O)o o

00
00o

CM
O)o 00o

CO
O)o

00
00o

"" d d d d d d d d d d d d d d d d d d d d d d d d

"3
ino

CM
CDo o

CO

CJ)

CDo
in

o CO

m
in o

CM

o
O)

in

CD
CDo

00

o
CO
ino ino COo So

CO
ino
o
CJ)o

CJ)

CO
CM

CD

o 00o
"oo
CM
CM

d d d d d d d d d d d d d d d d d d d d d d d d

*—

00

CM

CM o
CM

CM

CO
CO
CO

CJ)

CM CM
in
CJ)

CO

00

CD

00
CO

CD
CO

00

co

oo CD
CJ)o o ^ CD <3-

T— o CO
in co

CO

CD
CO •"3-

o
CM
CO

d d d d d d d d d d d d d d d d d d d d d d d d

s
CJ)o
CM

COo o
CO
CO

ino
CM

CD
CM

CD 00
in

co
CM

in
00
CM

o
O)
C3

O)
00
CM o

o
COo
o
COo o

CM

o o
00

o
CM

s
CD

CO
CM

00
CO
CM

Id

d
1

d
1

d d d
1

d
1
d d CD

1

•^' d CD d
1

d d d
1

d
1

d d d
1

d
1

d d

^
CO o

CO
00
CM

in

s 00
CO

CO CD
O)
CO

CMO CM C3)
CO
oo CMO CMo

CMoo
CO
CMO

O)

o CMo 00o
CM
CO

CO
CO
X—

o
00o

d
1

d d d d
1

d d
1

d d
1

d d
1

d CD d d
1

d d
1

d d
1

d d
1

d d
1

d

o

CM

CM
^ O)

CO
o
CM

^1-

CM CO
CM

in
CO
CM

CD
CM

<D

CM

co

CM

CO

o
CD

CD
CMO

CO

o
CO
T—o CMO

O)
COo COo

O)
COo CDo

O)
O)
o

t—
O)

d
1 5 d d d

1

d
1
d d d

1

d
1

d d d
1

d
1

d d CD d
1

d d d
1

d
1

d d

^
CO

o
•<a-

ino
in
ino
o
ino

CJ)

O
CO
ino

CO
ino

CM

o CO o
00

o
in
CO

CJ)
00o

00
COo

CD
O)o

in
00o

CO
ino

O)
CDo

in
COo CDo

in

o
CM
ino

O)

o O
d d d d d d d d d d d d d d d d d d d d d d d d

s o COo 00o 00o
CO

00o
CO
00o o in

in
CJ)o ""a- O)m

T-
CM
•c—

CJ) 00
CM
o in

O)o
00o CO

C3)o
COo CD

O)o
CD
O)o o

m
O)o

d d d d d d d d d d d d d d d d d d d d d d d d
"^ Ol in in o> O) in in CJ) CJ) in in O) CJ) in in O) O) in in CJ) O) in in "ot

>

>

d
1

d
1

d d d
1

d
1

d d d
1

d
1

d d 9 9 d d CD d
1

d d d
1

d
1

d d

o
O

lO in in in o o o o o
CO
o
CO
o
CO
o
CO

in in in in o o o o o
CO
o
CO
o
CO
o
CO

c

ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
d'

ooo
o"

ooo
d"

ooo
d"

ooo
ooo
d^

ooo
d"

ooo
ooo
d"

ooo
d

ooo
d"

ooo
d"

;:?
E o

in c ;^n .f: ui .c

1
C/1

-a
c ?

U -^4:' w
C/l ri z VI

II

1

c

1

CN c
•g

II 1
_o

'03

O
.2

o o "S-

c

on

C

3
•o
'(A

C

00

•a

2

3a
1
<u

Urn

o

U
fN y-i o 2

c
o

Q> o B
C
o

>
c
o

"I

c
o

O

o
i
to

•a

-a
u
en

^
XJ

•o oo
in

a XJ :i ^
P!

^
£

i
1

S
g
1 1

O
•a

^ .a J= ^ i! _c n
J3o o o o

w t« u
.N w N

(^
N a

« n « Vi n « mCc 5 u

<
« t3 u "
s < < s <

.a

E
s
B
o
a>
«ri

t-

a> ,iC,
e

^i^ ^ ^—^

'c'
.'=^O Jxi V

s Ssgss
J3

55



o

H

>

>
o
O

CMCMt-CMCNJt-1— CNJOOO't-oooooooooooooooooooooooo
CNJcnLOOcD(DCMrOT-t^T-Ln
oooooooooooooooooooooooo
T-ot^'^r~-oorocDoocncDooT-cocDcomo(^M"T-oh~cDT-CDCOOO-i-OCMOCJCMOO
cvjiricboT-^OT-'odoT-o

Ot-Tj-LnooTfi^cDOtnrocM
CMintDT-T-Tj-OOOTi-'^CVjT-
h-cD'if'a-T-<Dcnr--roa)Ocsi

T-^ -r^ 00 -r^ <-' CO O T-^ O O C\i

(O ' ' ' '

r^h-T-cvj-tj-ooincncj^cDi^a)roinmcDT-OT-LOCDT-'rroo•^rh^oocMooT-T-cocMmoin
CO o" o" T-^ -I- o o o o T-' o T^

ocMa>cMr--cDoco'^-<^coi-OC3)COOOa>0)05t-OOT-
T— OO^—T— OOO-r-T— T— T—dodo'ooooooo'o
cMr^cocoooicocNjcor^LOT-
t-t-t-t-CMt-t-t-CMCMCNCO

oooooooooooo
oicot^T-i^T-T^T-T-ocMin
COCOCM-<a-C0COCO'3-CNCMCSIC\lOOOOOOOCDOOOO
OJh-COmOODCMOOCMCOt^
t^CDCDOOOOCDh-COCDCDCDCDOOOOOOOOOOOO
dddddddcicDcScSc}
in CD CO O) CM CD
OD CM T- ^ O CM COO LD CM CM CO

CM -sT CM O O

CO CM CO T- -tj-

T- CO O) -^ CO
CD CO CM -^ CM CM
"3- O O CM CM O

C5co<3)cooinooinr~-t^cDCM
mcMr^O'^cn't-coi--CDif)i^
cointr)cDCD'<^(DCDCDCDiqcD
ddcDo'cDrocoddT-'T-^d

^ 'a- C3> r- CM r^
00 CO 00 r- O) en
00 f ^ 00 00 '^

CD d d d d CD

00 CM h- in 05 in
CD 05 C5 C33 CT> CJ)^ 00 00 ^ ^r 00

d d d d d d

CM T- r-. 00 r>- o
CD CD in CD h- r--o o o o o o

CD O CO CM CD 00
r- r-- o o CO CDo o T- -I- o ooooooooooooo

cDi^in'*-r--T-r^oi^oocDT-
r-r-r--oocDCDcncncMCMT-cMOOOOOOOOt-t-'<-t-dddddddddddd
CDinincncDinincDCDinincDdddddddddddd

ininininoooooooo
T— T— T— T— cocococo

oooooooooooooooooooooooo

OCMCMLO'^roOOOCMCDCMLnCM
^CMCM"^CO-<--j-rOT-T-T-CMoooooooooooodddddddddddd
T-CDCDincD-^-^OO-^r-^-h-
0O-^-^0OCD^f-5tCD-^COCO-«toooooooooooodddddddddddd
CM
CD
CM

CM
CD

CO
co
in

o
CM

CDo
CM

CO
CO

CMo
00

00
CD
CM

00
00
CM
o
CD

00

1

O
1

O 1-^
1

o
1

o
1

o
CM
o

1 1

o CM
1

CD
in CD

CD

o
CDO o

CD
CD
in

in

00
ino

00
CMo o

CO
CM

CO
in
CM

OOIDOOOOt-Ot-

r^cocMOT-cDcocMco'^LnLn
OO'<d-"5j-CDOC0m-^OT-CM
CMCMinOcp-r^CDCMI--;'^-^CM
-r^dT^cOi-'dT^ddx-^CMT^

inco'^CDr^cO'^incDoocDco
CDOOOOCDCDCDCDOt-CDOOt-OOOOOOOt-t-OOt-dddddddddddd
cDCDi^t^T-cocn-finT-'^coOOOOt-CMi-t-C0CMt-CM
oooooooooooo
T-CMOT-TjCMinCD'^OOCO
cDcococDinrocO'^-'a-coco'^OOOOOOOOOOOOdddddddddddd
•<3-inoo-^cDT-inincMincDco
T-CDCDT-Ot^h~0(Dt^CDCDt-OOt-t-OOi-OOOOdddddddddddd
CD T-
CO M"
T^ d

CM CD CO 00 (^
CM in CM CD t^

h- CD -^
o in CO

<3-C0COCDC0CMCDr^CM
•<a^ d d cvi CM d d t-^ T^ d

COCDCDCD-^J-T-CDT-t^-CMT-OO
CDinr~~cDT-in'«;rcMCDcoocDooo-^cdcd-^cocdt-cmcd
T^ d tri d d t-: CM d d T^ T^ d

OOOOOCDinCMtOOOCOh-CDCO
CD0O0Oinr--0O0Oh~CDCDCDCD
oo^'a-'^oooo'^'^oooo'a-'^oodddddddddddd
h~T-or--'^OOCD<DCMCDCMCM
LnLncDinr>-r-r--t^cDCDCDOOOOOOOOOOOOt-dddddddddddd
coin'^r«-CMCDCDCM->-inooT3-
h-CDr-I^CDCDCDOCMCMT-CMOOOOOOOt-t-'^— T-T-dddddddddddd
cDLOincDcninincncninincDdddddddddddd

ininininoooooooo
T-T-T-T-COCOCOCO

oooooooooooo
inininininininintnininin
CMCMCMCMCMCMCMCMCMCMCMCM

00
o^

z Bl

II

1
en

C
1

(N S

ffl

II E _o

.05

O o
•3d

o "S,

c
i

1

2

3
•a

1

a
ca

a
2

3

1

r^ C/l o z
c
o

h) o e
c
o
•a

CM

c
o

o

o
T3 1 XI a1

e

rt Xi
<1)
^ ^ r

?
g

i

1 1

a

i
GA

n o n <—

•

O
<*-

o Xi
Vi en 9

aN
t*(

N
S(

N et

£M
s3 3 3 a

u a> A
< ^ << ^ < E

s
e
au
4^
h

a> 3
"rz

o
a.

2J

e ^ •^Z- j«i V

^.^ S_/ V^' ^^ -wi* ^-' r^

56



oo

la-

c
o
U

JO
a

"c"

CD
CDO CNIo

CO
CNo CDO

CD

o
o
CMo

in
CMo

00

o
CD

o o CMo
CM
ino

ino CD

O
CO
ino

00
CDO

00 00

o
CM

o
CD
CN

CD
in

CM
COO

CO
COo in

O d d d d d d d d d d d d d d d d d d d d d d d

%
CM
in

CO
ino

CO
CDo

CO
in

CM
CO
o
ino ino

CM
CO
oo in

o
00

o
CMO ID

CD
ooo cno

00

T-
^ CM

eno
CO
00o

CD CO

CM

00
CDo

00
CDo

CDo
CM

d d d d d d d d d d d d d d d d d d d d d d d d

CD
C33

in
CO
CM

CO
CO

CM
in

C3)

o
5 5-

00
ID

CO
IDo CO

CD

CD

o
CN CD

o CO
'a-

o
CM

in
CD o o

CMo
CM

in
CD
o
CM
CN

00

in

^^ Cvi d
1

T— d cp h^ CM
1

^' CM
1

in

1

1

d
1

d d d
1

d
1

d cp d
1

d
1

d d d
1

cp

^
in
en
CO o

CD
ino CO

CO

CD
M-
CO

CD

o
CM
CO 00

CM

O CD
CM CM

CDO
CM o CM

CO

CM
in CD

CD

CO

oo
CO

CD
00

CD
CO
CM

CM
CMo

CO
CO
CM

CO
CT>

CM

00oo
c\i d d

1

-^ d
1

d
1

csi •^ o d
1

d d d d d
1

d
1

d d d d
1

d d cp

CM 00
CD
CD

o
CD
CM

ino in

in
CM

CD
CM
in

CM
CO
in

m
00

^
'T

CM

CO

CD
CD

CO
IDO o

o
s CMo

inoo COo
oo

CD

oo CO
CD CM

o
00o

^33 d
1

in
1

d CM d d
1

d ^ d
1

d d
1
d d d d ep" d

1

cp cp
1

d d
1

d cp

^^
oo CO

o
CD

o
CMo in

00o
CM
(3)o

CD CD
00o

in
00o

"oT CD
COO

00

o ino
CM

o
CM
IDO

CO

o
CO

o
CO
ino

00
eno

CD
'a-o

en

o
CO
eno

d d d d d d d d d d d d d d d d d d d d d d d d

^
CM CMo CMo CO in

CM
CM o

CM
CO
CM CO

ino 00o CO
CO CDo CDo

<a-

o
CM
CDo o ?3o

CO
CDo

CO

o
CD

o
CO
CDo CM

d d d d d d d d d d d d d d d d d d d d d d d d

D)

in 00
COo

CO

o
CD
CO
o 00

COo
CO

o
o
CO
oo CM

o
•<a-

o
CDo CD CD

ino CDO ?^
CDo
CO o

o
CDo

CM

CO

00
CD
ID

o
o
o
o

00
00
in

d d d d d d d d d d d d d d d d d d d d d d d d

C^
CM
CM

in

o
00
00o

00

CM
CM
CM

o
COo
o
00o CM

CD
00 cno

00
00o

CD
00

CD
in
CM

00o ID
'a-

CM

in
00
CO

CD
CM

t~-

en
CO

CN
CD
CD

CO
CM
CO
m
00
CD

d d d d d d d d d d d d d d d d d d d d d d d d

s
CD

CO

00
CO

Cvj

00
CO

in
CO
CD

o
in
CO

CD
CD

00
ID
CO

CO
CD
CO

in

CM

00 o
CD
CO

00

CM

CDO
CM

CD
00
'3-

00
CO

CM

CD
CD
CN

in
CM

CD

CM

CM

in
00
CM

CD
C>

CO
oo
CM

1

d T— d d
1 1

^ d d
1

d
1

-^ d d
1

d
1

d d d
1

d
1

d d d
1 1

-^ d

^
in in

C31

00 CO

00
CM
in

in
CO
CD

CD
CO
o
CO
ID

CD
CO
CD

CN
CM
CM

o
00
CM

CO
CO
CD

en
COo
o
CO
CO

ino
CD

CO
CMo

CD
cn

00
T—
>3-

^
r^

00
CD
CO

oo o
<a-

CD
en
CO

cp d d
1

d d
1

d d
1

d d
1

d
1

d d
1

d d
1

d d
1

d d
1

d d
1

d d
1

d

(J

o CO

5^

CM
CM

in CD

TO

00
in
o
ID

00 00

CM
00
<a-

CO
o
00

CD
CO
CM

oo
CM

CM
CO

CM
CO
CM

ID
CM CO

CM

en
CO
CM

in
CM

CO

CD

CO

co

in

CO CD
d

1

d
1
d d d

1

d
1
d d cp d d d cp d

i

d d d
1

d
1

d d d
1

d
1

d d

S^

CM
CDO o o o o

o
r-o

CM

o
00

o
in
COo

00
00o

in

o
o
CDo

CO

o IDo ino
CD

O
ID
00O

en

o
CO

o o CM
T—

o
00o
m
00o

"cD
CN

^—^ d d d d d d d d d d d d d d d d d d d d d d d d

s
00

o O
CO
CDo 5o

oo o CJ>o
00
eno

CDo en
CM
^ 00

o
ID

O
o
00o

CN

o
CN CO

ooo
CO

o o 5)
h- ID

ID

dd d d d d d d d d d d d d d d d d d d d d d d
CJ) in in CD en in in CD en in in CD en ID in CD CD ID in CD CD ID in oT

> d
1

d
1

d d d
1

d
1
d d cp d

1

d d cp d
1

d d d
1

d
1
d d d

1

d
1

d d

o
O

in in in in o o o o o
CO
o
CO
o
CO
o
CO

in m in in o o o o o
CO
o
CO
o
CO
o
CO

c

ooo
ooo
ooo
ooo
oo
o_

ooo
ooo
ooo
ooo
ooo
ooo
ooo
ooo
d"

ooo
d"

ooo
ooo
C3

ooo
cS

ooo
ooo
d"

ooo
d"

ooo
d"

ooo
d"

ooo
d"

ooo
d

E^

— crt S2 Z

N

° il

>il

r/1 u (4-1

rN lyi o

s a;

(U
>

^ £; "O

a M X)

% V i2
<u f"^ Si

r;; " **- •"
c S '- a,

E -3 — 1.

2 -a = o
k.

-^ fc- ;- W
> « r ^^ 00 <U W
opZ C S

0) o

o > c

^ « s IT)

= I « s£ £ :S ^ iS £
o O o
m ^ vi
V OJ u
.H a.

a

" 3 J2 _
ffl c rt *^ c-1 s -1 -T s

O M „ w
a> V (u b
.2 iS

N «
J2S J2 «
= 52

< S <
t_) «J (_> ,fi

< 2 < g
s
e
o

•o oo •-r-e-

e
r a.

•H-fcSCJv

57



CO

c^

m
CDo ino Zno

CD
CDo

CD
CDO o

CD

O CDo
CO
CDo

00
CMo

00
CMO ino

00
ino
o
ino

CM
ino

•"3-

ino ino o
CD

O
CM
ino ino

CM

o
en Ti-

co ino o
o d d d d d d d d d d d d d d d d d d d d d d d

?
CM
C\J

oo CMo CD
T—
o
CM o

05

o
00 ^ o

t—o o T— T—

oo COo o
1^

CDo CM
eno eno

oo oo 00
COo

CD CM
CO oO T-

o d d d d d d d d d d d d d d d d d d d d d d d~
CO
CVio

CO

o o CMO
en
CMo

oo

o
00

o o CMo CMo COo
o
COo o oo

CDoo
enoo

00oo
COoo

inoo
CM

o
CM

o
COoo

00 T-o <-
o o

^^ o d 9 CD d d d
1

ep d d cp d
1

d d d
1

d
1

d d d
1

d
1

d d d d
1 1

\^ o
in
CMo CMo

in

o
o
CMO COo

CO
COo o

CD

o o
00

CD

Oi
T—o

1^oo
enoo o

inoo
inoo

CO

o
o
o

enoo
enoo o

CO 00
<- oo o

o d CD d d d d
1

d
1

d d d
1

d
1

d d d
1

d
1

d d cp d
1

d d d d
1 1

CMoo oo
ooo so o

COoo oo
inoo o

CO
CO

CM
COo

00
COo oo oo oo

ooo
ooo oo oo

inoo
CDoo oo o o

i^ o d d d
1

d d d
1

d
1

d d d
1

d
1

d d
1

d
1

d d d d
1

d
1

d d d d
1 1

^^ so o
CM

o
CO
CDo

in
'a-o

C35
ino

CD
ino o

o
COo COo

en
COo CMO o

CM

O o
en
CDo

in
ino

CD
ino ino

o
ino 'a-o

CO

o o o
d d d d d d d d d d d d d d d d d d d d d d d d

JZ

oo c:5
eno o eno

00

o
00
00o
o
eno o o

CM

o
CD

o
CO
CDo

ino CMo CDO eno
CD
00o

in
COo

in
00o

en

o
CO
00o

CM
eno

t^ CD
00 00o o

d d d d d d d d d d d d d d d d d d d d d d d d

O)

CD
00o

CO
ino

in
ino

<3-

ooo CM
en
ino

CD
ino

ro
CM 5

CM

in
•<a-o

oo

o 5
CM

1^
CDo

CO
ino ino

CM
CDo

CO
COo o

CO
ino

CM

o
CD CM

CDo
O CD
CD 00O -r-

d d d d d d d d d d d d d d d d d d d d d d d d

»—

in CDo eno 5 CO oo in
en
oo ^ in

cn
CO

CM
COo o in ino CMo en

CO
CM

CO
CM
o •<-

CM en
T- CM

d d d d d d d d d d d d d d d d d d d d d d d d

s
5o

CO

o o 5o
CO

o
o
00

00

o
CO
en

CD
CD
<3- >a-

CD

o CMo
en
CMo

CD

O
en
COo

CO

o o
o
o ^ CM

CM

r^ T-
CM T-
CM T-

d
1

C3 d d d
1

d
1

d d d
1

ep d d d
1

d
1

d d d
1

d
1

d d d
1 9 d d

^
CM

O
en
ino CDo o

CD

o
r- 00 o

ino
en
CD

CJ)

CM

in
CO
CM

to
CD
T—

COoo
CO
CMO

in
CMo

inoo CMO
en

o O
in

o
o
CO

en in
CM r--
T- o

d
1

d CD d d
1

d d
4

d d
1

d d
1

d d
1

d d
1

d d
1

d o
f
d d

1

d 9°

o

CO
CDO

CD
COo

CD
COo

CM
CDo

<3-

00o o
o
in

00
CD
CO
o
CM
o
CM

in
CD
CO

CMO
in

o
CO

o
in
CMo

in
CDo

CM
COo

CO
COo CDo

CO
00 o '^ enO 00

ir- r—

d
1

d
1
d d d

1

d
1

d d d
1

d
1

d d d
1

d
1

d d d
1

d
1

d d d
1

d
1

d d

^
COO

CD
00O o 00o

in

o
CD
ino
mmo

in
"a-o o

5^
o

CM

o
o
ino C^)O

CD
eno

00
eno

CM
eno

en
ino
o
COo

CO
COo

in
ino

CM

O
00

o
h- CD

o o
d d d d d d d d d d d d d d d d d d d d d d d d

s
CO
CM CM

CO
CM

o
CJ5o o

CO
eno CJ>o 00o

CD
00o

CO
00o

en
COo M o

CO
00
CO

en
CM
oo CD

eno eno
CM
eno

oo
00o

00
eno

CO CM
en eno o

d d d d d d d d d d d d d d d d d d d d d d d d
C3> in in en en in in c» <3) in in C3) C3) in in en en in in en en in in en"^

^̂
d

1

d d d d
1

d
1

d d 9 d
1

d d cp CD d d d
1

d
1

d d 9 9 d d

o
O

in m in in o o o o o
CO
o
CO
o
CO
o
CO
m m m in o o o o o

CO
o
CO
o o
CO CO

c

oo oo oo oo oo oo oo oo oo oo oo oo o
in
CM

o
in
CM

o
in
CM

o
in
CM

o
in
CM

o
in
CM

o
in
CM

o
in
CM

om
CM

o
in
CM

o o
in in
CM CM

ô^
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