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Abstract

This paper proposes some tests for parameter constancy in linear regression

models with possible infinite variance. Both dynamic and trending regressors are

allowed. The tests are based on the empirical distribution function of estimated

residuals and are shown to have non-trivial local power against a wide range of

alternatives. Within a certain class of alternatives including simple shifts, the

tests have higher power for testing the simple shift alternatives. These tests are

formulated in such a way that the limiting variables are distribution-free. The

residuals may be obtained based on any root-n consistent estimator (under the

null) of regression parameters. As part of these results, some weak convergence

for weighted sequential empirical processes of residuals is established.

Key words and phrases: structural change, empirical distribution function,

weak convergence, nonparametric test, fluctuation test, CUSUM test.

1 Introduction

There are various sources in economics that could cause a parametric model to be

unstable over a period of time. Changes in taste, technical progress, and changes

in policies and regulations all are such examples. A change in the economic agent's

expectation can induce a change in the reduced-form relationship among economic

variables, even though no change in the parameters of the structural relationship is

present, as envisioned by the Lucas critique. The shifts of the Phillips curve over
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time perhaps serve as the best illustration (Alogoskoufis and Smith, 1991). As a

result, model stability has always been an important concern in econometric modeling.

Earlier studies of parameter constancy include Chow (1960) and Quandt (1960). As

perhaps a consequence of diagnostic failures, models capable of handling parameter

instability have constantly spawned out. The random- coefficients model of Cooley and

Prescott (1973), for instance, the switching-regression models of Goldfeld and Quandt

(1973a,b) and numerous others find widespread use in economics. The purpose of this

paper is to provide additional tools for the diagnosis of parameter instability in linear

regressions.

Recent work in econometrics on this topic has been directed toward detecting

parameter changes occurring at an unknown time, hardly a new problem given the

large body of related literature in econometrics and statistics. Econometricians are

particularly concerned with parameter instability in dynamic models with trending

regressors, cointegrated variables and perhaps a unit root, and with serially correlated

or heteroskedastic disturbances. Various test statistics that are capable of detecting

changes in those situations have been developed; see, for example, Andrews (1990),

Chu and White (1992), Hansen (1992), Perron (1991), and Ploberger, Kramer and

Kontrus (1989). Empirical applications together with supporting theory can be found

in Bai, Lumsdaine and Stock (1991), Banerjee, Lumsdaine and Stock (1992), Chris-

tiano (1992), Perron (1989), and Zivot and Andrews (1992), among others. In this

paper, we propose some tests able to detect structural instability for some of these

models. In addition, these tests are applicable to infinite variance regressions.

Two classes of tests are proposed, resembling the prototypical Kolmogorov-Smirnov

two-sample test. The first class is based on non-weighted sequential empirical processes

of residuals. This class was previously considered by Picard (1985) and Csorgo and

Horvath (1988), among others. However, these authors only consider the case of i.i.d.

observations under the null. We extend the tests to apply to regression models with

estimated parameters.

The first class of tests has limited applicability in time series econometrics since



if trending regressors are included in the regression model, the tests will no longer

be asymptotically distribution-free. In this case, the second class of tests can be

considered, obtained by constructing a weighted empirical process of residuals with

weights equal to the regressors, apart from some weighting matrices. This class of

tests is asymptotically distribution-free whether or not a trend regressor is present.

Our procedure may be regarded as nonparametric, yet it is not fully nonparametric

in light of the need to estimate the regression parameters. By way of construction,

our tests are robust against heavy-tailed distributions and data aberrations. Recent

work of Carlstein (1988) and Duembgen (1991), who consider the estimation of the

shift point under the single shift alternative (two i.i.d. samples) and obtain good

convergence rate, indicates that the tests of the Kolmogorov-Smirnov type may be

powerful.

The classical statistical literature shows that goodness- of-fit tests based on empir-

ical processes involving estimated parameters will depend upon both the estimated

parameters and the underlying error-distribution function even in the limit (see Durbin

(1973)). It is somewhat surprising that we can eliminate this dependence by choosing

weighting vectors, in a natural way, in the construction of the empirical processes upon

which our tests are based, whereas classical goodness-of-fit tests can be made asymp-

totically distribution-free merely by essentially abandoning part of the observations

(see Durbin (1976)).

The tests proposed in this paper are quite general in the sense that we require no

finite variance for the disturbances. Both dynamic and trending regressors are allowed

in the regressions. Within certain classes of alternatives, we show the tests to be more

powerful when used for testing simple shift alternatives, as expected. Moreover, these

tests exhibit non-trivial local power.

As a related result that may be of independent interest, a weak convergence for

randomly-weighted sequential empirical processes has been obtained. We then use this

result to obtain the weak convergence for its counterpart for the regression residuals,

laying the theoretical foundation of our tests.



This paper is organized as follows. Section 2 specifies the models and describes

the assumptions. Section 3 defines the test statistics. Section 4 provides alternative

expressions for the test statistics that are suitable for computation. Section 5 examines

the local power of the tests. Trending regressors are considered in Section 6. Some

comments and possible extensions are discussed in Section 7. Technical materials are

collected in the appendix.

2 Models and Assumptions

The regression model under the null hypothesis is

yt = x'
t/3 + e t (< = l,2,...,n) (1)

where y t is an observation of the dependent variable, x t is a p x 1 vector of observations

of the independent variables, e t is an unobservable stochastic disturbance, and ft is

the p x 1 vector of regression coefficients.

The non-null hypothesis specifies the following model:

Vt = x'tPt + el.

where the /3t may not be constant over time and the disturbances e* may not be iden-

tically distributed. In particular, we are interested in the following local alternatives.

i) Changing regression parameters: j3t
= (3(1 + Aig(2/n)n

-1
' 2

).

ii) Changing variance: e* = e ( (l + A 2 /i(2/n)n
-1 / 2

).

iii) Both i) and ii).

where Ai and A 2 are two real numbers; the functions h and g are assumed to be

bounded.

In what follows, the notation op (l) (Op (l)) is used to denote a sequence of random

variables converging to zero in probability (being stochastically bounded). The norm

||
•

||
represents the Euclidean norm, i.e. ||x|| = (Ya=i x1Y^

2
f°r x € -Rp - Finally, [•]

denotes the greatest integer function.

We impose the following assumptions:



(A.l) Under the null hypothesis, the e t are i.i.d. with distribution function (d.f.) F,

which admits a density function /, / > 0. Both f(x) and xf(x) are assumed to be

uniformly continuous on the real line. Furthermore, there exists a finite number L

such that \xf(x)\ < L and |/(x)| < L for all x. The mean of e t is zero if this mean

exists.

(A. 2) The disturbances e t are independent of all contemporaneous and past regressors.

(A. 3) The regressors satisfy

plim— >J x tx \
— SQ f°r s G [0, 1]

n t=i

where Q is a p x p nonrandom positive definite matrix. The convergence is necessarily

uniform in s, because the sum is "monotonic" in s.

(A.4)

max n _1/2
||x t ||

= op (l)l<t<n

(A. 5) For every fixed Si, there exists a sequence of positive random variables Zn =

Op (l) such that

i \ns]

n
4 r l

J2 W Xt W - (
5 ~ 5 i)Zn a. 5.

=[nsi]

for all s > Si. In addition, the tail probability of Zn satisfies, for some p > 0:

P(\Zn \
> C) < M/C2(1+p)

.

Note that Zn may be taken to be max^ A;
-1

J2\=i \\
x t\\ provided the condition on the

tail probability is also satisfied, where i = [nsi] is fixed.

(A. 6) There exist 7 > 1, a > 1 and K < 00 such that for all < s' < s" < 1, and for

all n,

- V £(x;x t )

7 <-A'(5" - 5') and E{- Y\ x[x tf < K(s" - s')°,
n r~i n ~i

:<<<J i<t<j

where i = [ns'], j = [ns"]. The assumption is satisfied if the x t are bounded regressors.

Also if E(x'
t
x t )

2 < M for all 2, then the assumption is satisfied with 7 = 2 and a = 2,

because E(jy
t=i x 't

x t)
2 < {Ylt^i^i^t)

2
]

1 ^ 2
}
2 by the Cauchy-Schwartz inequality.



(A.7)

{X'Xfl2 - 0) ± P(1)

where X = (a^,^, ...,x„)'. When the disturbances are i.i.d. and have finite variance,

then least squares estimator satisfies this assumption. For infinite variance models,

robust estimation such as LAD method has to be used to assure (A.7).

(A. 8) There exist a 8 > and an M < oo such that

£(-£lM 3(1+{)
) < M and £(-£lNI

3

)

1+5
< M Vn.

"
~ n (=1

(A.9) Finally

i t
ns

J

plim— y^ x t
= sx uniformly in 5 £ [0, 1]

n t=i

where x is a p x 1 constant vector. When a constant regressor is included, (A.9) is

implied by (A. 3).

Assumptions (A. 3) and (A.9) exclude trending regressors, which will be discussed

in Section 5.

3 The Test Statistics

Let $ be an estimator of and put i t
= y t

— x'
t
0. The test is based on the estimated

residuals £ t . For each fixed k, define the empirical distribution function (e.d.f.) based

on the the first k residuals as

K t=\

and the e.d.f. based on the last n — k residuals as

P:_ k (x) = -J— £ i(i t
< x).

n K t=k+l

Further define

n n n

and the test statistic

Tn(-,x) = -(1 - *)Vn (Pk (x) - P:_ k (x))n tj .r>. > '

Mn = max sup \Tn (k/n,x)
k x



where the max is taken over 1 < k < n and the supremum with respect to x is

taken over the entire real line. For each fixed k, the supremum of Tn with respect to

the second argument gives the weighted Kolmogorov-Smirnov two-sample test with

weights [(k/n)(l — Jc/n)]
1 ? 2

. Thus the test Mn looks for the maximum value of weighted

Kolmogorov-Smirnov statistics for all possible sample splits.

We have the following identities:

Tn (-,x) = n-^J2l(e t
<x)--n-^±I(i t <x) (2)

n t=i
n t=\

= n- i l 2 Y,{^t<x)-F{x)}--n- l '2 J2{I{e t <x)-F{x).} (3)

Writing in the form (3) will be convenient for studying the limiting distribution of Tn

and hence of Mn .

As will be shown, the test Mn has non-trivial local power against changes in the

scale parameter of the disturbances. However, like the CUSUM test, it has no local

power against shifts in the regression parameters if the mean regressor is zero. To cir-

cumvent this undesirable feature, we introduce a new class of tests based on weighted

e.d.f. of residuals. Let Xk = (xi, ..., x^)' and

Ak = {X'X)- l l 2 {X'kXk){X'X)-
1 l 2

. (4)

Define the p x 1 vector process T*,

rn*(-,x) = (x'xy 1 ' 2 J2Mi(£t<x)-Fn (x)}
n t=i

-A k {X'X)-
l l 2Yj

x t {I{e t <x)-Fn {x)} (5)

t=\

and the test statistic

kMn =rnaxsup||Tn*(-,x)
k x n

where ||y||oo = max{|y 1 |, ..., |yp |}, the maximum norm. The process T* and test M*

reduce to Tn and Mn , respectively, when the weights x t
= 1 for all t.

If there is a constant regressor, then the following identity holds,

(X'X)- 1 ' 2£ x t
- Ak(X'X)-^

2£^ = 0, V k (6)

t=i t=i



so that the value of T*(k/n,x) will not change when Fn (x) in (5) is replaced by an

arbitrary function of x. In particular, T* can be written as

(X'X)-^£ x'
t
{I(it <x)~ F(x)} - MX'X)-^£ x'

t
{I(i t <x)- F(x)}. (7)

Equation (7) is a weighted version of (3). This expression cannot be used to compute

the test A/*, as F(x) is unknown; however, it will be useful in deriving the limiting

process of T*. When computing the test, one should omit Fn (x) if a constant regressor

is included. However, whether or not there is a constant regressor, the two expressions

for T* (5) and (7) have the same null limiting process, because n 1 ^ 2{Fn (x) — F(x)} =

P {\) uniformly in x, a well known result for residual e.d.f. (Shorack and Wellner

1986, Chapter 4), and

n-^{(X'X)-^2J> - Ak{X'X)-"
2£ x t }

= op (l)

uniformly in k by assumptions (A. 3) and (A. 9). Finally, we remark here that if none

of the regressors are trending, then we may substitute the scalar k/n for the matrix

Ak .

Let B(u, v) be a Gaussian process on [0, l]
2 with zero mean and covariance function

E{B(s,u)B(t,v)} = (min(s,£) — st)(m'm(u,v) — uv),

which we shall call a two-parameter Brownian bridge on [0, l]
2

. In what follows,

the notation " =$ " is used to denote the weak convergence in the space of D(T)

or D(T) x D(T) x • • x D(T) where T = [0, l]
2 under the (extended) Skorohod J\

topology.

Theorem 1 Under model (1) and assumptions (A.1)-(A.9),

(i) Tn (

[^-,-)^B(-,F(-))
n

and

(ii) T„*(— ,)=»/?•(-, F(-))
n



where B" — (B\, B2, ..., Bv
)' is a vector of p independent two-parameter Brownian

bridges on [0, l]
2

.

Let G(-) denote the d.f. of the r.v. sup0<u<1 sup0<v<1 \B(u,v)\, which is tabulated

in Picard (1985).

Corollary 1 Under the assumptions of Theorem 1,

\imP(Mn <x) = G(x)

and

lim P(M* <x) = [G(x)} p
.

n—*oo

The proof of the theorem is based on the limiting behavior of the process A'*,

I<:(s,x) = (X'X)-^2

f^x t {I(e t < x) - F(x)}
t=i

which we shall call the weighted sequential empirical process of residuals (w.s.e.p.).

Note

T:(
[^,z) = K:(s,z)-A [ns]i<:(i,z).

Introduce

Hn (s,x) = {X'X)- l l 2 Y,x t {I{e t <x)- F(x)}
t=i

which is a non-residual version of w.s.e.p. Theorem A. 2 in the Appendix implies that

A'*(s,x) can be written as

Hn (s, x) + f(x)(X'X)-^(X{ns]X[ns] )(P - fi) (8)

plus an op (l) term which is uniformly small in both s and x. The second term above

is identical to the corresponding term of A[ns]K*(l,x), so that

T*(s,x) = Hn (s,x) - A[ns]Hn(l,x) + op(l).

Corollary A.2 in the Appendix gives the limiting process of T*.

9



The limiting process of K*, if it exists, will depend on the limiting distribution

of the estimated parameters and on the error density function /, as is easily seen

from (8). However, parameter estimation does not affect the limiting process of T*.

The fact that the limiting process of T* depends on F rather than / allows us to

construct distribution-free tests. The sup-type test, for example, transforms out this

dependence on F. Further, if the error e t has a symmetric distribution about zero, so

that .F(O) = 1/2, then tests based on T*(s,0) will also be asymptotically distribution-

free.

Besides the sup-type tests, the mean-type test can also be used. Let

An = ^EEl^,li)| 2 and K = ^ttK&i)\\ 2
-

k J k j

The result of Theorem 1 implies that An converges in distribution to /J /J B(s, t)
2ds dt

and A* converges in distribution to / / Y7i=\Bi(s,t)
2dsdt, where B\,...,BP are in-

dependent copies of B(-,-). Many other tests can be constructed based on the weak

convergence of Theorem 1.

The weak convergence of empirical processes based on estimated residuals has

been studied by many authors, see, for example, Mukantseva (1978), Boldin (1982,

1989), Pierce and Kopecky (1982), and Kreiss (1991). It appears that Koul (1970)

is among the first who studied weighted empirical processes and followed by Withers

(1972). Weighted empirical processes of residuals have been studied by Koul (1984,

1991). Shorack and Wellner (1986) give more references on residual empiricals. The

weak convergence for the sequential version, which is essential for the structural change

problem, has not been widely examined: Bai (1991) considered the sequential empirical

process for ARMA residuals.

4 Computing the tests

We now derive some alternative expressions for the test statistics Mn and M* that

are suitable for programmed computation. We shall focus on M*; the test Mn is a

10



special case. Now for each fixed k, \\T*(-, a:)||oo can only possibly change its value

at £i,£2) • • ?£n when x varies, therefore, the maximum value with respect to x can

be found at x = £; (i = 1,2, ...,n) or equivalently, at x = £(,-) (i = 1,2, ...,n), where

£(,) is the i-th ordered statistic. Let Ri,R.2, ...,Rn denote the ranks of £i,£2, . . . ,£n

and D\^D2i----,Dn denote the anti-ranks so that Zfo, = D#
t

= i. For a fixed j, let

us evaluate T£(-,x) at x = £(_,). First assume there is a constant regressor, so that

T* is equivalent to the expression (5) with Fn (x) = omitted due to (6). Since

I3"=i xtl{£t 5: £(j)) is the sum of those vectors Xj such that i t is not larger than era, it

can be written as Ya=\ xd,- Similarly, J2t=i xtl{£t < £(j)) = X],=i xD x
I{Di < k). Thus

if we define a sequence of numbers Z%,k (t — 1,2, ...,n) such that

Zt,k
1 for i = 1,2, ..., k

for t = k + l,k + 2,...,n

Then Zd,,A: = 1 if and only if D{ < k. Thus

rn*(-,£ (i)) = (i'i)- 1/2 E^.^.a - (a^X*'*)"1 5>*
77

,t=l 1=1

and

m: max max
k 3

(X'X)-^ ^{ZD„k I - (X'kXk )(X'X)-
l
}xD ,

,t=i

(9)

(10)

where / is the p x p identity matrix. Taking Xf = 1 in the above formula for all 2, we

obtain

1Mn = max max —=
k i y/n Yl ZD t ,k

i=i

k

77.

yielding an easily computable formula, see similar formula in Hajek (1969, p. 62-

63). When there is no constant regressor, the expression (9) has to be adjusted by

subtracting the left hand side of (6) multiplied by j'/n, which is the product of the

left hand side of (6) and Fn (i^)). The test M* is adjusted accordingly and Mn stays

the same. 1

:A SAS program for computing the statistics is available upon request.
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5 Local Power Analysis

We consider model (2) with the Kramer, Ploberger, and Alt (1988) (henceforth KPA)

type local alternatives:

f3t
= P + A 1 g(t/n)n-

1 /2 and e* = e t (l + A 2 h(t/n)n-
1/2 )- 1

. (11)

where e t are i.i.d. with distribution function F and density function /. The function

g and h are defined on [0, 1] and are integrable. Define the vector function

Ms ) = / 9{v)dv -s
J

g{v)dv (12)

and the function

X h (s) = [

S

h(v)dv-s [ h(v)dv. (13)
Jo Jo

If h is a simple shift function such that h(x) = for x < r and h(x) = 1 for x > r,

where r £ (0, 1), then \h{s) = (r A s)(l — r V s). Similar is true for As
.

Theorem 2 Under assumptions (A.1)-(A.9) and the local alternatives (11), we have

Mn -i sup sup \B{s,t) + A lP(t)x'Xg {s) + A 2q(t)X h (s)\ (14)
0<s<l 0<<<1

and

MZ^ sup sup \\B*{s,t) + AlP{t)Q^
2
Xg {s) + A 2q(t)Q-

1/2x\h {s)\\^ (15)
0<s<l 0<<<1

where p{t) = f(F-l
(f)) and q(t) = /(F^ityF^it).

The tests have nontrivial local power as long as Xg (s) ^ or Xh(s) ^ for some s. In

addition, Xg = X^ = for all s if and only if g and h are constant functions, implying

no change in the parameters.

Corollary 2 (Changing regression parameters only). Under the assumptions of The-

orem 2,

Mn -i sup sup \B(s,t) + Aip(t)x'Xg(s)\,
0<s<\ 0<t<l

Mn
*-i sup sup \\B*{ Sl t) + AlP{t)Q

1/2Xg (
s

)

d

a<s<\ o<t<\

12



The corollary is obtained by simply taking A 2 = in Theorem 2. In testing for changes

in the regression parameters, Mn behaves like the CUSUM test of Brown, Durbin,

and Evans (1975) in the sense of lacking local power when the mean of regressors x is

orthogonal to the vector function g, as shown by KPA. The test M*, however, does

have local power irrespective of the relationship between x and g. Thus it behaves like

the fluctuation test of PKK. The drift term is also similar in form to the fluctuation

test.

There is a danger of misinterpreting the result of Corollary 2. Let us examine the

following model under the alternative hypothesis:

y t = x'
t
(3 + Ag{t/n)n- l/2 + e t , (16)

where g is a scalar function. This model would be a special case of (11) provided

there is a constant regressor, but for now assume there is no constant regressor and

the mean regressor x is zero. Then it is M* not Mn has no local power, which seemingly

contradicts Corollary 2. This situation arises because there is change in the parameter

of a regressor that is not considered under the null. To see this, we consider a more

general situation:

y t
= x'

t f3 + Az'
t
g{t/n)n- 1^ + e t (17)

where z t is q x 1 and g is a vector function. The x t are the only regressors under the

null of A = 0. Suppose that n
_1

YJt=\ z t
~~* sz an^ n

~ 1

Ht=i x tz t

~
* s Rxz uniformly in

s where Rxz is some p x q matrix. Then

Mn -i sup sup \B{s,t) + Ap(t)z'Xg (s)\ (18)
0<s<l 0<t<l

Mn*^sup sup ||B*(a,t).+.Ap(t)g-1/2i2r,A,(a>|| 00 , (19)
d

0<a<\ 0<t<l

Now let zt
= 1, so that (17) reduces to (16). Moreover, 2 = 1 and Rxz — x. Thus

if the mean value of the regressor is zero, M* has no local power but Mn does. Of

course, for z t
= x t , (18) and (19) coincide with Corollary 2.

Now taking Ai = in Theorem 2 yields:

13



Corollary 3 (Changing scale only). Under the assumptions of Theorem 2,

dMn ^ sup sup \B(s,t) + A2q(t)Xh (s)\,
0<s<l 0<«1

M'n ^ sup sup \\B*(s,t) + A 2q(t)Q-
1^x\ h (s)

d

0<s<l 0<t<l

When testing for a shift in the scale parameter, the situation is reversed from the

test of a shift in regression parameters; M* has no local power if the regressor mean,

x, is zero whereas Mn has local power irrespective of this mean value.

In summary, the test Mn has non-trivial local power when testing for changes in

the disturbances regardless of the mean value of the regressors. The test M* has non-

trivial local power when testing for changes in the regression parameter /3, regardless

of the angle between the regressor and the structural shift, see KPA for comparison.

Moreover, Mn also has local power for testing changes in (3 and M* also has local

power for testing changes in the disturbances, except for some special circumstances

discussed earlier. Whereas the conventional CUSUM test only has local power against

changes in regression parameters and CUSUM-SQ test only has local power against

heteroskedasticity, see Ploberger and Kramer (1990). It is not clear how the fluctuation

test performs for a change in the disturbances, as it is not intended to be used for this

purpose.

The test statistics Mn and M* are more powerful when used for testing the simple

shift alternatives. To fix ideas, consider the scale change alternatives as in Corollary

3. Let Ha be the set of functions h defined by

Ha = {h; < h < 1, / h(v)dv = 1 - a}
Jo

for some a satisfying < a < 1. The number 1 — a represents on average the deviation

of h from 0.

Consider the test statistic Mn . Since B(s,t) is uniformly bounded in probabil-

ity, the value of Mn is mainly determined by the drift term A.2q{t)\h{s), for large

|A 2 |. Thus with high probability, in order for Tn (s,x) to be maximized, the following

14



quantity needs to be maximized with respect to s

/ h(v)dv — / h(v)dv
Jo Jo

(20)

We determine the h G Ha and s £ [0, 1] that maximize the objective function (20). It

is easy to show that there are two set of solutions, depending on whether the quantity

inside the absolute value sign is positive or negative. One solution is given by

7 ./ x f if v < a ,„„,
h*(v) = I

~
(21)v '

I 1 it v > a v '

and 5* = a. The other solution is given by

1 if v < 1 - a
h*(v)

if v > 1 — a

and s* = 1 — a. But both of these h* imply a simple shift alternative, so the test is

more powerful against a simple shift. Furthermore, the value of the objective function

evaluated at the optimal solution is a(l — a) in both cases. But a{\ — a) is maximized

for a = 1/2, implying a higher power for detecting a shift that occurs near the middle

of the observations.

To see (21) is a solution, consider the objective function (20) without the absolute

value sign. For each fixed s, since the second term is non-positive, (20) will be max-

imized by choosing h(v) = for v < s. The objective function becomes s Js h(v)dv

with fs h(v)dv = (1 — a). To maximize the objective function, one needs to choose s as

large as possible. In order to choose the largest s such that /s hdv = 1 — a, one needs

to choose h as large as possible. Thus h(v) = 1. The constraint becomes f^dv = l — a

which implies s* = a. The second solution is obtained by maximizing the negative

function inside the absolute value sign.

6 Trending Regressors

We consider the following model:

yt
= z'

t
a + 7o + n(t/n) + ... + lq

{t/n) q + e t (22)
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where zt is a r x 1 vector of stochastic regressor and {zs ; s < t — 1} are independent

of St. Let x t
= (z'

t , l,t/n, ..., (t/n) q )' be a p x 1 vector, with p = r + q + 1.

The polynomial trends {(i/n)';l < i < q} could be written without dividing

through by n. Writing in this fashion saves notations by eliminating the weighting

matrix such as diag(n
-1 / 2

, ...,n~^
q+1^2

) that would otherwise be needed. We shall

maintain all assumptions (A.1)-(A.8) of Section 1, except changing (A. 3) to

(A.3') .

I
[ns]

^ M
plim— 22 x tx

't

= hm —& /J x tx
't

= Q(s )i uniformly in s € [0, 1]n
t=i

n
t=i

where Q(s) is positive definite for s > and Q(0) — 0. If each element of Q(s) is

a continuous function on [0,1], then one can show that pointwise convergence in s

implies uniform convergence in s. Assumption (A.3') actually admits a much wider

class of models than (22).

In the presence of trending regressor only the weighted version, M*, is asymp-

totically distribution-free. We shall assume that there is a constant regressor. Let

Xk = (x'
1
,x'2 ....,x'ky and and define Ak as in (4) and T* as follows:

rn*(-, x) = {X'X)- 1 ' 2

J2 xtI(i t
< x) - A k(X'X)-^

2

J2 x tI(i t <x). (23)
n t=l t=l

Again let M* = max^ supx HT^^/rZjx)!^. The computation of M* is given by (10).

Note that A [ns] ^ A(s) = Q{l)-^ 2Q(s)Q(l)- 1 '2 uniformly in s.

Theorem 3 Under assumptions (A.1-A.8) with (A.3) replaced by (A.3 1

), we have

where B*(s,u) is a vector Gaussian process defined on [0, l]
2 with zero mean and

covariance matrix

E{B*(r, u)B*(s, v)'} = {A{r A s) - A(r)A(s)}{u Av-uv}.

Corollary 4 Under assumptions of Theorem 3,

M*n ± sup HS-^tOHoo.
0<s,u<l
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The behavior of the test under the local alternatives (11) can again be analyzed.

Extending Lemma 4 of KPA, we can show that

-jr,x tx'tg(t/n)± j

Sd
^g{v)dv (24)

n " Jo av

and the convergence is uniform in s. The above integral exists if g has bounded

variation on [0,1]. When Q(v) = vQ(l), (24) reduces to the result of KPA. Let

w Jo av Jo av

where e = (1,0, ...,0)'.

Theorem 4 Under the local alternative (11),

M;A sup \\B*( S,u)+p(u)A 1 Q(l)-^X;(s) + q(u)A 2Q(l)-^
2
Xl(s)\\ 00

0<s,u<l

where p(-) and q(-) are given in Theorem 2.

Of course, when Q(v) = vQ(l), the theorems and corollaries in previous sections

can be derived from the results of this section. However, the limiting distribution

obtained here is generally regressor-dependent, so critical values of the tests have to

be found case by case, though leading cases can be tabulated. Also, the result of this

section requires the existence of a constant regressor.

Tests allowing trending regressors have been proposed by MacNeill (1978), Sen

(1980), Kim and Siegmund (1989), Hansen (1992), Chu and White (1992), Perron

(1991), Vogelsang (1992). Those tests are connected with the partial sums, the likeli-

hood ratio, or Wald-type statistics. It remains to be studied how the proposed tests

in this paper perform relative to those in the literature.

7 Some Comments

We have maintained the assumption that the disturbances {e t } are independent r.v.'s.

This could be extended to ARMA models. Although further extension to more general
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dependence structure such as mixing is also possible in terms of weak convergence,

critical values of the tests are difficult to obtain because the limiting process will have

a complicated correlation structure.
2 For the ARMA models such as e t

= B(L)u t ,

where B(L) is a ratio of two polynomials of the lag operator L, one can still estimate

u t . This could be done with a two-step procedure. The first step involves estimating

the regression coefficients and the second step estimating the coefficients of B(L)

using the first step residuals. The two-step procedure yields estimates of u t from

which empirical distribution function can be constructed. Although details remain to

be worked out, the results of the previous sections is expected to hold. Bai (1991)

obtained similar results for pure ARMA models for the test Mn .

The tests proposed in this paper are similar in form to the fluctuation test of PKK.

In fact, consider regressing I(i t
< x) on x t for t=l, ...., k, and write

e^(x) = (x'kxk
)- 1Y/

x ti(i t <x).

Using the expression (23) for T*, one obtains,

T;(k/n, x) = A k{X'Xfl
2 (§W(x) - #">(*)) .

The quantity 0^k'(x) can be considered to be an estimate of Q~ 1 xF(x) using a partial

sample, and 6^T\x) using the whole sample. The test here has one more dimension

than PKK's, and thus can be viewed as a two-dimensional fluctuation test. Notice

that PKK's test does not include trending regressors but T* does. This comparison

also suggests a way to extend PKK's test to trending regressors. Simply replace t/T

in their notation by the matrix A t and let

Sn = max o- l
\\A k{X'X)

ll\^ _ ^H)^
p<K<n

where a and fiW (£ = p^ .. #) n ) are defined in PKK. Then it is not difficult to show

Sn -» SUp ||B(s)||oo
0<s<l

2There is a large literature on empirical process based on mixing sequences; see the early study

of Billingsley (1968, p. 240) and the recent study of Andrews and Pollard (1990).
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where B is mean zero vector Gaussian process with covariance matrix

E{B(u)B(v)'} = A(u At;)- A(u)A(v).

Other issues that are left unaddressed in this paper include cointegrated regressors,

and size and power comparisons with other tests in the literature.
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A Appendix

In view of the mathematical structure of parameter changes in regression models, we

shall first present and prove a series of results concerning the weak convergence of

weighted sequential empirical processes. These results are of independent interest and

will be used subsequently in proving the theorems stated in the body of the paper.

Let D*[0, 1] be the set of functions / = (/1? ...,/p ) defined on [0, 1]' that are right

continuous and have left limits. Endowed with the extended Skorohod J\ topology,

Z)'[0, 1] is a separable and complete metric space, so that finite dimensional conver-

gence plus tightness implies weak convergence for a sequence of random elements of

ZMO, 1]; see Bickel and Wichura (1971). The space D^O, 1] for p = q = 1 is extensively

studied by Billingsley (1968).

Theorem A.l Let U\, U2, ,Un be a sequence of i.i.d. uniformly distributed random

variables on [0,1] and x, (i = 1,2, ...,n) be a sequence of random vectors satisfying

assumptions (A. 5) and (A. 6). Assume that U{ is independent of Xj for j < i. Then

the process Yn (s,u) defined as

[»]

Yn(s,u) = n- l ' 2 Y,Xt{I{Ut <u)-u)
t=\

with Yn (0,u) = Yn (s,0) = is tight in D%[0, 1].

Remarks: The process Yn is a multivariate and multiparameter process. The require-

ment of uniform distribution is only for convenience. The theorem holds for arbitrary

i.i.d. random variables £ t . In this case, I(Ut
< u) — u is replaced by I(et < x) — F(x)

where F is the distribution function of e t . Then Yn (s,u) (with u = F(x)) is tight. In

addition, the i.i.d. assumption on [/, can be relaxed to a triangular array such that

Un \, ,Unn are independent variables on [0,1] with Un i having a d.f. Fm- such that

maxi<,<„ |Fm (u2) — Fnj(ui)| < C|u2 — u\\, where C is generic constant. This claim

can be easily seen from the proof.
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Lemma A.l Assume the conditions of Theorem A. I hold. Then there exists K < oo,

such that for all Si < s 2 and u\ < u 2 , where < s,, u, < 1 (i = 1,2)

E\\Yn (s 2 ,u2 )
- Yn {su u2 )

- Yn (s2 , Ul ) + Yn (suUl )\\

2^

< K{u 2 - u x )

a
{s 2 - s x )

a + n-^-^K(u 2
- Ul )(s 2

- s a ).

Without the loss of generality, one can assume that a < 7, since \u2 — «i| < 1 and

1-52 — S\\ < 1. Moreover, when

T n
-(7-l)/2(a-l) < U2 _ Ul and T n-(7-D/2(a-l) < ^ _ ^ (25)

for r > 0, then the lemma implies

E\\Yn (s 2 ,u 2 )
- Yn (Sl ,u2 )

- Yn (s 2 , Ul ) + Yn (suUl )\\^

< K[\ + t- 2^-^}(u 2
- Ul )

a
(s2 - Sl )

a
. (26)

This inequality is analogous to (22.15) of Billingsley (1968, p. 198).

Proof. Write v t
= I(u x < Ut < u 2 )

— u2 + u^ and Y* = Yn (s 2 ,u 2 )
- yn (si,u 2 )

-

Yn (s 2 ,Ui) + Yn (si,ui) for the moment. Then Y* = n~ 1 '2
J2i<t<j x tilt with i = [nsi]

and j = [TIS2]. Note that {x t 7/ t,^} is a sequence of (nonstationary) vector martin-

gale differences, where J-\ is the u-field generated by ...,Xt, xt+i; ..., Ut-u Ut- By the

inequality of Rosenthal (Hall and Hedye, 1980 p. 23), there exists a constant M < 00

only depending on 7 and p such that

{ \
n

'«<J i<h<j j

< ME I- £ E{(x[x t)r)^t-i}) +Mn-" J2 E{(x'
t
x t r^}.(27)

Note that x t is measurable with respect to Tt -i and n t is independent of Tt-\- In

addition, Erj1 < u 2 — U\ and En
t

'
r < u2 — U\. These results together with assumption

(A. 6) provide bounds for the two terms on the right of (27). The first term is bounded

M(u 2 - u^E (- £ (x'
t
x

t )\ < MK(u 2 - Ul y(s 2 - Sl )

a

\
U

i<*<3 I
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and the second term is bounded by

Mn-^-^ua - ui)- £ ^W < MKn^-^ (u2 - Ul )(s2 - a,).

Renaming M/"f as if, the lemma then follows from (u 2
— Ui)7 < (u 2 — Ui)

a
, for 7 > a.

Lemma A. 2 Under (A. 5), we have for S\ < s < s 2 and U\ < u < u 2 ,

\\Yn (s, u) - Yn (Sl , Ul )\\
< \\Yn (s2 , u2 )

- Yn (suUl )\\ + Op(l)n^
2
[(u 2 - Ul ) + (s2 - s,)]

where the term P {\) is uniform in s (s > S\), does not depend on u and u\ and

satisfies

P{\Op(l)\>C)<M/C
2^ +p\ VC>0, for some P > 0.

Proof. First notice that all components of x t can be assumed to be nonnegative.

Otherwise write x t — Y%=ivt{i) — Yfi-\ xT{i) where xf(i) = (0, ..0, xti, 0, ...,0)' if

x t i
> and x?(i) = (0, ..0, — x ti,0, ...,0)' if i t , < 0. In this way, Yn can be written as a

linear combination (with coefficients 1 or -1) of at most 2p processes with each process

having nonnegative weighting vectors. In addition, ||xt"(i)|| < ||o;(|| and ||z^~(0ll —

\\x t \\. So assumptions (A. 5) and (A. 6) are satisfied for xf(i) and xj~(i). It is thus

enough to assume that the x t are nonnegative. A new piece of notation, for vectors

a and 6, take a < b to mean a, < 6, for all components. Since x t
> 0, the vector

functions x t I(U < u) and x tu are nondecreasing in u. It is easy to show

Yn (s,u) - Yn (su ui) < Yn (s 2 ,u 2 )
- Yn (s u u 2 )

< u 2 )
- u 2 )

1 M / 1 [n«2]W /2(-j:x t )(u 2 -u) + n 1 ' 2 [- £ x t {I(Ut

n
(= 1 \

n
t=[n5]

and

Yn {s u u x )-Yn{s,u)<n x l 2{-Y,x t
){u-u,) + n l l 2 (- jr x t{I(Ut

< u) - Ul
}
) .

n
t=l \

n
t=[n Si ] J

The lemma follows from the boundedness of the indicator function and (A. 5).

Remarks: Bickel and Wichura (1971) provided a general framework for showing the
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tightness of a sequence of multiparameter stochastic processes. Their conditions are

hard to verify and probably do not hold because of the dependence and unboundedness

of x t . Although there are empirical process theories for mixing and nonstationary

variables, (see Andrews and Pollard (1990) and the references therein), none of them

are directly applicable. Also, the presence of the P (1) term in our Lemma A.2 seems

to make it necessary for us to evaluate directly the modulus of continuity. A direct

proof is also instructive. The arguments of Bickel and Wichura inspire the ideas used

in the remaining proof.

Proof of Theorem A.l. Define

us(Yn ) = Su?{\\Yn(s',u')-Yn(s",u")\\; \s'-s"\ < 8, \u'-u"\ < 8,s',s",u',u" e [0,1]}.

We shall show that for any e > and rj > 0, there exist a 8 > and an integer no,

such that

P{us{Yn ) > e) < n, n > n .

Since [0, l]
2 has only about 8~ 2 squares with side length 8, it suffices to show that for

every point (sx,Ui) € [0, l]
2

,
every e > and rj > 0, there exist a 8 € (0,1) and an

integer no such that

P(sup \\Yn(s,u)-Yn {s 1 ,u l )\\
> 5e) <28 2

t), n > n . (28)
(*)

where (8) = {(s, u); Si <s < si + 8, u x < u < Ui + 8} C\ [0, l]
2

.

For given 8 > and r) > 0, choose C large enough so that for the Op (\) in

Lemma A.

2

P(\Op (l)\ >C)< 8
2

v . (29)

By Lemma A.2 (see also (22.18) of Billingsley, 1968, p. 199), when |Op (l)| < C,

sup||yn (s,u) - yn (si,"i)|| < 3 max \\Yn (s<i +itn ,ui + jtn )
- Yn (si,u.\)\\ + 2e

[6]
l<:j<m

where tn = c/(n^2C) and m = [n^2C8/e] + 1. Write

X{i,j) = Yn(si + ie„,U! + jen )
- Yn (su ui).

27



Then

P(sup \\Yn{s,u)-Yn (Sl , Ul )\\ > 5e) < P(\0P (1)\ > C)+P( max \\X(i,j)\\ > e). (30)
[S]

l<«,J<m

Now for fixed i and k (i > k) write Z(j) = X(i,j) — X(k,j). Notice that

(e/Cjn-^ 1'^- 1
) < tl{Cn^) = tn < jen , j > 1,

which follows from n-h- l )/2i"- 1
) < n' 1 ' 2 because 1 < a < 7. By (25) and (26),

E\\Z(j) - Z(l)\\
2^ < KC( [(i

- k)en )

a
[(j

- l)tn ]

a
,

1 < / < j < m

where, from (26) with r = e/C,

Ce = [1 + (C/e)
2{a-V} < 2(C/e) 2(Q~ 1)

for small e. (31)

Thus by Theorem 12.2 of Billingsley (1968, p. 94), we have

K KC K C
P( max \\Z(j)\\ >e)< -^[(i - fc)en ]

Q(men )° < -^-i[(i - k)en}°6° (32)

where K\ is a generic constant and Ki = 1aK\K. The last inequality follows from

(mt„) < 26 for large n. Because

max\\X(iJ)\\-max\\X(kJ)\\ < max\\X(i,j) - X(kJ)\\ = max||Z(j)||,
j j j j

if we let V(i) = maxj ||X(i,_7')||, then (32) implies

P(|V(i) - V(*)| > e) < ^^[(t - fc)e„r<T, 1 < lb < i < m.

Thus by Theorem 12.2 of Billingsley once again [let £/, = V{h) — V(h — 1), so that

V(i) is the partial sum Si of random variables £/, in Billingsley's notation], we obtain

P( max |V(i)| > e) < £Mi(men)^ <^2°

l<i<m (_
i~ £*~

where A'{ is a generic constant and A3 = 2° A{ A'2 . Note that max,
|
V(t) | =max, maXj \\X(i, j)

Thus by (30)

P(sup \\Yn(s,u) - Yn (suUl )\\ > 56) < S
2
r, + ^<$ 2°.
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By (31), the second term on the right hand side above is bounded by

-^-6 < 6
t2{l+a_ x)

{CS) '. (33)

By Lemma A. 2, one can choose C = (M/r)) 2
^ 1+p) 6~ {T^ ) to assure (29) and the left

hand side (33) becomes K(t,rj)8a
, where K(t,Tj) is a constant and a = ilgrllg > 0.

Choose 8 such that K(e,r])8a < n, then (28) follows. The proof of the theorem is

completed.

Corollary A.l Under assumptions (A. 2), (A. 3'), (A.5)-A.6), the process Hn defined

as
[«]

Hn (s,x) = {X'X)- l '2 Y,xt{I{e t < x) - F(x)}
t=i

converges weakly to a Gaussian process H with zero mean and covariance matrix

E{H(r, x)H(s, y)'} = Q(l)- 1/2Q(r A s)Q(l)-
l '2 [F(x Ay)- F(x)F(y)]. (34)

Proof. Hn (s,x) = (X'X/n)-^ 2Yn (s,F(x)) if one lets U{
= F(e,)- Since (X'X/n)

converges in probability to the matrix Q(l), the tightness of Hn follows from Theorem

A.l. The finite dimensional convergence to a normal distribution is obvious. To verify

the covariance matrix, consider for r < s and u = F(x) < v = F(y) and utilize the

martingale property,

1 f
[nr]

\
E{Yn (r,u)Y^s,v)} = -E X>x'(

(u-uv) (35)

which tends to Q(r)(u — uv) by (A. 3').

Corollary A. 2 Under the assumptions of the previous corollary, the process Vn de-

fined as

Vn (s,x) = Hn(s,x) - A[ns]Hn (l,x)

converges weakly to a Gaussian process V with mean zero and covariance matrix

E{V{r,u)V(s,v)'} = {A(r A s) - A{r)A{s)}{u Av - uv}. (36)
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Proof. The tightness of Vn follows from the tightness of Hn and the convergence of

A[na]
to a deterministic matrix A(s) uniformly in s. The limiting process of Vn is, by

Corollary A.l,

V{s,x) = H(s,x) - A(s)H(l,x).

Now (36) follows easily from (34).

Note that (A. 3) is a special case of (A. 3'). When Q(s) = sQ for some Q > 0, the

covariance matrix of V then becomes (r A s — rs){F(x A y) — F(x)F(y)}I where /

is the p x p identity matrix, yielding a multivariate Kiefer process with independent

components.

We next study the asymptotic behavior of the residual empirical process. Under

model (1), £t
< z if and only if e t < z + x'

t {$ — 0), thus the residual s.e.p. K* is given

by
[ns]

K:(s, z) = {X'X)-" 2

52 x t {I(e t < z + x'
t

- /3)) - F(x)}.
t=i

Under the local alternative of (11), it < z if and only if

et
< z{\ + A 2h(t/n)n-

1/2
} + x'

t{0 - 0) + ^x'.gitln)^
1 ! 2}^ + A2h(t/n)n

-^2
}.

Thus K* becomes

[ns]

K'n (s,z) = (X'X)" 1 / 2 ]>>{/(£, < z{\ + a tn-"
2

) + btn~
l l 2

)
- F(x)} (37)

t=\

where

at
= A 2 h(t/n), and b t

= x'
t {y/^0 - P) + A,x'

f
flr(</n)}{l + A 2 /i(i/n)n

_1/2
}. (38)

Choosing the weights x t = 1 in (37), then K* is just the non-weighted s.e.p. of residu-

als. We shall introduce a more general process that can accommodate all above cases,

and examine the asymptotic behavior of this general process.

Let a = (ai,a 2 , ...,an ), b — (bi,b2 ,...,bn )
be two 1 x n random vectors, and C =

(ci,C2, ...,cn )' be a n x q random matrix (q > 1). Define

[ns]

Kn (s, z, a, b) = (C'C)-
l/22 d {/(£< <*(!. + atn- 112

) + b^ 1 ' 2
)
- F(z)} .

(=i
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For c t
= xu a t

— 0, and b
t
= x'

t
n 1 ^ 2 ($ — /?), or a t and bt in (38), we have

Kn (s,z,a,b) = K*(s,z) and moreover, Kn (s, 2,0,0) = Hn (s, z). (39)

Define

Zn (s, «, a, 6) = 4='E c
< l

7^ ^ 2
(
! + a^ _1/2

) +^ _1/2
)
- FW + a t n-

1 ' 2

) + b
t
n~ ll2

)\
V n

t=l

Assume

(B.l) The variable e t
is independent of J-t-\, where

Tt-i = cr — field{as+i,6s+i,cs+i,e s ;
s < t — 1}.

(B.2)n^Y^i\\ct\\ = Op (l).

(B.3) n" 1/2 maxi<,<„ \r] t
\

= op (l), for m = a,, 6,-.

(B.4) There exist a 7 > 1 and /I < 00 such that for all n

£{-E N|
2(M + |fc|)F < A and -X>{||q||

2(H + |6t|)}
7 < A

(B.5) Condition (B.3) and (B.4) with |6<| replaced by ||x t ||.

Note that under (B.l) the summands in Zn are conditionally centered.

Theorem A. 2 Under the assumptions of (A.l), (B.1)-(B.5)

Kn (s,z,a,b) = Kn (s,z, 0,0) +

(cc/n)- 1 / 2

{/(*)* f ^

E

c <G
<)

+ /(*) (^

E

c<M
J
+ <*U)

where the op (l) is uniform in s and in z, and for b t
= x'

t
a, the op (l) is a/so uniform

in a £ D, an arbitrary compact set of HP . In particular, the result holds for bt
=

x'
t
n^ 2 - 0) as long as n l ' 2 -(3) = Op (l).

Proof: By adding and subtracting terms,

Kn (s,z,a,b) = A'n (s,z,0,0)

+Zn {s, z, a, b) - Zn (s, z, 0, 0)

+ (C'C)-^ 2£ ct
{F(z(\ + a

t
n-" 2

) + b
t
n-" 2

)
- F(z)} .

t=\
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Theorem A. 2 now follows from Theorem A.3(i) and (ii) below and the Taylor series

expansion.

Theorem A. 3 (i) Under assumptions (A.l) and (B.1)-(B.4),

sup \\Zn (s,z,a,b) - Zn (s,z, 0,0)\\ = op (l).
o<s<i,zeR

(ii) Let b t
= x'

t
a for a in a compact set D of Rv and denote b(a) = (x[a, ...,x'na).

Then under assumptions (A.l) and (B.l), (B.2) and (B.5)

sup sup \\Zn (s,z,a,b{a)) - Zn (s,z, 0,0)|| = op (l).
aeDO<s<l,zeR

(Hi) Let a t
= r'

t
r; r t ,r G Re

for some £ > 1; r G S, a compact set. Denote a(r) =

(r[T,...,r'nT). Assume (B.3) and (B.4) hold with \a t \

= \\r t \\. Then under (A.l), (B.l)

and (B.2)

sup sup sup \\Zn (s, z, a(r), b(a)) - Zn (s, z, 0,0)|| = op (l).
reS a€DO<s<l,zeR

Note that part (i) is a special case of part (ii). Similarly, (ii) is a special case of (iii).

However, each of the latter is also a consequence of its former, as will be shown. Part

(ii) allows b t to depend, in a particular way, on the entire data set. An example is

6, = x\y/n{$ — /?) as long as y/n($ — /?) = Op (l). Similarly, part (iii) allows scale

parameter to be estimated. In our application, part (ii) is all that is required. To

prove the theorem, we need the following lemma.

Lemma A. 3 Under assumption (A.l) and (B.l)-(B.J
i ), for every d £ (0, 1/2)

suP 4=£l|c,F(y;)-ctJF(z
(
*)||=op (l)

where y* = y{\ + a
t
n~ 1 / 2

) + b tn~
l l 2

, z' — z{\ + a tn~
1 ^ 2

) + 6 (n
-1 / 2 and the supremum

extends over all pair o/(y,z) such that \F(y) — F(z)\ < n~ 1
' 2~ d

.

Proof: Follows from the mean value theorem.

Proof of (i). Let N(n) be an integer such that N(n) = [n
1 /2+d

] + 1, where d is

defined in Lemma A. 3. Following the arguments of Boldin (1982), divide the real line
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into N(n) parts by points — oo = z < z\ < < ZN(n )
= oo with F(z,) = iiV(n)

-1
.

As explained in the proof of Lemma A. 2, there is no loss of generality by assuming

Cj > 0. Then ctI(e t
< z) and ctF(z) are nondecreasing. Thus when zr < z < xr+1 , we

have

Zn (s,z,a,b) - Zn (s,z, 0,0)

< Zn (s,zT+i,a,b) - Zn (s,zT+1 , 0,0)

1
[™1

+ ~7=E C^ 7 (£/ < *r+l) - ^r+l) - /(£( < Z) + F(Z)}

5=5>{F(zr+1 (l + a^" 1 / 2
) + btn-

1 '2
)
- F(z(l + a tn~^

2
) + b^ 1 ' 2

)}.

The reverse inequality holds when zr+1 is replaced by zT . Therefore, by the inequality

\y\ < max(|c|, \d\) for c < y < d,

sup||Zn (s,z,a,6) - Zn (s, z, 0,0)|| < maxsup ||Zn (5,zr ,a, 6) - Zn (s, zr ,0,0)||

I

1

+ sup
s,|ii-v|</V(n)-l \/n

1

+ sup _
5 y/n

£ct {F(zr+1 (l + a^- 1 / 2
) + bt

n-'l 2
)
- F(zT (l + a^- 1 '2

) + btn^2

)}
t=i

Because
|| e!=1 -|| < E?=i II

"

II
and \F{zr+i) - F(zr )\ < n~ l l 2

- d by construction, the

last term on the right is op (l) by Lemma A. 3. The second last term is op (l) because

of Theorem A.l. It remains to show

nJ^, m^x HZnOVn '^)ll = oP (1)0<r<N(n) l<J<n

where Z*(j/n,zT ) := Zn (s,zr ,a,b) - Zn (s,zT , 0,0). But

(40)

p ( max max ||Z;(j/n,2r )ll > <-W(n) max P(max \\Z*{j/n, zT )\\ > c).
0<r<N(n) l<J<n T J

The remaining task is to bound the above probability. Let

£< = (hi I U t < zr {\ + -j=a t ) + -J=6 (

J

- F (zT (l + -^a< ) + -j=M - /(e, < zr ) + F{zT )
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then {it, Ft) is an array of martingale differences and

t=\

By the Doob inequality,

PCmaxHn- 1 / 2 ^!! > «) < e^A^n- 1 '2 ^!*, (41)
3 t=i t=i

where M\ is a constant only depending on p and 7. By the Rosenthal inequality (Hall

and Heyde, 1980, p. 23), there exists M2 > 0, such that

^(iiE6ii)
27 <M2^{x:^(ii6ii

2
i^-i)}

7 +M2 f:Eii6ii^ (42)
t=\ t=l t=\

for all n. Because (a,, &,, c,) is measurable with respect to ^i_i and £, is independent

of Ti.x by (B.l),

J5(||6||
2
|^-i) < \\ci\\

2 {F(zr (l + ain
-"2

) + 6,-n"
1 / 2

)
- F(zr)} < -L|M| 2£(H + |6,|)

where L is an upper bound for both |/(x)| and |x/(x)| for all x. Using the above

inequality and £||6||
27 = £{£(||6'||

27
|^-i)}, we have

^||6H
2 '
y <n-7/2^^{||c,||

2
(|a l |

+ |6: |)r.

By (42), for M3 = M2L^,

^- 1/2
HE6||)

27 < M3n-^E{-±\\c t \\

2
(\a t

\
+ \b

t \)r
t=\ n (=1

+ M3n-^
2
-^-^-J2E{\\c t \\

2
(\a t \

+ \bt \)r
n

t=\

< 2M3An"t/2
.

The last inequality follows from assumption (B.4). The above bound does not depend

on zT . Thus for M4 = 2MtM3 A,

P(maxmax|Z;(;/n,2r )| > c) < t~
2 '

yM4 N(n)n-''
/2 = t~

21MA n- {^ )l2+d
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because N(n) = n l ^2+d
. The above is o(l) if we choose d £ (0,(7 — l)/2) in Lemma

A. 3. The proof of (i) is completed.

Proof of (ii). This really follows from the compactness of D. The proof is

standard, see Koul (1991), for example. Since D is compact, for any 8 > 0, the set D

can be partitioned into finite number of subsets such that the diameter of each subset

is not greater than 8. Denote these subsets by D\, D2, ...,Dm^)- Fix k and consider

Dk . Pick ak e Dk . For all a £ Dk

{x'
t
ak - S\\x t \\)

< x'
t
a < (x'

t
ak + 8\\x t \\)

because ||ajt — q|| < 8. Thus if we define the vector b(k, A) = (x\ak + A||xi||, ...,x'na k +

A||xn ||) then assuming again ct
> for all t, we have for all 0: £ Dk , by the monotonicity

of ctI(e t < z),

Zn (s, z, a, 6(a)) < Zn (s, z, a, b(k, 8)) +
1 l

n5
l

^E c< {
F (

z
(
l + a<"~

1/2
) + (W + *||xt||)n-

1/2
)
- F (z(l + a.n" 1 / 2

) + xjan" 1 / 2

)}

and a reversed inequality holds when 6 is replaced by —8. Using the mean value

theorem and assumption (A.l), it is easy to verify that the second term on the right

is bounded (with respect to the norm
||

•

||) by 80p (l), where the P (1) is uniform in

all s £ [0, 1], all z £ R, and all a £ D. Thus

supsup||Zn (s,2,a,i(o)) - Zn (s,z, 0,0)||
a s,z

< max sup ||Z„(s, z, a, b(k, 8)) — Zn (s, z, 0, 0)||
k s,z

+ maxsup||Zn (s,z,a,6(fc, -8)) - Zn (s, 2, 0,0) ||
+ 80p(l)

« 3,2

where the supremums are taken over a £ D, s £ [0, 1], z £ R, and k < m(8),

respectively. The term <50p (l) can be made arbitrarily small in probability by choosing

a small 8. Once 8 is chosen, m{8) will be a bounded integer. The first two terms on

the right hand side are then op (l) by part (i).

Proof of (iii). Follows from the same type of arguments as in the proof of (ii).

Instead of using the result of part (i), one uses the result of part (ii). The proof of the

theorem is now completed.
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We now in the position to prove Theorems 1 through 4. Conditions required for

the preliminary results, Theorem A.l to Theorem A. 3 and their corollaries, are all

satisfied under (A.1)-(A.9) for various choices of a t,bt and ct below. Conditions (A. 3)

and (A. 9) can be replaced by (A. 3') when weighted empirical processes are under

consideration.

Proof of Theorem 1 and Theorem 3. Under the null hypothesis, it
= e t

— x'
t (f3

— /3)

so it
< z if and only if e t < z + x'

t (fi
— /?). Apply Theorem A. 2 with a t

— 0,bt
=

x'
ty/n(J3

— /?), and ct
= x t \ in view of (39),

K'n (s,z) - A [ns]K'n (l,z) = Hn (s,z) - A[ns]Hn(l,z) (43)

1 M •) n

+f(z)(X'X/n)-^-J2^bt
- f(z)A [ns] (X'X/n)-^

2-J2x t bt (44)
n t=i n t=i

+op (l). (45)

Expression (44) is identically zero for all s G [0, 1] when bt
= x'

t
y/n(/3 — /?). That is,

the drift terms of K*(s,z) and A[ns]K*(l,z) are canceled out. Theorem 3 now follows

from Corollary A. 2. Theorem l(ii) follows as a special case. To prove Theorem l(i),

take x t
= 1 and A[ns]

= [ns]/n in the above proof, then (44) becomes

i (
ns

l r i
n / 1 t

ns
l

r i
n \/(^EWW— E*« = /W iE»t-— Z*t)yft0-f>), (46)

n t=i
n

t=i \
n t=i n

t=i j

which is op (l) under assumptions (A. 7) and (A. 9). The limiting process of Hn (s,z)
—

A[ns]Hn (l, z) reduces to the one stated in Theorem l(i) when x t
= 1 for all t.

Proof of Theorem 2. Under the local alternatives (11), K* is given by (37) with a t

and b t given by (38). Note that under these local alternatives, the root-n consistency of

$ generally prevails. For example, assuming the e t have a finite variance, least squares

estimator of (3 is still root-n consistent. The root-n consistency allows us to obtain

a non-explosive limit (otherwise the tests will be consistent even for local changes).

Note that b
t
is dominated by x'

t
y/n(/3— l3) + Aix'

t
g(t/n), with the remaining term being

negligible in the limit. Moreover, when b
t
= x'(V/n(^ — /?), from the previous proof, the

drift term of A'*(s, z) — A[nj]A'*(l, z) is negligible for either tt = x
t
or ct

= 1. We can
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thus assume b
t
= Aix'

t
g(t/n). Let c t

= x t . Now by Theorem A. 2, for a t
= A 2 h(t/n)

K*(s,z) - A [ns]ICn (l,z) = Hn(s,z) - A[na]Hn (l,z)

+f(z)zA 2 }(— )- 1/2-E^M - AM(—)-1/2-f:x th(t/n)) (47)

[
n n t=\

n n t=\
J

{X'X 1 '

ns
' X'X 1 " 1

( )- l/2-Z^x't9(t/n)-A [ns] (
)-^-j:x t x't9(t/n) (48)

n n t=1 n nf^
J

+oP (l)

By the results of KPA, under (A.3) and (A.9)

1
[ns] r- J2 x t

h(t/n) -A x
/
%)du, (49)

71 (=1 ^

1
tni]

r s

-Y,x tx'tg(t/n) ^ Q / g(v)dv. (50)

Furthermore, under assumption (A.3),

A [ns] (X'X/n)-^ -2, sQ- x'\ (51)

From these results, (47) converges to f(z)zA 2
Q~ 1 ^ 2x\il (s) where A^ is given by (13);

and similarly, (48) converges to f(z)A\Q 1 ^ 2Xg (s) where A5 is given by (12). Thus (15)

is obtained and (14) is obtained similarly by choosing c t
= 1. The proof is completed.

Proof of (18) and (19). Now £ t
< z if and only if e t

< x'
t

- /?) + Az'
t
g{t/n)n-^ 2

.

Let a t
= 0, b

t
= x'

t
y/n(/3 — (3) + Az'

t
g(t/n). Again we can ignore x'

t
y/n(f3 — (3) in b

t
and

assume bt
= Az'

t
g(t/n). For c t

= 1 or ct
= x ( , the drift term of A'*(s, z) — A[ns]K*(l,z)

is given by

{n<n i I
nj

] C'C 1
n

(
— )- i/2-E*<9(t/n) - AM (

—y l/2-E^'Mt/n)
n n

t=i n n (=1

plus an op (l) term. Finally, if c
t
= 1 then (18) follows; and if c

t
= x

t , then (19)

follows.
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Proof of Theorem 4. The proof is virtually identical to that of Theorem 2, except

under (A. 3'), (49)-(51) are replaced by

[ns]

— > x t
n(t/n) —> / h(v)dv,

n jT[ Jo dv

-2^x tx t
g{t/n) -» / —j

—

g{v)dv,

A[ns](x'x/n)-^
2 -*> q(i)->/

2
q(s)q(i)-\

respectively, where Q(v)e is the first column of Q(v). The first convergence is a special

case of the second due to the presence of a constant regressor.
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