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Abstract: We present numerical experiments showing how coupled-mode
theory can be systematically applied to join very dissimilar photonic crystal
waveguides with 100% transmission. Our approach relies on appropriately
tuning the coupling of the evanescent tail of a cavity mode toeach waveg-
uide. The transition region between the waveguides may be asshort as a
few lattice spacings. Moreover, this technique only requires varying a small
number of parameters (two for each waveguide in our example)and the
tuning to each waveguide may be done separately, greatly simplifying the
computations involved.
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Fig. 1. Projected band diagram along theΓ−X direction for TM modes in a square lattice of
rods of radiusa/4 (shaded region) and band structures for a singly-wide linedefect, triply-
wide line defect, and coupled-cavity waveguide (identifiedby their dielectric profile). The
defect radii are, respectively,a/12, 0.325a, anda/12. The constantΛ (x–axis of the figure)
is 4 for the CCW and 1 for the other structures, due to the longer primitive cell (4a) of the
former, along the direction of the propagation.

1. Introduction

In this paper, we provide a general prescription for, and specific examples of, how abrupt inter-
faces between a photonic crystal cavity and two waveguides may be tailored so that 100% trans-
mission between the waveguides is achieved. Photonic crystals enable an extraordinary degree
of control over the propagation of light and a rich variety ofphenomena [1, 2, 3]. Connecting
different photonic crystal devices in an efficient manner istherefore critical to enabling com-
plex integrated photonic devices. Slow-light waveguides,for example, have greatly enhanced
sensitivity to nonlinear effects, thus facilitating the design of compact electro-optical devices
[4, 5, 6, 7], but coupling to them can be particularly challenging [8]. For a variety of appli-
cations, our proposal may present an alternative to approaches such as butt-coupling [9, 10],
mode-field matching [11, 12, 13], anti-reflection coating-like injectors [14, 15], optical stub
tuners [16, 17], and tapered transitions between waveguides [18, 19, 20, 21, 22, 23, 24, 25, 26].
The approach explored in this paper exploits the property known as “Q-matching” in the ab-
stract framework of coupled-mode theory [27], which provides an accurate phenomenological
approximation to the full physics, provided that the coupling between any two distinct structures
is sufficiently weak. AQ-matching structure typically only needs to be a few latticespacings
long: little more than a single period of the slow-light coupled-cavity waveguide (shorter than
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Fig. 2. Graphical representation of a coupled-mode theory treatment of two waveguides
(red and blue strips) coupled by means of a cavity tuned to resonate at the angular frequency
ω0 and couple to each waveguide with quality factorsQ1 and Q2. The direct coupling
between the two waveguides is neglected. 100% transmissionoccurs at the frequencyω0
whenQ1 = Q2.

typical adiabatic tapers). Although resonant phenomena are necessarily narrow bandwidth, in
our case the resonance bandwidth is comparable to that of theslow-light waveguide itself, so the
Q-matching strategy does not worsen the intrinsic sensitivity of the problem to perturbations.
Furthermore, the reliance of our design on only a small number of tuned parameters makes
post-fabrication tuning a possibility to compensate for imperfections. We begin by introducing
three different photonic crystal waveguides within a square lattice of silicon rods in silica. Next,
we show how coupled-mode theory may be applied to split the overall transmission problem
into substantially more tractable parts by allowing each waveguide to be separately matched
to a single-defect cavity. Finally, once all three waveguide-cavity structures are properly tuned,
we check the validity of the tuning procedure and demonstrate 100% transmission by fully sim-
ulating the transmission for all combinations of two distinct waveguides. Both the tuning and
verification are done via full simulations of Maxwell’s equations with no approximation except
for the discretization [28].

2. Exemplar waveguides

For concreteness, we consider three different kinds of waveguides formed by introducing linear
defects into a two-dimensional square lattice (with lattice constanta) of rods of radiusr =
a/4 and permittivityεhigh = 12.25 embedded in a dielectric material withεlow = 2.25. (These
values of the dielectric constants approximately correspond to those for silicon and fused silica
in the near infrared, respectively.) The first waveguide is astandard linear defect waveguide
formed by substituting one column of rods in the original square lattice by a column of rods
with smaller radiusa/12. The second waveguide is a triply-wide linear defect wherein three
adjacent columns of the square lattice are replaced with rods of larger radius 0.325a, and the
last waveguide is a coupled-cavity waveguide [29, 30] (CCW)in which every fourth rod along
a column is replaced with a rod of radiusa/12. The permittivity of the defect rods is the same
as that of the original rods (εhigh) in all three waveguides. Fig. 1 shows the dielectric function
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Fig. 3. Results of a finite-difference time-domain (FDTD) simulation of a cavity resonant
at ω0 = 0.265× (2πc/a) decaying into a singly-wide line defect waveguide (a), a triply-
wide line defect waveguide (b), and a slow-light coupled-cavity waveguide (c). The top
panels show thez component (parallel to the rods) of the electric field. The insets show the
dielectric profile of the area indicated. The lower panels show the dependence of the cavity
Q on the defect radius of the rod closest to the waveguide (insets, in red). The latter are
tuned so that theQ of the cavity is 550 in each case. The values of the defect radii indicated
in blue are used in the full simulations of the coupled waveguides.

profiles for the three waveguides analyzed as well as the relevant TM bands (computed by
preconditioned conjugate-gradient minimization of the block Rayleigh quotient in a planewave
basis [31]) and the projected band diagram for TM modes of thesquare lattice of rods. Since
the CCW has its inflection point (and thus zero group velocitydispersion) at the center-gap
frequencyω0 = 0.265×(2πc/a), we takeω0 as the target frequency for which the transmission
is to be maximized.

3. Design and tuning of the coupling cavity

We now turn to the design of a compact resonant cavity to mediate the transmission between any
two waveguides. If we impose the requirement that the resonant structure be weakly coupled to
each waveguide and that the direct coupling between waveguides be in turn negligible compared
to their interaction with the cavity, then the key phenomenon of interest is well described by
the temporal coupled-mode theory equations [27, 3]
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whereA(t) denotes the complex amplitude of the cavity’s excitation and is normalized such
that the energy associated with the cavity is∣A∣2, ω0 is the resonant frequency of the cavity, the
indexm denotes the different waveguides, andQm is the quality factor of the cavity’s decay into

waveguidem. S(+)
m andS(−)

m represent, respectively, the complex amplitudes of the waveguide
modes going towards and away from the cavity, and are normalized such that the power flowing
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which equals unity (100% transmission) atω = ω0 if Q1 = Q2 (a property often referred to as
theQ-matching condition [32]) and has a bandwidth set by the quality factors. It follows that
we can approach the problem of coupling two dissimilar waveguides with a three-step process:
1) design a cavity that resonates at the desired frequency, 2) separately model the cavity in con-
junction with a single waveguide and tune each cavity-waveguide interface so as to achieve a
target couplingQ, and 3) as a check (if desired), simulate the full system withtwo waveguides
and the cavity. For each step, we performed simulations using the finite-difference time-domain
method [33] (FDTD), implemented in a freely available software package [28], with a resolu-
tion of 16 pixels per lattice spacing and subpixel smoothingof the dielectric function [34] in
order to more accurately model the finer features of the structure. In the first two steps, we
used the filter-diagonalization method [35] to extract the resonant frequency andQ of the cav-
ity and the waveguide. Note that because the discretizationof the system is the same across
all FDTD simulations, the resonant frequency andQ values extracted from the decay compu-
tations (which may differ from the exact result because of the finite resolution) are directly
applicable to the simulation of the transmission. Thus, regardless of errors introduced by the
discretization, the transmission spectrum should peak at 100% in the transmission calculation
provided that the couplingQ’s of the cavities extracted from the decay computations match, as
predicted by coupled-mode theory arguments. Similar considerations may be used to correct
for perturbations introduced in fabrication, which can be circumvented as long as theQ’s of the
fabricated cavity can be retuned and matched to the same value. Although we have assumed
that the system is lossless, it is straightforward to modifythe coupled-mode theory treatment to
account for losses due to, e.g., radiation or absorption [3](which would then reduce the peak
of the transmission from 100%). Since we presently work withcouplingQ < 103 between the
cavity and the waveguides and photonic crystal cavities with lossQ’s in excess of 106 have been
demonstrated experimentally [36], our assumption that thecavity is lossless (and consequently
enables 100% transmission between waveguides) should be a reasonable approximation for
appropriately designed experimental systems.

4. Discussion

We found that a point-defect formed by replacing one latticerod with a rod of same dielec-
tric constantεhigh and radius 0.1095a had a resonant frequency within 0.05% of the target
ω0 = 0.265× (2πc/a). For tuning theQ of the cavity coupled to each waveguide (Fig. 3), we
varied two parameters: the number of lattice periods separating the cavity from the waveguide
(a discrete parameter) and the radius of the rod closest to the waveguide. We found that at a sep-
aration of four lattice spacings, all three systems had local minima in the vicinity ofQ = 550,
which we chose as our target. (Note that it may often be desirable to tuneQ to a value close
to a local minimum, as this is where the slope ofQ as a function of the continuous parameter
is smallest, thereby improving the robustness of the tuningwith respect to perturbations in the
tuning parameter due to imperfections in the fabrication.)After finding the optimal tuning pa-
rameters for each system, we verified that all combinations of dissimilar waveguides coupled
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Fig. 4. FDTD simulations showing thez component of the electric field (top panels) and
the transmission spectrum of a singly-wide line defect waveguide coupling to triply-wide
waveguide (a), a singly-wide waveguide coupling to a CCW (b), and a triply-wide waveg-
uide coupling to a CCW (c). Each system is tuned to the points indicated (in blue) in Fig. 3
and exhibits 100% transmission nearω0 = 0.265× (2πc/a). For reference, the transmis-
sion spectra of the corresponding butt-coupled geometriesare shown as dash-dotted lines.

by means of the cavity and properly tuned intervening structure exhibited 100% transmission
atω = ω0 by a direct FDTD calculation of the transmission between waveguides (Fig. 4). This
simulation involves driving the leftmost waveguide with a spatially localized and temporally
gaussian excitation and letting the resulting electromagnetic pulse propagate through the struc-
ture while recording the values of the fields through a flux plane intersecting the rightmost
waveguide. The transmission spectrum at a given frequency may then be calculated by Fourier-
transforming the fields at the flux plane, computing the associated Poynting vector, integrating
it over the flux plane, and normalizing the result to the powerspectrum of the excitation. Al-
though we terminate the waveguides with absorbing boundaries (pseudo perfectly matched lay-
ers, pPMLs [37]), we have further minimized the effect of possible numerical artifacts due to the
pulse being reflected at the pPMLs by tuning the running time of the simulation and the length
of the waveguides so that the electromagnetic pulse substantially propagates through the flux
plane exactly once [38]. Because of the increased size of thecomputational volume and longer
timescales, these transmission simulations are considerably more numerically intensive than
those shown in Fig. 3 (a single transmission computation typically taking more time to com-
plete than a full decay parameter search such as those shown in the lower panels of Fig. 3) and it
would be far less practical to use them directly to search forthe appropriate tuning parameters,
especially for three-dimensional systems. Nevertheless,they bear out the prediction of 100%
transmission from the coupled-mode theory combined with a set of much simpler cavity decay
simulations. Note that the bandwidth of the CCW is comparable to theQ = 550 between the
cavity and each waveguide, and the transmission spectra to the CCW [Fig. 4(b) and (c)] deviate
from the Lorentzian shape predicted by Eq. 3 as they approachthe band-edges of the CCW (be-
yond which the transmission drops to zero as there are no propagating CCW modes to couple
to). Also shown (as dash-dotted lines) in Fig. 4 are the transmission spectra of the correspond-
ing butt-coupled structures, where the terminal defect rods of the two coupled waveguides are
in neighboring periods of the underlying photonic crystal lattice. One can see that, although the



butt-coupled transmission spectra have broader bandwidths than theQ-matched results, they do
not achieve 100% transmission over the frequency range of interest. Although the butt-coupled
transmission could be improved by tweaking the interface between the two waveguides, this
would generally require solving a mode-field matching problem in its own right, and any deli-
cate cancelation of the reflected wave would itself be a narrow-bandwidth resonant effect.

5. Applicability to other waveguide junctions

Note that due to the symmetry of the square lattice of the underlying photonic crystal, the junc-
tions shown in Fig. 3 could have just as well been used in a 90∘ bend coupling one waveguide
to another. Indeed, the prescription outlined in this papermay be applied directly to any system
comprising two single-mode waveguides and a single-mode cavity that fulfills the condition
of sufficiently weak coupling required for a coupled-mode theory treatment. Provided these
simple conditions are met,Q-matching could be used, for instance, to couple modes of very
different symmetry and polarization (e.g. TE to TM or TEM01 to HE11) and is not limited to
photonic crystals. Note that even if the cavity mode happensto be doubly degenerate [39], such
symmetry-induced degeneracies will only support one mode that couples to the waveguide
mode in waveguides with mirror symmetry, yielding effectively single-mode behavior [40].
Finally, it should be possible to obtain broader transmission bandwidths by extending this tech-
nique to (non-degenerate) multi-mode cavities [41].
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