DSpace@MIT

MIT Open Access Articles

Measurement of Single- and DoubleSpin Asymmetries in Deep Inelastic Pion Electroproduction with a Longitudinally Polarized Target

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation: Avakian, H. et al. "Measurement of Single- and Double-Spin Asymmetries in Deep Inelastic Pion Electroproduction with a Longitudinally Polarized Target." Physical Review Letters 105.26 (2010) : n. pag. © 2010 The American Physical Society

As Published: http://dx.doi.org/10.1103/PhysRevLett.105.262002
Publisher: American Physical Society
Persistent URL: http://hdl.handle.net/1721.1/64958
Version: Final published version: final published article, as it appeared in a journal, conference proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Measurement of Single- and Double-Spin Asymmetries in Deep Inelastic Pion Electroproduction with a Longitudinally Polarized Target

H. Avakian, ${ }^{1}$ P. Bosted, ${ }^{1}$ V. D. Burkert, ${ }^{1}$ L. Elouadrhiri, ${ }^{1}$ K. P. Adhikari, ${ }^{29}$ M. Aghasyan,,${ }^{17}$ M. Amaryan, ${ }^{29}$ M. Anghinolfi, ${ }^{18}$ H. Baghdasaryan, ${ }^{38}$ J. Ball, ${ }^{8}$ M. Battaglieri, ${ }^{18}$ I. Bedlinskiy, ${ }^{21}$ A. S. Biselli, ${ }^{12,30}$ D. Branford, ${ }^{11}$ W. J. Briscoe, ${ }^{15}$ W. Brooks, ${ }^{1, *}$ D. S. Carman, ${ }^{1}$ L. Casey, ${ }^{7}$ P. L. Cole, ${ }^{16,1}$ P. Collins, ${ }^{3, \dagger}$ D. Crabb, ${ }^{38}$ V. Crede, ${ }^{14}$ A. D'Angelo, ${ }^{19,32}$ A. Daniel, ${ }^{28}$ N. Dashyan, ${ }^{40}$ R. De Vita, ${ }^{18}$ E. De Sanctis, ${ }^{17}$ A. Deur, ${ }^{1}$ B Dey, ${ }^{6}$ S. Dhamija, ${ }^{13}$ R. Dickson, ${ }^{6}$ C. Djalali, ${ }^{34}$ G. Dodge, ${ }^{29}$ D. Doughty, ${ }^{9,1}$ R. Dupre, ${ }^{2}$ A. El Alaoui, ${ }^{2}$ P. Eugenio, ${ }^{14}$ S. Fegan, ${ }^{37}$ R. Fersch, ${ }^{39, *}$ T. A. Forest, ${ }^{16,29}$ A. Fradi, ${ }^{20}$ M. Y. Gabrielyan, ${ }^{13}$ G. Gavalian, ${ }^{29}$ N. Gevorgyan, ${ }^{40}$ G. P. Gilfoyle, ${ }^{31}$ K. L. Giovanetti, ${ }^{22}$ F. X. Girod, ${ }^{8,8}$ W. Gohn, ${ }^{10}$ R. W. Gothe, ${ }^{34}$ K. A. Griffioen, ${ }^{39}$ M. Guidal, ${ }^{20}$ N. Guler, ${ }^{29}$ L. Guo, ${ }^{1, \|}$ K. Hafidi, ${ }^{2}$ H. Hakobyan, ${ }^{36,40}$ C. Hanretty, ${ }^{14}$ N. Hassall, ${ }^{37}$ D. Heddle, ${ }^{9,1}$ K. Hicks, ${ }^{28}$ M. Holtrop, ${ }^{26}$ Y. Ilieva, ${ }^{34}$ D. G. Ireland, ${ }^{37}$ E. L. Isupov, ${ }^{33}$ S. S. Jawalkar, ${ }^{39}$ H. S. Jo, ${ }^{20}$ K. Joo, ${ }^{10,1,36}$ D. Keller, ${ }^{28}$ M. Khandaker, ${ }^{27}$ P. Khetarpal, ${ }^{30}$ W. Kim, ${ }^{23}$ A. Klein, ${ }^{29}$ F. J. Klein, ${ }^{7,1}$ P. Konczykowski, ${ }^{8}$ V. Kubarovsky, ${ }^{1}$ S.E. Kuhn, ${ }^{29}$ S. V. Kuleshov, ${ }^{36,21}$ V. Kuznetsov, ${ }^{23}$ K. Livingston, ${ }^{37}$ H. Y. Lu, ${ }^{34}$ N. Markov, ${ }^{10}$ M. Mayer, ${ }^{16,29}$ D. Martinez, ${ }^{16,29}$ J. McAndrew, ${ }^{11}$ M. E. McCracken, ${ }^{6}$ B. McKinnon, ${ }^{37}$ C. A. Meyer, ${ }^{6}$ T Mineeva, ${ }^{10}$ M. Mirazita, ${ }^{17}$ V. Mokeev, ${ }^{33,1}$ B. Moreno, ${ }^{8}$ K. Moriya, ${ }^{6}$ B. Morrison, ${ }^{3}$ H. Moutarde, ${ }^{8}$ E. Munevar, ${ }^{15}$ P. Nadel-Turonski, ${ }^{1,8}$ R. Nasseripour, ${ }^{34, \pi}$ S. Niccolai, ${ }^{20}$ G. Niculescu, ${ }^{22,28}$ I. Niculescu,,${ }^{22,15}$ M. R. Niroula, ${ }^{29}$ M. Osipenko, ${ }^{18}$ A. I. Ostrovidov, ${ }^{14}$ R. Paremuzyan, ${ }^{40}$ K. Park, ${ }^{34,23,8}$ S. Park, ${ }^{14}$ E. Pasyuk, ${ }^{3,8}$ S. Anefalos Pereira, ${ }^{17}$ Y. Perrin, ${ }^{24}$ S. Pisano, ${ }^{20}$ O. Pogorelko, ${ }^{21}$ J. W. Price, ${ }^{4}$ S. Procureur, ${ }^{8}$ Y. Prok, ${ }^{38, * *}$ D. Protopopescu, ${ }^{37}$ B. A. Raue,,${ }^{13,1}$ G. Ricco, ${ }^{18}$ M. Ripani, ${ }^{18}$ G. Rosner, ${ }^{37}$ P. Rossi, ${ }^{17}$ F. Sabatié, ${ }^{8,29}$ M. S. Saini, ${ }^{14}$ J. Salamanca, ${ }^{16}$ C. Salgado, ${ }^{27}$ R. A. Schumacher, ${ }^{6}$ E. Seder, ${ }^{10}$ H. Seraydaryan, ${ }^{29}$ Y. G. Sharabian,,1,40 D. I. Sober, ${ }^{7}$ D. Sokhan, ${ }^{11, \dagger \dagger}$ S. S. Stepanyan, ${ }^{23}$ S. Stepanyan, ${ }^{9,1,40,8}$ P. Stoler, ${ }^{30}$ S. Strauch, ${ }^{34}$ R. Suleiman, ${ }^{25}$ M. Taiuti, ${ }^{18}$ D. J. Tedeschi, ${ }^{34}$ S. Tkachenko, ${ }^{29}$ M. Ungaro, ${ }^{10}$ B. Vernarsky, ${ }^{6}$ M. F. Vineyard, ${ }^{35,31}$ E. Voutier, ${ }^{24}$ D. P. Watts, ${ }^{11}$ L. B. Weinstein, ${ }^{29}$ D. P. Weygand, ${ }^{1}$ M. H. Wood, ${ }^{5}$ J. Zhang, ${ }^{29}$ B. Zhao, ${ }^{10, \neq \neq}$ and Z. W. Zhao ${ }^{34}$

(CLAS Collaboration)

[^0]${ }^{31}$ University of Richmond, Richmond, Virginia 23173, USA
${ }^{32}$ Universitá di Roma Tor Vergata, 00133 Rome, Italy
${ }^{33}$ Skobeltsyn Nuclear Physics Institute, 119899 Moscow, Russia
${ }^{34}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{35}$ Union College, Schenectady, New York 12308, USA
${ }^{36}$ Universidad Técnica Federico Santa María, Casilla 110-V Valparaíso, Chile
${ }^{37}$ University of Glasgow, Glasgow G12 8QQ, United Kingdom
${ }^{38}$ University of Virginia, Charlottesville, Virginia 22901, USA
${ }^{39}$ College of William and Mary, Williamsburg, Virginia 23187-8795, USA
${ }^{40}$ Yerevan Physics Institute, 375036 Yerevan, Armenia
(Received 31 March 2010; published 22 December 2010)

Abstract

We report the first measurement of the transverse momentum dependence of double-spin asymmetries in semi-inclusive production of pions in deep-inelastic scattering off the longitudinally polarized proton. Data have been obtained using a polarized electron beam of 5.7 GeV with the CLAS detector at the Jefferson Lab (JLab). Modulations of single spin asymmetries over the azimuthal angle between lepton scattering and hadron production planes ϕ have been measured over a wide kinematic range in Bjorken x and virtual photon squared four-momentum Q^{2}. A significant nonzero $\sin 2 \phi$ single spin asymmetry was observed for the first time indicating strong spin-orbit correlations for transversely polarized quarks in the longitudinally polarized proton.

DOI: 10.1103/PhysRevLett.105.262002
PACS numbers: 13.60.-r, 13.87.Fh, 13.88.+e, 14.20.Dh

A measurement of transverse momenta $\left(P_{T}\right)$ of finalstate hadrons in semi-inclusive deep-inelastic scattering (SIDIS) $\vec{e} \vec{p} \rightarrow e^{\prime} h X$, for which a hadron is detected in coincidence with the scattered lepton, gives access to the transverse momentum distributions (TMDs) of partons, which are not accessible in inclusive scattering. QCD factorization for SIDIS, established at low transverse momentum in the current-fragmentation region at higher energies [1-3], provides a rigorous starting point for the study of partonic TMDs from SIDIS data using different spindependent and spin-independent observables [4].

Measurements of the P_{T} dependences of spin asymmetries, in particular, allow studies of transverse momentum (k_{T}) widths of different TMDs, providing quantitative information on how quarks are confined in hadrons. The final transverse momentum of the hadron (for P_{T} comparable to the proton mass M_{p} and $\left.\Lambda_{\mathrm{QCD}}\right)$ in leading order is defined by the combination $z k_{T}+p_{T}$ [5], where p_{T} is the transverse momentum generated in the hadronization process, and z is the fraction of the energy of the virtual photon carried by the final-state hadron.

Azimuthal distributions of final-state particles in SIDIS, containing information on both magnitude and direction of the hadronic transverse momentum, are sensitive to the orbital motion of quarks and play an important role in the study of transverse momentum distributions of quarks in the nucleon. Two fundamental mechanisms have been identified that lead to single spin asymmetries (SSAs) in hard processes; the Sivers mechanism [6-10], which generates an asymmetry in the distribution of quarks due to orbital motion of partons, and the Collins mechanism [9,11], which generates an asymmetry during the hadronization of quarks.

Measurements of significant azimuthal asymmetries have been reported for pion production in semi-inclusive deep-inelastic scattering by the HERMES and COMPASS Collaborations, as well as the CLAS and Hall-C Collaborations at JLab for different combinations of beam and target polarizations [12-22].

For the longitudinally polarized target case, first discussed by Kotzinian and Mulders [11,23,24], the only SSA, depending on the azimuthal angle ϕ between the lepton scattering and pion production planes [25], arising at leading order is the $\sin 2 \phi$ moment. It involves the convolution of the Ralston-Soper-Mulders-Tangerman (RSMT) distribution function $h_{1 L}^{\perp}\left(x, k_{T}\right)$ [11,26] describing the transverse polarization of quarks in a longitudinally polarized proton [$2,11,23,24,27$], and the Collins fragmentation function $H_{1}^{\perp}\left(z, p_{T}\right)$ [28] describing fragmentation of transversely polarized quarks into unpolarized hadrons.

The only available measurement of the $\sin 2 \phi$ moment by HERMES [12] is consistent with zero. The RSMT distribution function has been studied in various QCD inspired models [29-32]. First calculations for $h_{1 L}^{\perp}\left(x, k_{T}\right)$ have recently been performed in the perturbative limit [33], and first measurements have been performed using lattice methods [34,35]. A measurably large asymmetry has been predicted [29-32,36] only at large $x(x>0.2)$, a region well covered by JLab.

The $\sin \phi$ moment of the spin-dependent cross section for the longitudinally polarized target is dominated by highertwist contributions [4]. This moment has been measured for the first time by the HERMES Collaboration [12]. Both $\sin \phi$ and $\sin 2 \phi$ moments of the SIDIS cross section for longitudinally polarized targets can be an important source of independent information on the Collins fragmentation
mechanism [4], complementary to recent Belle measurements [37].

In this Letter, we present measurements of the kinematic dependences of different single- and double-spin asymmetries in semi-inclusive pion production off longitudinally polarized protons. The current analysis is based on recently published data [38] from Jefferson Lab. The CEBAF large acceptance spectrometer [39] in Jefferson Lab's Hall B was used to measure spin asymmetries in the scattering of longitudinally polarized electrons from longitudinally polarized protons. The data were collected in 2001 using an incident beam of 5 -nA with $E=5.7 \mathrm{GeV}$ energy and an average beam polarization of $P_{B}=70 \%$. The detector package [39] provided a clean identification of electrons scattered at polar angles between 8° and 45°. Charged and neutral pions were identified using the time-of-flight from the target to the timing scintillators and the signal in the lead-scintillator electromagnetic calorimeter, respectively. Ammonia (${ }^{15} \mathrm{NH}_{3}$), polarized via dynamic nuclear polarization [40], was used to provide polarized protons. The average target polarization $\left(P_{t}\right)$ was about 75%. The data were divided into 5 bins in $Q^{2}\left(0.9-5.4 \mathrm{GeV}^{2}\right), 6$ bins in x (0.12-0.48), 3 bins in $z(0.4-0.7), 9$ bins in P_{T} $(0-1.12 \mathrm{GeV} / c)$, and 12 bins in $\phi(0-2 \pi)$. Cuts on the missing mass of $e^{\prime} \pi X\left(M_{X}>1.4 \mathrm{GeV}\right)$ and on the fraction of the virtual photon energy ν carried by the pion $z(z<0.7)$, have been used to suppress the contribution from exclusive processes, including the $\pi \Delta$ production.

The double-spin asymmetry A_{1} is defined as

$$
\begin{equation*}
A_{1}=\frac{1}{f D^{\prime}(y) P_{B} P_{t}} \frac{N^{+}-N^{-}}{N^{+}+N^{-}}, \tag{1}
\end{equation*}
$$

where $f \approx 0.14$ (dependent on kinematics) is the dilution factor, $y=\nu / E$, and $N^{ \pm}$are luminosity-weighted counts for antiparallel and parallel electron and proton helicities. The contribution from the longitudinal photon is accounted for in the depolarization factor $D^{\prime}(y)$:

$$
\begin{equation*}
D^{\prime}(y)=\frac{(1-\varepsilon)(2-y)}{y(1+\varepsilon R)} \equiv \frac{y(2-y)}{y^{2}+2\left(1-y-\frac{y^{2} y^{2}}{4}\right) \frac{(1+R)}{\left(1+\gamma^{2}\right)}}, \tag{2}
\end{equation*}
$$

where R [41] is the ratio of longitudinal to transverse photon contributions and ε is the ratio of longitudinal and transverse photon fluxes.

The main sources of systematic uncertainties in the measurements of the double-spin asymmetries include uncertainties in beam and target polarizations (4\%), dilution factor (5\%), and depolarization factor (5\%). Contributions from target fragmentation, kaon contamination, and radiative corrections [42] were estimated to be below 3% each.

The double-spin asymmetry A_{1} is shown in Fig. 1 as a function of P_{T}, integrated over all $x(0.12-0.48)$ for $Q^{2}>$ $1 \mathrm{GeV}^{2}, W^{2}>4 \mathrm{GeV}^{2}$, and $y<0.85$. Although these plots are consistent with flat distributions, $A_{1}\left(P_{T}\right)$ may decrease somewhat with P_{T} at moderately small P_{T} for
π^{+}. The slope for π^{-}could be positive for moderate P_{T} (ignoring the first data point).

A possible interpretation of the P_{T} dependence of the double-spin asymmetry may involve different widths of the transverse momentum distributions of quarks with different flavor and polarizations [5] resulting from different orbital motion of quarks polarized in the direction of the proton spin and opposite to it $[43,44]$. In Fig. 1 the measured A_{1} is compared with calculations of the Torino group [5], which uses different values of the ratio of widths in k_{T} for partonic helicity g_{1} and momentum f_{1} distributions, assuming Gaussian k_{T} distributions. A fit to $A_{1}\left(P_{T}\right)$ for π^{+}using the same approach yields a ratio of widths of 0.7 ± 0.1 with $\chi^{2} /$ d.o.f. $=1.5$. The fit to A_{1} with a straight line (no difference in g_{1} and f_{1} widths) gives a $\chi^{2} /$ d.o.f. $=1.9$.

The fraction of $\pi^{ \pm, 0}$ from ρ decays has been studied using the PYTHIA Monte-Carlo generator tuned for CLAS kinematics. While there seems to be no correlation between that fraction (bottom plots in Fig. 1) and observed A_{1} behavior, it may be responsible for some structure at $P_{T} \approx 0.5 \mathrm{GeV}$, in particular, for π^{-}, where that fraction is more significant. In addition, given the measured relatively equal rates of ρ^{0} and ρ^{+}, and their W dependence [45], we can safely exclude the "diffractive" origin of ρ^{0} s produced in the energy range of our experiment.

Asymmetries as a function of the azimuthal angle ϕ provide access to different combinations of TMD parton distribution and fragmentation functions [4]. The longitudinally polarized (L) target spin asymmetry for an unpolarized beam (U),

$$
\begin{equation*}
A_{\mathrm{UL}}=\frac{1}{f P_{t}} \frac{N^{+}-N^{-}}{N^{+}+N^{-}} \tag{3}
\end{equation*}
$$

FIG. 1. The double-spin asymmetry A_{1} as a function of transverse momentum P_{T}, integrated over all kinematical variables. The open band corresponds to systematic uncertainties. The dashed, dotted, and dash-dotted curves are calculations for different values for the ratio of transverse momentum widths for g_{1} and $f_{1}(0.40,0.68,1.0)$ for a fixed width for f_{1} $\left(0.25 \mathrm{GeV}^{2}\right)$ [5]. The lower panel shows the relative contributions to the data from simulated charged and neutral exclusive ρ production.
is measured from data by counting in ϕ bins the difference of luminosity-normalized events with proton spin states antiparallel (N^{+}) and parallel (N^{-}) to the beam direction.

The standard procedure for the extraction of the different moments involves sorting A_{UL} in bins of ϕ and fitting this ϕ distribution with theoretically motivated functions. Results for the function $p_{1} \sin \phi+p_{2} \sin 2 \phi$ and, alternatively, for $\left(p_{1} \sin \phi+p_{2} \sin 2 \phi\right) /\left(1+p_{3} \cos \phi\right)$ are consistent, indicating a weak dependence of the extracted $\sin n \phi$ moments on the presence of the $\cos \phi$ moment in the ϕ dependence of the spin-independent sum, which is the main source for mixing of $\sin n \phi$ moments. The main sources of systematic uncertainties in the measurements of single spin asymmetries include uncertainties in target polarizations (6%), acceptance effects (8%), and uncertainties in the dilution factor (5\%). The contribution due to differences between the true luminosity for the two different target spin states is below 2%. Radiative corrections for $\sin \phi$-type moments, for moderate values of y are expected to be negligible [46].

The dependence of the target single spin asymmetry on ϕ, integrated over all other kinematical variables, is plotted in Fig. 2. We observe a significant $\sin 2 \phi$ modulation for $\pi^{+}(-0.042 \pm 0.010)$. A relatively small $\sin 2 \phi$ term in the azimuthal dependence for π^{0} is in agreement with observations by HERMES [14]. Since the only known contribution to the $\sin 2 \phi$ moments comes from the Collins effect, one can infer that, for π^{0}, the Collins function is suppressed. Indeed, both HERMES [14] and Belle [37] measurements indicate that favored and unfavored Collins functions are roughly equal and have opposite signs, which means that they largely cancel for π^{0}. On the other hand, the amplitudes of the $\sin \phi$ modulations for π^{+}and π^{0} are comparable in size. This indicates that the contribution from the Collins effect to the $\sin \phi$ SSA, in general, is relatively small.

FIG. 2. Azimuthal modulation of the target single spin asymmetry A_{UL} for pions integrated over the full kinematics. Only statistical uncertainties are shown. Fit parameters p_{1} / p_{2} are $(0.047 \pm 0.010,-0.042 \pm 0.010), \quad(-0.046 \pm 0.016$, $-0.060 \pm 0.016),(0.059 \pm 0.018,0.010 \pm 0.019)$ for π^{+}, π^{-}, and π^{0}, respectively. Dotted and dash-dotted lines for π^{+}show separately contributions from $\sin \phi$ and $\sin 2 \phi$ moments, whereas the solid line shows the sum.

The $\sin 2 \phi$ moment $A_{\mathrm{UL}}^{\sin 2 \phi}$ as a function of x is plotted in Fig. 3. Calculations [30,36] using $h_{1 L}^{\perp}$ from the chiral quark soliton model [47] and the Collins function [48] extracted from HERMES [14] and Belle [37] data, are plotted as filled bands in Fig. 3. The kinematic dependence of the SSA for π^{+}from the CLAS data is roughly consistent with these predictions. The interpretation of the π^{-}data, which tend to have SSAs with a sign opposite to expectations, may require accounting for additional contributions (e.g., interference effects from exclusive $\rho^{0} p$ and $\pi^{-} \Delta^{++}$channels). This will require a detailed study with higher statistics of both double and single spin asymmetries from pions coming from ρ decays.

In summary, kinematic dependencies of single and double-spin asymmetries have been measured in a wide kinematic range in x and P_{T} with CLAS and a longitudinally polarized proton target. Measurements of the P_{T} dependence of the double-spin asymmetry, performed for the first time, indicate the possibility of different average transverse momentum for quarks aligned or antialigned with the nucleon spin. A nonzero $\sin 2 \phi$ single-target spin asymmetry is measured for the first time, indicating that spin-orbit correlations of transversely polarized quarks in the longitudinally polarized nucleon may be significant.

We thank A. Afanasev, S. Brodsky, A. Kotzinian, and P. Schweitzer for stimulating discussions. We would like to acknowledge the outstanding efforts of the staff of the Accelerator and the Physics Divisions at JLab that made this experiment possible. This work was supported in part by the U.S. Department of Energy and the National Science Foundation, the Italian Istituto Nazionale di Fisica Nucleare, the French Centre National de la Recherche Scientifique, the French Commissariat à l'Energie Atomique, and the National Research Foundation of Korea. The Southeastern Universities Research

FIG. 3 (color online). The measured x dependence of the longitudinal target SSA $A_{\mathrm{UL}}^{\sin 2 \phi}$ (triangles). The squares show the existing measurement of $A_{\mathrm{UL}}^{\sin 2 \phi}$ from HERMES. The lower band shows the systematic uncertainty. The upper band shows the existing theory predictions with uncertainties due to the Collins function [30,48].

Association (SURA) operates the Thomas Jefferson National Accelerator Facility for the United States Department of Energy under Contract No. DE-AC0506OR23177.
*Present address: Universidad Técnica Federico Santa María, Casilla 110-V Valparaíso, Chile.
${ }^{\dagger}$ Present address: Catholic University of America, Washington, DC 20064, USA.
${ }^{\ddagger}$ Present address: University of Kentucky, Lexington, KY 40506, USA.
${ }^{\text {§ }}$ Present address: Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA.
${ }^{\text {| }}$ Present address: Los Alamos National Laboratory, Los Alamos, NM, USA.
${ }^{\text {II }}$ Present address: The George Washington University, Washington, DC 20052, USA.
**Present address: Christopher Newport University, Newport News, VA 23606, USA.
${ }^{\dagger}$ Present address: Institut de Physique Nucléaire ORSAY, Orsay, France.
${ }^{\text {** }}$ Present address: College of William and Mary, Williamsburg, VA 23187-8795, USA.
[1] J. C. Collins and D.E. Soper, Nucl. Phys. B193, 381 (1981).
[2] X. Ji, J. P. Ma, and F. Yuan, Phys. Rev. D 71, 034005 (2005).
[3] J. C. Collins and A. Metz, Phys. Rev. Lett. 93, 252001 (2004).
[4] A. Bacchetta et al., J. High Energy Phys. 02, (2007) 093.
[5] M. Anselmino, A. Efremov, A. Kotzinian, and B. Parsamyan, Phys. Rev. D 74, 074015 (2006).
[6] D. W. Sivers, Phys. Rev. D 43, 261 (1991).
[7] M. Anselmino and F. Murgia, Phys. Lett. B 442, 470 (1998).
[8] S. J. Brodsky, D. S. Hwang, and I. Schmidt, Phys. Lett. B 530, 99 (2002).
[9] J. C. Collins, Phys. Lett. B 536, 43 (2002).
[10] X. Ji and F. Yuan, Phys. Lett. B 543, 66 (2002).
[11] P. J. Mulders and R. D. Tangerman, Nucl. Phys. B461, 197 (1996).
[12] A. Airapetian et al. (HERMES Collaboration), Phys. Rev. Lett. 84, 4047 (2000).
[13] A. Airapetian et al. (HERMES Collaboration), Phys. Rev. D 64, 097101 (2001).
[14] A. Airapetian et al. (HERMES Collaboration), Phys. Rev. Lett. 94, 012002 (2005).
[15] A. Airapetian et al. (HERMES Collaboration), Phys. Lett. B 648, 164 (2007).
[16] F. Giordano and R. Lamb (HERMES Collaboration), AIP Conf. Proc. 1149, 423 (2009).
[17] V. Y. Alexakhin et al. (COMPASS Collaboration), Phys. Rev. Lett. 94, 202002 (2005).
[18] W. Kafer (COMPASS Collaboration), arXiv:0808.0114.
[19] H. Avakian et al. (CLAS Collaboration), Phys. Rev. D 69, 112004 (2004).
[20] H. Avakian, P. Bosted, V. Burkert, and L. Elouadrhiri (CLAS Collaboration), AIP Conf. Proc. 792, 945 (2005).
[21] H. Mkrtchyan et al., Phys. Lett. B 665, 20 (2008).
[22] M. Osipenko et al. (CLAS Collaboration), Phys. Rev. D 80, 032004 (2009).
[23] A. Kotzinian, Nucl. Phys. B441, 234 (1995).
[24] A. M. Kotzinian and P. J. Mulders, Phys. Rev. D 54, 1229 (1996).
[25] A. Bacchetta, U. D'Alesio, M. Diehl, and C. A. Miller, Phys. Rev. D 70, 117504 (2004).
[26] J.P. Ralston and D.E. Soper, Nucl. Phys. B152, 109 (1979).
[27] E. Di Salvo, Int. J. Mod. Phys. A 22, 2145 (2007).
[28] J. C. Collins, Nucl. Phys. B396, 161 (1993).
[29] L. P. Gamberg, G. R. Goldstein, and M. Schlegel, Phys. Rev. D 77, 094016 (2008).
[30] H. Avakian et al., Phys. Rev. D 77, 014023 (2008).
[31] A. V. Efremov, P. Schweitzer, O. V. Teryaev, and P. Zavada, Phys. Rev. D 80, 014021 (2009).
[32] S. Boffi, A. V. Efremov, B. Pasquini, and P. Schweitzer, Phys. Rev. D 79, 094012 (2009).
[33] J. Zhou, F. Yuan, and Z.-T. Liang, Phys. Rev. D 81, 054008 (2010).
[34] P. Hagler, B. U. Musch, J. W. Negele, and A. Schafer, Europhys. Lett. 88, 61001 (2009).
[35] B. U. Musch, P. Hagler, J. W. Negele, and A. Schafer, arXiv:1011.1213.
[36] A. V. Efremov, K. Goeke, and P. Schweitzer, Phys. Rev. D 67, 114014 (2003).
[37] K. Abe et al. (Belle Colaboration), Phys. Rev. Lett. 96, 232002 (2006).
[38] K. V. Dharmawardane et al. (CLAS Collaboration), Phys. Lett. B 641, 11 (2006).
[39] B.A. Mecking et al. (CLAS Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 503, 513 (2003).
[40] C. D. Keith et al., Nucl. Instrum. Methods Phys. Res., Sect. A 501, 327 (2003).
[41] S. Dasu et al., Phys. Rev. Lett. 60, 2591 (1988).
[42] I. Akushevich, A. Ilyichev, N. Shumeiko, A. Soroko, and A. Tolkachev, Comput. Phys. Commun. 104, 201 (1997).
[43] S. J. Brodsky, M. Burkardt, and I. Schmidt, Nucl. Phys. B441, 197 (1995).
[44] H. Avakian, S. J. Brodsky, A. Deur, and F. Yuan, Phys. Rev. Lett. 99, 082001 (2007).
[45] S. A. Morrow et al. (CLAS), Eur. Phys. J. A 39, 5 (2009).
[46] I. Akushevich, N. Shumeiko, and A. Soroko, Eur. Phys. J. C 10, 681 (1999).
[47] P. Schweitzer et al., Phys. Rev. D 64, 034013 (2001).
[48] A. V. Efremov, K. Goeke, and P. Schweitzer, Phys. Rev. D 73, 094025 (2006).

[^0]: ${ }^{1}$ Thomas Jefferson National Accelerator Facility, Newport News, Virginia 23606, USA
 ${ }^{2}$ Argonne National Laboratory, Argonne, Illinois 60441, USA
 ${ }^{3}$ Arizona State University, Tempe, Arizona 85287-1504, USA
 ${ }^{4}$ California State University, Dominguez Hills, Carson, California 90747, USA
 ${ }^{5}$ Canisius College, Buffalo, New York 14208, USA
 ${ }^{6}$ Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
 ${ }^{7}$ Catholic University of America, Washington, D.C. 20064, USA
 ${ }^{8}$ CEA, Centre de Saclay, Irfu/Service de Physique Nucléaire, 91191 Gif-sur-Yvette, France
 ${ }^{9}$ Christopher Newport University, Newport News, Virginia 23606, USA
 ${ }^{10}$ University of Connecticut, Storrs, Connecticut 06269, USA
 ${ }^{11}$ Edinburgh University, Edinburgh EH9 3JZ, United Kingdom
 ${ }^{12}$ Fairfield University, Fairfield, Connecticut 06824, USA
 ${ }^{13}$ Florida International University, Miami, Florida 33199, USA
 ${ }^{14}$ Florida State University, Tallahassee, Florida 32306, USA
 ${ }^{15}$ The George Washington University, Washington, D.C. 20052, USA
 ${ }^{16}$ Idaho State University, Pocatello, Idaho 83209, USA
 ${ }^{17}$ INFN, Laboratori Nazionali di Frascati, 00044 Frascati, Italy
 ${ }^{18}$ INFN, Sezione di Genova, 16146 Genova, Italy
 ${ }^{19}$ INFN, Sezione di Roma Tor Vergata, 00133 Rome, Italy
 ${ }^{20}$ Institut de Physique Nucléaire ORSAY, Orsay, France
 ${ }^{21}$ Institute of Theoretical and Experimental Physics, Moscow, 117259, Russia
 ${ }^{22}$ James Madison University, Harrisonburg, Virginia 22807, USA
 ${ }^{23}$ Kyungpook National University, Daegu 702-701, Republic of Korea
 ${ }^{24}$ LPSC, Universite Joseph Fourier, CNRS/IN2P3, INPG, Grenoble, France
 ${ }^{25}$ Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
 ${ }^{26}$ University of New Hampshire, Durham, New Hampshire 03824-3568, USA
 ${ }^{27}$ Norfolk State University, Norfolk, Virginia 23504, USA
 ${ }^{28}$ Ohio University, Athens, Ohio 45701, USA
 ${ }^{29}$ Old Dominion University, Norfolk, Virginia 23529, USA
 ${ }^{30}$ Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA

