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Low-noise Monte Carlo simulation of the variable hard sphere gas
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We present an efficient particle simulation method for the Boltzmann transport equation based on
the low-variance deviational simulation Monte Carlo approach to the variable-hard-sphere gas. The
proposed method exhibits drastically reduced statistical uncertainty for low-signal problems
compared to standard particle methods such as the direct simulation Monte Carlo method. We show
that by enforcing mass conservation, accurate simulations can be performed in the transition regime
requiring as few as ten particles per cell, enabling efficient simulation of multidimensional problems
at arbitrarily small deviation from equilibrium. © 2011 American Institute of Physics.
�doi:10.1063/1.3558887�

I. INTRODUCTION

Efficient simulation of low-signal small-scale gas flows,
such as those occurring in microelectromechanical and nano-
electromechanical systems,1–5 continues to represent a sig-
nificant computational challenge.6 This is because the direct
simulation Monte Carlo �DSMC� method, the prevalent
method for solving the Boltzmann equation,7 is most effi-
cient for simulating highly nonequilibrium flow conditions
but suffers from high levels of statistical noise for smaller
deviations from equilibrium.8,9 Recently, stochastic particle
methods that employ variance-reduction techniques9 have
demonstrated considerable efficiency improvements over the
DSMC method. These approaches are based on the method
of control variates10 but can be described as falling into two
broad subcategories: deviational methods,9,11–14 where par-
ticles simulate the deviation from the equilibrium, and
weight-based methods,15,16 which exploit the correlation be-
tween an equilibrium and a nonequilibrium simulation to re-
duce statistical uncertainty.16 A basic form of the correlated
simulation approach, albeit without importance weights, was
originally proposed in the context of the Brownian dynamics
simulations.17 Unfortunately, it was observed18 that the cor-
relation between the two simulations cannot be maintained
indefinitely, resulting in loss of variance reduction; in the
Boltzmann simulations this manifests itself in the form of
diverging weights in weight-based simulations and diverging
number of particles in deviational simulations. This diver-
gence can be mitigated by numerical procedures, such as
particle cancellation routines �deviational simulations� or
techniques for reconstructing the distribution function
�weight-based methods�, albeit at the cost of numerical error
and computational cost. Here, we mention that the method
outlined in Ref. 16 uses kernel density estimation to ensure
weight stability and results in an efficient variance-reduction
procedure operating in parallel with an essentially unmodi-
fied DSMC simulation.

Resolution of the above limitations came with the devel-
opment of low-variance direct simulation Monte Carlo
�LVDSMC�,12,13 a deviational method which uses a form of

the hard-sphere collision operator, originally obtained by
Hilbert,19 in which the angular integration within the
Boltzmann collision integral is performed analytically. This
has the effect of providing particle “precancellation” and
leads to a stable simulation method with no numerical inter-
vention �and associated error�. The developers of the original
LVDSMC method12,13 were made aware of this special
form of the collision operator via Cercignani’s various
expositions,6,19,20 which provide alternative derivations as
well as a historical perspective19 on related work by Hilbert,
Enskog, Carleman, and Grad.

The LVDSMC methodology has been extended to treat
the Bhatnagar–Gross–Krook collision model.21,22 These
studies have also served to highlight the differences between
using a global or a local �spatially variable� equilibrium dis-
tribution as a control; their findings are briefly discussed in
Sec. IV. Recently, the LVDSMC methodology was put on a
more precise theoretical footing.23 In the same publication, a
collision algorithm with no inherent time step error that can
also treat the variable-hard-sphere �VHS� collision
model24—which is more realistic for engineering flows—
was also proposed.

In this paper we present an LVDSMC algorithm which
combines the recently introduced VHS collision algorithm23

with a highly efficient advection routine21 within a formula-
tion that enforces mass conservation. The latter significantly
reduces the number of particles required for accurate simu-
lations compared to previous implementations—as we show
below accurate results can be obtained with as low as ap-
proximately ten particles per cell, as in DSMC—resulting in
a significantly more efficient and versatile method. Since the
primary application domain of this method is low-signal
flows, here we treat the linearized version of the collision
operator. Also, in the interest of simplicity, the present algo-
rithm simulates the deviation from a global �constant� equi-
librium distribution.

The paper is organized as follows: the overall simulation
method is described in Sec. II with the collision, advection,
property evaluation, and time step procedures discussed in
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separate sections. A selected number of validation and dem-
onstration cases in two-spatial dimensions are presented in
Sec. III; these demonstrate that the proposed algorithm simu-
lates the Boltzmann transport with considerable computa-
tional efficiency savings for problems with small departures
from equilibrium. Finally, in Sec. IV, a summary, as well as a
discussion of open issues and future research directions, is
presented.

II. SIMULATION METHOD

The LVDSMC method is derived directly from the
Boltzmann transport equation,

� f�c�
�t

+ c ·
� f�c�
�x

+ a ·
� f�c�

�c
= Q�f , f��c� , �1�

which simulates. In the above, f = f�c� is the velocity distri-
bution function, t is time, c is the particle velocity, x is the
spatial coordinate, and a is the body force per unit mass. In
the flow regimes of interest for this work, the gravitational
body force is negligible, and thus in what follows we assume
a=0; relaxing this assumption requires small modifications
to the present algorithm.

The collision operator for the VHS model is given by

Q�f , f��c� = C��
S2

d2��
R3

d3c��c − c���

· �f�c��f�c��� − f�c�f�c��� , �2�

where primes denote postcollision velocities �c� ,c��	
= 1

2 �c+c�� �c−c���� and the solid angle � is integrated
over the unit sphere S2. The relative velocity exponent
� is related to the temperature coefficient of viscosity
� via �=2�1−��; the constant prefactor is given by
C�= 1

4mdref
2 cr,ref

1−�, where m is the molecular mass, dref is the
reference molecular diameter, and cr,ref=4
RTref /� is the
mean relative molecular speed at reference temperature Tref.

In the deviational approach, the velocity distribution is
split into an equilibrium, f0, and a deviational part, fd. The
equilibrium part is taken to be a fixed Maxwell–Boltzmann
distribution,

f0�c� =
�0

�3/2c0
3exp�−

�c − u0�2

c0
2 � , �3�

with density �0, mean velocity u0= �u0,x ,u0,y ,u0,z�, most
probable molecular velocity c0=
2RT0, and temperature T0.
The deviational distribution is formally represented by
signed particles via fd�c�=mWi=1

N si�
3�x−xi��3�c−ci�, where

each particle is characterized by a sign si� �1 in addition to
a position xi and velocity ci. Here, W is a constant which
relates the number of physical molecules to the number of
deviational particles in the simulation. This quantity �W�
plays the role of Neff in DSMC simulations by allowing a
numerical particle to represent a number of physical par-
ticles; however, the relationship between W and the ratio of
physical to numerical particles is less direct in the devia-
tional approach �this point will be elucidated with a numeri-
cal example in Sec. III�.

The simulation domain is discretized into N�V

disjoint spatial cells, each with spatial volume �Vj,
j� �1,2 , . . . ,N�V	, where the total volume is given by
V= j=1

N�V�Vj. The set of particles contained within cell j at
the instantaneous state of the simulation is denoted by N j,
where � j=1

N�VN j = �1,2 , . . . ,N	. Likewise, the boundary is dis-
cretized into N�A surface elements, each with area �Aj,
j� �1,2 , . . . ,N�A	.

Similar to the DSMC method, evolution under the
Boltzmann dynamics is calculated by splitting into collision
and advection steps. Using a formulation by Cercignani and
Daneri,25 streamwise pressure and temperature gradients are
included using forcing terms that resemble effective “body
forces,” implemented here as part of the splitting algorithm.
These steps are described in detail in the following sections.

A. Collision step

The collision algorithm presented here was proposed
previously23 and was presently extended to feature mass con-
servation. By simulating the collision process as a sequence
of Markov particle creation and deletion events, this collision
algorithm has no intrinsic time step error, in contrast to pre-
vious LVDSMC methods.12,13,21,22

In this method,23 collision events are processed in order
to simulate the Boltzmann equation �Eq. �1�� in the absence
of advection,

� f�c�
�t

= Q�f , f��c� . �4�

By substituting f = f0+ fd into Eq. �2�, the collision operator is
represented by linear L�fd� and nonlinear Q�fd , fd� terms,

Q�f , f��c� = L�fd��c� + Q�fd, fd��c� . �5�

For this paper, we focus on the linear part of the collision
operator; this is a reasonable approximation since we are
interested in low-signal problems. The more general nonlin-
ear approach has been published in a preliminary study.26

The key in efficiently simulating collisions while main-
taining stability in the LVDSMC method lies in exploiting a
special representation,6,12,13,19,20,23

L�fd��c� = �
R3

d3c��2K�1� − K�2���c,c��fd�c�� − 	�c�fd�c� ,

�6�

K�1��c,c�� =
4C�

�c − c���
��c−c��
d3�

f0�c + ��
�c − c� − ��1−� , �7�

K�2��c,c�� = 4�C��c − c���f0�c� , �8�

	�c� = 4�C��
R3

d3c��c − c���f0�c�� , �9�

where 
��c� is the plane perpendicular to c passing through
the origin. This structure allows for efficiently sampling the
�2K�1�−K�2�� term as a single distribution, which produces
fewer extraneous particles; moreover, particle deletion
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through the term −	fd lends stability to the method by coun-
tering an unbounded increase in the number of particles in
the simulation. The origin of representation �6� can be ex-
plained as follows: the convolution involving K�1��c ,c�� fol-
lows from angular integration of the linearized form of the
gain term of the collision integral; the other two terms in Eq.
�6� originate from the linearized loss term: the convolution
involving K�2��c ,c�� is obtained from integration of
f0�c�fd�c��, while the term 	�c�fd�c� follows from integration
of f0�c��fd�c�.

The collision rate and the kernel functions are related as
follows:

	�c�� = �
R3

d3cK�1��c,c�� = �
R3

d3cK�2��c,c�� . �10�

Using the inequality,

� �c − c��
c0

��

� ��
�c − c��

c0
+ �1 − ���, ∀ c,c� � R3,

�11�

a tight bound on the collision rate 	 can be formed,

	�c� � 	max�c� = 4�C��0c0
������ + �1 − ���, ∀ c � R3,

�12�

where �= �c−u0� /c0, = ���, and ��� is a pure numerical
function given by

��� =
e−2


�
+ � +

1

2
�erf�� . �13�

Here, equality for Eqs. �11� and �12� is recovered for both the
hard-sphere ��=1� and the Maxwell-molecule ��=0� limits.

Using the common bound 	max �Eqs. �10� and �12�� for
all terms appearing in collision operator �6�, the simulation is
performed using a common �stochastic� time step �t to

process both deletion and particle generation events. These
stochastic time steps can be interpreted as waiting times
between “arrivals” in a Poisson process, in which the state
of the gas is transformed by adding or deleting a particle
or remains unchanged. In this context, the time steps �t
are sampled from an appropriate exponential distribution:
P��t�=�e−��t , �t� �0,��, which has parameter

� = 16�C��0c0
���

k=1

N

��k� + �1 − ��N� . �14�

The proper number of arrivals is simulated when the total
collision time �total sum of all stochastic time steps for all
collision steps� exceeds the simulation time t+�tcol, at which
point the collision routine passes control over to the advec-
tion routine �cf. Sec. II E�. For each time step, a trial deletion
step is performed with probability 1/4 and a trial particle
generation step is performed with the remaining probability.
Each routine is summarized and discussed below.

1. Particle generation routine

The particle generation step is the most complex part of
the VHS collision algorithm; here, we summarize the basic
steps of the algorithm, while the mathematical derivation of
these procedures is available elsewhere.23 In the algorithm
below, the notation �c−ci

�c�� refers to the vector projection of
c� onto the plane 
��c−ci�, while I
�

0 �c ,ck� is given by

I
�

0 �c,ck� = �

��c−ck�

d3c�f0�c + c��

=
�0


�c0

exp�−
��c − u0� · �c − ck��2

c0
2�c − ck�2 � . �15�

We also introduce two additional notations: an acceptance
probability P�

0�c ,c�� and particle sign for the accepted par-
ticles s�

0�c ,c�� given by

P�
0�c,c�� =

� 
k�Nj

sk� 2I
�

0 �c,ck�/c0
�

�c − ck� �c − ck − �c−ck
�c���1−� − �� �c − ck�

c0
��

f0�c���


k�Nj

� 2I
�

0 �c,ck�

�c − ck�
� �

c0
+

1 − �

�c − ck − �c−ck
�c���� + ���

�c − ck�
c0

+ �1 − ��� f0�c�� �16�

and

s�
0�c,c�� = sgn� 

k�Nj

sk� 2I
�

0 �c,ck�

�c − ck� �c − ck − �c−ck
�c���1−� − ��c − ck��f0�c��� . �17�
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Algorithm 1. Particle generation routine for VHS
collisions.

1. Choose a particle index i according to the probabilities,

���i� + �1 − ��
�k=1

N ��k� + �1 − ��N
. �18�

Determine the cell index j to which particle i belongs.
2. Based on index i, generate a velocity c from distribution,

4�C�c0
�

	max�ci�
��

�c − ci�
c0

+ �1 − ��� f0�c� . �19�

3. With probability 2/3, perform step 4. Otherwise, perform
step 5.

4. Continue to step 4.1.

4.1. Replace c with a postcollision velocity c→c� via
c�= 1

2 �c+ci+ �c−ci���, where � is sampled from S2

uniformly.
4.2. Produce a sample c� from distribution f0�c+c�� /�0.
4.3. With probability,

� + �1 − ��c0�c − ci − �c−ci
�c���−1

� + �1 − ��c0�c − ci�−1 , �20�

go to step 6. Otherwise, return to step 4.2.

5. Produce a sample c� from f0�c+c�� /�0.
6. Acceptance/rejection step: with probability P�

0�c ,c��
�16� accept generated particle by adding it to the simu-
lation with velocity c, position x sampled uniformly
from cell j, and sign s�

0�c ,c�� �17�. Otherwise, the pro-
cedure finishes without generating a particle.

Here, acceptance probability �16� entails summing over
all particles in the cell. In the original,23 the possibility of
performing this summation over a fraction of the particles in
the cell is discussed. Because in our current implementation
a small number of particles are required, we have limited our
approach to performing the summation over the entire cell.
Some discussion of the appropriate number of particles to
average over can be found in Ref. 23, but this issue merits
future investigation.

2. Particle deletion routine

In the particle deletion routine, the first two steps of the
particle generation routine are performed by choosing a
particle �i� from index distribution �18� and sampling a ve-
locity c from distribution �19�. The particle is deleted with
probability

��c − ci�/c0��

��c − ci�/c0 + �1 − ��
. �21�

Otherwise, the simulation remains unchanged.

3. Mass conservation

The LVDSMC collision algorithm conserves mass, mo-
mentum, and energy only on average; this is a weaker sense
of conservation compared to DSMC, which conserves these
quantities for individual collision events. Here, we are able

to achieve conservation of mass by appropriate stochastic
steps that correct the total mass residual. This is performed at
the end of each collision step by resampling particles from
the set G of particles which were generated during the pre-
vious collision step but were not subsequently deleted. The
mass conservation algorithm makes use of the stochastic par-
ticle creation routine �above� from the collision algorithm.

The mass residual �S is defined as the total sign of all
generated particles minus the total sign of all deleted par-
ticles for all previous collision steps. This is continuously
tracked: first by initializing �S=0 at the start of the simula-
tion �unless �S is available from a restart file� and by updat-
ing �S=�S+sgen for each generated particle with sign sgen

and �S=�S−sdel for each deleted particle with sign sdel. Fol-
lowing each collision step, �S is reduced to its minimum
possible absolute value �typically to zero�. In the event that
the residual is not eliminated, it is carried over to be ad-
dressed during the next time step.

When �S is an odd number, it cannot be reduced to zero
by resampling processes; thus, the initial step in the mass
conservation process involves correcting the parity of the
mass residual. This step consists of repeating the particle
generation routine �above� until a single particle is accepted,
with probability 1/2, or deleting a random particle �uni-
formly� from G �by removing it from the simulation�, with
probability 1/2. This step can only be performed if the num-
ber of particles NG in G is nonzero; otherwise �S cannot be
changed in the current time step, and the parity correction
step �as well as the resampling step� will be skipped entirely.

Following the parity correction step, resampling events
are performed until the optimal mass residual �Sopt is at-
tained. Here, the optimal mass residual is defined as the
minimum absolute mass residual obtainable by resampling
from set G, initially containing NG

+ positive and NG
− negative

particles,

�Sopt = � 0 if NG
� �

1
2 ��S� and �S � 0

�S � 2NG
� if NG

� �
1
2 ��S� and �S � 0.

�
�22�

For the trivial case, �S=�Sopt=0 and no resampling is
needed.

Here, we introduce the partition G=G+�G−, where G�

are the subsets of G with positive and negative signs, respec-
tively. The resampling procedure consists of performing the
following two steps in random order: �i� delete a random
particle �uniformly� from Gsgn��S� and �ii� generate a particle
with sign −sgn��S�. In step �ii�, we use the particle genera-
tion step used in the collision routine, repeating the routine
automatically rejecting all particles with sign sgn��S� until a
single particle is generated with the correct sign, which is
added to the simulation. This procedure is repeated until
�S=�Sopt.

B. Advection step

The advection procedure is based on a previous
method,21 with a few key differences in the present treat-
ment. First, in this paper, we are simulating deviation from a
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fixed equilibrium distribution f0 rather than a spatially vari-
able equilibrium distribution. Although the former method
has a clear efficiency advantage for one-dimensional flow in
the Navier–Stokes limit �Kn→0�, it becomes significantly
more expensive as the number of dimensions increases as it
requires particle generation at all cell interfaces. The second
key difference is the inclusion of mass conservation to
complement the mass-conservative collision routine. Finally,
while the previous method21 is strictly valid only for small
perturbations from equilibrium, here we generalize the
method for all regimes; a version without mass conservation
was presented in a previous paper.26

The advection step simulates the left-hand side of the
Boltzmann equation �Eq. �1��, i.e.,

� f�c�
�t

+ c ·
� f�c�
�x

= 0. �23�

By introducing f = f0+ fd into Eq. �23�, the following devia-
tional advection equation is obtained:

� f�c�
�t

+ c ·
� f�c�
�x

=
� fd�c�

�t
+ c ·

� fd�c�
�x

= 0, �24�

which shows that deviational particles advect identically to
physical particles. Thus, in the absence of boundary interac-
tions, particles are advected according to usual DSMC rule:
�xk�t+�tadv�=xk�t�+ck�t��tadv	k=1

N for the advective time step
�tadv.

For boundary interactions, the standard DSMC rules are
extended. When the particle strikes a boundary, it is reflected
according to the standard DSMC rules �e.g., by redrawing
the velocity from the appropriate fluxal boundary distribu-
tion�. However, when a pair of particles of opposite signs
strike the same boundary element and diffusively reflect in
their first wall collision during an advective time step, they
can both be removed from the simulation. This step is nec-
essary to stabilize simulations in the collisionless �Kn→��
limit by preventing an unbounded increase in the number of
particles.

In addition to reflecting escaping particles back into the
simulation domain, additional particles must be generated at
the boundary to account for the difference in fluxes between
the equilibrium and boundary distributions.12,13,21–23 The
boundary generation procedure for Maxwell’s accommoda-
tion model has been derived previously for the special case
of the no-flux boundary condition with uB,j ·n j =0,21,22 where
j indices the boundary surface element with �inward� surface
normal n j, velocity uB,j, temperature TB,j, and accommoda-
tion coefficient � j. In this case, the particle generation term is

� f�c�
�t

�Aj = �Aj� jc · n j��B,j� j
B�c� − f0�c�� , �25�

where

� j
B�c� =

1

�3/2cB,j
3 exp�−

�c − uB,j�2

cB,j
2 �, cB,j = 
2RTB,j ,

�26�

and the “boundary density” ��B,j� is evaluated via mass con-
servation at the boundary

�B,j�
c·nj�0

d3c�c · n j�� j
B�c� = �

c·nj�0
d3c�− c · n j�f0�c� ,

�27�

which can be analytically solved for �B,j. For u0 ·n j =0, dis-
tribution �25� is conveniently sampled in terms of a dimen-
sionless velocity �= �c−u0� /c0,

� f�c�
�t

�Ajd
3c = �Aj� j�0c0Fj

B�c�d3� ,

�28�

Fj
B�c� =

c0
2

�0
c · n j��B,j� j

B�c� − f0�c�� .

Without loss of generality, we will assume that n j is in
the +x direction; the more general case can be handled by the
appropriate vector transformations. Generation term �28� is
efficiently sampled by using the ratio-of-uniforms method,27

as implemented in a previous publication.21 The ratio-of-
uniforms method produces samples from a transformed dis-
tribution H���, which is related to the original distribution
via �Fj

B�=H5/2 and �=� /
H. An important advantage of this
formulation is that the transformed variables are all bounded
quantities,

0 � H � aj
B, �29�

0 � �x � bj,x
B , �30�

− bj,y
B � �y � bj,y

B , �31�

− bj,z
B � �z � bj,z

B . �32�

For small perturbations from equilibrium, tight bounds
can be obtained via a Taylor expansion of Fj

B about f0, as
was done in a previous paper.21 These are listed below as
functions of the boundary properties,

�
�aj

B,0�5/2

�bj,x
B,0�5

�bj,y
B,0�5

�bj,z
B,0�5

� = MB · �
��B,j − �0

�0
− 3

cB,j − c0

c0
�

2
�uB,j,x − u0,x�

c0

2
�uB,j,y − u0,y�

c0

2
�uB,j,z − u0,z�

c0

2
�cB,j − c0�

c0

� , �33�

where MB is a constant matrix given by
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MB =
1

�3/2�
1/
2e 1/e 1/�2e� 1/�2e� �3/�2e��3/2

�3/e�3 �7/�2e��7/2 27e−7/2/
2 27e−7/2/
2 �4/e�4

55/2/�2e�3 �5/2�5/2e−7/2 27e−7/2/
2 55/2/�2e�7/2 205/2/�27e4�

55/2/�2e�3 �5/2�5/2e−7/2 55/2/�2e�7/2 27e−7/2/
2 205/2/�27e4�
� . �34�

These bounds are extended to more general conditions by
introducing numerical factors �Y�, which are dynamically up-
dated during the simulation,

aj
B = Ya

Baj
B,0, �35�

bj,x
B = Yb,x

B bj,x
B,0, �36�

bj,y
B = Yb,y

B bj,y
B,0, �37�

bj,z
B = Yb,z

B bj,z
B,0. �38�

The number of trial samples �in H ,� space� is calculated
based on these bounds and the Jacobian of the transformation
�=5 /2�, yielding

NB,j
trial =

5

2

Aj� j�0c0�tadv

mW
aj

Bbj,x
B �2bj,y

B ��2bj,z
B � . �39�

Here, �tadv is the advective time step. For each trial step, a
sample �H ,�� is generated �uniformly� utilizing bounds
�35�–�38�. Using c=c0� /
H+u0, Fj

B is evaluated from Eq.
�28�, and the trial particle is accepted if H� �Fj

B�2/5. Accepted
particles are advected a random fraction of the advective
time step away �performing standard DSMC procedures for
any boundary interactions� from a uniformly distributed ran-
dom position on the boundary surface element and added to
the simulation with sign sgn�Fj

B�.
The ratio-of-uniforms sampling bounds are dynamically

updated using the following procedure. At the start of the
advection step, bounds �35�–�38� are fixed based on current
values. During the advection step, when accepted particles
are added with H or � values very close to one of the sam-
pling bounds, the numerical factor is increased for the next
advection step. For example, when a particle is accepted with
H� �1−��aj

B, the numerical factor is updated to

Ya
B = max� H

�1 − ��aj
B,0 ,Ya

B� . �40�

Here, the sampling margin � is a small positive numerical
parameter which controls the responsiveness of the dynamic
update; typically, � is chosen to be a few percent. The up-
dated Ya

B value does not take effect until subsequent time
steps, when sampling bounds are reevaluated via Eq. �35�. A
similar procedure is followed for dynamically updating the
remaining bounds. For typical simulations, the bounds are
well-characterized by their approximate values �33� and �34�,
and the numerical factors represent only small corrections.

1. Mass conservation

Mass conservation requires only a simple modification
to the advection step, accomplished by applying a stratified
sampling approach.10 The particle generation routine is split
into two separate processes. First, only half NB,j

trial /2 of the
trial generation steps are performed, keeping track of the
actual number of positive and negative particles NB,j

� which
are accepted and added to the simulation. Finally, particle
generation steps are repeated until precisely NB,j

− positive and
NB,j

+ negative particles are added to the simulation, rejecting
all accepted particles of unneeded sign.

C. Effective body force step

In the linearized regime, it is possible to simulate
streamwise pressure and temperature gradients in a long duct
without simulating the streamwise direction �z� in physical
space by introducing an effective “body force” term into the
simulation.21,25,28–30 This approach was pioneered by
Cercignani and Daneri25 as a mathematical formulation of
pressure-driven flow in small capillaries; using this formula-
tion, Cercignani and Daneri25 proceeded to solve the
Boltzmann equation in the relaxation approximation numeri-
cally for a two-dimensional channel geometry and thus theo-
retically verify, for the first time, the existence of a Knudsen
minimum in the scaled flow rate as a function of nondimen-
sional channel height �see also Fig. 2�. This minimum was
originally experimentally observed by Knudsen.31

If we let �P=− 1
P

dP
dz and �T= 1

T
dT
dz denote the scaled pres-

sure and temperature gradients, the change in the distribution
function due to these two effects is given by

� f�c�
�t

V = Vcz��P + �5

2
−

�c − u0�2

c0
2 ��T� f0�c� . �41�

For the choice of f0�c� considered here, namely, u0=0, we
perform the sampling in terms of �, as was done for advec-
tion as shown below,

� f�c�
�t

Vd3c =
V�0c0

L
FF�c�d3� ,

�42�

FF�c� =
c0

2L

�0
cz��P + �5

2
− 2��T� f0�c� .

Here, L is a physical length scale used to make distribution
FF dimensionless. This distribution is sampled using the
ratio-of-uniforms method21 in the transformed variable
space: �FF�=H5/2, �=� /
H �cf. Sec. II B�, with bounds

0 � H � aF, �43�
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− bx
F � �x � bx

F, �44�

− by
F � �y � by

F, �45�

− bz
F � �z � bz

F. �46�

Analytical bounds were derived for small perturbations from
equilibrium,21

�
�aF,0�5/2

�bx
F,0�5

�by
F,0�5

�bz
F,0�5

� = MF · ���P + 5
2�T�

��T�
�L , �47�

where

MF =
1

�3/2�
1/
2e �3/�2e��3/2

55/2/�2e�3 205/2/�27e4�
55/2/�2e�3 205/2/�27e4�

�3/e�3 �4/e�4
� . �48�

Since the effective body force approach is only valid for
small perturbations from equilibrium, there is no reason to
extend these bounds to larger deviations from equilibrium as
was done for the advection routine �Sec. II B�. Thus, we shall
use aF=aF,0 and bF=bF,0 for the bounds in the simulation.

Based on the advective time step, the number of trial
samples to generate is computed as

NF
trial =

5

2

V�0c0�tadv

mWL
aF�2bx

F��2by
F��2bz

F� . �49�

As before, a sample �H ,�� is generated �uniformly� utilizing
bounds �43�–�46� for each trial step. Using c=c0� /
H, FF is
evaluated from Eq. �42�, and the trial particle generation is
accepted if H� �FF�2/5. Accepted particles are added to the
simulation with sign sgn�FF� and with a position x sampled
uniformly from V.

1. Mass conservation

Mass conservation is again enforced via stratified sam-
pling �cf. Sec. II B�. In the first step, NF

trial /2 trial generation
steps are performed, which adds NF

� positive and negative
particles to the simulation. Additional particle generation
steps are performed to produce NF

� additional positive and
negative particles.

D. Property evaluation

Hydrodynamic properties are evaluated by simple exten-
sions to the rules developed for evaluating DSMC
properties.12,13,21,22 For example, the DSMC estimate of tem-
perature in the jth cell is obtained from

� j�3RTj + uj
2� =

mNeff

Vj


k�Nj

ck
2. �50�

In the LVDSMC approach, the above summation now in-
cludes the sign and corresponds to the difference between the
group of cell properties � j�3RTj +uj

2� and the corresponding
equilibrium values �Eq. �54�, below�. These results are sum-

marized below for the density, mean velocity, pressure tensor
�P�, temperature, and heat flux �q�, where P0=�0RT0I and I
is the identity tensor,

� j = �0 +
mW

�Vj


k�Nj

sk, �51�

� ju j = �0u0 +
mW

�Vj


k�Nj

skck, �52�

P j + �u ju j = P0 + �0u0u0 +
mW

�Vj


k�Nj

skckck, �53�

� j�3RTj + uj
2� = �0�3RT0 + u0

2� +
mW

�Vj


k�Nj

skck
2, �54�

2�q j + P j · u j� + � j�3RTj + uj
2�u j

= 2P0 · u0 + �0�3RT0 + u0
2�u0 +

mW

�Vj


k�Nj

skckck
2. �55�

E. Time step

In order to improve the overall rate of time convergence,
a symmetrized version of the algorithm was implemented.
Previous convergence studies32 have shown that Strang’s
method33 achieves second-order time convergence for
DSMC; we adopt this approach, with the additional effective
body force generation terms �not appearing in DSMC� sym-
metrically split around collision step as shown below based
on an overall time step of �t.

Algorithm 2. Symmetrized time stepping algorithm:

1. Half advection ��tadv= 1
2�t�;

2. Half body force ��tadv= 1
2�t�;

3. Full collision ��tcol=�t�;
4. Half body force ��tadv= 1

2�t�;
5. Half advection ��tadv= 1

2�t�; and
6. Sample properties.

III. RESULTS

We performed a number of two-dimensional simulations
in order to highlight the key features of the method and to
showcase its ability to efficiently simulate problems with ar-
bitrarily small deviations from equilibrium with drastically
reduced levels of statistical noise. In all cases presented here,
we simulate the deviation from a global equilibrium distri-
bution �with u0=0�. The normalized characteristic deviation
from equilibrium is quantified by �, which is typically related
to the characteristic temperature difference ��=�T /T0� or
velocity �e.g., �=ux /c0� of the problem. We note that, in
contrast to DSMC, the cost of the proposed method does not
increase as � decreases. For this reason, all results presented
here are scaled by �.

In order to verify correct representation of the VHS col-
lision operator, viscosities were obtained for hard-sphere, he-
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lium, argon, and Maxwell molecules ��=0.5, 0.66, 0.81, and
1, respectively� and compared to results for the DSMC
method in a Kn=0.05 shear flow. Excellent agreement was
observed.

The accuracy of the LVDSMC method, like the DSMC
method on which it is based, depends on the spatial cell size
�x, the overall time step �t, and the average number of
computational particles per cell NC. The LVDSMC simula-
tion approach utilizes �x and �t in similar ways to DSMC;
however, the average number of computational particles per
cell NC has a dramatically different behavior in each method
and merits further discussion.

In the DSMC method, the number of simulation particles
is well defined in terms of problem and discretization param-
eters. For example, the average number of particles per cell
for a simulation with zero-mass-flux boundary conditions is
given by

NC =
�0�V

mNeff
, �56�

where �V=V /N�V is the average cell volume; here, we have
taken �0 to be the density of the initial state. However, for
the LVDSMC method, the local number of particles depends
on the local deviation from equilibrium, and as a result, NC

depends on the “average” degree of deviation from equilib-
rium �, for which no established measure exists.

For a suitably defined � and for simulations in the tran-
sition regime �0.1�Kn�10�, we have observed that the
number of particles per cell, at a nontrivial steady state, can
be approximately scaled using

� =
��0�V

mW
�57�

in the sense that NC��. In other words, instead of using NC

as a separate convergence parameter �as in DSMC�, the pa-
rameter � is used. This is illustrated in Fig. 1 which shows
the actual number of particles for various values of �x and �
for heat transfer between parallel plates at Kn=0.1; the gas is
argon ��=0.81� and the boundary conditions are diffusely
reflecting ��=1� with temperatures T�0�= �1+��T0 and

T�L�= �1−��T0, where ��1. The figure shows that for large
�, there is a direct relationship between NC and �, while for
small �, the smaller number of particles makes the “particle
cancellation effect” in Eq. �16� less effective �see Sec. II A
and discussion in Ref. 23� leading to a larger number of
particles. For all the simulation results presented in this sec-
tion, excellent results were achieved using �=10. Such re-
sults are significant because they demonstrate that simula-
tions with approximately ten particles per cell are achievable
in mass-conservative LVDSMC simulations without appar-
ent random walks in any non-negligible hydrodynamic vari-
ables, a substantial improvement over the previous
implementation.26 This dramatic improvement enables effi-
cient simulation in multiple spatial dimensions, as we show
below.

Here, the time step was chosen as �t=�x /c0, where �x
is the smallest cell dimension, which effectively treats the
effect of �x and �t as a single convergence parameter ��x�.
More rigorous convergence studies for the method are
needed, which are left to future studies. For all simulations
with Kn�1, the boundary cancellation procedure �see dis-
cussion in Sec. II B� was used. While the simulations per-
formed in this work �up to Kn=10� remained stable without
boundary cancellation, the number of simulated particles per
cell tended to scale with �Kn �rather than �� and the overall
computational efficiency of the method was noticeably de-
graded. For Kn�1, the boundary cancellation procedure was
unnecessary and was not used.

A. Poiseuille and thermal creep flow in a rectangular
microchannel

As a validation of the overall method in two-dimensional
geometries, as well as to highlight an application of the ef-
fective body force term �Sec. II C�, Poiseuille ��=�PLx�1�
and thermal creep ��=�TLx�1� flows of a hard-sphere gas
were simulated for a rectangular microchannel geometry
with cross section Lx�Ly. The Knudsen number Knx is
defined as Knx=� /Lx, where �−1=
2���0 /m�dref

2 . Shown
in Figs. 2 and 3 are the dimensionless flow rates
ṁP,T=uz / ��c0� for various aspect ratios as a function of Knx,
where the overbar denotes the spatial average in x and y.

FIG. 1. Average number of deviational particles per cell for a heat flux
through a layer of argon gas confined between parallel plates with Kn=0.1.
The data �symbols� are shown in terms of the computational parameters
��x ,��, while the line indicates NC=� for comparison.

FIG. 2. Flow rate for Poiseuille flow through a rectangular microchannel for
various Knudsen numbers and aspect ratios. The LVDSMC results �sym-
bols� are compared with data from Doi �Ref. 34� �lines�.
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Due to twofold symmetry, only a quarter of the channel
cross section was simulated. For most cases, a cell size of
�x /Lx=�y /Lx=0.02 was used to obtain better than 1%
agreement in the total mass flow rates compared to the re-
sults of Doi.34 For many cases with Kn=0.1, further refine-
ment was required to obtain the same level of agreement, and
�x /Lx=�y /Lx=0.01 was used.35

Figure 4 shows the velocity field for Poiseuille flow
through a square microchannel �L=Lx=Ly� for Kn=0.1 using
50�50 spatial cells. By performing steady-state averaging
over 106 time steps ��t=�x /c0� after steady state was
reached, this simulation resulted in a velocity field with a
relative statistical uncertainty8 of �0.1%. In order to obtain a
0.1% statistical uncertainty in ṁP, 5�105 time steps are re-
quired, using approximately 16 h on a single core of an Intel
Q9650 �3.0 GHz Core 2 Quad� processor. For square chan-
nels with Kn=1 and 10, with a 25�25 cell mesh, 1.1 and 0.2
h of computational times, respectively, were required to
achieve the same level of relative statistical uncertainty in
ṁP. Given that �even in variance-reduced guise� Monte Carlo
approaches will always perform worse when very low noise
is required, this performance is very encouraging for highly
resolved two-dimensional calculations.

As an indication of the relative efficiency compared to
DSMC, we compare the simulation time required to achieve
0.1% statistical uncertainty in the velocity field for Poiseuille
flow through a square channel. Assuming a Mach number of
Ma�0.02, DSMC simulations would require approximately
500, 100, and 100 h for Kn=0.1, 1, and 10, respectively,
compared to 30, 4, and 2 h for the LVDSMC simulations.
For this problem �Poiseuille flow�, DSMC simulates the
pressure force as an equivalent gravitation force, which is a
valid approach for small deviations from equilibrium. How-
ever, there is no obvious way to use DSMC to simulate ther-
mal creep without resorting to very expensive three-
dimensional simulations.

B. Lid-driven flow of argon gas

Next, we simulate a two-dimensional lid-driven flow of
argon ��=0.81� gas in a square enclosure with side length L.
The boundary conditions are diffusely reflecting walls, all of
which are stationary except the top �y=L� which is moving
in the x-direction with velocity �c0, where ��1. We per-
formed simulations for Kn=� /L=0.1, 1, and 10; 100�100
cells were used for Kn=0.1, while 50�50 cells were used
for Kn=1 and 10. Here, the mean free path is given by the
VHS value: �−1=
2���0 /m�dref

2 �Tref /T0��−1/2. Each simula-
tion was repeated with a doubling of the number of cells in
each coordinate direction �to 200�200 and 100�100, re-
spectively�, which showed less than 1% difference in �, ux,
and uy; this was taken as evidence of convergence. Shown in
Figs. 5–7 are the velocity and density fields corresponding to
the finer-meshed solutions.

C. Response of a gas to a spatially varying boundary
temperature

Finally, we simulate the response of argon gas to a
boundary temperature with a sinusoidal spatial variation.
Here, the lower boundary �y=0� is diffusely reflecting with a
temperature given by TB=T0�1−� cos 2�x /L�; an identical
boundary is located at y=L, and the Knudsen number based
on the separation between the two boundaries �L� is Kn=1.

FIG. 3. Flow rate for thermal creep flow through a rectangular microchannel
for various Knudsen numbers and aspect ratios. The LVDSMC results �sym-
bols� are compared with data from Doi �Ref. 34� �lines�.

FIG. 4. �Color� Streamwise velocity for the Poiseuille flow through a square
microchannel with Kn=0.1.

FIG. 5. �Color� Lid-driven flow of argon gas at Kn=0.1. The contour lines
show the density �−1�� /�0−1�, while the velocity field �−1u /c0 is shown as
a vector plot.
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Due to the underlying symmetries in the x and y directions,
the simulation domain is chosen as 0�x ,y�L /2. Unlike the
previous examples, here we show results for several choices
of � �even though the collision operator is linearized�. Shown
in Fig. 8 are the temperature and velocity fields for the limit
of small departure from equilibrium ��1. In Figs. 9 and 10,
the isotherms for the LVDSMC and DSMC methods are
compared for �=0.05 and 0.5, respectively. For �=0.05,
there is no noticeable difference between the LVDSMC and
DSMC temperature fields even though the temperature field
is noticeably perturbed from the �→0 solution. For �=0.5,
which is no longer a near-equilibrium case, there is only a
slight discrepancy between the temperature fields obtained
from LVDSMC and DSMC.

FIG. 6. �Color� Lid-driven flow of argon gas at Kn=1. The contour lines
show the density �−1�� /�0−1�, while the velocity field �−1u /c0 is shown as
a vector plot.

FIG. 7. �Color� Lid-driven flow of argon gas at Kn=10. The contour lines
show the density �−1�� /�0−1�, while the velocity field �−1u /c0 is shown as
a vector plot.

FIG. 8. �Color� Response of argon gas to spatially varying boundary tem-
perature with Kn=1 and ��1. The contour lines are isotherms �dimension-
less temperature: �−1�T /T0−1��, while the velocity field �−1u /c0 is shown as
a vector plot.

FIG. 9. Response of argon gas to spatially varying boundary temperature
with Kn=1 and �=0.05. Contour plot of the dimensionless temperature
��−1�T /T0−1�� as obtained by LVDSMC �dashed� and DSMC �solid�; the
�→0 limit �dashed-dotted� as obtained by LVDSMC is also shown for com-
parison. The velocity field �−1u /c0 is the LVDSMC solution for �=0.05; the
DSMC velocity field was noticeably noisier.

FIG. 10. Response of argon gas to spatially varying boundary temperature
with Kn=1 and �=0.5. Contour plot of the dimensionless temperature
��−1�T /T0−1�� as obtained by LVDSMC �dashed� and DSMC �solid�. The
velocity field �−1u /c0 is the LVDSMC solution for �=0.5.
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IV. DISCUSSION

We have presented a low-variance stochastic particle
method which is capable of efficiently simulating kinetic
flows in the linear regime. This method simulates the VHS
collision operator, which is a more general and realistic
model than the hard-sphere collision operator covered by
previous methods. By incorporating mass conservation into
the LVDSMC methodology, the number of simulation par-
ticles per cell required to produce accurate results was re-
duced to approximately 10, which is comparable to that re-
quired for the DSMC method.

Future research directions include further analysis and
extension of this methodology. In particular, the nonlinear
version of this algorithm26 is currently being extended to
include mass conservation. Likewise, additional flow simu-
lations and validations are needed, as well as a rigorous con-
vergence study to investigate convergence behavior in �x,
�t, and � �as has been done for DSMC32�.

The present formulation provides variance reduction by
simulating the deviation from a �constant� global equilib-
rium. A formulation using a spatially variable �cell based�
equilibrium distribution can be achieved using a number of
implementations;13,21,23 the implementation complementing
the algorithm presented here has been outlined previously.23

As shown in previous publications,13,21 variable equilibrium
formulations provide superior variance reduction, especially
in the collision-dominated limit where the local equilibrium
assumption becomes very reasonable. In fact, because as
Kn→0 the distribution function is increasingly better ap-
proximated by a local equilibrium distribution,20 such formu-
lations can capture arbitrarily small values of Kn without
becoming prohibitively expensive �e.g., see Ref. 36�. In other
words, such methods alleviate the stiffness associated with
recovering the continuum limit with molecular simulations
and offer promising avenues for developing multiscale meth-
ods that can seamlessly connect the continuum and molecu-
lar descriptions. Despite this potential, a spatially variable
equilibrium distribution was not used here because it re-
quires particle generation at cell interfaces �where the equi-
librium distribution changes discontinuously13,21�, making
the method cumbersome in high number of dimensions. Per-
haps a continuously varying equilibrium distribution �requir-
ing volumetric particle generation� will reduce the complex-
ity associated with this approach.

The multiscale implications of decomposing the distribu-
tion were noticed by Cheremisin,37 who proposed simulating
the deviation from equilibrium �using a discrete velocity
method� as a means of removing the stiffness associated with
time integration in the Navier–Stokes limit �Kn→0�. Also,
motivated by their interest in using particle methods for ap-
proaching the fluid-dynamic limit for high Mach-number
flows, Caflisch and Pareschi38 proposed a convex decompo-
sition of the distribution function into a time-dependent
Maxwellian and a nonequilibrium distribution; unfortunately,
the requirement that the equilibrium distribution is time de-
pendent and the nonequilibrium distribution is represented
by positive particles only results in a complex algorithm

which requires that the equilibrium distribution be recon-
structed �from its samples� every time step.
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